CHAPTER VII: STRANGE ATTRACTORS

I 'am an old man now, and when T die and go to Heaven
there are two matters on which 1 hope for

enlightenment. One is quantum electrodynamics, and
the other is the turbulent motion of fluids. And about the
former I am really rather optimistic.

—Sir Horace Lamb.!

S1, jetant une pierre dans une mare, vous désirez savoir
ce qui se passe, il vaut infiniment mieux faire
I'expérience et la filmer, que d’essayer d'en faire la
théorie; les meilleurs spécialistes de I'équation de
Navier-Stokes seraient incapables de vous en dire plus.
—René Thom.?

We cannot hope that the old ape in us, clever as he may
be, has direct comprehension of abstract physical or
mathematical questions.

—David Ruelle.?

1. INTRODUCTION: A NEW ALTERNATIVE FOR THE MODELING
PRACTICE OF PHYSICS

For centuries, physicists aimed at unveiling laws of nature. Marching into the steps of

Sir Isaac Newton, they exploited the second law (F=ma) with great success. Just as

f At a meeting of the British Association for the Advancement of Science in London
in 1932, as recalled by S. Goldstein, "Fluid Mechanics in the First Half of This
Century," Annual Review of Fluid Mechanics, 1 (1969): 1-28, 23.

2 "If you want to know what happens if you throw a stone into a pond, it is infinitely
better to do the experiment and film it than to try to formulate a theory about it: the
finest specialists in the Navier-Stokes equations would certainly be incapable of
telling you more about it." R. Thom, "Une théorie dynamique de la morphogénese,”
Towards a Theoretical Biology, I: Prologomena, ed. C. H. Waddington (Edinburgh:
University of Edinburgh Press, 1968): 152-166, 154: repr. MMM, 13-38, 15.
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Newton had uncovered the dynamical equations governing the motion of planets in
heavens, physicists in the first half of the nineteenth century were able to derive from
first principles mathematical relations for fluid flow. Although, except for a few
simple (and simplistic) cases, it was rarely possible to exhibit exact solutions to the
Navier-Stokes equations, as they came to be known, this derivation had become an
inescapable part of the classical physics curriculum. The Navier-Stokes equations
provided, it was believed, the foundation for any theoretical understanding of
hydrodynamic phenomena. Tt was therefore a shock when, in 1971, two outsiders, a
physicist specializing in statistical mechanics and a mathematician who studied
dynamical systems, published a controversial article "On the Nature of Turbulence”
claiming nothing less than a new "mechanism for the generation of turbulence,"”
especially since the authors, as opposed to the current practice, never explicitly wrote
down the Navier-Stokes equations.*

This chapter aims at providing an account of the changes in physical modeling
which made it possible that a new model of the onset of turbulence could be proposed
without its authors ever feeling the necessity of mentioning the law found a century
and a half earlier by Claude Louis Navier and Sir George G. Stokes. Inspired by René
Thom's ideas, conceived and written at the Institut des hautes études scientifiques in
the spring of 1970 by the French physicist David Ruelle and the Dutch mathematician

Floris Takens, this article is remarkable for several reasons reaching beyond its

*D. Ruelle, "The Obsession of Time," Communications in Mathematical Physics, 85
(1982): 3-5, 5.



David Aubin VII - Strange Attractors 446,

introduction of the famous notion of strange attractors, which was to have a very
bright future. Above all, Ruelle and Takens’s article supplies both a symptom and a
direct cause for crucial changes that have been widely affecting the modeling practice
of theoretical physics ever since.

Based on first principles coming from either molecular hypotheses or
continuum mechanics, the partial differential equations of physics acquired, in the
course of the nineteenth century, an almost ontological status.5 A telling and much
studied instance of this process, which can be seen as originating in Fourier’s analysis
of heat flows, is provided by the rise of the notion of a field, which ultimately
subsumed the ether under an abstract set of differential equations written down by
Maxwell and his followers.® For Maxwell and Boussinesq, the complex diversity of
behaviors exhibited by solutions to partial differential equations reinforced

ontological commitments to them.”

4D. Ruelle and F. Takens, "On the Nature of Turbulence," Communications in
Mathematical Physics, 20 (1971): 167-192; 23: 343-344; repr. Chaos II, 120-147;
TSAC, 57-84. Quote from the abstract on p. 167.

? For an analysis of the dual basis for the derivation of mathematical laws based on
two sets of hypotheses, molecular or continuous, see Amy Dahan Dalmedico,
Mathématisations. Augustin-Louis Cauchy et l'école francaise (Paris: Albert
Blanchard; Argenteuil: Editions du Choix, 1992).

¢ See e.g. J. Z. Buchwald, From Maxwell to Microphysics: Aspects of Ectromagnetic
Theory in the Last Quarter of the Nineteenth Century (Chicago: University of Chicago
Press, 1985); B. J. Hunt, The Maxwellians (Ithaca: Cornell University Press, 1991).
See also J. Fourier, The Analytic Theory of Heat, Transl. A. Freeman (Carmnbridge:
Cambridge University Press, 1878).

7J. C. Maxwell, "Does the Progress of Physical Science Tend to Give any Advantage
to the Opinion of Necessity (or Determinism) over that of the Contingency of Events
and the Freedom of Will?" repr. The Scientific Letters and Papers of James Clerk
Maxwell, 2, ed. P. M. Harman (Cambridge: Cambridge University Press, 1995): 814-
823; V. J. Boussinesq, "Conciliation du véritable déterminisme mécanique avec
I'existence de la vie et de la liberté morale” (1878); repr. Cours de physique
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New modeling practices emerged in the late nineteenth-century with the
development of statistical mechanics under Maxwell and Boltzmann’s lead, which
offered the hope of basing the understanding of fundamental laws of physics on the
molecular hypothesis again. Quantum mechanics and the investigation of inter-
molecular forces provided a further pull in this direction. Later, mainly after World
War 11, statistical approaches were further developed with much success. But the
question of the relation between microscopic, molecular theories and macroscopic,
continuous differential equations always spurred passionate debates. As far as
macroscopic physics was concerned, the exploitation of fundamental laws, derived
from general principles and expressed by differential equations, only partially justified
by statistical and quantum mechanical considerations, remained the physicists’
dominant fougdation for their modeling practice.

In this context, the turbulence problem for fluid mechanics was a distressing
one. If, in traditional histories of physics, the discovery of an equation has often been
the culminating point, we might contend that the history of turbulence started with the
equation. Indeed, only when this equation existed did turbulence become a theoretical
problem. On the one hand, there was every reason to believe that the Navier-Stokes
equations provided a faithful description of classical fluid flows. On the other hand, it

was an experimental fact that extremely complex flows arose when the fluid was

mathématique de la Faculté des sciences, Compléments au Tome TT1. Paris: Gauthier-
Villars, 1922; and H. Poincaré, cience et méthode (Paris: Flammarion, 1908). About
this, see I. Hacking, "Nineteenth-Century Cracks in the Concept of Determinism,"
Journal of the History of Ideas, 44 (1983): 455-475; and M. A. B. Deakin,
"Nineteenth-Century Anticipations of the Modern Theory of Dynamical Systems,"
Archive for History of Exact Science, 39 (1988): 183-194.
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submitted to intense external stress; this complexity was called turbulence. The
turbulence problem lay in the relation between fundamental equations and their
solutions. In his own flowery way, French hydrodynamicist Joseph Kampé de Fériet
used the comumon metaphor of an inaccessible mountain peak to express the problem:
On one side, on a peak covered with perpetual snow, there waves in the wind,
in loneliness and silence, the flag of the Navier[-Stokes] equations; an
unfathomable abyss divides this icy summit from the ground on which is
pouring the incessant rain of experimental resuits. It is on this ground,
sometimes slightly boggy because of the abundance of rain, that mathematical

models are tentatively elaborated; . . . but is it not premature to brand these
models as theories of turbulence?®

To bridge the chasm dividing the Navier-Stokes equations from feasible
experiments or known solutions, was the "turbulence problem."® The above quote also
exhibits an interesting distinction between theories and models of turbulence, a
distinction that the study of Ruelle and Takens's article and its reception among fluid
dynamicists will underscore.

In their heart, physicists had always recognized that fundamental laws were
but the beginning of a theoretical solution to any problem. But for a long time, when
unable to solve the equations explicitly, physicists had few mathematical tools which

still could have enabled them to account for natural phenomena in a satisfactory

8 J. Kampé de Fériet, in Mécanique de la turbulence. Collogue international du CNRS
de Marseilles, 28 August - 2 September, 1961, ed. A. Favre (Paris: Editions du CNRS,
1962). See also Philippe Delache’s 1977 cartoon reproduced in U. Frisch, Turbulence:
The Legacy of A. N. Kolmogorov (Cambridge: Cambridge University Press, 1995),
253.

? F. Noether, "Das Turbulenzproblem,” Zeitschrift fiir andgewandte Mathematik und
Mechanik, 1 (1921): 125-138.
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manner.10 Historically, Ruelle and Takens’s article signaled the reencounter of physics
with qualitative mathematics. It would help to initiate a powerful alternative to the
endless quest for the final law of nature. Instead, more and more physicists started to
look anew into mundane phenomena, without relying too heavily on fundamental
laws. These laws, they began to think, might be unreachable with certainty, but they
hoped nonetheless to provide deep theoretical explanations for experimental data.

This chapter examines the conditions that enabled Takens and especially
Ruelle to attack the turbulence problem with some success and to come up with new
modeling practices. Their argument is summarized and contrasted with other
alternative pictures for the onset of turbulence. Their special situations at the ITHES
shaped the way they saw the possibility of adapting mathematical techniques of
dynamical systems theory to the study of turbulence. The earlier career of Ruelle in
statistical physics is then seen as providing the ground on which this new modeling
practice could grow.

In a second part, this chapter tries to place the Ruelle-Takens model within a
long-term survey of the history of turbulence. This part is meant to underscore the
changes in modeling practice that this model afforded. The history of the relationship
between the fundamental equations of fluid mechanics and turbulence is briefly

reviewed. It is then explained how a certain subdiscipline of fluid mechanics, called

10 A important research path that, unfortunately, I am nof pursuing here could be
called the big science of fluid flows. With large computers and wind tunnels, the
modeling of fluid flows in concrete situation was very different in practice than
anything before.
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hydrodynamic stability theory, was best suited to accommodate Ruelle and Takens’s
approach.

Briefly, Ruelle’s new alternative for physicists’ modeling practice displaced the
emphasis often put on specific models or fundamental laws of nature, in order directly
to tackle classes of models. "Contemporary rational thinking goes through successive
ontologies in name of the epistemic reality," Simon Diner once wrote.!! Without
resolving the conundrum of the nature of the relationship existing between
fundamental laws and observation, this new practice made models cheap and
dispensable, and rather focused on some essential topological features of observed
behaviors which were assimilated to the structural, yet dynamical, characteristics of
classes of models. In short, some physicists stopped looking at specific
representations of nature in order to study the consequences of the mode of

representation itself.

2. THE NATURE OF TURBULENCE: THREE ALTERNATIVES

The article published in 1971 by David Ruelle and Floris Takens "investigate[d] the
nature of the solutions of [the Navier-Stokes equations], making only assumptions of
a very general nature on [the equations]."!2 It provides an excellent probe for
examining this significant shift in the modeling practice of some physicists. They
introduced a method characteristic of an attitude, inspired by René Thom in particular,

that would become widespread. For Ruelle and Takens, it was not so much the

11'S. Diner, "A Renewal of Mechanism: Toward an Instrumental Realism," Dynamical
Systems: A Renewal of Mechanism, ed. S. Diner et al. (Singapore: World Scientific,
1986): 273-284, 281.
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detailed structure of the Navier-Stokes equation that mattered, but the very fact that
fluids could be described, with an amazing degree of precision, by dissipative
differential equations. From this fairly general starting point, and several other
technical assumptions which they did not even care to derive from the fundamental
equation, Ruelle and Takens were able to redefine the nature of turbulence and "give
some insight into its meaning, without knowing [the Navier-Stokes equations] in
detail."13 Quite decisively, they also made gualitative predictions that could be tested
in vitro or in silico, that is, by numerical simulations of fluid flows.

