
CH A P T ER 2 .1

� e two cultures of mathematics in 
ancient Greece
Markus Asper

The notion of ‘Greek mathematics’ is a key concept among those who teach or 
learn about the Western tradition and, especially, the history of science.1 It 

seems to be the ( eld where that which used to be referred to as ‘the Greek  miracle’ 
is at its most miraculous. � e works of, for example, Euclid or Archimedes 
appear to be of timeless brilliance, their assumptions, methods, and proofs, even 
a+ er Hilbert, of almost eternal elegance. � erefore, for a long time, a historical 
approach that investigated the environment of these astonishing practices was 
not deemed necessary. Recently, however, a consensus has emerged that Greek 
mathematics was heterogeneous and that the famous mathematicians are only 
the tip of an iceberg that must have consisted of several coexisting and partly 
overlapping ( elds of mathematical practices (among others, Lloyd 1992, 569). It 
is my aim here to describe as much of this ‘iceberg’ as possible, and the relation-
ships between its more prominent parts, mainly during the most crucial time for 
the formation of the most important Greek mathematical traditions, the ( + h to 
the third centuries bc.

1. General introductions to Greek mathematics are provided by Cuomo (2001); Heath (1921); Lloyd (1973, 
chapters 4–5); Netz (1999a).
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GEOGRAPHIES AND CULTURES108

RECONSTRUCTIONS: GREEK PRACTICAL MATHEMATICS

Let us begin with a basic observation. Whoever looks for the ( rst time at a page 
from one of the giants of Greek mathematics, say, Euclid, cannot but realize an 
obvious fact: these theorems and proofs are far removed from practical life and its 
problems. � ey are theoretical.2 Counting, weighing, measuring, and in general 
any empirical methods, have no place in this type of mathematics. Somebody, 
however, must have performed such practices in daily life, for example, in ( nan-
cial or administrative ( elds such as banking, engineering, or architecture. 
Some of these ( elds demand mathematical operations of considerable complex-
ity, for example, the calculation of interest or the comparison of  surface areas. 
Occasionally, ancient authors mention such mathematical practices in passing 
(for example, at the end of the ( + h century bc Aristophanes’ play, Wasps 656–
662). What is known about these practical forms of Greek mathematics?

Not much, obviously. Of the social elite who alone wrote and read for pleas-
ure, most were less interested in practical mathematics, which was apparently not 
part of common knowledge. Occasionally, one comes across obvious arithmetical 
blunders, mostly by historians.3 On the other hand, in most cases the practitioners 
themselves le+  no texts. � erefore, of all the manifold forms of practical mathem-
atics that must have existed, only two are known a little, partly through occasional 
references by authors interested in other topics, partly through preserved artifacts, 
and, rarely, through the textual traditions of the practitioners themselves.

Pebble arithmetic was used in order to perform calculations of all kinds.4 
‘Pebbles’ (psēphoi, an appropriate translation would be ‘counters’) that sym-
bolized diQ erent numbers through diQ erent forms and sizes, were moved and 
arranged on a marked surface—what is sometimes called the ‘Western abacus’ 
(see Netz 2002b, 326, 342, who remarks that backgammon may well illustrate the 
principle). Several of these have been found, and the practitioners themselves are 
mentioned occasionally.5 � ese must have been professionals that one could hire 
whenever some arithmetical problem had to be solved, not so diQ erent from pro-
fessionals renting out their literacy. However, manipulating pebbles on an aba-
cus can lead to the discovery of general arithmetical knowledge, for example the 
properties of even and odd, or prime numbers, or abstract rules of how to produce 
certain classes of numbers, for example, square numbers. I call this knowledge 
‘general’ because it no longer has any immediate application. Here ‘theoretical’ 

2. I avoid here the notions of ‘pure’ and ‘applied’ mathematics with their evaluative connotations.
3. For example, Herodotus 7.187.2; � ucydides 1.10.4 f.; Polybius 9.19.6 f. See Netz (2002a, 209–213).
4. Netz (2002b) has recently described this practice and its social setting as a ‘counter culture’ (for the sake 

of the obvious pun, he translates psēphos as ‘counter’).
5. Netz (2002b, 325) surveys the archaeological evidence (30 abaci). Pebble arithmetic is mentioned, for 

example, in Aeschylus, Aga. 570; Solon in Diogenes Laertius 1.59.
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knowledge emerges from a purely practical-professional background. Some peb-
ble arithmetic probably shows up in later Greek ‘Neo-Pythagorean’ arithmetic, 
most notably in Nicomachus of Gerasa (probably second century ad) and, slightly 
later, in Iamblichus of Chalcis (Knorr 1975, 131–169).

