CHAPTER V: STABILITY

A vector field X on M? is said to be structurally stable if
there is a neighborhood A of X in 8 such that whenever
YeA there is a homeomorphism of M? onto itself
transforming trajectories of X into trajectories of Y.
—Mauricio M. Peixoto.!

L'hypothése de stabilité structurelle des processus
scientifiques isolés apparait comme un postulat implicite de
toute observation scientifique.

-—René Thom.?

A system which completely lacks stability would be a poor
model for reality, as reality is always a perturbation of what
we think it is. Thus some kind of stability is crucial.
—Robert F. Williams.3

1. INTRODUCTION: A HISTORY OF STRUCTURAL STABILITY

While director Léon Motchane desperately struggled to achieve [mancial stability for the
Institut des hautes études scientifiques, René Thom, as soon as he joined its faculty,
launched an ambitious program in the hope of discovering what was at the basis of the
world's stability. The mathematical notion he judged could best be used for this task was

structural stability. Thom's efforts at building around him a research school will be

I M. M. Peixoto, "Structural Stability on Two-Dimensional Manifolds," Topology, 1
(1961): 101-120, 103. First defined by A. A. Andronov and L., Pontrjagin in 1937.

2 "The hypothesis of structural stability of isolated scientific processes is implicit in all
scientific observation.” R. Thom, SSM, 16.

3R. F. Williams, Review of Dynamical Systems on Surfaces, by C. Godbillon, American
Mathematical Monthly, 92 (1985): 70-71; quoted by M. W. Hirsch, "The Dynamical
Systems Approach to Differential Equations," Bulletin of the American Mathematical
Society, 11 (1984): 1-64, 33,
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described in chapter VI. Meanwhile, T present here a partial history of the concept of
stability in the study of differential equations, which is essential background for an
understanding of Thom’s and, later, Ruelle’s work.

The concept of structural stability was introduced in 1937 by Russian
mathematicians Andronov and Pontrjagin, and taken up in the United States by Lefschetz
- and his younger collaborators after World War 1I. From the very beginning, as T describe
below, a long time before Thom invested jt with so much philosophical weight, the notion
of structural stability had been perceived as embodying a general codification of the
practice of building mathematical models of natural phenomena. Its mathematical
formulation was seen as condensing general metaphysical assumptions.

As in almost every piece of historical writing on chaos, I include a chapter titled
"Stability.” However, my point is not that people were once blindly looking only for
stability and overlooked chaos because of preconceived dogmas, as is often argued. This
explanation is much too simple-minded and fails to explam the reasons why scientists
emphasized periodic solutions in their investigation of nonlinear differential equations.
More importantly, it totally misses the most important point; the very emphasis on
stability, and structural stability in particular, actually prepared the emergence of chaos in
that it set up the line of questioning to which features of chaos appeared as long-sought,
if somewhat surprising, answers.

Therefore, the exploration of the stable descriptions used to model naturai
phenomena was a major impetus behind the modeling practices 1 study here. To start

with, structural stability has always been conceived as a mathematica] translation of
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philosophical assumptions about the physical stability of real systems. As we have seen,
Thom’s program for catastrophe theory was greatly inspired by structural stability.
Similarly, American topologist Stephen Smale’s whole career in the field of dynamical
systems was an offshoot of his concern for finding the right kind of stability, so that
"most” dynamical systems be stable under this definition.

Initially, Thom and Smale hoped that mathematical arguments could substitute for
philosophical ones in the choice of systems susceptible of being used for modeling 4
Around 1970, largely because of work they themselves had done or inspired, it became
clear that mathematics could not in general guide the choice of which stable systems to
use for modeling. Both Smale and Thom therefore stopped working directly on the
mathematical theory of dynamical systems, and rather focused on modeling issues. They
developed a new field that one might be tempted to call "applied topology” which I will
address in more detail in chapter VI below.

Dealing with the conceptual history of (structural) stability, this chapter does not
aim at providing original accounts of the social and cultural contexts within which each of
the contributions discussed was made. Rather, noticing that both Thom and Smale made
important use of work done decades earlier, lintend to provide my own re-reading of
their sources as seen through their eyes. Still, T shall inject some elements of contextual

analysis when necessary. But one should keep in mind that, only after Smale had

4 That mathematics can bypass philosophical impasses was a common theme of the
1950s; it was at play in the story of structuralism; it also figured prominently in other
contexts; see, e.g. D. Lerner, "Introduction, On Quantity and Quality," in Quantity and
Quality, ed. D. Lerner {(New York: Free Press of Glencoe, 1961), 11-34, esp. 20-23.
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achieved his own synthesis, could the various contributions discuss be reinterpreted as
belonging to a unified, conceptual and disciplinary setting.

In section 5 below, T discuss Smale’s synthesis and the bridges he built to previous
works. This section should therefore be read differently from the previous ones as it deals
with the work of one of the main actors of my story. It is only from Smale’s standpoint
indeed that the works discussed in the first sections of this chapter become ‘precursors’ of
Smale’s own accomplishment. Finally, this chapter provides an answer to the main
conundrum of the young historiography of chaos, namely the fact that chaotic behaviors
seem to have been overlooked for so long. T argue that the development of the computer
and of topological methods for the study of differential equations provide causes for the

chaos burst that began around 1975.

2. MATHEMATICAL LAG EXPLAINS SPUTNIK, OR THE COLD WAR
ROOTS OF CHAOS THEORY ?

In 1959, Princeton University topologist Solomon Lefschetz (1884-1972) presented his

Final Report to the Office of Naval Research (ONR), which, for more than 13 years, had
sponsored a "Project on Nonlinear Differential Equations and Nonlinear Oscillations.” In
his final remark, he listed the most significant mathematical contributions made by
members of the project. Tn first place, came the work of Henry DeBaggis and of Marilia

and Mauricio Peixoto on structural stability.> Indeed, while always a marginal concern for

> 8. Lefschetz, "Nonlinear Differential Equations and Nonlinear Oscillations." Final
Report (August 15, 1946 - September 30, 1959), Contract NONR-1858(04), Project
NR043-942, p. 30. Fine Arch. For a more complete history of Lefschetz’s group and some
biographical information, see A. Dahan Dalmedico, "La renaissance des systémes
dynamiques aux Etats-Unis aprés la deuxiéme guerre mondiale: I'action de Solomon
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the Project as a whole, the mathematical concept of structural stability nonetheless
constantly remained on the mind of some of its members. And the story of its
"ascension," as Amy Dahan Dalmedico put it, parallels the history of Lefschetz’s Project
itself.
During most of World War I, the undersigned [Solomon Lefschetz], a consultant
at the David Taylor Model Basin [of the US Navy], had frequent interviews with
Dr. Nicholas Minorsky, in connection with the latter’s production of his well-
known Introduction to Nonlinear Mechanics. Dr. Minorsky voiced repeated

regrets at the impossibility of creating in this country anything resembling the well
known Institute of Oscillations in Moscow.6

Of course, Lefschetz recalled, a full-fledged Institute would have required immense
resources. Lefschetz and Minorsky approached ONR with a more modest proposal to
initiate a Project on Differential Equations, total cost to be $25,000.00 (for the first year).
This Project, as well as Minorsky’s initial reports to the US Navy, explicitly
emphasized the Soviet advance in the study of nonlinear differential equations which,
with the notable exception of George David Birkhoff, had to a large extent been neglected
by American scientists. "Many hold the opinion," Lefschetz thus wrote in 1946, "that the

classical contributions of Poincar, Liapounoff and Birkhoff have exhausted the

Lefschetz," Rendiconti dei circolo matematico di Palermo, ser. 11, Supplemento, 34
(1994): 133-166.

8S. Lefschetz, "Nonlinear Differential Equations," 1. Nicholas Minorsky wrote an
extensive, four-part report to the David W. Taylor Model Basin of the US Navy. Titled
Introduction to Nonlinear Mechanics, reports #5334, 546, 558, and 564 were published
from December 1944 to September 1946, They can be found at Princeton, call number
SK 8230.6445. Minorsky later published a book version: Nonlinear Oscillations
(Princeton: Van Nostrand, 1962). In both the reports and the book, however, Minorsky
did not emphasize structural stability.
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possibilities. This is certainly not the opinion of a large school of Soviet physico
mathematicians." 7

The objectives of Lefschetz’s proposal "were stated to be, on the one hand,
research in the field and, on the other, the development of a group of young men who
could take their place as applied mathematicians in Industry or in an emergency, in
various defense organizations,"8 Educated as an engineer in France, Lefschetz possessed a
sensitivity for applied problems. But above all cold war competition against the Soviet
Union remained one of Lefschetz’s main stated drive for his important implication in the
Project. Its high level of abstraction notwithstanding, none of the technological and
military consequences of the mathematical work on nonlinear dynamics were lost on him.
In 19.50, while looking for other sources of support, Lefschetz wrote: "I have become
interested in . . . the applications of the methods of non-linear mechanics to Air Force
problems in guidance and automatic controls."

"Curiously enough," Lefschet, candidly acknowledged in his final report, while
the goal had been to train mathematicians that could apply their skills to industrial and
military technological problems, "nearly all its [younger] members remained in the

academic world."!9 It therefore seems that most of the members’ motivation, including

7 S. Lefschetz, Lectures on Differential Equations (Princeton: Princeton University Press,
1946), iii. For a history of Soviet research on nonlinear dynamics, see S. Diner, “Les
voies du chaos déterministe dans 'école russe," Chaos et déterminisme, ed. A. Dahan
Dalmedico et al. (Paris: Seuil, 1992): 331-370.

8 S. Lefschetz, "Nonlinear Differential Equations," 2.

? 8. Lefschetz to Colonel Frank J. Seiler (Oct. 19, 1950). Princeton Arch,

10S. Lefschetz, "Nonlinear Differential Equations," 22.
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Lefschetz’s, was above all academic, but they never failed, in good faith probably, to
mobilize defense arguments in favor of their Project.!t

On October 16, 1959, Solomon Lefschetz, was awarded a honorary degree by the
Sorbonne, in Paris, in the presence of President Charles de Gaulle. The retired
mathematician took advantage of this occasion to attract people’s attention to the
"mathematical gap" he saw between Russia and the West. Until recently, the American
lag in the study of nonlinear oscillations seemed 2 sorry thing, which to be sure needed to
be redressed. After 1957, it became an urgent matter of national security. "Then the first
Sputnik came out,” Lefschetz declared in Paris. "That’s When T got scared.” Princeton
University’s press release revealingly described nonlinear differential equations as "the
involved mathematical systems which underlie almost every natural movement, including
those which must be undersiood in order to develop more accurate rocket control
systems." For Lefschetz, the Soviet success in guiding space rockets meant that they were
even more ahead in nonlinear dynamics than he previously thought; he estimated their
lead to be of "10 to 15 years.” This reason, he claimed, persuaded him to leave his
retirement to set up the Research Institute in Advanced Study (RIAS) in Baltimore, at the

Martin Company, an aviation and missile manufacturer. 12 Of course, this only reflected

1Tt should be noted that during the McCarthy era, Russian-born Lefschetz hardly was
above being considered a suspect character by some. In 1955, one his students, John G.
Kemeny, came under scrutiny for "close association with individuals alleged to be
sympathetic to Communism and/or members of Communist front organizations, namely
.. Solomon Lefschetz." J. Douglas Brown and Albert W. Tucker affidavit deposition
(March 2, 1955). Princeton Arch.