Originally rejected by a referee of the Archive for Rational Mechanics and
Analysis, Ruelle and Takens’s article had to be published in a journal of which Ruelle
himself was an editor.'# At first, according to Ruelle, the response from the physics
community to these "controversial ideas on turbulence” was slow to come and cold.15
This is not difficult to understand considering the extreme technicality of the
mathematics involved in the article from the point of view of physicists, and the
heresy against Landau’s widely accepted model. Besides, for those who penetrated the
mathematical technicalities, the crucial reliance of their argument on the concept of

generic solutions was rather hand-wavy. As described in Chapter V, this matter was

12 D. Ruelle and F. Takens, "On the Nature," 168. My emphasis.

13 D. Ruelle, "Méthodes d'analyse globale en hydrodynamique,” 7SAC: 1-36, 7.

14 Ruelle, Chance and chaos, 56, 63. Interview of David Ruelle by the author (7
February 1997).

15 Only 7 citations in the Science Citation Index, other than from the authors
themselves, for the years 1971-1974. See Graph 8 and D. Ruelle, "Turbulent
Dynamical Systems," Proceedings of the International Congress of Mathematicians
(Warsaw, August 1983), 275; Chance and chaos, 66.
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far from being settled in 1970. The following shows that Ruelle and Takens’s use of

this concept very much relied on the practices they observed around René Thom.

a) The Argument of Ruelle and Takens’s Paper

In 1971, David Ruelle and Floris Takens suggested, but did not show rigorously, that
when a fluid was subjected to increasing external stress, it went through a succession
of bifurcations, where different modes of vibration—i.e. different frequencies—
appeared.!6 So far, this merely was a rephrasing of the model proposed by Lev Landau
in 1944 and, independently, by Eberhard Hopf in 1942-1948. But Ruelle and Takens
went on to suggest, albeit once again without providing a rigorous demonstration, that
this bifurcation sequence had to stop after the manifestation of three different modes,
because a "strange attractor” appeared in a "generic" manner, and the fluid motion
ceased to be quasiperiodic.!? Strictly aperiodic motion was the new definition they
proposed for turbulence.

One striking feature of Ruelle and Takens's article was that they did not feel
the need to write down the Navier-Stokes equations explicitly. As we have seen
previously, as early as the fall of 1968 Ruelle had hoped that his approach could bear

on any problem concerning dissipative systems, and not only fluid motions. Their

16 Many notions, including the Navier-Stokes equations (see p. 509), from fluid
mechanics and dynamical systems theory that are used here but may not be already
clear to the reader are later introduced in the course of this chapter. They are however
not needed at present.

'"In 1978, the Ruelle-Takens scenario was deemed to arise after the appearance of
only two modes; S. Newhouse, D. Ruelle, and F. Takens, "Occurrence of Strange
Axiom A Attractors Near Quasi-Periodic Flows on T, m23." Communications in
Mathematical Physics, 64 (1978): 35-40; repr. TSAC, 85-90.
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omission of the Navier-Stokes equations probably was intended to underscore the fact
that their argument remained independent of its precise form.

The time evolution of a velocity field [for a fluid] is given by the Navier-
Stokes equations

dv
—=X,0)
ot

where X, is a vector field over H [the space of velocity fields v(x,7)]. For our

present purposes it is nof necessary to specify further H or X,.'8

The parameter |l represented the external stress applied on the fluid. In the
case of motion through a pipe, or past an object, a unique parameter depending on the
physical characteristics of the flow—the so-called Reynolds number Re—was the
only one determining the global behavior of the motion, i.e. whether or not it was
turbulent. For other situations, like convection when a fluid is heated from below, the
Raleigh number Ra played a similar role. As is explained below, the determination of
critical values of these parameters, at which the properties of the motion changed, had
been, for almost a century, the subject of numerous theoretical and empirical studies.

But Ruelle and Takens were not interested in particular critical values of the

parameter LL, only the general features of motion as this parameter increased. When
p=0, there was no external stress; but because of friction, the fluid would always

come to rest as time went to infinity. Transitory motion was not their concern. The

parameter |t represented external forces, so that when it was nonzero, the fluid could,

despite friction, be maintain in a state of perpetual motion. For small |1, the motion

12 D. Ruelle and F. Takens, "On the Nature,” 168. My emphasis. Compare with the
Navier-Stokes equations on p. 509.



David Aubin VII — Strange Attractors 454,

tended towards a stationary motion, that is, the velocity field remained constant for all
time: v(£10) =v,(1).

At a certain critical value Py, the flow went though a bifurcation, which Ruelle
and Takens identified as a the Hopf bifurcation. This meant that the velocity field
ceased to be independent of time, but started to oscillate at a given frequency ;. The
flow was periodic. In phase space, this was expressed by saying that, while for
stationary flows a fixed point existed which was an attractor for the system, when the
oscillatory mode appeared, this point ‘exploded’into a closed curve.

At a further critical value of the parameter |, a second bifurcation occurred
which gave rise to a second frequency @; of oscillation, and so on. This quasiperiodic
behavior was the picture conjectured by Landau and Hopf. When the value of the
parameter |t increased sufficiently, a situation arose in which "the ﬂuid.motion
becomes very complicated, irregular and chaotic, we have turbulence.”1® But how
could one describe this "chaotic” flow?

As the title of Ruelle and Takens’s paper indicated, what was at stake was the
very nature of turbulence. For Hopf, and especially Landau, the quasiperiodic flow
that resulted from the appearance of several oscillatory modes was turbulent. Ruelle
and Takens claimed that the quasiperiodic case was not generic for general dissipative
dynamical systems. From this, they concluded that it had no chance of being observed

and that one had to look elsewhere for a "mathematical explanation of turbulence."2

19 D. Ruelle and F. Takens, "On the Nature," 168.
20 D. Ruelle, "Strange Attractors as a Mathematical Explanation of Turbulence,”
Statistical Models and Turbulence: Proceedings of the Symposium at the University of



David Aubin VII - Strange Attractors 455.

Ruelle and Takens’s model for the onset of turbulence was dependent on their
exploitation of three main sources. First, their reliance on concepts stemming from the
qualitative study of dynamical systems made plain how much their explanation of
turbulence was dependent on the work of Thom, Smale, and his students. Second, the
emphasis with which they studied the Hopf bifurcation, and the techniques they used
to do so, were novel. As will become apparent, Hopf’s pair of articles had by and large
fallen into oblivion. Ruelle and Takens’s article was crucial in drawing attention back
to them and linking them with Landau’s scheme for turbulence. The third important
strain lay in Ruelle’s earlier work. In the following, these three strains will be
examined. Like for most of Chapter V above, there will be no pretense of presenting
an original history. Rather, this will convey, with an infﬁsion of relevant contextual
elements, a re-reading of the sources that were important for Ruelle and Takens when

in 1970 they wrote their famous article.

b) The Quasiperiodic Model for the Onset of Turbulence

(i) Physics a la Landau
As was said in Chapter VI, David Ruelle’s interest in fluid dynamics surely went as
far back as 1968. And his inroad into the field was provided by the famous textbook
Fluid Mechanics by Landau and Lifshitz. A Russian specialist in fluid mechanics who
wrote one of its only existing modern histories, G. Tokaty expressed his strong

admiration for this book as such;

California, La Jolla, 1971, ed. M. Rosenblatt and C. van Atta, Lecture Notes in
Physics, 12 (Berlin: Springer, 1972): 292-299.
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in my personal opinion and experience, among the more recent contributions
to fluidmechanics [sic], . . . by far the most outstanding in essence and
beautiful in mathematical form was the great book Mekhanika Sploshnykh
Sred [The Mechanics of Continuous Media] by Landau and Lifshitz, Moscow,
1954; it is difficult to imagine a professional pleasure superior to that
experienced while reading this book.?1

Ruelle did not seem to have enjoyed reading Landau and Lifshitz’s book as
much as Tokaty, but he did find a gem in it. "I worked my way slowly through the
complicated calculations that these authors seem to relish,” he recalled, "and suddenly
fell on something interesting: a section on the onset of turbulence, without
complicated calculations."22 In retrospect, it seems easy to notice that Landau’s
suddenly verbose prose was indicative of a conjecture. But he had nevertheless
deemed this conjecture important enough to publish it in a separate note, included in
the 1944 volume of the Proceedings of the Soviet Academy of Sciences.??

Little is known about the conditions in which Lev Landau came up with his
model for the onset of turbulence. In most biographical writing about him, the World
War II years do not seem to be well documented. It is only mentioned that his
Moscow Institute was evacuated to Kazan where he worked on defense-related

problems, and in particular the detonation of explosives.?* It would be interesting to

21 G. A. Tokaty, A History and Philosophy of Fluidmechanics (Henley on Thames: G.
T. Foulis, 1971), 223.

22 D. Ruelle, Chance and Chaos, 53.

23 L. D. Landau, "On the Problem of Turbulence," Doklady Akademi nauk SSSR (C. R.
de l'Académie des sciences de I'URSS), 44 (1944): 311-314; repr. Chaos I, 115-119;
and L. D. Landau and Evgueni Lifshitz, Fluid Mechanics, chap. 3, (Oxford:
Pergamond, 1959); Mécanique des fluides (Moscow: Mir, 1971); first Russian ed.
1954.

24 See, e.g., A. Livanova, Lev Landau, transl. I. Sokolov (Moscow: Mir [1978], 1981),
39; A. L Akhiezer, "Recollections of Lev Davidovich Landau," Physics Today, 47
(June 1994): 35-42; and G. Gorelik, "Lev Landau, Prosocialist Prisoner of the Soviet
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know whether his theory of turbulence stemmed from consideration of this kind of
applications. And although he seems to have expressed contempt for mathematical
physics—he called it "mathematical lyricism"*—it would also be important to know
the extent to which he was in contact with the Soviet mathematicians already
discussed, namely Andronov, Kolmogorov and their followers.

A most important feature to notice about Landau's article was his reliance on
arguments of a very general nature, which already made them potentially applicable to
situations much different from the turbulence problem. No doubt Lev Davidovich
Landau (1908-1968) impressed his mark on many, if not all, portions of theoretical
physics in the twentieth century. Landau's contribution to t_he turbulence problem may
not have been as spectacular as in other fields, but it provided a concise, intuitive
picture of the mathematical mechanism responsible for turbulence. In addition to his
theoretical work, Landan built a successful school of theoretical physics and trained a
whole generation of students, for whom he wrote, with Evgueni Lifshitz, the famous
Course in Theoretical Physics, of which the book on fluid mechanics was one
volume. This course remains one of the most comprehensive syntheses of this field in
the twentieth century. "I am the last universal physicist,” Landau was quoted as saying
after Enrico Fermi's death in 1954, and many indeed agreed with him.26

The paper published in 1944, can therefore be seen as a manifestation of

Landau's universality. Indeed, as opposed to most previous works on the onset of

State,” Physics Today, 48 (May 1995): 11-15; Karl Hall, "Moral Economy of Soviet
Physics Circa 1937," HSS Meeting in Atlanta (November 11, 1996).

25 A. Livanova, Lev Landau, 69.

26 A. Livanova, Lev Landau, 11-12.
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turbulence in fluids, Landau’s explanation of this phenomenon relied on general
arguments and applied to every situation where turbulence arose in fluids. It was an
actualization of a practice Ruelle called "Physics 4 la Landaw."?7 It consisted in
modifying the linearized theory by including the first nonlinear terms in the
perturbation expansion, and sometimes, as in the case of turbulence, exhibiting new
and interesting qualitative features.

In his 1944 paper, which was included almost untouched in his book with
Lifshitz, Landau investigated the behavior of the solutions of the Navier-Stokes
equations for Reynolds numbers slightly above critical values. Using old arguments
about the stability of solutions, he contended that an oscillatory perturbation to the
stationary solution was bound to arise, past a critical value of Re. In fact, he had to
acknowledge that there was no theoretical foundation for this phenomenon. Only
experimental data indicated that it was s0.28 In any case, Landau's exploitation of
perturbation techniques allowed him to give an intuitive, but mathematically-informed
Jjustification for the fact that the motion ceased to be stationary for Reynolds numbers
larger than a critical value. Moreover, this justification was easily transposable to any
other case where such an oscillatory behavior could be obtained from a stationary
solution,

Boldly, Landau guessed, with no computation to back him up, that this process
would repeat ad infinitum, with new modes constantly appearing as the Reynolds

number went up.

27 D. Ruelle, "Idéalisation en physique," in Logos et théorie des catastrophes, ed. 1.
Petitot (Geneva: Patifio, 1988): 99-104, 103.
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In the course of the further increase of the Reynolds number, new and new
periods appear in succession, and the motion assumes an invelved character
typical of developed turbulence. For every value of Re the motion has a
definite number of degrees of freedom; in the limit, as Re tends to infinity, the
number of degrees of freedom becomes likewise infinitely large.2?

In the 1954 book version of the argument, Landau again avoided deducing the
appearance of the second frequency, much less the following ones, from the equations
of motion. He wrote that this study should be attempted along the same line as for the
first oscillatory mode. In a revealing footnote, he added: "But [it] has not been [done]
in any case, due to exceptional mathematical difficulties."3 As the process was
repeated over and over again, new frequencies were supposed to appear in such a way
that physical parameters of the fluid flow were given by an expression of the form:

x(B)= flwg,...,0,.0
where the frequencies ®y,...,00 were not rationally related. Then Landan defined
turbulence as being this complicated quasiperiodic behavior. “In this way, for
Re>Re the motion quickly acquires a complex, inextricable character. Such a
motion is said [to be] turbulent."3!

