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ABSTRACT

We give a new proof of a recent result of Tong Liu, which gives a general control on the torsion in
the graded pieces of the so-called integral Hodge filtration associated to a crystalline Galois lattice.
Our approach is stack-theoretic, and is inspired on the one hand by a result of Gee—Kisin on the
shape of mod p crystalline Breuil-Kisin modules, and on the other hand by the structures seen on
the diffracted Hodge complex studied by Bhatt—Lurie. Along the way, we also obtain an explicit
description of the Hodge—Tate locus in the Nygaard stack (’)ﬁ\(/ for a general extension K/Q,.
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1. INTRODUCTION

Let k/F, be a perfect field and let K := W(k)[1/p]. Let T € Rep%rZS(GK) be a crystalline Gk-lattice.
Fix a choice of uniformizer 7 € O, with Eisenstein polynomial E(x)!. Let 9 be the Breuil-Kisin
module associated to T' for this choice of 7. Pulling the (full Z-indexed) filtration E(x)%9 along the
Frobenius ¢*9t — M[1/E(x)], and then pushing along the natural map ¢*9 — *M/E(x)p* M gives a
filtration Fil; Mg on My = ©* M/ E(z)e* M, which we will refer to as the (integral) Hodge filtration.
(The terminology is justified by the fact that, after inverting p this recovers the usual Hodge filtration
on Dar(T[1/p]) ~ Myr[1/p].) It was observed in [11] that the torsion in gr},Myr bears some relation
to the shape of the Frobenius acting on 91. For instance, if there is no torsion, then for any choice
of G-basis e = (e1,...,e,) of M we have p(e) = eAAB where A,B € GL, (&) and A is a diagonal
matrix diag(E(u)™) (in general one only has A, B € GL,(&[1/p])). An immediate consequence is that
in this case the mod p Breuil-Kisin module 99t/p9t remembers the Hodge-Tate weights of the rational
representation T[1/p].

1The variable is typically denoted by u but here we reserve the notation u for other use.



The goal of this note is to give a new proof of the following recent result of Tong Liu, which gives a
general control on the torsion appearing in gr§; r. (In the statement below, the notation My, denotes
the torsion submodule of an Ox-module M.)

Theorem 1.1 ([12, Thm. 1.1]). We have
(gr%de)mr 20 = i=r+mp for somer € HT and m € Z~y,

where HT denotes the set of Hodge—Tate weights of T[1/p].

The key new structure to our proof of Theorem 1.1 is a so-called Sen operator © on My =
M/E(x)M. Our use of © is guided by the structures seen on the diffracted Hodge complex introduced
by Bhatt—Lurie in [4]. In turn, we construct © from a certain differential operator D. While it is possible
to extract D from the rational monodromy operator in the classical theory of Breuil-Kisin modules by
some delicate approximations (see Section 4), its existence — together with the additional symmetries
that it satisfies — seems best explained by the theory of prismatic F-gauges by Bhatt—Lurie [3]. See
Subsection 2.1 below. Our considerations here are inspired by a recent result of Gee—Kisin on the shape
of mod p crystalline Breuil-Kisin modules; in particular, we follow their strategy and realize the objects
of interest as quasi-coherent sheaves on certain stacks.

Remark 1.2. In fact, we will construct the operator D for a general (possibly ramified) extension
K/Q,. As a key ingredient for this, we extend the explicit description of the so-called Hodge—Tate locus
(O )i=o given in [3, Prop. 5.3.7] to the case of a general extension K/Q,; see Proposition 3.20 below.
More generally, there is a similar description for (RN )t=o0 where R is an arbitrary complete regular local
Noetherian ring with perfect residue field of characteristic p > 0; see Remark 3.25.

Remark 1.3. Our proof is partially inspired by Drinfeld and Bhatt—Lurie’s approach to the Deligne—
Tlusie theorem via the Sen operator (cf. [4, Rem. 4.7.18]). As an illustration of this analogy, note
that Theorem 1.1 implies in particular that in the case where 9 is effective (which is the case for
representations coming from geometry), gr'M is torsion free for all i < p. We can thus roughly think
of this special case as an incarnation of (a weaker form of) the Deligne-Illusie theorem (with the bound
i < p corresponding to the bound dim(X) < p in DeligneTllusie result).

Acknowledgements. The debt that this note owes to the work of Drinfeld [8], Bhatt-Lurie [4, 5, 3],
and Gee—Kisin will be obvious to the reader. I would also like to thank Toby Gee and Bao Le Hung
for helpful discussions, as well as Toby Gee, Arthur-César Le Bras, Tong Liu, and the referee for their
comments. After writing an initial draft of this note, I learned that Gao—Liu and Gee—Kisin have also
independently found related proofs of Theorem 1.1. T am very grateful to them for informing me of their
work and for kindly coordinating in announcing our results. This work was supported by the Simons
Collaboration on Perfection in Algebra, Geometry, and Topology.

Notation. We follow the conventions of [3]. In particular, our p-adic formal schemes are assumed to be

bounded, and all stacks appearing are defined on p-nilpotent test rings with the flat topology.

2. PRrROOF OF MAIN THEOREM

To avoid distractions, we will first prove a more general result (Proposition 2.1) by isolating the key
hypothesis. In Subsection 2.1 below we will indicate how it specializes to the situation of Theorem 1.1.

Set up. Consider an increasing (honest) filtration of finite free Ox-modules
FiloM . CFI™C.. CFil&™C....

conj
li

We assume that this is a finite filtration, i.e., Fi stabilizes for ¢ > 0, and is 0 for ¢ < 0.



Hypothesis. Assume there is a filtered endomorphism © : Filso™ — Fils°™ with the property that ©
acts on the ith graded piece gr;”™ via multiplication by —i. (The superscript “conj” stands for “conju-
gate”.)

Inverting p gives a filtration of K-vector spaces, and we define as usual its Hodge—Tate weights as the
set of filtration jumps, i.e., ‘
HT = {i € Z | g™ [L/p] # 0}.

Proposition 2.1. We have

(g™ )eor 0 = i=r+mp for somer € HT and m > 0.

K2

Proof. Set
I'={r+mp|reHT,m> 0}

We need to show that if i ¢ I, then gri® is Og-free. We will do this by induction on 4. If i < 0, then
gr;”™ = 0 and there is nothing to prove. Assume the result for i’ < i (and i’ ¢ I), we now deduce it for
i. In fact we will show the stronger assertion that the sequence

0 — Fili”} — Fili*™ — gri®™ — 0

conj
7

of Ok[O]-modules splits (as Fil’™ is Ok-free, this implies in particular that gr
which in turn will follow from

is free, as wanted),

Extg, o) (gri™, Fili?Y) = 0.
By dévissage, it suffices to show

conj conj)

EXt}gK[@] (g1, g1} =0 for each j < i.

We consider two cases. If p i — j, then we are done as the LHS is killed by (© +1i) — (0 +j) =i — j,
a unit. If p|i — j, then by definition of the set I, j ¢ HT and we still have j ¢ I. Thus, gri;”"[1/p] = 0
but also grj-onj is p-flat by the inductive hypothesis for j. This forces gr;?onj = 0, and the result trivially

holds. (Note that the same argument also shows that Home, [g] (grs™ Fil®%) = 0, i.e. the splitting is
unique.) O

2.1 A stacky perspective

After Proposition 2.1, to finish the proof of Theorem 1.1 we need to construct an increasing filtration
Fil¢®™ together with an endomorphism © as above with the additional property that gre®™ ~ gr$,Myz.

Our construction of Fil® and © is guided by the structure seen on the diffracted Hodge complex
studied by Bhatt—Lurie in [4, §4.7], and is explained in [3, Remark 6.5.11] in a geometric context. The
material in this subsection is therefore presumably well-known to the experts, although we do not know

of a treatment in the literature in the level of generality that we require.