12 Lefschetz’s file. Princeton Arch. My emphasis. On February 7, 1960, the New York
Times published an article about Lefschetz’s worries titied “Mathematical Lag in Missiles
Noted.” RIAS moved to Providence in 1963; see A. Dahan Dalmedico, "La renaissance,"
141.
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Lefschetz’s personal worries. N othing inherent to the study of nonlinear differential
equations led to such an emphasis on military and space technology. As we shall soon
see, in a different time and place, namely Paris and Berkeley in the late 1960s, hopes were
placed in the study of similar mathematical domains for quite the opposite reason.
Even before the start of the Cold War, as Lefschetz recalled, his proposal was
quickly accepted by ONR.
The undersigned will never forget his (only) interview with Captain Conrad [the
officer in charge of setting ONR up]. At first nonplussed and puzzled, he soon
called in consultation his scientific adviser, Dr. Allen Waterman . . . [who] read

our short memo and exclaimed at once - This is just what we want', Whereupon
the matter of the project was settled in a short quarter of an hour...13

The activities of the Project proceeded in various ways. There was a weekly
research seminar initiated by Lefschetz in 1942, an advanced course on Differential
Equations, a constant flow of invited professors, postdoctoral fellows and graduate
students. From 1945 to 1953, Lefscheté chaired the Mathematics Department. True to his
repute of "papa daddy" for graduate students, he remained at the disposal of the Project's
participants. "Suffices to say," he stated, "that the Director's office was never focked, and
that he was (and has remained) infinitely accessible to one and all."!4 The Project also
oversaw the publication of articles written by its members in a sub-series of the famous
Annals of Mathematics Studies.5 One of Lefschetz's foremost students, J oseph LaSalle,

summarized his mentor's accomplishments as such:

13 8. Lefschetz, "Nonlinear Differential Equations," 2.

14 S. Lefschetz, "Nonlinear Differential Equations,"” 4. It was George W. Brown who
called Lefschetz a "papa daddy" in The Princeton Mathematical Community in the 1930s:
An Oral History Project, pp. PMC3-4. Princeton Arch. AC#109 Box 40.

15 Contributions to the Theory of Nonlinear Oscillations, Annals of Mathematics Studies,
20 (1950); 29 (1952): 36 (1956); 41 (1958), ed. Solomon Lefschetz (Princeton: Princeton



David Aubin V - Stability 250.

It was Solomon Lefschetz who made the subject of differential equations both
respectable and lively in this country, and who through his projects at Princeton
and RIAS . . . made it possible with his boundless enthusiasm, inspiration, and
guidance for many young people to establish deep roots in the subject. 16

3. FACETS OF STABILITY IN THE INTERWAR: RADIO ENGINEERIN G,
COARSE SYSTEMS, CELESTIAL MECHANICS

Most important for my purpose here was "a noteworthy adventure engaged in by the

Project, [namely] the edited translation from the Russian of a classic: Andronov and
Chajkin, Theory of Oscillations."!" In 1931, Aleksandr Aleksandrovich Andronov (1901-
1952), a student of L. 1. Mandelstam, had founded a research school at Gorki.!8 The
above book summarized a decade of work o nonlinear oscillations. Making a wide usage
of Poincaré's, Lyapunov's, and Birkhoff's works, this book mainly addressed dissipative

systems, as opposed to conservative ones privileged by previous mathematicians, 19

University Press). A fifth volume (Annals, 45) was published in 1960 and edited by L.
Cesari, J. LaSalle, and S. Lefschetz.

16J. P. LaSalle, JEEE Memorial, 1973; quoted in Dynamical Systems: International
Symposium on Dynamical Systems, Brown University, 1974, ed. L. Cesari, J. K. Hale, and
1. P. LaSalle (New York: Academic, 1976), iii.

17 8. Lefschetz, "Nonlinear Differential Equations,” 7. Aleksandr A. Andronov, [A. A.
Witt,] and C. E. Chaikin, Theory of Oscillations, abridged transl. Natasha Goldskaja, ed.
Solomon Lefschetz (Princeton: Princeton University Press, 1949); Theory of Oscillators,
transl. F. Immirzi (Oxford: Pergamon, and Reading: Addison-Wesley, 1966). The name
of Aleksandr Adol'fovich Witt, who disappeared during Stalinist purges, was suppressed
in 1937, but reinstalled in 1959 for the second Russian edition. S. Diner, "Les voies du
chaos," 342,

8 See Amy Dahan Dalmedico, "Le difficile héritage de Henri Poincaré en systémes
dynamiques," in Sonderdruck aus Henri Poincaré: Science er philosophie, Congreés
international de Nice, 1994 (Berlin: Akademie; Paris: Albert Blanchard, 1995): 13-33,
esp. 20-23.

19 Conservative dynamical systems are those for which the total energy is conserved;
dissipative systems generally include a friction term, which dissipate energy into heat.
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a) Dissipative Systems and the van der Pol Equation

For a long time, dissipative systems were thought to be less interesting than conservative
ones for the reason that, in the long run, they tended toward rest. Or 80 it seemed. As
George D. Birkhoff wrote in a famous book, a "dissipative system of this type tends in its
unconstrained motion either toward equilibrium or, more generally, toward the motion of
a conservative system with fewer degrees of freedom."20 When in the late twenties,
Andronov tackled this problem, however, dissipative systems witnessed a period of
renewed interest mainly due to the work of Balthasar van der Pol (1889-1959), an
engineer at the Phillips Company in Eindhoven, Holland. By simplifying to the extreme
the equation for the amplitude of an oscillating current driven by a triode, he indeed
exhibited an example of a dissipative equation without forcing which nonetheless
sustained spontaneous oscillations, an example of what Ilya Prigogine would later call

dissipative structures.?!

(i) Mathematics and Radio Problems

In a lecture given on March 15, 1947, before the Dutch Mathematical Center in
Amsterdam, van der Pol recalled his original problem and how it led to more abstract

mathematical concerns:

20 G. D. Birkhoff, Dynamical Systems (Providence: American Mathematical Society,
1927), 32. The type of systems he is considering here are those which are not subject to
any external force, or to external force that do no work, i.e. systerns that receive no
external energy. Birkhoff’s ideas on stability are presented below; see p. 267.

21 B. van der Pol, "On Relaxation-Oscillations’," Philosophical Magazine, 2 (1926). 978-
992; repr. Selected Scientific Papers, ed. H. Bremmer and C. J. Bouwkamp (Amsterdam:
North-Holland, 1960): 346-360. For more on van der Pol, see G. Israel, La
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Figure 8: Flow in Phase Space for the van der-Pol Equation for eg=.1; e=1; and

€=10. Repr. with permission from B. van der Pol, "On Relaxation-Oscillations,"
983-985. Copyright © Taylor and Francis.

Mathématisation du réel (Paris: Seuil, 1996), 34-51. About dissipative structures, see
Chapter VIII below.
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How does a retroactive triode cause a simple electric circuit to oscillate? Tn 1920, 1
was able, by ignoring all secondary phenomena, to crystallize this perhaps most
fundamental equation of all modern radio problems into the following, non-linear
differential equation:

v"~e(1—v2)v’+v =0;
in which the constant £>0, and the [primes] signify differentiation with respect to
time, whilst v is the voltage across the oscillator circuit,22

This equation, van der Pol explained in 1947, had been worked out for the purpose
of solving a technical problem, by making the explicit assumption that € remained much
smaller than 1.23 There was great urgency in trying to understand this problem since
triode vacuum-tube generators had then "become the standard low power source of
alternating current for laboratory purposes."2* A few years later, van der Pol impelled a
new direction to his studies:

in 1926, purely as a matter of mathematical interest, we asked ourselves whether

this equation also led to interesting results in cases where ¢ is large, and this
disclosed the theory of relaxation-oscillations.2s

Analytic solutions for the van der Pol equation are extremely rare, but already in
his 1926 article, van der Pol drew trajectories in phase space, that s, plotted v versus

z=v’, for three values of €, namely 0.1, 1, and 10. These plots clearly showed that

22 B. van der Pol, "Mathematics and Radio Problems," Phillips Research Reports, 3
(1948): 174-190; repr. in Selected Papers, 2: 1140-1156, Originally published in Dutch in
Simon Stevin, 25 (1947): 179-198. The quote is from Selected Papers, 2, 1154. The above
equation is often called the van der Pol equation in the technical literature. See also B.
van der Pol’s review essay: "The Nonlinear Theory of Electric Oscillations," Proceedings
of the Institute of Radio Engineers, 22 (1934): 1051-1086; repr. Papers, 1: 795-830.

23 B. van der Pol, "A Theory of the Amplitude of Free and Forced Triode Vibrations,"
Radio Review, 1 (1920): 701-710; 754-762: repr. Selected Papers, 1: 228-246.

# E. V. Appleton and B. van der Pol, "On the Form of Free Triode Vibrations,"
Philosophical Magazine, 6th ser., 42 (1921): 201-220; Selected Papers, 1: 258-280.
Quote on p. 258.
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Figure 9: Solutions as Function of Time of the van der Pol Equation for e=0.1;
e=1; and e=10. Repr. with permission from B. van der Pol, "On Relaxation-
Oscillations," 986. Copyright © Taylor and Francis.

solutions tended always to wind up around a periodic stationary solution, represented as a
closed curve. In contemporary terms, this was one of the first concrete examples of an

atiractor in a physical system that was not a point (Fig. 8 and 9).

(ii}  French Reception and Rocard’s Insensitivity

The van der Pol equation had a stupendous career in scientific literature, amon g electrical

engineers of course, but also among mathematicians, physicists, biologists, etc.

Y

h\
According to van der Pol’s own count, it had led, in 1947, to "4t least one hundred papers

and books, particularly from the Russian and French quarters, "26

23 S. Diner, "Les voies du chaos,"” 341.
%6 B. van der Pol, "Mathematics and Radio,” 1150.
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From Chapter If above, we may recall that, in 1948, the Bourbaki mathematician
André Weil made one exception to his ideology of purity in mathematics, by listing the
van der Pol equation as "one of the few interesting problems which contemporary physics
has suggested to mathematics.”?7 In 1928, French scientist A. Liénard generalized van der

Pol’s investigation by studying equations of the type:

d*x e,
—+Of(x ) —+@x=0.
dr? A dt

Weil's comment has to be understood in context. Indeed, a source for Liénard's interest
was a memoir by Elie and Henri Cartan, to my knowledge the only one written jointly by
the father and the son. Dealing with an equation very similar to Liénard's, the Cartans
made it clear, with the notation they used, that the source of their inspiration lay in

electrical circuit theory:
d’i di 1
L—+HR-9({))—+—i=0;
dr* (ol )}cE C

this equation being easily recognizable as the one that describes a circuit with inductance

L, condenser C, and resistance R — @(i) depending on the intensity of the current 7,28

27 A. Weil, "The Future of Mathematics,” Great Currents, ed. F. Le Lionnais: 321-336,
332. The van der Pol equation seemed to have gather of rare consensus in its support,
since, for example, applied mathematician Theodore von Kdrman selected it as his first
example of an engineering problem that should be of interest to a mathematician: see
"The Engineer Grapples with Nonlinear Problems," Bulletin of the American
Mathematical Society, 46 (1940): 615-683, esp. 619-624.

