CHAPTER III: CATASTROPHES

Voici maintenant qu'apres l'dge des denrées et des matiéres,
apres celui de I'énergie, nous avons commencé i vivre celui
de la forme.

—Pierre Auger.!

Peut-étre n'est plus capable que le mathématicien de suivre

une question de forme pure.
—~George D. Birkhoff.2

L INTRODUCTION?

In Firestone Library, at Princeton University, librarians usually throw away the paper
cover of books. They are still keeping that of Alexander Woodcock and Monte Davis's
popular introduction to catastrophe theory, even though it is falling apart.4 A mere
accident? Probably. But I like to think that they were struck by the quotations on the back
and wished to share them with the readers. From "an intellectual revolution" to "the
height of scientific irresponsibility,” opinions on catastrophe theory seemed to diverge so

widely that it raises a question: how can a theory prove so shapeless?

I "Now, after the age of materials and stuff, after the age of energy, we have begun to live
the age of form." P. Auger in Proceedings of the First International Conference on
Cybernetics (Namur, 1956); quoted and translated in G. Bowker, "How to be Universal:
Some Cybernetics Strategies, 1943-70," Social Studies of Science, 23 {1993): 107-127,
111 and 124.

2 "Perhaps no one is more able than the mathematician to follow a question of pure form."
G. D. Birkhoff, "Quelques éléments mathématiques de I'art,” Atti del Congresso
internazionale dei matematici, Bologna, 3-10 settembre 1928 (VI), 1 (Bologna: Nicola
Zanichelli, 1928): 315-333; repr. Collected Papers, 3: 288-306, 306.

3 A version of this chapter is to be published in Growing Explanations, ed. M. Norton
Wise.
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Slow to be widely appreciated when it was introduced in the late 1960s by French
mathematician René Thom, catastrophe theory was propelled on a wave of hype and
enthusiasm during the mid-1970s, only to die out in a bitter controversy by the end of the
decade. Caught in a fierce debate, catastrophe theory proved unable to survive the attacks.
It now seems, for all practical purposes, to have vanished from the scene of science. But,

how can so much hope last for so little time? And what, if any, can its legacy be?

a) What Ever Happened to Catastrophe Theory?

Catastrophe theory is dead.> Today, very few scientists identify themselves as
‘catastrophists’; the theory has no institutional basis, department, institute or journal
totally or even partly devoted to it. But do mathematics die? In a pioneering article on
invariant theory, Charles Fisher has shown that the death of a mathematical theory is of a
peculiar kind.® Dead mathematical theories leave behind them a corpus of theorems that
usually remain true for most mathematicians. These theorems and some specific
techniques find a new life, divorced from the original impulse, in other areas of
mathematics and science. People educated during the time of success of the old theory are

capable of broadly maintaining the same lines of thought, and even these people's radical

* A. Woodcock and M. Davis, Catastrophe Theory (New York: E. P. Dutton, 1978).

> Only accounts written by scientists exist concerning the history of catastrophe theory. A.
Woodcock and M. Davis, Catastrophe Theory, which is also a good nontechnical
introduction to the subject; I. Ekeland, Le Calcul, U'imprévu. Les figures du temps de
Kepler a Thom (Paris: Seuil, 1984); Calculus and the Unexpected (Chicago: University of
Chicago Press, 1988); and T. Tonietti, Catastrofi: Una controversia scientifica (Bari:
Dedalo, 1983). See also J. Guckenheimer, "The Catastrophe Controversy," Mathematical
Intelligencer, 1 (1978): 15-20; and A. Boutot’s "Catastrophe Theory and Its Critics,"
Synthese, 96 (1993), 167-200.
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theoretical departures are often shaped by the dead theory. This survival of some aspects
of the dead theory 1s, I believe, what René Thom was after, when, surveying the fate of
catastrophe theory, he said in 1991:
Sociologically speaking, it can be said that this theory is a shipwreck. But in some
sense, it is a subtle wreck, because the ideas that I have introduced gained ground.
In fact, they are now incorporated in everyday language. . . . The notions [of
catastrophe theory] have become part of the ordinary baggage of modelers.

Therefore, it is true that, in a sense, the ambitions of the theory failed, but in
practice, the theory has succeeded.”

This chapter aims at providing a first approach to the possible meanings this
quotation may have. How can catastrophe theory have succeeded "in practice," while
failing to live up to its original "ambitions"? Indeed, catastrophe theory provides the
historian of science a first-class example of the fact that mathematical concepts and
theorems hardly are fhe only legacy that a mathematical theory used to model nature may
have.

True, the concepts introduced by Thom, the theorems he and his collaborators
proved, have all survived more or less untouched as "a beautiful, intriguing field of pure
mathematics."8 But in the whole of this dissertation, I intend to show that the intent
manifested by some authors to reduce the historical significance of catastrophe theory to
the creation of an arcane corner of pure mathematics already incorporates a certain vision
of the nature of mathematics and its role vis-a-vis other sciences and society. Bluntly put,

to consider catastrophe theory merely as a field of pure mathematics betrays a more or

6 C. S. Fisher, "The Death of a Mathematical Theory: A Study in the Sociology of
Knowledge," Archive for History of Exact Sciences, 3 (1966): 137-159.

7 R. Thom, Prédire n'est pas expliguer, interview by E. Noél (Paris: Eshel, 1991), 47. My
emphasis.
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less Bourbakist ideology insisting on the autonomy of mathematics, holding that well
defined concepts and rigorously proved theorems, incorporated within well articulated
theories are the only products of mathematical practice. On the contrary, from the very
beginning, René¢ Thom envisioned much more than to create, with catastrophe theory, just
another branch of pure mathematics. He wished to suggest new ways to use mathematical
tools and practices in order to make sense of the world.

In fact, I show in the rest of this dissertation that the modeling practices of
catastrophe theory have indeed survived in an altered form, and been adopted and adapted
very successfully, in particular, within the framework of deterministic chaos theory. This
demonstration constitutes one of the main topics of Chapters VI to VIII below. In order to
demonstrate this carefully, it will however be necessary to go more in details into the
mathematical backgrounds and institutional setting against which catastrophe theory was
constructed than I can do in this chapter only (Chapters TV and V).

For the moment, I argue at a level between that of cultural connectors and
modeling practices. As I hinted at in Chapter II, catastrophe theory became in the 1970s
an important cultural connector between mathematics and some French intellectual
milieus. As I show below, Thom's conception of his theory was also inspired by some
cultural connections he himself drew with biology and linguistics in particular. My main
point, in the following, is that it is profitable to consider catastrophe theory, almost as it
was conceived by René Thom, that is, as a theory of modeling practice. By this, I mean

that when he introduced his theory Thom had the ambition of codifying new

8 D. P. L. Castrigiano and S. A. Hayes, Catastrophe Theory (Reading: Addison-Wesley),
Xii.
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mathematical methods for the modeling of natural phenomena. Therefore, I shall not, for
the moment, describe Thom’s modeling practices per se, but rather the way he constructed
a theory of modeling practice, which was based on his practices and the connections he
drew with other sciences. The result was an original philosophy of science that we need to
examine carefully, before we can go into the details of the specific disciplinary and

institutional contexts that made catastrophe theory at all possible.

b) Catastrophe Theory: A Theory of Modeling Practices

As described in Chapter I, 1 defined the term ‘modeling practice’ as a useful heuristic tool
for the historian of science. Now, discussions about modeling practices can sometimes be
articulated into a coherent discourse. Going back to Louis Althusser, I more or less
identify this with what he called a "Theory of theoretical practice," (with a capital T).% In
my view, scientists who introduce innovative theoretical and modeling practices, which
go against the general consensus, sometimes feel the need to articulate, or codify, their
views in the form of a theory of theoretical or modeling practice. In those time of
innovation (or revolution, to use the cliché), these scientists are often perceived as acting
as philosophers, which explains why we often hear that Einstein, Bohr, Mach or Newton

were philosophers, as well as scientists.

? L. Athusser, For Marx, 168. Again, I differ from Althusser when I say that any
modeling practice is susceptible of being codified, at least in a sketched form, in a theory
of modeling practice. For Althusser, Theory (with a capital T) is "general theory, that is,
the Theory of practice in general. . . . This Theory is the materialist dialectic, which is the
same thing as dialectical materialism," Ibid., 168. Elsewhere, he defines philosophy as the
Theory of theoretical practice. L. Althusser and E. Balibar, eds., Lire "le Capital” (Paris:
Frangois Maspero, 1968), 6.
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I argue that Thom’s innovations are best seen in terms of modeling, as opposed to
theoretical, practices, that is, that they were meant as a way to use mathematics in order to
account for natural phenomena, without being necessarily constrained by the theoretical
apparatus of a single discipline. In the following, I shall therefore focus on theories of
modeling practice, and eschew the discussion of theories of theoretical practices, which,
however, might follow a similar line.

Moreover, it is important to emphasize that theories of modeling practice, which
are produced by working scientists with a specific purpose in mind, are significantly
different from accounts of practice (such as my own) provided by historians,
philosophers, or sociologists of science. Indeed, in a more or less complete form,
scientists’ theories of modeling practices offer a prescriptive framework for how scientific
models should be constructed, while I only wish here to provide a heuristic description of
some original modeling processes pushed forward in the sciences by Thom and others.
The theories of modeling practice provided by working scientists seek to articulate
explicitly some, or all three, of the elements of modeling practicé that I have identified in
Chapter I: raw material, means of transformation, and product-knowlédge. For our
purpose, it is of little importance to know what should enter such a theory, and indeed
whether it is at all possible to write such a theory of modeling practice. I am content with
noticing that when scientists face resistance, either from their own demands of
consistency, or from scientific communities, with respect to the modeling practices they
introduce, they sometimes attempt to articulate more or less explicitly their own theory of

modeling practice in a coherent form.
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Let me emphasize that it is hardly necessary for one model-builder in particular,
or for a scientific community, to possess a well-articulated theory of modeling practice.
As Althusser wrote, a theoretical practice "may well be able to do its duty as theory
without necessarily feeling the need to make the theory of its own practice, of its process.
This is the case with the majority of the sciences."!? In most cases, model-builders are
perfectly content to do their own work, following their own modeling practices, without
relying on an explicit theory of modeling practice. Sometimes, however, they feel the
need for such an explicit articulation of theirl modeling practice. These are usually
episodes of the history of science that are interesting to study, because they reveal the
inner workings of scientists’ rapport with their own modeling practice.

Together with other mathematicians—Ralph Abraham, Steve Smale, and
Christopher Zeeman, who often visited Thom at the Institut des hautes études
scientifiques (IHES) in Bures-sur-Yvette, France, in the late 1960s (Chapter VI)—René
Thom proposed radically new modeling practices to the physical sciences, but also and
mainly to the biological and human sciences. Moreover, catastrophe theory was his own
attempt at formulating a comprehensive theory of modeling practice. With it, he wished to
redefine what it meant to build a mathematical model of a natural phenomenon. He
offered to consider new conceptual objects as the raw material of his modeling practice,

new mathematical tools as its means of knowledge production, and new interpretations of

10 L. Athusser, For Marx, 173-174. His example: Karl Marx, who never wrote a
Dialectics which would have been his Theory of theoretical practice, i.e. the Theory of
historical materialism. For Althusser's view on the philosophy of science, see 1.
Althusser, Philosophie et philosophie spontanée des savants (1967) (Paris: Frangois
Maspero, 1974); Philosophy and the Spontaneous Philosophy of the Scientists, and Other
Essays, ed. G. Elliott (London: Verso, 1990).
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the kind of the knowledge to which science should aspire. Roughly speaking, his
experience in mathematics provided him with new means of knowledge production. This
and his forays in embryology shaped his views on what should be sound raw material for
theory. Finally, he found in the French intellectual context a model for his interpretation
of product-knowledge. This was provided by structuralism, which he had to confront
when he tackled the problems of linguistics and semiotics, and beyond which he sought to
20.

The present chapter is thus an illustration of Thom’ theory of modeling practice
and a study of his sources of in mathematics, biology, and linguistics. Finally, I here
examine the general philosophy, i.e. the theory of modeling practice, that Thom had put
in place around 1975, after the main tenets of catastrophe theory had been well
publicized, but just before harsh critiques made him somewhat change his views. This
will provide a useful background for my later more tightly focused study of the contexts
in which the modeling practices of catastrophe theory were developed, then adopted and

adapted for the physical theory of turbulence.