Construction of Fili® and ©

Consider the so-called conjugate filtration

(2.1.1) FilsMyr 0 ... < Fil o™ M/Fillp* M < Fil'g* M /Fil o m « ..

FilS®™ Nt FilS®™ 0 g



where the transition map u is induced by the multiplication by E(z). One checks easily that this is a
finite increasing filtration of finite free Ox-modules, whose underlying non-filtered module is My =
M/ E(x)M (justifying the notation). Moreover, there is a natural graded isomorphism

conj .
gr™MMyr ~ gryMar.

(This identification also admits a geometric explanation; see Corollary 3.32 below.) In what follows, we
will often omit My from the notation and simply write Fil°™, etc. We now explain the construction
of ©.

From now on we drop the assumption that K/Q, is unramified, i.e. we allow K/Q, to be
any complete discretely valued extension with perfect residue field.

In this generality, we will construct a filtered operator © on F ilionj with the property that © acts as
multiplication by —iE’(7) on gri”™. Note that if K/Q, is unramified, then clearly E’(w) = 1; hence in
this case © acts as —i on grgonj, as desired.
It is easy to see that the datum of such a © is equivalent to the datum of an operator D : Filfonj —

Fil®™[—1] with the property that

(2.1.2) Du—uD = E'(r)?.

For instance, given D, the corresponding © is given by

(2.1.3) ©:=uD —iF'(r) on Fil{®™,

(We refer the reader to Lemma 3.28 below for a geometric explanation of this relation.)

Thus, it suffices to construct D satisfying (2.1.2). As mentioned in the Introduction, while one can
extract D from the rational monodromy operator in the classical theory of Breuil-Kisin modules, its
existence seems best explained by the theory of prismatic F-gauges by Bhatt—Lurie, as we now explain.

More precisely, the existence of D and © as well as the relation (2.1.3) is encoded in the following
commutative diagram of stacks over Spf(Z,):

(BG)o, " (AL/Gn)o, —"— OF
u:O\[ t:O]\
(2.1.4) (AL/Gp)ox —— (AL /G % Go)og ——5 (0N)imo

u#O]\ u#O]\ jHT]\
Spf(Ok) = (Gm/Gm)ox —2 (G /GE % Gp)o, ——— OHT.

P(s,1)
Let us briefly explain the objects appearing in the diagram.

e Al (resp. Al) denotes the affine line A' where the coordinate ¢ (resp. u) is placed in grading
degree 1 (resp. —1). Furthermore, we let G act on A! by a -0, = := E’(7)a + z; one checks that
this then extends to an action of G x G,,, where the semidirect product is formed by letting G,
act on G¥ by (), a) — A\"ta.

. (’)% is the filtered prismatization of Spf(Ok). This is a filtered stack, i.e., comes with a map
t: Oﬁ\(f — (Ai/Gm)zp. Moreover, there is an open embedding jgr : O — O’I\(/ from the
prismatization O. See [3, §5.3] for more details. The map igr in the top row is the de Rham
map defined in [3, Construction 5.3.13]. The map P(s,r) is the usual map associated to the chosen

Breuil-Kisin prism (&, I), viewed as an object in the absolute prismatic site of Spf(Ok). See [5,
Construction 3.10].

2We abusively also write E’(r) for the multiplication by E’(r) on an O-module, etc.



e The isomorphism (Al /Gf x G,,)0, =~ (O%)tzo in the middle row will be defined and proved in
Subsection 3.3 below.

Finally, we explain the relevance of diagram (2.1.4) to the construction of the operators D and ©. More
details will be given in Section 3 below.

e The graded isomorphism grfonjDﬁHT ~ gryMyr results from commutativity of the top rectangle.
See Subsection 3.6 below.

e It follows from the isomorphism (O¥)i—o ~ (AL/G! x G,,)o, that quasi-coherent sheaves
on ((’)ﬁ\(f )t—o are equivalent to p-complete graded modules over the (p-completed) Weyl algebra
Ok{u,D}/(Du—uD—E'(r)), i.e. p-complete graded O [u]-modules M together with a graded en-
domorphism D : M — M|[—1] satisfying the commutation relation Du—uD = E'(7) (and a certain
nilpotent condition), cf. Lemma 3.27. Pulling back along the natural map [A /G,,] = (OX)i=o
then simply amounts to forgetting the derivation. Thus if £ € Coh((’)iyn) denotes the F-gauge asso-
ciated to the given crystalline lattice T, then E‘(Oﬁ‘{)t:o gives rise to an operator D : Fil, — Fils[—1]
satisfying Du — uD = E’'(w), where Fil, denotes the increasing filtration corresponding (via the
Rees construction) to E|a1 /q,,- We then shows in Lemma 3.30 below that Fils is nothing but the
conjugate filtration (2.1.1). This finishes the construction of D.

e It is known that pulling back along the map p(s lifts to an equivalence between quasi-coherent
sheaves on (’)ng and p-complete modules over Ok equipped with a so-called Sen operator © (see
Theorem 3.26 below). In Lemma 3.28 below, we will show that under this equivalence, the restriction

E|pur corresponds to the module ligFilzc»onj underlying the conjugate filtration equipped with the

Sen operator given by © = uD — iE’(w) on Fil{®™
terms of D, as given in (2.1.3).

. This explains the above construction of © in

O

3. IDENTIFICATIONS WITH THE STACKY PICTURE

In this section, we justify the various identifications with the stacky picture, as alluded to in Subsection
2.1. In particular, we extend the explicit description of the Hodge—Tate locus given in [3, Prop. 5.3.7]
from the case K = Q,, to the case of a general extension K/Q,; see Proposition 3.20 below. As mentioned
earlier, the materials here will not surprise an expert; however since the proofs are not available in the
literature, we work them out here for completeness.

3.1 Preliminaries

We begin by briefly recalling a few basic objects and facts from [3] that will be important in what follows;
for a detailed account, we refer the reader to loc. cit.

3.1.1 The prismatization

Definition 3.1. A Cartier—Witt divisor on a p-nilpotent ring S is a generalized Cartier—Witt divisor
I % W(S) such that

(i) the ideal generated by the image of I % W(S) 2% S is nilpotent, and
(ii) the image of the map I = W (S) LN W (S) generates W(.5).

For a Cartier—-Witt divisor I — W(S), we write W(S)/I := Cone(I — W(S)); this is naturally a
1-truncated animated W (S)-algebra which is moreover p-nilpotent by [5, Lem. 3.3].



Definition 3.2. For a bounded p-adic formal scheme X, the prismatization of X, denoted X | is
the stack over Spf(Z,) taking a p-nilpotent ring S to the groupoid consisting of Cartier-Witt divisors
I — W (S) together with a map Spec(W (S)/I) — X of derived formal schemes (with obvious morphisms).

If X = Spf(R) is affine, we simply write R for X .

Remark 3.3. By construction, G, is the ring stack over Z,, taking a Cartier-Witt divisor I — W(S)
to the quotient W (S)/I. For a general X, the natural map X — Z, of stacks then realizes X as the

so-called transmutation of Z,, from the ring stack G, . See [3, Remark 2.3.8].

Remark 3.4. If T % W(S) is a Cartier-Witt divisor on a p-nilpotent ring S, then F*I ), W(S) is

also a Cartier—Witt divisor (where F' is the Witt vector Frobenius on W (S)). Moreover, F : W(S) —
W(S) induces a map W (S)/I — W (S)/F*I of animated rings. From this, one obtains for any bounded

p-adic formal scheme X a natural map F': X — X , called the Frobenius on X .