28 A. Liénard, "Etude des oscillations entretenues,” Revue générale de I'électricité, 26
(1928): 901-912 and 946-954. Elie and Henrj Cartan, "Note sur la génération des
oscillations entretenues," Annales des PTT, 14 (1925): 1196-1204; repr. Elie Cartan,
Euvres complétes, part 1L, 1: 71-82. P. J anet, "Note sur une ancienne expérience
d'électricité appliquée,” Annales des PTT, 14 (1925): 1193-1195; summarized in Revue
générale de I'électricité, 19 ( 1926): 98D.
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The main question that these French mathematicians sought to answer was the
following: What form should the function f(x} in the Liénard equation have so that it
admitted one or several stable periodic solutions?29 Clearly, other behaviors could
happen, they knew it, but for obvious reasons stemming from the radio-engineering
aspects of the question, these remained unexplored. As late as the early 1970s, Maurice
Roseau's course of mechanics at the Université de Paris still strongly emphasized this
aspect of the question.30

Far from being a blind neglect of a crucial flip side of the problem, this line of
research proved extremely fruitful, leading in particular to the work of Mary L.
Cartwright, John E. Littlewood, and Norman Levinson on the van der Pol equation with a
forcing term e(#) on the right-hand side of the equation. These important contributions
will be examined below.

From the point of view of the history of nonlinear dynamics in France, widespread
interest for van der Pol's and Liénard's equations led to important consequences. Indeed,
Yves Rocard's famous textbook on nonlinear oscillations, written in July 1940, was

highly focused on the above equations, which he had considered for highly practical

% See also J. Haag's work: "Sur les oscillations auto-entretenues,” CRAS, 199 (1934):
906-909; "Sur I'étude asymptotique des oscillations de relaxation,” CRAS, 202 (1936):
102-104; "Sur la théorie des oscillations de relaxation," CRAS, 204 (1937): 032-934;
"Formules asymptotiques concernant les oscillations de relaxation,” CRAS, 206 (1938):
1235-1237.

30 See M. Roseau, Vibrations non linéaires et théorie de la stabilité (Berlin: Springer,
1966); Solutions périodigues ou presque périodiques des systémes différentiels de la
mécanigue non linéaire, lecture notes (Département de mécanique, Faculté des sciences,
Paris, 1970). Jussieu Lib.
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purposes.! One of the important conclusions at which he arrived was that oscillators of a
van der Pol type exhibited a behavior that was independent from initial conditions. After
a few oscillations, they always tended towards a periodic solution, for which not only the
period, as for harmonic oscillators, but also the amplitude were dictated by the equation
and not the initial conditions. Knowing that Rocard's lectures at the Ecole normale
supérieure, as well as successive editions of his book, have been an important
introduction to the subject for many of the French physicists who later dealt with chaos,
we may conclude that sensitive dependence on initial condition was the more striking to

them,32

(iii) A Model of Mathematical Models?
This wide interest for van der Pol's work hardly stemmed from its mathematical interest
alone, but because, as Giorgio Israel recently put it, it provided a "model of models."33 It
appeared to van der Pol that relaxation-oscillations could accurately describe almost every
oscillating phenomenon of nature.

Many instances of relaxation oscillations can be cited, such as: a pneumatic
hammer, the scratching noise of a knife, the waving of a flag in the wind, the
humming noise sometimes made by watertraps, the squeaking of a door, a steam
engine with too small flywheel, . . . the intermittent discharge of a condenser
through a neon-tube, the periodic reoccurrence of epidemics and of economic
crises, the periodic density of an even number of species of animals living together
and one species serving as food to the other, the sleeping of flowers, the periodic

31Y. Rocard, Les Problémes d auto-oscillation dans les installations hydrauliques (Paris:
Hermann, 1937). See also Y. Rocard, L'Instabilité en mécanique. Automobiles - avions -
ponts suspendus (Paris: Masson, 1954). ‘

32 See Y. Pomeau, "Préface," Le Chaos. T, héorie et expériences, ed. P. Bergé (Paris:
Eyrolles, and Editions du CEA, 1988)). Yves Rocard, Théorie des oscillateurs (Paris:
Editions de 1a Revue scientifique, 1941): Dynamique générale des vibrations, 3rd ed,
(Paris: Masson, 1960).

3 G. Israel, La Mathématisation du réel 34,
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reoccurrence of showers behind a depression, the shivering from cold, the
menstruation, and finally the beating of the heart.34

About such a juxtaposition, the first thing to note is how Iudicrous it appears! No
underlying physical mechanism could unify all of the above in a single explanatory
scheme. But this was not van der Pol’s claim, Rather he suggested that oscillatory
solutions of dissipative equations could account for all of the above. He tried to develop
mathematical models for none of the above, with one notable exception. He did build a.
model of the heart. But, in my view, to suggest as Israel does that it actually was a
mathematical model is somewhat misleading; it rather was an electrical model of the
heart.35 Van der Pol and his collaborator, van der Mark, built physical apparatuses made
of electric circuits, the output of which traced curves resembling electrocardiograms. To
use a fashionable term, they literally blackboxed the physiology of the heart, not with
mathematical equations which would have been intractable, but with electrical tablétop
models. That this electrical model could be expressed with differential equations, van der
Pol and van der Mark hardly doubted. But as a mathematical model, their model of the
heart remained the expression of a program rather than an actualization of this program.

In conclusion, van der Pol’s work therefore exhibited the dual aspect characteristic
of much of the mathematical research I look into in this dissertation. Tt combined an
important advance in qualitative mathematical knowledge and a strong taste for analogy

as method of mathematical modeling of the world. Historicaily, therefore, van der Pol

34 Balthasar van der Pol and J. van der Mark, "The Heartbeat Considered as a Relaxation
Oscillation, and an Electric Model of the Heart," Philosophical Magazine, 7th ser., 6
(1928): 763-775; repr. Papers, 1: 486-51 1; quote on pp. 491-492. Quoted in G. Israel, La
Mathématisation du réel, 40.

3 Cf. G. Tsreal, La Mathématisation du réel, 34-51.
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should not be seen as an example of those scientists who, dealing with nonlinearities—
and they were many even then—remained blind to the manifestations of chaos when they
should have discovered it, as Keliert would have it.36 Rather van der Pol was someone
who forged the tools for, and helped create the possibility of, looking at dissipative
systems in a new light. As such, he went farther than Poincaré in a certain respect. His
work was not only rediscovered by later-day chaologists but also spurred on the moment
important developments contributing, at the level of both mathematical techniques and

modeling practice, to the possibility of the emergence of catastrophe and chaos theories.

b) Stability in Mathematics and in Modeling Practice for Radio Engineering

As van der Pol noted in 1947, his work was well received by some Russian
mathematicians, and especially Aleksandr Andronov, who was among the first to use
powerful new topological techniques to study nonlincar oscillations such as those

exhibited by the Dutch engineer.

(i) Coarse Systems

In a note published by the French Academy of Science, Andronov identified solutions of
the van der Pol equation as examples of "self-oscillations," also found in chemistry,
biology, and physics, described as such:

These systems are ruled by differential equations that differ from those studied by
mathematical physics and classical mechanics. The systems where these

36 S. Kellert, In the Wake of Chaos, 125-127. See also, J. Gleick, Chaos, 49. For a
historical and mathematical discussion of the strange attractors to be found in the forced
van der Pol equation, see R. H. Abraham, "In Pursuit of Birkhoff's Attractor,” in
Singularities and Dynamical Systems, ed. S. N. Pnevmatikos (Amsterdam: North-
Holland, 1985): 303-312,
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phenomena are produced are not conservative and sustain their oscillations by
drawing their energy from nonperiodic sources.37

More generally than van der Pol and even Liénard, Andronov considered the stationary

solutions of a class of two-dimensional systems of differential equations:

dx dy
—=Pxy); —=0x,y);
5 (x,y) 0 OCx,y)

x and y being coordinates of the plane.38 He claimed that when the system satisfied some
conditions, the self-oscillations mathematically corresponded to Poincaré's limit cycles.3?
As Dahan Dalmedico emphasized:

Andronov had the not-at-all obvious idea, almost forty years after their

publication, of turning towards Poincaré's works. These had almost never been
applied to concrete problems of physics or engineering.40

To get this result, Andronov imposed conditions on the above system of equations
which he would come back to, since they amounted to structural stability. Formally, he
would do this in a note, written with the blind topologist, L. Pontrjagin, and presented at

the Soviet Academy of Sciences in 1937, in which they introduced what they named

7 A. A. Andronov, "Les cycles limites de Poincaré et la théorie des oscillations auto-
entretenues,” CRAS, 189 (1929): 559-561, 559. In this note, he refers to the work of
Volterra and Lotka in biology, of Kreman in chemistry, of Eddington in astrophysics, and
of Lord Rayleigh in the theory of sound, in addition to van der Pol',

38 By setting z =/, van der Pol's equation can be rewritten as such a system of equations,
namely v’ =z; ' =g(l-v)z-v.

3 Introduced in H. Poincaré, "Mémoire sur les courbes définies par une équation
différentielle,” Journal de mathématiques pures et appliguées, 3rd ser., 7 (1881): 375-
422; 8 (1882): 251-296; repr. (Euvres, 1: 3-84; see pp. 53-65 on limit cycles, where he
introduces what is now known as the Poincaré section. See J.-L.. Chabert and A. Dahan
Dalmedico, "Les idées nouvelles de Poincaré” in Chaos et déterminisme, ed. A. Dahan
Dalmedico et al. (Paris: Seuil, 1992}, 274-305; and C. Gilain, "La théorie qualitative de
Poincaré et le probléme de l'intégration des équations différentielles," La France
mathématique, ed. H. Gispert (Paris: SFHST and SMF, 1991): 215-242,

40 A. Dahan Dalmedico, "Le difficile héritage," 22.
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"coarse systems [systémes grossiers]."4t A system of the above type was said to be coarse
if a small variation to it did not alter the topological character of the trajectories of its

solutions. They considered the altered system:

dx _ . Ay .
0 (.Y pey); & Ox,y)+q(x,y);

where p, g, and their derivatives remained small. The condition for coarseness expressed
that there existed a one-to-one correspondence between the trajectories of the two
systems, such that singular points were sent to singular points, limit cycles to limit cycles,
etc. Andronov and Pontrjagin then gave, without proofs, a complete classification of two-
dimensional coarse systems.

