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recall Motchane’s contemporary pronouncements {Chapter VI), when he contended
that the kinship of structures in extremely diverse domains allowed the
mathematician, without becoming an expert, to grasp the essential features of the
scientific domains he invested.!3? As mentioned in Chapter IV, this structuralist
attitude could be seen as a fundamental character of the ideology pushed forward by
the Institut des hautes études scientifiques, both in its structure and function.

The Bourbakist reordering of mathematics, and above all the emphasis put on
the concept of a mathematical structure, much more than the actual concept as such,
was sﬁpposed to allow the mathematician or the mathematical physicist, without
becoming an expert in a foreign field, to grasp some of its deep structures, its essence.
In the best cases, this should set the ground for a fruitful dialogue with the experts. In
Ruelle's case, as opposed to most of the applications of catastrophe theory suggested
by Thom and Zeeman, this dialogue took place. Even for physicists, Bourbaki's

structures were thus an important cultural connector. I will return to this issue below

5. A LONG-TERM DISCIPLINARY SURVEY OF THE TURBULENCE
PROBLEM

From the point of view of the historian of science, turbulence represents a challenge,
and this might be the reason why secondary literature has remained extremely scarce

on this topic.!3! Because of this scarcity of secondary sources, we need very cursorily

130 L éon Motchane, "Eléments de Rapports scientifique [1967] a I'Assemblée
[générale du 8/5/68]," 4. Arch. THES.

131 T have only been able to find one somewhat recent monograph devoted to the
history fluid mechanics, traditionally included in histories of rational mechanics: G. A
Tokaty, History and Philosophy of Fluidmechanics. Significantly, this book was



David Aubin VII - Strange Attractors 504.

to trace back the evolution of modeling practices at play in the history of fluid
mechanics, and especially when trying to relate observed turbulent phenomena with
the Navier-Stokes equations, which was called the "turbulence problem,"132
Manifestly, progress in the history of turbulence has been nonlinear. The
methods that have been attempted in order to relate the observed phenomenon of
turbulence with the Navier-Stokes equations have been so diverse that conceptual
unity has been impossible to achieve. New approaches and new means of computation
regularly opened new avenues of research. Methods for dealing with the turbulence
problem involved the theories of partial differential and integral equations, functional
analysis, qualitative dynamics, statistical theories, energy methods, ergodic theory,
numerical computations, empirical identification of coherent structures, finite element
analysis, etc. Regularly, these methods proved disappointing for those in search of

general theories of turbulence.133

written by a practicing scientist. However, see also Marcel Nordon, Histoire de
U'hydraulique. 2. L'eau démontrée (Paris: Masson, 1992).

132 A noteworthy exception to the lack of attention historians-have manifested towards
fluid mechanics in the twentieth century is provided by G. Battimelli, "The
Mathematician and the Engineer: Statistical Theories of Turbulence in the 20%,"
Rivista di storia della scienza, 1 (1984): 73-94,

133 Some of the most historically-minded articles used for this section are the
following: P. Appel, et al., "Développements concernant I'hydrodynamique"; J. L.
Synge, "Hydrodynamical Stability,” Semicentennial Addresses of the American
Mathematical Society (New York: AMS, 1938): 227-269; J. von Neumann, "Recent
Theories of Turbulence," unpubl. report to the ONR (1949); repr. Collected Works, 6,
ed. A. H. Taub (Oxford: Pergamon, 1963): 437-472; S. Goldstein, "Fluid Mechanics
in the First Half of This Century," Annual Review of Fluid Mechanics, 1 (1969): 1-28.
H. W. Liepmann, "The Rise and Fall of Ideas in Turbulence,” American Scientist, 67
(1979): 221-228; and G. T. Chapman and M. Tobak, "Observations, Theoretical Ideas,
and Modeling of Turbulent Flows—Past, Present, and Future,” Theoretical
Approaches to Turbulence, ed. D. L. Dwoyer, et al. (New York: Springer, 1985): 19-
49.
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In late nineteenth century hydrodynamics was perceived as being part of
rational mechanics and closely linked with applied mathematics. It then opened to a
wide array of concerns, attracting the attention of physicists and engineers especially.
Practical problems raised by the development of air flight only furthered this trend.
More and more, fluid mechanics became a subject studied by many communities with
diverging goals. Unifying these different branches, embodying distinct modeling
practices, posed a difficult conceptual problem which confronted several generations
of students of turbulence.

In 1969, summing up a half-century of work on fluid mechanics, Sydney
Goldstein, from Harvard University, could not help noticing the dispersion of his
field:

Fluid mechanics is a part of applied mathematics, of physics, of many

branches of engineering, certainly civil, mechanical, and aeronautical

engineering, and of naval architecture, and geophysics, with astrophysics and
biological and physiological fluid dynamics to be added.!3

Similarly, George K. Batchelor recalled that when founding the Journal of Fiuid
Mechanics in 1956, he felt that there was "a three-way split of literature on fluid
mechanics" among theoretical and mathematical papers, experimental and
observational papers, and those dealing with application. In 1981, he contended that
this journal, meant to bridge the gap, had only been partly successful in doing so.133
Given the variegated nature of the field, what is presented here can only serve

as a rough—and very partial—survey of the turbulence problem. My goal is to

134 § Goldstein, "Fluid Mechanics,” 4.
135 G, K. Batchelor, "Preoccupation of a Journal Editor," Journal of Fluid Mechanics,
106 (1981): 1-25.



David Aubin VII — Strange Attractors 506.

understand the conceptual setting in which the model suggested by Ruelle and Takens
could insert itself and underscore the changes in modeling practices that it

represented.

a) Fluids Are Described by the Navier-Stokes Equations

In order to evaluate the radical changes in modeling practices represented by the
Ruelle-Takens model, with its skepticism towards the ontological status of the Navier-
Stokes equations, how the turbulence problem constantly cast doubts on this
fundamental law is briefly reviewed. The aim is twofold. First, in a somewhat cavalier
fashion, history serves as an introduction of essential concepts of fluid mechanics,
such as the Navier-Stokes equations and Reynolds numbers. Second, and most
importantly, a sense of the always shifting nature of the modeling practices in
hydrodynamics is briefly conveyed. The changing ontology of fluids will be seen to

go hand in hand with the modeling practices available to the specialists.

(i) Euler’s Equations
Around 1755, Leonhard Euler (1707-1783) contended:

However sublime are the researches on fluids which we owe to the Messrs.
Bernouilli, Clairaut, and d’Alembert, they flow so naturally from my two
general formulae that one cannot sufficiently admire this accord of their
profound meditations with the simplicity of the principles from which I have
drawn my two equations, and to which I was led immediately by the axioms of
mechanics.136

136 L. Euler, "Principes généraux de I'état d'équilibre des fluides"; "Principes généraux
du mouvement des fluides"; and "Continuation des recherches sur la théorie des
mouvements des fluides," Opera Omnia, 2nd ser., vol. XII (Lausanne: Qrell Fiissli
Turici, 1954): 2-132; first published in 1757. The above quote was translated by A. P.
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Euler is generally taken to have been the first to analyze the dynamics of fluids by
applying Newton’s second law to the study of flows. He wrote down a simple set of
differential equations that admittedly governed the flow of a fluid in terms of its
density and velocity field, an impressive reduction of prior disparate results to the
laws of mechanics.

"By this discovery," Joseph Lagrange later wrote, "all fluid mechanics was
reduced to a single point of analysis, and if the equations involved were integrable,
one could determine completely, in all cases, the motion of a fluid moved by any
force."137 Following Lagrange, one might be inclined to believe that the problem was
solved. Unfortunately, Euler’s equations were nonlinear, and indeed have turned out to
be quite difficult to solve analytically up to this very day. Lagrange was well aware of
these difficulties as he immediately added: "unfortunately [Euler’s equations] are so
rebellious that up until now they have only been solved for very limited cases."
Similarly, Euler had already been forced to admit: "If we cannot achieve complete
knowledge of fluid motions, it is not to mechanics and to the insufficiency of the
known principles that we should ascribe the cause, but analysis itself here fails us."138

In retrospect, this difficulty in using Euler’s equations to account for

observations stemmed from two sources: the intractability of the nonlinear equations

Yonschkevitch, s.v. Buler, Dictionary of Scientific Biography, ed. C. C. Gillespie, 4
(New York: Charles Scribner’s Sons, 1978), 481.

137 J. Lagrange, Mécanique analytique (Paris, 1788; repr. Paris: Jacques Gabay, 1989),
sec. X, 436. My translation and emphasis.

138 Quoted in P. Costabel, "La mécanique des milieux continus," Histoire générale des
sciences, ed. R. Taton, tome III, vol. I, 2nd ed. (Paris: PUF, 1981), 99.
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and the neglect of an important characteristics of real fluids. As G. A. Tokaty, one of

the rare historians of fluid mechanics, remarked in series of mixed metaphors:
Leonhard Euler was not a contributor to, but the founder of, Fluidmechanics
[sic], its mathematical architect, its great river. . . . But the beautiful trousers

he tailored had no buttons, they failed to include viscosity. The buttons were
provided by Claude Navier.!3°

(it)  Navier and the Molecular Hypothesis

Indeed, Euler’s assumptions, basically equivalent to neglecting friction inside the
fluid, eventually turned out to be too crude to provide a realistic description of most
liquids. In 1822, Claude Louis Navier (1785-1836) modified Euler’s equations by
introducing a dissipative effect, later called viscosiry (denoted v below).140

The considerable or total differences that, in some cases, the natural effects -
present with respect to the results of known theories [Euler’s], show the
necessity . . . of taking into account certain molecular actions that principally
manifest themselves in phenomena of motion.!4!

Navier thus hypothesized that a force existed between fluid molecules that was
proportional to their velocity relative to one another. "In a fluid in motion, two
molecules approaching one another repel one another more strongly, and . . . two
molecules that get further apart repel one another less strongly than they would if their
actual distance remained constant."142

From this basis, Navier derived the laws of motion for the particles of an

incompressible fluid (i.e. with constant density), which he expressed as a set of three

139 G. A. Tokaty, A History of Fluidmechanics, 73 and 88.

140 Claude Touis Navier, "Mémoire sur les lois du mouvement des fluides," Mémoires
de l'"Académie des sciences, 6 (1823): 389-440.

141 C. Navier, "Mémoire sur les lois du mouvement," 3809,

192 C. Navier, "Mémoire sur les lois du mouvement," 391,
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differential equations. In a modern vectorial form, these can be reduced, for

incompressible fluids, to the following single expression:

a—‘i—;—(v-V)v =—lgradp+VAv;
ot P

where v=(vy,vy,v;) represents the three spatial directions of the velocity of fluid

particles at each point; p(x,y,z) is pressure, and p is density, assumed constant.
Together with the continuity equation (div v = 0, in the case of an incompressible
fluid), found by Euler and unmodified by Navier, the description would become
widely known as the Navier-Stokes equations. Since then, they have been the basis of
every theoretical description of fluids.

A significant difference existed between the method Navier used to derive this
equation and Euler’s analysis. In conformity with the principles of the Laplacian
school of physics, Navier considered the forces acting on a single molecule in the
fluid and derived the equations of motion for these molecules. On the other hand,
Euler made no hypothesis as to the composition of the fluid, and based his
consideration solely on the average speed in small elements.!4? The certainty of
Navier’s equations therefore hinged on the acceptance a particular hypothesis
concerning the nature of intermolecular forces. In the late 1820s, a fierce debate,
concerning the then clbsely related topic of elasticity in solids, rooted Navier against

Siméon Denis Poisson (1781-1840), a close follower of Laplace, who had also derived

143 R. Fox, "The Rise and Fall of Laplacian Physics," Historical Studies of Physical
Sciences, 4 (1974): 89-136. See also C. C. Gillespie, R. Fox, and 1. Grattan-Guiness,
s.v. Laplace, Dictionary of Scientific Biography, 15, Suppl. 1 (New York: Charles
Scribner's Sons, 1978): 273-403; and A. Dahan Dalmedico, Mathématisations.
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a similar set of equations starting from different hypotheses.!44 Navier’s proposal was
indeed somewhat heterodox for Poisson for two reasons. What mattered for Navier
was not the exact form of the forces between molecules, but rather those arising when
equilibrium was disturbed, assuming that they canceled each other at rest.
Furthermore, in Navier’s scheme, the force between molecules depended on their
relative velocity, rather than their position.

This debate highlights the fact that the assumptions made by Navier involved a
certain degree of arbitrariness. "Poisson never seemed content with purely
mathematical models as description of the underlying physics. He wanted to provide
explanations, not descriptions."!45 For Navier, molecules hardly represented more
than material points—centers of attractive and repulsive forces suitable for
calculations—which allowed him to bypass some of the problems plaguing the
Laplacian school. Indeed, by insisting on always having attractive actions between
molecules, the progress of this school's program was hindered by infinite densities.

Therefore, Navier's assumptions were already one step away from a specific reliance

144 C. Navier, "Note relative 2 I'article intitulé: '‘Mémoire sur I'équilibre et le
mouvement des corps élastique’, page 337 du tome précédent,” Annales de chimie et
de physique, 2e sér., 38 (1828): 304-314; S.-D. Poisson, "Réponse & une note de M.
Navier insérée dans le dernier cahier de ce journal," Ibid., 435-440; C. Navier,
"Remargues sur l'article de M. Poisson, insérée dans le cahier d'aolit, page 435," Ibid.,
39 (1828): 145-151; S.-D. Poisson, "Lettre 3 M. Arago," Ibid., 204-211; and C.
Navier, "Lettre 3 M. Arago,"Ibid., 40 (1829): 99-107. C. Navier, "Postface au débat
avec Poisson," Bulletin des sciences mathématiques de Férussac, 11 (1829): 243-253,
On the Navier-Poisson debate, see A. Dahan Dalmedico, Mathématisations, 266-273.
145 D. H. Arnold, "Poisson and mechanics," in Siméon-Denis Poisson et la science de
son temps, ed. M. Métivier, P. Costabel, and P. Dugac (Palaiseau: Ecole
polytechnique, 1981): 23-37, 35.
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on the nature of such forces, since only variations away from equilibrium mattered,

and not the equilibrium itself.