2. WHAT WAS CATASTROPHE THEORY?

A bold and comprehensive mathematical theory aiming at explaining the dynamics of
shapes in the everyday world, catastrophe theory has often been narrowly understood as a
new mathematical approach able to deal with abrupt, discontinuous changes in nature: a
rubber band that breaks. For Thom, however, from the very beginning, it always was

much more than this.
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Almost entirely an original construct of Thom’s, catastrophe theory slowly
matured throughout the sixties. From 1964 to 1968, on his own account, Thom worked on
an ambitious book, a real manifesto in fact, that would reveal his unconventional ideas to
the world. This book, titled Structural Stability and Morphogenesis, was not published
until 1972, due to its publisher’s financial trouble.!! For this reason, catastrophe theory
was first presented in two articles, both published in 1968. To the proceedings of a
Theoretical Biology Symposium, held at Bellagio, Italy, Thom contributed "A Dynamical
Theory of Morphogenesis,” and for the French journal L'Age de la science, he wrote
"Topology and Meaning."12 The first article was concerned with biology. The second
paper addressed issues of semiotics, to which Thom would devote much effort in the
following years, and linked his thinking about modeling practices to the current vogue in
French thought: structuralist semiotics. Not content with introducing a new mathematical
language and exploring its consequences in some areas of science, Thom also conceived

-of his book, and both of these articles, as exposés of an original philosophy of science,

indeed a true "natural philosophy."12? The subtitle of his book, "An Outline of a General

' R. Thom, Stabilité structurelle et morphogénése (Reading: W. A. Benjamin; Paris:
Ediscience, 1972; reed. InterEdition, 1977); Structural Stability and Morphogenesis,
transl. by D. H. Fowler (Reading: Benjamin, 1975); hereafter SSM.

12 R, Thom, "Une théorie dynamique de la morphogénése,” in Towards a Theoretical
Biology, 1, ed. C. H. Waddington (Edinburgh: Edinburgh University Press, 1968); and
"Topologie et signification,” in L'Age de la science, 4 (1968). Both are reprinted in R.
Thom, Modéles mathématiques de la morphogénése. Recueil de textes sur la théorie des
catastrophe et ses applications (Paris: U.G.E., coll. "10/18, 1974, reed. Christian
Bourgeois 1980); Mathematical Models of Morphogenesis, transl. W, M. Brookes and D.
Rand (Chichester, Ellis Horwood, 1983), 1-38, 166-191; hereafter MMAM.

13 See, e.g., R. Thom, "Towards a Revival of Natural Philosophy," Structural Stability in
Physics, ed. by W. Giittinger and H. Eikemeier (Berlin: Springer, 1979): 5-11. See also J.
Largeanlt, "René Thom et la philosophie de Ia nature.” Crifigue, 36 (1980): 1055-1060;
and Philosophie de la nature 1984 (Créteil: Université Paris X1 Val-de-Mame, 1984).
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Theory of Models," reveals the extent of his ambitions: to sketch out his own theory of
modeling practice.

A striking paradox raised by Thom in 1968 illustrates his epistemological
concerns. !4 Consider an eroding cliff and the developing egg of a frog. In the former case,
suppose that we know later microclimatic conditions and the geological nature of the soil,
then our knowledge of the physical and chemical forces at play will be excellent. Even
then, it is impossible to predict the future shape of the cliff. As for the egg, however,
Thom contended that, although knowledge of the substrate and developmental
mechanisms is sketchy, we can still be pretty sure that it will end up as a frog! This
paradox, in Thom’s view, showed that a blind reliance on reductionist arguments had little
to say about the forms of nature. Clearly, a new method was needed: one that would focus
on shapes, account for their stability, and explain their creation and destruction.

For Thom, catastrophe theory supplied this method. In summary, its goal was to
understand phenomena of the world by approaching them directly, rather than relying on
traditional reductionist methods. Its main concern was the creation and destruction of
shapes and forms, but more precisely forms as they arise in the world, at the mundane
level of everyday life. Catastrophe theory posited the existence of a mathematically-
defined structure responsible for the stability of these forms, a structure that Thom called
the logos of the form, and consequently he rejected the notion that the universe was
governed by chaos or chance. The models built with the help of catastrophe theory were
inherently qualitative, not quantitative, which meant that they were not suited for action

or prediction, but rather aimed at describing, and intelligibly understanding, phenomena



David Aubin HI - Catastrophes 118.

of the world. Finally, Thom recognized that catastrophe theory was not a proper scientific
theory, but rather a method or a langnage that could not be tested experimentally, and
therefore was not falsifiable in Popper’s sense. These themes will be further developed at
the end of this chapter.

One might be surprised that 1 have hardly mentioned mathematics. Indeed,
catastrophe theory was elaborated on the basis of, and importantly shaped by, Thom’s
mathematical experience and concerns as we shall see in Chapter VI. However, he
considered that cafastrophe theory went far beyond mathematical techniques. When
viewed as a theory of modeling practice, the mathematical tools used by catastrophe
theory becomes secondary. Mathematics made Thom’s thought possible, but it did not
subsume it. With catastrophe theory, Thom proposed, not just new mathematical models
applicable in embryology, but a modification of the common understanding of the

mathematical modeling of natural phenomena.

3. SOCIOLOGICALLY SPEAKING, A MATHEMATICIAN

At the source of catastrophe theory, we find a man who still “sociologically” defines
himself as a mathematician.!3 Born in 1923, René Thom likes to say half-jokingly that he

owes his professional orientation to his parents' advice. They "had lived through the First

14 R. Thom, "Une théorie dynamique,"” MMM, 15. _

15 R. Thom recounts his memories in two published interviews: Paraboles et
catastrophes. Entretiens sur les mathématiques, la sciences et la philosophie, interview
by G. Giorello and S. Morini (Paris: Flammarion, 1983 [Milan: 1l Saggiatore, 1980]) and
Prédire n'est pas expliquer. See also his "Probléemes rencontrés dans mon parcours
mathématique: un bilan," Publications mathématiques de I'THES, 70 (1989): 199-214, and
his "Exposé introductif” in Logos et Théorie des catastrophes. A partir de l'oeuvre de
René Thom. Actes du colloque international de Cerisy-la-Salle, septembre 1982, ed. by J.
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War {and] told us: Try to be an artillery man. They are less exposed than the infantry!"16
You needed mathematics to qualify for the artillery: René Thom passed his "bachot de
mathélém" (high school degree in elementary mathematics) in 1939. More seriously, he
recalls a "decisive encounter with Euclidean geometry” during his lycée years. The effects
of his attraction to what he calls "the geometric mode of thought and type of proof" are
still present many years later.!” However, his geometric, intuitive vision of mathematics

was opposed to the dominant trend.

a) Mathematical Styles: Bourbaki Against Intuition

Too young to be drafted in 1939, René Thom went on with his education during the
Occupation, first at the Iycée Saint-Louis, then at the Ecole normale supérieure starting in
1943, whére he experienced "the excitement born with Bourbakist ideas."18 Some
Bourbakis, already by the late 1930s important members of the French mathematical
community, were among Thom’s professors. As I described above, Bourbaki "was a
symbol . . . of the triumph of abstraction over application, of formalism over intuition."1?
He made "mathematics appear as a polished monolith, built purely deductively."20 As we

saw above, Bourbaki did not reject geometry so much as the intuitive approach to

Petitot (Geneva: Patifio, 1988): 23-39. There, he wrote that "sociologically"
(sociologiquement}, he was a mathematician.

16 R, Thom, Prédire n'est pas expliquer, 9. .

17 R. Thom, "Exposé introductif,” 24. See also his interview in Hommes de sciences: 28
portraits, ed. M. Schmidt (Paris: Hermann, 1990).

18 R. Thom, "Problémes renconitrés,” 200.

19 1.. Beaulieu, Bourbaki. Une histoire du groupe de mathématiciens francais et de ses
travaux (1934-1944), theése de 'université de Montréal (1989), 1.

20 GG. Birkhoff, "Current Trends in Algebra," American Mathematical Monthly, 80 (1973):
760-782, 772. Emphasized in the original text.
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Euclidean geometry, upon which Thom’s mathematical intuition and philosophy were
built.

Thom’s opinion of Bourbaki is thus quite ambivalent. One of Bourbaki’s most
successful students, he clearly praises Bourbaki for introducing into France the
mathematics of the Hilbert school in Géttingen. But David Hilbert's message was that two
tendencies were present in mathematics:

On the one hand, the tendency toward abstraction, seek[ing] to crystallize the

logical relation inherent in the maze of material that is being studied, and to

correlate the material in a systematic and orderly manner. On the other hand, the
tendency toward intuitive understanding, foster[ing] a more immediate grasp of

the objects one studies, a live rapport with them, so to speak, which stresses the
concrete meaning of their relations.2!

For Thom, Bourbaki had clearly chosen the first path, thus failing to keep Hilbert's
mathematics alive. "It is a bit like if at the time of Vesaleus, when the method of
dissection eventually imposed itself, one had wanted to identify the study of human
beings with the analysis of cadavers."22 Bourbaki's ascetic ultraformalism killed
mathematics.

Thom therefore knew Bourbaki very well. As mentioned above, he had once been
one of their "guinea pigs," but says that he literally fell asleep during the lectures.??
Nevertheless, he was learning! It is Thom's early achievement to have been able to

reconcile his powerful geometric intuition with Bourbaki's mathematics. In 1946, Thom

21D, Hilbert and S. Cohn-Vossen, Gometry and the Imagination, transl. P. Nemenyi
(New York: Chelsea, 1952 [1932]), iii. Their emphasis.

22 Interviewer's comment, with which Thom agrees, in R. Thom, Paraboles et
catastrophes, 24.

23 R. Thom, Paraboles et catastrophes, 23; and also A. Haefliger, "Un aper¢u de I'ocuvre
de Thom en topologie différentielle (jusqu'en 1957)," Publications mathématiques de
U'THES, 68 (1988): 13-18, 15.
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moved to Strasbourg with his mentor Henri Cartan who oriented him towards a field of
mathematics that was then rapidly developing: differential topology. This, in part,
motivated Thom’s ambiguous assessment of Bourbaki. Multidimensional spaces, which
form the subject of topology, are difficult to visualize intuitively. It is then that
systematic, rigorous and formal thought, however boring and counterintuitive it might be,
is incomparably useful. Thom mastered these technical means (algebraic and topological)
offered by Bourbaki’s edifice. Indeed, he mastered them well enough to obtain powerful
mathematical results, which, according to the mathematician Jean Dieudonné, "the
modern rise of differential topology."#* In 1958, the Fields Medal, the highest distinction
for a mathematician, was awarded to René Thom in recognition for this work.

Thom's powerful intuition was already at work. In his tribute to Thom, the
mathematician Heinz Hopf clearly identified his strengths. This was a time in which
topology was in a "stage of vigorous . . . algebraicization," he wrote.25 Not only had
algebra been foﬁnd to provide "a means to treat topological problems," but also "it rather
appears that most of the problems themselves possess an explicitly algebraic side." This
algebra/topology divide then informed the mathematicians' image of their discipline. As

Hermann Weyl had put in 1939: "In these days the angel of topology and the devil of

24 ]. Dieudonné, Panorama des mathématiques pures. Le choix bourbachique (Paris:
Gauthier-Villars, 1977), 14. See Thom’s paper "Quelques propriétés globales des variétés
différentiables,” Commentarii Mathematici Helvetici, 28 (1954): 17-86.

25 H. Hopf, "The work of R. Thom" in Proceedings of the International Congress of
Mathematicians [Edinburgh: August 1958] (Cambridge: Cambridge University Press,
1960): 1x-Ixiv; this and the following quotes are from pp. Ixiii-1xiv.
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algebra fight for the soul of each individual mathematician.” But in 1952, he was reported
as having acknowledged: " I take it all back."26
Still, for Hopf, a danger lurked in algebraicization of topology, namely the danger
of "totally ignoring the geometrical content of topological problems."
In regard to this danger, I find that Thom’s accomplishments have something that
is extraordinarily encouraging and pleasing. While Thom masters and naturally
uses modern mathematical methods and while he sees the algebraic side of his

problems, his fundamental ideas . . . are of a perfectly geometric-anschaulich
nature.

Thom was able to use Bourbaki’s powerful algebraic methods in order to solve
topological problems without loosing sight of their anschaulich, or intuitive, character.
Because of Thom’s original approach, Heinz Hopf predicted that the effect of Thom’s
future ideas would "not be exhausted for a long time."2” An ardent ‘catastrophist,” Tim
Poston, later vividly contrasted Thom’s style with a more traditional approach & la
Bourbaki.

Some mathematicians go at their work like engineers building a six-lane highway

through the jungle, laying out surveying lines, clearing the underbrush, and so on.

But Thom is like some creature of the mathematical jungle, blazing a trail and
leaving just a few marks on his way to the next beautiful clearing.28

Indeed, Thom would come to a conception of rigor in mathematics as counter-intuitive
and counter-productive. "Absolute rigor is only possible in and by insignificance."2? It

was, in any case, only an ideal goal, never achieved in practice. True to his preference for

26 H. Weyl, "Invariants," Duke Mathematical Journal, 5 (1939): 489-502, 500; and A.
Borel in "Responses to Theoretical Mathematics: Towards a Cultural Synthesis of
Mathematics and Theoretical Physics,” by A. Jaffe and F. Quinn," Bulletin of the
American Mathematical Society, 30 (1994): 178-207, 180.

27 H. Hopf, "The work of R. Thom," 1xiv.

28 Tim Poston, quoted by A. Woodcock and M. Davis, Catastrophe Theory, 16.
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meaningful wholes over insignificant details, Thom held that rigor hid the essential.
"Rigor,” he wrote, "is essentially a local property of mathematical reasoning."30 In any
case, it always followed. "Rigor, in mathematics, essentially is a question of

housekeeping [intendance]."3!