In a revealing footnote, they added:

This definition of a system’s roughness can be considered as that of the stability of

a dynamical system with respect to small variations. . . . This kind of stability is

interesting for physics.*?

There lay the source of Andronov’s concerns for stability. Van der Pol’s equation
came about by studying radio engineering and this source left its imprint on the field of

nonlinear mechanics. The case of Mary Lucy Cartwright, a Cambridge mathematician

who worked extensively in this field starting in 1939, will underscore this,

T A. A. Andronov and L. Pontrjagin, "Sysiemes grossiers,” Comptes-rendus (Doklady) de
l'Académie des sciences de I'URSS, 14 (1937): 247- 250. See also the following note: E.
Leontovich and A. Mayer, "Sur les trajectoires qui déterminent la structure qualitative de
la division de 1a sphere en trajectoires,” ibid., 251-254. I preferred "coarse” rather than
"rough," also found in the literature, as the translation to the French original term
"grossier” since the former was nsed in the 1966 edition of Andronov et al., Theory of
Oscillators, xxix.

2 A. Andronov and L. Pontrjagin, "Systeémes grossiers," 247-248n. My emphasis.
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(it)  Stability in Cartwright's Work
Although working within a totally different mathematical tradition, Cartwri ght
nevertheless also studied, because of radio engineering concerns, the stability of equations
of the type of van der Pol’s. In 1952, she explained why this was a preoccupation for radio
engineers:

To me the work of radio engineers is much more interesting and suggestive than

that of the mechanical engineers. The radio engineers want their systems to

oscillate, and to oscillate in a very orderly way, and therefore they want to know
not only whether the system has a periodic solution, but whether it is stable, what
its period and amplitude and harmonic content are, and how these vary with
parameters of the equations.®3 ‘

This statement is the more striking considering that Cartwri ght’s concerns and
approach always remained quite different from Andronov’s. In her account of the history
of nonlinear mechanics, she did not mention Andronov’s work, even though she paid
attention to some of the Russian contributions, such as Krylov and Bogoliubov’s.

Collaborating with John E. Littlewood, Cartwright started her research in the field
of nonlinear vibrations after Britain’s

Department of Scientific and Industrial Research issued a memorandum 'appealing

for the assistance of pure mathematicians in solving the type of equations

occurring in radio work, laying emphasis on the need to know how the Jfrequencies
of the periodic solutions varied with the parameters of the equations.*+

Beginning "with little knowledge of the classical work of Poincaré, Liapounov
and Birkhoff,"” she never adopted topological methods such as Andronov and

Pontrjagin's.** She studied specific systems, admittedly with parameters that could be

“ M. L. Cartwright, "Non-Linear Vibrations: A Chapter in Mathematical History,"
Mathematical Gazette, 36 (1952): 80-88, 84. My eimphasis.

# M. L. Cartwright, "Non-Linear Vibrations," 86. My emphasis.

S M. L. Cartwright, "Non-Linear Vibrations," 87.
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tinkered with, but never ventured into topological classifications like Andronov and
Pontrjagin’s. Cartwright and Littlewood’s case, which so markedly departs from
Andronov’s program, only shows how much the practical incentive for the mathematical
theory could bend research programs towards studying the stability of solutions in
presence of perturbations.*6

Van der Pol certainly took notice of Cartwright’s work. "A certain phase of this
subject [the theory of relaxation oscillations],” did he write in 1947, "was concluded a
few months ago by highly important investigations carried out by Miss Cartwright and
Littlewood."” That a new phase was dawning may be apparent from the fact that the van
der Pol equation was one of the first one to be integrated with the help of Vannevar

Bush’s differential analyzer at MIT.47

{iii}  Stability as Program and Philosophy
As opposed to Cartwright and Littlewood, Aleksandr Andronov approached the study of
nonlinear vibrations not only with new mathematical tools, but also with a vast
philosophical program. As Vladimir Arnol’d emphasized, the concept of coarseness

appeared in Andronov’s work as both a mathematically rigorous definition and a general

% See her most important work: M. L. Cartwright and J. E. Littlewood, "On Non-Linear
Differential Equations of the Second Order: 1. The Equation

¥ — k(1= 3" +y = bAk cos(hr +a), k Large,"” Journal of the London Mathematical Society,
20 (1945): 180-189; repr. in The Collected Papers of John Edensor Littlewood, 1
(Oxford: Clarendon Press, 1982): 85-94; and M. L. Cartwright, "Forced Oscillations in
Nearly Sinusoidal Systems," Journal of the Institute of Electrical Engineering, 95 (1948):
88-94. These articles are important for the prehistory of chaos since they directly inspired
Levinson’s paper that exhibited an instance of strange attractor, that oriented Smale’s
discovery of the horseshoe. See below p. 287.
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idea about the type of systems useful for mathematical modeling in physics and
engineering.*®

In the lengthy introduction to his book, Andronov set out Lo articulate his
program, which he had previously presented in front the First All-Union Conference on
Auto-oscillation in November 1931.4° Concerned, as were van der Pol and Cartwright,
with real physical systems, Andronov saw the problem of the fit between the model and
reality as posing itself with urgency. "In any theoretical investigation of a real system we
are always forced to simplify and idealize, to a greater or smaller extent, the true property
of the system."5% The question was: how far could one go?

Clearly, many properties of physical systems were lost in any kind of idealization.
Due to fluctuations, in patticular, "real systems," Andronov stated, "cannot in general be
described with complete accuracy by means of mathematical relations.">! This was a
radical position that clearly distinguished mathematical models from physical systems,
and flatly denied the possibility of a straightforward identification of the two. On top of
this metaphysical reason, unavoidable fluctuations were bound to occur in any real
physical system whatever their origins: quantum mechanics or the always imperfectly

controlled environment.

47 B. van der Pol, "Mathematics and Radio," 1150. About Bush’s analog computer, see A.
G. Bromley, "Analog Computing Devices,” Computing Before Computers, ed. W. Aspray
(Ames: lowa State University Press, 1990: 156-199, 179-185.

48 V. . Arnold, "Catastrophe Theory," in Dynamical Systems V: Bifurcation Theory an
Catastrophe Theory, ed. V. L. Amol'd, Encyclopedia of Mathematical Sciences, 5 (Berlin:
Springer, 1994 [1986]): 207-264, 224.

49 V. 1. Arnol’d, "Catastrophe Theory," 260.

50 A. A. Andronov et al., Theory of Oscillators, xv.

51 A. A. Andronov et al., Theory of Oscillators, xxv. My emphasis.
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The presence of fluctuation in real systems must indirectly be taken into account
even in the theory of dynamic models of real systems. It is evident that since small
random perturbations are inevitable in all physical systems, processes which are
possible only in the absence of any random deviations or perturbations
whatsoever cannot actually occur in them.?

Consequently, for the mathematical physicist the object of study changed. Beyond
the study of a system of differential equations, and its solutions, beyond even the study of
equations depending on a set of parameters, one had to deal with more general families of
laws. The implication was clear: "we have always to allow for the possibility of small
variations of the form of the differential equations which describe a physical system.">3

For this reason, the notion of coarseness was crucial, since only coarse systems
had a chance of being useful for physics. Only they could actually model the processes
taking place in the real world. Andronov and coworkers indeed required that the
processes they studied "be stable both in relation to small variations of the coordinates
and velocities, and in relation to small variations of the mathematical model itself.">*
They went on:

The first requirement leads to the concept of stability of states of equilibrium of

the model and of the processes taking place in it, and the second to the concept of

coarseness of dynamic systems. . . . Systems that are such not to vary in their

essential features for a small variation of the form of the differential equations, we
shall call ‘coarse’ systems.>>

One should notice here an interesting analogy between Andronov and his
colleagues’ reasoning and a famous statement of Pierre Duhem’s (1861-1916). In his

famous book, the French physicist-philosopher set forth, along with some of Poincaré's

52 A. A. Andronov et al., Theory of Oscillators, xviii(note). My emphasis. See also pp.
XX Vii-XXiX.

53 A. A. Andronov et al., Theory of Oscillators, xxviii. My emphasis.

54 A. A. Andronov et al., Theory of Oscillators, xviii(note). My emphasis.
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work, Jacques Hadamard’s (1865-1963) construction of geodesics on surfaces with
negative curvature.5¢ In this work, Hadamard exhibited a mathematical construction
which displayed the property later called "sensitive dependence on initial conditions" by
Ruelle, and thus described by Hadamard:

Any change, no matter how small, brought to the initial direction of [any]
geodesics . . . is enough to bring about absolutely any variation to the final outlook
of the curve.”’

For Duhem, this implied that this "mathematical deduction” could "never be
utilized" in physics.58 The reasons for which he stated this resemble Andronov’s:

One cannot go through the numerous and difficult deductions of celestial
mechanics and mathematical physics without suspecting that many of these
deductions are condemned to eternal sterility.

Indeed, a mathematical deduction is of no use to the physicist so long as it is
limited to asserting that a given rigorously true proposition has for its consequence
the rigourous accuracy of some such other proposition. To be useful for the
physicist, it must still be proved that the second proposition remains

approximately exact when the first is only approximately true.”?

Andronov and his coworkers apparently concurred with Duhem’s analysis. They
even went a step further and asserted that mathematical models, to stand a chance of
faithfully representing physical systems, had to be stable, not only with respect to small

variations in the initial conditions, but also in the very form of the differential equation

55 A. A. Andronov et al., Theory of Oscillators, xviii(note) and xXix.

56 On this, see J.-L. Chabert, "Hadamard et les géodésiques des surfaces & courbure
négative," Chaos et déterminisme, ed. A. Dahan Dalmedico et al. (Paris: Seuil, 1992):
306-330; and the original paper: J. Hadamard, "Les surfaces & courbure opposées et leurs
lignes géodésiques," Journal de mathématiques pures et appliquées, 4 (1898): 27-73;
repr. (Euvres, 2 (Paris: Editions du CNRS, 1968): 729-775.

57 J. Hadamard, (Euvres, 2, 772-773; quoted in J.-L. Chabert, "Hadamard," 325,

58 P, Duhem, La théorie physique. Son objet et sa structure (Paris: Marcel Riviere, 1914,
lare édition, 1906); The Aim and Structure of Physical Theory, transl. Philip P. Wiener
(Princeton: Princeton University Press, 1954), 138.
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itself. As an important consequence, Andronov neglected unstable motions and
emphasized the study of stationary ones, i.e. rest, equilibrium, periodic and guasiperiodic
motions, in other words Birkhoff’s recurrent motions, which Birkhoff himself

characterized as "a natural extension of periodic motions."%0

c) Birkhoff: Conventionalism for Stability

One of Poincaré's only "true disciples” in the qualitative study of differential equations,
George David Birkhoff (1884-1944), offers another approach to be contrasted with
Andronov's. Like the Russian mathematician and at about the same time, Birkhoff
reflected on the role of stability for the mathematical modeling of the world.%! Instead of
focusing on a single concept, like coarseness, Birkhoff adopted the more supple view that
different concepts of stability could be used for different purposes, depending on the
questions one wanted to answer; the choice merely was conventional..