(iii)  Stokes: The Robustness of Partial Differential Equations

In fact, English physicist George Gabriel Stokes eventually published in 1845 an
article showing that molecular assumptions were unnecessary in order to derive
Navier’s equations.}*¢ Already on November 27, 1843, Adhémar Barré de Saint—.
Venant (1797-1886) had also read a note at the Académie des sciences in which he
derived Navier's equations "without making suppositions about the magnitude of
attractions and repulsions between molecules as a function of either their distances or
. their relative speed." 147 With this step, the Navier-Stokes equations became more
reliable than any specific assumption concerning molecular forces. Indeed the very
molecular hypothesis could be done away with.!48 In a manner that recalls Fourier's
treatment of heat, the fundamental tool for the description of fluids became the
differential equation, rather than specific suppositions about ultimate constituents of

fluids and interactions between them.

146 G. G. Stokes, "On the Theory of the Internal Friction of Fluids in Motion, and of
the Equilibrium and Motion of Elastic Solids," Transactions of the Cambridge
Philosophical Society, 8 (1845): 245; repr. Mathematical and Physical Papers, 1
(Cambridge, 1880; New York: Johnson Reprints, 1966): 75-129. See A. Dahan
Dalmedico, Mathématisations, 291-294, 429-430; and C. Smith and M. N. Wise,
Energy and Empire, chap. 4.

147 "sans faire de suppositions sur la grandeur des attractions et répulsions des
molécules en fonction, soit de leurs distances, soit de leurs vitesses relatives (1240).”
A. B. de Saint Venant, "Note a joindre au Mémoire sur la dynamique des fluides,
présenté le 14 avril 1834," CRAS, 17 (1843): 1240-1243.

148 Tt was G. G. Stokes who noted that Saint-Venant's "method does not require the
consideration of ultimate molecules at all." G. G. Stokes, "Report on Recent
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However, neither was Stokes’s treatment free from assumptions. Stokes’s was
a geometrical derivation that assumed that Navier’s equations needed, in the words of
-Osborne Reynolds, "to involve no other assumption than that the stresses, other than
that of pressure uniform in all directions, are linear functions of the rates of
distortion."!4? In other words, Stokes made an hypothesis of a "daring simplicity" to
the effect that internal pressures were directly proportional to the velocities, which
could only be valid for small velocities. "Hence although [the Navier Stokes
equations| may apply with great accuracy to cases of slow motion, we have no
assurance of their validity in other cases.”!3? Therefore, the possibility existed that his
derivation of the Navier-Stokes equations might not be valid for ‘turbulent’ motions,
which admittedly involved large velocities for the fluid.

The name of the game then became solving the Navier-Stokes equations,
together with the continuity equation (div v = 0) and boundary and initial
conditions—solutions which would provide the exact time evolution of fluid flows.

However, the Navier-Stokes equations maintained the nonlinear character of Euler's

Researches in Hydrodynamics," Reports for the British Association for the
Advancement of Science (1846), Part I; repr. Papers, 1: 157-187, 184.

142 0. Reynolds, "On the Dynamical Theory of Incompressible Viscous Fluids and the
Determination of the Criterion,” Philosophical Transactions of the Royal Society,
A186 (1894): 123-164; repr. Papers on Mechanical and Physical Subjects, 2
(Cambridge: Cambridge University Press, 1901): 535-577. See G. G. Stokes, "On the
Theories," 88ff.

50 H. Lamb, A Treatise on the Mathematical Theory of the Motion of Fluids
(Cambridge: Cambridge University Press, 1879), 221. On later grounds to believe this
hypothesis, see H. Lamb, Hydrodynamics, 575. J. L. Synge emphasized the "daring
simplicity” of Stokes's assumption in "Hydrodynamical Stability," 231.
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equations, and even more than the latter, they turned out to be extremely

unmanageable mathematically, except for a few simple cases.!5!

b) The Turbulence Problem: From Hydraulics to Physics

Turbulence was not simple, not from the standpoint of the Navier-Stokes equations.
To show their distress in face of this formidable problem, fluid dynamicists liked to
cite Horace L.amb’s comparison, the epigram of this chapter, between quantum
electrodynamics and the turbulent motion of fluids. "About the former I am rather
optimistic,” Lamb remarked.!>? And he was right. While QED was solved by
Feynman, Schwinger, Dyson and Tomonaga in the 1950s, while particle physics and
quantum field theory witnessed impressive advances in the following decades, barely
a dent was made in the problem of turbulence, despite considerable efforts.
"Hydrodynamics," Ruelle contended in 1981, has "remained somewhat in the

backwaters of the scientific storm of this century.”153

L1t was Arnold Sommerfeld who, at the Rome International Congress of
Mathematicians in 1908, insisted on the nonlinarity of the Navier-Stokes equation as
being the source of the difficulty in interpreting theoretically turbulent phenomena:
"Ein Betrag zur hydrodynamischen Erklidrung der turbulenten
Fliissigkeitsbewegungen," Atti del quarto congresso internazionale dei matematici in
Roma 1908, ed. G. Castelnuovo, 3 (Rome, Accademia dei lincei, 1909): 116-124, 118.
132 Quoted by S. Goldstein, "Fluid Mechanics," 23. Also in Paul C. Martin, "The
Onset of Turbulence: A Review of Recent Developments in Theory and Experiment,”
Statistical Physics: Proceedings of the International Conference [Budapest, August
1975], ed. L. Pal and P. Szépfalusy (Amsterdam: North-Holland, 1976): 69-96.

153 D. Ruelle, "Differentiable Dynamical Systems and the Problem of Turbulence,"
Bulletin of the American Mathematical Society, 5 (1981): 29-42, 30; repr. Proceedings
of Symposia in Pure Mathematics, 39(2) (1983): 141-154; TSAC, 233-246, 234.
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(i) Early Studies of Turbulence: Poiseuille, Darcy, Boussinesg, etc.

The first sign that the fundamental equations written down by Navier, Saint-Venant,
and Stokes did not resolve the problem came from practical hydraulic works and
experiments. George Stokes had derived his equations in order to deal with the
paradigmatic case of the resistance that a solid body opposed to the flow of liquids.
There also difficulties linked with turbulence’ arose, but careful experimental studies
of problems of this kind were harder to perform.3* As for pipes, since the work of
Navier in 1838, the accepted law stated that the square of the resistance R of water
flowing in pipes was proportional to the mean velocity I/ (R* e [J).155

An ex-Polytechnician and a medical doctor teaching physics at the Faculté de
Meédecine of the Sorbonne, Jean-Louis Poisenille (1799-1869) undertook, in the
1840s, to test experimentally this law of Navier's for reasons that had to do with the
study of blood flows in capillary veins. He had several very narrow glass tubes built
(of diameters from .013 mm to .65 mm) and studied the resistance they opposed to
water flows. These experiments appeared to challenge Navier's law, since they

showed that resistance was directly proportional to velocity (R o< {/).156 Poiseuille

thought that his experiment cast doubts on Navier's whole approach.

154 Experiments dealing with the resistance opposed to ship motions always were
plentiful. In the interwar period, many likewise investigated this problem in relation
with wings of airplanes.

135 C. Navier, Lecons & [ 'Ecole des ponts et chaussées (Paris, 1838), no. 108.

156 J.-L. Poiseuille, "Recherches expérimentales sur les mouvements des liquides dans
les tubes de trés petits diametres,” CRAS, 11 (1840): 961-967; 1041-1048; 12 (1841):
112-115; ""Recherches expérimentales sur le mouvement des liquides dans les tubes
de tres-petits diameétres,” Mémoires des savants étrangers, 9 (1846); V. Regnault, et
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To meet this challenge, several propositions were introduced to modify the
Navier-Stokes equations in order to find the correct fundamental law.157 But by the
1860s, Emile Mathicu and J oseph Boussinesq proved that Navier's resistance law was
"de facto independent from all parts of his memoir relative to internal friction,” i.e.
from the Navier-Stokes equations.!’® For Saint-Venant, Poiseuille’s experiments
became a severe restriction imposed on the equations of hydrodynamics: there was
"no need to adopt formulae of so strange a complication."159 In fact, Poiseuille's
experiments were turned into a crucial confirmation of Stokes linear hypothesis and
the Navier-Stokes equations for a wide range of cases and were used to determine the
viscosity of water as a function of temperature.!6? Indeed, the Navier-Stokes equations

“had successfully stood up to the challenge.

al., "Rapport sur un Mémoire de M. le docteur Poiseuille, etc.," CRAS, 15 (1842):
1167-1186.

157 See A. B. de Saint-Venant, "Sur I'hydrodynamique des cours d'cau,” CRAS, 74
(1872): 570-577; 649-657; 693-701; and 770-774, esp. pp. 635-657. Reports of the
Academy of Sciences were published in Combes, et al., "Rapport sur un Mémoire de
M. Maurice Lévy, relatif a I'hydrodynamique des liquides homoggnes,
particulierement a leur écoulement rectiligne et permanent,” CRAS, 68 (1869): 582-
588; and A. B. Saint-Venant, Delaunay, and J. Bertrand, "Rapport sur un Mémoire de
M. Kleitz, intitulé Etudes sur les forces moléculaires dans les liquides en mouvement,
et applications & I'hydrodynamique,” CRAS, 74 (1872): 426-438, 430. Kleitz's memoir
was not recommend for pubiication.

158 A. B. de Saint-Venant, "Sur I'hydrodynamique des cours d'eau,” 577. E. Mathieu,
"Sur le mouvement des liquides dans les tubes de trés-petits diamétres,” CRAS, 57
(1863): 320-324; 1. Boussinesq, "Mémoire sur l'influence des frottements dans les
mouvements réguliers des fluides," Journal de mathématigues pures et appliquées, 13
(1868): 377-424; and Serret, O. Bonnet, and A. B. de Saint-Venant, "Rapport sur un
Mémoire de M. Boussinesq, présenté le 27 juillet 1868 et relatif i l'influence des
frottements dans les mouvements des fluides," CRAS, 67 (1868): 287-289.

159 A. B. de Saint-Venant, "Sur I'hydrodynamique des cours d'ean,” 697,

160 "On voit donc que les expériences de M. Poiseuille démontre l'exactitude des
formules de Navier.” J. Boussinesq, "Théorie des phénomeénes constatés par les
expériences de M. Poiseuille," CRAS, 65 (1867): 46-48, 48.
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Of course, practical incentive were never lacking for a careful study of water
flows in pipes. "There are few branches of physico-mathematical sciences [which are]
more imbortant as far as constant application to practic[al matters] than that dealing
with the motion of water in pipes.”!6! In 1858, a long article was published by Henri
Darcy, an inspecteur général des Ponts et chaussées, in which he studied the
influence of the diameter of water pipes extensively.162 Darcy also questioned the
validity of the assumption that fluid flows remained parallel to the pipes, yet an exact
solution of the Navier-Stokes. "Ruptures, eddies [fourbillonnements] and other
complicated or oblique motions, which must greatly influence the intensity of friction,
arise and develop more in large sections."162 Darcy fell back on Poiseuille’s results
only when he supposed that the diameter of his pipes was small. For the first time, a
clear distinction between two types of fluid motion was emphasized.164

In 1867-1877, Valentin Joseph Boussinesq (1842-1929) tackled the difficult
problem of the flow of water in large pipes. A specialist of this "“infimate mechanics
... which is that of actual things of the earthly world, and whose beautiful and noble
study is, by and large, more arduous than that of the planetary world," Boussinesq

went further than anyone before him in the "beautiful and difficult science" of

161 I¥’Aubuisson to F. Arago (1 October 1829); quoted in H. Darcy, "Recherches
expérimentales relatives au mouvement de l'eau dans les tuyaux," Mémoires présentés
par divers savants a I'Académie des sciences de 'Institut impérial de France, (2) 15
(1858): 141-403, 144-145,

162 H. Darcy, "Recherches expérimentales.”

163 H. Darcy, "Recherches expérimentales," 322.

164 H. Darcy, "Recherches expérimentales,” 215 and 354, "L'opinion que le 'tourbillon'
est la base du changement dans la loi de la résistance a déja été formulée par [Saint-
Venant in 1851]; elle a été€ admise par J. Boussinesq et G. G. Stokes. H. Darcy signala
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hydrodynamics.163 In particular, he carefully studied the experimental results of
Poiseuille and Darcy, and tried in 1868 to derive the distinction between the two types
of motion in a theoretical fashion, starting from the Navier-Stokes equations. The first
sentence of the long memoir he devoted to this topic in 1877 therefore stated as a
matter of fact that:

Fluids move in two different ways, according to whether they flow in very

narrow pipes or in spaces with sections comparable to that of large pipes or
uncovered canals.!66

In his memoir on running waters, Boussineq made the radical suggestion,
following Saint-Venant, that the viscosity coefficient that entered the Navier-Stokes
equations might vary in space and time and with the geometry and size of the sections
of the pipe. This suggestion notwithstanding, the flow of water remained, and for
long, "a distressing enigma [énigme désespérante] against which distinguished spirit
stumbled in vain."1¢7 But one notes that by then, the validity of the Navier-Stokes
equations as the adequate basis for the description of turbulent flows had ceased to be

questioned.

¢galement ce passage du régime régulier au régime irrégulier.” P. Appel et al.,
"Développements,” 199.

165 Manucript of Saint-Venant's proposition of Boussinesq for a chair at the Academy
of Sciences (4 January 1886). Also, J. Boussinesq, Notice sur les travaux scientifiques
de M. J. Boussinesg (Lille: L. Danel, 1880 and 1883). Arch. AdS.

166 J. Boussinesq, "Essai sur la théorie des eaux courantes," Mémoires des savants
étrangers, 23(1) (1877): 1-680; preceded by O. Bonnet, Phillips and A. B. de Saint-
Venant, "Rapport sur un Mémoire de M. Boussinesq présenté le 28 octobre 1872 et
intitulé "Essai sur la théorie des eaux courantes'," [publ. in CRAS, 76 (1873): 924-943].
See also J. Boussinesg, "Essai théorique sur les lois trouvées expérimentalement par
MM. Darcy et Bazin, pour I'écoulement uniforme de Peau dans les conduites,” CRAS,
71 (1870): 389-393.
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Once again in this chapter, we encounter a fascinating ca.se of interaction
between men coming from a variety of backgrounds. Engineers, medical doctors,
physicists, and mathematicians, all exchanged theories, experimental results and
practices at a node represented by the Academy of Sciences of Paris. Limited by the
topic of this dissertation, one can only hope that more historical study will be
undertaken on this topic. For the time being, the conclusion which should be drawn
from this cursory account of the scientific investigation of water flows in pipes is the
following: after half a century of research, the "distressing enigma" was still there, but
the conviction that the Navier-Stokes equations represented the basis of any

theoretical explanation of the phenomena was considerably reinforced.!68

(ii) Osborne Reynolds’s Experimental Discovery of Turbulence

Systematic study of turbulent flows, however, only began with the British physicist
Osborne Reynolds (1842-1912) around 1876.16? By importing to England the work
done on the Continent, by adopting a physical, empirical attitude and merging
hydraulic and mathematical studies, Reynolds greatly changed the outlook of the

subject. "The English teach mechanics as an experimental science,” Poincaré once

167 A. B. de Saint-Venant, "Sur 'hydrodynamique," 774; quoted by J. Boussinesq,
"Essai sur la théorie des eaux courantes,” 6. About Prandtl's use of Boussinesq's
suggestion, see G. Battimelli, "The Mathematician and the Engineer," 84-86.