During World War 11, as is well known, another Soviet scientist made a
fundamental contribution to the study of turbulence which shaped much of the work
of the succeeding decades. In 1941, Andrei Kolmogorov published his famous article
on the statistical theory of developed turbulence. As it was concerned with the global

features of fluid flows at very high Reynolds numbers (so-called developed

28 .. D. Landau and E. Lifshitz, Mécanique des fluides, 127.
2% 1.. D. Landau, "On the Problem of Turbulence," 314.
30 L. D. Landan and E. Lifshitz, Mécanique des fluides, 131n. My translation.
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turbulence), and not at all with the mechanism responsible for the transition to
turbulence, it will not be dealt with it in any detail.32 But, since the roots of Ruelle and
Takens’s theory lay in a confrontation between fluid mechanics and dynamical
systems theory, one may wonder what a mathematician of Kolmogorov's stature, who
had deep knowledge in both hydrodynamics and qualitative dynamics, and who
directed a seminar on just these two topics together in the late 1950s at the Moscow
State University, might have thought of Landau’s scheme. According to his student
Vladimir Arnol'd, Kolmogorov did not believe in Landau’s theory and as early as the
late 1950s made fun of Landau’s torus: "Apparently, he [Landau} did not know of any

other dynamical systems."33

(ii) The Hopf Biﬁtrcation
One of the most important effects of Ruelle and Takens’s article, as shown by the
citation analysis summarized in Graph 8, was to draw the attention of a wide circle of
scientists back to a pair of forgotten papers written in the 1940s. As two specialists of
the stability theory approach of turbulence, Daniel Joseph and David Sattinger, wrote

at about the same time as Ruelle and Takens: "Hopf’s paper appeared in the Sach.

311, D. Landau and E. Lifshitz, Mécanigue des fluides, 131. My translation, and my
emphasis.

32 On Kolmogorov’s contribution to the theory of developed turbulence, which lies
outside of the scope of the present study, I refer to a careful introduction to the
subject: U. Frisch, Turbulence. A quick historical treatment is to be found in M.
Farge, "Evolutions des théories sur la turbulence développée,” Chaos et déterminisme,
ed. A. Dahan Dalmedico, et al.: 212-245. See also his original paper: A. N.
Kolmogorov, "Local Structure of Turbulence in an Incompressible Fluid at Very High
Reynolds Numbers,"” Doklady Akademi Nauk SSSR, 30 (1941): 299-303,
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Citations - Ruelle and Takens
Onthe Nature of Tubulence
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Graph 8: Citations to David Ruelle and Floris Takens, "On the Nature of
Turbulence," Communications in Mathematical Physics, 20 (1971), according to
the Science Citation Index, 1949-1988.

Akad. der Wiss. of 1942 and, unfortunately, is not generally available. . . . His results
and techniques do not appear to be widely known."3

The citation analysis of David Ruelle and Floris Taken’s 1971 famous article
allow us to assess Ruelle’s own perception that it was slow to be appreciated. Graph 8
shows the evolution in the number of citations to this article. Knowing that the paper
was rejected by the referee of the first journal it was sent to, we might suspect an

underground career. In order to best account for initial reactions to the preprint, I have

¥ V. I Amold, "On A. N. Kolmogorov," Golden Years of Moscow Mathematics, ed.
S. Zdravkovskan and P. L. Duren (Providence: American Mathematical Society,
1993): 129-153, 130.

3 D. D. Joseph and D. H. Sattinger, "Bifurcating Time Periodic Solutions and their
Stability," Archive for Rational Mechanics and Analysis, 45 (1972): 79-109, 81.
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Citations - E. Hopf
The Hopf Bifurcation
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Graph 9: Citations to Eberhard Hopf, "Abzweigung einer periodischen Lésung,”
and "A Mathematical Example,” and also the translation: "Bifurcation of a
Periodic Solution," according to the Science Citation Index, 1945-1988.

included citations to Ruelle’s work labeled as "to be published", "unpublished",
"personal communication”, and "preprint," during the period 1970-1974, with no
insurance, however, that they specifically referred to Ruelle and Takens’s work.

Even by taking into account its potential underground trajectory, the career of
the Ruelle-Takens article was quite slow to take off, indicating that its reception was
not a trivial affair. The period that saw the biggest surge in interest was 1975-1978,
thus mirroring almost perfectly the reception of Lorenz’s paper, with a shorter latency
period (Fig. 11).

Citation analysis also establishes that Ruelle and Takens’s paper was crucial
for having brought attention on Hopf’s work on bifurcation theory. In graph 9, I
plotted the evolution of the number of citations that both of his articles dealing with

the subject received in the period from 1945 to 1989. It is remarkable that these papers
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were hardly ever cited before 1971. Hopf’s 1948 paper was mentioned only once, in
1951 by fluid mechanicist G. Batchelor, while his 1942 Leipzig paper was cited, for
the first fime, 22 years after its publication, by Courant Institute mathematician Jirgen
Moser. This was two years before Thom referred to the Hopf bifurcation in Structural
Stability and morphogenesis. It becomes quite obvious that it was the success of the
Ruelle-Takens hypothesis that made Hopf's.

In his two articles, Eberhard Hopf (1902-1983) introduced and studied a
bifurcation [Abzweigung], now known as the Hopf bifurcation (Fig. 13).35 Modestly,
he pointed out that he scarcely thought there was anything new in his result,
emphasizing that the methods had "been developed by Poincaré perhaps 50 years
ago."36 Indeed, Henri Poincaré tackled a very similar problem in Les Méthodes
nouvelles de la mécanique céleste published in 1892. He studied the following

equation, reminiscent of Ruelle and Takens’s version of the Navier-Stokes equation:

%=Xi(x1,...,xn); X, _

—t =),
dt or -

Poincaré then posed his problem as such: "Suppose that, in the [above] equation, the

functions X; depend on a certain parameter |1; suppose that in the case P=0, we were

35 E. Hopf, "Abzweigung einer periodischen Losung von eine stationiiren Losung
eines Differentialsystems,” Berichten der Mathematisch-Physischen Klasse des
Scichcischen Akademie der Wissenschaften zu Leipzig, 94 (1942): 1-22; "Bifurcation
of a Periodic Solution from a Stationary Solution of a System of Differential
Equations," transl. L. N. Howard and N. Kopell, in The Hopf Bifurcation and Its
Applications, ed. J. E. Marsden and M. McCracken (New York: Springer, 1976):
163-193; and E. Hopf, "A Mathematical Example Displaying Features of
Turbulence," Communications on Applied Mathematics, 1 (1948): 303-322.
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S —

Figure 13: The Hopf Bifurcation of a Point Attractor into a Close Trajectory.
Redrawn from R. Thom, SSM, 97.

able to integrate the equations, and that we thus noticed the existence of a certain
number of periodic solutions. In which conditions will we have the right to conclude
that the equations still exhibit periodic solutions for small values of L?"37 As opposed
to Hopf however, Poincaré had not used the word bifurcation to describe this
situation.38

Still, Hopf believed his results to be "not without value" because they bore on
non-conservative systems, which Poincaré did not consider. It must also be noticed

that this bifurcation was extensively discussed by Aleksandr Andronov already in the

36 E. Hopf, "Bifurcation," 168.

37 Henri Poincaré, Les Méthodes nouvelles de la mécanique célesie, 1 (Paris:
Gauthier-Villars, 1892), 81.

38 He reserved the word bifurcation for another case: H. Poincaré, "Sur I'équilibre
d'une masse fluide animée d'un mouvement de rotation," Acta Mathematica, 7 (1885):
159-380; repr. (Euvres, 7: 40-141. See O. Gurel, "Poincaré's Bifurcation Analysis,"
Bifurcation Theory and Applications in Scientific Disciplines, ed. Q. Gurel and O. E.
Rossler (New York: New York Academy of Sciences, 1979): 5-26.
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early 1930s.29 Vladimir Arnol’d later wrote that the neglect of Andronov’s
contribution in the 1970s may have been partly his fault since he failed to emphasize
it when he started talking—to Thom especially—about the Hopf bifurcation in the
mid-1960s.4? Nevertheless, for the mathematicians and physicists who took up Hopf's
work where he had left it in 1948, "Hopf's crucial contribution was the extension from
two dimensions to higher dimensions," apparently not considered by Andronov, who
mainly worked in two dimensions. 4!

Born in 1902, Eberhard Hopf received his Ph.D. from Berlin University in
1925 for a dissertation in real analysis.*2 From 1926 to 1930 he then worked at the
Astronomische Rechenzentrum at Berlin University. Like Poincaré and Birkhoff, he
approached the study of differential equations starting from astronomical concerns.
Hopf then spent the next six years in the United States at the Harvard Astronomical
Observatory and then at the Massachusetts Institute of Technology (MIT), Cambridge,

Mass., where he might have been in contact with George D. Birkhoff.

3 V. 1. Arnol'd, "Catastrophe Theory,"” 229-230, in which are cited: A. A. Andronov,
"Mathematical Problems of the Theory of Self-Oscillations," The First All-Union
Conference on Auto-Oscillations, November 1931 (Moscow: GTTI, 1933): 32-71; and
A. A. Andronov and E. A. Leontovich, "Some Cases of Dependence of Limit Cycles
on Parameters," Uschen. Zap. Gor’k. Univ., no. 6 (1939): 3-24. See also S. Diner, "Les
voies du chaos déterministe dans 1'école russe,” Chaos et déterminisme, ed. A. Dahan
Dalmedico et al., 342.

W V. 1. Amold, Catastrophe Theory, 35.

47, E. Marsden and M. McCracken, "Preface," The Hopf Bifurcation and Its
Applications, ed. J. E. Marsden and M. McCracken (New York: Springer, 1976), ix.
42 Information for the following paragraphs was gathered from: M. Denker, "Eberhard
Hopt: 04-17-1902 to 07-24-1983," Jahresbericht der deutschen Mathematiker-
Vereinigung, 92 (1990): 47-57; and A. Icha, "Eberhard Hopt (1902-1983)," Nieuw
Archief voor Wiskunde, 4th ser., 12 (1994): 67-84. Significantly, earlier tributes to
Hopft did not emphasize his work on the Hopf bifurcation; see, e.g., P. M. Anselone,
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In 1936, he was appointed at Leipzig University to fill the chair of the late
Leon Lichtenstein, the founding editor of the Mathematische Zeitschrift. Going back
to Germany when it was ruled by the Nazis, Hopf’s move was resented by some
Cambridge mathematicians. Throughout those years, Hopf worked on fields of
mathematics that were closely related to physical concerns, more precisely the theory
of partial differential equations and ergodic theory. In this later field, one most note
that using the work of Birkhoff and von Neumann, he proved the ergodicity of
surfaces of negative curvature.®3 This was the work that René Thom studied for his
doctorate, and presented at the Bourbaki Seminar in 1951.

In 1942, Eberhard Hopf was drafted in the German war effort and called to
serve at the Lufifahrtforschungsinstitut in Einrig near Munich. Was it in contact with
applied fluid dynamics that he became interested in bifurcation theory? One thing is
certain: already in 1942, Hopf's paper briefly pointed out the possible application to
fluid dynamical cases, a field that he had started considering in the early 1940s.44

Appointed to Carathéodory's chair at Munich in 1944, he left in 1947 for the
Institute for Mathematics and Mechanics at NYU, directed by Richard Courant (later

to become the Courant Institut), "imported . . . as a paper clip scientist for the U.S.

"In honor of Professor Eberhard Hopf on the occasion of his seventieth birthday,"
Applied Analysis, 3 (1973): 1-5.

43 See especially, E. Hopf, Ergodentheorie, Ergebnisse der Mathematik und ihrer
Grenzgebiete, 5(2) (Berlin: Springer, 1937), where a unified treatment of this young
field of analysis was introduced. For a history of this theory, see A. Lo Bello, "On the
Origin and History of Ergodic Theory," Bollettino di storia delle scienze matzmatiche,
3 (1983): 37-75.

44 E. Hopf, "Ein allgemeiner Endlichkeitssatz der Hydrodynamik," Mathematische
Annalen, 117 (1941): 764-775.



David Aubin VII - Strange Attractors 467.