The fundamental fact to observe here is that this concept [stability] is not in itself
a definite one but is interpreted according to the question under consideration.52

59 P, Duhem, The Aim and Structure, 143.

60 G. D. Birkhoff, "Quelques théorémes sur le mouvement des systemes dynamiques,”
Bulletin de la Société mathématique de France, 40 (1912): 305-323; repr. G. D. Birkhoff,
Collected Mathematical Papers, 1 (New York: Dover, 1968 [1950]): 654-672, 654.

61 Amy Dahan Dalmedico called Birkhoff "a true disciple” of Poincaré, although they
probably never met. "Le difficile héritage," 24-27. For biographical information on
Birkhoff and his work, see E. T. Whittaker, "George David BirkhofT," Journal of the
London Mathematical Society, 20 (1945): 121-128; and the introductory essays in G. D.
Birkhoff, Papers, 1.

62 G, D. Birkhoff and D. C. Lewis, Jr., "Stability in Causal Systems," Philosophy of
Science, 2 (1935): 304-333, 313; repr. Papers, 3: 575-604, 584. One should think here of
Poincaré's philosophy of science often termed "conventionalism"; see D. J. Stump,
Conventionalism and Truth: Poincaré’s Mediation Between Relativism and Absolutism in
Science, Ph.D. thesis (Nortwestern University, 1988).
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Birkhoff always based his reflections on Poincaré's. Although Birkhoff was
trained at Chicago, "Poincaré was Birkhoff's true teacher," once said Birkhoff's own
student Marston Morse.63 Shortly after Poincaré's untimely death in 1912, Birkhoff
established his reputation by proving a conjecture known as "Poincaré's last geometric
theorem. "6 According to Morse, this proof "was one of the most exciting mathematical
events of the era and was widely acclaimed."®5 As Poincaré had already seen, this
theorem had important consequences for dynamical theories.

Having read Poincaré's Méthodes nouvelles de la mécanique céleste, while at
Princeton in 1912, Birkhoff started to work on the field he would call dynamical
Systcarrls.g6 That vear, he introduced the notions of "minimal” and "recurrent” motions. &7
His work on qualitative dynamics eventually culminated in his 1927 book, much of its
content having been delivered on September 5-8, 1920 at the University of Chicago.
According to Morse, "History has responded to these pages on Dynamical Systems in an

unmistakable way," in that it shaped much of the work done by Kolmogorov, Amnol’d, and

63 0. Vleben, "George David Birkhoff (1884-1944)," Yearbook of the American
Philosophical Society (1946): 279-285; repr. G. D. Birkhoff, Papers, 1: xv-xxiii.

64 The theorem states that continuous, one-to-one, area-preserving maps from the annulus
to itself that rotates the points on the boundaries in opposite directions have at least two
fixed points. Henri Poincaré, "Sur un théoreme de géométrie,” Rendiconti dei circolo
matematico di Palermo, 33 (1912): 375-407; repr. Oeuvres, 6: 499-538; and G. D.
Birkhoff, "Proof of Poincaré's Geometric Theorem," Transactions of the American
Mathematical Society, 14 (1913): 14-22; repr. Papers, 1: 673-681; French transl. Bulletin
de la Société mathématique de France, 46 (1914): 1-12. See also G. D. Birkhoff,
Dynamical Systems, 163-170.

65 M. Morse, Preface to G. D. Birkhoff, Dynamical Systems, 2nd ed. (Providence:
American Mathematical Society, 1966}, iv.

66 0. Vleben recalled Birkhoff's reading of Poincaré; see G. D. Birkhoff, Papers, 1: xv-
XXiii.

67 G. D. Birkhoff, "Quelques théorémes.”
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Maser on the celebrated KAM theorem.58 As we shall see, many scientists were inspired
by it in less direct ways.

"I'he final aim of the theory of motion must be directed toward the qualitative
determination of all possible types of motions and of the interrelation of these motions."5?
In Chapter 7 of his book, Birkhoff developed a "General Theory of Dynamical Systems,"
going further than Poincaré and Hadamard in the topological study of curves defined by
differential equations.”® Tn particular, he generalized Poincaré’s limit cycles, by
introducing several interesting concepts that prefigured different facets of the concept of
attractor: non-wandering, minimal, alpha- and omega-limit sets, central and recurrent

motions.?! On the basis of these definitions, Birkhoff stated:

68 M. Morse, Preface, v; see Moser's Introduction in ihid. also. About the history of KAM
theorem, see F. Diacu and P. Holmes, Celestial Encounters, chap. 5. Tt is also briefly
discussed below.

6 3. D. Birkhoff, Dynamical Systems, 189. See also G. D. Birkhoff, "Recent Advances in
Dynamics," Science, 1n.s., 51 (1920): 51-55; repr. Papers, 2: 106-110.

70 See A. Dahan Dalmedico, "Le difficile héritage," 25; G. D. Birkhoff, Dynamical
Systems, 189-202.

71 In Birkhoff's own words, "the set W of wandering points of M is made up of curves of
motion filling open n-dimensional continua. The set M, of non-wandering points is made
up of the complementary closed set of curves of motions (Dynamical Systems, 192)."
Now, finding the non-wandering set M. with respect to M,, and constructing the sequence
M,, M,, etc., we must at some point end the process with a set C of central motions.
Recurrent motions are those which come back arbitrary close to every point of the curve
of motion. They are in the set of central motions but the reverse is not necessarily true. o-
and -limit points are defined as the sets of limit points as time (z) tends to - or + co.
Nonwandering sets are in general larger than limit sets. For these, and other, definitions,
see G. D. Birkhoff, Dynamical Systems, 191-200. Some of these were picked up in A. A.
Andronov and A. A. Witt, "Sur la théorie mathématique des auto-oscillations,” CRAS,
190 (1930): 256-258. An attractor has been succinctly defined as "an indecomposable,
closed, invariant set . . . which attracts all orbits starting at points in some neighborhood”
by P. Holmes, "Poincaré, Celestial Mechanics, Dynamical-Systems Theory, and 'Chaos’,"
Physics Reports, 193 (1990): 137-163. For more on attractors, see below.
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a first problem concerning the properties of dynamical systems is the
determination of the central motion. . . . [So,] the structure of the set of central
motions is of vital theoretic importance.""2

Generally speaking, central motions were those "which all other motions tend[ed] to
approach."73 Here is the seed of future focus on attractors.

The stability of the solution curves of dynamical systems was the central concern
of Birkhoff in his book. He introduced a large array of notions of stability for dynamical
systems and their periodic solutions, some of which already present in the literature, some
of which new: complete or trigonometric stability, stability of the first order, permanent
stabilitgr ("for which small displacements from equilibrium remain small over time"),
semi-permanent stability, unilateral stability (due to Lyapunov), and stability in the sense
of Poisson (due to Poincaré).’

Although stemming out of totally different worlds—clearly Harvard mathematics
department and the Gorki Institute must have been worlds apart from one another—there
are interesting comparison to be made between Birkhoff's and Andronov's approaches.
While both dealt with general systems of (nonlinear) differential equations, using many of
the same sources (Poincaré, Lyapunov), and while both emphasized stability as a way of
probing these systems, they nonetheless ended up with almost opposite views on stability.
For Andro.nov, the practice of mathematical modeling implied that only coarse systems
were of interest. Birkhoff thought that one had to dictate, by convention or by a judicious

choice of problems to be answered, the kind of stability that one wanted to look at.

72 G. D. Birkhoff, Dynamical Systems, 197 and 202.

73 G. D. Birkhoff and D. C. Lewis, "Stability," 309.

74 The stability of motions is dealt with mostly in chapters 4, 6, 8 and 9 of G. D. Birkhoff,
Dynamical Systems. The quote is from p. 121.
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All that stability can mean is that, for the system under consideration, those
motions whose curves lie in a certain selected part of phase space from and after a
certain instant are by definition called stable, and other motions unstable.?>
Interestingly, both Birkhoff and Andronov reflected on the philosophy of
mathematical modeling of physical facts. Unlike future Bourbakists, Birkhoff thought that
without a doubt mathematics was the language of nature, which itself should guide
mathematicians’ speculations.
It will probably be the new mathematical discoveries which are suggested through
physics that will always be most important, for, from the beginning, Nature has
led the way and established the pattern which mathematics, the language of
Nature, must follow.7¢
Like his master Poincaré, Birkhoff was a mathematical physicist; he worked on ergodic
theory, wrote books on relativity, and remained ever skeptical of quantum mechanics.
Furthermore Birkhoff believed that mathematics could offer guidance for other aspects of
the human experience, like aesthetics or even ethics.”’ He issued repeated calls for a
further collaboration between physicists and mathematicians:
It is to be hoped that in the future more and more theoretical physicists will
command a deep knowledge of mathematical principles; and also that

mathematicians will no longer limit themselves so exclusively to the aesthetic
development of mathematical abstractions.”™

75 G. D. Birkhoff and D. C. Lewis, "Stability," 332. My emphasis.

76 G. D. Birkhoff, "The Mathematical Nature," 310; repr. 919. About Poincaré's
recurrence theorem and Birkhoff's use of it, see A. Dahan-Dalmedico, "Le difficile
héritage.”

77 First presented at the 1928 International Congress of Mathematician ("Quelques
¢léments mathématiques de l'art,” Atti del Congresso internazionale dei matematici,
Bologna, 3-10 settembre 1928 (VI), 1 [Bologna: Nicola Zanichelli, 1928]: 315-333; repr.
Coliected Papers, 3: 288-306), Birkhoff's theory of aesthetics inspired him many articles
to be found in the 3rd volume of his Collected Papers, and a book Aesthetic Measure
(Cambridge: Harvard University Press, 1933), which however I have never seen.

78 G. D. Birkhoff, "The Mathematical Nature of Physical Theories," American Scientist,
31 (1943): 281-310, 286; repr. Papers, 2: 890-919, 895.
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In many ways not too far from Thom’s, Birkhoff’s philosophy on the role of
mathematics for building models oscillated between pure Platonism and a recognition that
reality is never as simple as the mathematical model. For instance, Birkhoff, admittedly
with a hint of irony, wrote that Poincaré's recurrence theorem entailed that:

within a very large but finite period of time, our article will again appear on this

same subject, in this same journal, read by the same individuals, as far as one may
discern, and this will happen indefinitely often.”

Bﬁt at the same time, Birkhoff and Lewis concluded their article on the stability of causal
systems by expressing a modest goal for mathematical models of the universe:
No matter how fascinating the purely mathematical study of causal systems may
be, it would seem not to be desirable to take them too seriously from a realistic
point of view as applicable to the actual universe. The real purpose of physical

speculation is to enable us to calculate only within certain prescribed limits of
error and for reasonable intervals of time the behavior of physical systems.®0

Birkhoff however never went as far as Andronov in doubting the possibility of
accurately modeling physical systems, and indeed the whole universe, with mathematical
concepts. Inspired by the famous "problem of stability” of the Sun-Earth-Moon system,
Birkhoff restricted the study of stability to that of orbits lying near a periodic (or central)
motion. Concerned with radio systems, Andronov imagined a more general type of
stability that applied not only to solutions of a system of differential equations, but to the
system itself.