188 One should note however that boundary conditions (the so-called no-slip boundary
condition which was later adopted) were very much still a matter of intense debate.
See P. Dubem, Recherches sur U'hydrodynamique, 2 (Paris, 1904): 79-95, for a history
of boundary conditions for viscous fhuid.

169 Experiments on pipes were also performed by H. Hagen in 18?7, but his theoretical
interpretation was not convincing and his experiments did not receive much notice at
the time. G. H. L. Hagen, Abhandlungen der Akademie in Berlin 1854, éd. 1855,
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wrote; "on the Continent, it is still exposed more or less as a deductive, a priori
science. The English are right, this goes without saying."170

To start with, Reynolds established on the basis of extensive experimentation
that "the internal motion of water assumed one or the other of two broadly
distinguishable forms."!7! Furthermore, he identified a single parameter that
controlled the behavior of the fluid. His experiments showed that this parameter, later
named the Reynolds number, possessed a critical value at which the motion changed
its form.

Although a most cursory observation of fluid flows could reveal that turbulent
motions were, on the face of it, very different from smooth ones, it was Reynolds’s
achievement to distinguish them unambiguously. "A clear surface of moving water
has two appearances,” he wrote, "the one like that of a plate of glass, in which objects
are reflected without distortion, the other like that of sheet glass, in which the
reflected objects appear crumpled up and grimacing.”!72 Reynolds assumed that these
two characteristics corresponded to two distinct types of motion, which later came to
be labeled as laminar and turbulent, although Reynolds preferred the terms “direct”

for the former and "sinuous” for the latter. The first occurrence of this "very

mathematische Abhhandlung, 17. On this, see M. Brillouin, Legons sur la viscosité
des liquides et des gaz (Paris; Gauthier-Villars, 1907), 196ff.

170 H. Poincaré, La Science et I'hypothése (Paris: Flammarion, 1918), 110. My
translation. On laboratory culture and theoretical practices in late nineteenth-century
England, see A. Warwick, "Le laboratoire Cavendish: A Cambridge, deux mondes -
s’opposent,” La Recherche, 300 (1997): 70-75.

1.0, Reynolds, "An Experimental Investigation of the Circumstances which
Determine whether the Motion of Water shall be Direct or Sinuous, and of the Law of
Resistance in Parallel Channels." Philosophical Transactions of the Royal Society,
174 (1883): 935; repr. Papers, 2: 51-77, 52; for date, see p. 58.
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descriptive term"-—i.e. turbulence—was attributed to William Thompson, later Lord
Kelvin, by Horace Lamb.!73

This distinction between "direct” and "sinuous” flows was provided by
experiments, not theory. From March to April 1880, Osborne Reynolds experimented
with glass tubes which would lead him to this conclusion. He was assisted by Mr.
Forster, of Owens College, who built several glass tubes of varied diameters fitted
with trumpet mouthpieces, so that the water from a tank above might enter without
disturbance. As water was made to flow through the tube, a colored streak was added
to clear water. What Reynolds and Foster observed was the subsequent appearance of
the streak. "The general results [of their observations] was as follows:—

When the velocities were sufficiently low, the streak of colour extended in a
beautiful straight line through the tube. . ..

As the velocity was increased by small stages, at some point in the tube,
always at a considerable distance from the trumpet or intake, the colour band
would at once mix up with the surrounding water, and {ill the rest of the tube
with a mass of coloured water. . . .

On viewing the tube by the light of an electric spark, the mass of colour
resolved into a mass of more or less distinct curls, showing eddies. 174

The central question for Reynolds was whether there was a clear way to

distinguish between these two kinds of motion. "Did steady motion hold up to a

172 . Reynolds, "An Experimental Investigation," 52.

73 H. Lamb, Hydrodynamics, 6th ed. (Cambridge: Cambridge University Press, 1932;
repr. 1993), 664. See W. Thomson, "On the Propagation of Laminar Motion Through
a Turbulently Moving Inviscid Fluid," B. A. Report (1887): 386-495; Philosophical
Magazine, 24 (1887): 342-353; repr. in Kelvin, Mathematical and Physical Papers, 4,
ed. J. Lamor (Cambridge: Cambridge University Press, 1910): 308-320. On p. 311,
Thomson defined "the average velocity of the turbulent motion,” but not turbulence
itself,

University of Cambridge for 1888 (p. 321)."
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critical value and then eddies come in?" he asked. "Did the eddies first make their
appearance as small and then increase gradually with the velocity, or did they come
suddenly?"!7> Reynold’s experiment seemed to settle these questions in favor of a
sudden appearance of turbulence. There was a critical speed below which motion was
steady, and above which it became "sinuous.” The critical speed depended on the
experimental setting; it varied with the radius of the pipe and with the water
temperature, which had an effect on its density and viscosity.

With his experiments Reynolds found that the appearance of "sinuous”
motions, or eddies in the colored streak, occurred in all cases at a critical value of a
single dimensionless parameter. Considering U as the mean speed along the tube of a
fluid with viscosity n and density p, and a single parameter D characterizing linear

dimensions of the tube, say its diameter, Reynolds defined the parameter as follow:

pDU
1!

Re =

Depending on how he defined "criticality,” that is, on which observation Reynolds
used in order to locate the change of character of fluid motion, experiments showed
the value of the critical Reynolds number for the appearance of "sinuous" motion

lying between 2000 and 12,000.17 The consistency of this value in several

174 0. Reynolds, "An Experimental Investigation,” 59-60.

175 Questions 4 and 6, in O. Reynolds, "An Experimental Investigation,” 57-58.

176 O. Reynolds, "On the Dynamical Theory," 536. In his 1883 paper, Reynolds
expressed his results using Poiseuille’s law: P =(1+oT + BT ! = wp, a=0.0336 and
/=0.00221, T being the temperature of the water. In this case, he found P/Uc=43.79, ¢
being the diameter of the pipe, corresponding to Re~12,000, as the value at which
steady motion broke down. The law of resistance, however, also changed, at a critical
speed, from being proportional to mean water velocity. In this case, the critical point
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experimental situations proved, Reynolds thought, "not only the existence of a critical
velocity at which eddies come in, but that it is proportional to the viscosity and
inversely proportional to the diameter of the tube."177

Reynolds considered that this observation of "sinnous” motion in water and
the relation between critical velocity, diameter, and viscosity stood "prominently
forth, as to invite or defy theoretical treatment." Indeed, although apparently founded
by Stokes on sound first principles and successfully tested for "direct” flow, theory
was conspicuously unable to account for unsteady motion in water. "The theory of
hydrodynamics has so far failed with the slightest hint why it should explain these
phenomena [of sinuous flow] encountered by large bodies moving at sensibly high
velocities through water, or that of water in sensibly large pipes.” Did responsibility
lie with "some fundamental principles of fluid motion of which due account has not
been taken in the theory"?178 Were the Navier-Stokes equations to be modified in
order to account for "sinuous" motion?

Reynolds thought unlikely the prospect of finding anything faulty in the
Navier-Stokes equations. Still, he believed that “they might contain evidences which
had been overlooked, of the dependence of motion on a relation between the
dimensional properties and the external circumstances of motion (55)." Indeed

Reynolds noticed that the dependence of tube resistance on the velocity of the flow

was also only a function of P/Uc which was then equal to 278. This later value was
consistent with earlier experimental results by Darcy (1857) and Poiseuille (1845),
and is also equivalent with Re~2000. Sce Reynolds, "An Experimental Investigation,”
60 and 74.

177.0. Reynolds, "An Experimental Investigation," 75.

178 O. Reynolds, "An Experimental Investigation," 52-53.
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was distressing in the sense that it seems to imply a dependence on absolute
dimensions. In an early example of dimensional analysis, he noted that the ratio u/p of
the viscosity over the density was a "quantity of the nature of the product of a distance
and a velocity (54)."17° The Navier-Stokes equations also confirmed that the ratio of
the nonlinear term (v-V)v to the viscosity terms VAv was proportional to the Reynolds
number Re.
Of course without integration the equations only gave the relation without
showing at all in what way the motion might depend upon it. It seemed,
however, to be certain, if the eddies were due to one particular cause, that
integration would show the birth of eddies to depend on some definite value of
[Re].180
For Reynolds, the next theoretical step therefore should have been to deduce the
critical value of the Reynolds number starting from the Navier-Stokes equations. At

first, however, Reynolds did not present such an investigation, which he noted would

have "involved the integration of the equations for unsteady motion in a way that has

172 0. Reynolds, "An Experimental Investigation,” 54-55. Reynolds’s own
reconstitution of the path that led him to this simple idea might be of interest for the
history of dimensional analysis: "It is always difficult to trace the dependence of one
idea on another. But it may be noticed that no idea of dimensional properties . . .
occurred to me until after the completion of my investigation on the transpiration of
gases, in which was established the dependence of the law of transpiration on the
relation between the size of the channel and the mean range of the gaseous molecules
(54)." Historical references for dimensional analysis are the following: Rayleigh,
"Presidential Address," British Association Reports (Montréal, 1884): 1-23; Papers, 2:
333-354, 344; "The Principle of Similitude." Nature, 95 (1915): 66-68; repr. Papers,
6: 300-305; A. Vaschy, "Sur les considérations d'homogénéité en Physique,” CRAS,
114 (1892): 1416-1419; and E. Buckingham, "On Physically Similar Systems:
Hlustrations of the Use of Dimensional Equations,” Physical Review, 4 (1914): 345-
376. See also P. W. Bridgman, Dimensional Analysis (New Haven: Yale University
Press, 1963).

180 . Reynolds, "An Experimental Investigation,” 55.
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not been accomplished, and which, considering the general intractability of the
equations, was not promising."181

When Reynolds came back to this problem in 1894-1895, he tackled the
theoretical problem of the determination of critical Reynolds numbers, and introduced
statistical methods.!82 While both of these approaches would be widely followed later,
it is only necessary for my purpose to discuss theoretical attempts at evaluating
critical Reynolds numbers. Apparently, this line of research was triggered by the fact
that "the stability or instability of the steady motion of a viscous fluid" had been
proposed by William Strutt, Lord Rayleigh, as the subject for the Adams Prize of the
University of Cambridge for 1888.!83 Well undertaken by the work of British
physicists of Thomson’s and Rayleigh’s stature among others, this subject of stability
theory would evolve into a thriving subdiscipline of fluid mechanics which attracted
the attention of the likes of Lorentz,!84 Sommerfeld, and Heisenberg. Following
Reynolds and his contemporaries, the evaluation of critical Reynolds numbers was
accomplished for a few simple cases, known as the Poiseuille, Couette, and Bénard

flows, which became paradigmatic of stability theory.

181 0. Reynolds, "An Experimental Investigation," 57.

182 0. Reynolds, "On the Dynamical Theory."

183 Rayleigh, "Further Remarks on the Stability of Viscous Fluid Motion,"
Philosophical Magazine, 38 (1914): 609-619; repr. FPapers, 6: 266-275, 267. William
Thomson [Lord Kelvin], "Broad River Flowing Down an Inclined Plane Bed,"
Philosophical Magazine, 24 (1887): 188-196, and 272-278; repr. Papers, 4, 321-330
and 330-337, 321. About the problem of the stability of fluid motion for Thomson, see
C. Smith and M. N. Wise, Energy and Empire, chap. 12,

184 See H. A. Lorentz, "Ein allgemeiner Satz, die Bewegung ciner reibenden
Fliissigkeit betreffend, nebst einigen Andwendungen desselben," Abhandlungen iiber
theoretischen Physik, 1 (1907): 43-71.
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c) Stability Theory: The Conceptual Unit Challenged by the Ruelle-Takens
Model

In 1953, as a graduate student, Russel J. Donnelly asked Lars Onsager at Yale
University what stability theory was: "He informed me that hydrodynamic stability
was a small field of physics carried on by 'a small crew’. The crew members were
identified as Chia-Chiao Lin (at MIT), Subrahmanayan Chandrasekhar (at the
University of Chicago) and Geoffrey Ingram Taylor (at the University of
Cambridge)."18> The history of stability theory went as far back as Georges Stokes in
the first half of the nineteenth century and it had been the subject of much controversy
up until Lin’ impressive synthesis in 1945-1955.186

At the basis of stability theory lay the assumption that the Navier-Stokes
equations provided the correct description of turbulent, as well as laminar flows. Since
it was an experimental fact that the laminar solution ceased to be observed when the
Reynolds nomber went though a certain critical value between 1,000 and 100,000
depending on the geometry of the arrangement, there had to exist other solutions
which were realized only at large Reynolds numbers.

It is only reasonable to infer from this that the laminar flow, while still a

solution, ceases to be a stable one, or at least the most stable, It is plausible to

conclude that the turbulent flow represents one or more solutions of a higher

stability, and that these come into existence or at least acquire their higher
stability, only for high values of Reynolds’ number, 187

185 R. I. Donnelly, Review of The Life and Legacy of G. I. Tavlor by George
Batchelor, in Physics Today, 50(6) (1997): 82.

186 Some historical remarks and references are to be found in P. G. Drazin and W. H.
Reid, Hydrodynamic Stability (Cambridge: Cambridge University Press, 1981).

187 J, von Neumann, "Recent Theories,” 439.
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In 1945, Chia-Chiao Lin, a student of Theodore von Karmén at Caltech,
summarized the "final aims" of most of the work in stability theory as follows:
1) The first aim of stability theory is to determine whether a given flow (or a

given class of flows) is ultimately unstable for sufficiently large Reynolds
numbers.

2) The second purpose is to determine the minimum critical Reynolds number
at which instability begins. . . .

3) Finally, we want to understand the physical mechanism underlying the
phenomena by giving theoretical interpretations and experimental
confirmations of the results obtained from mathematical analysis.1%8

With the goals of stability theory stated as such, one sees that the model suggested by
Ruelle and Takens only addressed the first of Lin's purposes. In addition, the
modeling practice they introduced was at odds with many of those used by stability
theorists.