Construction 3.5. Let (Spf(A4) < Spf(A/I) — X) be an object in the absolute prismatic site X .
Let S be a (p,I)-nilpotent A-algebra. As usual, the structure map A — S lifts uniquely to a é-map

A — W(S). The generalized Cartier divisor I ®4 W (S) <% W(S) is then easily checked to be a
Cartier—Witt divisor. Letting S vary, this construction yields a map

pa,n : Spf(A) = X

of stacks. One checks easily that p(4, ry is also Frobenius equivariant.

3.1.2 The filtered prismatization

Construction 3.6. Let M be a W-module scheme over a p-nilpotent ring S.

(1) The functor I — I @y sy W gives an equivalence from the category of invertible W (S)-modules
onto that of invertible W-modules.

(2) M is called an invertible F,W-module if it is locally isomorphic to the W-module F,W. The
functor M’ — F, M’ then gives an equivalence from the category of invertible W-modules onto that
of invertible F,W-modules.

(3) M is called #-invertible if it is locally isomorphic to Gf. The functor L + V(L)* then gives an
equivalence from the category of invertible S-modules onto that of f-invertible W-modules.

Remark 3.7. Let S be a p-nilpotent ring. Via the functor I — I ®y gy W from Construction 3.6 (1),
we can and will identify the category of Cartier—Witt divisors I — W(S) on S as a full subcategory of

the category of pairs (M, M 4, W), where M is an invertible W-module scheme and d is a W-linear map
of W-module schemes. Note that if (I — W(S)) — (M := I @w sy W — W) under this identification,
then W (S)/I identifies naturally with (W/M)(S) := RT'(Spec(S), W/M) as animated W (S)-algebras.

Definition 3.8. Let S be a p-nilpotent ring. An admissible W-module over S is an affine W-module
scheme M which can be written as an extension

(3.8.1) 0= V(Ly) =M — F.M' -0
of an invertible F,W-module by a f-invertible module.

It turns out that the exact sequence (3.8.1) is uniquely determined by the underlying W-module M,
which we can therefore refer to as the admissible sequence of M. More precisely, any map M — N of
admissible W-modules lifts (necessarily uniquely) to a map (in the obvious sense) of admissible sequences.



Definition 3.9 ([3, Defn. 5.3.1]). A filtered Cartier—Witt divisor over a p-nilpotent ring S is a map

M i> W of admissible W-modules such that the induced map F,M’' — F,W of associated invertible
F,W-modules comes from (after undoing F,) a Cartier—Witt divisor over S (cf. Remark 3.7).

By [3, Cor. 5.3.9], given a filtered Cartier—Witt divisor M 4 W on a p-nilpotent ring S, (W/M)(S) :=
RT'(Spec(S), W/M) is naturally a 1-truncated animated W (S)-algebra.

Definition 3.10 ([3, Defn. 5.3.10]). Let X be a bounded p-adic formal scheme. The filtered prismatiza-

tion of X is the stack X over Spf (Z,) taking a p-nilpotent ring S to the groupoid consisting of filtered

Cartier-Witt divisors M % W on S together with a map Spt((W/M)(S)) — X of derived p-adic formal
schemes. (Again, if X = Spf(R) is affine, we simply write RV for XN etc.)

As explained above, given a filtered Cartier—Witt divisor M LW oon a p-nilpotent ring S, we obtain
a commutative diagram

0 — V(Ly) — M —— F,M' —— 0

(3.10.1) lt(d)” ld iF*(d/)
0 G! W FW —— 0

a

for unique maps ¢(d) : Lyy - Sand d' : M' — W.
Construction 3.11. Sending d — t(d) defines a map of stacks

t: XN - AL/G,,
which we call the Rees map?.

Construction 3.12. By definition, the map d’ : M’ — W is a Cartier—Witt divisor. Moreover, the right
square of (3.10.1) gives a map (W/M)(S) — (W/M')(S) of animated rings*. Thus we obtain a map of
stacks

D G e

defined by sending a point (M % w, Spf((W/M)(S)) — X) of XV (S) to the Cartier-Witt divisor d’
together with the composition Spec((W/M')(S)) — Spf(W/M)(S)) — X. We will refer to 7 as the
structure map.

Construction 3.13. Given a p-nilpotent ring S and a Cartier—Witt divisor I — W (S), the induced map
I @w sy W — W is a filtered Cartier-Witt divisor whose source I @y sy W is invertible. Conversely, if

M % W is a filtered Cartier-Witt divisor with M invertible, then it arises from this construction. In
this way, we obtain an embedding

jHT:X ‘—)XN,

which turns out to be an open immersion. It is also easy to check that 7w o jgr = F is the Frobenius on
X .
3The notation is consistent with our convention that ¢ denotes the coordinate on A}‘_.

4More precisely, the source and target have natural W (S)-algebra structures, and the map is linear over F : W(S) —
W(S).




Construction 3.14. Given a p-nilpotent ring S and a Cartier-Witt divisor I = W (S), one can produce
a filtered Cartier—Witt divisor over S by forming the pullback

0 G! M F (I @w g W) —— 0
H l lF*(a)
0 G! w FW 0

Moreover, since the left vertical map is an isomorphism, the map (W/M)(S) — W (S)/I of animated
rings (induced by the right square, as saw earlier) is an isomorphism. In this way, we obtain a map of
stacks

de X = XN

which in fact identifies the source with the open substack (XN)#O C XN, the preimage of G,,/G,, C
A}r/Gm under the Rees map t : XV — A}F/Gm. It is also easy to check that 7o j;r = id is the identity
on X .
Construction 3.15 (The Hodge Tate locus in X and the Hodge Tate structure map). Recall the
Rees map ¢ : XV — Al /G,, from Construction 3.11. We denote by (X*);—9 € X* the preimage of
BG,, C A}F/Gm, and call it the Hodge-Tate locus in XV. We also denote by X7 C X  the preimage
of (X¥);—o under the map jyr: X < XN,

Let S be a p-nilpotent ring. Assume that M 9 W is a filtered Cartier-Witt divisor contained in the

Hodge-Tate locus (Zﬁ/)tzo(S). By the proof of [3, Prop. 5.3.7], d factors as M — F, W <y W where the
first map is part of the admissible sequence of M. In particular, we obtain a natural map (W/M)(S) —

W(S)/VW(S) ~ S of animated rings. Consequently, given a point (M 4, W, Spt(W/M)(S)) — X) in
(XM);—0(S), one obtains a map Spec(S) — Spf((W/M)(S)) — X. This construction gives a map

(XN)imo = X

which we refer to as the Hodge—Tate structure map. One can check that after restricting to the open

XHT (XN)4—0, this recovers the map with the same name from [5, Construction 3.7].

3.1.3 The syntomification

Definition 3.16 ([3, Defn. 6.1.1]). Let X be a bounded p-adic formal scheme. We define X" the
syntomification of X, to be the co-equalizer

J
X5 .= coeq (X 2? XN> .
JHT
of the open embeddings jsr and jyr. The category of prismatic F-gauges on X is then defined to be
Dye(X5M). (Again for X = Spf(R) affine, we simply write RS for X5 etc.)

3.2 Relation with crystalline Galois representations

We now recall the relation, as discussed in [3, §6], between crystalline Galois lattices and coherent sheaves
on Of(yn.