(i) Mathematical Interiude 1: Thom’s Cobordism Theory

This section shows in greater mathematical details the intuitive approach, allied with
profound knowledge of Bourbakist methods, that guided Thom in his work on cobordism
theory, for which he was awarded the Fields Medal in 1958.32 As Heinz Hopf said,
cobordism was especially important because of the way Thom mixed topological and
algebrziic approaches in the classification of manifolds. In the following, I define a few
concepts, central to either fopology or algebra, two of the three-legged bases of
Bourbaki’s mathematics, in order to illustrate Thom’s mathematical work. Briefly, Thom’s
cobordism theory enable him to construct groups Q" out of equivalence classes of
manifolds of dimension n, and classify these groups.

Topology is a generalization of geometry, which studies spaces with the degree of

generality that is appropriate to a specific problem. One central concern of topology is to

22 R. Thom, "Mathématiques modernes et mathématique de toujours," Pourquoi la
mathématique?, ed. R. Jaulin (Paris: Union générale d'éditions, 10/18, 1974): 39-56, 49.
30 R. Thom, "Modern Mathematics: An educational or Philosophical Error?" American
Scientist, 51 (1971): 695-699, 697. Origin. publ. in French in L'Age de la science, 3(3)
(1970): 225-236.

31 R. Thom in Entretiens avec "Le Monde", 3. Idées contemporaines, interview by J.
Mandelbaum (Paris: La Découverte, 1984), 80; and R. Thom, "Mathématiques
modernes," 52.

32 R. Thom, "Quelques propriétés globales;" see also R. Thom, "Sous-variétés et classes
d’homologie des variétés différentiables,” Séminaire Bourbaki, 5 (February 1953), exposé
#78; and "Variétés différentiables cobordantes,” CRAS, 236 (1954): 1733-1735.
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study the properties of spaces that do not change under a continuous transformation, i.e.
translation, rotation, and stretching, without tearing. One such property is expressed by
the concept of dimension: a curve is one-dimensional; a surface has two dimensions;
ordinary space, three; and the space-time of general relativity theory, four.

When a mathematician is faced with the problem of characterizing a space that is
locally isomorphic to a Euclidean space with dimension #, he or she uses the notion of
manifold. An n-dimensional manifold is thus a space M, such that there is a neighborhood
V around each point p of M in one-to-one correspondence with a subset W of R~ The
study of manifolds is called differential geometry, and the classification of all manifolds
of a given dimension is an important problem of topology.?3 It is also possible to define
manifolds with edges. If the manifold with edges has n+1 dimensions, than the edges are
n-dimensional manifolds. For example, a sheet of paper folded into a cylinder have edges
that are circles; a manifold with three circles as edges looks like pants.

Let us also define equivalence relations and equivalence classes. An equivalence
relation ~ over a set § is defined so that, for all o, b and ¢ in S, the three following
properties are satisfied: (1) reflexivity: a~a; (2) symmetry: if a~b then b~a; and

(3) transitivity: if a~b and b~c, then a~c. The equivalence class [a] of an element a of § is

33 For example: (1) A circle is a one-dimensional manifold, and so is the union of any
number of non-intersecting circles. (2) A sphere—e.g., the Earth—hardly is
distinguishable from a plane when standing very close to it; mathematicians say that a
sphere is locally isomorphic to the plane, thus it is a two-dimensional manifold.

(3) Einstein's general relativity explains gravity by assuming that space-time is a curved
four-dimensional manifold.
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the subset of § that contains all the elements b that are equivalent to a, i.e. all % in S that
are such that b~a.3*

With the above definitions, one is now in position to describe Thom’s cobordism
theory. He defined two manifolds M and N, both of dimension #, to be cobording (in
French, cobordantes, from bord = "edge”) if there is a manifold P of dimension n+1 so
that M and N form its edge. He then showed that cobording manifolds formed an
équivalence class. For example, one circle is cobording with the manifolds consisting in
the non-intersecting union of two circles, because it is possible to unite them with the
pants-shaped two-dimensional manifold with edges.

Thom realized then that the set £2* of all these equivalence classes formed a group,
the group operation being defined as the non-intersecting union of manifolds representing
the equivalence class. Moreover, exploiting modern formalism (homology, homotopy,
and orthogonal Lie groups), and with the help of Jean-Pierre Serre, Thom identified the
structure of those groups as being that of usual groups. He found that (Thom also
provided partial results for higher dimensions):

Q=Z; Q1=(P=Q3=0; Q4=7Z; Q=7Z,; Q5=Q7=0.

It is worthwhile to note that if M is cobording with N, then it is possible for M to

evolve in time and become N. Thus cobordism is the study of possible continuous

transformations of a given shape. Retrospectively, Thom also saw it similarly: "The

34 For example: (1) the ordinary equality = between numbers is one such equivalence
relation; (2) every integer is either even or odd, we can define an equivalence relation so
that for g and b in Z, a~b if both numbers are odd, or both are even. We thus get two
equivalence classes: [0] and [1], which are, respectively, the set of all even, and odd,
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problem of cobordism . . . is of knowing when two manifolds can be deformed one into
the other without encountering a singularity in the resulting space, at any moment in this
deformation."35 The example of a circle becoming two circles can, very crudely of course,

model cell division.

b) The Mathematical Background of Catastrophe Theory

But we have got ahead of ourselves. In 1946, after his agrégation, René Thom moved
from Paris to Strasbourg with a stipend from the Centre national de la recherche
scientifiqgue (CNRS). From 1946 to well into the 1950s, the Alsacian capital hardly
corresponded to the provincial exile that French professors had to endure before, if
successful, they could trek back to Paris. In addition to Thom's thesis director Henri
Cartan being there, Charles Ehresmann directed a séminaire de topologie, where several
renowned foreign mathematicians were invited. There Thom heard Hassler Whitney
(1907-1989) present his work on singularities of mappings from the plane to the plane in
1950.36 Thom also became acquainted with Morse theory, named after the American
mathematician Marston Morse (1892-1977), who studied the relation between the

topology of spaces and the singularities of real functions defined on them.37

numbers. The set Z,={[0], [1]} with the addition defined as such [a]+[b]=[a+F], is also a

group defined in Chapter II.

33 R. Thom, "Exposé introductif,” 27. My emphasis.

36 R. Thom, "La vie et I'oeuvre de Hassler Whitney," Comptes-rendus de l'Académie des
sciences — La vie des Sciences, 7 (1990): 473-476.

37 Thom’s first published article was on Morse theory: "Sur une partition en cellules

associée a une fonction sur une variété," CRAS, 228 (1949): 973-975. His major work on
cobordism made good use of Morse theory as well.
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From his stay in Strasbourg, Thom therefore drew resources that were congenial
to his attack on the problems of singularity theory, which, with Morse and Whitney, he
can be considered as having founded. Just like "living beings,” Paul Montel wrote in
1930, "functions are characterized by their singularities."3® Montel considered that the
study of their singular points allowed to investigate the individual characteristics of
functions. For Thom, trying to make sense of multi-dimensional spaces, singular points
were a blessing, He once discussed "a philosophical aspect” motivating the emphasis
placed on their study in a way that clearly shows his topological intuition. "A space is a
rather complex thing that is difficult to perceive globally.” It was however possible to
project it on the real line in order to study its structure. "In this flattening operation, the
space resists: it reacts by creating singularities for the function. The singularities of the
function are in some sense the vestiges of the topology that was killed: . . . its screams."39
In 1955, he published his first article on singularities, which as we shall see in Chapter VI
underlay most of his research activities for the following years. Thom knew that he had
found a great topic: "There is hardly any doubt, in conclusion, that the study of the local
properties of singularities of differential applications opens the door to an extremely rich
domain."* From his work on singularity theory, Thom adapted mathematical tools that

would help him develop catastrophe theory: the concepts of genericity and of structural

3% P. Montel, "Sur les méthodes récentes pour 1'étude des singularités des fonctions
analytiques,” Bulletin des sciences mathématigues, 2nd ser., 56 (1932): 219-232; 219.
3% R. Thom, "Expos¢ introductif," 26.

4 R. Thom, "Les singularités des applications différentiables," Annales de 'Institut
Fourier de Grenoble, 6 (1955-56): 43-87, 87.
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stability, as well as a classification of singularities which would later become a list of the
seven elementary catastrophes.*!

The concept of genericity, used by Italian algebraic geometers since the beginning
of the century, became a crucial mathematical tool of catastrophe theory. Thom had spent
the 1951-52 academic year. at the Graduate College in Princeton. In the spring, he met the
Bourbaki Claude Chevalley, who was then at Columbia. The idea of extending the use of
genericity to differentiable structures dates from a "memorable discussion” he had with
him. "T quickly perceived that this phenomena of ’genericity’ was an esséntial source for
our present worldview."+>

In 1960-61, Thom spent a year in Baltimore with the nonlinear dynamics group,
which, under the direction of Solomon Lefschetz, was reviving interest in the qualitative
study of ordinary differential equations. In particular, Lefschetz had introduced the
concept of structural stability from Russia.*3 This concept also was central for the
development of catastrophe theory, the title of Thom’s first book being Structural
Stability and Morphogenesis. The conjunction of mathematical concepts of genericity and
structural stability would guide Thom’s research program in singularity theory, as he

arrived at the THES in 1964. They would also form the mathematical technology used for

41 R. Thom, "Les singularités des applications ditférentiables," Séminaire Bourbaki, 8
(May 1956), exposé #134.

42 R. Thom, "Mémoire de Ia théorie des catastrophes,” in R. Thom, M. Porte and D.
Bennequin, La genése de formes. Thom Arch.

43 R. Thom, "Exposé introductif,” 31. On Lefschetz, see A. Dahan Dalmedico, "L.a
renaissance des systémes dynamiques aux Etats-Unis aprés la deuxidme guerre mondiale:
I'action de Solomon Lefschetz," Rendiconti dei circolo matematico di Palermo, ser. 1,
Supplemento, 34 (1994): 133-166; and Chapter V below.
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the foundation of the modeling practices he promoted with catastrophe theory. As we

shall see later, he had by then already started to look at possible applications in physics.

(i) Mathematical Interlude 1I: Singularity Theory

The projection that René Thom described in vivid terms to show the importance of the
study of singularities (p. 127) was called a Morse function. It was a smooth mapping f
from an n-dimensional manifold M to the real line R, satisfying some additional technical
property. As Thom conveyed, one of Morse's crucial results allowed "the determination
of the relations between the topological characteristics" of M and the singular points of
faa

Thom started to be interested in the properties of the set of singularities of
multivariable functions, during the summer of 1955.45 Consider a smooth differentiable
mapping f from R™to R#, or more generally from an m-dimensional manifold M to an n-
- dimensional manifold N. Then, a point p in M is a singular point of f if there is a direction
along which the derivative of f at p vanishes.46

The name of the game then was, as often in modern mathematics, to classify and

characterize singularities. For an arbitrary mapping f and arbitrary manifolds M and N, the

# M. Morse, "The Calculus of Variation in the Large,” Collected Papers, 423-438, 423;
and M. Morse, The Calculus of Variation in the Large, AMS Colloquinm Publications, 18
(New York: AMS, 1934). See also the famous textbook by I. Milnor, Morse Theory,
Annals of Mathematics Studies, 51 (Princeton University Press, 1963).

43 R. Thom, "Les singularités des applications différentiables." See B. Teissier, "Travaux
de Thom sur les singularités," Publications mathématiques de | 'THES, 68 (1988): 19-25;
A. Haefliger, "Un apercu,” Ibid., 16.

46 For example, for a usual function f: R—R, singular points of f are points p where the
derivative of f vanishes [f{p) = 0]; they can be local minima, local maxima, or flat
inflection points (such as x=0, for fx)=x3).
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classification problem was very hard.4” Thom limited his study to low-dimensional spaces
M and N, and to structurally stable mappings, which means that they keep the same
topological character for a small perturbation of the mapping. He hoped structurally stable
mappings to be very common, so that every mapping was either stable or very close to
one: in mathematical- parlance, they were generic.

In the above example of real functions, a generic singular point p was such that
the second derivative of f at p was nonzero: f"(p) # 0. Morse theory showed that using an
appropriate change of variable x—y(x), such that y(p) = 0, then f could be written as f{y) =
* 372 in a small neighborhood of the singular poiﬁt p. This completely classified the
generic singular points for real functions: there was, essentially, only one kind of
singularity that could occur. In Thom’s language, this singularity would soon be defined
as a catastrophe called the fold.

Whitney completely classified the singularities that "a good approximation" of
any mapping from the plane to the plane were allowed to have.#® This can be visualized as
follows. Imagine a surface S (a sheet for example) that we project on a plane underneath
it. The surface S is just a different parametrization of the plane. So, we are faced with
Whitney’s problem: find the generic singularities of f: R?>—>R2. Often, there is no problem;
there is a one-to-one correspondence between the points of § and those of the plane

below. But, it might happen that you have a fold, close to which two points from the

47 See H. Whitney, "Singularities of Mappings in Euclidean Spaces," Symposium
internacional de topologia algebraica (Mexico City: Universidad Nacional Automa de
Meéxico & UNESCO, 1958): 285-301.
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surface are projected onto the plane no matter how close to the fold you get; this is a
singularity. You might even encounter isolated points around which, locally, three points
of § are projected onto the plane; these are cusp singularity. These two are the only local
singularities that would survive small readjustments of the sheet, i.e. perturbations of f.