In the following, going back to the beginning of the century will show the
successes and controversies that surrounded stability theory. Again, we will pay
attention mainly to the modeling practices involved, to the confidence put on the
Navier-Stokes equations, and not so much the specific context for each contribution.
Lin's synthesis will show that his approach, while resolving long-standing
controversies, became irrelevant for the turbulence problem and was almost
immediately superseded by new nonlinear methods. These nonlinear methods were

those directly challenged by the picture suggested by Ruelle and Takens.

188 C.-C. Lin, "On the Stability of Two-Dimensional Parallel Flows," Quarterly of
Applied Mathematics, 3 (1945): 117-142; 218-234; and 277-301, 1; repr. Selected
Papers, 117.
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(i) Ancestors and Controversy

Already in 1843 George G. Stokes conjectured that among the causes for the
"discrepancy between theory and observation," besides internal friction, a possibility
existed that flows might be "unstable.” Tn certain circumstances, he suggested, it
might happen that a flow “though dynamically possible, nay the only dynamically
possible when the conditions which we have supposed are accurately satisfied, is
unstable, so that the slightest cause produces a disturbance in the fluid, which
accumulates . . . till the motion is quite perturbed."!18 Although close in its expression
to sensitive dependence on initial conditions, this statement should not be confused
with an anticipation of chaos. Rather Stokes insisted on the well known fact that some
solutions of differential equations may be unstable, as for a ball rolling on an edge
which might fail on either side.

Introduced by Rayleigh in 1880, a general method, called the method of small
oscillations, was favored for the investigation of the stability of small perturbations of
a stationary flow.190 A solution (V, p) was said to be stationary if it satisfied the time-

independent Navier-Stokes equations:

(V-V)V = —lgrad pP+VAV.
p

'8 G. G. Stokes, "On Some Cases of Fluid Motions," Transactions of the Cambridge
Philosophical Society, 8 (1845), 105; repr. Papers, 1: 17-68, 53-54. Noticed by O.
Reynolds, "An Experimental Investigation," 55. '
190 See, e.g., the following review articles: F. Noether, "Das Turbulenzproblem," 128-
131; 1. L. Synge, "Hydrodynamical Stability," 235ff. Rayleigh, "On the Stability, or
Instability, of Certain Fluid Motions," Proceedings of the London Mathematical
Society, 11 (1880): 57-70; repr. Papers, 1: 474-487.
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To study small disturbances of the stationary motion, solutions of the following form
were studied:
v(x,0)= V(x)+ev’(x,0)+ higher order terms in &
where € was small for small Reynolds numbers. Then the equations statisfied by v’
could be derived by subsituting the above Ansarz in the Navier-Stokes equations and
neglecting terms of higher order in €, which amounted to a linearization of the
equation. The method of small oscillations consisted in supposing that v”had the
following form:
v(x,H=e"F(x).

The question of the stability or instability of the perturbation was then reduced to the
question of computing whether the real part of ¢, in general a complex number, was
or was not positive. In the positive case the magnitude of the disturbance would grow
exponentially. An infinitesimal variation from the stationary solution would then
become, after a certain time, large enough to be observed. In general, a critical
Reynolds number Re.i could be computed, below which the motion was stable with
respect to small oscillatory disturbances, and above which it became unstable. What
then would be the observed solution of the Navier-Stokes equations, however,
received no answer.

This approach to stability was very difficult to put in practice and had obvious
limitations. First, it required that an exact solution to the Navier-Stokes equations be
computed to start with. This theory "can only be attempted in cases when one

possesses a special solution, however we know how rare are the exact solutions of
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motions in viscous fluids."!®! There were more or less three classes of flows where the
techniques of stability theory had been applied: the Poiseuille flow, characteristically
mvolving flows in pipes or canals of different sections driven by a pressure gradient;
the Couette flow, involving flows between surfaces, typically coaxial cylinders or
parallel planes, moving at a constant speed relative to one another; and the Bénard
convective flow, in which a layer of fluid was heated from below. Each of these
different types of flows could also be studied in two dimensions, which led to
significant simplification, but left the results open to criticism.

Second, a number of different assumptions, all of which could be questioned,
entered into the above procedure and led to contradictory results for the plane Couette
flow. In particular, in the 1910s, following Arnold Sommerfeld's lead, Ludwig Hopf
and R. von Mises concluded that the flow remained stable for all Reynolds
numbers.'? This result was difficult to test exprimentally, however, and seemed a
"surprising result from a physical point of view."193 In other words, between two
infinite plates moving at a constant relative velocity, turbulence should not develop!

In 1923, in his doctoral thesis, Werner Heisenberg used different approximation

Y1 H, Villat, Lecons sur les fluides visqueux, recueillies et rédigées par Julien
Kravtchenko (Paris: Gauthier-Villars, 1943), 423. See also Villat's early work, "Sur
quelques progrés récents des théories hydrodynamiques,” Bulletin des sciences
mathématiques, 42 (1918): 43-60; 72-92; and his thesis: "Sur la résistance des
fluides," Annales scientifiques de I'Ecole normale supérieure, 28 (1911): 203-311.
192 A. Sommerfeld, "Ein Betrag zur hydrodynamischen Erkiirung;" R. von Mises,
"Kleine Schwingungen und Turbulenz," Jakresbericht der Deutschen Mathematiker-
Vereinigung, 21 (1912): 2416248; "Beitrag zum Ozscilationsproblem," Festschrift
Heinrich Weber (Leipzig and Berlin, 1912): 252-282; L. Hopf, "Der Verlauf kleiner
Schwingungen auf einer Strémung reibender Fliissigkeit,” Annalen der Physik, 44
(1914): 1-60.

193 J. 1. Synge, "Hydrodynamical Stability," 261.
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methods (similar to the Wentzel-Kramers-Brillouin method later used in quantum
theory) to derive a critical Reynolds number for the same case. His method was
harshly criticized by Noether and spurred a long-standing controversy that was not
resolved until C.-C. Lin’s work in the late 1940s.1%4 This controversy had two
important effects. First, it once again cast doubt on the validity of the Navier-Stokes
equations; and second, it made people WOIldIBI‘ about the pertinence of the scheme of
small oscillations for the determination of critical values. It seemed that one was
entitled to concur with William Orr’s gloomy diagnosis: "It would seem improbable
that any sharp criterion for stability of fluid motion will ever be arrived at
mathematically."% Other methods were thus developed, most notably energy

methods and Ludwig Prandtl’s boundary layer theory.196

194 W. Heisenberg, "Uber Stabilitit und Turbulenz von Fliissigkeitsstromen,” Annalen
der Physik, 74 (1924): 577-627 [his doctoral thesis (Munich, July 1923)]; repr.
Gesammelte Werke/Collected Works, ser. A, 1, group 1, introductory essay by S.
Chandrasekhar and H. Rechenberg. About Heisenberg's thesis and the following
controversy, see J. Mehra and H. Rechenberg, The Historical Development of
Quantum Theory, 2 (New York: Springer, 1982), Section 1.7: 49-63. For his critique,
see I. Noether, "Ziir asymptotischen Behandlung der stitiondren Lésungen im
Turbulenzproblem," Zeitschrift fiir angewandte Mathematik und Mechanik, 6 (1926):
232-243, 242. It was Heisenberg himself who later noted the similarity of his method
with the WKB approximation: "On the Stability of Laminar Flow," Proceedings of the
International Congress of Mathematicians, Cambridge, Mass., 1950, 2 (Providence:
AMS, 1952): 292-296.

195 W. McF. Orr, "The Stability or Instability of the Steady Motion of a Fluid. Part I1:
A Viscous Liquid," Proceedings of the Royal Irish Academy (Dublin), A27 (1907):
69-138. Similarly, Rayleigh declared in 1916: "One can hardly deny that [theoretical
hydrodynamics] is out of touch with reality." Cf. his review of Lamb’s
Hydrodynamics, Papers, 6: 401.

19 For energy methods, see F. Noether, "Das Turbulenzproblem," 131-133; J. L.
Synge, "Hydrodynamical Stability," 263-266. About boundary layer theory, see L.
Prandtl, "Uber Fliissigkeitsbewegung bei sehr kleiner Reibung," Proceedings of the
Third International Congress for Mathematics (1904): 484-491; Fiihrer durch die
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(ii)  Success with Taylor-Couette Flow: Sequence of Instabilities

In 1923, stability theory witnessed a "conspicuous triumph in the work of G. 1. Taylor
[1886-1975]."197 This work has been emphatically praised by many a fluid
dynamicist. "One of the most influential investigations of 20th-century phyics,"
according to Donnelly, Taylor’s paper was seen as a definite proof for the correctness
of the Navier-Stokes equations and a definitive settlement in favor of the no-slip
boundary conditions.!® "It was a tour de force which, more than any other single
paper, established hydrodynamic stability as a distinct field."!9? Contrary to Ruelle
and Takens’s later views, Taylor contended:

It seems doubtful whether we can expect to understand fully the instability of

fluid flow without obtaining a mathematical representation of the motion of a

fluid in some particular case in which instability can actually be observed, so

that a detailed comparision can be made between the results of analysis and
those of experiments,200

The particular case he selected was that of a liquid contained between two
coaxial cylinders, rotating with different frequencies. As opposed to the infinite planes
considered before him, such motion would be readily observable in a carefully

designed experiment. In addition, Lord Rayleigh had worked out a criterion for

Stromungslehre, 3rd ed. (Braunschweig: Fr. Vieweg und Sohn, 1942); Guide a travers
la mécanique des fluides, transl. A. Monod (Paris: Dunod, 1952).

197 J. L. Synge, "Hydrodynamic Stability," 228. See G. 1. Taylor, "Stability of a
Viscous Liquid contained between Two Rotating Cylingers," Philosophical
Transactions of the Royal Society (London), A223 (1923): 289-343.

198 About Taylor’s work, see R. J. Donnelly, "Taylor-Couette Flow: The Early Days."
Physics Today, 44(11) (1991): 32-39; where the above quote is to be found.

%9 G. K. Batchelor, The Life and Legacy of G. I. Taylor (Cambridge: Cambridge
University Press, 1996), 88.

200 G. 1. Taylor, "Stability of a Viscous Liquid," 290.
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inviscid fluid.2*! In the 1880s, this type of experiment had been performed by H. R. A.
Mailock before the Royal Society, and Maurice Couette for his doctoral thesis.202
Interestingly, Couette undertook his experiments not in order to show the stability of
the motion, but rather to answer the following "fundamental question”: "Is the interior
[riction coefficient [i.e. viscosity] a well-defined physical quantity?"203 This question
naturally came up as a consequence of Boussinesq’s suggestion of considering
viscosity as a function of space and geomeltry, as well as of the physical
characteristics of the fluid. Couette’s experiments confirmed that the motion assumed
one of two regimes: "the first exactly conforms to the simplest integral of the Navier|-
Stokes] equations; the second does not conform to these integrals."

Not content with providing a complete theoretical study of the stability of
Couette flows, notably using Bessel functions, Taylor also performed careful
experiments which agreed with his theory and provided further directions for research.
Like Couette before him, he indeed noticed that the first instability was not the only
one. Between steady motion and fully developed turbulence, many different
instabilities arose one after the other. With his glass cylinder, Taylor observed that the
first instability involved the formation of rolls perpendicular to the axes of the
cylinders. He provided a complete theoretical derivation of these solutions. He

moreover noticed that at higher Reynolds numbers spirals and other types of vertical

20t Lord Rayleigh, "On the Dynamics of Revolving Fluids," Royal Society
Proceedings, A (1916): 148-154; repr. Papers, 6: 447-453,

22 M. Couette, "Sur un nouvel appareil pour 1'étude du frottement des fluides,” CRAS,
107 (1888): 388-390; "Etudes sur le frottement des liquides," Annales de chimie et de
physique, 6th ser., 21 (1890): 433-510. [His thesis.]

203 M. Couette, "Etudes sur le frottement,"” 433.
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Figure 14: Secondary Oscillation Observed by G. L Taylor in the Couette Flow.
Repr. with permission from G. I. Taylor, "Stability of a Viscous Liquid," 326 and

343. Copyright © The Royal Society in London.

disturbances could appear. These experiments provided-“the ground for Hopf’s and

Landau’s works in which they considered instabilities as inv'tjlving appearances of

frequencies in a sequence (Fig. 14). A

bl

Taylor’s observation was crucial in undermining the arguments for an

oscillation between the two regimes (steady and turbulent) which had been proposed
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by Couette in 1890.204 In 1898-1899 and 1899-1900, Marcel Brillouin gave a course
on fluid mechanics at the Collége de France where he took up Couette’s proposal, 205
Carefully reviewing previous experiments and even repeating them and performing
new ones with the help of Henri Bénard—it was at this occasion that Bénard famously
studied convective flows?*>—Brillouin had to acknowledge that the theory explaining
the passage from one regime to another "was scarcely sketched." His admiration for
Reynolds notwithstanding, Brillouin did not insist on critical Reynolds numbers but
was rather inclined to believe that the transition was progressive.207 G. L. Taylor partly
confirmed this view. The transition to turbulence was not sudden, but rather involved
a succession of instabilities appearing one after the other.

Taylor's success with the Couette flow provided new grounds for feeling more
confident about the theory of hydrodynamic stability. One telling example of this
renewed interest was that at the celebration of the first fifty years of the American
Mathematical Society this topic was the sole contribution on "application of
mathematics.” According to J. L. Synge, who delivered the address, its preparation

"involved a difficult decision," because the subject of applied mathematics was so

204 M. Couette, "Etudes sur le frottement," 478-480.

205 Marcel Brillouin, Lecons sur la viscosité, esp. Livre II, chapitre TV: "Le régime de
Poiseuille et le régime hydraulique. Passage d'un régime & I'autre," 196-224.,

206 H. Bénard, "Les tourbillons cellulaires dans une nappe liquide T: Description
générale des phénomenes,"” Revue générale des sciences pures et appliquées, 11
(1900): 1261-1271; "Les tourbillons cellulaires dans une nappe de liquide transportant
de la chaleur par convection en régime permanent," Annales de chimie et physique,
7th ser., 23 (1901): 62-144.