Pebble arithmeticians, as a group or as individuals, never made it into the 
range of subjects one could write about in antiquity, a fate they shared with most 
professionals that one could hire to perform specialized tasks (physicians being 
the most notable of the few exceptions). � erefore, nothing is known about the 
people who did pebble arithmetic in classical Greece, how their profession was 
structured, and how they transmitted their knowledge. � eir body of knowledge, 
however, was apparently known to at least some Pythagoreans in ( + h-century 
Greece who used it for their own, semi-religious practices.6 Also, abstract insight 
into the properties of numbers, as it is typically gained by arranging pebbles 
(Becker 1936), must have been already widely known at the beginning of the ( + h 
century in Greece.7 � ese two cases show how specialized, practical knowledge 
could become abstract and move beyond the circle of specialists.

� e practitioners of this art in ancient Greece, however, were probably only 
a tiny part of a long and remarkably stable tradition of such arithmetic profes-
sionals that originated somewhere in the ancient Near East (but, admittedly, may 
have changed along the way). It has recently been demonstrated, by characteristic 
calculation errors, that Old Babylonian scribes of the early second millennium 
bc and their Seleucid descendants must have used essentially the same account-
ing board to carry out multiplications of large numbers.8 In the Middle East, the 
tradition resurfaces with people that are called ‘ahl al-gabr’ in Arabic sources of 
the ninth century ad, the ‘algebra people’.9 At least partly, their knowledge about 
algebraic problems and solutions goes back to Old Babylonian times (Høyrup 
1989). It is not too bold an assumption to understand Greek pebble arithmetic as 
part of the same tradition (see West 1997, 23–24 for eastern inj uence on Greek 
( nancial arithmetic). Recently, a similar claim has been made concerning the 
Greek way of dealing with fractions that apparently shows Egyptian inj uence 
(Fowler 1999, 359).

� e second subgroup of mathematical practitioners was concerned with meas-
uring and calculating areas and volumes. Unlike the pebble arithmeticians, they 
had textual traditions, of which traces are scarce for ancient Greece, but consid-
erable throughout the ancient Near East. � ese textual traditions, however, were 

6. Aristotle, Phys. 203 a 13–15; Metaph. 1092 b 10–13; � eophrastus, Metaph. 6 a 19–22.
7. Epicharmus (early ( + h century bc): fr. 23 B 2.1f. ed. Diels-Kranz; see Knorr (1975, 136); compare 

Burkert (1972, 434–439).
8. See Proust (2002, esp. 302), who maintains that this device was somehow based on the hand, that is, it 

would have been an advanced form of ( nger reckoning.
9. � ābit ibn Qurra in Luckey (1941, 95–96). Al-Nadim, Fihrist II, in Dodge (1970, 664–665) (ninth and 

tenth century, respectively).
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sub-literary, that is, they never made it into the traditions of Greek mathemat-
ical literature (later we will see why). � erefore, most of these texts have been 
found inscribed on papyri, mostly written in imperial times, extant only from 
the Greek population in Egypt because of the favorable conditions of preserva-
tion there. � ere is every reason to assume, however, that in antiquity such texts 
were widespread in the Greek speaking world, both earlier and later. Here is an 
example from a ( rst-century ad papyrus, now in Vienna:

Concerning stones and things needed to build a house, you will measure the volume 
according to the rules of the geometer as follows: the stone has 5 feet everywhere. Make 
5 x 5! It is 25. � at is the area of the surface. Make this 5 times concerning the height. It 
is 125. � e stone will have so many feet and is called a cube. (Greek text in Gerstinger-
Vogel 1932, 17).