Let X be a quasi-syntomic p-adic formal scheme. Recall from Construction 3.5 that for each object
(A,I) € X in the absolute prismatic site of X, there is an associated morphism p(4 1) : Spf(A4) — X .
By [5, Prop. 8.15], pulling back along these maps gives an equivalence

Perf(X )~ Hm Perf(A) =: Perf(X ,0 )
(A, ex



onto the category of prismatic crystals in perfect complexes on X.
By definition of X5 as a coequalizer, there is a natural (étale) map X — X5, Restricting along
this and using the equivalence above, we obtain a functor

Perf(X5") — Perf(X )~ Perf(X ,0 ),
which in fact naturally lifts to a functor
Perf(X5") — Perf?(X ,0 )

into the category of prismatic F-crystals in perfect complexes on X. As it will be useful in the proof of
Lemma 3.17 below, let us recall the construction of this lift. To this end, note that for any £ € Perf(X N ),
there is a natural correspondence

Sk * b * ek

JarE < "1 E 5 ¢*jigE.
Namely, a (resp. b) comes from adjunction and the identity m o jyr = ¢ (resp. 7o jgr = id). As M is
perfect, the maps a and b are in fact I-isogenies (where I C O, is the Hodge-Tate ideal sheaf), and so
we obtain a natural (in E) isomorphism

(3.16.1) v ¢ (JarE) /1) = jyr E[1/1].

Now lifting E to an object in Perf(XS¥") amounts to specifying an isomorphism JirE ~ jipE, and so
we obtain the desired functor
Perf(X5") — Perf?(X ,0 ).

See [3, §6.3] for more details.

Assume now that X = Spf(Oc¢). Let (Aint, (§)) be the perfect prism associated to O¢ (where € is a
generator of the kernel of the (non-twisted) Fontaine’s theta map). By the preceding discussion, there is
a natural functor

(3.16.2) Perf(OY) — {(N, M, ) where N, M € Perf(Aiy) and ¢ : N[1/€] ~ M[1/¢]}
E (@*(J;RE)aj}k{TE7LE)

In [3, §6.6.1], Bhatt isolates a subcategory Cohmﬂ((’)é/) of Perf(OX) with the property that the functor
(3.16.2) restricts to an equivalence

(3.16.3) Coh™(ON) ~ {(N, M, 1) where N, M € Vect(Aiy) and ¢ : N[1/€] ~ M[1/£]}.

Now by [3, Prop. 5.5.8] (see also [3, Example 5.5.6] for its construction), there is an isomorphism
R (&) Ajnr) =~ (’)g, where the LHS denotes the (p,£)-completed Rees stack for the Nygaard filtra-
tion ¢~ 1(£)*Ajs. Composing further with the isomorphism ¢ : = 1(€)* Ajnr =~ £°Ajnr, we obtain an
isomorphism

(3.16.4) Tow : SPE(Amslu, ]/ (ut — €)) /G ~ R(E® Ain) ~ O,

where as usual ¢ is the degree 1 Rees parameter and u has degree —1.
The following observation will be used in the proof of Lemma 3.29 below.

Lemma 3.17. Let E € Cohreﬂ(O/C\/). Then the filtration over £® Aiyg corresponding to ni,  E (via the Rees
dictionary) can be recovered from the tuple (N, M, 1) associated to E as NNEEM = @* (i r E)NEZ(j5rE)
(where the intersection is taken via vy ). (In particular, this is an honest filtration.)

Proof. This follows from the construction of the functor G in the proof of [3, Prop. 6.6.3], as well as from
comparing the above construction of the isomorphism (3.16.1) and that of the functor F in loc. cit. O



Definition 3.18 (cf. [3, Defn. 6.6.4]). Define the category Cohreﬂ(O(S;yn) of reflexive F-gauges on O¢ to
be the full subcategory of Perf((’)(S}m) consisting of E’s such that E[px belongs to Coh™ (ON).

By (3.16.3), restricting along O, — (’)gyn yields an equivalence
Coh™(OF™) =~ Vect?(Oc) ,0 )
onto the category of prismatic F-crystals in vector bundles on O¢ (cf. [3, Cor. 6.6.5]).

Definition 3.19 (cf. [3, Defn. 6.6.11]). An F-gauge E € Perf((’)iyn) is called reflexive if E\Oiyn is

reflexive in the sense of Definition 3.18. Write Cohreﬂ((’)?(yn) for the full subcategory spanned by such
F-gauges.

By design, restriction again defines a functor
Coh™ (O™) — Vect?((Ok) ,O )

which turns out to be an equivalence by [3, Thm. 6.6.13]. Combining with the main result of [7] then

gives an equivalence
Coh™ (OF™) ~ Vect?((0g) ,0 )=~ Repy (G k).

In particular it makes sense to talk about the F-gauge E € Cohmf((’)iyn) associated to the given crystalline
lattice T'.

3.3 Explicit description of the Hodge—Tate locus

The main result in this subsection is Proposition 3.20, which gives an explicit presentation of the Hodge—
Tate locus (O );—o as a quotient stack. This extends [3, Prop. 5.3.7], which treats the case O = Z,.

We first recall a general construction from [3, Rem. 5.5.19], which will be used repeatedly in what
follows. Namely, given any prism (A, I) and any map Spf(A/I) — X of bounded p-adic formal schemes,
there is a natural map of filtered stacks

Tx : R(I*A) = XV,

where R(I*A) denotes the (p, I)-completed Rees stack of the I-adic filtration on A. Note that loc. cit.
seems to assume more than just this data, but this is all that is needed to construct the map, as we now
recall®. Recall that, given a p-nilpotent test ring S, a point x € R(I*A)(S) is given by a map A — S that
kills some power of I, a line bundle L € Pic(S), and a factorization I ® 4 S % L % S of the canonical
map. As usual, the map A — S lifts uniquely to give a J-A-algebra structure on the Witt ring scheme
W over S, and one can consider the commutative diagram with exact rows

0 — I®4AG, — = T@AW ——= @4 F,W —— 0

can J{ f can J{ H
(3.19.1) 0 /Gg M, I F,W —— 0
\ ltﬁ \Ild“:,, lcan
0 G! 1474 F.W 0.

Note that the middle arrow defines a map A/I — (W/M,,)(S) of animated rings, so the filtered Cartier—
Witt divisor M, ety naturally lifts to a point 7x (z) € XV (S), as wanted.

5The map mx depends on the prism (A, I) but we omit it for ease of notation. It will also be clear that the map mo,
from (3.16.4) above is a special case of this construction, justifying our notation.
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We now apply this construction to the case X = Spf(Ok) and (A,I) = (W (k)[[z]], E(x)), our fixed

Breuil-Kisin prism. In this case, as explained in loc. cit., the map R(I*A) Tox, O¥ is in fact a flat
cover. The choice of the generator E(x) of I identifies R(I*A);—o ~ (Al /G,.)o,. Explicitly, a point

(S % L) € (AL /Gy,)(S) corresponds to the point I ®4 S % L =% § of R(I*A)i—o; here we view u as
amap I ®4 S — S via the trivialization I = E(z)A ~ A.
Thus 7o, restricts to a map

(3.19.2) Tox : (AL)ox = (AL/Gn)o, = (OR)i=o
of stacks over Spf(Og). Of course this is still a flat cover.
Proposition 3.20. The map (3.19.2) factors through an isomorphism
(AL/GE % G)og = (OF)i=o.
of stacks over Spf(Ok). Here the action of Gt x G,,, on AL is given by (a,)\) -0, u:= E'(7)a+ A" ub.
We begin with some preparations. The following is simply an elaboration of [3, Prop. 5.2.1 (2)].

Lemma 3.21 ([3, Prop. 5.2.1)). Applying Homy (—, G%) to the standard sequence 0 — I @4 G —
ITRaW = TR F,W — 0 gives an exact sequence

(3.21.1) Homyy (I ®4 W, GY) — Homyp (I @4 G, GY) — Extiy (I ©4 F.W,GE) — 0.
Using the trivialization I = E(x)A ~ A, we identify

G¥(S) ~ Homy (I ®4 W, GF)
a— (E(z) @ w— wa),

and
S = A'(S) ~ Homy (I 4 G%,G#)
f
u (B(r) ® a - ua);

Under these identifications, the first map in (3.21.1) identifies with the natural map G%(S) — AL (S) = S,
and the second map takes a point u € S to the pushout

00— T@sGl — T W ———— S QU W —— 0

|- i

# ~ Gia(I®aW)
0 G} My~ o I® FW —— 0.

Furthermore, given a € G¥(S), the associated isomorphism t(a) : M, ~ M, ., of extensions is given by

: #
M. ~ GLeU®AW) GLoUI®AW) ~ M
Ha): My = o reragh)  arup(n,-nleerahy = Matu
(3.21.2) (,9) = (z —a(y),y).
Lemma 3.22 (A twisted version of [3, Prop. 5.3.7]). The composition
(Ao — (0% im0 = (2 )1=0 x SPL(Ox)
factors through an isomorphism
(3.22.1) (AL/GE % G)oy = (2D )izo x SPE(OK).