Thom’s elementary catastrophe theory basically extended this classification to
higher dimensions, but with a slight difference. In Structural Stability, Thom recognized
that the essential characteristics of a smooth function could be analyzed by studying its
embedding into a smooth family of functions. He called this family of functions F(x,u),
such that F(x,0) = f(x), an unfolding of the function f {here, x and 1 are multidimensional
vectors]. "The goal of catastrophe theory is to detect properties of a function by studying
its unfoldings."4?

There were an infinite number of unfoldings for a given function f. The question
was to know if there was one capturing the essential information about all unfoldings of f.
Such an unfolding, when it existed and the number of dimensions of the variable i was
minimal, was called universal. The fold and the cusp, discussed above, were universal
unfoldings of f{x) = x* and x*, respectively.

Consider a (physical) system whose dynamics is controlled by a potential function

V(x), where x describes the state of the system.>? If friction forces are large enough, the

48 H. Whitney, "On Singularities of Mappings of Euclidean Spaces. I. Mappings of the
plane into the plane," Annals of Mathematics, 62 (1955): 374-410; repr. in Collected
Papers (Berlin: Birkhduser, 1992): 370-406.

4 D.P.L. Castrigiano and S.A. Hayes, Catastrophe Theory. See SSM, 29-34; and MMM,
59-77.

30 Gradient dynamics was already considered as an application in R. Thom,
"Généralisation de la théorie de Morse aux variétés feuilletées,” Annales de Ulnstitut
Fourier, 14, no. 1 (1964): 173-189; 188-189,
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state of the system x should always be very close to a minimum of V, that is, a singular
point. Imagine a ball sitting at the bottom of a valley. Suppose that V{x) = x3 + ux. Then
the only stable equilibrium position was at x = lu/31%, for u negative. If, however, u varied,
or in other words, if there was an internal control parameter slowly, but continuously
varying, the state of the system could suddenly change drastically. Indeed, as u
approached 0O, the minimum became flatter until it vanished at 4=0 . . . at which point the
catastrophe occurred and the ball fell to infinity. The power of catastrophe theory is to
say that, locally, every similar situation could be described by this simple potential.

The tricky part of this program was to find universal unfoldings. A heavy arsenal
of functional analysis and algebraic topology was needed for Thom, Malgrange and
Mather to be able to finally eétablish the list of seven catastrophes conjectured by Thom.
In particular, they used the notion of map germs, and the jet theory of Charles Ehresmann,
Thom’s professor in Strasbourg.?! I describe this work in more details in the institutional

setting of the IHES in Chapter VL

c) ’A Beautiful, Intriguing Field of Pure Mathematics’

The relationship between catastrophe theory and mathematics is a contested one. On the
one hand, the mathematician John Guckenheimer aptly wrote that SSM "contains much of

interest to mathematicians and has already had a significant impact upon mathematics, but

°1 See R. Thom, "Sur la théorie des enveloppes," Journal de mathématiques pures et
appliquées, 9e sér., 41 (1962): 177-192. His reference for jet theory is C. Ehresmann,
Introduction a la théorie des structures infinitésimales et des pseudo-groupes de Lie,
Colloque CNRS, 52 (1953). See R. Thom, "La théorie des jets et ses développements
ultérieurs,” in C. Ehresmann, (Euvres complétes et commentées, 1, ed. A. Ehresmann,
Cahiers de topologie et géométrie différentielle, suppl. 1 and 2 (Amiens, 1984): 523-525.
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[it] is not a work of mathematics."52 On the other hand, authors of recent textbooks often
feel the need to stress its mathematical nature. One started by emphasizing that
"Catastrophe theory is a branch of mathematics.”S3 Another asserted that this branch had
in fact been "discovered” by Whitney in 1955, and transformed “into a *cultural’ tool" by
René Thom.34

| Historically, it is indeed true that Thom's mathematical experience made
catastrophe theory possible and shaped the outcome of Thom's theory of modeling
practice. As early as 1967, he divided catastrophes into two categories on the basis of his
mathematical knowledge: the seven elementary catastrophes arising in simple systems;
and generalized catastrophes, which lived in more complex spaces.55 Recall that
catastrophes were abrupt changes caused by smooth variations of the internal conditions
of a system. Generalized catastrophe arose when there was loss of a global symmetry in
the system. Thom wrote very little about them, since the mathematical basis for their
classification was lacking. As for elementary catastrophes, they were those sudden
discontinuities that occurred in systems whose dynamical behavior was controlled by a
gradient (or potential). The image "of a ball rolling around a landscape and 'seeking’

through the agency of gravitation to settle in some position which, if not the lowest

52 J. Guckenheimer, review of SSM, Bulletin of the American Mathematical Society, 79
(1973): 878-890. The title of this section is a quote from D. P. L. Castrigiano and S. A.
Hayes, Catastrophe Theory, xii.

33 A. Majthay, Foundations of Catastrophe Theory (Boston; Pitman, 1985), 1.

3 M. Demazure, Catastrophes et bifurcations (Paris: Ellipse, 1989), 167.

53 R. Thom, "Une théorie dynamique,” and SSM. See also Figure 1, for a list of the seven
elementary catastrophes. For the date, R. Thom, "Problémes rencontrés," 203.
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possible, than at least lower than any other nearby" was offered by T. Poston and 1.
Stewart in order to help understand this dynamics.56

One of the most powerful results from singularity theory, which made catastrophe
theory at all possible, was a complete classification of the elementary catastrophes that
arose in a system described by less than four internal parameters. In this case, Thom
conjectured that only seven elementary catastrophes existed: the fold, cusp, swallowtail,
butterfly, and the three umbilics. By the early 1970s, this conjecture was fully proved by
Bernard Malgrange and John N. Mather.5” Tt would later be widely known as "Thom’s
theorem." Elementary catastrophe theory made it certain that, if the above conditions
were fulfilled (gradient dynamics and a small number of parameters), the abrupt changes
in the system, unless not generic, had to be locally described by one of Thom’s
elementary catastrophes.

While Christopher Zeeman’s exploitation of Thom’s theorem made the
international fame of catastrophe theory, it barely touched on Thom’s own vision for his
theory. Too tight a focus on this theorem betrays his philosophy and misses the point of
his most important innovations for the practice of modeling, a fact that was recognized by

some catastrophists: "It is not Thom’s theorem, but Thom’s theory, that is the important

36 T, Poston and L Stewart, Catastrophe Theory and its Applications (London: Pitman,
1978), 2.

37 Two recent books are essentially dedicated to a pedagogical reproduction of this proof:
M. Demazure, Catastrophes et bifurcations and D.P.L. Castrigiano and S.A. Hayes,
Caiastrophe Theory. T. Poston and 1. Stewart present an intermediate-level explanation of
the notions that articulate this theorem, see their chapter 7 in Catastrophe Theory, 99-122.
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thing: the assemblage of mathematical and physical ideas that lic behind the list of
elementary catastrophes and make it work.">8

Thom emphatically concurred with this view. He granted that his philosophy was
made possible by new advances in topology and that mathematical concerns importantly
shaped his theory.’® Surely, qualitative mathematics, some of which he had contributed to
develop, some of which was cruelly lacking for the moment, were, or would have been,
quite beneficial for catastrophe theory. But, generally speaking, these mathematical tools
were just one of the facets of the general method of scientific inquiry that was catastrophe
theory.

Catastrophe theory is a not a theory that is part of mathematics. It is a

mathematical theory to the extent that it uses mathematical instruments for the

interpretation of a certain number of experimental data. It is a hermeutical theory,

or even better, a methodology, more than a theory, aiming at interpreting

experimental data and using mathematical instruments whose list is, for that
matter, not a priori defined.o0

Catastrophe theory was, in Thom’s view, more philosophical than mathematical.
This philosophy was grounded in part in Thom’s mathematical practice. The most casual
reading of Thom’s work reveals that his thought was framed by mathematical language.
His emphasis on shapes and qualitative theories can be directly traced back to his work on
topology, where measurements are eschewed, and on singularity theory, where global

properties can be extracted from the local study of critical points.

8 T. Poston and 1. Stewart, Catastrophe Theory, 7.

7 R. Thom, SSM, 159. See above, p. 166.

0 R. Thom, Paraboles et catastrophes, 98. See also R. Thom, "Le statut épistémologique
de la théorie des catastrophes,” Morphologie et imaginaire, Circé, 8/9 (1978): 7-24; repr.
AL, 395-410.
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But Thom did not come up with catastrophe theory until he experimented with
biological theories. These are at least as important as his mathematical practice in
explaining catastrophe theory. In fact, it was from his reading of embryology textbooks
that he came up with the notion of aftractor, which figured so prominently in the

modeling and experimental practice of chaos.

4. TOWARDS A THEORETICAL BIOLOGY ?

Overlooking beautiful Lake Como, in the village of Bellagio, Italy, stands Villa
Serbelloni owned by the Rockefeller Foundation. There, on August 28, 1966, a select
group of computer scientists, mathematicians, physicists, and, of course, biologists (but
hardly any molecular biologist!) gathered in order "to explore the possibility that the time
[was] ripe to formulate some skeleton of concepts and methods around which Theoretical
Biology [could] grow."6! There aiso, René Thom presented a noted contribution where he
introduced the notion of catastrophe. How did he come to be invited at a biology
conference? What did he present exactly? And what relation did this have with

catastrophe theory?

a) From Pure Mathematics to Theoretical Biology, 1960-1968

In 1963, consecration came for René Thom in the form of an offer by Léon Motchane, the
founder of the THES, to join the faculty of this research institution. There, Thom had no
teaching obligation, and could devote most of his time to research. He accepted, but only
slowly to move away from mathematics and venture into disciplines, like biology and

linguistics. A definitive reason for this shift of interest probably does not exist. Maybe his
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new situation at the IHES had something to do with it: "I had more leisure time, I was less
preoccupied by teaching and administrative tasks. My purely mathematical productivity
seemed to be declining and T began to be more interested in the periphery, that is, to
possible applications."6? Perhaps he finally succumbed to a taste for philosophy that he
had neglected since his [ycée years because of the demands of a mathematical career.53

For all his success, Thom seemed to have found mathematics hard to practice, and
somewhat insatisfying. "If you don’t need to work in mathematics for a living you need
much courage to do it, because, in spite of all, mathematics is difficult!"%* He especially
loathed putting the final touch to his papers, many of which remained as manuscripts in
his files. As we shall see in Chapter VI, one thing is however certain: he did not
immediately abandon all concern with pure mathematics. Throughout the 1960s, he
published a few articles on singularity theory, in which he introduced many concepts that
inspired more conventional mathematicians.5® It is a sign of Thom’s exceptional intuition
that he was able to do so without always spending the time and energy necessary to

present them with the polish that the generation brought up by Bourbaki asked for.

61 C. H Waddington, Preface, Towards a Theoretical Biology, 1.

62 R. Thom, Prédire n'est pas expliguer, 27.

63 "Lorque j'ai dit {2 George Bruhat, sous directeur scientifique lors de sa Taupe] que je
nt'intéressais 2 la philosophie des mathématiques, dans la direction de Cavaillés et de
Lautman, il a levé les bras au ciel en s'écriant: "Surtout, passez-moi rapidement votre
agrégation!"" R. Thom, Prédire n'est pas expliquer, 14, see also Entretiens avec des
mathématiciens (L'heuristique mathématique), by Jacques Nimier (Villeurbanne: IREM,
1989), 96-97.

64 R. Thom, "Exposé introductif," 27. He also said: "I never mistook myself for a
mathematician,” Paraboles et catastrophes, 29.

8 R. Thom, "La stabilité topologique des applications polynomiales,” L Enseignement
mathématique, 11, 8 (1962): 24-33; and "Ensembles et morphismes stratifiés,” Bulletin of
the American Mathematical Society, 75 (1969): 240-284.
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In any case, with the help of the physicist P. Pluvinage and his assistant M.
Goeltzene from Strasbourg, Thom began in 1960 to experiment with caustics—those
luminous outlines that are formed, for example, by sunlight in a cup of coffee.6 Starting
with a problem he approached for its mathematical interest, that is, the classification of
generic singularities, he asked whether his models were general enough to find
applications in physics. Still under Bourbaki's spell, very few mathematicians in France
were then raising this sort of question, although they proclaimed the universality of their
structures. With singularities proving so fruitful in mathematics, Thom wondered whether
they would be just as useful in the study of the physical world.