Army." He stayed abroad because, he said, "in the USA, there’s more time for
research."®

It was while at Courant’s Institute that he wrote his second paper dealing with
the Hopf bifurcation, this time strongly emphasizing the turbulence problem. Tt was
published in the Institute’s own Communications in Applied Mathematics, in an issue
where "all the papers . . . represent[ed] results which were obtained at the Institute . . .
under contract with the Office of Naval Research of the US Navy."46

In 1948, Hopf took up a teaching assignment with the U.S. Navy and then
Joined the Institute of Mathematics at Indiana University (in order to work with
Clifford Truesdell), where he stayed until his retirement in 1972. He spent the last
decades of his mathematical career working on hydrodynamic problems. But rather
than exploiting the Hopf bifurcation, he chose to develop further Jean Leray’s ideas,
also cited by Ruelle and Takens, and introduced below. Says his biographer, Hopf’s
"interest in hydrodynamics and turbulence . . . [was] based on his deep understanding

of differential equations."*’

(iii} ~ What Hopf Did and What He Did Not Do, Compared with Ruelle and
Takens

There are many similarities between Hopf’s original pair of papers and Ruelle and
Takens’s. From today’s point of view, Hopf’s work can be seen as already drawing the

connection between turbulence and bifurcation theory, as exhibiting notions similar to

4> M. Denker, "Eberhard Hopf," 48. About the Courant Institute, see A. Dahan
Dalmedico, "L'Institut Courant: le bastion des maths appliquées,” La Recherche, 300
(1997): 106-111.

46 Communications on Applied Mathematics, 1 (1948).
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that of attractors and genericity, and, like Landau, as explaining turbulence in terms of
an accumulation of frequencies. There also were obvious differences between Hopf’s
work and Ruelle and Takens’s. To confront them is a worthwhile exercise since it
underscores where the originality lay in Ruelle and Takens’s treatment of turbulence.
To start with, the appearance of a periodic solution from a stationary one in a
system of the form dx/d=F(x,1t) forms the basic result of Hopf’s 1942 paper. The
method Ruelle and Takens later used to prove Hopf’s theorem hardly departed from
Hopf’s. Moreover, already in 1942, examples taken from hydrodynamic situations
were on Hopf’s mind. In fact, he used classic results about the stability of solutions of
hydrodynamic equations as a way to orient his investigation of the bifurcation:
Since in nature only stable solutions can be observed for a sufficiently long
time of observation, the bifurcation of a periodic solution from a stationary
solution is observable only through the latter becoming unstable. Such
observations are well known in hydrodynamics. For example, in the flow
around a solid body; the motion is stationary if the velocity of the oncoming
stream is low enough; yet if the latter is sufficiently large it can become
periodic.48
In 1942, Hopf also mentioned the case of Taylor-Couette flows, an example
also briefly raised by Ruelle and Takens.* In 1948, Hopf’s second paper was
exclusively concerned with hydrodynamics and turbulence. Of course, the first
equations to be found in this article dealing with hydrodynamics were the Navier-

Stokes equations. But, like Ruelle, Hopf saw that his approach could be applied to

problems beyond turbulence. "There is no doubt, however, that many characteristic

47 M. Denker, "Eberhard Hopf,” 48.
48 E. Hopf, "Bifurcation," 167.
42 E. Hopf, "Bifurcation," 169n.
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features of the hydrodynamic phase flow occur in a much larger class of similar
problems governed by non-linear space-time systems."50

Like Ruelle and Takens, Hopf too parametrized the Navier-Stokes equation in
an abstract way by using the letter |1, but it was proportional to the inverse of Ruelle
and Takens’s own L. So, for |l large, he wrote, "the only flow observed in the long run
is a stationary one (laminar flow). This flow is stable against arbitrary initial
disturbances." He clearly expressed that this flow represented "a single point in Q [i.e.
the phase space].”">!

For smaller t, the common understanding then was, Hopf contended, that "the
turbulent flow observed instead displays a complicated pattern of apparently
irregularly moving ‘eddies’ of various sizes.” While Leray had suggested in the 1930s
that turbulence was due to a loss of regularity of the solutions (see below p. 472),
Hopf argued that there existed a smallest size of eddies, so that, on a small scale, the
flow seemed laminar and "the regularity of the flow would never be doubted."

Instead "the qualitative mathematical picture which the author conjecture[d]"
was the following. In the long run, the solution corresponded to a manifold M(n) in
phase space which was invariant under phase flow. This manifold had a finite number
of dimensions N() = dim M(u). For 1 large, M was a point and N=0. After the first
bifurcation at [1;, M became a one-dimensional Poincaré limit cycle. Then for Uy, us,
etc. smaller and smaller, N(u} increased at each bifurcation. Unaware of Landau's

work on turbulence, or not seeing the connection, Hopf believed his model for

3 E. Hopt, "A Mathematical Example," 304.
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turbulence "to be the first of its kind." 52 He emphasized that it was in gualitative
accord with turbulence, but not in a guantitative one. From today’s perspective, it is
easy to see that this scheme overlapped with Landau’s, but this was expressed in the
totally different language of qualitative dynamics. It is therefore not surprising that
David Ruelle, aware of both Landau’s model and dynamical systems theory as it was
being developed at the THES in the late 1960s, would see this similarity.

From a retrospective standpoint, many concepts used by Ruelle and Takens,
with which they came in contact only through the latest developments in qualitative
dynamics, are also to be found in Hopf's articles. He worked in phase space as a
convenient way to visualize the solutions of the Navier-Stokes equations. Like Ruelle
and Takens, he wondered: "What is the asymptotic future behavior of the solutions,
how does the phase flow behave for t—e0?"53 This proto-notion of attractors, which
however lacked certain of its important characteristics, can easily be recognized as
Birkhoff's ®-limit sets.

Moreover, Hopf used a proto-notion of genericity already present in the work
of Poincaré and Birkhoff on ergodic theory, with which he was well acquainted.
"Stability here means that the 'majority’ of phase motions tends for #—>eo toward M(LL).
We must expect that there is a 'minority' of exceptional motions that do not converge

toward M.">* But, as opposed to his predecessors and successors, he made no attempt

1 E. Hopf, "A Mathematical Example,” 304-305.

32 All quotes above are from E. Hopf, "A Mathematical Example,” 304. Note that
Landau was not cited by Hopf.

>3 F. Hopf, "A Mathematical Example," 304,

> E. Hopf, "A Mathematical Example,” 305.
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at giving a mathematical definition of what was meant by "majority" and "minority"
when dealing with phase motions.

What therefore could Ruelle and Takens do that Hopf had not? Well, the
second Hopf bifurcation, in which the limit cycle is inflated’ into a torus, had been
conjectured by Hopf, but not rigorously derived. Using Poincaré section techniques,
by then a classic tool of qualitative dynamics, Ruelle and Takens showed that the
second Hopf bifurcation could indeed occur. Generally, the outlook of Ruelle and
Takens's article was also quite different from Hopf's. While Hopf's papers elegantly
suggested his results, after thirty years of Bourbakism, Ruelle and Takens's looked
much more rigorous, too much so for physicists, but as we shall see, not enough for
mathematicians.

Of course, Ruelle and Takens's most original suggestion was that the picture
conjectured by Landau and Hopf was not generic, and that an open set of strange
attractors, a notion they then introduced, had to exist in the vicinity of any
quasiperiodic flow involving at least four oscillatory modes. Ruelle and Takens's
exploitation of recent results in dynamical systems theory, and more importantly, their
adaptation of what T have called the modeling practices of applied topologists, will be
the topic of section 3 below. Another possible explanation of turbulence that Ruelle
considered was Jean Leray's. This case highlights a wholly different mathematical

approach of the turbulence problem, much more informed by analysis.
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c) Leray: Turbulence as Irregularity

On October 22, 1969, mathematician fean Leray of the College de France spoke at the
Institut des hautes études scientifiques. The title of his talk was: "Turbulent Solutions
to the Equations of Fluid Mechanics."35 This had been the topic of his doctoral thesis
in 1933, supervised by French fluid mechanist Henri Villat.5¢ Since the mid-1930s,
however, Leray had spent little time working specifically on this problem. He rather
chose to devote much of his time to the study of partial differential equations and
topology in more abstract ways. As Ruelle and Takens only referred to Leray's 1934
article in Acta mathematica, we may therefore suppose that he essentially presented

the same views when he addressed the physicists of the THES, 35 years later.

(i) Turbulent Solutions

In his doctoral thesis, Leray conceived of turbulence as the breaking down of the
Navier-Stokes equations at a certain point. Faced with the problem of establishing the
existence of solutions to the Navier-Stokes equations, Leray considered an integral

equation, due to the Upsala physicist C. W. Oseen, whose solutions did not need to be

35 Rapport scientifique, Année 1969 - Séminaires et conférences (2/6/70), 6. Arch.
THES. At the time Ruelle first started to become interested in fluid mechanicshe met
with Leray, on 16-18 May 1968, at the Sixiéme rencontre entre physiciens et
mathématiciens de Strasbourg, where the later spoke of Feynman’s integrals. T
however ignore whether they discussed turbulence on this occasion.

56 J. Leray, "Ftudes de diverses équations intégrales non linéaires et de quelques
problémes que pose 'Hydrodynamique," Journal de mathématiques pures et
appliquées, 12 (1933): 1-82; "Essais sur les mouvements plans dun liquide visqueux
que limitent des parois," Journal de mathématiques pures et appliquées, 13 (1934):
331-418; "Sur le mouvement dun liquide emplissant l'espace," Acta Mathematica, 63
(1934): 193-248.
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differentiable.>” In doing so, Leray succeeded in using the most recent techniques of
topology and the theory of functional sets in order to solve a physically-motivated
problem, but at a cost:

We tried to establish the existence of a solution to the Navier-Stokes equations

corresponding to a given initial state: we succeeded only by renouncing
regularity of the solution at some conveniently chosen instants.38

Leray thus defined "turbulent solutions to the Navier-Stokes equations” as
irregular solutions to Oseen’s integral equation. The relation of "turbulent solutions" to
what physicists called turbulence, however, was not obvious.> This work on the
theory of equations and fluid mechanics was highly praised by Villat and Lebesgue,
and in 1934, Leray received the well-endowed Henri de Parville Prize from the
Academy of Sciences.®0

Leray’s suggestion was totally different from what Landau and Hopf would
propose ten to fifteen years later. Both had assumed that the Navier-Stokes equations
would apply at any Reynolds number whatsoever. "There must exist, in principle, for

all problems," Landau and Lifshitz postulated, "an exact stationary solution of

STC. W. Oseen, "Sur les formules de Green généralisées qui se présentent dans
I'hydrodynamique et sur quelques unes de leurs applications,” Acta mathematica, 34
(1911): 205-284; and several articles published in the Arkiv for matematik, astronomi
och fysik, from 1906 to 1919. Oseen already suggested that irregular solutions
represented turbulence, see P. Appel, H. Begin, and H. Villat, "Développements
concernant I'hydrodynamique,” d'aprés l'article allemand de A. E. Hove, Encyclopédie
des sciences mathématiques pures et appliguées, French ed. J. Molk and P. Appel,
original German ed. F. Klein and C. H. Miiller, tome IV, vol. 5 (Paris: Gauthier-
Villars, 1914, repr. Jacques Gabay, 1993), 181.

38 J. Leray, "Sur le mouvement," 245.

32 J. Leray, "Sur certaines classes d'équations intégrales non linéaires," CRAS, 194
(1932): 1627-1629, 1629. See J. Leray, "Problémes non-linéaires," L’Enseignement
mathématique, 35 (1936): 139-151, 149.
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hydrodynamical equations. . . . These solutions formally exist for any Reynolds
number."6! Neither Landau nor Hopf made any remark that might indicate that he had
considered Leray’s explanation of turbulence at the time. It was not that Leray’s
proposition was disproved by any later findings, but rather that no evidence was
offered that his hypothesis—a radical one since it implied that the fundamental
equation of fluid mechanics was no longer true after some critical point—was needed
in order to account for turbulence.52 But it is worth noticing here that, in the 1950s,
Eberhard Hopf would choose to pursue Leray's approach instead of the bifurcation
explanation he suggested in 1948.63

Leray's hypothesis ran against most of the history of turbulence in that it
supposed that the Navier-Stokes equations ceased to describe fluid flows faithfully

after a certain critical value, and had to be replaced by an integral equation.64 This

% See CRAS, 199 (1934): 1479; and Lebesgue and Villat's praises in Paul Fallot's
report, Assemblée des professeurs (24/11/46). Arch. CdF. G-iv-1 27Bb.

61 L. D. Landau and E. Lifshitz, Mécanique des fluides, 126. My translation from the
French.

62 As late as 1991, Marie Farge would contend that Leray’s "hypothesis has been up
until now neither confirmed nor refuted.” M. Farge, "Evolutions des théories,” 223.

63 Among many papers, see E. Hopf, "Remarks on the Functional-Analytic Approach
to Turbulence," Hydrodynamic Instability, ed. G. Birkhoff, et al. (Providence: AMS,
1962): 157-164.