In summary, for contemporaries in the 1930s, it would have been almost
impossible to juxtapose Andronov, Birkhoff, Cartwright, and van der Pol, as I just did, or

to think of them as belonging to a single discipline. In 1952, Mary Cartwright described

79 G. D. Birkhoff and D. C. Lewis, "Stability," 332.
80 G. D. Birkhoff and D. C. Lewis, "Stability," 333.
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the discipline she called "nonlinear vibration,” as "rather a curious branch of mathematics
developed by different people from different standpoints, straight mechanics, radio
oscillations, pure mathematics and servo-mechanisms of automatic control theory"!
Summarizing his "interdisciplinary” career—-before the word even existed—Balthasar
Van der Pol, however, could not belp voicing regrets at the lack of communication
between disciplines:

In my thirty years experience of rescarch work I have been struck time and time

again by the fact that the mathematician speaks a different language from that of

the physicist. . . . This difference of languages seems to me to be one of the
obstacles standing in the way of mutual understanding and appreciation.®2

When one refrain from projecting Smale's later synthesis on the past, the
remarkable fact in this prehistory of dynamical systems theory becomes, not that
communication across disciplinary boundaries proved so difficult, but that it indeed
sometimes took place. These few contacts however framed some common basis for the
mathematical and philosophical study of stability. The lack of a stable community with
clearly defined problems, tools, and social borders was one of the major reasons for the
"long neglect” felt by many actors. Many people working on closely related phenomena
hardly had a chance to communicate, and this created a sense of isolation. As we have
seen, Lefschetz was the one who came the closest to succeeding in creating a dynamic

research school, with publications, students, and a charismatic leader.

81 M. L. Cartwright, "Non-Linear Vibrations," 86.
82 B. van der Pol, "Mathematics and Radio," 1140.
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4.  ASIT GOES WEST. COARSENESS BECOMES STRUCTURAL
STABILITY

a) Filling Wholes

Apparently, Solomon Lefschetz—who was born in Russia—was a close friend of
Pontrjagin's.$3 They worked on closely related topics, and had high regards for each
other's work. While working on the translation of Andronov and collaborators’ book,
Lefschetz's attention could not failed to be drawn to the concept elaborated in part by his
friend.

However, Lefschetz judged that Theory of Oscillations needed to be adapted for
an American audience. "It became evident quite early that considerable condensation,
paring down and editing of the original was unavoidable if its value were not to be lost to
the non-Russian reader." Lefschetz therefore eliminated from the text "many lengthy and
purely theoretical discussions."#* In particular, the philosophical introduction, described
above, was condensed from 18 pages to merely 2, and much of its content was lost in the
process. Without this, we may venture that many of Thom's and Ruelle's ideas might have
appeared less novel at the time when they were formulated. In particular, the whole
discussion about coarse systems was thrown away. To redress this, Lefschetz included an
appendix in his translation, which more or less repeated the terms of the note published
by Andronov and Pontrjagin in 1937. Like the original though, it contained no proof.

Lefschétz had a flair for names; he had coined the word "topology" as a "snappy

title" for his 1930 monograph on a topic that had until then been called, following

83 Albert W. Tucker to J. Douglas Brown (September 30, 1959). Princeton Arch.
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Poincar€, analysis situs.85 Not to Lefschetz's liking, the term "coarseness” was replaced
by "structural stability." He thereby shifted the attention on the property rather than the
systems satisfying it. Partly as a consequence, he nearly divorced the mathematical
meaning of coarseness (or structural stability) from others of Andronov's concerns. Even
if, in two sentences, he drew attention to the physical significance of structural stability,
Lefschetz in effect demoted Andronov's idea from a methodolo gical guide for the study
of nonlinear systems to a useful, intriguing, but marginal and rather technical
mathematical concept.86

It is striking to note that the members of Lefscheiz's group who worked on
structural stability seemed to have come to Princeton with prior personal interest in it.
Lefschetz himself scarcely studied it at first. The group as a whole did not devote much of
its energy to it.87 Mainly this neglect was due to the fact that, as Dahan Dalmedico
emphasized, the focus of Lefschetz's school slowly evolved from an analytic study of a
few cases of concrete nonlinear oscillators, catering to perceived needs of engineering

science, toward a more global, and ambitious, program of classification of dynamical

¥ A. A. Andronov et al., Theory of Oscillations, vi.

85 Press Release (October 6, 1972). Princeton Arch. AC#109 Box 39. Solomon Lefschetz,
Topology, 2nd ed. (New York: Chelsea, 1956). The German word Topologie was the title
of a book written in 1847 by one of Gauss's students, Johann Benedict Listing. Lefschetz
also introduced the term "algebraic topology" instead of "combinatorial topology." A. W,
Tucker, History of Mathematics, Course 11-1962, NSF Institute, mimeographed lecture
notes by A. K. Funderburg.

8 "The physical necessity for this [structural stability] is fairly clear; in physical systems
one never knows exactly what the functions P and Q are and so one will naturally exclude
systems which are affected by ever so slight a modification of these functions.” A. A.
Andronov et al., Theory of Oscillations, 337-340.

87 Cf. S. Lefschetz, "Nonlinear Differential Equations.”
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systems.®® In fact, it was the attention placed on the notion of structural stability itself by
people coming from outside which impelled its direction to this evolution.

Following the publication of Theory of Oscillations, Father Henry DeBaggis, a
youﬁg professor at Notre Dame, joined the project in 1949 for two years, a reading of the
appendix having "awakened" his interest in structural stability. In Lefschetz’s plain words,
"DeBaggis undertook to establish a complete theory and this objective was attained."89
This work was facilitated by members of the Project. Without the assistance of
Menachem Schiffer and D. C. Spencer, who joined the Project in 1949-50 and 1949-51,
respectively "and that of Lefschetz it is safe to say that DeBaggis would never have
succeeded in carrying his research successfully.”90

In any case DeBaggis finally managed to provide all proofs omitted by Andronov
and Pontrjagin. He showed that a necessary and sufficient condition for a system defined
on a bounded region of the plane to be structurally stable was: the system (1) had at most
a finite number of singular points which can only be nodes, foci or saddle points; (2) no
separatrix joining saddle points; and (3) at most a finite number of limit cycles.91

In plain English, structurally stable systems were simple. Their trajectories tended

towards equilibrium or periodic solutions; and these were finite in number. Given a

88 A. Dahan Dalmedico, "La renaissance des systémes dynamiques."

89 S, Lefschetz, "Nonlinear Differential Equations," 15-16.

20'S. Lefschetz, "Nonlinear Differential Equations," 12.

1 To make this statement fully acceptable to a mathematician, additional technical
conditions should have been imposed. See H. F. DeBaggis, "Dynamical Systems with
Stable Structures,” Contributions to the Theory of Nonlinear Oscillations, 2, ed. S.
Lefschetz, Annals of Mathematics Series, 29 (Princeton: Princeton University Press): 37-
59, esp. 48. Also S. Lefschetz, Differential Equations: Geometric Theory (New York:
Interscience, 1957), 239-245; and A. Dahan Dalmedico, "La renaissance des systémes
dynamiques," 147-148.
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system of differential equations, one was therefore justified in only looking for these
simple solutions; provided, that is, that structurally stable systems were common enough
to be of any use. And it was for this purpose only that Andronov’s arguments in favor of
the physical significance of coarseness now played any role.

"In the study of nonlinear problems it is difficult for the mathematician to find rich
classifications of nonlinear systems which are sufficiently homogeneous in their
properties to yield an interesting theory."?? This had always been the central question for
the study of nonlinear differential equations. There was no use in studying particular
differential equations, except when one had a good reason to. A general method of
solution seemed out of reach. And no class of equations seemed to emerge from the
mathematical investigation alone. Structurally stable systems appeared to DeBaggis as a
class that, resorting to Andronov’s arguments, seemed rich enough to be relevant to the
mathematical modeling of physical phenomena. Stability requirements “provide a clue to
the restrictions a mathematician should place on his nonlinear problems."?? Tn DeBaggis’s
work, this paragraph, certainly inspired by Andronov, played no further role than

providing a justification for the mathematical study of structural stability.

b) A Density Theorem by Peixoto

Letschetz apparently showed great interest for DeBaggis’s work. Tn his 1957 book on the

geometric study of differential equations, Lefschetz mentioned it in the introduction.%*

°2 H. F. DeBaggis, "Dynamical Systems," 37.

?3 H. F. DeBaggis, "Dynamical Systems," 37,

9 S. Lefschetz, Differential Equations. See A. Dahan Dalmedico, "La renaissance des
systemes dynamiques,” 147.
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The same year, he welcomed two mathematicians coming from Brazil, again with a
specific interest for structural stability: they were Marilia and Mauricio Peixoto. "A man
of rare enthusiasm, and most careful thinker,” Lefschetz judged, "Mauricio soon made
noteworthy contributions to this most delicate topic."% Following Andronov and
Pontrjagin, DeBaggis had found necessary and sufficient conditions for a two-
dumensional dynamical systemn to be structurally stable. Lefschetz had termed these
"general systems." Tackling the problem by using a fully topological approach, Peixoto
went a step further. He proved that "most" dynamical systems on the two-dimensional
sphere were structurally stable. In technical terms, he showed the set of all structurally
stable systems on two-dimensional manifolds was an open dense subset of the space
containing all dynamical systems.? Tn other words, not only structurally stable systems
were very common, but on top of this, any system could be approximated by one.%?

This was a crucial step. Until then, the justification for studying structurally stable
systems had been provided by philosophical arguments a la Andronov. It was assumed
that structural stability could transfate accurately more or less vague assumptions about
the physical stability of systems under consideration. With Peixoto's density theorem,

rigorous mathematical arguments grounded the belief that every dynamical system (in

95 §. Lefschetz, " Nonlinear Differential Equations," 21.

% A subset A of Q is said to be open if every point in A is surrounded by points belonging
to A; it is said to be dense in £ if every point in Q either belongs to A, or lies arbitrarily
close to A.

97 M. M. Peixoto, "On Structural Stability," Annals of Mathematics, 69 (1959), 199-222:
"Structural Stability on Two-Dimensional Manifolds," Boletin de la Sociedad matemdtica
mexicana, 5 (1960) [Proceedings of the Symposium on Ordinary Differential Equations
and their Applications, Universidad nacional auténoma de México, 7-13 September,
1959], 188-189; Topology, 1 (1962), 101-120.
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two dimensions) could always be approximated by a structurally stable one. Structurally
stable systems were thus the only ones susceptible of accurately representing reality, and
this for mathematical reasons alone.