207 "Dans un méme tube de verre le passage d'un régime 2 I'autre n'a pas lieu
brusquement, a partir d'une vitesse déterminée, mais il existe une période troublée ol
les deux régimes sont possibles et alternent avec une fréquence plus ou moins
grande." M. Brillouin, Lecons sur la viscosité, 196.
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vast. He chose hydrodynamic stability because he felt this was a topic that was well
formulated mathematically, interesting not only to the mathematician but also to the
physicist and the engineer, and involved still unsolved problems.208

Taylor’s wofk notwithstanding, many fluid dynamicists felt that the successes
of stability theory were at best relative. In 1930, Henri Villat, a student of Brillonin
whom we have met as Leray’s mentor, wrote that the theoretical study of the transition
to turbulence was in its infancy. "Here are huge fields of research where workers will
be able to exert their sagacity and where experimenters will often open the way to
mathematicians."2% In the early 1940s, Caltech mathematician and engineer Theodore
von Kédrman (1881-1963), a Hungarian émigré, endeavored to draw the
mathematicians' attention to many nonlinear problems, difficult on a mathematical
level, but crucial for engineers. For him, therefore, hydrodynamics and acrodynamics,
his main fields of research, provided clear examples of nonlinear en gineering
problems where advanced mathematical methods were required. But he did not deal
with the turbulence problem, barely noting that:

[it] has been discussed mathematically by several authors by means of

linearized equations without reaching a satisfactory agreement with

experiment. The adequate treatment of the nonlinear equations is bound to
contribute essentially to the solution of this important problem.210

Similarly, John von Neumann contended in 1949;

208 J. L. Synge, "Hydrodynamical Stability," 227. See G. L. Taylor, Proceedings of the
Fifth International Congress of Applied Mathematics, Cambridge, Mass., 1938 (New
York: J. Wiley & Sons, 1939): 304-310.

2% Henri Villat, Mécanigue des fluides (Paris: Gauthier-Villars, 1930}, vi-vii. [Cours
de I'Ecole normale d'aéronautique. |
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The summing up of several decades of stability theory appears to be this: The
stability theory proved to be mathematically much more difficult than might
have been originally expected. . . . [Its relation] to experiment has so far not
been a very satisfactory one.2!1

Manifestly, at the end of World War II, classical analytic methods had reached
a limit. The theory of hydrodynamic stability was in need of some good cleaning-up.
It would however be achieved at a crucial cost: in the process it lost much of its

relevance as a way to understand turbulence.

(iii)  Synthesis, but Insignificance?
In fact, Taylor’s very observation of a sequence of instabilities indicated that stability
theory was but the beginning of the theoretical study of the onset of turbulence. Like
von Kédrmdn, von Neumann believed that stability theory had to become fuily
nonlinear in order to answer questions about the nature of turbulence:

The stability theory could at best only determine when the laminar flow breaks
down and turbulent flow becomes possible. It will not describe, however, what
the properties of the developed turbulent flow are. This linear, 'small
perturbation’ theory must obviously be complemented by a non-linear theory
of large deviations from the laminar pattern. Or to put it more directly: A
complete non-linear theory of the general solutions of the Navier-Stokes
equations is called for.212

In 1944, Chia-Chiao Lin, a student of von Kdrmdn, started to publish his work
that would end up establishing solid foundations for stability theory, as summarized in

his acclaimed 1955 monograph,2!3 Building on Synge's work, he thereby confirmed

10T, von Kérmén, "The Engineer Grapples with Nonlinear Problems.” Bulletin of the
American Mathematical Society, 46 (1940): 615-683, 664n. See also "Tooling up
Mathematics for Engineering." Quaterly of Applied Mathematics, 1 (1943):. 1-6.

211 J. von Neumann, "Recent Theories,” 441,

212 J. von Neumann, "Recent Theories,” 441. My emphasis.

213 C.-C. Lin, The Theory of Hydrodynamic Stability (Cambridge: Cambridge
University Press, 1955).
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the results of Heisenberg’s 1923 thesis and rehabilitated the field of stability theory.
What is the most noticeable in his work is that he made crucial use of the first
computers available in order to recover Heisenberg’s prediction that the plane Couctte
flow was indeed unstable.2!4 However, Lin clearly resented this state of affairs: "It
would be highly desirable if the instability of the classical motion could be proved
without resorting to such heavy calculations."2!5 As with every previous success, Lin’s
synthesis only furthered belief in the validity of the Navier-Stokes equations.
Subramanayan Chandrasekhar, the famous Indian physicist from the
University of Chicago, was the third "crew member" who, according to Onsager, was
embarked in the 1950s on the boat of hydrodynamical stability theory. He was a
master at combining delicate experimentation,2!® numerical computations,?17
theoretical derivation, and an uncanny physical intuition. But mostly, Chandrasekhar’s
work showed the ability of Lin’s methods to account for a wide variety of cases.
Above all, Chandrasekhar explored the stability of convective flows, when combined

with rotational motion or electromagnetic fields.218

24 See C.-C. Lin, "On the Stability of Two-Dimensional Parallel Flows." Quaterly of
Applied Mathematics, 3 (1946): 117-142; 218-234; 277-301. Repr. Papers, 1: 1-68.
215 C.-C. Lin, The Theory of Hydrodynamic Stability, 31.

216 See a picture of his hydromagnetic laboratory at the Fermi Institute for Nuclear
Studies, Chicago, in figure 12 in S. Chandrasekhar, "Thermal Convection: Rumford
Medal Lecture 1957," Daedalus, 86 (4) (1957): 323-339; repr. Selected Papers of S.
Chandrasekhar, 4 (Chicago: University of Chicago Press, 1989): 163-191, 180.

217 For example, Chandrasekhar acknowledged von Neumann’s help in having
numerical work done on the IAS machine in S. Chandrasekhar, "The Stability of
Viscous Flow Between Rotating Cylinders in the Presence of a Radial Temperature
Gradient,” Journal of Rational Mechanics and Analysis, 3 (1954): 181-207; repr.
Selected Papers, 4. 107-133.

218 The summary of his work is presented in Hydrodynamic and Hydromagnetic
Stability (Oxford: Clarendon, 1961).
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But at the same time as Lin settled the theoretical bases and Chandrasekhar
explored their ramification, stability theory ceased to be as relevant as before, as von
Neumann’s remark above indicates, since it only dealt with the first instability. Lin
himself was the first to acknowledge this: "The problem of the transition to turbulence
.. . is in practice more important than that of stability of laminar motion."2!® But Lin
admitted that he could not deal with this "more important” problem with the methods
he had chosen to exploit. Indeed, a result of James Serrin’s, painfully obtained
following these methods together with energy methods, might be taken as
symptomatic of the lack of relevance of hydrodynamic stability theory. In 1959,
Serrin was able to determine a "universal stability criterion” showing that fluid flows
were always stable for Reynolds numbers Re < 5.71, which should be compared with
the values of the order of 1,000 to 10,000 obtained in most experimental situations!220

Chia-Chiao Lin’s modeling practice involved linear assumptions, reliance on
computer calculations, and a refusal to interpret turbulence. In particular his basic
assumptions for linear stability theory were two: first, he only considered infinitesimal
disturbances and not finite ones and second, he "assume[d] that, for small
disturbances, the [Navier-Stokes] equations may be linearized; that is, we shall
neglect terms quadratic or higher in the disturbances and their derivatives,"?2! This

practice would be challenged by the next generation, who would endeavor to build a

29 C.-C. Lin, The Theory of Hydrodynamic Stability, ix.

220 J. Serrin, "On the Stability of Viscous Fluid Motions," Archive for Rational
Mechanics and Analysis, 3 (1959): 1-13.

221 C.-C. Lin, The Theory of Hydrodynamic Stability, 1.
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nonlinear theory of hydrodynamic stability without resorting to the computer. These

were the scientists who had to react to Ruelle and Takens’s suggestions.

(iv)  Nonlinear Stability Theory
"As engineering science progresses,” von Karmdn contended in 1943, "the need for
more exact information and the necessity to get nearer and nearer to physical reality,
forces us to grapple with many nonlinear problems. 222 The nonlinear study of
hydrodynamic stability could be taken to have started with "a capital memoir” by J. T.
Stuart, from the National Physical Laboratory, Teddington, Middlesex, in 1958.223 In
this work, his ambition was important; he hoped that by considering nonlinear
disturbances, stability theory could again claim to provide an account for turbulent
phenomena in Poiseuille, Couette, and Bénard flows,

A more fundamental objective [of the theory of hydrodynamic stability] is to

understand how, and under what circumstances, turbulence may arise from

laminar instability. . . . It is clear that the stability problem in its general form

must be considered to be non-linear, because the equations of motion [i.e.

Navier-Stokes] are non-linear.?24

Significantly, Stuart noticed the "interesting suggestion concerning the

development of turbulence from the growth of small disturbances” which had been

advanced by Lev Landau in 1944, Indeed, from the point of view of stability theory,

222 T. von Kdrmadn, "Tooling up Mathematics,” 5.

223 J.T. Stuart, "On the Non-Linear Mechanics of Hydrodynamic Stability," Journal
of Fluid Mechanics, 4 (1958): 1-21. Gérard Iooss called Stuart's paper "a capital
memoir” in his doctoral thesis: Contribution & la théorie non-linéaire de la stabilité
des écoulements laminaires, thése, Paris-VI (1971), Jussieu Lib. Note that there will
be an important blind spot in the account of nonlinear stability theory provided here,
namely the contributions of several Soviet scientists, and in particular V. I. Yudovich,
For some references, see D. Ruelle and F. Takens, "Note Concerning our Paper,"
TSAC, 83-84.
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Landau’s was the first method to tackle nonlinear disturbances.?25 Stuart believed that
this suggestion could even account for experimental observations that seemed to belie
i:

"there are cases of flow in which turbulence develops rather suddenly as the

Reynolds number is raised, and in these cases one might infer that the critical
Reynolds numbers are close together,"226

In the early 1970s, most of the more mathematical contributions to nonlinear
stability theory appeared in the Archive for Rational Mechanics and Analysis. Since
this journal rejected Ruelle and Takens’s paper, it is interesting to ook at what it was
publishing concerning the onset of turbulence around the same time. "The editor did
not like our ideas,” Ruelle recalled, "and referred us to his own papers so that we
could learn what turbulence really was."227 Founded by Clifford Truesdell in the late
1950s, the Archive "nourishes the discipline of mechanics as deductive, mathematical
science in the classical tradition and promotes pure analysis, particularly in contexts
of applications."22% In 1970, it was edited by James Serrin, from the University of
Minnesota, who specialized in the study of the Navier-Stokes equations and the
stability of their solutions.??® The editorial board included hydrodynamic stability

theorists, such as D. D. Joseph and C.-C. Lin, applied mathematicians, such as J.-L.

224 J.'T, Stuart, "On the Non-Linear Mechanics," 2.

225 3. Tooss, Contributions, 7-8.

236 T T, Stuart, "On the Non-Linear Mechanics," 5-6. Let us note here that Stuart’s
work, like Lin’s, involved numerical computations performed by Miss S. W. Skan (see
P.21).

227 D, Ruelle, Chance and Chaos, 56.

228 Statement of intent of the journal published in each volume.

229 Note that the University of Minnesota, whereto James Serrin attracted both Daniel
Joseph and David Sattinger, seems to have played an important role in the
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Lions, but also mathematicians coming out of Lefschetz’s school on nonlinear
differential equations, like L. Cesari. The journal mainly dealt with hydrodynamics,
elasticity, and thermodynamics, as well as the theory of ordinary and partial
differential equations. More occasionally, it also included papers on various fields of
mathematical physics, such as electromagnetism, relativity, or celestial mechanics. Its
general philosophy was to print papers dealing with mechanics, in an
uncompromisingly rigorous fashion. The standard form of its articles was strictly
mathematical, with definitions, theorems, and proofs. Differential equations were the
most common expressions to be found in its pages. Apparently, this was an outlet well
suited for Ruelle and Takens’s article. So, why was it rejected?

In order to understand this rejection one must take notice of the fact that in
1970-1972 several papers appeared in the Archive that dealt with the problem of
(nonlinear) stability of fluid flows. Their authors were Gérard Tooss, Daniel J oseph,
and David Sattinger.2*° Both Sattinger and Iooss came from a mathematical

background: the former from the University of California in Los Angeles and the

development of nonlinear stability theory by maintaining contacts between engineers
and mathematicians.

230 (5. looss, "Théorie non linéaire de la stabilité des écoulements laminaires dans le
cas de « I'échange des stabilit€ »," Archive for Rational Mechanics and Analysis, 40
(1971): 166-208; D. H. Sattinger, "Bifurcation of Periodic Solutions of the Navier-
Stokes Equations," 7bid., 41 (1971): 66-80; "Stability of Bifurcating Solutions by
Leray-Schauder Degree," Ibid., 43 (1971): 154-166; D. D. Joseph and W. Hung,
"Contributions to the Nonlinear Theory of Stability of Viscous Flow in Pipes and
Between Rotating Cylinders," Ibid., 44 (1971-1972): 1-22; D.D. J oseph and D. I
Sattinger, "Bifurcating Time Periodic Solutions and their Stability,” Ibid., 45 (1972):
79-109; G. Iooss, "Existence et stabilité de la solution périodique secondaire
intervenant dans le probléme d'évolution du type Navier-Stokes" Ibid., 47 (1972):
301-329. See also D. D. Joseph, "Stability of Convection in Containers of Arbitrary
Shape," Journal of Fluid Mechanics, 47 (1971): 257-282.
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second from Paris.?3! They attacked the problems of hydrodynamic theory with the
goal of providing solid mathematical fopndations, first to the linear theory, then to
show that the nonlinear theory fell back on the results of the linear theory as far as the
first instability was concerned.?32 Vladimir Arnol’'d’s characterization of his own work
in hydrodynamics may be well suited as a description of stability theory in the early
1970s: "following N. Bourbaki’s call, I endeavored always to substitute blind
calculations to the lucid ideas of Euler’."233

For Iooss, but also for Sattinger, if the long-standing controversy about
stability theory had showed one thing, it was the need to be extremely clear about the
functional spaces with respect to which a given flow was stable, or not.23* They both
developed heavy mathematical apparatuses that were extremely clear about the
functional spaces they considered, and studied well-defined operators acting on these
spaces. At the same time, they inserted themselves within the disciplinary tradition of
stability theory, emphasizing Lin’s synthesis and Landau’s (and, in the case of

Sattinger, Hopf’s) suggestions as an indication of how to go beyond linear theory.

231 Sponsered by the ONERA, the French aerospacial research agency, G. Iooss
defended his Ph. D. thesis on March 3, 1971 in front of jury composed of J.-I.. Lions
(president), I.-P. Guiraud (his main advisor), and A. Avez. See G. Iooss,
Contributions.