Armed with a few instruments (a spherical mirror, a prism, a dioptometer), Thom,
Pluvinage, and Goeltzene constructed several caustics and studied their perturbations. The
rays reflected by the spherical mirror formed a luminous curve with a cusp: a singularity!
"This cusp has the marvelous property of being stable. If the orientation of the light rays
is slightly changed, one sees that the cusp subsists, This is the physical effect of a theorem
of mathematics."%7

Having stumbled upon unexpected behavior in optics, Thom then turned to
biology. The only explanation he gave for his new interest is a retrospective story. In
1961, he visited the Natural History Museum in Bonn. There, he hit upon a plaster model

of the gastrulation of a frog egg. "Looking at the circular groove taking shape and then

6 About the catastrophe theory approach of caustics, see M. V. Berry, "Les jeux de
lumiéres dans l'ean.” La Recherche, 9(92) (1978): 760-768.
67 Thom, Prédire n'est pas expliquer, 27. My emphasis.
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closing up, I saw . . . the image of a cusp associated to a singularity. This sort of
mathematical 'vision® was at the origin of the models I later proposed to embryoclogy."68

Thom also recalled that around 1962-63 he was struck by the fact that some
mathematical models in biology seemed to exhibit facets of his theories: first, a proposal
by the physicist Max Delbrlick in 1949, to the effect that cell differentiation could be
explained in terms of transitory perturbations of the cell's chemical environment; second,
Christopher Zeeman's articles on the "Topology of the Brain,” in which he pointed at the
possibilities of using topology to model biological phenomena.®® Further stimulation
came from discussions with biologists among his colleagues (Philippe L'Héritier and
Etienne Wolff) and with Zeeman, who frequently was visiting the THES.

In his "Preface" to SSM, Thom singled out four biologists as his precursors. In
addition to D'Arcy Thompson's (1860-1948) classic On Growth and Form, he mentioned
two other "physiologists": Jakob von Uexkiill (1864-1944) and Kurt Goldstein (1878-

1965).70 Thom found in these authors a way of treating organisms as wholes, a

% Thom, Paraboles et catastrophes, 45. Gastrulation is the process by which the first
internal layer of cells is formed in an animal embryo.

% Thom, "Exposé introductif,” 30. M. Delbriick's comment in Unités biologiques douées
de continuité génétique (Paris: CNRS, 1949): 33-34, transl. in MMM, 29-31. E. C.
Zeeman, "Topology of the Brain", Mathematics and Computer Science in Biology and
Medecine, sponsored by the Medical Research Council [Oxford, July 1964}, (London:
Her Majesty’s Stationery Office, 1965): 277-292. Zeeman’s work before and after he took
up catastrophe theory will be examine in Chapter VL.

70 R. Thom, SSM, xxiii. He cites J. von Uexkiill, Bedeutungslehre (J. A. Barth, 1940),
transl. Mondes animaux et monde humain (Paris: Gonthier, 1963); and K. Goldstein, Der
Aufbau des Organismus: Einfithrung in die Biologie unter besonderen Beriicksichtigung
der Erfahrungen am kranken Menschen (Nijhoff, 1934), transl. The Organism: A Holistic
Approach to Biology Derived from Pathological Data in Man (New York: American
Book Co., 1939). Thom was struck by the latter’s description of psychological pathologies
as being "catastrophic,"” see the 1st French ed. of SSM. About Uexkiill and Goldstein, see
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nonreductionist approach to biology, which could provide mechanisms accounting for the
finality of living beings. Above all, Thom was impressed by the writings of the fourth
man he cited: British biologist Conrad Hal Waddington (1905-1975). Indeed, when Thom
first introduced his theory of morphogenesis, he claimed that it stemmed for two sources:
On the one hand, there are my own researches in differential topology and
analysis on the problem called structural stability. . .. On the other hand, there are
writings in Embryology, in particular those of C. H. Waddington whose ideas of

‘chreod’ and ‘epigenetic landscape’ seem to be precisely adapted to the abstract
schema that I met in my theory of structural stability. 71

This acknowledgment of Thom's—that his catastrophe theory derived also from
biology, rather than having been just applied to it—was rarely taken seriously by those
who commented on catastrophe theory. That all of them were mathematicians, and none
of them biologists might explain this asymmetrical attribution. But it is at the interface
with biology that Thom would develop a mathematical picture of competition between
attractors in dynamical systems—a picture that would become one of the cornerstones of

catastrophe theory, and beyond this, of chaos theory.

b) "Wad’ and the Synthesis of Biology

According to Waddington, the main problem of biology was to account for the
characteristics that defined living organisms: form and end. "How does development
produce entities which have Form, in the sense of integration or wholeness; how does

evolution bring into being organisms which have Ends, in the sense of goal-secking or

A. Harrigton, Reenchanted Science: Holism in German Culture from Wilhelm II to Hitler
(Princeton: Princeton University Press, 1996).
71 R. Thom, "Une théorie dynamique," 152; MMM, 14.
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directiveness?"72 Organisms retained their shapes in spite of the fact that matter was
continuously flowing through them. Development always ended up in the same final
state, after having passed through the same stages. These problems of organization were
the fundamental questions, only to be solved by a synthesis of evolution, embryology, and
genetics.” Waddington believed that genes were the major causal factor for development,
but at the same time never denied the influence of the rest of the organism. Thus, he
thought that, while part of the answer lay in genetics, the main focus of study should be,
not the genes themselves, but the nature of the causal relationship between the organism
and its genes. For this science, he coined the name of epigenetics.”™

Being "stuck" with a biological order "in which there [was] an inescapable
difference between the genofype—what is transmitted, the DNA—and the phenotype—
what is produced when the genotype is used as instructions,” the epigenetician's task was
to come up with mechanisms that could explain the phenotype in terms of the genotype.”
But Waddington cautioned against careless oversimplifications. There was an "atomistic'

metaphysics” among geneticists: "It set out from the assumption of the existence of

72 C. H. Waddington, The Strategy of the Genes: A Discussion of Some Aspects of
Theoretical Biology (London: George Allen & Unwin, 1957), 4, 9. On Waddington, see
A. Robertson, "Conrad Hal Waddington," Biographical Memoirs of Fellows of the Royal
Society, 23 (1977). 575-622; D. Haraway, Crystals, Fabrics, and Fields: Metaphors of
Organicisms in Twentieth-Century Developmental Biology (New Haven: Yale University
Press, 1976); and R. M. Ponsot, C. H. Waddington ou l'évolution d'un évolutioniste, thése
de doctorat (Université de Paris I, 1987), 3 vols.

73 C. H. Waddington, Principles of Embryology (London: Allen & Unwin, 1956).

7 C. H. Waddington, "The Basic Ideas of Biology," Towards a Theoretical Biology, 1: 1-
32; 9. See also C. H. Waddinston, Organisers and Genes (Cambridge: Cambridge
University Press, 1940).

75 C. H. Waddington, "The Theory of Evolution Today," in Beyond Reductionism: New
Perspectives in the Life Sciences [Alpach: 1968], ed. by A. Koestler and J. R. Smythies
(London: Hutchinson, 1969): 357-395; 363.
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single genes, and it asked, at first, what does A do and later, what controls whether gene A
is active or not?"76 But this approach did not work in general. "There is a whole series of
processes in which the various genetic instructions interact with one another and interact
also with the conditions of the environment in which the organism is developing."7? For
example, he had found that some 40 different genes affected the development of the wing
of Drosophila (Fig. 5).

Epigenetics had two main aspects: changes in cellular composition (cell
differentiation), and in geometrical form (morphogenesis).”® In all cases the development
of an organism followed definite pathways, always the same, and resistant to change. The
description of these pathways and the genetic influences on them was thus a major task of
epigenetics. Waddington introduced in 1939 an intermediary space between the genotype
and the phenotype, which he called the epigenetic landscape. It combined, in a unique
visual representation, all the development paths, which were pictured as valleys (Fig. 3).7°
The epigenetic landscape had no physical reality, but it helped visualize the various
processes of development.

Consider a more or less flat, or rather undulating, surface, which is tilted so that

points representing later states are lower than those representing earlier ones

[Fig. 3]. Then if something, such as a ball, were placed on the surface it would run
down towards some final end state at the bottom edge. . . . We can, very

76 C . H. Waddington, The Evolution of an Evolutionist (Edinburgh and Cornell
University Presses, 1975); quoted by A. Robertson, "Waddington,” 597-8.

77 C. H. Waddington, "The Theory of Evolution Today,” 364.

78 C. H. Waddington, "The Basic Ideas of Biology," 11.

7 8. F. Gilbert has examined the source of this idea: see his "Epigenetic Landscaping:
Waddington’s Use of Cell Fate Bifurcation Diagrams," Biology and Philosophy, 6 (1991):
135-154. The epigenetic landscape first appeared in An Introduction 1o Modern Genetics
(New York: MacMillan, 1939), and was treated extensively in Organisers and Genes, and
in The Strategy of the Genes.
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Port of an Epigenetic Landseape, The pach followed by the ball, as
it rolls down rowards the spectator, corresponds to che develop-
mestal history of a parcicular.part of the egg. There is first zn
aleernacive, towards the tight or the left. Along the former path,
a second alternative is offered; along the path to the Ieft, the
meain channel continues leftwards, but there is an alternaive path
which, however, can only be reached over a chreshold.

Figure 3: Waddington’s Epigenetic Landscape. Repr. from C. H. Waddington,
The Strategy of the Genes, 29.

diagrammaticaily, mark along its one position to.correspond, say, to one eye, and
another to the brain, [etc.].316

The image of the ball on a surface is of course reminiscent of the potential
tunctions of catastrophe thec;ry. Moreover, the canalizations formed on the epigenetic
landscape had the property of being stable, in the sense that after a small perturbation in
its trajectory, the ball tended to go back to the slope aloﬂg the valley bottom. These stable
pathways of change, Waddington called creodes, and later chreods.3!” They were the
minimum points of a potential function unfolding in time. In his work on Drosophila

during the 1930s, Waddington had studied the switches that can occur among several

316 C. H. Waddington, The Strategy of the Genes, 29.
317 From the "Greek roots yp7, it is necessary, and 0d0g a route or path.” C. H.
Waddington, The Strategy of the Genes, 32.



David Aubin HI - Catastrophes 144.

‘Organic selection’ (the Baldwin effect} and genetie assimilation. The
diagram above shows part of an epigeneric landscape, with 2 main
valley Jeading to the adult character X and a side branch leading
to Y; the developing tissuc does not get into the Y path unless an
environmentaf simulus (hellow arrow) pushes it over the thrashe
old. The threc dizgrams below show ways in which the
‘acquired character” ¥ might become incorporated into the geno-
type. On the left, the original enviropmental stimulus is replaced
by a murant allele (dark arrow) which happens o turmn up; this is
‘organic selection’. On the right are two modes of ‘genetic
assimilation”, In the central one, the threshold protecting the wild
type is lowered to some extent, bur chere is an idenzifiable major
gene which helps push the developing tissues into the ¥ path. On
the right, the genorype as a whole causes the threshold fo disap-
pear and there is no identifiable ‘switch gene’. Note that in both
the genetic assimilation diagrams there has been a ‘muning’ of the
acquired character, L., the ¥ valley is deepened and its end~poine
shified from ¥ 10 Y.

Figure 4: Switches in the Epigenetic Landscape. Repr. from C. H. Waddington, The
Strategy of the Genes, 167.

development paths. In the sequence of events, if a gene was active at a particular moment
then the eye had a different tint of red. At the switches an important phenomenon took
place. The ball had to chose among several pathways (Fig. 4). René Thom would see in
this a topological change occurring in the set of minima (singularities) that the potential
function possessed: it was a catastrophe!

When Waddington organized the Bellagio Symposium, biology was in flux. The
discovery of the structure of DNA by Watson and Crick in 1953 was becoming the |
measuring stick against which all biological models had to b?\tested. For molecular
biologists, theoretical biology had to wait until one could pro.\:ide it with the right

molecular answers. Waddington also felt that answers to biological problems should be

molecular. But more importantly, they should address the important questions of
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biology.3? He hardly felt compelled to modify his epigenetic theories in view of molecular
biology.®3 Bluntly, he asked: "Do you have to wait till you can reduce to the molecular
biology of the dogma in a single leap or is there anything useful to do meantime?"84
Finding something useful to do now was the goal of the Bellagio Symposium. For this,
Waddington counted on the abilities of scientists from various fields. "After ail," he
wrote, "I am a biologist; it is plants and animals that T am interested in, not clever exercise
in algebra or even in chemistry."$5 After the introduction of Thom’s theory, Waddington
would proudly recall that as early as 1940 he had called for a "biologically useful

topology."s6

c) Dynamical Theories of Morphogenesis

In his "dynamical theory of morphogenesis,” Thom introduced a biochemical model of
cellular differentiation. The problem of accounting for differentiation had puzzled many
generations of embryologists. Independently, Waddington and Delbriick proposed that
gradients in the concentrations of some postulated chemical substance might account for
the phenomenon.®” In their schemes, the cell (or its enzymes) was constantly processing

chemical substances so that the different concentrations changed in a complex way—

82 C. H. Waddington, "Theoretical Biology and Molecular Biology," Theoretical Biology,
1, 104.

83 C. H. Waddington, The Strategy of the Genes, 10.

3 C. H. Waddington, "Theoretical Biology and Molecular Biology," Theoretical Biology,
1, 103.

85 C. H. Waddington, The Evolution of an Evolutionist, quoted in A. Robertson, "C. H.
Waddington," 599.

86 C. H. Waddington, Organisers and Genes, 132.

87 See "Correspondence Between Waddington and Thom,"” Theoretical Biology, 1, 166-
179.
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given by coupled, nonlinear equations. In a biological system, a flux equilibrium was
eventually reached, that is, concentrations remained stable even thou gh chemical
substances always flowed through the cell. Waddington and Delbriick considered that
there were several stable regimes that the system could achieve. The classification of
these stable regimes became, in Thom's scheme, the description of the morphologies of
the system. Hence one of his most innovative ideas: fo consider a system, even physical
ones, in terms of the different end points it can achieve, which he translated as a study of
forms in nature. It expressed in a mathematical langnage adapted to the physical sciences
the concept of finality in biology.