It is hard to believe that mathematics alone could dictate what kind of models are
to be found in nature. The following example shows plainly that, even after Peixoto’s
theorem, metaphysical assumptions could not be totally removed from discussions about
modeling. For a long time one of the most successful mathematical models, the harmonic
oscillator turns out to be not structurally stable. It can indeed be approximated by a
slightly anharmonic oscillator (with a very small friction term).”8 In the long run, their
solutions are however very different since the anharmonic oscillator, no matter how small
the friction term, will always tend towards rest. The harmonic oscillator, on the other
hand, will oscillate forever. Does this mean that the harmonic oscillator is useless for the
mathematical modeling of reality? No, it just means that it represents an imperfect
idealization of reality; a fact that was long known. Moreover, when symmetry
considerations impose that energy is conserved (think of quantum field theory), the
harmonic oscillator might even be an exact representation of reality.

To express his density theorem, Peixoto introduced a new word into the theory of
differential equations: structurally stable systems were "generic," he wrote in 1962 (with

quotation marks).” It was through René Thom, who had picked it up in the mid-1950s for

% The anharmonic oscillator system can be written as follows: dyldt =yy—x; deldt=y.
The harmonic oscillator has the same form without the Y-term. In the ' topology used by
Peixoto, the distance between the two systems tends to zero as v does.

9 M. Peixoto, "Structural Stability," Topology, 101.
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hj's study of singularities, that Peixoto became familiar with the term.1% The idea of using
a similar concept in the theory of differential equations however went back to Poincaré
(he studied the considerably different case of solutions that have probability 1 of
happening, excluding exceptional trajectories from consideration), and had been picked
up more or less rigorously by Hadamard, Birkhoff, Cartwright-Littlewood, and Eberhard
Hopf.10! Genericity was however a tricky concept to use, and often was the cause of much
confusion.102

In his final report to the ONR, Solomon Lefschetz lauded Mauricio Peixoto's work
in the following terms:

Especially noteworthy is his introduction of a metric space S of differential

equations . . . and showing that under a suitable definition one may consider the

structural[ly stable] systems as dense in S. . . . The work of Mauricio Peixoto

during his stay with the Project, his cbullient and enthusiastic attitude were so

outstanding that when . . . RIAS was organized in the Fall of 1957, he was asked
to join it for the following year (1958-59).103

100 See R. Thom, "Les singularités des applications différentiables,” Séminaire Bourbaki,
7, exposé #134 (May 1956), "Un lemme sur les applications différentiables,” Boletin de la
Sociedad matemdtica mexicana, 2nd ser., 1 (1956): 59-71, 59-60.

10T On Poincaré's probabilist concepts, see A. Dahan Dalrned1c0 "Le difficile héritage,"
17; J.-L.. Chabert et A. Dahan Dalmedico, "Les idées nouvelles," 296-303; and M. W,
Hirsch, "The Dynamical Systems Approach,” 21. See G. D. Birkhoff, Dynamical Systems,
197; M. L. Cartwright and J. E. Littlewood, "On Non-Linear Differential Equations,"
182n; E. Hopf, "A Mathematical Example Displaying Features of Turbulence,"
Communications on Applied Mathematics, 1 (1948): 303-322, 305.

102 See M. W. Hirsch, "The Dynamical Systems Approach,” 35-36. Also see A. Weil,
"Correspondence,” American Jowrnal of Mathematics, 79 (1957): 951-952. Written in
Italian, this anonymous letter, which shows using an argument of Thom's that abusive use
of genericity could lead classical Italian algebraic geometers to erroneous results, was
attributed to Weil by René Thom.

103 S, Lefschetz, " Nonlinear Differential Equations," 21-22. For a more technical
discussion of the work of DeBaggis and Peixoto about structural stability, see again A.
Dahan Dalmedico, "La renaissance des syst®mes dynamiques,” 145-148.
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Starting with Andronov and Pontrjagin’s article, coarseness and later structural
stability had been restricted to dynamical systems with two variables. Besides simplicity,
a good reason for this limitation was that these systems represented second order
differential equations: the most useful ones in dynamics. Nothing in the definition
provided in 1937 forbade an extension to higher dimensions. By introducing such a
definition, Peixoto thus opened up vast uncharted territories. Under Stephen Smale’s lead,
the program of classifying structurally stable systems in n dimensions would provide an
important incentive for studying dynamical systems in the years to come. In the process,

structural stability would, for the first time, reach a wide audience.

5. SMALE’S *BAD’ CONJECTURE AND THE HORSESHOE: AN
ADMIRABLE BATTLE’

“Smale made a bad conjecture.” Thus does James Gleick begin his description of Stephen
Smale’s work which would lead him to forge his famous horseshoe.1% "Bad’ is here a bad
choice of word. Smale’s conjecture was indeed shown (by himself!) to be faulty. Butin a
way it was as successful a conjecture as can be. It was the logical follow-up of decades of
research on structural stability, and furthermore it led to an unprecedent boom in the study
of dynamical systems. One of Smale’s students, Bob Williams, described the benefits of
his mentor’s audacity: "he’s brave enough to make the conjectures, so we got to play with

them."105

104 ], Gleick, Chaos, 45.
105 R. F. Williams in From Topology to Computation, 179..
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In charge of presenting Smale’s work to the 1966 International Congress of
Mathematicians at Moscow, René Thom emphasized his special ability of suggesting
fruitful directions for mathematical research:

If Smale's works perhaps do not possess the formal perfection of definitive work,

it is because Smale is a pioneer who take risks with a tranquil courage; in a

completely unexplored domain, in a mathematical jungle of inextricable wealth,
he is the first to have shown the way and placed the first milestones.!06

Late in the summer of 1938, at Princeton, Peixoto met Smale. And the latter, a
topologist, showed some interest for Peixoto's work on structural stability. "I was
delighted to see this interest," remembered Peixoto; "at that time, hardly anybody besides
Lefschetz cared about structural stability."197 Peixoto was hitting on a problem. Having
generalized the definition of structural stability to higher dimensions, he was lIooking for
an equivalent to DeBaggis's theorem in » dimensions. In particular, condition (2) above
(see p. 276), which stated that no separatrix ran between two saddle points (the "no
saddle-connection condition™), was not obvious to transpose. Smale, using a notion

introduced by Thom, found a solution to this problem.

a) The Topologists’ Hand

Born in 1932 in Flint, Michigan, Steve Smale received his Ph.D. in 1956 in "a new branch

of mathematics called topology" with Raoul Bott at the University of Michigan.108 That

106 R. Thom, "Sur les travaux de Stephen Smale," Proceedings of the International
Congress of Mathematicians (Moscow, 1966): 25-28, 28.

107 M. M. Peixoto, "Some Recollections of the Early Work of Steve Smale," in From
Topology to Computation: Proceedings of the Smalefest, ed. M. W. Hirsch et al. (New
York: Springer, 1993): 73-75, 73.

108 5. Smale, "Chaos: Finding a Horseshoe on the Beaches of Rio," 2. Written for a
meeting in Rio de Janeiro, in March 1996, celebrating the 45th anniversary of the
National Research Council of Brazil (CNPq), this article was posted on the Web by
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summer, Smale went to a topology symposium at Mexico City, where he met Thom and
two graduate students from the University of Chicago Morris W. Hirsch and Elon
Lima.!% These encounters decisively shaped Smale’s later involvement with dynamical
systems.

The next fall at Chicago, where Smale got his first teaching position, Thom
lectured on transversality theory, which generalized the notion of secant for manifolds
and topological spaces. Three years later, Smale would use the notion of transversal
intersection in order to solve the problem that stopped Peixoto.!10 Moe Hirsch became

Smale’s first, though "informal," student and, later, his colleague at Berkeley in the

Smale himself. I do not know if it has been published. The information for this section
was provided by this article and S. Smale, "On How I Got Started in Dynamical Systems
(1959-1962)," (partly based on a talk given at a Berkeley seminar circa 1976), in
Mathemarics of Time (New York: Springer, 1980) [hereafter MT): 147-151; "The Story of
the Higher Dimensional Poincaré Conjecture (What Actually Happened on the Beaches of
Rio)," The Mathematical Intelligencer, 12(2) (1990); 44-51; both repr. in From Topology
to Computation, ed. M. W. Hirsch et al.: 22-26 and 27-40; and Smale's interview in More
Mathematical People: Contemporary Conversations, ed. D. J. Albers, G. L.
Alexanderson, and C. Reid (Boston: Harcourt Brace Jovanovich, 1990): 305-323. See
also J. Palis, "On the Contribution of Smale to Dynamical Systems," in From Topology to
Computation, 165-178.

109°S. Smale, "On How I Got Started," 147.

10 Cf. J. Palis, "On the Contribution of Smale,” 166. In technical terms, the stable and
unstable manifolds at limit sets (fixed points or limit cycles) are defined as the sets of
points that tend towards the limit sets as ¢ goes o, respectively, +eo Or —oo; Smale’s
condition was that the stable and unstable manifolds intersect transversally. For
definitions, see S. Smale, "Morse Inequalities for a Dynamical Systems," Bulletin of the
American Mathematical Society, 66 (1960): 43-49, 46-47; and Earl A. Coddington and
Norman Levinson, Theory of Ordinary Differential Equations (New York: McGraw Hill,
1955), 330-333. About Thom's lecturing at Chicago, see S. Smale, "How I Got Started,"
148, and "The Story of the Poincaré Conjecture,"” 29. References for transversality: see R.
H. Abraham, "Transversality in Manifolds of Mappings," Bulletin of the American
Mathematical Society, 69 (1963): 470-474; R. H. Abraham and J. Robbin, Transveral
Mappings and Flow (New York: Benjamin, 1967); and the excellent book by V.
Guillemin and A. Pollack, Differential Topology (Englewood Cliffs: Prentice Hall, 1974),
Chap. 2.
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second half of the 1960s at the time when they developed dynamical systems theory with
a whole new generation of students. Regarding their exceptional complementarity, John
R. Stallings once wrote: "Smale is the Mad Genius and Hirsch is the Hard Worker."111
Finally Flon Lima, a student from Brazil, was responsible for introducing Mauricio
Peixoto to Steve Smale, when the latter moved to the Institute for Advanced Study at
Princeton with a two-year NSF postdoctoral fellowship late in the summer of 1958,

Why was Smale interested at all in Peixoto’s work on structural stability? His
domain of expertise then hardly overlapped with the field of mathematics he came to. In
fact, Smale recounted retrospectively, he at once saw that topology could prove a first
class tool for this study. "I was immediately enthusiastic,” he wrote, "not only about what
he [Peixoto] was doing but with the possibility that, using my topology background, 1
could extend his work to 7 dimensions.” 1'2 The involvement of renown topologists
confirmed his feeling. "T believe that it was the topologist’s, Pontryagin and Lefschetz,
hand in the subject that contributed to the fact that I was ready to listen to Mauricio."113

In any case, as a offshoot of the contact he had with Peixoto, Smale wrote two
papers in 1959, in which he made his famous and bold conjecture. Smale suggested that
the equivalent in more than two dimensions of Lefschetz's general systems—those used

by DeBaggis—was a necessary and sufficient conditions for structural stability. Thom

Ut Quoted in S. Smale, "The Story of the Poincaré Conjecture," 34. Hirsch is called
Smale's "informal" student by J. Palis, "On the Contribution of Smale," 175.