232 See, in particular, D. H. Sattinger, "The Mathematical Problem of Hydrodynamic
Stability," Journal of Mathematics and Mechanics, 19 (1970): 797-819.

233 V. L. Arnol'd, "Sur la géométrie différentielle des groupes de Lie de dimension
infinie et ses applications 3 I'hydrodynamique des fluides parfaits," Annales de
Unstitut Fourier de Grenoble, 16(1) (1966): 319-361, 319.

¥4 D. H. Sattinger, "Stability of Nonlinear Hyperbolic Equations," Archive for
Rational Mechanics and Analysis, 28 (1968): 226-244; "On Global Solutions of
Nonlinear Hyperbolic Equations,” Ihid, 30 (1968): 148-172.
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Mainly, they set themselves the goal of investigating, with the most formal
mathematical tools of functional analysis and topology, the stability of the Navier-
Stokes equations typically written in the following form:

du

7 +Liu—M,(u)=0;

where u represented the velocity field, and L, and M; respectively were linear, and
nonlinear, operators depending on a parameter A representing typically the Reynolds
number.235 Basing themselves on the theory of ordinary differential equations, which
was the starting point of dynamical systems theory, they nonetheless insisted on the
specificity of partial differential equations, such as Navier-Stokes.

During those years, Iooss’s and Sattinger’s most remarkable achievement was
the study of the bifurcation of periodic solutions of the Navier—Sfokes equations and
their stability.23¢ In Ruelle and Takens’s language, this consisted in the second Hopf
bifurcation. Without any contact with the flamboyant groups at Berkeley, or Bures-
sur-Yvette, Iooss and Sattinger of course did not consider their problems in terms of
attractors. Rather, they investigated the existence of a correctly behaved solution to
the Navier-Stokes equations. It must be noticed, however, that Sattinger, who was
knowledgeable about the work done at the Courant Institute of New York University,

often framed his discussion in terms of bifurcation theory.237 Finally, it should also be

235 See G. looss, Bifurcation et stabilité, Lecture notes for a course at Paris XI-Orsay
(1972-1973); Jussieu Lib. Of course, the exact form of the equation varied slightly
from one author to another, and even for the same author.

% Again one should mention Yudovich’s name in this respect.

27 He cited 1. B. Keller and S. Antman, Bifurcation Theory and Nonlinear Eigenvalue
Problems (New York: Benjamin, 1969).
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emphasized that this work always remained purely mathematical and that, as opposed
to their predecessors in stability theory, it involved no numerical computation
whatsoever.

Compared to the above, Ruelle and Takens’s article, no matter how
mathematically arduous for the average physicist, was rather informal. The Bures pair
remained sloppier about the characterization of the functional spaces they used.
Moreover, the theorems they proved were either already well known, or based on
unjustified assumptions as far as hydrodynamic flows were concerned.23® From this
shaky mathematical basis, they then speculated much further from stationary solutions
than any stability theorists dared to venture, whether working in the nonlinear domain
or not.

The modeling practice of the stability theorists involved a clear identification
of functional spaces and the operators involved, and not, like Ruelle and Takens,
topological features of attractors. The mathematical methods used were part of the
classical tradition of functional analysis, well represented in the pages of the Archive,
as opposed to global analysis and dynamical systems theory. They were not interested
in classifying systems, since they already had their firm starting point in the Navier-
Stokes equations, which remained unquestioned. Finally, since they were looking at
solutions and the stability of disturbances, even if they had had the mathematical
apparatus available to go beyond the study of the stability of periodic solutions, which

they did not have, they would have been incapable of seeing something like a strange
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attractor. Aperiodic solutions would have been very difficult to distinguish from
quasiperiodic ones without the topological tool of the attractor and the practices that
went with it.

Looking at fluid mechanics as a "deductive, mathematical science in the
classical tradition,” Iooss, Joseph, and Sattinger were hardly in a position to appreciate
something like the Ruelle-Takens model. But mainly, one may suspect that the reason
why the editor of the Archive rejected this paper was that stability theorists then
showed little interest for turbulence. For years, stability theorists had endeavored to
prove the stability of laminar flow because this was a problem it could address; its

practitioners had all but forgotten about turbulence!

6. RECEPTION OF THE RUELLE-TAKENS MODEL BY STABILITY
THEORISTS; RECEPTION OF STABILITY THEORY BY RUELLE

Nevertheless, stability theorists’ concerns were already close enough to Ruelle and
Takens’s, so that some dialogue could be established. Even if it involved translation
and misunderstanding, this dialogue was an important factor confributing to a wide
recognition of the Ruelle-Takens model. In the following, the first confrontation
between the two approaches is examined as it took place at the Battelle Research
Center in Seattle during the summer of 1972. The consequences that his work with
Takens had on Ruelle’s career in the years following their paper, and its consequence

for the stability theorists’ later careers are drawn.

3% An exception to this was to so-called "Central Manifold Theorem." Cf. O. E.
Lanford, "Bifurcation of Periodic Solutions into Tnvariant Tori: The Work of Ruelle
and Takens," Nonlinear Problems, ed. 1. Stakgold, et al.: 159-192.
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a) Confrontation at Battelle

When Gordon Battelle died in 1923 he bequeathed his large fortune to found an
institute devoted to the pursuit of "the social and economic benefits to be derived from
scientific research and from the making of discoveries and inventions." Playing a key
role during World War II in the metallurgy of uranium, the Battelle Memorial Institute
expanded greatly in the postwar years, with a total staff of nearly 6500. In 1967, at its
Seattle research center, a first meeting was held in which physicists and
mathematicians were invited to exchange ideas, and which included an important
French delegation, as well as addresses by Mather, Thom, and Smale.23 Tt quickly
became a tradition at Battelle to organize this kind of meetings with nearly equal
representations from mathematics and areas where mathematicians might have
something to contribute.240

From July 3 to 28, 1972, Battelle Seattle Research Center welcomed another
Sumimer Institute, this time devoted to "the mathematical analysis of nonlinear
problems in the physical and biological sciences.” The meeting focused on four areas:
biology, statistical mechanics, hydrodynamics, and chemical reaction engineering.
Already in 1972, a "theme" emerged to the effect that "disparate branches of science

generate common mathematical problems of nonlinear analysis."241

239 C. M. DeWitt and J. A. Wheeler, eds., Battelle Rencontres: 1967 Lectures in
Mathematics and Physics (New York: Benjamin, 1968), x-xi.

240 Note that a meeting on catastrophe theory was held at Battelle on April 21-25,
1975. P. Hilton, ed., Structural Stability, the Theory of Catastrophes, and
Applications in the Sciences.: Proceedings of the Conference Held at Battelle Seattle
Research Center 1975, Lecture Notes in Mathematics, 525 (Berlin: Springer, 1976).
241 1. Stakgold, D. D. Joseph, D. H. Sattinger, eds., Nonlinear Problems in the
Physical Sciences and Biology: Proceedings of the Baitelle Summer Institute, Seattle,
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In particular, David Sattinger and Daniel Joseph spoke at great lengths about
bifurcations and stability in hydrodynamics, while Oscar E. Lanford, ITI, introduced
the Ruelle-Takens model. A student of Arthur Wightman, who had brought him to the
THES in 1963, Lanford was then workin g in the Mathematics Department at Berkeley.
Collaborating with Ruelle on statistical mechanics, he had been invited to come to the
IHES in 1966-1967.242 In 1972, at Battelle, we encounter him as a missionary for
Ruelle and Takens.?*3 Besides introducing the Poincaré map, which apparently was
unknown to Joseph, Sattinger, and Iooss (who was not present at Battelle), Lanford
proved "Ruelle-Takens theo.rem." As opposed to Ruelle and Takens's own paper,
however, Lanford's had little to do with turbulence and strange attractors.

But the message nonetheiess got to Joseph and Sattinger. And they were in the
best position to see both the interest and limitations of the Ruelle-Takens proposition.
They both found the suggestion very stimulating. In fact, they could even claim to
have seen a similar phenomenon, with a more careful identification of the
circumstances in which it might happen than Ruelle and Takens's.244

The transition to turbulence through repeating branching [succession of Hopf

bifurcations] cannot, however, be the relevant description in the case of
subcritical bifurcations. In this case, the time periodic solution which

Juley 3-22, 1972, Lecture Notes in Mathematics, 322 (Berlin: Springer, 1973),
preface.

242 Lettres de Léon Motchane a Robert Oppenheimer (27/3/63); de David Ruelle 2
L€on Motchane (25/7/66); de Léon Motchane 4 David Ruelle (20/9/66); de Oscar E.
Lanford & Léon Motchane (23/11/66). Arch. THES.

243 0. E. Lanford, "Bifurcation of Periodic Solutions."

244 D. D. Joseph, "Remarks about Bifurcation and Stability of Quasi-Periodic
Solutions which Bifurcate from Periodic Solutions of the Navier-Stokes equations,”
Nonlinear Problems, ed. 1. Stakgold, et al.; 130-158, 151; D. H. Sattinger, "Six
Lectures on the Transition to Instability,” Nonlinear Problems, ed. I. Stakgold, et al.:
261-287, 268.
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bifurcates from the steady solution is unstable from the start and an arbitrary
initial disturbance of the steady solution either decays or is attracted to
something else, perhaps a stable ‘turbulent solution’ 245

Since, in the "subcritical" scheme, the periodic solution after the first bifurcation was
unstable, this obviously was very different from what Ruelle and Takens had in mind.
But, at the same time, the much more careful description of bifurcations that J oseph
and Sattinger were able to provide had caught the eye of Ruelle. The appendix of
Ruelle and Takens's paper was sent to be typed by an THES secretary on July 15,
1970.2% There, for the first time, Ruelle made the connection with stability theory,
citing the work, much of it published in the Archive for Rational mechanics, done on
the Taylor and Bénard problems by people such as Yudovich, Welte, Fife and Joseph,
all well known stability theorists. A dialogue between specialists and applied

topologists (such as hardly ever occurred with catastrophe theorists) could take place.

b) Ruelle and the IHES After Ruelle-Takens

On June 4, 1973, David Ruelle wrote to Kuiper to ask him to invite Serrin, J oseph,
and Sattinger to the THES, at the same time as he asked for Bowen and Lanford.
Clearly, he was intending to spend more time on the theory of dynamical systems,
'But, this had not been the case prior to 1973.

In interview, Ruelle now says that his article with Takens was but a small
incursion into a foreign field, which he was not sure he wanted to pursue much

further. To a degree, the archives of the THES confirm this. In 1970-1971, however,

#D.D.J oseph and D. H. Sattinger, "Bifurcating Time Periodic Solutions," 106.
246 Arch. IHES. See the appendix "Bifurcation of Stationary Solutions of
hydrodynamical Equations,"” in D. Ruelle and F. Takens, "On the Nature," 189-191.
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when Ruelle spent the academic year at the TAS in Princeton, he went on a tour in
order to spread the word about his new model for turbulence. Most notably, he spoke
at Boston, where he met Harvard physicist Paul C. Martin who remembers telling him
about Edward Lorenz’s work;?” and at Indiana University in January 1971, where
Eberhard Hopf was still teaching. He participated in the conference on "Statistical
Models and Turbulence” held at La Jolla in July 1971. He also gave series of lectures
on turbﬁlence at Boulder and Brandeis. His model was not always well received, since
Ruelle recalls C. N. Yang, from SUNY; Stonybrook, joking about his "controversial
ideas about turbulence."248

But clearly, at that time, Ruelle hardly considered this new orientation in his
research as something that should shape his invitation strategy for the THES. Indeed,
during most of the spring term 1971, he clashed by mail with Motchane's ambition of
hiring as many as three more permanent professors of mathematics. Feeling that
"invitations in domains that interest me are sacrificed,” Ruelle voted against all three
nominations.?*® Coming back to Bures after having spent the year at Princeton, Ruelle
envisaged, with the presence of Eliott Lieb, a year 1972-73 with an emphasis on
statistical mechanics. In January, he proposed a "grandiose program” for 1973-74: he

planned to invite "the big people of constructive field theory, which is probably the

247 In the interview of Paul C. Martin conducted by the author (7 May 1996), it was
not exactly clear when this happened. It might have been later (in 1973 or even 19753),
since Ruelle did not start addressing the Lorenz attractor before the summer of 1975.
Martin however remembers that it took a while for Ruelle to see the relevance of
Lorenz's work.

248 D, Ruelle, Chance and Chaos, 66.
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hottest thing in mathematical physics nowadays.” In February, he was in favor of
organizing an "astrophysical year"” for 1974-75 in collaboration with the CNRS,
contending that "one can think that, in the future, the most active developments of
theoretical physics will be obtained in, or via, astrophysics.” None of these projects
had.much to do with his work on dissipative systems.250

The only exception was the invitation Ruelle sent to Jerrold Marsden for the
academic year 1971-1972.257 A student of Wightman’s at Princeton University,
Marsden had written his thesis "with much inspiration from Ralph Abraham" in 1967-
68. A great "note-taker," he helped Abraham prepare the publication of his famous
lecture notes.?2? Having read one of V. 1. Arnol’d’s papers in fluid mechanics, he
moved to Berkeley where he attended Smale’s seminars, teamed up with David Elbin,
and started to work on hydrodynamics.253 This was not a popular ficld for theoretical
physicists at the time; he remembers having been told to "stop wasting [his] time."254

Like Lanford and Ruelle, Marsden was the kind of mathematical physicist who could

249 Lettre de David Ruelle & Léon Motchane (25/6/71). Offers were made to Bomberi,
Langlands, and Armand Borel, all of whom rejected the offer. See Comité scientifique
(25/6/71). Arch. THES.

20 Rapport du Comité scientifique (22/10/71); Petit Comité scientifique (10/1/72);
Petit Comité scientifique (7/2/72). Arch. THES.

251 Comité scientifique (28/6/70). Arch. THES.

22 R. H. Abraham and J. E. Marsden, Foundations of Mechanics (New York: W. A.
Benjamin, 1967). It was Wightman who, in interview, called Marsden a "great note-
taker." :

23 V. 1. Arnol'd, "Sur la géométrie différentielle des groupe de Lie de dimension
infinie et ses applications & I'nydrodynamique des fluides parfaits," Annales de
IInstitut Fourier de Grenoble, 16(1) (1966): 319-361.