� e papyrus contained thirty-eight such paragraphs in sixteen columns, obvi-
ously meant to codify valid methods or, rather, approved procedures in textbook 
style (for details, see Fowler 1999, 253). Obviously, these methods are what the 
text calls ‘the rules (hoi logoi) of the geometer’. Other papyri contain more dif-
( cult procedures, as the following example shows:

If there is given a parallelogram such as the one drawn below: how it is necessary, the 13 of 
the side squared is 169 and the 15 of the side squared is 225. (Subtract) from these the 169. 
56 remains. Subtract the 6 of the base from the 10 of the top. 4 remains. Take a fourth of 
the 56. It is 14. From these (subtract) the 4. 10 remains, a half of which is 5. So great is the 
base of the right-angled triangle. Squared it is 25 and the 13 squared is 169. Subtract the 25. 
144 remains, the pleura (= square root) of which is 12. So great is the perpendicular. And 
subtract the 5 from the 6 of the base. 1 remains. (Take) the one from the 10 of the top. 9 
remains. So great is the remainder of the upper base of the right-angled triangle. And the 
12 of the perpendicular by the 5 of the base is 60, a half of which is 30. Of so many arourōn 
(= square units) is the right-angled triangle in it. And the 12 by the 1 is 12. Of so many 
arourōn is the triangle in it. And the 12 by the 9 of the base is 108, a half of which is 54. Of so 
many arourōn is the other right-angled triangle. Altogether it is 96 units. And the ( gure will 
be such. (Pap. Ayer, col. III, ( rst to second century ad, transl. a+ er Goodspeed 1898, 31)

� e diagram is reproduced according to the papyrus (Goodspeed 1898, 30). � e 
algorithm gives the area of an irregularly shaped ( gure as the sum of triangles 
and rectangles, the areas of which have to be found ( rst. In order to ensure that 
the reader understands the actual procedure and, thereby, the abstract method, 
the paradigmatic numbers (in Greek, mostly letters) are repeated in the diagram 
from the text. As with the ( rst text, this is also a part of a collection of such 
paragraphs. More such collections are known (see Asper 2007, 200): for example, 
a Berlin papyrus (Schubart 1915/16, 161–70) and the better part of two treatises 
(Geometrica, Stereometrica) ascribed to Hero of Alexandria, an engineer active in 
Rome and Alexandria in the ( rst century ad.
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� e practical relevance of these procedures is fairly obvious, for example, for 
practitioners managing construction sites (‘how many bricks do I need for a wall 
with such and such dimensions?’) or in surveying (‘what is the size of this piece of 
land?’). Both appeal to commonly shared rules and, thereby, hint at a collective of 
practitioners whose professional knowledge was codi( ed in such texts.10

� e rhetorical mood of this codi( cation is clearly one of instruction, of a 
stylized dialogue between teacher and disciple: strong and frequently iterated 
imperatives address a second person. More importantly, the method is given as 
a series of steps, each of which is clearly marked. O+ en, the end of the procedure 
is marked as well. � at is why these texts remind the modern reader of recipes 
(Robson 1999, 8). Strangely, the method itself is never explained in general terms, 
nor is its eQ ectiveness proved. � e actual procedure employs paradigmatic num-
bers that always result in whole numbers (for example, when one has to extract 
square roots). Obviously, the reader is meant to understand the abstract method 
by repeatedly dealing with actual, varied cases. � e leap, however, from the 
actual case to the abstract method is never mentioned in these texts. Learning a 
general method is achieved in these texts by repeatedly performing a procedure, 
understanding its eQ ectiveness and memorizing the steps by repetition, when one 
works through the whole text-book. Later, the professional performs his tasks by 
repeating the method per analogiam.

As I have said, these sub-literary Greek texts were written in the ( rst and 
second centuries ad, mostly in Egypt. � e problems they solve are so basic that 
one can hardly imagine that these methods were not also used much earlier in 
Greece. � ey provide, however, a glimpse at a remarkably strong tradition, of 
which they are probably only a local, rather late branch. Another, older part of 

10. I understand the peculiar phrase ‘how it is necessary’ as shorthand for ‘how one has to solve this kind 
of problem according to the experts’. � e Greek is hōs dei. Goodspeed translates as ‘according to the condi-
tion of the problem’.
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Figure 2.1.1 Diagram in Papyrus Ayer 
(� rst to second century AD)
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this tradition is much better known, by thousands of texts preserved on clay tab-
lets found in the Near East. Here is an example, problem 17 of a rather substantial 
textbook (BM 96954), written in Old Babylonian times (( rst half of the second 
millennium bc). � e text describes a procedure of how to calculate the volume of 
a ‘grain pile’ (probably a cone-shaped body):