64 There is much that could be said about Leray's work on turbulence and how it fits
with long-term trends in the history of fluid mechanics, and especially with the
interplay of mathematics, physics and engineering in the French context of the
interwar period. This effort was done around Villat and sponsored in large part by the
Ministry of Air: "one of the first examples [in France] of a scientific and technological
policy." See P. Mounier-Kuhn, "L'enseignement supérieur, la recherche mathématique
et la construction de calculateurs en France (1920-1970)," Collogue Enseignement
supérieur et formations technico-scientifigues supérieures en Lorraine - XIXe-XXe
siécles, Metz, décembre 1995, 8. See P. Mounier-Kuhn, "Un programme
technologique national: la Mécanique des fluides," Programmes Villes et institutions
scientifiques, Rapport final, ed. A. Grelot and M. Grossetti (CNRS PIR Villes, 1996).
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suggestion could be seen as stemming from the work of Yves Rocard, whom we have
already encountered studying self-oscillations (Chapter V). In 1929, the young Rocard
gave a series of ten conferences at the Institut de mécanique des fluides at the
Sorbonne, in which he proposed to examine the relationship of hydrodynamics with
the kinetic theory of gases.5® The molecular hypothesis, together with the statistical
methods introduced by Maxwell and Boltzmann, allowed him to recover the Euler and
Navier-Stokes equations, which were thereby confirmed as being consistent with
contemporary beliefs about the molecular structure of matter. Boundary conditions
could however have the effect of changing the dynamical equations of fluids. He
concluded that "the molecular hypothesis . . . ifnposed by reality, already leaves the
classical frame of hydrodynamics.” This conclusion, he added, "takes nothing away
from the mathematical interest of the problems of viscous fluid hydrodynamics, but
one should not expect ever to see a definitive concordance of [hydrodynamics] with
data." The turbulence problems—imposed by experiments, Rocard noted, and not
theory—might necessitate going beyond the classical theory of Navier and Stokes.
That viscous fluid hydrodynamics itself possessed the power to solve, to treat
such problems, this had hitherto not appeared to involve the shadow of a
doubt, so great was the confidence in the value of this discipline to adapt to

facts. Now there is ground for us to be more worried, more skeptical with
respect to these possibilities and . . . it seems clear that it is on the contrary by

I thank Pierre Mounier-Kuhn for having provided me these two texts. On the Pérés-
Matavard computing machine for hydrodynamics, see J. Pérés, with L. Malavard,
Cours de mécanique des fluides (fluides parfaits, aile portante, résistance) (Paris:
Gauthier-Villars, 1936); and L. Malavard, Applications des analogies électrigues ¢ la
solution de quelgues problemes de l'hydrodynamique (Paris: Blondel de la Rougery;
Gauthier-Villars, 1934).

Y. Rocard, L'Hydrodynamique et la théorie cinétique des gaz (Paris: Gauthier-
Villars, 1932).
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leaving the framework of classical hydrodynamics that difficulties of this kind
could be tackled.56

By undermining the validity of the Navier-Stokes equations, Rocard’s speculations
might have provided the ground on which Leray’s model could be built.

Even while unhappy with the scheme proposed by Landau and Hopf, David
Ruelle quite bluntly dismissed Leray’s ideas, too. "While such a breakdown [of the
validity of the Navier-Stokes equations] may happen, we think that it does not
necessarily accompany turbulence."%? He just did not want to deal with the
complicated issue of the existence and uniqueness of the solutions to the Navier-
Stokes equations: "Turbulence has probably nothing to do with these difficulties.”68
This later field had been, and would be, the object of numerous studies; it was the
concern of many applied mathematicians, without much to show as an end result of
decades of research as far as physical problems were concerned. Ruelle just deemed it
irrelevant, since he could propose an explanation which only relied on the hypothesis
that turbulent flows were the solution of a dissipative nonlinear equation, and not

necessarily of precisely the Navier-Stokes equations.

{ii) What Use for the Theory of Equations? Existence and Uniqueness
Theorems

David Ruelle therefore deemed a whole thriving branch of (applied) mathematics,

namely the search for existence and uniqueness theorems in the theory of partial

66 Y. Rocard, L 'Hydrodynamique, 149-150. My emphasis.

67 D. Ruelle and F. Takens, "On the Nature," 57. In his Lausanne lecture notes, Ruelle
only cited the conclusion of Leray’s paper, which I quoted above. D. Ruelle,
"Méthodes d'analyse globale," 5-6.

6 D). Ruelle, "Strange Attractors as a Mathematical Explanatlon,” 295.
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differential equations, as of little importance for the study of turbulence. This attitude
was in a striking opposition to the views expressed by Szolem Mandelbrojt when, on
February 16, 1947, he recommended Jean Leray’s candidacy for the chair on Theory
of Differential and Functional Equations at the Collége de France.® In his defense,
Mandelbrojt claimed that formal integration of differential equations had lost the
importance it once had.
Even supposing that a [formal integral] could be obtained, one would have, in
order to grasp the properties of the solution thus computed, much more
difficulty than by simply starting from the fact that it satisfies the given
equation. In other word, progress is rarely achieved by adopting this formal

point of view, as it is now called with some contempt, which for that matter is
rather justified. 70

Mandelbrojt then claimed that the first property that one needed to establish
was that the solution to an equation with given boundary conditions, existed. The
second was that it was unigue. Only after "these two problems having been solved, do
we need study the general propoerties of the solution."7! Strikingly, physicist Ruelle
totally reversed mathematician Mandelbrojt's order of priority.

The approach to the study of differential equations which focused on existence
and uniqueness theorems had a long history in mathematical physics. This history
regularly exhibited misunderstanding between mathematicians and physicists. Tts

classic expression was that "in general, existence theorems have little interest for the

8 A founding member of Bourbaki whom he had since left, Mandelbrojt was Benoit
Mandelbrot's uncle. For biographical information about Mandelbrojt, and in particular
his involvement with Bourbaki, see L. Beaulieu, Bourbaki, 384 and passim.

70 Exposé de S. Mandelbrojt, Assemblée des professeurs (16/2/47). Arch. CdF. G-iv-1
28f.

71 Exposé de S. Mandelbrojt (16/2/47). Arch. CdF. G-iv-1 28f.
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physicist."7? And Rayleigh confirmed this in 1916, when, reviewing the fourth edition
of Horace Lamb’s Hydrodynamics, he wrote:
‘existence theorems,’. . . though demanded by the upholders of mathematical
rigour, tell us only what we knew before, as Kelvin used to say. . . . What is

strange is that there should be so wide a gap between [the physicist’s] intuition
and the lines of argument necessary to satisfy the pure mathematician.”

Leray’s work in hydrodynamics could be taken as a counterexample for this
widely shared view.’* Here existence theorems seemed to imply that turbulence was
due to the breaking-down of the classic Navier-Stokes equations. On the contrary,
Ruelle and Takens’s hypothesis was simply a reaffirmation that existence theorems
were secondary to the physicist’s concern with the behavior of solutions.

In view of Bourbaki’s dominance of postwar French mathematics, it is
somewhat surprising that Leray was chosen over another candidate who was none

other than André Weil. Not only one of the most prominent Bourbakis, Weil was, by

72V, Volterra, "Drei Vorlesungen iiber neuere Fortschrifte der mathematischen
Physik," Arkiv der Mathematik und Physik, 22 (1914): 97-181; repr. Opere
matematiche, 3 (Rome: Accademia nazionale dei lincei, 1957): 389-470, 441. Quoted
by J. Gray, "Mathematics and natural Science in the 19th Century: The extraordinary
Success of the Classical Approaches. Poincaré, Volterra, Levi-Civita, Hadamard,"
Collogue International d'histoire des mathématiques, Luminy Marseilles, September
1997. See also G. Israel, "Vito Volterra: un fisico matematico di fronte ai problemi
della fisica del Novecento," Rivista di storia della scienza, 1 (1984); 39-72.

73 Lord Rayleigh, Review of H. Lamb, Hydrodynamics, 4th ed., Nature, 97 (1916):
318; repr. Scientific Papers, 6 (Cambridge: Cambridge University Press, 1899-1920):
400-401. Quoted by S. Goldstemn, "Fluid Mechanics," 3.

74 "You people spend much time and much wit to show the existence of solutions
whose existence is often evident (o us for obvious physical reason,” Theodore von
Kéarmén imagined an engineer saying to a mathematician. "Tooling up Mathematics
for Engineering," Quarterly of Applied Mathematics, 1 (1943): 1-6, 4. On the other
hand, Leray's methods for proving existence and uniqueness theorems were those
taken up by Eberhard Hopf, and further developed by, among others, the founder of
an important school of applied mathematics in postwar France, J.-L. Lions, "Les
équations de Navier-Stokes," Séminaire Bourbaki, 11(3) (May 1959): exposé #184.
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then, already recognized worldwide as a first class mathematician.”> About Weil,
Mandelbrojt simply remarked in 1947 that he was "a very great mathematician, but
[that] there [was] no point in talking here of his work, since there [was] no link
between Weil’s work and the title of the chair created.”

This shows that the relation between pure and applied, Bourbakism and anti-
Bourbakism is no simple matter when dealing with immediate postwar France. Many
factors informed the preference expressed by the Assembly of Professors at the
Collége de France. We must note that Leray had not been Mandelbrojt's first choice.
Indeed, the procedure for hiring new professors at the Collége de France was a two-
step process. When funds for a chair became available, the initial decision that
professors had to make was how to rename it, and only at a further meeting did they
suggest people to fill it. In practice, however, the naming of the chair was the moment
when decisions were really taken, as it often was the case that professors presented
candidates at the same time as they argued for their chair. On November 26, 1946,
Mandelbrojt expressed his preference that the chair replacing Paul Langevin's, after
his retirement, be named "General Analysis and Calculus of Probability” and filled by
Maurice Fréchet. In his proposal, Mandelbrojt argued for the daring abstraction of
Fréchet's method, which, recalling Bourbaki's, focused on the study of elements of as

general a nature as possible.”¢

75 In June 1940, the Rockefeller Foundation asked G. ID. Birkhoff and S. Lefschetz to

designate the French mathematicians to be rescued from the debacle. Out of 9 names,

only Weil (who was Jewish) and Henri Cartan belonged to the younger generation. L.
Beaulieu, Bourbaki, 387.

76 Proposition de la création d'une chaire d'Analyse générale et calcul des probabilités,
par S. Mandelbrojt, Assemblée des professeurs (24/11/46). Arc. CdF. G-iv-1 27Cec.
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A biologist, Paul Fallot dared to oppose Mandelbrojt, who was the only
mathematician present at this meeting. He presented a masterful defense for a chair
devoted to the theory of equations and to be filled by Jean Leray, whom he knew from
having been his colleague at Nancy before the war.”” Arguing that this topic of
mathematics was hardly represented in Paris, Fallot underscored its fundamental
importance as a "mathematical tool" which, for lack of necessary improvement, often
blocked the progress of mathematical physics. Having shown the importance of the
theory of equations for mathematics and other sciences, Fallot listed Leray’s
accomplishments, where his work on hydrodynamics figured prominently. Leray’s
work was remarkable for the new methods he used for the solution of differential
equations encountered in nature. Moreover in the difficult circumstances of the war,
Leray had also exhibited a gift for abstract topology. For Fallot, Leray’s main strength
lay in his ability to marry abstraction to practical concerns.

No doubt Jean Leray’s war experience also played a role in his election at the
College de France in 1946-1947. In Fallot's words, this was "a topic that one is almost
ashamed of having to tackle, since it céncerns not only the domain of Science.” From
1940 to 1945, Jean Leray had spent five years in a German camp, where he put

together a captive university. He refused to buy his freedom by becoming professor at

One should not go too far in identifying Fréchet with Bourbakism. I leave this
responsibility to Mandelbrojt. See his debate with Daniel Lacombe in Synthese,
Notion de structure et structure de la connaissance (Paris: Albin Michel, 1956): 97-
135. In addition, far from being an unconditional promoter of abstraction, Fréchet
worked on building a calculating machine at the Institut Henri-Poincaré in 1939-1940.
On this, see P. Mounier-Kuhn, "L'enseignement supérieur.”

77 Rapport de M. Paul Fallot sur la chaire de "Théorie des équations différentielles et
fonctionnelles,” Assemblée des professeurs (24/11/46). Arch. CdF. G-iv-1 27Bb.
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the University of Berlin. This experience seems to have pushed him further to the side
of pure mathematics. During his captivity, "Jean Leray pursued his research, but took
care to leave aside questions of mechanics, which could have interested the enemy."78
"The history of Science shows,” Fallot contended, "that great advances in
Mathematics always, or almost always, had as their starting point the necessity of
finding new methods of computation in order to account for phenomena that old
methods were powerless to analyze.” Significantly, the professors of the College de
France, by 26 cast ballots against 8, preferred the methods explored by Leray to
Fréchet's abstraction.” In effect, they voted at the same time against Fréchet's earlier
attempts at numerical computations, which in the postwar era would provide new

methods par excellence for the integration of equations.