Thom called these different stable regimes of the system, atfractors. They were
region of the configuration space that were stable under the dynamical equations of the
system—i.e. once you are in this region, you cannot get out—and such that any
configuration close enough to an attractor would approach it asymptotically. The basin of
the attractor was a region containing the attractor inside of which any initial condition
fell back to it. Of course, Thom was well aware that to achieve a complete topological
description of attractors and basins of a general system would be a difﬂcult, but
imaginable, task.

In the case of a local system, where, e, g., the concentration of chemical substances
was given at each point of space and time, the attractors could well differ from point to
point. Thus the domain of space that was under study—e.g., the cell—was divided in
several regions associated with different attractors. These regions were separated by

surfaces that Thom called "shock waves." Using Thom's theorem, he could establish that
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in the case of gradient dynamics, these separating surfaces could only present a small
number of singularities, which were elementary catastrophes.

He thus introduced the following global scheme. Starting with a local singular
situation in a dynamical system, he could say that ulterior catastrophes were contained in
the "universal catastrophe space” associated with the singularity. For example, if one
started with a local critical cusp situation, the only other catastrophes that could occur
later in time were folds. Of course, all of this was local in a topological sense: it meant
that, between the cusp and some finite limit in time, only folds could be encountered. But
there was no way of knowing how large this limit was; it could be as small as one wishes
as long as not zero. It could even be impossible to detect; hence Thom’s reluctance to
accept that catastrophe theory could be submitted to experimental control (see below).

In his theory, Thom saw "a mathematical justification for the idea of ’epigenetic
landscape’, suggested 20 years ago by Waddington."$8 This was not a mere gesture; the
ideas of attractors and of conflict between attractors had been almost word for word
described by the biologist .

[1] At each step [of development] there are several genes acting, and the actual

development which occurs is the result of a balance between opposing gene-

instigated tendencies. [2] At certain stages in the development of an organ, the

system is in a more than usually unstable condition, and the slightest disturbances
at such times may produce large effects on later events. . . . [3] An organ or tissue
is formed by a sequence of changes which can be called the ‘epigenetic paths”. . ..

And also each path is 'canalized,” or protected by threshold reactions so that if the

development is mildly disturbed it nevertheless tends to regulate back to the
normal end-result.3®

88 R. Thom, "Une théorie dynamique," 158; transl. in MMM, 19.
¥ C.H. Waddington, Organisers and Genes, quoted in A. Robertson, "Waddington," 593.
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Although he hardly knew enough mathematics, Waddington agreed with Thom:.
He claimed that Thom had "shown how such ideas as chreods, the epigenetic landscape,
switching points, etc.,—which previously were expressed only in the unsophisticated
language of biology—can be formulated more adequately."® Both Thom and
Waddington clearly saw the advantages of having each other's theories reinforcing their
own.

Thom not only proposed models for cell differentiation, but also for
morphogenesis, hence the title of his book, and other biological processes (regulation,
reproduction, predation, etc.).”! In all of these cases, changes in the shape of an embryo,
or some of its parts, were interpreted as arising from elementary catastrophes. Since all of
his models were fairly undeveloped, and apparently ad hoc, their usefulness could be
questioned. Moreover, Thom seemed to indulge in teleology, an accusation that he did not
reject.

But, [ hope to have shown the following: even if you allow yourself all of the

facilities of teleological thinking, you are still very far from explaining

development. For embryology is full of enigmatic structures, of transient
morphologies, which do not seem to have the slightest usefulness.

Catastrophe theory provided an explanation of these structures, by describing,

independently of DNA, "the basic and universal constraints of stability imposed on

#0 C. H. Waddington, "Foreword," SSM, xxi. My emphasis. See also his "The theory of
Evolution,” 367.

91 R. Thom, SSM, ch. 9-11, 161-279; R. Thom, "Topological Models in Biology," in
Theoretical Biology, 3 (1970): 89-116; also in Topology, 8 (1969): 313-335; R. Thom, "A
Global Dynamical Scheme for Vertebrate Embryology," Lectures on Mathematics in the
Life Sciences, 5 (1973), Mathematical Questions in Biology IV: Proceedings of the Sixth
Symposium on Mathematical Biology [December 1971]: 1-45.
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epigenetic mechanisms."®> Thom therefore never answered the question that prompted
Waddington in imagining epigenetic landscapes and chreods, that is, the link between
development and genetics. Contentious, Thom went on: "only a mathematician, a
topologist, could have written [this article], and the time may be very near when, even in
biology, it might be necessary to think."?3
It is striking to contrasts Thom’s writing on biology with another famous French
scientist whose work would in the early 1970s reach a broad audience, namely molecular
biologist and Nobel-Prize winner Jacques Monod. A chapter of Chance and Necessity,
first published in 1970, was devoted to the problem of spontaneous morphogenesis of
living organisms. But the picture Monod presented was almost totally opposed to Thom’s.
Indeed Monod explained his aims as such:
In this chapter I wish to show that this process of spontaneous and autonomous
morphogenesis rests, at bottom, upon the stereospecific recognition properties of
proteins; that is primarily a microscopic process before manifesting itself in
macroscopic structures. . . . But we must hasten to say that this "reduction to the
microscopic” of morphogenetic phenomena does not yet constitute a working
theory of phenomena. Rather, it simply set forth the principle in whose terms such
a theory would have to be formulated if it were to aspire to anything better than
simple phenomenological description.?*

As opposed to Thom’s reduction of morphogenetic processes to a certain

mathematical idealism, Monod argued for the "principle” of reducing them to molecular

92 R. Thom, "A Global Scheme," 44.

93 R. Thom, "A Global Scheme," 44.

%4 J. Monod, Chance and Necessity (New York: Knopf, 1971), 81 and 88. My emphasis.
On Monod's work in molecular biology, see A. Creager and J.-P. Gaudilliére, "Meaning
in Search of Experiments and Vice-Versa: The Invention of Allosteric Regulation in Paris
and Berkeley, 1959-1968." Historical Studies in the Physical and Biological Sciences, 27
(1996): 1-90.
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interaction. As the quote above indicates, this was nothing more than a "principle," and
certainly not a full theory. But Monod put a great deal of faith in this principle. "

I for my part remain convinced that only the shape-recognizing and stereospecific
binding properties of proteins will in the end provide the key to these
[morphogenetic] phenomena. . . . In a sense, a very real sense, it is at the level of
chemical organization that the secret of life lies, if indeed there is any one such
secret.®

Emphasizing the molecular and chemical properties of the substratum, the forces
acting between organic macromolecules, and quantitative studies of them, Monod’s
discourse strikingly sound as an anti-Thom one, or conversely, Thom’s as an anti-Monod
diatribe.®¢ Just as uncompromising, René Thom emphasized that no theoretical
explanation was conceivable in biology without the aid of mathematics.

In such a view of scientific explanation, there should not exist other theorization

than mathematical; concepts used in each discipline, not susceptible of gathering a

consensus around their use (let us think, for example, of the concept of

information in Biology), should be progressively eliminated after having fulfilled
their heuristic function. In this view of science, only the mathematician, who
knows how to characterize and generate stable forms in the long term, has the

right to use (mathematical) concepts; only ke, at bottom, has the right to be
intelligent.9?

In this context, one is hardly surprised by the fact that Thom's theory had, in the
long rum, little impact on biology.”® However, his forays into embryology provided Thom

with crucial intuition about ways to study dynamical systems with finality. In no small

95 J. Monod, Chance and Necessity, 89 and 95.

% Note, however, that neither Thom nor Monod mentioned the work of the other in their
writings. Indeed, Monod wished to counter vague approaches based on "general systems
theory." Chance and Necessity, 80.

97 R. Thom, "D'un modeéle de la science a une science des modeles," Synthése (1975):
359-374.

“8 See F. Gail, Frangoise, "De la résistance des biologistes 2 Ia théorie des catastrophes,”
Logos et théorie des catastrophes, ed. J. Petitot (Geneva: Patifio, 1988): 269-279. One
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sense, his introduction of the concepts of attractor, and the even more important concept
of the basin of an attractor, can be seen as stemming from his involvement in biology. I
shall come back to these issues in Chapter VI and VII, and show the ways in which these

two concepts and the practices of their use were adapted to the study of physical systems.

5. TOPOLOGY AND MEANING

Having pointed out the relevance of topological concepts and practices for the modeling
of biological phenomena, René Thom saw no reason to stop there. He himself proposed
catastrophic models for the physics of phase transitions and geology.%? Since the early
1970s, however, his main fields of research, besides philosophy, have been linguistics and
semiotics. His evolution through these fields is the easiest to follow since the last chapters
of $5M, devoted to them, kept changing from his 1966 manuscript to the 1977 French
edition. A sequence of articles also shows his progression.

With his incursion into the human sciences, Thom was bound to confront
structuralism. Never himself a structuralist per se, Thom was attracted by this movement.
With some adjustments, his theories could be made to fit into structuralist modes of
thought. But, since he began to work on linguistics so late, catastrophe theory was only
mildly affected by structuralism in practice. In those years, however, increasingly faced
with a strong opposition to his ideas about modeling, Thom also began to ponder the

epistemological foundations of catastrophe theory, as well as the philosophy of science in

may note the more ambivalent position defended by Frangois Jacob, "Le modéle
linguistique en biclogie,” Critique, 30(322) (1974): 197-205.

9 R. Thom, "Phase Transitions as Catastrophes," in Statistical Mechanics: New Concepts,
New Problems, New Applications, ed. by S. A. Rice et al. (Chicago: University of
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general. In his attempts at articulating the kind of knowledge that his theory was

producing, Thom made the clearest usage of structuralist resources.

a) Man and Catastrophes

In his manuseript of SSM, Thom’s chapter 13 is called "L'homme." It would be published
with some substantial additions under the title "From Catastrophes to Archetypes:
Thought and Language.” The original chapter aimed at extending the techniques and
assumptions of catastrophic niodels of morphogenesis to human thought processes and
societies. He actually developed few of the models he suggested. Always a mathematical
terrorist, Thom used mathematical notations and language only to express vague
correspondences among neurological states, thoughts, and language.

His basic assumption was that there existed a few "functional chreods," later to
renamed "archetypal chreods,” which expressed simple biological actions: to throw a
projectile, to capture something, to reproduce, etc. These chreods had been internalized in
the human brain, whose mental activity (aczivité psychique) was identified with a
dynamical system. By analogy with the epigenetic landscape, Thom postulated that this
psychological system was divided among basins and attractors, the most imﬁortant being
stable chreods isomorphic to external ones, the latter playing a role in biology. “The
sequence of our thoughts and our acts is a sequence of attractors, which succeed each

other in ‘catastrophes’."100

Chicago Press, 1972): 93-107; R. Thom, "Tectonique des plaques et théorie des
catastrophes,"” Astérisque, 59/60 (1978), 205.
100 R. Thom, manuscript for SSM, sect. 13.3.C.
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Thom then claimed that Janguage translated the mental attractors of our brain.
There was a mental atlas of dynamic chreods that existed and was common to all human
beings, and even to animals. An idea was expressed as a mental attractor. When one
wished to formulate a sentence expressing an idea, it was mathematically projected onto a
space of admissible sentences, where several attractors competed. One was eventually
chosen, and the sentence was uttered. All of this was manifestly vague and programmatic.
Thom needed to elaborate his ideas. He would do so after his encour;ter with
structuralism. Conversely, he drew on structuralist thought to articulate the

accomplishment of catastrophe theory and his own epistemology.

b) Language and Catastrophe

In the Parisian intellectual climate of the late 1960s, René Thom had to encounter
structuralism, especially since he was thinking about the catastrophes of human
languages. As early as 1968, he noted that "the problem of meaning has returned to the
forefront of philosophical inquiry."1%! Since he saw this quest as one of Heraclitus's, this
return of the sign pleased him. Nevertheless, semiotics was first introduced in Thom's
work, not as a quest in itself, but as a method for biology. He had of course come upon
the Saussurian notions of signified and signifier. In the context of his biological concerns,
Thom considered them as congenial to the goals of epigenetics, which were to find the
connections between genetics and embryology. "Is not such a discipline which tries to

specify the connection between a global dynamic situation [the organism] (the 'signified"),

10t R. Thom, "Topologie et signification," L'Age de la science, 4 (1968); repr. in MMM,
166-191. '
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cat—=ya—ta
eat substance
Ut =N

o+ substance

RF—Ne—cr

e substance

claret vermilion cinnabar wild

Fig. 7. The formation of ‘eye colours in Drosophila. The pigment-forming
process normally runs down the line through the cat substance, the o+
substance, and the ca* substance, to give wild type pigment. The genes, ca,
v and ¢n interrupt.this sequence, so that the process takes an altered course,

to give claret, vermilion or cinnabar pigmentation.