A triangular grain-pile. � e length is 30, the width 10, the height 48. What is the grain? 
You: multiply 30, the length, by 10, the width. You will see 5 00. Multiply by 48, the 
height. You will see 4 00 00. Multiply 1 30 by 4 00 00. You will see 6 00 00 00. � e grain 
capacity is 6 00 00 00 gur. � is is the method. (transl. Robson 1999, 223).

If one leaves aside the diQ erences, mostly the sexagesimal system, one clearly 
observes the rhetorical features that were so obvious in the Greek texts: a clearly 
stated practical problem, the intense appeal to the reader, the recipe-like struc-
ture, a procedure that operates with paradigmatic numbers, an abstract method 
that is not mentioned but illustrated by actual procedures. Admittedly, these 
texts vary in complexity and in their actual textual conventions. � e above listed 
features, however, apply throughout, and not only to Old Babylonian, but also to 
Egyptian, Hebrew, Coptic, Arabic, and even Latin texts (compare, for example, 
Gandz 1929/31, 256–258; Høyrup 1996). � e tradition illustrated by these occa-
sional glimpses was alive from at least the second millennium bc well into the 
Middle Ages. It was so stable that some of the younger texts almost appear to 
be translations of the oldest ones (see the Coptic examples in Fowler 1999, 259). 
Moreover, some of the Greek texts show the same methods, and sometimes even 
the same sets of paradigmatic numbers as much older Egyptian or Babylonian 
ones (Gerstinger and Vogel 1932, 39, 47–50). In this tradition, the textbooks are 
complemented by lists of coes  cients, certain factors, square roots, etc. (the Greek 
examples are collected in Fowler 1999, 270–276).

Although this knowledge, and the textual conventions that were meant to 
secure its transmission, originated in the ancient Near East, in time it moved 
westward and spread over the whole Mediterranean. We have some reasons 
to believe that people who solved practical problems with these methods were 
active in ( + h-century Greece too (and probably much earlier). � is argument 
relies on reconstruction by analogies: expert knowledge of several kinds came 
to Greece even before the classical age, especially in technical ( elds as diverse as 
architecture, writing, and medicine (to name but a few).11 I do not see why prac-
tices that involved calculation should have been the exception. At least in some 
( elds, ‘migrant cra+ smen’, that is, foreigners seem to have been the transmitters. 
� e argument from analogy seems the more compelling as one would expect 
numeracy to spread along the lines of literacy, especially when both probably 

11. See Burkert (1992, 20–25); West (1997, 23–24, 609–612); for a general introduction to the topic Burkert 
(2004, 1–15).
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took place in the same time and place (and had to be combined in many practices 
of administration).12 Early Greek pebble arithmetic, therefore, was quite probably 
one of the Greek practices that resulted from acculturation with the Middle East 
in archaic times or even earlier, just like the Greek alphabets (see Netz 2002b, 
344) and writing practices more generally.13

Back to the texts of these practitioners. � ere is no notion of de( nition, proof, 
or even argument in these texts (and hardly any concept of generality),14 which 
has earned them the label ‘sub-scienti( c’ (for example, Høyrup 1989). It is import-
ant, however, to understand the lack of these features not as a general intellectual 
‘fault’, but to explain them by the social functions of the knowledge concerned: 
in order to solve important problems, what is needed is not a proof of a general 
method, let alone of a theorem, but a reliable, accepted procedure that will lead 
to a reasonable result in every single case. Likewise, it is doubtful whether the 
notion of an abstract rule was present behind all the actual procedures. It might 
be a feature of the educational character of these texts that general knowledge is 
not explicitly stated (pace Damerow 2001).