Here the action of Gt x G, on AL is given by (a,\) ‘z, U= a+ A .

6The appearance of A~! (rather than )) is simply due to our convention that the coordinate u of Al has degree —1.
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Proof. The proof is similar to that of [3, Prop. 5.3.7], except that one needs to “twist by (A,I)”. Let
S be a p-nilpotent test Ox-algebra. By construction, the above composition takes a point u € A (9)

(viewed as a linear map I®4.5 = S, as above) to the filtered Cartier-Witt divisor M, Sus W determined
by commutative diagram

0 —— IRAGE, — = T@AW —— [ @4 F,W —— 0

can lun (tu,'n,/J/ H can

FW 0.

0

By the proof of [4, Prop. 3.6.6] we have a factorization

ToaW —LIs T, FW —2 Fw <Y w

for some (necessarily unique) isomorphism 37. By diagram chasing it then follows that the map M, LN 77
1%
factors as M,, - I  F,.W <—Oﬁ> w.

By definition and by the preceding paragraph, an S-point of Al X(ZA ) om0 xSpt(Ox) Al is a triple

(u, ;1) where u,u’ € A (S) and ¢ is a W-linear isomorphism M,, ~ M, commuting with the maps onto
I ® F,W. Consider the diagram

0 G! M, I FEW —— 0
S
0 G! My I® F,W —— 0.

The induced isomorphism on the left is then of the form (A~1)# for a unique A € S*. One can then view
¢ as an isomorphism of extensions

0 — Gl —— My, —— IQFW —— 0

- |

0 G M, I® FW —— 0.

By Lemma 3.21, we must have u’ = a+A~1u for some (unique) a € G%(S) and « = ¢(«), the isomorphism
(3.21.2).
Thus there is an identification

(3.22.2) AL X(zx),_oxspi(og) AL = (G] 1 Gpn) x AL
of groupoids over Al where the action of G, x G,,, on Al is given by (a,\) -z, u := a4+ A"*u. The

composition (Al)p, o, (ON)i=0 — (Zé,v)t:o x Spf(Of) therefore factors through a monomorphism

(Al—/Gﬁ X GW)OK — (Z;\/)t:O X Spf(OK)

“Note that A3 is not induced by the trivialization I = E(z)A ~ Al

12



It remains to show that the map is surjective flat locally. Given a p-nilpotent Og-algebra S, by the proof
Vo
of [3, Prop. 5.3.7] any S-point (M — W) € (Zﬁ)tZO(S) arises as a composition M — I @ F,W LBy

where the first map is part of the extension 0 — V(L)! - M — I ® F,W — 0 defining the admissible
module M. Working locally one can trivialize the line bundle L, and then by Lemma 3.21 this extension
arises as the pushout of the standard sequence 0 — I ® 4 Gﬂa = I RAW - 1®4 F,W — 0 along some
map I ®4 Gf % GE. This finishes the proof. O

Remark 3.23. We warn the reader that the composition

7TOK

(3.23.1) (AL)o, — (AL/GE % Gu)ox — (Z))i=0 x Spf(Ok)

however does not agree with the analogous composition

[3, Prop. 5.3.7]
—_—

(3.23.2) (A o, — (AL/GE % G)ox (Z2)i—0 x Spf(Ox)

defined using the isomorphism from [3, Prop. 5.3.7]. In fact, this phenomenon already occurs for O = Z,
when restricting to the open jgr : Zf Ty (Z?f )t=0. More precisely, by construction it is easy to see that

for O = Z,, the restriction of (3.23.2) to Z'" ELEN (Z) )= is the map 7 : Spf(Z,) — ZI'™ given by the

Cartier-Witt divisor W (Z,) Y, W(Z,). Recall from [3, Prop. 5.1.4] that 1 induces an isomorphism

BG, ~ ZT. Similarly, the restriction of (3.23.1) is the map Pes.1) ¢ Spt(Zy) — ZHT associated to our
chosen Breuil-Kisin prism (&, I) of Z,. This map turns out to also induce an isomorphism BG, ~ Zf T
(see e.g. the discussion in Subsection 3.28 below). However, the maps 1 and p(g ;) do not coincide in
general. For instance, for (&,1) := (Zp[[z]], (x — p)) one can check that they agree if and only if p > 2.

We also note here that the description of (Zﬁf )i=o from [3, Prop. 5.3.7] is completely canonical. This
seems to be specific to the case K = Q,: for a general K our similar description in Proposition 3.20
requires the choice of a uniformizer.

Remark 3.24. For future reference, we record here the isomorphism (of filtered Cartier—Witt divisors)

d(a,k)-zp w

dTl/
ta,A): (M, =5 W) ~ (M(a)\).zpu W),

associated to an element (a,)\) € (G! x G,,)(S) via the identification (3.22.2) above. It suffices to
consider the factors Gﬂ and G, separately. First, the isomorphism ¢(\) : My, ~ My-1, for A € G,,,(S)
is simply given by the pushout diagram

M, I FW —— 0

S

0 — Gl —— My1, — I F,W —— 0.

Glo(eaw)

; i i ~
Now let a € GE(S). Recall that by its construction as a pushout, M,, >~ (o) ) e IeGl]

and similarly

for My4y. The isomorphism ¢(a) : M, ~ M, , is then given by

T {(ub(2),—2)|2€I0GE}

0 Gi M, ~ —_GioUaW) IQFW —— 0
(3.24.1)

ﬁl(r,,l/)H(w*a(y)-'y)

8 ~ Glo(I®aW)
0 — Gl —— Myqy (a0 () —2)|oc [8GL} I F,W —— 0.

We are now ready to prove Proposition 3.20.
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Proof of Proposition 3.20. Inspired by [5, Construction 9.4], we introduce the following auxiliary functor.
Let F be the functor taking a p-nilpotent Og-algebra S to the set of pairs (v € S,7), where 7 is an
A-linear map I — M, making the diagram

% Mu
(3.24.2)

u

o~
Is9

— W

commute. Here as before M, L W is the filtered Cartier—Witt divisor underlying the image of u € S =
A (S) under the map 7o, , which (by construction) is determined by the commutative diagram

0 —— I®AG, — = T@AW —— @4 F,W —— 0

luﬁ (an/ lﬂ .0 H

(3.24.3) 0 Gt I F,W —— 0
I \J 2 |

0 e 0.

Note that the middle column gives a map [ I49% M, which is an instance of the maps 7 appearing
in the definition of F. This gives a map (Al)o, — F,u + (u,Ty0). Furthermore the commutative
square (3.24.2) can be viewed as a map of quasi-ideals, and thus induces a map 7 : A/I — (W/M,)(S)
of animated rings. The assignment (v € S,7) — (M, L, W, 7) then defines a map F — (OF);—o which

clearly fits into

/\

(Ao, —— F —— (0¥)i=o

In particular the map F — (Of(f )t=0 is also a surjection in the flat topology.
We next explain that the preferred element 7, gives an identification F ~ Al x G!. Indeed, as

explained in the proof of Lemma 3.22, the map d, factors as M,, - I @ F,W ‘V—Oﬁ> W in particular
ker(d,) identifies with G < M,. Thus the assignment 7 + 7 — 7, o induces (for each fixed u € S) a
bijection between the set of 7 making diagram (3.24.2) commute and Hom4 (I, G%) ~ Gf{—1} ~ G¥ (for
the last identification we use again the chosen generator E(z) of I). Under this identification, the map
(Al)o, — Fis simply AL — Al x G, u s (u,0).