Figure 5: Waddington’s Switching Diagram. Repr. with permission from C. H.
Waddington, Organisers and Genes (Cambridge, 1940), 77. Copyright ©

Cambridge University Press.

and the local morphology in which it appears [DNA] (the ‘signifier?), precisely a
semiology’?"192 He expressed his whole method for catastrophe theory as a problem of
semantics. "The decomposition of a morphological process taking place in R™ can be
considered as a kind of generalized m-dimensional language; I'propose to call it a
semantic model’."1%% He would later push this intuition further, but first, he noticed the

analogy between the theoretical tools of structural syntax and epigenetics.

102 R. Thom, "Topologie et signification," MMM, 169.
103 R. Thom, "Topological Models in Biology,” 103.
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In 1970, René Thom presented a more sophisticated catastrophe-theoretical model
of language.1™ His goal was to explain the syntactical structure of atomic sentences
{basically, with one verb), in terms of their meaning. He was struck by the resemblance
between the tree-shaped graphs that I.. Tesnigre used to analyze the structure of
sentences, and Waddington's chreods (Fig. 5 and 6).105 If indeed you strip the epigenetic
landscape of the out-of-equilibrium position, you get a switching diagram, looking like a
tree. In Tesni¢re's view verbs were sentences' centers of gravity. They became, in Thom's
view, the catastrophic attractors of cerebral activities, words being chreods. He developed
a visual representation of the verbs associated with spatio-temporal activities by using
sections of elementary catastrophe surfaces. This was, he would say 20 years later, a
"geometrization of thought and linguistic activities."106 The main benefit of such an
analysis was to establish a map from signified to signifier, which went against the
Saussurian "dogma” about the arbitrariness of the sign. Classifying syntactical structures
into 16 categories, Thom claimed that "The topological type of the interaction determines
the syntactical structure of the sentence which describes it,"107 Meaning and structure

were no longuer independent.

104 R. Thom, "Topologic et linguistique,” Essays on Topology and Related Topics
(Dedicated to G. de Rham), ed. by A. Heafliger and R. Narasimhan (Berlin: Springer,
1970): 148-177; repr. MMM, 192-213.

105 1, Tesnidre, Elements de syntaxe structurale (Paris: Klincksieck, 1965).

106 R. Thom, Semiophysics: A Sketch, transl. Vendla Meyer (Redwood City: Addison-
Wesley, 1966), viii.

107 R. Thom, "Topologie et linguistique,” MMM, 197. See a figure of his 16 archetypal
types in SSM, 307.
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;’4/ A N
Ectoderm Mesoderm Endoderm The cat ate- the mouse

Figure 6: Thom's Analogy Between Graphs of Sentences and Development.
Repr. with Permission from R. Thom, "Structuralism and Biology," Towards a
Theoretical Biology, 4, ed. C. H. Waddington, 80. Copyright © University of
Edinburgh Press.

Thom’s theory of sentence construction went beyond common structuralist
algebraic ideas. Against Chomsky, he noted that "of all the actantial schemes predicted by
algebraic theory, only certain of them are realised in biological morphology, or in the
syntax of a simple sentence.” He thus asked: "In the light of what criteria is that ‘choice’
made?"1% Simply, structures of sentences reflected the éhreods of thoughts, themselves
modeled on biological ones. They were dictated by Thom’s itlealistic exploitation of

mathematics.109

108 R. Thom, "Topologie et signification,” MMM, 183.

109 In Chapter VI, I describe in more details the modeling practice actually adopted by
Thom in linguistics, and contrast it with that of other topologists, close to him, who used
topology to model natural phenomena.
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c) Stracturalism and Biology

As we saw in Chapter II, Thom confronted structuralism head on in 1972: "Can
structuralist developments in anthropological sciences (such as linguistics, ethnology, and
so on) have a bearing on the methodology of biology? 1 believe this is s0."1'0 He indeed
had a particular vision of what structuralism was—a view singularly reminiscent of his
own modeling practice.
The task of any structuralist theory is: (1) to form a finite lexicon of elementary
chreods; (2) to build experimentally the ‘corpus' of the empirical morphology
[stable aggregations of frequent elementary chreod]; (3) to define ‘conditional
chreods’, objects of the theory; (4) to describe the internal structure of a

conditional (or elementary) chreod by associating a mathematical object to it,
whose internal structure is isomorphic to the structure of the chreod. 1!

In Thom's view, his morphogenetic theories and structuralism reinforced each
other. Molecular biologists were prone to interpret the living order in terms of the DNA
code. For Thom, this was wrong-headed, because if indeed biology could be seen as a
semantic model, it was a dynamical, multi-dimensional one. Language was a semantic
model of dimension one: how could spatial processes of biology be described by it?112

In contact with the knowledge produced by structuralist linguistics, which was
loudly defending its scientific character, Thom extracted a philosophy of science that
would be up to the task of making sense of the knowledge his approach had produced,

and not only in the human sciences. Henceforth, Thom would point at two approaches to

18 R, Thom, "Structuralism and Biology," Towards a Theoretical Biology, 4 (1972): 68-
82, 68; transl. in first French ed. of Modéles mathématiques de la morphogenése (1974),
but absent from later eds.

1 R, Thom, "Structuralism and Biology," 70.

11Z About a contemporary attempt at articulating a multidimensional structuralism, see a
book by one of Thom’s followers, P. Scheurer, Révolutions de la science et permanence
du réel (Paris: PUF, 1979).
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scientific knowledge that were susceptible of providing explanations for the phenomena
of the world: the reductionist approach, and the structural one.!13 Following a principle of
economy in science, both approaches aimed at simplifying the description of empirically
observed morphologies, or natural phenomena. But the structuralist approach refused to
do so by attributing causal effects to factors that were external to the empirical field. The
only admissible causality was structural,

Thom had obviously modeled his "structural approach” on the lingunists’ claims to
knowledge production. He viewed some human sciences as successful at building a
nonreductionist theortes, especially, formal linguistics and I.évi-Strauss's structural
analysis of myths. They held a "paradigmatic value: they show the way in which a purely
structural, morphological analysis of a empirical data can be engaged."!14 It would indeed
be absurd, Thom contended following Lévi-Strauss, to base linguistics on reductionist
assumptions. "It would consist in an attempt at explaining the syntactical structure of a
sentence of words by an interaction of phonemes of a phonologic character."!15

‘Thom could now articulate his own interpretation of the kind of knowledge

produced by catastrophe theory. An explanation, he said, was "any theoretical process

113 Thom calls this second approach: "l'approche structurale.”" We must note a difference
between French qualifiers: structurel (as in 'stabilité structurelle': simply the translation
of an English phrase) refers to actual structures, while structural refers to structures as
syntax, susceptible to be realized in several instances of actual structures. See J.-M.
Auzias, Clefs pour le structuralisme (Paris: Seghers, 1967), 18.

114 R, Thom, " La science malgré tout...," Encyclopaedia universalis, 17, Organum
(1975), 6.

115 R, Thom, "La linguistique, discipline morphologique exemplaire," Critigue, 30(322)
{(March 1974): 235-245., 239.
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whose result is to lessen the arbitrariness of description."!16 In practice, knowledge
produced by catastrophe theory should be more economical than a simple description of
facts. Like Piaget, Thom saw a serious epistemological problem in structufalism, namely
that it could not account for the emergence of its structures, because, historically,
structuralist linguistics was synchronic, i.e. static in time. But, Thom believed that
nothing prevented linguists of concetving time as another dimension of space-time: "we
can make a structural theory of the changes of forms, considered as a morphology on the
product space of the substrate space by the time axis."’17 Indeed, catastrophe theory
provided a way for building a dynamic structuralism, which would explain the emergence
of structure. Like he had done with Bourbakism, Thom used structuralist practices in

order to undermine the very project of structuralism.

6. SHAPES, LOGOI, AND CATASTROPHES: THOM'S THEORY OF
MODELING PRACTICE

The above have shown how Thom constructed a modeling practice which, roughly
speaking, used topologically-informed means of transformation, biologically-inspired raw
materials that he adapted to mathematical practice, and structuralist interpretations of the
kind of knowledge produced by catastrophe theory. From the first version of SSM in 1966
to his publication of philosophical articles intended for a wide array of audiences, Thom
also worked at what can best be termed as a theory of modeling practice. In the following,

I shall describe its general gist and its philosophical undertones.

16 R. Thom, "Roéle et limites de la mathématisation en sciences," in La Pensée (October
1977): 36-42.
17 R. Thom, "La linguistique," 240.
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(i) Nonreductionism

René Thom was among those who loudly contested the success of reductionist science.
That science in the twentieth century had been mainly a reductionist enterprise was a
commonplace. In their efforts to understand the world—or, more precisely, pursuing the
Laplacian dream, to predict its future course—scientists have followed Jean Perrin's ideal:
"to explain complex visible things with the help of simple invisible things."''® Thom
contended that this approach was far from having lived up to its promises. "The Universe
is nothing more than a brew of electrons, protons, [and] photons,” he wrote. "How can
this brew settle down, on our scale, into a relatively stable and coherent form far from the
quantum-mechanistic chaos?"!!° In raising this question, Thom was engaging the old
debate of materialism vs. vitalism, mechanism vs. teleology, and more recently,
reductionism vs. holism.120

For Thom, physicists overreached themselves when they claimed to be able to
explain the everyday world. "Realization of the ancient dream of the atomist—to
reconstruct the universe and all its properties in one theory of combinations of elementary
particles and their interactions—has scarcely been started.” Thom adamantly opposed
dogmatic reductionism:

this primitive and almost cannibalistic delusion about knowledge, [which
demands] that an understanding of something requires first that we dismantle it,

118 "Expliquer du visible compliqué par de 1'invisible simple." I. Perrin, Les Afomes
(Paris: Félix Alcan, 1913), Introduction.

H19 R. Thom, "Topologie et signification,” MMM, 174.

120 For the telelogy/mechanistic debate in 19th-century Germany, see T. Lenoir, The
Strategy of Life: Teleology and Mechanics in Nineteenth Century German Biology
(Dordrecht: D. Reidel, 1982).
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like a child who pulls a watch to pieces and spreads out the wheels in order to
understand the mechanism.!2!

But he did not altogether reject it. Reductionism was a valid approach to knowledge, but
an imperfect one, which was unachievable at the practical level. The only place it worked,
Thom claimed, was in the example of a perfect gas. In this case, however, "there is no

morphology."122

(if) Forms
René Thom's theory of modeling practice was indeed grounded on a study of
morphology. "Reality presents itself to us as phenomena and shapes."123 His program was
to make the morphologies of our day-to-day reality the object of a dynamical science of
shapes. In a given domain of experience, his modeling practice could be summarized as
such: find out the shapes that are usually encountered; establish a list of these shapes,
according to their topologic character; and find the undertying dynamics that governs
their emergence and destruction.!24

Thom took his cue from British biologist D'Arcy Wentworth Thompson, who had
recognized the morphological problems arising in the physical sciences. Thompson
confidently believed that physics was—roughly—up to the task of explaining these

morphologies.

121 R. Thom, SSM, 159.

122 R. Thom, MMM (1974 ed.), 23. Absent from later editions. More details in R. Thom,
"Structuralism and Biology," Towards a Theoretical Biology, 4 (1972): 68-82; 73.

123 R. Thom, MMM (1974 ed.), 9. Absent from later editions.

124 Note that there is nothing absolute about the relation between the study of forms and
nonreductionism. See the following historical study who focuses on the scientists'
struggles to find molecular accounts of crystal shapes: N. E. Emerton, The Scientific
Reinterpretation of Form (Ithaca: Cornell University Press, 1984).
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The waves of the sea, the little ripples on the shore, the sweeping curve of the
sandy bay between the headlands, the outline of the hill, the shape of the clouds,
all these are so many riddles of form, so many problems of morphology, and all of
them the physicist can more or less easily read and adequately solve. 125

Listing similar natural shapes, René Thom disagreed that traditional physics could do it:
Many phenomena of common experience, in themselves trivial (often to the point
that they escape attention altogether!} — for example, the cracks in an old wall, the
shape of a cloud, the path of a falling leaf, or the froth on a pint of beer — are very
difficult to formalize, but is it not possible that a mathematical theory launched for

such homely phenomena might, in the end, be more profitable for science [than
large particle accelerators] 7126

Catastrophe theory, from the beginning, was thus an attempt at formalizing in
rigorous mathematical language the dynamics of forms. And in Structural Stability, the
first seven chapters gave an outline of a general theory of morphology, which would be

applicable to all problems of shape.

(iii)  The Mundane

It is one thing to focus on forms, it is quite another to focus on the specific ones listed
above. But just as Thom questioned the pertinence, to the everyday world, of explanations
in terms of electrons, he also noticed that science was quite unable to account for "the

froth on a pint of beer,” and many such things with which we are, paradoxically, so

125 D. W. Thompson, On Growth and Form (Cambridge University Press, 1948 [1916]),
10; my emphasis. Note that Thom placed this quotation in front of his Introduction in
SSM, 1. But he dropped the last part where Thompson so confidently asserts the success
of physics.