3. DYNAMICAL SYSTEMS IN THE RUELLE-TAKENS MODEL

As early as the 1920s, George D. Birkhoff wrote that "topology deserves to obtain a
more prominent position in physical theories than it has yet obtain."30 It took a while
for this to happen. But we may contend that if Ruelle and Takens were able to make a
dent in such a formidable problem as turbulence, it was mainly because they were in a

good position to capitalize on recent developments in topology, and especially in the

8 F. Lot, "Jean Leray, aventurier de l'abstrait,” Figaro liftéraire (6-12 mars 1965), 11.
However, Leray taught a course on compressible fluid in 1946 where he dealt at
length with wings of airplanes: Mécanique des fluides compressibles. Cours du Centre
d'études supérieures de la mécanique, section des fluides compressibles (1946).
Jussieu Lib. Note the similarity of Leray's experience as a war captive with Fernand
Braudel's, see Pierre Daix, Braudel, (Paris: Flammarion, 1995).

7 Procés-verbal, Assemblée des professeurs (24/11/46). Arch. CdF. G-iv-127V.
Rapport de M. Paul Fallot. G-iv-1 27Bb.
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theory of dynamical systems brought about by Thom and Smale. The physicist’s eye
of David Ruelle, after having been in contact with these developments, could perceive
the problem with Landau’s scheme. It was unrealistic because non-generic. Infinite
odds were against it. Before this could be shown rigorously, however, there was a lot

of work to be done.

a) Thom, Smale, and the Concept of Attractors

(i) Acknowledgments
"The authors take pleasure in thanking R. Thom for valuable discussion, in particular
introducing one of us (F.T.} to the Hopf bifurcation. Some inspiration for the present
paper was derived from Thom’s forthcoming book [Stabilité structurelle et
morphogénesel." Thus read the acknowledgments in Ruelle and Takens’s article.
When the paper was written, in the spring of 1970, the IHES was indeed being
visited by many mathematicians important for the development of what in Chapter V1
I have called the modeling practice of applied topologists. Ruelle later remembered :
The reason 1 did not like Landau's description of turbulence in terms of modes
is that T had heard seminars by René Thom and studied a fundamental paper by
Steve Smale called "Differentiable Dynamical Systems.” . . . The former is my
colleague at the Institut des Hautes Etudes Scientifiques near Paris, and the
latter makes frequent visits there. From them I had learned the modern
developments of Poincaré's ideas on dynamical systems, and from these

developments, it was clear that the applicability of the mode paradigm is far
from universal 8!

80 G. D. Birkhoff, "The Mathematical Nature of Physical Theories," American
Scientist, 31 (1943): 281-310, 310; repr. Papers, 2: 890-919, 919,

81 D. Ruelle, Chance and Chaos, 55. Note that his use of the word paradigm is here a
clear reference to T. S. Kuhn's ideas: "I am not an uncritical believer in Kuhn's ideas;
in particular, they appear to me of little relevance to pure mathematics. The physical
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Ruelle and Takens’s most original innovation was the concept of a strange
attractor, for which they obviously relied on the concept of attractor as it was being
defined in dynamical systems theory. While having a long prehistory that could go as

far back as Poincaré and Birkhoff, the attractor concept was very recent.

(ii)  Attractors

Arguments involving attractors were pervasive in Thom's work on catastrophe theory,
While Ruelle and Takens made it famous, it was Thom who actually already drew
attention to the Hopf bifurcation in Structural Stability and Morphogenesis.52 Because
their structural stability was immediate, Thom rarely considered attractors that were
more complicated than points. But the limit cycle appearing after a Hopf bifurcation
provided him with an example of what he called a "generalized catastrophe. ™83
Confidently, Thom also raised the possibility of a second Hopf bifurcation from cycle
to torus. In the first edition of his book, it was when dealing with the Hopf bifurcation
that Thom revealed his ignorance of Poincaré, attributing the source of the word
‘bifurcation' to Hopf.#* Noticing, clearly as a consequence of Ruelle's work, its
possible relevance for turbulence, Thom moreover used the Hopf bifurcation to model

the phenomenology of mitosis.

concepts of modes and chaos seem, however, to fit rather well Kuhn's description of
paradigms." Ibid., 177n7. His emphasis.

82R. Thom, SSM, 97-100, 108, 263-264, and 283.

83 As Thom never was very clear about what he meant by a generalized catastrophe in
mathematical terms, whether he actually considered the Hopf bifurcation as one of
these may therefore be open to debate. Nevertheless, it is clear that he considered it to
be a catastrophe, which was not elementary since not stemming from gradient
dynamics. R. Thom, $SM, 97, 103.

84 R. Thom, SSM, 1972 ed., 105. Corrected in later eds.
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Nevertheless, the use of the Hopf bifurcation in itself which was little noticed
in Thom’s work. His greatest innovation lay in the description of this process in terms
of attractors. It is not clear whether Smale or Thom first introduced this important
concept in the theory of dynamical systems. "Each says the other invented it."83
Actually, the first appearance in print of the word “attractor’ in this context is due to
neither Thom nor Smale. In September 1959, Pinchas Mendelson, from the
Polytechnic Institute of Brooklyn, gave a talk "On Unstable Attractors" at the
Symposium on Ordinary Differential Equations and their Applications, in Mexico
City, a meeting attended by both Smale and Thom.8¢ No definition of attractor was
then given and it was used as a synonym for a critical point which was the only
minimal set of the ®-limit of the dynamics. This was very close to the definition later
coined by Thom and Smale, and taken up by Ruelle and Takens: "A closed subset A
of the non-wandering set £2 is an attractor if it has a neighborhood U such that [the -
limit set of I7 is] A."87

Indeed, Thom’s manuscript for Stabilité structurelle et morphogéneése, which 1

have seen at Princeton University and which clearly was revised between 1966 and

85 Bob Williams’s comment in From Topology to Computation, ed. M. Hirsch et al.,
183. See their first definitions in R. Thom, SSM, 39; and S. Smale, "Differentiable
Dynamical Systems," 786. At least once, however, Thom personally claimed
responsibility for the term. R. Thom, "Problémes rencontrés dans mon parcours
mathématique: un bilan," Publications mathématiques de I'THES, 70 (1989): 199-214,
203.
86 P. Mendelson, "On Unstable Attractors," Boletin de la Sociedad matemdtica
méxicana, 5 (1960): 270-276.
87 D. Ruelle and F. Takens, "On the Nature," 170. For more on the carly use of
attractors, see R. . Williams, "One-dimensional Non-Wandering Sets," Topology, 6
(1967): 473-487.
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1969, included many instances of the use of the word ‘attractor’ as well as derived
notions, such as the basin of an attractor. But it did not include the definition finally
provided in 1972.88 In a few places, the term "minimal sets"” first used by Thom, was
crossed out and replaced by "attractors."$? The attractor concept thus came to carry a
basic significance in Thom'’s modeling practice:

Every object, or physical form, can be represented as an atfractor C of a
dynamical system on a space M of internal variables.®0

Similarly, the term attractor was also defined in Smale’s famous review paper
"Differentiable Dynamical Systems.” But it then appeared only on the 40th page of
the paper, and was used only briefly, in particular to introduce the attractor that Ruelle
and Takens would take up as an example of a "strange attractor.” Shown to Smale by
Jiirgen Méser, this set was only brought up as an example of a nontrivial attractor,
locally the product of a Cantor set and a manifold.?" In his review paper, Smale's goal
remained the classification of flows, and not that of their attractors. After the
publication of Ruelle and Takens's work, the latter would become the goal of many
‘chaologists’ in the next generation,

As often happens in articles containing a concept appealing to the imagination,

Ruelle and Takens did not formally define strange attractors in 1970.92 They

88 R. Thom, SSM, 38-40; Stabilité structurelle, 1972 ed., 56-57.

8 See the discussion of the Hopf bifurcation, R. Thom, $5M, 98.

%0 R. Thom, $SM, 320; quoted by M. W. Hirsch, "The Dynamical Systems Approach,"
29.

91 8. Smale, "Differentiable Dynamical Systems," 786-788.

92 D). Ruelle and F. Takens, "On the Nature," 170; "Méthodes d'analyse globale,” 13,
23. They also used terms like "bizarre attractor” and "vague attractor.” Only the latter,
- introduced by Thom, was defined in too technical a fashion to comment on this here.
R. Thom, SSM, 27 and 39. Already used in the 1966 version of the manuscript. See
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illustrated what they meant by strange attractors by using Smale’s example. In
practice, they included all attractors that were neither fixed points, nor limit cycles,
nor quasiperiodic sets.

In studying dynamic processes in terms of attractors, the most important
concept introduced by Thom actually was not the attractor itself, but rather the basin
of an attractor, which Smale did not use in 1967. Indeed, the definition of an attractor
provided by Thom and Smale could be seen as merely an insightful combination of
Birkhoff’s classic definitions of nonwandering, -limit, and minimal, sets, all well
known to most people working on dynamical systems. But by defining the basin of an
attractor A as the set of all points whose @-limit set is A, t.e. which are attracted to A
(this basin being the neighborhood U appearing in Ruelle and Takens’s definition
above), Thom allowed the cutting-up of the base space into several parts that could be
studied separately.

As was shown in Chapter 111, the proper context in which to understand this
notion of attractor is in relation to Waddington’s epigenetic landscapes. In this case,
the concept of basin is immediate, as indicated by Thom’s metaphor:

on a contour map the basins attached to different rivers are separated by
watersheds, which are pieces of crest lines, and these separating lines descend

simple introductions in D. Ruelle, "Strange Attractors," Mathematical Intelligencer, 2
(1980): 126-127; TSAC, 195-206; "Les attracteurs €tranges," La Recherche, 11,
(1980): 133-144; and C. Grebogi, E. Ott, and J. A, Yorke, "Chaos, Strange Attractors,
and Fractal Basin Boundaries in Nonlinear Dynamics," Science, 238 (1987): 632-638.
A good popular exposition of strange attractors can also be found in Gleick, Chaos
and Kellert, In the Wake of Chaos.
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to saddle points, where they meet like ordinary points, but rise to summits
where they may have flat cusp points.®3

Focusing on the dual concepts of attractors and their basins allowed a program
to be imagined. This program could be described as the classification of attractors of
dynamical systems and the way they interacted with one another. It was a direct
analogue of Thom’s catastrophe theoretic program. No doubt it presented a formidable

task, but the task could be contemplated.

b) Modeling Practices at the Institut des Hautes Etudes Scientifiques

Clearly, Ruelle’s association with "applied topologists" was for him a major source of
inspiration. But many historical treatments of chaos theory, except for some written
by mathematicians, have tended to obscure this fact and especially the “inspiration”
Ruelle acknowledged taking away from catastrophe theory. As Thom’s works
remained quite controversial for the following decades, this neglect might be
interpreted as an instance of careful purification, conscious or not, of controversial
sources by working scientists, %

But what T want to claim more. That Ruelle and Takens’s work relied on
concepts introduced by Smale and Thom in dynamical systems theory is clear simply
from looking at their joint paper. I contend, however, that Ruelle’s modeling practice

was crucially shaped by close contact with the activities that went on around Thom at

93 R. Thom, SSM, 39-40. See illustration 25 of the plaster models built by Marcel
Froissart for Thom, in SSM, illus-x.

%4 A telling example of this attitude is provided by a recent article of Ivar Ekeland’s in
which while comparing catastrophe theory with chaos, he totally obscured the fact
that they depended on one another for their historical genesis: "La théorie des
catastrophes. Relu 20 ans apres par son auteur." La Recherche, 301 (1997): 89.
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the THES. In this way, his situation at Bures-sur-Yvette, not only provided him an
opportunity to learn about new developments in a mathematical theory that were only
starting to become known outside a small circle, but showed him ways in which these
new mathematical tools could be used in the concrete practice of building models for
natural phenomena. Briefly put, the modeling practice Ruelle and Takens adapted to
the problem of turbulence could be described as follows: (1) isolate topological
Jfeatures in some process, in this case the onset of turbulence; (2) explore the way
these features can, or cannot, bifurcate under various circumnstances, relying on the
postulate of genericity; and (3) provide explanations based on mathematical results.
In addition, Ruelle's position at the THES was directly responsible for his
meeting with Floris Takens. Born in 1940, Takens was a mathematician of the
University of Groningen in the Netherlands. Just a few years earlier, he had received
his Ph.D. from the Mathematisch Instituut of the University of Amsterdam, working
with Nicolaas Kuiper, who we may recall was interested in topics close to Smale's,
Thom's and Zeeman's, and would become the second director of the THES in 1971.
Working on the singularities of differentiable mappings and vector fields, Takens and
Kuiper had been in contact with the IHES and had invited John Mather in 1969.95
Following a suggestion of Kuiper's, Thom invited Takens to spend the 1969-1970

academic year at Bures-sur-Yvette.? His resulting paper with Ruelle was the only

95 F. Takens and J. Mather files. Arch. IHES.
9 Lettres de Nicolaa}s Kuiper & René Thom (16/4/69); de Floris Takens 4 René Thom
(27/4/69). Arch, THES.
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incursion Takens, who remained a specialist in the theory of dynamical systems, ever
made into physics.¥’

As Takens acknowledged in his joint paper with Ruelle, even his knowledge
of the Hopf bifurcation was due to Thom. In fact, Takens’s contribution, like that of
the IHES in general, again confirms that more than mere abstract concepts, it was
practices that were in the process transferred from mathematics to physics.