As was the case with the pebble arithmeticians, almost nothing is known 
about the actual people who were engaged in these practices in Greece. Some 
assumptions, however, appear to be at least reasonable. First, since this kind of 
knowledge was of economic importance, it was probably not popular or wide-
spread but rather guarded, perhaps by guild-like social structures. Performing as 
a practical mathematician in one of these arts was a specialized profession. For 
some of these people, a Greek name has survived: there was a professional group 
called harpēdonaptai (‘rope-stretchers’), obviously surveyors operating with 
ropes for measuring purposes (Gandz 1929–31). Judging from the stability of the 
traditions, their group-structures must have been institutionalized somehow, 
including the education of disciples (maybe in apprenticeship-like relationships). 
Compared, however, to the complex institutional framework of, for example, 
the Old Babylonian scribal schools, the migrant cra+ smen in Greece must have 
transmitted their knowledge on a much less institutionalized and, above all, less 
literate level.

Second, in many realms of professional knowledge, migrant cra+ smen had 
already begun arriving in Greece from the East in the ninth century bc. � ere 
existed, for example, Phoenician work shops in seventh-century Athens. � e 
entire vase industry, so prominent especially in Attica, seems to have employed 
Eastern immigrants with names like Amasis or Lydus (see Burkert 1992, 20–25). 

12. See Netz (2002b, 322–324) on the concept of ‘numeracy’ and its conceptual interdependence with 
 ‘literacy’ (and even its antecedence to it) in early Greece and the Middle East.

13. Of course, I do not suggest any direct contacts between Near Eastern mathematics and Greek theoret-
ical mathematics (including astronomy) at any time before second-century Alexandria (see Robson 2005).

14. � ere are very few exceptions, most notably in the Egyptian Papyrus Rhind (seventeenth century bc, 
ed. Chace 1927–9). See Høyrup (2002a, 383); Asper (2007, 201 n727).
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In archaic times, mathematical practitioners were probably such migrant cra+ s-
men. Later, these traditions certainly became indigenous, but the knowledge 
retained its structures, even the textual ones.

� ird and most importantly, these practitioners, even if occasionally well-
paid, must have been of a rather low social level, viewed from the perspective of 
the well-oQ  polis citizen. Aristotle’s judgment of the cra+ smen’s social status in 
past and present probably also applied to these experts.15 In ( + h- and fourth-
century Greece, most writers were upper-class citizens writing for their peers, 
which is why we almost never hear about these practitioners. � at does not mean, 
however, that they were a marginal phenomenon. Rather, as I will argue, they 
provided the background for the emergence of theoretical mathematics. To think 
of their knowledge as ‘sub-scienti( c’ makes sense, as long as one remembers 
that our understanding of what science is has been heavily inj uenced by Greek 
 theoretical mathematics.16 � e ‘sub’ here should be taken literally: ancient prac-
tical mathematical traditions were certainly all-pervasive in ancient Greece, on 
top of which theoretical mathematics suddenly emerged, like a j oat on a river’s 
surface—brightly colored and highly visible, but tiny in size.

GREEK THEORETICAL MATHEMATICS AND ITS TEXTS

Compared with practical traditions such as the ones outlined above, Greek theoret-
ical mathematics strikes the reader as very diQ erent. Most notably, it is almost exclu-
sively geometrical. It consists of a body of general propositions proved by deduction 
from ‘axioms’, that is, evident assumptions or de( nitions—hence the designation of 
this type of mathematics as ‘axiomatic-deductive’. Whereas the practitioners’ texts 
collected problems and provided procedures for solving them, the theoreticians’ 
texts collected general statements with proofs. � e language and the structure of 
these texts are highly peculiar, compared both to the practitioners’ texts and to Greek 
prose of the times in general. From a historian’s point of view, this form of mathem-
atics is no less remarkable: Greek theoretical mathematics suddenly appears at the 
end of the ( + h century bc. Most of the famous mathematical writers (for example, 
Euclid, Archimedes, and Apollonius) were active in the third century bc. A rather 
simple theorem in Euclid (Elements, I 15) may provide a suitable introduction:

If two straight lines cut one another, they make the vertical angles equal to one another. 
For let the straight lines AB, ΓΔ cut one another at the point E; I say that the angle AEΓ is 
equal to the angle ΔEB, and the angle ΓEB to the angle AEΔ. For, since the straight line 
AE stands on the straight line ΓΔ, making the angles ΓEA, AEΔ, the angles ΓEA, AEΔ 
are equal to two right angles. Again, since the straight line ΔE stands on the straight line 