Now we compute J X F. By definition, for a p-nilpotent Og-algebra S, (F xox F)(S) is the
groupoid of tuples ((u,7), (v, 7’);¢, k) where (u,7), (v/,7") € F(S); ¢ is an isomorphism

M, ———— My

D

of filtered Cartier—Witt divisors, and x is a homotopy

LoT

Y

A/T sl (W/My)(S)

Ny S

=/
7

from 707 to 7' (recall that these are maps of animated rings).
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By Lemma 3.22, such isomorphisms ¢ are precisely of the forms ¢ = t(a,\) for elements (a,A) €
(G% x G,)(S) such that v = (a,A) 'z, u. Moreover, using the explicit description of ¢(a,A) given in
Remark 3.23, one checks that, under the identification F ~ Al x Gf above, the action ((a, \), (u, 7))
((a,A) -z, u,(a, A) o 7) corresponds precisely to the action of G x G, on AL x G given by the above
action -z, on Al and the following action

(@, \)*x:= —a+ "'z

on G%. (Note the minus sign in —a(!); this comes precisely from the minus sign appearing in the formula
of the isomorphism ¢(a) in (3.24.1).)

It remains to consider the homotopy . The collection of such x’s naturally identifies with the set of
derivations D € Der(A, G¥) such that D|; = 7/ — to . This follows from the equivalence between quasi-
ideals and DG algebras concentrated in degree [—1,0] from [9, §3.3]. Note that under the identifications
{7} ~ G! above and Der(A, G%) ~ Homp, (4 ®4 Ok, GE) = Home, (Oxdr,GE) ~ G¥, the action
(D, 7) — D|; + 7 corresponds to the action of G on G¥ given by a o, z := E'(7)a + .

In summary, we have shown that the map F — ((9% )t=o factors through an isomorphism

Al xG#
(ng(cixcm))oK ~ (0K)i=0-

Here,

e in the formation of the semidirect product G x (G x G,,), G! x G,, acts on G¥ via the factor
G,,, and the multiplication action (\,a) — A~'a of G,, on G¥;

e the factor G¥ acts trivially on Al and acts on G¥ via a -0, 7 1= E'(7)a + x;
e the factor G¥ xG,, acts on Al via (a, A)-z,T = a+A"'z, and acts on G¥ via (a, \)*x := —a+A"'a.

Note that the above action * of Gf x G,, on G is transitive. In fact, under the embedding G#
G! % G, A= (1= A7), the induced action of G, on G¥ is (\,a) = A~!(a + 1) — 1, which is simply
transitive (if we identify Gf = G¥ + 1 inside W, this is nothing but the (inverted) multiplication action
of the group scheme G¥, on itself).

Thus the map A! — A! x G u > (u,0) induces a surjection

Al xG#
Al_ — %'
GiX(GEXG,y,)

By unraveling the various actions, one then checks that this factors through an isomorphism

Al xGj
(AL/GE % Gp)oy, = <m)o,< ~ (0% )i=0,

where in the LHS the action of G x G,, on Al is given by (a,\) -0, « := E'(7)a+ A~'z. This finishes
the proof. ]

Remark 3.25. In fact, the above argument applies to give a similar description of (RN )t=0 for a general
complete Noetherian regular local ring R with perfect residue field k of characteristic p > 0. Namely, let
R be such a ring. Choose a prism (A4, I) and an isomorphism A/I ~ R. Such a choice always exists by
the Cohen structure theorem; furthermore A is necessarily formally smooth over W (k). See [5, Notation
9.3]5.
Then the map 7g : R(I*A) — RV induces a natural isomorphism
Al{-1}

~ N
(TAQaR)ING, — (R™)i=o

of stacks over Spf(R). Here,

8More concretely, as explained in [6, Remark 3.11], (A, I) can be chosen to be of the form (W (k)[[z1,...,z4]], (f)) with
the é-structure given by the standard one on W (k) and d(x;) = 0 for all 4, and f a power series whose constant term has
p-adic valuation 1.

15



e in the formation of the semiproduct, G, acts on (T4 ®4 R)? ~ Hompg(Q4 ®4 R, G%) =~ Der(A4, G%)
by the (inverted) scalar multiplication on G¥;

e G, acts on A {—1} ~ Homy (I, Al) by the (inverted) scalar multiplication on A!;

o (Ta®a R)* =~ Der(A,GE) acts on AL {1} ~ Homyu (I, Al) via (D, 7) ~ D|r + 7.
In the case R = Ok and (A,I) = (&, (E(z))) a Breuil-Kisin prism for R, after trivializing QY ~ A - dz
and I/I? ~ R - E(x) this yields the description from Proposition 3.20. Moreover, this also recovers the
description in [5, Prop. 9.5] after restricting to the open RZT <jH—T> (RN)t:O.

3.4 Identifying the Sen operator

We now check that the lower diagram?

(Al_/Gm)(’)K —— (Al_/Gg X Gm)OK é (O'}\(/)t:O
u;éO]\ u;éO]\ ]‘HT]\
Spf(OK) = (Gm/Gm)OK % (Gm/G?z A Gm)(’)K - OgT

P(s.1)

from (2.1.4) is cartesian. By tracing through definitions, it is easy to see that it commutes. For the
can

cartesian property, note that the middle column of diagram (3.24.3) defines a morphism (I @ 4 W —
W) = (M, Lu, W) of filtered Cartier—Witt divisors. Since O AN O identifies with the subgroupoid
of invertible filtered Cartier—Witt divisors, we have by rigidity [3, Lem. 5.1.5] that, (M, LN W) e

can

Jjar(Ok) if and only if (I @4 W — W) — (M, Lu, W) is an isomorphism if and only if I ®4 S = S
is an isomorphism, as wanted. O
Our next goal is to identify the so-called Sen operator corresponding to the restriction E| oHr; see
Lemma 3.28 below. This will explain our construction of © from D, as given in (2.1.3).
To this end, note that since the action -¢,. of Gf x G, (or even just the subgroup 1 x G,,,) on G,,
is transitive, the map p(g ) : Spf(Ox) — OHT factors through an isomorphism

B(Stabg: o (1€ Ga)) = (G /Gl % Gry)o,e ~ OFT

XG,,

Let G := StangxGm(l € G,). By definition
Gr={(a,\) € GL x Gy, | E'(m)a+ "' =1}

Via the projection (a,\) + a, G identifies with G¥ as a formal scheme. The group structure on G
then transfers to the operation

(3.25.1) aeb:=a+ (1—E'(r)a)b

on Gf.
Thus pulling back along p(g ) identifies quasi-coherent sheaves on O#7 with p-complete O x-modules
M equipped with a continuous coaction M — M@@KO(G’ﬁ)7 where Gf ~ G, is equipped with the

a

90ver Spf(Ok), Gm C Al is stable under the action ‘o of Gg X Gy, so it really makes sense to consider the quotient

Gm/GP1 X Gy,. Indeed, if R is p-nilpotent and a € R admits divided powers, then a™ € n!R = 0 for n > 0, and so
a-0, = FE'(r)a+x € R for any z € R*.
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group structure given by (3.25.1) above. For such M, the Sen operator ©,; : M — M is defined as the
infinitesimal action of the element € € Lie(G#) C G¥(Okle]), i.e. 1+ €Oy is given by the composition

M — M&p, O(GF) 225 M @0, Oxle] = M & eM

(where as before a denotes the coordinate on G¥). See [1, §2.2] for more details. Concretely, O,/ is given
by

(d/da)la=0

On : M — M®o, O(GH) M ® Ok ~ M.