In order to make this claim clearer, let me compare the modeling practice
exhibited by Ruelle and Takens with those examined when looking at the almost
contemporary 1971 Bahia Symposium. Recall that at this occasion Smale, Thom, and
Zeeman had presented exemplary exposés of their modeling practices with respect to
the exploitation of what they called global analysis or catastrophe theory. In Chapter
VI, the fact that they already differed significantly in the ways they chose to model
natural phenomena has been made explicit. Their practices of mathematization
disagreed on the manner in which one should identify physical parameters with
topological features. In brief, while Smale relied on a discipline that was already
highly mathematized, Thom and Zeeman were quite cavalier in this respect. The
mathematical techniques they used were very close to one another, but clearly
distinct: Zeeman using the formal theory of elementary catastrophes, Thom a vaguer
theory of generalized catastrophes, and Smale general topological methods. When
trying to interpret their mathematical results, their attitude again showed divergences.

Zeeman looked for differential equations that could be experimentally tested, Thom

97 See e.g. F. Takens, "Singularities of Vector Fields," Publications mathématiques de
I'IHES, 43 (1974): 47-100.
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made great claims but fell back on vague philosophical arguments to back them up,
and Smale more prudently refrained from drawing important conclusions from the
"theorems” he had partly proved.

From their article, we may infer that, of the above three, Ruelle and Takens’s
modeling practice was closest to Smale’s. The substratum they had to deal with was
rather uncontroversial. It was given by the velocity field of fluid flows governed by
the Navier-Stokes equations. But just as for Zeeman’s case, the identification could
not be immediate: in particular, the phase space of this velocity field was infinite-
dimensional, which posed a problem as far as the techniques of Smale’s dynamical
systems theory were concerned. They proved the legitimacy of the reduction from an
infinite number of dimensions to two dimensions, but not the more complex cases of
three and four dimensions.”® Briefly, while the substratum was straightforwardly
identified, the pertinence of reducing it to a low-dimensional manifold was not
obvious in mathematical terms. Here they relied on common assumptions about the
onset of turbulence—Landau's degrees of freedom—without attempting to derive
them from the Navier-Stokes equations.

Generally speaking, it might be worth emphasizing a truism, namely that a
mathematization of natural phenomena can only succeed in the direction afforded by
available mathematical tools. Leray's irregularity hypothesis for turbulence stemmed
from his ability to prove, or not, existence theorems for the Navier-Stokes equations;
Ruelle and Takens bold assumption was required by the modeling practices they

wanted to exploit, which forced them to work in low-dimensional spaces, because
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only there were the tools available. Neither Leray’s nor Ruelle and Takens’s model for
turbulence was never rigorously proved or disproved. Changes in ontological beliefs
were thus crucially informed by limitations on available mathematical techniques, and

to be fair, in Ruelle and Takens’s cases, by experiments (Chapter VIII).

c) Strange Attractors and Genericity

Ruelle and Takens made one crucial conceptual innovation when they introduced the
notion of a strange attractor, which however always remained hazy for
mathematicians.®® Due to the presence in the neighborhood of the multidimensional
manifold suggested by Hopf of an open set of "strange attractors," they claimed, the
quasiperiodic scenario had no chance of being observed. But again, this innovation in
dynamical systems theory was mediated though the practice of using such concepts as
attractors and genericity.

The core of most of Smale’s, Thom’s and Zeeman’s practices, both in
mathematics and in their modeling activity, was the identification of generic
properties. Even while picking up the term from Italian algebraic geometry, Thom
was aware that it was a slippery concept. "The adjective ’generic’is used in
mathematics in so many senses that to restrict its usage within the framework of
formal theory is probably unreasonable.” Between 1969 and 1972, he acknowledged
that Smale had made a welcome clarification when he restricted the use of the

adjective to properties of the topological space, rather than to the points of this

98 F. Takens and D. Ruelle, "On the Nature," section 3, 176-178.
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space.!% As Thom then emphasized, the use of genericity was an art that was difficult
to make rigorous. This very point would become one of the weaker, and much
criticized, parts of Zeeman’s whole approach in using catastrophe theory for modeling
natural phenomena.

Ruelle and Takens’s reliance on genericity therefore was another place where
they had to adapt not only a concept from dynamical systems theory to the turbulence
problem, but also a practice, which was mediated through their close interaction with
Thom's school at the THES. First, they noticed that Smale's example was stable under
small pertubations. From which, they concluded that "the existence of such a 'strange’
attractor therefore is not a non-generic pathology."10!

By showing that in the neighborhood of quasiperiodic motions in more than 3
dimensions a generic set of such strange attractors existed, Ruelle and Takens felt
entitled to pronounce that complicated quasiperiodic motions, i.e. with more than
three frequencies, could not physically occur. They redefined turbulence as aperiodic
fluid motion. But one should note the tentativeness of their language when they made
such a proposition.

For u>0 we know very little about he vector field X),. Therefore it is
reasonable to study generic deformations from the situation at ((=0. In other
words we shall ignore possibilities of deformations which are in some sense

? See, e.g., M. W. Hirsch, "The Dynamical Systems Approach to Differential
Equations," Bulletin of the American Mathematical Society, n.s., 11 (1984): 1-64, 30.
100 R. Thom, S§M, 35n.1. The middle sentence referring to Smale's suggestion was
absent from the manuscript. See S. Smale, "Differentiable Dynamical Systems," 748.
191 D. Ruelle, "Méthodes d'analyse globale,” 13; D. Ruelle and F. Takens, "On the
Nature of Turbulence," 171. In 1971, Ruelle acknowledged that "the notion of
genericity . . . is not very satisfactory when physical applications are considered.” See
"Strange Attractors as a Mathematical Explanation,” 293n.
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exceptional. This point of view could lead to serious error if, by some law of
nature which we have overlooked, X, happens to be in a special class with
exceptional properties. It appears however that a three-dimensional viscous
fluid conforms to the pattern of generic behavior which we discuss.102

As stated before, Ruelle and Takens’s approach made no use of the particular
form of the Navier-Stokes equations. "Of course something is known of this structure,
and also of the experimental conditions under which turbulence develops, and a
theory should be obtained in which these things are taken into account."19 But they
would not attempt it. Commenting of Ruelle and Takens’s work, a hydrodynamicist,
Manuel Velarde, argued that this was

a point of philosophy: . . . without arguing about their relevance [i.e. of

Navier-Stokes equations] to physics and more specifically to the study of
turbulence, I ought to confess we can forget about them here. 104

This attitude had the advantage of being potentially applicable to other cases
of dissipative systems, in particular to some oscillating chemical systems (the so-
called Belousov-Zhabotinski reaction), which Ruelle explored in a following

article.!%% Characteristic of the modeling practices of applied topologists, it would

102 D. Ruelle and F. Takens, "On the Nature,” 168. Ttalics are original; underlined
words are phrases are emphasized by me. In 1971, Ruelle wrote: "The possible
generic types of asymptotic behavior of . . . vector fields have not been completely
classified. It scems however that, apart from attracting critical points and attracting
closed orbits, the behavior described [as follows] is typical: complicated and
apparently erratic with sensitive dependence on initial conditions.” See "Strange
Attractors as a Mathematical Explanation,” 294,

103 D, Ruelle and F. Takens, "On the Nature," 176.

104 M. G. Velarde, "Steady-States, Limit Cycles and the Onset of Turbulence. A Few
Model Calculations and Exercises," Nonlinear Phenomena, ed. T. Riste: 205-247,
210. My emphasis.

105 D, Ruelle and F. Takens, "On the Nature," 176; see D. Ruelle, "Some Comments
on Chemical Oscillations," Transactions of the New York Academy of Sciences, series
11, 35 (1973): 66-71; repr. TSAC, 109-115. On these chemical systems, see A. T.
Winfree, "Rotating Chemical Reactions," Scientific American (June 1974): 82-95;
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exert an important attraction for the new alternative in the modeling practice of
physicists as promoted by Ruelle during the following decade.

As the bottom line, Ruelle and Takens proposed a new definition of
turbulence. This was how they exploited the mathematical results derived from their
topologization of the problem of turbulence. The mathematical theory grounding it
remained shaky. As late as 1981, an early supporter of their model had to
acknowledge that:

in spite of its mathematical character, the Ruelle-Takens approach is still

mathematically speculative in the sense that it is based on some concrete

conjectures about the Navier-Stokes equations, conjectures which are so far

supported only by indirect evidence, not by any solid and precise analysis of
the equations themselves.106

Indeed remaining very mathematical in its outlook, Ruelle and Takens’s paper ended
up relying on numerical and experimental results before it became acceptable to a
majority of physicists.

In conclusion, one should note that Ruelle and Takens’s model exhibited
features which, given the right conditions, might be observable. They proposed
nothing less than a redefinition of turbulence, based on a rigorous mathematical
property of the solution: aperiodicity. This property would be a bit tricky to detect in a
noisy experimental situation. Nonetheless, in his subsequent paper dealing with
chemical oscillations, Ruelle offered a precise direction for experimental research on

the onset of turbulence. In this picture, only a limited number of frequencies should

Blair Johnson, Nonlinearity, Irreducibility, and Emergent Properties: A Short History,
Senior Thesis (Princeton University, 1994).
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appear before the power spectium became continuous as a consequence of
aperiodicity. Experimenters only had to search for this kind of continuous spectra.
Finally, Ruelle and Takens’s model, if correct, would exhibit an extreme
"sensitiveness to initial conditions,” which that should be detectable experimentally,
as well as analytically from the Navier-Stokes equations.197 This property was not
shared by Landau’s theory of turbulence.

Landau’s turbulence, . . . people say, is inadequate to account for experimental

data. Thus the usual dogma in the physicists’ community that chaos or

turbulence arises either from interaction of an infinite number of degrees of
freedom or from an external noise . . . is just over!108

But this had to await confirmations based on numerical calculations and experiments

in the lab (Chapter VIII).

4. DAVID RUELLE, THE 'MONSTER': THE CAREER OF A
MATHEMATICAL PHYSICIST

Albeit a permanent professor at the Institut des hautes études scientifiques, David
Ruelle could well have not attended Thom and Smale's seminars. He might not have
perceived their interest as far as theoretical physics was concerned. As explained
above, three main strains of research lay behind Ruelle and Takens's paper: the
quasiperiodic picture of turbulence (Hopf and Landau), dynamical systems theory
{Smale and Thom), and mathematical physics. This section addresses the third of

these strains by focusing on Ruelle's earlier career. A closer look at his mathematical

196 (3. E. Lanford, "Strange Attractors and Turbulence" in Hydrodynamic Instabilities
and the Transition to Turbulence, ed. H. L. Swinney and J. P. Gollub (Berlin:
Springer, 1981): 7-24, 7.

107 This phrase is first used by D. Ruelle in "Some Comments," 70; TSAC, 114.

108 M. G. Velarde, "Steady States," 208.
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physics, and especially the circumstances which led to his hiring at the IHES in 1963,
clarify why he was in a position both to see the relevance of Thom's and Smale's ideas

and to adapt them for the specific concerns of theoretical physicists.

a) Still Another Mathematical Physicist?

It has been said that mathematical physics, after a glorious time in early twentieth-
century, notably with Poincaré, had disappeared, leaving theoretical physics in its
place. This is incorrect. Mathematical physics enjoyed rather happy vears in the 1950s
and 1960s. In particular, this period saw, under the principal impulse of Arthur S.
Wightman, a considerable development of constructive or axiomatic quantum field
theory, using Laurent Schwartz's distributions. This highly mathematical branch of
theoretical physics was also importantly developed in Europe, especially around Res
Jost, professor at the Eidgendssische Technische Hochschule (ETH) in Ziirich.109

It was from this domain that David Ruelle came. Born in 1935, he received a
doctorate from the Université libre of Brussels, but mainly working under the
direction of Jost. Ruelle then spent two years at Ziirich, before leaving for the Institute
for Advanced Study (IAS) at Princeton for another two years (1962-64). During his

stay in the US, he started working on statistical mechanics, trying to take advantage of

109 In 1982, Ruelle expressed his admiration for his mentors as such: "The relation
between physics—real physics—and mathematics—real mathematics—has not been
as easy one in the last thirty years. It took vision to see that this relation is possible
and fruitful now. . . . Res Jost in Ziirich, Freeman Dyson and Arthur Wightman in
Princeton had that vision, and made many other share it." D. Ruelle, "Large Volume
Limit of the Distribution of Characteristic Exponents in Turbulence,”
Communications in Mathematical Physics, 87 (1982): 287-302, 287; TSAC, 295-310,
295.
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the sophisticated mathematical techniques used in axiomatic quantum field theory in
order to establish rigorously some general resulis.