15. Politics III 5, 1278 a 7. ‘Cra+ smen were either slaves or foreigners.’
16. Maybe one should rather think of them as of a ‘science du concret’ (Lévi-Strauss 1966, 1–33).
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AB, making the angles AEΔ, ΔEB, the angles AEΔ, ΔEB are equal to two right angles. 
But the angles ΓEA, AEΔ were also proved equal to two right angles; therefore the angles 
ΓEA, AEΔ are equal to the angles AEΔ, ΔEB.17 Let the angle AEΔ be subtracted from 
each; therefore the remaining angle ΓEA is equal to the remaining angle BEΔ.18 Similarly 
it can be proved that the angles ΓEB, ΔEA are also equal. � erefore, if two straight lines 
cut one another, they make the vertical angles equal to one another. Just what one had to 
prove. (translation modi( ed from Heath 1956, I 277–278)

As can be gathered from the text, the reader had to have in front of him a diagram 
that probably looked like Fig. 2.1.2 (extant in medieval manuscripts of Euclid and 
probably closely resembling the diagrams illustrating the theorem in the third 
century bc).19

Euclid claims the truth of a general proposition, a theorem (above, given in 
italics), about what happens when two lines cut each other. First he construes 
a pseudo-actual case by a diagram, the parts of which are designated by letters. 
� en he compels his reader to look at the diagram and ask himself which of the 
already proved or axiomatically accepted truths (both were treated earlier in the 
( rst book of the Elements) one could use in order to prove the statement. Here, 
Euclid uses I.13 (‘If a straight line set up on a straight line makes angles, it will 
make either two right angles or angles equal to two right angles.’), and axioms 
(see notes 10 and 11). From these, already accepted as true, the mathematician 
can safely deduce the truth of the theorem. � e whole proof is implicit, that is, 
neither does Euclid tell the reader which parts of the axiomatic material or the 
already proved theorems he uses nor does he ever explain his line of reasoning. At 
the end of the paragraph, he does facilitate the transition from the pseudo-actual 
diagram to the general theorem, in exactly the same words that were used in the 
beginning. � e textual unit of theorem, diagram, and proof ends with the explicit 
and nearly proud assertion that the author has proved what he set out to prove.

17. � e argument is based on the so-called postulate 4 (‘All right angles are equal to one another.’) and 
so-called ‘common notion’ 1 (‘� ings which are equal to the same thing are also equal to one another.’). All 
de( nitions, postulates, and common notions relevant to the ( rst book of the Elements are gathered at the 
beginning of the book.

18. Presupposes common notion 3 (‘If equals are subtracted from equals, the remainders are equal’).
19. On diagrams see Saito, Chapter 9.2 in this volume.

∆ Γ

A

B

E

Figure 2.1.2 Diagram illustrating 
Euclid’s Elements 1.15 (after Heath 
1956, I 277)
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Due to its use in schools well into the twentieth century, Euclid’s Elements are 
by far the best known text written in this style, but by no means the only one. 
Here is a proof from the beginning of the treatise On the sphere and the cylinder 
(I.1), written by the famous Archimedes of Syracuse, probably roughly a contem-
porary of Euclid (Fig. 2.1.3):

If a polygon be circumscribed about a circle, the perimeter of the circumscribed polygon 
is greater than the perimeter of the circle. For let the present polygon be circumscribed 
about a circle. I say that the perimeter of the polygon is greater than the perimeter of the 
circle. For since ΒΑ, ΑL taken together is greater than the arc ΒL, because they have the 
same beginning and end, but contain the arc ΒL, and because similarly LΚ, KΘ taken 
together [is greater] than LΘ, and ΖΗ, ΗΘ taken together [is greater] than ΖΘ, and also 
ΔE, ΕΖ taken together [is greater] than ΔΖ, therefore the whole perimeter of the polygon 
is greater than the perimeter of the circle.20 (translation a+ er Heath 1953, 5)