126 Thom, SSM, 9. The allusion to particle accelerators was added for the second French
edition of Stabilité structurelle et morphogénése (Paris: InterEdition, 1977), 10. See
Chapter 1T above.
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familiar. French mathematician Benoit Mandelbrot, the inventor of the notion of fractals,
shared this concern. "Clouds are not spheres, mountains are not cones," etc.127

If Mandelbrot saw himself as a new Euclid, Thom thought that he was picking up
a broken line of thought just where Heraclitus had left it. Around 500 BC, Greek
philosopher Heraclitus already noticed the difference between knowledge and
understanding. "Many people do not understand the sorts of things they encounter! Nor
do they recognize them even after they have had experience of them, though they
themselves think [so0]."128 In Heraclitus's fragments, Thom indeed found some inspiration
for his own philosophy. When christening some of his elementary catastrophes
swallowtail, or butterfly, Thom applied Heraclitus's precept to figures impossible to

visualize in three-dimensional space.12®

(iv)  The Logos
Once the problem is posed as such: find a scientific description of natural forms, even
though they arise from just a "brew of electrons,” the next pressing question is about the
stability of such forms af our scale. Returning to his quarrel with reductionist physics,
Thom noticed that "although certain physicists maintain that the order of our world is the
inescapable consequence of elementary disorder, they are still far from being able to

furnish us with a satisfactory explanation of the stability of common objects and their

127 B. B. Mandelbrot, "Towards a Second Stage of Indeterminism in Science,”
Interdisciplinary Science Review 12 (1987): 117-127,117. See Chapter 11.

128 Heraclitus, Fragments, transl. T. M. Robinson (University of Toronto Press, 1987), 19,
fragment 17.

122 "Whatsoever things are objects of sight, hearing, and experience, these things I hold in
higher esteem.” Heraclitus, Fragments, 39, fragment 55.
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qualitative properties."!30 In other words, the physicists are not able to understand the
morphologies of the world in terms of atoms.
For Thom, the explanation lay in an ideal mathematical structure.
The stability of a form rests definitively upon a structure of algebraic-geometric
character . . . endowed with the property of structural stability with respect to the

incessant perturbations affecting it. It is this algebraic-geometric entity that [
propose, recalling Heraclitus, to call the logos of the form.13!

For Heraclitus, the A0y0¢ was the "true discourse according to which everything
happens. It was the truth of this world."132 Thom attributed a logos to each form: it was "a
formal structure which insures its unity and stability.” One may note here that he was
indeed applying Jean Perrin’s precept, except that Thom’s "simple invisible things" were
mathematical structures as opposed to atoms. For all his structuralist talk, Thom’s
philosophy is well captured by the term "neoreductionism” with which Giorgio Israel
characterized von Neumann’s approach. 133

Thom soon felt that he had to emphasize that he studied morphology without
regard to the substrate. In his manuscript, written in 1966, he had made no mention of
this.13* Coming from a topology background, he believed in the universal relevance of his
mathematics. But after having presented his theory to an audience of biologists, he

underscored its autonomy from specific material bases.

130 R. Thom, "Topologie et signification," MMM, 174.

BBLR. Thom, "Topologie et signification," MMM, 174-175.

132 M. Conche, in Heraclitus, F. ragments (Paris: Presses Universitaires de France, 1986),
65.

133 G. Isreal, La Mathématisation du réel (Paris: Seuil, 1996), 198.

134 R. Thom, SSM, manuscript, Fine Library, Princeton University, 13-14, and compare
with SSM, 8-10.
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The essence of our theory, which is that a certain knowledge of the properties
peculiar to the substrates of the forms, or the nature of the forces at work, may
seem difficult to accept, especially on the part of experimenters.135

Again, Thom placed himself as heir to ID’Arcy Thompson, who, "in some pages of
rare insight, compared the form of a jellyfish to that of the diffusion of a drop of ink in
water."136 The only thing that Thompson lacked, Thom contended, was a formal
foundation in topology, which, with the abstract structure of the logos, provided the basis
for an explanation of morphogenesis without relying on material properties. Mathematics
was the only external element that was called upon. The lesson was that there were other
methods of knowing than pure materialist pursuit. Thus, if there was an idealistic trend in
Thom’s thought, it lay in a Platonic belief, common among mathematicians, in the
existence of mathematical objects. "The hypothesis that Platonic ideas give shape to the
universe,” he wrote in 1970, "is the most natural and, philosophically, the most

economical."137

(v) The Qualitative
There was a backdrop to this all-encompassing vision. Based on topology, which
abandoned all reliance on geometric measure, Thom’s method was not suited to numerical
analysis, to measurement. It had to remain qualitative, and not quantitative. Traditionally,
this was a serious problem for a theory. Thomas Kuhn wrote in 1969: for a scientist

"probably [one of] the most deeply held values concern predictions; . . . quantitative

135 R. Thom, "Une théorie dynamique,” 153; MMM, 14.
136 R. Thom, SSM, 9. D. W. Thompson, On Growth and Form, 72-73 (1961 ed.).
137 R, Thom, "Modern Mathematics," 697.
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predictions are preferable to qualitative ones."!38 On this respect, he concurred with Lord
Kelvin’s authoritative pronouncement:
Where you can measure what you are speaking about and express it in numbers,
you know something about it, and when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meagre and unsatisfactory kind. It

may be the beginning of knowledge, but you scarcely in your thought advanced to
the stage of science.139

René Thom nonetheless saw the qualitative aspect of catastrophe theory in a
positive light. He thought that those who really wanted to understand the world had to rid
themselves of "the intolerant view of dogmatic quantitative science."40 By recalling
Rutherford's dictate—"Qualitative is nothing but poor quantitative!"14l—Thom wished to
show the common prejudice against qualitative theories. But, "what condemns these
speculative theories in our eyes," he wrote, "is not their qualitative character but the
relentlessly naive form of, and the lack of precision in, the ideas they use." Now, he
claimed, everything had changed since he could "present qualitative results in a rigorous
way, thanks to recent progress in topology and differential analysis, for we know how to

define a form."'%2 Catastrophe theory was the rigorous way to think about quality. -

(vi}  The Intelligibley

Intelligibility of the world was the benefit, and the ultimate goal, of René Thom's

approach. Always contentious, he wrote: "One of the causes for the stagnation of science

138 T, S. Kuhn, "Postscript — 1969," The Structure of Scientific Revolutions, 2nd ed.
{(Chicago: Chicago University Press, 1970), 185.

139 Quoted in S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (New
York: Interscience, 1965), ix.

4R, Thom, SSM, 159

14t R. Thom, SSM, 4, for example.

192 Ihid, 159
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is that science has basically forgotten its primary vocation, . . . which was to make us
understand reality."143 He defended Descartes against Newton.
Descartes, with his vortices, his hooked atoms, and the like, explained everything

and calculated nothing; Newton, with the inverse square law of gravitation,
calculated everything and explained nothing.144

Again and again, Thom opposed explanation to prediction, intelligibility to
control, understanding to action. But it is rarely clear exactly what he means by
explanation. Ultimately, he believed that a theory would be totally intelligible when the
theory itself would be able to decide on its own validity: "a theory of meaning whose
nature was such that the act itself of knowing is a consequence of the theory."145 While
Thom never claimed that catastrophe theory could live up to this feat, he nevertheless

thought that it made the world more intelligible.

(vii) Hermeneutics

Thom often insisted that catastrophe theory was not a proper scientific theory. It was a
language, a method. Nowhere was this more evident than when he confronted the delicate
question of experimental control. He always admitted that an experiment that would
falsify, or for that matter confirm, his theories was in principle impossible.!46 This

problem was inherent to the qualitative nature of catastrophe theory. His theory could

143 R. Thom, " La science malgré tout...," Encyclopaedia universalis, vol. 17, Organum
(1975), 6.

144 R. Thom, SSM, 5.

145 R. Thom, "Topologie et signification," MMM, 170. Italics in the original text.

146 See his later debate with Abragam at the Académie des science apropos the
experimental method, R. Thom, "La méthodologie expérimentale: un mythe des
épistémologues (et des savants?),” CRAS. Série générale: la vie des sciences, 2(1) (1985):
60-68; repr. La Philosophie des sciences aujourd'hui, ed. J. Hamburger (Paris: Gauthier-
Villars, 1986).
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eventually provide the basis for the elaboration of a quantitative model, and as such,
susceptible of experimental control. But in general, the mathematics needed to do so was
not yet invented. And even if it were possible to analyze mathematically the dynamical
processes that insured the stability of a form, "this analysis is often arbitrary; it often leads
to several models between which we can only choose for reasons of economy or
mathematical elegance"147

But, once again, according to Thom, this serious drawback was not fatal. He
indeed saw at least two reasons to justify scientists’ interest in his theory. First,
catastrophe theory, as a language for science, questioned the traditional "qualitative
carving out of reality . . . into the big disciplines: Physics, Chemistry, Biology."!48 The
theory would integrate this taxonomy of experience into "an abstract general theory,
rather than blindly acceptfing] it as an irreducible fact of reality."'# Second, as a theory
of modeling practice, catastrophe theory would substitute itself to the "lucky guess" that
had hitherto based all model construction in science. "The ultimate aim of science is not
to amass undifferéntiated empirical data,” he wrote, "but to organise this data in a more or
less formalised structure, which subsumes and explains it."!3¢ On the path towards a
"General Theory of Models," catastrophe theory showed the way of the future.

As a Theory of modeling practice, catastrophe theory therefore was a radical

departure from prior views on model-building. To use his theory in constructing a

147 R. Thom, "Une théorie dynamique,” MMM, 21.

148 Le "découpage qualitatif de la réalité . . . en grandes disciplines: Physique, Chimie,
Biologie." R. Thom, SSM (1972), 323. The English translation of SSM, 322, misses
Thom's point here.

19 R. Thom, SSM, 322.

130 R. Thom, "Une théorie dynamique,” MMM, 22,
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scientific model meant, for Thom, to start with shapes, forms, and morphologies as they
appear,.to identify their topological features, and forbid oneself all unnecessary reliance
on substrate and forces. It also meant to adopt sophisticated mathematical methods to
develop an intelligible, qualitative model of the phenomena in question. Lastly, and
perhaps more importantly, it meant to abandon all previous notions of quantitative
knowledge, and embrace the idea that knowledge of the world could be gained by a
qualitative description. We shall see in Chapter VI how these ideas were actualized by

Thom and scientists close to him.

7. CONCLUSION

With catastrophe theory, René Thom believed that he was breaking away from centuries
of reductionist thinking. He developed models for biology, linguistics, and semiotics
displaying his vision of a holistic science. He introduced a new modeling practice and
tried to codify its epistemological rules. Based on his mathematical experience,
catastrophe theory used topology as a resource for grasping a world of qualities and
shapes. Embryology suggested to him a new starfing point for theory, namely the ends of
a dynamic process: its morphology. Thom never argued for the intrinsic superiority of his
method, but rather for its greater capabilities at explaining the world as we perceived it.
The models produced by catastrophe theory were not supposed to reflect the world as it
is, but to explain its structure in the most economical way, which Thom believed was the
accomplishment of structuralism. Catastrophe theory provided "schemes of intelligibility.

And this seems quite valuable to me,"151

U R. Thom, Prédire n'est pas expliguer, 45-46.



David Aubin III — Catastrophes 170.

In developing catastrophe theory, Thom introduced important mathematical
concepts and attempted to extend them beyond their rigorous limits. In doing so, his
speculations were often rejected by mathematical communities. His insistence on denying
the possibility of experimentation was met with suspicion by practicing biologists.152
Finally, it was the non-genericity of structural stability for non-gradient systems which
discredited the general ambitions of catastrophe theory. As for elementary catastrophe
theory applied to the physical sciences, it did not seem to explain anything that was not
already known.

Thom’s program was however richer than just concepts, models, theorems and
theories. His modeling practice presented some appealing aspects that would be taken up
by chaologists’. Using Thom’s concept of attractors and his geometric vision of
dynamical systems, David Ruelle and Floris Takens showed in 1971 that the attractor that
.was usually assumed for turbulence was not structurally stable, and thus introduced the
notion of strange attractor, which would found chaos theory.!33 But, contrary to Thom'’s
philosophy, their prediction was successfully submitted to the verdict of experiments, in
the laboratory and on the computer. This would make the difference. I deal with these
issues in Chapters VII and VIII below,

However, in order to grasp Thom’s modeling practices, one needs to go beyond
the level of his own discourse. Clearly, one should look in more detail at the structure and

culture of the IHES, which made the encounter between Thom and Ruelle possible. In the

132 See F. Gail, Francoise, "De la résistance."

133 D. Ruelle and F. Takens, "On the Nature of Turbulence," Communication in
Mathematical Physics, 20 (1971): 167-192; and their "Note" in Ibid., 23 (1971): 343-344;
repr. Chaos IT, 120-147; TSAC, 57-84.
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following chapter, we shall see that the IHES was quite an idiosyncratic institution, which
played a definite role in creating conditions propitious for Thom to develop his
catastrophe theory of modeling practices, allowed his frequent interactions with other
topologists working on qualitative dynamics, most notably Steve Smale, and set the stage
for the adaptation of Thom's modeling practices to a new conceptual setting by Ruelle.
This context is described in Chapter VI below. Before 1 do this, I explore the

mathematical context for Thom's program in qualitative dynamics, in Chapter V.