But Jost and Wightman were among the physicists who visited the THES soon
after its foundation, in 1959. In October 1961, a handwritten note, added to an
invitation list discussed during a Scientific Committee of the IHES (which included
Montel, Oppenheimer, Motchane, and the future permanent professor of theoretical
physics Louis Michel), bore Ruelle's name. Following a suggestion of Jost's, it was
proposed that he should be invited.!'® But Ruelle did not come then, no doubt
preferring to go to Princeton.

On his more or less yearly pilgrimage to the United States, during which Léon
Motchane never failed to go to Princeton to visit the director of the IAS Robert
Oppenheimer, who was among the founding members of the ITHES. During his trip in
1962, Motchane discussed with Ruelle the possibility of attracting him to Bures-sur-
Yvette. 111

His colleagues' opinion concerning Ruelle were laudatory: Wightman, C. N.
Yang and Jost (who wanted to keep him at Ziirich), all strongly recommended him.
Motchane thus envisioned the creation of a permanent professorship for him at the
IHES. He was young and dynamic; he knew well American and European researchers
in his field; he might be just what was needed for developing the THES. The only
shadow, Motchane explained, was that he was a bit too mathematical in his approach.

"Obviously, he is a theoretician of a mathematical type, but very recently, he did some

110 Comité scientifigue (17/10/61). Arch. [HES.
11 T ettre de Léon Motchane a David Ruelle, & Princeton (2/5/63). Arch. THES.



David Aubin VII — Strange Attractors 498.

work on statistical mechanics, which indicates a great variety of interests."112 To
Oppenheimer, Motchane wrote:"[Ruelle’s] somewhat formal, mathematical
orientation obviously fits with the atmosphere reigning here, but one could wonder
whether this specialization of our Physics Section in a single direction is a good
thing."113

Two points are important: Ruelle had just started to work in a field that was
new to him, and he did mathematical physics. We shall see below that these two
points probably are not without relation to one another. At this time, foreign physicists
who belonged to the Scientific Committee of the THES distrusted the increasing
specialization of the Institute solely in mathematical physics. When in 1965 the
opportunity presented itself to hire Vladimir Glaser as a permanent professor,
Oppenheimer voiced his concerns: "the faculty of your Institute should have at least
one, and preferably more than one, physicist concerned with the actualities of present
experimental exploration of fundamental physical problems." Motchane took notice
that according to Oppenheimer, Peierls and Weisskopf, "in theoretical physics, the
physics should be forgotten."114

Moreover, to hire Ruelle at that time—-he was 28 years old—was a risk. Jost,
his ex-mentor testified to this ten years later: "David Ruelle was very young, and
working in a new field, and above everything with tools of such penetrating rigour

that he was once likened by a famous physicist not to a fellow theoretician but to a

12 Lettre de Léon Motchane 2 Victor Weisskopf (24/3/63). Arch. IHES. )
113 Lettre de Léon Motchane A Robert Oppenheimer (27/7/63). Arch. THES.
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monster [sic]."!!S English theoretical physicist Rudolph Peierls, just coopted in 1963
into the Scientific Committee of the IHES, and who hardly knew mathematical
physics, stated:
I am certainly familiar with the reputation of Dr. Ruelle, though I have not met
him personally and have not had an occasion to study his paper in any details. .
.. [H]is papers are not very easy to read. . . . Ruelle is concerned with the
rather abstract and formal side of [theoretical physics] and this applies also to

some extent to Lehmann and to Michel [the other two physics permanent
professors].116

But Ruelle strongly impressed those among his elders who fathomed his work.
Weisskopf "very strongly” commended him to Motchane. "To my mind, Ruelle is just
the right man for you and you should go all out to get him."!17 Res Jost pressed
Motchane to do all in his powers to bring Ruelle back to Europe, the more so since
Ruelle had caught Princeton's interest.'18 When Motchane asked for the advice of the
director of the IAS, Oppenheimer's secretary replied that he and his colleagues
thought "highly enough of Ruelle to be considering him for a professorship here."!19
This could not fail to alarm Motchane: "I want at all price to avoid all that could be
taken for competition between our Institutes."120

Finally, although Oppenheimer and Ruelle had inded discussed the possibility

for the latter to remain at Princeton, Ruelle finally decided to accept Motchane's offer

14 L ettres de Léon Motchane A Robert Oppenheimer (6/5/65); de Robert
Oppenheimer 4 Léon Motchane (20/5/1965); de L.éon Motchane & Robert
Oppenheimer (15/3/65). Arch. THES.

115 [ ettre de Res Jost & Nicolaas Kuiper (18/1/74). Arch. IHES.

116 Lettre de Rudolph Peierls & Léon Motchane (6/7/63); de Léon Motchane a Rudolph
Peierls (26/6/63). Arch. THES.

17 Lettre de Victor Weisskopf 2 Léon Motchane (27/6/63). Arch. THES.

118 T ettre de Res Jost & Léon Motchane (20/6/63). Arch. THES.

119 T ettre de Verna Hobson 4 Léon Motchane (9/7/63). Arch. THES.
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in September 1963. He joined the THES in October 1964. In accepting his offer,
Ruelle warned Motchane that although he was working in a new field, statistical
mechanics, "I maintain a great interest in field theory to which I intend to come back.”

121 Byt he never did.

b) Ruelle, Statistical Physics, and the Military

As soon as he arrived at the IHES, Ruelle wrote a research proposal for the Direction
des Recherches et Moyens _d 'Etudes (DRME), the Gaullian organization which
sponsored most defense-related research in France. Following the defection of several
important subscribers, the IHES faced major financial hardships which jeopardized its
very survival.1?2 The Ruelle contract would have furnished a non-negligible amount of
350,000 F for two years, or about 10% of the budget of the Tnstitut, allowing
Motchane to breath a bit easier,!23 The proposal was titled "Convergence Theorems
and the Existence of Phase Transitions in Statistical Mechanics.” We thus see that
Ruelle was well engaged in statistical mechanics. But his approach was special.
Indeed, as Motchane wrote:

by modern analytic techniques (functional spaces, Banach spaces), he
establishes convergence theorems for different thermodynamic functions. . . .

120 Lettre de Léon Motchane 4 Robert Oppenheimer (27/7/63).

121 ] ettres de Léon Motchane a David Ruelle (2/5/63); de David Ruelle 4 Léon
Motchane (15/5/63); de I.éon Motchane & David Ruelle (10/9/63), de David Ruelle &
Léon Motchane (16/9/63). Arch. THES.

122 Notes de séances manuscrites de I'Assemblée générale (23/9/64); projet de lettre
(non-envoyée) de Léon Motchane i Pierre Chatenet (18/12/64); lettre de Léon
Motchane 2 Frank Bowles (5/2/65). Arch. [HES. See Chapter TV above.

123 Rapport du Conseil d'administration 3 I'Assemblée générale (23/9/64); lettre de
Léon Motchane & Lucien Malavard (17/11/64); de Léon Motchane a Pierre Aigrain
(8/12/64). Arch. THES.
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An original aspect of RUELLE’s approach on these problems of statistical
mechanics was to show the analogy of his formalism with the one of axiomatic
quantum ficld theory.124

Ultimately, albeit initially accepted by Pierre Aigrain who then was scientific
advisor for the DRME, Ruelle’s research proposal was rejected. It was rejected
because it did not fit the normal work sponsored by the DRME ["la ligne de travail
normale de la DRME"].125 The THES intended to do "rigorously pure research
sponsored in a perfectly disinterested spirit [esprit de mécénat purement
désintéressél.” Ruelle and Michel were ready to provide arguments to justify military
interest in these researches, but, ultimately—especially since discussions with the
Prime Minister's Cabinet about a direct sponsorship from the Government were
turning out favorably—ithe directorate of the IHES decided to "show extreme

intransigence about the principle."126

c) The Structure of Physical Theories: The Bourbakization of Physics?

Ruelle's work in statistical mechanics would nevertheless prove truly exceptional.
According to Jost, "David Ruelle for the first time~one hundred years after Ludwig
Boltzmann and about 70 years after Willard Gibbs—{inally laid down the
mathematical foundations of statistical mechanics."127 In 1968, Ruelle would collect

his results in a book called Statistical Physics: Rigorous Results. In the introduction,

124 Lettre de Léon Motchane 2 Lucien Malavard (17/11/64). Arch. THES.

125 Lettre de Annie Rolland 4 Léon Motchane (19/1/65). Cf, également Note
manuscrite de Annie Rolland suite & un coup de téléphone de André Grandpierre
(12/1/65), et lettre du Général Lavaud au Général René Cogny (15/5/62): La DRME
"s'interdit toute action qui pourrait I'assimiler & un mécénat." Arch. IHES.

126 Note manuscrite de Annie Rolland suite 2 un coup de téléphone de André
Grandpierre (12/1/65). Arch. THES,
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Ruelle clearly expressed his deep belief in what a rigorous mathematical approach
brought to the theoretical study of physics. It was a "rewarding experience," he wrote.
"[M]athematical analysis gives to the physical world a new structure and meaning.
The knowledge of this structure and meaning constitutes an understanding of the
nature of things’ as deep as we can hope to be." Several domains of physics were then
(1968) very interesting and open to "insightful” mathematical treatment, Ruelle
contended, even while repudiating his origins: "An exception to this statement may be
relativistic quantum mechanics, largely because of ‘overgrazing,’ but there are also
vast areas of terra incognita." He expres_sed his admiration for the Bourbakist work.
The progress of mathematical physics could be significantly promoted, in the
author’s opinion, by the availability of results of important mathematical

theories in concise form and without proofs, in the spirit of Bourbaki’s
'Fascicules de Résultats'.128

These reflections offer us a means to grasp some of the reasons why Ruelle,
other than because of his great personal talent, could successfully jump laterally from
one field to another. "I like to change rather often my centers of interest. But one can
find in all my works a constant feature: the striving for mathematical rigor in the
exposition of physical theories."129

In the late 1960s rigor often served as a synonym for a Bourbakist attitude. In
other words, Ruelle's emphasis on rigor should be interpreted as an indication that a

structural approach informed his modeling practice on physics. We may well here

127 Lettre de Res Jost & Nicolaas Kuiper (18/1/74). Arch. IHES.

128 David Ruelle, Statistical Physics: Rigorous Results (New York: W. A. Benjamin,
1969), vii-viii.

122 "La nature de la turbulence. Une interview de David Ruelle," CNRS-Info, special
issue "L'Ecole frangaises du chaos,"” n.d [1989], 12-13.
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recall Motchane’s contemporary pronouncements (Chapter VI), when he contended
that the kinship of structures in extremely diverse domains allowed the
mathematician, without becoming an expert, to grasp the essential features of the
scientific domains he invested.!30 As mentioned in Chapter 1V, this structuralist
attitude could be seen as a fundamental character of the ideology pushed forward by
the Institut des hautes études scientifiques, both in its structure and function.

The Bourbakist reordering of mathematics, and above all the emphasis put on
the concept of a mathematical structure, much more than the actual concept as such,
was supposed to allow the mathematician or the mathematical physicist, without
becoming an expert in a foreign field, to grasp some of its deep structures, its essence.
In the best cases, this should set the ground for a fruitful dialogue with the experts. In
Ruelle's case, as opposed to most of the applications of catastrophe theory suggested
by Thom and Zeeman, this dialogue took place. Even for physicists, Bourbaki's

structures were thus an important cultural connector. I will return to this issue below

5. A LONG-TERM DISCIPLINARY SURVEY OF THE TURBULENCE
PROBLEM

From the point of view of the historian of science, turbulence represents a challenge,
and this might be the reason why secondary literature has remained extremely scarce

on this topic.!3! Because of this scarcity of secondary sources, we need very cursorily

130 Léon Motchane, "Eléments de Rapports scientifique [1967] & I'Assemblée
[générale du 8/5/68]," 4. Arch. IHES.

131 T have only been able to find one somewhat recent monograph devoted to the
history fluid mechanics, traditionally included in histories of rational mechanics: G. A
Tokaty, History and Philosophy of Fluidmechanics. Significantly, this book was