Theorem 3.26 (cf. [1, Thm. 2.5]). The functor

QCoh(OE™) = Modo, (o)
FE— (U*E, @ﬂ*E)

18 fully faithful. Its essential image consists of those M which are p-complete and for which the action of
©F — E'(m)P~'O on the cohomology H*(k ®§ M) is locally nilpotent'.

Lemma 3.27. We have
Dy ((AL/GE x G,,) x Spec(Ok)) =~ Dgr. ponitp(Oxc {u, D} /(Du — uD — 1)).

Here “gr” means “graded” (where as before deg(u) = —1 and deg(D) = +1), and “D-nilp” is the
condition that D is locally nilpotent.

Note that this implies a similar equivalence over Spf(OQk) by restricting to p-complete objects on the
RHS and requiring that D is locally nilpotent modulo p.

Proof of the result at the abelian level. We first show that given a O [u] = O(AL)-module M, the datum
of an equivariant action of G% on M is equivalent to the datum of a locally nilpotent endomorphism
D : M — M satisfying Du—uD = E’(r). Asin [3, Prop. 2.4.4], giving a coaction y : M — M ®0, O(G¥)
amounts to giving a locally nilpotent operator D : M — M: given D, the corresponding coaction is
m— Y50 D'(m)a’/i! (where the infinite sum makes sense by local nilpotence of D). We check that the
coaction is equivariant, or equivalently, it is linear over the ring map p : Ok [u] = Ox[u]®o, O(GE),u
u+ E'(m)a if and only if d satisfies Du — uD = E’(x). For this, we compute

w(um) = Z Di(um)a' /i,

i>0

and

plu)p(m) =Y (u+ E'(r)a) D (m)a'/i.

i>0

By comparing the coefficients of a/i!, one deduces that p(um) = u(u)pu(m) if and only if Diu — uD? =
E'(r)iD*~! for all i > 1 if and only if Du — uD = E’(r), as claimed. It remains to incorporate a
G,-action. Recall that giving a coaction py : M — M ®0, O(G,,) = M[A*!] is the same as giving a
grading M = @, M™: px(m) = mA" for m € M™. Moreover, it is compatible with the action of G, on
A! if and only if u: M — M is homogeneous of degree —1. Thus, we need to show that the two actions
of G and G, extend to an action of G x G,, if and only if D is homogeneous of degree +1.

The compatibility of the two actions is precisely the condition that h(n(h='m)) = (h - n)(m) for
all h € G,,,n € Gi m € M and h - n denotes the action of h on n € Gf. We can express the map
(h,n,m) = h(n(h='m)) as

G xGi XM =G xGpxGhxM— G, xGxM— G, xM— M
(h,n,m) — ((h,h™1),n,m) — (h,n,h=*(m)) — (h,n(h"'m)) — h(n(h~ m)).

10T here is a similar equivalence for quasi-coherent complexes, but we will only need the result at the abelian level.
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Translating in terms of coactions, this is given by the composition

M — M®O0O(G,,) = M®0O(GL) @ O(G,,) = M@ O(GE) @ O(G,) ® O(Gp) = M@ O(GH) @ O(G,,)
meM" = me\" Z Di(m)a’/i! @ A" Z’”' (D¥(m))a’ /il @ A" — Z(’”' (D' (m))|yrier—1)a’ /il @ A™,

K3

where as above p; : M — M[A*!] records the action of G,, on M and X := A~!. On the other hand, in
terms of coactions, the map (h,n,m) — (h-n)(m) is given by the composition

M — M®O(G:) - Mo O(Gh) @ O(G,,)
m ZDi(m)ai/i! — ZDi(m)(A_la)i/i!.

Again by comparing coefficients of a’/i!, we see that the two composition maps agree if and only if
N pux (D' (m))|xrimx = A" D (m) <= pa(D'(m)) = A" D (m) € MA™]

for all m € M™. This happens if and only if D*(m) € M"™*(recall that M™ = u; ' (MA")), i.e. D is of
homogeneous degree +1, as claimed. O

Lemma 3.28 (Identifying the Sen operator). Consider the open immersion
jur : O ~ BStabg: o (1) 2 (Gm/GE % Gyn) <> (AL /GE % Gy) ~ (O )i=o.

Let E be a quasi-coherent sheaf on (OX)i—o. Let M be the graded O {u, D}/(Du—uD — E'(r))-module
corresponding to E under the identification in Lemma 3.27. By the Rees construction, M corresponds to
an increasing filtration Fils (with transition maps u : Fil; — Fil; 1) of p-complete O -modules together
with a map D : Fil, — Fily[—1] satisfying Du —uD = E'(r). (Eaplicitly, Fil; = Mdes=—i11 )

Then, under the identification in Theorem 3.26, the restriction E|nur corresponds to the Ok -module
given by the underlying non-filtered module 11_1’1)11 Fil; together with the Sen operator given by © := uD —
iF'(m) on Fil;.

Proof. We will unwind the various identifications. First, the restriction of E to G,,/G¥ x G,,, corresponds
to the graded Og|u,1/u]-module M[1/u] equipped with the obvious extension of D, i.e., D(m/u’) :=
D(m)/u’ — E'(m)im/u*+"1?). Now the restriction of E to B(Stabgs o (1)) corresponds to the quotient
module N := M][1/u]/(u — 1) together with the induced action of the subgroup Stabgs g, (1)-

We need to compute the Sen operator on N in terms of the usual identification (frbm the Rees
dictionary)

(3.28.1) ligFili ~ (M[1/u])&=0 ~ M[1/u]/(u—1) = N
m € Fil; — m/uZ

Recall that Gf ~ Stabgi g, (1) via a = (a, (1 — E'(r)a)™!). The induced action of Gf =~
Stabgs ,q,, (1) C G! x G,, on M[1/u] is thus given by the composition

—E'(m)a)”?t
M1/u] = M[1/u] ® O(GE % G,,) 22222 0ZF (M)

m > Y Di(m) 4 (1 — B (r)a) = (et +)
i>0

M([1/u] ® O(GY)

I Recall again our convention that deg(u) = —1.
120ne checks that D indeed acts locally nilpotently mod p; this is related to the fact we have seen above that Gﬁa X G,
preserves G, C G, and follows again from the fact that we are working in a p-complete setting.
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(where recall that a and X respectively denote the coordinates on G¥, and G,,,). After applying (d/da)|a—o
we see that the Sen operator on M[1/u] is given by ©ps(1/,)(m) = D(m)+ E'(7)(deg(m))m. In particular
for m/u® € (M[1/u])?%=0 (so that m € Fil;), we have

(3.28.2)
O /u(m/u’) = D(m/u’) = (uD — E'(m)i)(m)/u"" = (uD — E'(r)i)(m)/u’ mod (u— 1)M[L/u].

As the formation of the Sen operator is functorial, we have a commutative square

M1 /u) T2 A1 )

| | mod (a1

N —°% N

As (uD — E'(m)i)(m) € Fil;, it follows from (3.28.2) that, via the identification (3.28.1), the Sen operator
on N is given by O = uD — E'(n)i on Fil;, as desired. (Equivalently, © y = uD under the identification
N =~ (M][1/u])3e=0; this is the description used in [3, §6.5.4, second bullet point].) O

3.5 Identifying the Nygaard filtration
Consider again the flat cover
oy R(E(x)*&) = Spf(W (k)[[a]][u, 1]/ (ut — E(x)))/Gm — OF.

Lemma 3.29. The filtration over E(x)*& associated (via the Rees dictionary) to the pullback 73, E is
precisely the Nygaard filtration Fil®o*IM = o*IM N E(u)ZMM on ¢* M.