23 By Wigner or Wheeler, he was not sure. See J. Marsden's acceptance speech in
1990 Norbert Wiener Prize in Applied Mathematics Awarded in Columbus,” Notices
of the American Mathematical Society, 37 (1990): 808-811, 810.
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build bridges across disciplines. But Marsden was not part of the stability theory
community.

"I think that Marsden’s visit will be very valuable from a scientific viewpoint,"
Ruelle wrote to Motchane; he "should in particular interest Thom. 255 Indeed, in the
spring term of 1972, while Abraham was also at the THES, Marsden gave several talks
in Thom's seminar, in which he addressed the issue of the "Onset of Turbulence,"256
Marsden also used the opportunity of being at the IHES to work on papers in which he
studied the Hopf bifurcation, and reviewed different models for the onset of
turbulence including Ruelle and Takens's.257

That same year, the theoretical physics seminar of the IHES welcomed a talk
by Paul C. Martin, who had showed an early interest for the Lorenz model, seeing it
as an instance where turbulence set in suddenly without following Landan's scheme.
Like Ruelle a specialist in axiomatic quantum field theory, statistical mechanics, and
the many-body problem, Martin was spending the year at Saclay and Orsay in de
Gennes’s group. His study of phase transitions led him to believe that he could have
something to say about the onset of turbulence. On April 12, 1972, he gave a talk in

the Ruelle-Michel seminar entitled: "Schwinger-Feynman Techniques in Classical

235 Lettre de David Ruelle a Léon Motchane (8/12/70). Arch. IHES.

236 R. Abraham's seminar in Thom's applied global analysis seminar (22/2/72) was
"Hydrodynamic Bifurcations according to Ruelle and Takens;" D. Ruelle (28/2/72):
"Bifurcations with Symmetry;” J. Marsden (13/3/72): “The Onset of Turbulence.”
Rapport scientifique 1972. Arch, IHES,

257 J. E. Marsden, "A Survey of Some Recent Applications of Global Analysis to
Hydrodynamics," Quatriéme rencontre entre mathématiciens et physiciens, 1-5 mars
1972 4(2), Supplement 2 to Publications du département de mathématique de
U'Université de Lyon-1, 9 ( 1972): 194-207; "The Hopf Bifurcation for Nonlinear
Semigroups," Bulletin of the American Mathematical Society, 79 (1973): 537-541,
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Fluid Dynamics."258 One should further note the presence at the THES in 1972 of O.
E. Lanford, who however spoke on statistical mechanics.

Meanwhile, in 1972, Ruelle gave only two talks devoted to "turbulence et
attracteurs étranges” (at Moscow and in Israel), while delivering many more on
statistical mechanics. That year, he nonetheless wrote two papers dealing with the
Hopf bifurcation.?>® Very different from one another, these two papers show that
Ruelle’s incursion in the field of dynamical systems was turning into an actual change
in orientation. This time accepted by the Archive for Rational Mechanics, his paper on
"Bifurcations" was a more formal treatment of the Hopf bifurcation, but significantly
it scarcely dealt with phenomena which are today associated with chaos and
turbulence. Formal bifurcation theory did not allow him to go further.

The other paper, on chemical oscillations, is much more interesting from the
point of view of the history of chaos. There, a number of important themes recurrent
in later works on chaos theory were raised and argued for the first time. Having
visited Prof. B. Chance in his group on chemical oscillations at the University of
Philadelphia, Ruelle grasped the possibility of applying the Ruelle-Takens model to a
totally different case. One should note that Sattinger had also remarked on the

similarity of hydrodynamic and chemical stability, as early as 1971.260 These parallels

%8 Interview of P. C. Martin by the author (7 May 1996); Rapport scientifique 1972.
Arch. THES.

259 D. Ruelle, "Bifurcations in the Presence of a Symmetry Group," Archive for
Rational Mchanics and Analysis, 51 (1973); 136-152; "Some Comments on Chemical
Oscillations;" TSAC, 91-108 and 109-115.

260 D. H. Sattinger, "Stability of Bifurcating Solutions," 165; where he cited G. R.
Gavalas, Nonlinear Differential equations of Chemically reacting Systems (New
York: Springer, 1968).
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were one of the themes of the 1972 Battelle Summer Institute, where Grégoire Nicolis
was present representing Prigogine's School in Brussels, which was interested in the
topic.26!

But Ruelle went further than this; he also put forward two important
characteristics of turbulence as he saw it. Whether manifested in fluids or chemical
reactants turbulence involved nonperiodic solutions and "sensitiveness to initial
conditions."?62 These properties opened the door for careful experimental
confirmation of his theories. The conclusion was clear to Ruelle:

The bifurcations that lead to such "turbulent” solutions are difficult to study

mathematically, but turbulent time behavior should be easy to recognize when

it occurs experimentally. This behavior might easily be overlooked in chemical
systems as "messy, unusable data." The phenomenon is in fact respectable, 263

Ruelle, it seems, was now expecting a confirmation of his model not from theory, but
from experiments.

Only during the spring of 1973 did Ruelle finally propose, with Thom's
support, that a year starting in the spring of 1975 be devoted to "Dynamical systems,
statistical mechanics, and turbulence" at the IHES. Coming back from Moscow,
Ruelle also suggested that Soviet mathematicians Arnol'd and Sinai be considered for

permanent professorships at the IHES, althou gh under the conditions reigning in the

21 See e.g. L. Prigogine, Introduction ¢ la thermodynamique des processus
irréversibles (Paris: Dunod, 1968), chap. 8, where chemical oscillations, Bénard
oscillations, and the Lotka-Volterra equations were treated as instances of instability.
About this, see Chapter VIII above.

262 Sensitivity to initial conditions was already mentioned by D. Ruelle, "Strange
Attractors as a Mathematical Explanation,” 293.

263 D. Ruelle, "Some Comments," 70; TSAC, 114.
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USSR, this was difficult to envision. Finally, his inroad into the theory of dissipative
dynamical systems had begun to shape Ruelle's duties at the THES.

Simultaneously, he came in contact with Rufus Bowen, whom we may recall
as "Smale's best student.” On June 4, 1973, Ruelle wrote to Kuiper in the letter
mentioned above that he wanted to invite him to the IHES: "I also had useful
scientific contacts [while in California, from April to August 1973], particularly with
Bowen. . . . He impresses me very much, and T am in favor of making soon a firm and
attractive offer [to him]."264 In fact, the case of Bowen is revealing of the passing of
the initiative from Thom to Ruelle in the pursuit of the best use of dynamical systems
theory for the study of physical systems. Indeed, just the year before, it was to Thom
that Bowen had written in order to be invited to the IHES (although, in the end, he
chose not to come).?6> With Bowen, Ruelle would soon publish the article marking his
full involvement in dynamical systems theory.266 This paper marks the meeting point
of his earlier work on statistical mechanics and his new concerns for dissipative
systems, which would set the direction of his future research, and provide an axis
around which the activities of the JHES in this domain would be built.

It was in the same letter to Kuiper that Ruelle suggested that James Serrin,
Daniel Joseph, and David Sattinger be invited to the THES. At the meeting of the

Scientific Committee on November 16, 1973 the impulse was definitely given for

4 Lettre de David Ruelle a Nicolaas Kuiper (4/6/73); Comité scientifique (24/3/73);
Rapport scientifique 1973. Arch. THES.

265 Lettres de Rufus Bowen a René Thom (24/2/72); and (24/5/72). Comité
scientifique (14/4/72). Arch. THES.

266 R. Bowen and D. Ruelle, "The Ergodic Theory of Axiom A Flows," Inventiones
Mathematicae, 29 (1975): 181-202; TSAC, 153-174.



David Aubin VII — Strange Attractors 555.

developing the activities of the THES around the themes of dynamical systems,
turbulence, and statistical dynamics, but now under Ruelle's lead rather than Thom's,.
Moreover, David Sullivan, from MIT, then visiting at Orsay and the IHES, was now
considered as the more likely prospect for the creation of a new position.
The range of interest and our expectation of necessary moves to new fields in
the course of life seems greater with Sullivan [as opposed to B. Mazur, and J.
Mather, also considered]. Sullivan attacks hard and most fundamental

problems, and does aim at finding the efss]entials. He has a great technical
power at the same time and uses it.267

With the offer of a position, he became interested in "the theory of
singularities of complex manifolds and in dynamical systems. Both of these topics,”
Kuiper wrote, "presently are in full activity, notably in the Paris region and more
especially at the IHES (Thom-Ruelle-A'Campo)."268 Sullivan accepted the offer and
began at the IHES in September 1974.269 Clearly, the THES was now launched as a
major center in the theory of dynamical systems, still envisioned in its mathematical
aspects, but also with respect to its relevance for mathematical physics, particularly
turbulence and statistical mechanics.270

In the later part of the 1970s, the IHES thus became one of the breeding
grounds from which chaos theory emerged by the end of the decade. But at the same
time, the landscape became much broader with infusions from a wide array of

backgrounds. This central issue in the emergence of chaos will be partly addressed in

267 Mémo, by N. Kuiper; Comité scientifique (16/11/73). Arch. THES.,

268 Lettre de Nicolaas Kuiper a Francois Le Lionnais (24/4/74). Arch. IHES.

269 Comités scientifique (19/4/74). Compte-rendu (dated 8/5/74). Arch. IHES.

270 [ et me furthermore note a talk by C. Foias, from Budapest, on November 5, 1974
on "Connections entre les équations de Navier-Stokes et la théorie de la turbulence."
Rapport scientifique 1974. Arch. THES.
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Chapter VIII below. But before it will be useful to sketch out the activities of Joseph,

Sattinger, and Iooss, who would play a role in this emergence.

c) Stability Theorists in the Age of Chaos

Gérard Iooss, Daniel Joseph, and David Sattinger had too fine a knowledge of the
bifurcations involved in hydrodynamic systems, and of the differences of each
particular situation, to convert wholly to the Ruelle-Takens model. Each of them
would go on working on the problem and achieve imposing synthetic pictures of
nonlinear stability theory. At the same time, they worked on building linkages
between this theory and related ones which explored bifurcations and loss of stability
in many physical systems. In this sense, they all became actors in the emergence of
chaos.

With his interest in bifurcation theory, it was only fitting that David Sattinger,
from the Mathematics Department of the University of Minnesota, was the first of the
three to come to the THES. He came as one of the "attractors” for the "year" on
dynamical systems and ergodic theory planned for the spring semester, 1975, at the
same time as Lanford and Bowen, among others, 27! Sattinger was also the first of the
three to publish a monograph dealing with their common endeavor.2’2 Consisting of
lecture notes for a course given at the University of Minnesota in 1971-72, this book

barely touched with the Ruelle-Takens model.

271 Sattinger spoke "On the Free Surface of a Viscous Fluid in Motion,"” on May 14,
1975. Rapport scientifique, Année 1975 - Séminaires et conférences, 8. Arch. THES.
272 D. H. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in
Mathematics, 309 (Berlin: Springer, 1973).
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As carly as 1967, Clifford Truesdell had started pushing Daniel Joseph, from
the Department of Aerospace Engineering and Mechanics at the University of
Minnesota, to write a book on the Stability of Fluid Motions. "The theory of stability
has developed so rapidly since 1967 that the book I might then have written would
now have much too limited a scope."?7? In 1976, he finally published a two-volume
compendium of hydrodynamic stability theory. Interestingly, Joseph acknowledged
Sattinger, for reminding him that stability theory was part of mathematics, and Fritz
Busse, for reminding him that it was part of physics as well. Restricting the Ruelle-
Takens model to a very small part, Joseph’s book dealt in detail with all simple cases
of fluid flows: Poiseuille, Couette, Bénard, the flow past a sphere, etc.

His comments about Hopf, Landau, and Ruelle-Takens were particularly
revealing of stability theorists’ attitude in the face of the Ruelle-Takens model. In a
long note, he deplored the fact that this model "left vague” many characteristics of the
flow. Joseph observed that it rested on some restrictive assumptions, needing
"justification at many points,” especially since catalogues of attractors for ordinary
differential equations, not to mention the Navier-Stokes equations, "still elude[d]
analysis.” In summary, Joseph thought that it was "a step forward to think of non-
periodic, phase-mixing attractors in the description to turbulence." But it clearly was
far from supplying the universal "mechanism for the generation of turbulence" that
Ruelle and Takens had claimed. In particular, it led to no description of the spatial

features of turbulence and forgot about the wholly different possibility of subcritical

23 D. D. Joseph, Stability of Fluid Motions, Springer Tracts in Natural Philosophy,
27-28 (Berlin: Springer, 1976), 1: v.



David Aubin VII - Strange Attractors 558.

bifurcations.?’* Already considered by Ruelle in 1973, Joseph was formally invited to
spend the academic year 1979-80 at the IHES. He did indeed come in 1980-81, but

spent most of his time, either at Orsay with Roger Tenam, or at Nice with Gérard
Tooss. 275

Their relative skepticism concerning the Ruelle-Takens model

notwithstanding, both Sattinger and Joseph played a definite role in the emergence of
chaos. Joseph, for example participated in the Gordon Research Conference on
"Dynamical Tnstabilities and Fluctuations in Classical and Quantum Systems."
Organized by Paul C. Martin and Jerry P. Gollub and held in New Hampshire on July
19-23, 1976, it was "aimed primarily toward the review of specific time-dependent
non-equilibrium phenomena on which experiments are being performed, and an
assessment of whether there are helpful mathematical techniques that can be brou ght.
to bear." This conference might be interpreted as still another of the birth places of

chaos theory.?76 Both Sattinger and Joseph also spoke at the famous conference on

274 D. D. Joseph, Stability of Fluid Motions, 58-60. Ruelle and Takens's quote is from
the Abstract of "On the Nature," 167.

275 Lettres de David Ruelle & Daniel Joseph (11/1/78); de Daniel J oseph a David
Ruelle (10/2/78); de Roger Tenam, Orsay, & Daniel Joseph (2/5/78); de Daniel J oseph
& Nicolaas Kuiper (24/5/78); de Nicolaas Kuiper a Daniel Joseph (5/4/79); Comité
scientifique (23/9/78); Comité scientifique (10/3/79); Assemblée générale (8/5/78):
"l'ouverture voulue par Monsieur Ruelle va dans la direction de la mécanique et de
I'Hydrodynamique. La visite du Professeur Daniel J oseph (Minnesota) pour 'année
académique 78-79 nous donne un espoir dans cette direction.” Arch. THES.