112.S. Smale, "On How I Got Started," 148. My emphasis.

113 §. Smale, "Chaos," 13. There is a bit of black humor in this statement since in 1907
Lefschetz lost his two hands in a factory accident, a tragic accident that determined his
decision of becoming a mathematician instead of an engineer. See A. Dahan Dalmedico,
"La renaissance des systémes dynamiques," 133-134.
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later called this class of dynamical systems "Morse-Smale systems."!14 Smale’s conjecture
had two parts:

(A) It seems at least plausible that [Morse-Smale systems] form an open dense set
in the space . . . of all vector fields. . . .

(B) It seems likely that the conditions [for a system to be Morse-Smale] are
necessary and sufficient conditions for [the system] to be structurally stable in
the sense of Andronov and Pontrjagin.!15 '

We therefore see that Smale’s celebrated conjecture actually was a pair of conjectures.
Proposition (A) generalized Peixoto’s density theorem, while (B) extended DeBaggis’s
theorem, to higher dimensions. Together they implied that most dynamical systems were
structurally stable. To sense how bold it was to suggest this, let us note, as Peixoto did in
1962, that it was not known, at the time, whether on any n-dimensional manifold,
structurally stable systems even existed.116

Armed with Morse-Smale systems, "Smale began an admirable battle to have a
global description (if only conjecturally) of ‘most’ of the world of dynamics, still hoping
that the stable systems formed an open dense subset of it."117 About fifteen years later,
Smale acknowledged that he "was extremely naive about ordinary differential equations
at that time and was also extremely presumptuous.” His "overenthusiasm” had led him to

suggest that Morse-Smale "systems were almost all (an open dense set) of ordinary

14 See S. Smale, "How I Got Started,"148. See Jacob Palis, "On Morse-Smale Dynamical
Systems,” Topology, 8 (1969): 385-405. Morse-Smale systems therefore consisted of the
hyperbolic dynamical systems which had only a finite number of fixed points and closed
orbits as their limit sets (in this condition, limit sets were later replaced by nonwandering
sets; see J. Palis, "On the Contribution of Smale," 167), and whose stable and unstable
manifolds at the limit sets intersected transversally.

115 S. Smale, "Morse Inequalities," 43.

116 M. M. Peixoto, "Structural Stability," Topology, 101.

H7 J, Palis, "On the Contribution of Smale," 170.
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differential equations!"!1® In 1996—ten years after the publication and popular success of
Gleick's book—Smale stated this conjecture as “chaos does not exist!"!'% Smale had
however been warned not to be so bold.
Peixoto told me that he had met Pontryagin, who said that he didn't believe in
structural stability in dimensions greater than two, but that only increased the

challenge. . . . If I had been at all familiar with the literature (Poincaré, Birkhoff,
Cartwright-Littlewood), I would have seen how crazy this idea was. 120

b) "My Best-Known Work Was Done on the Beaches of Rio’12!

In September 1959, Steve Smale presented his conjecture at the Symposium on Ordinary
Differential Equations and their Applications in Mexico City. At this international
conference—one of the first convened by Lefschetz's group after the end of the Project—
many specialists who had at one time or another come to Princeton as part of the Project
attended. But newcomers and outsiders were also present: René Thom, Georges Reeb,
and, of course, Steve Smale.122 Considering the exposure it received, it is therefore
somewhat surprising that Smale's false conjecture was greeted with a certain success in
the mathematical community he was addressing.

In December 1959, invited by Peixoto and Lima, Smale left for the Instituto de
matematica pura e aplicada (IMPA) in Rio de Janeiro, Brazil. Shortly after his arrival, he

received a letter from MIT mathematician Norman Levinson. As Stnale recalled,

118 S Smale, "On How I Got Started,” 148.

119§ Smale, "Chaos," 4.

120 5. Smale, "On How I Got Started," 148.

121 Smale to Connick, Vice-Chancellor of Academic Affairs at the University of
California, Berkeley, unpublished, but quoted in Daniel S. Greenberg, "The Smale case:
NSF and Berkeley Pass through a Case of Jitters," Science, 154 (October 7, 1966): 130-
133; and S. Smale, "the Story of the Poincaré Conjecture," 39.
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Levinson "had coauthored the main graduate textbook in ordinary differential equations
[which Smale had cited]. He was a scientist to be taken seriously.”123 According to Smale,
Levinson’s unpublished letter informed him that one could not expect Morse-Smale
Systems to occur so generally, and that one of his own papers already contained a

counterexample for conjecture (B) above.

(i) Ancestors of the Horseshoe

Like Cartwright and Littlewood, Levinson participated in the effort spurred by World
War II by studying the van der Pol and Liénard equations. Building on their work,
Levinson studied in 1948 the solutions of the Liénard equation with forcing:

Y+ py)y +y=csint;
where y’and y” represented first and second derivatives with respect to z. Among the
solutions of the forced Liénard equation, Levinson showed that a family F exhibited a

"remarkably singular structure."124 Levinson emphasized that, contrary to relaxation

'22 Proceedings were published in the Boletin de la Sociedad matemdtica mexicana, 5
(1960).

123 §. Smale, "Chaos," 4. See also S. Smale, "On How I Got Started," 149. Smale is
referring to E. A. Coddington and N. Levinson, Theory of Ordinary Differential
Equations. Note furthermore that Earl Coddington acted as deputy-director of Lefschetz’s
Project from September 1957 to September 1958, thus just barely overlapping with Smale
at Princeton. On Coddington’s role in the Project, see S. Lefschetz, "Nonlinear
Differential Equations," 12.

124 Norman Levinson, "A second Order Differential Equation with Singular Solutions,"
Annals of Mathematics, 50 (1949); 127-153, 153. For his previous work in the field, see
N. Levinson, and O. Smith, "A General Equation for Relaxation Oscillations," Duke
Mathematical Journal, 9 (1942): 382-403; and N. Levinson, "Transformation Theory of
Non-Linear Differential Equations of the Second Order,” Annals of Mathematics, 45
(1944): 723-737, where he suggested that a "bad” curve of Birkhoff’s type could possibly
emerge from the forced van der Pol equation (p. 736).
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oscillations studied by van der Pol and his followers, "most of the solutions of F are
certainly not periodic.”

As Levinson noted, similar behavior, which they qualified as "very bizarre," had
already been observed by Cartwright and Littlewood just a few years before, 125 They had
exhibited an infinite set of "non-periodic trajectories, of the type described as
discontinuous recurrent {motion]’."126 This was how Birkhoff had described recurrent
motions that seemed not to be of such a trivial type as steady or periodic motions. In
phase space, such discontinuous recurrent motion defined, in the notation adopted by both
Cartwright-Littlewood and Levinson, a set K,, which was connected, of measure zero
(zero area), and which separated the plane in two open subsets, a bounded and an
unbounded one. Moreover all motions in a neighborhood tended towards X, as ¢ went to
infinity. But since it had different rotation numbers for limit points of interior or exterior
points, K, could not be a simple Jordan curve. "In fact," Ralph Abraham noted much later,
such curves "are fractals."127 In the terminology of Ruelle and Takens, they were strange
attractors (Chapter VII).

When Cartwright and Littlewood hit upon such strange sets, which they dared not

call "curves," they looked for comfort in the literature, As they wrote in their article, "our

125 M. L. Cartwright and J. E. Littlewood, "On Non-Linear Differential Equations,"” 182.
126 M. L. Cartwright and J. E. Littlewood, "On Non-Linear Differential Equations,” 183;
for a description of discontinuous recurrent motions, see G. D. Birkhoff, "Surface
Transformations and Their Dynamical Applications," Acta Mathematica, 43 (1922} 1-
119, chap. 5: repr. Papers, 2: 111-229. Sce also M. Morse, "Recurrent Geodesics on a
Surface of negative curvature," Transactions of the American Mathematical Society, 22
(1921): 84-100.

127 R, H. Abraham, "In Pursuit of Birkhoff’s Chaotic Attractor,” in Singularities and
Dynamical Systems, ed. S. N. Pnevmatikos (Amsterdam: North-Holland, 1985): 303-312,
303. '
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faith in our results was one time sustained only by the experimental evidence” provided
by van der Pol and van der Mark.!2¢ Hearing through headphones the noise produced by
the frequencies corresponding, or so they wanted to believe, to periodic solutions of the
van der Pol equation, they made the following observation:

Often an irregular noise is heard in the telephone receivers before the frequency

jumps to the next lower value. However, this is a subsidiary phenomenon, the
main effect being the regular frequency multiplication. 129

The irregular noise heard by the Dutch experimenters might have been the mark of a
continuous spectrum, which were later interpreted as revealing the presence of strange
attractors. Let me remark that more than sixty years later, Ruelle suggested that chaotic
attractors should be easy to observe experimentally in oscillating electric circuits.
It should be possible to visualize the transition to continuous spectrum. . . .
Alternatively, if frequencies are in the audible ran ge, the transition to continuous
spectrum should correspond to a change in the musical nature of the

corresponding sound. These experiments . . . have not vet been performed as far as
Lknow. Since they are easy, I strongly suggest that they should be attempted. 130

In their search for previous observation of strange sets, Cartwright and Littlewood
also found comfort in Birkhoff’s work. In 1932, in the words of Abraham, "Birkhoff
published a remarkable paper on remarkable curves."!3! Such curves arose in the study of
mappings from an annulus to itself considered in Poincaré's last geometric theorem.

Birkhoff acknowledged that he was at first surprised by the existence of such curves,

128 M. L. Cartwright and J. E. Littlewood, "On Non-Linear Differential Equations,” 182n.
129 B. van der Pol and J. van der Mark, "Frequency Demultiplication,” Nature, 120
(1927): 363-364. My emphasis.

190 D. Ruelle, "Sensitive Dependence on Initial Conditions and Turbulent Behavior of
Dynamical Systems,” Annals of the New York Academy of Sciences, 316 (1978): 408-416;
repr. TSAC, 175-184, 182. Ruelle's claim was not false since, van der Pol and van der
Mark's experimental observations did not correspond exactly to what he suggested.

13IR. H. Abraham, "In Pursuit," 303.
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having for a while exploited them for a "reductio ad absurdum" that failed.!32 In 1935,
Marie Carpentier was able to construct explicitly such a strange curve.!33 Cartwright and
Littlewood suggested that their K, was an example of "bad" topological behavior
comparable to Birkhoff’s remarkable curves. But Birkhoff’s and Carpentier’s curves were
invariant sets of an analytic mapping from the plane to the plane, not dynamical recurrent
sets.

Using the technique of the Poincaré map, Levinson (and Cartwright and
Littlewood before him) defined a transformation associated with the differential equations
as such: given 