Proof. We first check that the non-filtered module underlying the filtration 75, FE' is indeed ¢*9. To

see this, note that the restriction of 7o, : R(E(2)*G) — O¥ to the open locus jar(Ok) = (OX)izo
identifies the composition

Fops.1)

Spf(&) O, <225 ON.

(Note the Frobenius twist!) This follows easily by unraveling the various constructions. This implies the
claim since restricting to the open {t # 0} amounts to passing to the underlying non-filtered module.
Consider now the commutative square (arising from the map of prisms (&, E(z)) — (Ains, &), u — [7°])

R(E Apg) —2s ON

! |

R(E(z)*&) %5 o).

By Lemma 3.17 above, the pullback 7, (E|ox) corresponds to the (honest) filtration Fil® (" Mine) :=
©* Mint NE(1)Z Ming on ©* Miyg, where Miye := M®e Ains. As the map & — Ajy¢ is (classically) faithfully
flat, we have a natural identification Fil®(¢* Mins) ~ Fil®(¢*IM) ®s Ajnt. In summary, we have shown that
the filtration given by 7*FE is an honest filtration on ¢*9%, which, after base change along the faithfully
flat map & — Ajpng, agrees with the filtration Fil®(o*IN) @ Aint on ¢p* 9 Qg Ains. Hence it must agree
with the filtration Fil®p*0MN, as wanted. O

Corollary 3.30. The increasing filtration corresponding to the pullback of E under the map

(AL/Gr) = (AL/GE % Grn)ore 5 (O )i=o
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is precisely the conjugate filtration

FilO0 ... s il o O Filip" it <o Pl on /FilH o s ...

Fil;o") Filfo
Proof. We have a commutative (even cartesian) diagram

R(E(2)*S) ~ Spf(W (k)[[]][u, 1]/ (ut — E(x)))/ G ——%— ON

] ]

(AL/Gm)o, (OF)i=o-

Since the conjugate filtration is by definition the associated graded of the F(z)®&-filtration Fil®p*Mt,
the result follows from Lemma 3.29 because restricting to the closed {¢ = 0} amounts to passing to the
associated graded. O
3.6 Identifying the Hodge filtration

Lemma 3.31. Let X be a bounded p-adic formal scheme. Then for any object (A,I) € X , the diagram

Spf(A/I) x BG,, —="—— Spf(A/I) x AL /G,, —— X x AL/G,,
‘[u:O \[u:O J{idR
Spf(A/I) x AL /G, = R(I*A)i—g ——— R(I*A) G xN

commutes. Here the left vertical map is induced by the map of filtered rings I*A — A/I where the target
has the trivial filtration; and the right vertical map is the de Rham map from [3, Construction 5.3.13].

Proof. Commutativity of the left square is clear. We now show commutativity of the right square after
further composing with the map XV — Zﬁf ; the rest of the proof is left to the reader. Let S be a p-
nilpotent test A/I-algebra and let ¢ : L — S be an S-point of Spf(A4/I) x A} /G,,. In terms of the usual
moduli description of R(I®A), the image of ¢t under the left vertical map corresponds to the factorization
(I®aS =t S) of the natural map. Then by construction of mx (see diagram (3.19.1)), the image
of t under Spf(A/I) x AL /G, — R(I*A) =5 XN — Zﬁf is the filtered Cartier—Witt divisor

tﬁ,Vo
( B)

V(L) & (I @4 FEW) w,

where as before 3 is the isomorphism fitting into

ToaW —E5 T W —2s FW <V W

can

!
Thus V(L) @ (I @4 F,W) W identifies with V(L)* @ F,W V) 1 as filtered Cartier- Wit

divisors. We are done since by definition of the de Rham map, the latter is precisely the image of ¢ under
the composition Spf(A/I) x A} /Gy — X x AL /G, 25 XN — ZN. O

tn,Vo
( B)

We apply this for X = Spf(Ok) and (A4, 1) = (&, (E(x)), our fixed Breuil-Kisin prism:
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Corollary 3.32. The pullback of E under the de Rham map
(AL/Gm)o, 2 OF

corresponds (via the Rees dictionary) to the Hodge filtration Fily9Mar. Moreover, there is a natural
graded isomorphism

grﬁonji)ﬁHT ~ oryMup.

Proof. This follows from Lemma 3.31 and Lemma 3.29 since the Hodge filtration is by definition the
image of the Nygaard filtration on ¢*90 under the natural map ¢@*9M — @*M/E(x)* M = Myg. O

4. RELATION WITH THE CLASSICAL THEORY

We finish by briefly indicating a more explicit construction of the operators D and ©, following the work
[10] by Gao-Liu. We refer the reader to loc. cit. for additional details.

By the work of Kisin, given a Breuil-Kisin module 9t coming from a crystalline Galois lattice, there
is a canonical monodromy operator N : M ®s O — M ®s O over the derivation Ny := )\%13 on O.
Here as usual O denotes the ring of functions on the rigid open unit disk over K (in the coordinate z),
and A € O denotes the element [[, -, ¢"(E(x)/E(0)). The construction of N however only uses M[1/p],
so one may ask if it can be actually defined over an integral variant of O. By the Dwork’s trick, -
modules over O extends uniquely to &(E(x)/p)[1/p] (the ring of functions on the closed disc {|z| < |7|})
so we can also equivalently consider N as being defined on M ®s S(E(x)/p)[1/p] and linear over the
derivation Ny := E (w)% on the coeflicient ring. Note that there is now an obvious integral candidate,
namely Shax := G(E(x)/p), and one can ask if N in fact extends to MM ®e Smax- By exploiting integral
properties of the G k-action on M@ Aint, it is shown in [10] that this is indeed the case. (In [2], Bartlett
also proves this result using similar arguments.)

We claim that after extending scalars along the evaluation map ev, : Smax — Ok, IN recovers our

Sen operator © on M := My := PM/E(x)DM. To see this, recall that the map Spf(Ok) Len, OHT
induces an isomorphism BG# ~ (’)gT7 and our © is then defined as the composition

d/da)|a=o
-

On : M = MBo, O(GH) M® Ok ~ M,

where the first map is the associated coaction map. On the other hand, similar to [4, Prop. 3.2.8], one
can show that the natural diagram of stacks

Spt(&W /I) —2 Spt(Ok)

z‘1J{ lﬁ(e,z)

Spf(Ox) — =Dy OHT

is cartesian, where &) denotes the self-coproduct of (6,1) as an object in the absolute prismatic site

o~

(Ok) . Thus, there is an identification &™) /T ~ O(G#) = ®n>00K%7 and our O is also given by the
composition a

M % M @0, (O /1) ~ M @0, 1, (O /1) = b My POl Ma ~ M,

with the middle isomorphism being induced by the descent datum M ®e 4, e ~m R6,is &M, This
is what is called the “prismatic Sen operator” in [10], and it is shown in Proposition 9.8 of loc. cit. that
this indeed agrees with the base change of Kisin’s operator N : M s Smax — M O Smax along the map
evr : Smax — Ok, as claimed.

I3Kisin considers instead the derivation /\x% (with an additional factor z) to accommodate the case of semistable
representations, but this will not concern us.
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Remark 4.1. An advantage of the stacky approach is that the construction of D and © works uniformly
in the uniformizer 7. In contrast, the argument in [10] (which makes crucial use of the Galois action on
M ®e Aing) requires some additional care in the case p = 2 (due to the usual issue that 71/P may belong
to K((pe) in this case).

Above we have used Kisin’s operator Ny, but one can also use the monodromy operator in Breuil’s

theory to construct © (or equivalently D). We refer the reader to [12, Lem. 2.3] for more details. An
important difference here is that unlike Kisin’s Ny, Breuil’s monodromy operator reduces to D (rather
than to ©).

[10]
[11]

[12]
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