276 Among those present, one notices G. Ahlers, R, P. Behringer, R. Bowen, B.
Derrida, R. J. Donnelly, M. J. Feigenbaum, J. P. Gollub, J. Guckenheimer, H. Haken,
D. D. Joseph, E. L. Koschmieder, A. Libchaber, P. C. Martin, J. B. McMaughlin, G.
Nicolis, H. L. Swinney, G. Toulouse, R. Williams, and A. T. Winfree. Memo from

P. C. Martin and J. P. Gollub to all speakers and suggested chairman (July 6, 1976). 1
thank P. C. martin for providing me this letter, the program of the conference, and a
list of people who attended it.



David Aubin VII — Strange Attractors 559.

"Bifurcation Theory and Applications," held in October 1977 under the auspices of
the New York Academy of Sciences.27?

Gérard looss, who was the most mathematically-minded of the three, never
quite achieved the same international status as Joseph and Sattinger in early chaos
conferences (perhaps because he often wrote in French). In 1972-73, he taught courses
at Orsay where he did not consider the Ruelle-Takens model. Tn 1975, however,
directly inspired by this model, he studied analytically the bifurcation of periodic
solutions into an invariant torus.?’8 Having moved to Nice, he started collaborating
with Alain Chenciner, a student of Thom's, moving towards a dynamical systems
analysis of the onset of turbulence. In Nice, a "meeting between physicists and
mathematicians about non-linear problems and their applications” was organized in
September 1977 by J. Coste, P. Coullet, and A. Chenciner. There, Tooss carefully
reviewed the Ruelle-Takens scenario, noting that much computation and experimental
work remained to be done in order to check it rigorously.2® Tn a 1979 monograph on
bifurcation theory, written for a course he taught at the University of Minnesota in the

fall of 1977, he did not dwell on Ruelle-Takens. But in 1981, he was one of the

77 D. H. Sattinger, "Spontaneous Symmetry Breaking in Nonlinear Problems," and D.
D. Joseph, "Factorization Theorems and Repeated Branching of Solutions at a Simple
Eigenvalue," Bifurcations Theory and Applications in Scientific Disciplines, ed. O.
Gurel and O. E. Rossler (New York: New York Academy of Sciences, 1979): 49-63;
and 150-167.

278 G. Tooss, Bifurcation et stabilité: "Bifurcation of a Periodic Solution of the Navier-
Stokes Equations into an Invariant Torus," Archive for Rational Mechanics and
Analysis, 58 (1975): 35-36; "Sur la deuxidme bifurcation d'une solution stationnaire
de systemes du type Navier-Stokes," Archive for Rational Mechanics and Analysis, 64
(1977): 339-369.
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organizers of a summer school in Les Houches devoted to the "Chaotic Behaviour of
Deterministic Systems."?% Like Joseph and Sattinger, looss had become a chaologist,
albeit maintaining some level of skepticism.

For stability theorists, then, the Ruelle-Takens model remained at best an
interesting suggestion which they sometimes exploited. But it did not solve the
problem of turbulence because its mathematical foundations remained somewhat
shaky. Their modeling practice received an infusion from dynamical systems theory
and they started to look for attractors, but the problems were to be solved case by
case, by a careful analytic study of the equations, still using the methods of functional
analysis: existence and uniqueness theorems. I believe that this historical process was
what Ruelle was describing when he wrote:

the "theory of chaos” . . . is a specific bag of tools. . . . In the favorable cases,

the new ideas are integrated and accepted (so that we know that turbulence is

chaotic . . .). Then each domain of research resumes its own individuality, and
can no longer be called "a branch of the theory of chaos." The whole process

takes a few years. Very roughly I would say . . . from 1971 to 1986 for
turbulence.?81

For the general community of physicists, however, the lesson to be drawn from the
Ruelle-Takens model was different. Numerical and laboratory confirmations seemed

sufficient to show the fruitfulness of the approach. It had introduced an alternative

29 G. looss, "Bifurcations successives et stabilité," Journal de physique, 39 (1978),
Colloque C5 ["Rencontre entre physiciens et mathématiciens sur quelques problémes
non linéaires et leurs applications"]: 99-105.

280 G. Tooss, Bifurcation of Maps and Applications (Amsterdam: North-Holland, 1979;
G. Tooss, R. H. G. Hellerman, and R. Stora, eds., Chaotic Behaviour of Deterministic
Systems: Les Houches Summer School, Session XXXVI, 1981 (Amsterdam: North-
Holland, 1983).

281 D. Ruelle, "Introduction," TSAC, xiv-xv.



David Aubin VII - Strange Attractors 561.

modeling practice for physicists that was there to stay. This process, a complex one,

will be the topic of Chapter VIII below,

7. CONCLUSION: BOURBAKI AND THE COMPUTER

The above summarily traced back shifting commitments in favor of the Navier-Stokes
equations by various groups of scientists working on the turbulence problem. Once it
was recognized that even in very simple cases, some exact solutions of the Navier-
Stokes equations could not be describing certain observed flows, this problem always
posed a challenge to the belief that these equations were a fundamental law of
physics. Successes confirmed this belief; difficulties and controversies made the
foundation shakier. Ultimately, commitments to the Navier-Stokes equations stemmed
from a variety of evidence, taken away from widely different theoretical approaches,
experiments,. and numerical computation.

But throughout this history, the final aim of finding an equation that would
faithfully describe the dynamics of fluid flows was almost never questioned. One
thought of tinkering with the Navier-Stokes equations, but never that such a
description of {luid flows could be intrinsically faulty. What the model suggested by
Ruelle and Takens suggested, however, was much more radical, and this was shared
by some of the later stability theorists” approaches. In short, they proposed that
topological methods might be powerful enough to bypass the problem. The Navier-
Stokes equations might—or might not—be a totally faithful description of fluid flows.
This did not matter anymore. The only portion of the prior beliefs that remained was

that some differential equation, endowed only with the few necessary properties, did
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indeed accurately describe the flow, but one did not need to know it in order to extract
fruitful information about turbulence. This was the meaning of " genericity,” which
would often be replaced by "universality" during the following decade.

Instead of being based on a specific equation, the modeling practice of some
scientists working on turbulence began to be founded on experimentally observable
topological features which were robust with respect to variations of the no-longer-so-
fundamental differential equation. This entailed a change in the basic building blocks
of mathematical models for the onset of turbulence. They now were topological
features, as opposed to analytic solutions of an equation. This of course implied that
the mathematical techniques used to study the onset of turbulence became topological,
coming from dynamical systems theory or functional analysis. Finally, the
consequences derived from a topological study of fluid flows were interpreted asa
better understanding of turbulence, even while specific mechanisms for the generation
of turbulence remained elusive. In short, this modeling practice dispensed with prior
aims at avoiding turbulence. Understanding replaced action as the main goal of
model-building for turbulence.

"The general lesson" of a decade of work on deterministic theories of
turbulence, David Ruelle contended in 1983,

seems to be that hydrodynamical systems at the onset of turbulence behave

very much as generic differentiable dynamical systems in finite dimension.

Simple systems of differential equations with arbitrarily chosen coefficients,

when studied by digital or analog computers, yield data so analogous to those
of hydrodynamical experiments that it is not possible to tell them apart.282

282 D. Ruelle, "Differentiable Dynamical Systems and the Problem of Turbulence;"
TSAC, 238.
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In this situation, what then was the use of the Navier-Stokes equation? This
conclusion of Ruelle and Takens was the result of three main strains: earlier models
for the onset of turbulence; the adaptation of concepts and practices from dynamical
systems theory for which Thom was a major mediator; and Ruelle’s earlier
commitment to a theoretical physics relying on technical mathematical methods
inspired by a Bourbakist attitude. Their suggested model departed in practice from
earlier ones. A major lesson was that the topological, structural, yet dynamical study
of bifurcations and attractors, as opposed to reduction to ultimate molecules or
fundamental laws, could have a high reward.

The following testimony of Leo Kadanoff, a physicist from the University of
Chicago who was rather a late-comer to the study of chaos, is revealing of the change
in attitude with respect to specific models.

[Alt a crucial moment, Bob Gamer, a colleague in Chemistry, asks why I am

devoting so much work to a particular model system. His implication is that

the model is not so real as to be of practical interest, and perhaps not so deep
as to have real intellectual interest. . . L know that his implied criticism is

right. So I'resolve to learn something new. The new subject I find is dynamical
systems theory.283

Significantly, this kind of remark had already been made more than fifty years before
by George D. Birkhoff:

At a time when no physical theory can properly be termed fundamental—the
known theories appear to be merely more or less fundamental in certain
directions—it may be asserted with confidence that ordinary differential
equations of dynamical origin will continue to hold a position of the highest
importance.284

283 L, P. Kadanoff, From Order to Chaos. Essays: Critical, Chaotic, and Otherwise
(Singapore: World Scientific, 1993), 386. My emphasis.
284 G. D. Birkhoff, Dynamical Systems (Providence: AMS, 1927), vi.
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In the 1970s, a certain disenchantment with reductionist approaches started
more and more to touch physicists, not all of them of course, but a significant portion
of the profession. As Princeton physicist Philip Anderson once contended:

The ability to reduce everything to simple fundamental laws does not imply

the ability to start from those laws and reconstruct the universe. In fact, the

more the elementary particle physicists tell us about the nature of the

fundamental iaws, the less relevance they seem to have to the very problems of
the rest of science, much less society. 285

Fundamental laws, some began to think, were not so certain anymore. But
more importantly, they felt they could provide meaningful models that did not rely on
a perfect knowledge of God’s mind, to use one of Einstein’s phrases. The dynamical
systems approach, and soon chaos theory, could lead to profound understanding of
natural phenomena, without much ontological commitment to fundamental equations.
The question is why this happened.

No simple answer will suffice. In this dissertation, it is argued that new
modeling practices stemmed from a wide variety of sources, ranging from technical
innovation in mathematics to more diffuse cultural factors. From the above discussion
two hypotheses surface, which hardly settle the question. First, it has been tempting,
by studying Ruelle’s career trajectory, to conclude that a certain Bourbakization’ of
theoretical physics allowed the emergence of a new alternative for the physicist’s
modeling practices. Second, we may think that a very important change in the
material conditions for the practice of theoretical physics made itself felt, namely the

rising availability and use of computers.
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A feeling among mathematicians that their methods allowed them to
understand scientific problems, sometimes more deeply than the specialists
themselves, is hardly new, as the following statement of Garrett Birkhoff will make
explicit:

Puring the [second world] war I found that my ability to diagnose fluid

mechanics even with a rather limited knowledge of it . . . was very useful to

both the Army and the Navy. T decided that if opportunity permitted after the

war [ would try to see what could be done scientifically . . . to treat some of the
questions. 286

From the early 1960s to the early 1980s, at least, the Institut des hautes études
scientifiques was a singular place where a fruitful dialogue between mathematicians
and physicists, resulting in a sharing of concepts and practices, was established and
sustained. Physicists used the latest mathematical tools available, organized in a
Bourbakist way. An intense activity on the part of some physicists took place, aimed
at studying physical systems with the greatest generality possible. Bourbaki wished to
do away with most properties of the real numbers when he wanted to establish some
theorem that only required, for example, the group structure. Similarly, Ruelle and
Takens endeavored, in their famous paper, to uncover the structure (almost in
Bourbaki's sense) of turbulence as such, without relying on unnecessary, superfluous
properties of the Navier-Stokes equations. In this sense, one may speak of a

Bourbakization of the physicist's modeling practice.

9 Quoted in M. M. Waldrop, Complexity: The Emerging Science at the Edge of
Chaos (New York: Simon & Schuster, 1992), 81. See also P. W. Anderson, "La
grande illusion des physiciens,"” La Recherche, 11 (1980): 98-102.

286 (. Birkhoff's interview, Mathematical People: Profiles and Interviews, ed. D. J.
Albers and G. L. Alexanderson (Boston: Birkhiuser, 1985), 13.
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Of course, one cannot go too far in this direction. This new alternative for the
physicist’s modeling practice was not the consequence of just one paper by Ruelle and
Takens, no matter how seminal it may have been. Many physicists did not flirt with
Bourbaki. The next chapter, which examines the way in which Ruelle’s innovations
would be taken up by a variety of scientists, will plainly show this. Moreover,
principal propagandists for alternative modeling practices, such as Thom, started very
early on to break free from Bourbaki’s dogmatism, and with good reason since they
actuaily looked for original ways to escape the ivory tower of pure mathematics.287

On the other hand, changing conditions for the modeling of natural
phenomena—-thé rising availability of computers—played a definite role even for
those who chose not to rely on them. Again, the case of Ruelle provides an interesting
perspective one this impact of computers. Even if he never used them in any crucial
way, Ruelle clearly saw, as early as 1964, that theoretical physics had to change its
ways confronted with

an event which no doubt shall have profound repercussions on the evolution of

statistical mechanics, [namely] the development of electronic computers.

These allow not only to treat numerically problems up until now unreachable,

but also to reproduce the evolution of systems [involving] a few hundreds of
particles, allowing their "experimental” study.

The lesson Ruelle took away from this "event” was that techniques of
approximation had to be adapted to the new situation, "or die.” But what interested

hirn most was that even "techniques for the rigorous study"' of statistical mechanics

287 I et me mention that an attempt at formalizing physical way in a strict Bourbakist
way was made by a philosopher: W. Stegmiiller, The Structuralist View of Theories: A
Possible Analogue of the Bourbaki Programme for the Physical Science (Berlin:
Springer, 1979).
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had to be adapted, "for calculators will be more and more able to provide convincing,
if not rigorous, answers to the problems of statistical mechanics.” That is, Ruelie felt
that the study of the conditions in which numerical solutions were, or were not,
meaningful was becoming a major task for the mathematical physicist. One had to
ponder the way problems were posed in theoretical physics.288 As Ruelle wrote much
later, the computer as such was no solution:

The use of modern computers . . . has had for example a considerable impact

in the studies of hydrodynamic turbulence. But scientific progress requires
specific ideas and methods like those constituting the "theory of chaos."289

Already in 1964, it seems that Ruelle geared his research program towards a
better understanding of the mathematics fundamental to the modeling practices of
theoretical physicists, so that the computer be used more etficiently in their discipline.
"The question," Ruelle asserted, "will soon be raised to know whether it is the

calculator or the researcher that is the tool of the other."2%

288 All of Ruelle's quote above are taken from: Lettre de Léon Motchane i Lucien
Malavard (17/11/64), which included Ruelle's own description of his project for a
contract with the DRME. Arch. THES.

289 D. Ruelle, "Introduction," TSAC, xiv.

%0 Lettre de Léon Motchane 2 Lucien Malavard (17/11/64). Arch. IHES.