Archimedes proves a fact that is evident to anyone who takes a look at the 
diagram. His proof utilizes axiomatic material, too (see note 14). Obviously, 
the two texts share a number of technical and linguistic or, rather, rhetorical 
features that further illustrate the theoretical character of these mathemati-
cal traditions. A third example shows that the theoretical ‘culture’ betrayed by 
these texts is almost obligatory for the authors engaged in the ( eld. � is is how 
the astronomer Aristarchus (probably early third century bc), famous for hav-
ing claimed heliocentricity, talks about the relation between two spheres (the 
second proposition of his little treatise On the sizes and distances of the sun and 
the moon):

20. � e proof is based on the axiomatic ‘second assumption’ that precedes the ( rst proposition in Archimedes’ 
text.
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Figure 2.1.3 Diagram illustrating 
Archimedes, On the sphere and cylinder 
I.1 (after Heiberg, 1972–5, I 13)
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If a sphere be illuminated by a sphere greater than itself, the illuminated portion of the 
former sphere will be greater than a hemisphere. For let a sphere the centre of which is 
B be illuminated by a sphere greater than itself the centre of which is A. I say that the 
illuminated portion of the sphere the centre of which is B is greater than a hemisphere. 
For, since two unequal spheres are comprehended by one and the same cone which has 
its vertex in the direction of a lesser sphere21, let the cone comprehending the spheres be 
(drawn), and let a plane be carried through the axis; this plane will cut the spheres in 
circles and the cone in a triangle. Let it cut the spheres in the circles CDE, FGH, and the 
cone in the triangle CEK. It is then manifest that the segment of the sphere towards the 
circumference FGH, the base of which is the circle about FH as diameter, is the portion 
illuminated by the segment towards the circumference CDE, the base of which is the cir-
cle about CE as diameter and at right angles to the straight line AB; for the circumference 
FGH is illuminated by the circumference CDE, since CF, EH are the extreme rays. And 
the centre B of the sphere is within the segment FGH; so that the illuminated portion of 
the sphere is greater than a hemisphere. (transl. a+ er Heath 1913, 359–361)

Instead of talking about celestial bodies, Aristarchus prefers to ‘geometrize’ the 
whole argument and to assume that these are just two given spheres. Illumination 
is conceptualized as a cone (and illustrated as a triangle). Aristarchus implic-
itly uses a proposition that has already been proved and accepted by the reader 
(proposition one, see note 13). Again, both the language and the structure of the 
argument are completely in line with what Euclid and Archimedes did. � is is 
Greek theoretical mathematics. It seems fair to say that these texts are utterly dif-
ferent from those in which practical mathematicians codi( ed their knowledge. 
Let us briej y describe the theoretical texts by keeping the characteristic features 
of the practitioners’ textual traditions in mind. � ey are obviously diQ erent in at 
least three respects:

First, the text’s intention is to prove a theorem by logical means, which implies 
that the status of the objects being discussed is general. � erefore, actual numbers 

21. It had been demonstrated in the ( rst proposition that two unequal spheres are contained by one cone.
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Figure 2.1.4 Diagram illustrating Aristarchus, On the sizes, prop. 1 (after Heath 
1913, 359)
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or measurements have no place in this type of mathematics. Even the diagram 
introduces only pseudo-individual forms: the ‘two straight lines AB, ΓΔ’ or the 
‘two circles CDE, FGH’ are in truth any two straight lines or any two circles, 
respectively.

Second and accordingly, the mathematical writer is interested in the abstract 
properties of these general geometrical entities, not in calculating any quantita-
tive properties of real objects or classes of real objects.

� ird, the rhetoric of the two textual traditions is completely diQ erent. 
Whereas the recipe-like algorithms of the practical tradition employed strong 
personal appeals to the reader, the theoretical tradition produced highly imper-
sonal texts (see Asper 2007, 125–135). � is feature is unique, at least to this 
extent, in the context of all Greek scienti( c and technical literature and deserves 
a closer look. With the exception of exactly one formula that serves to introduce 
the repeated claim and marks the beginning of the proof (‘I say that . . . ’ in the 
three examples above), these texts never introduce an authorial voice nor do they 
ever address the reader. (� e introductory letters of Archimedes and Apollonius 
are not an exception to this rule: these letters employ a style that is indeed per-
sonal, but they are not an integral part of the mathematic texts they introduce. 
Rather, they have the status of ‘paratexts’.) And even this ‘I’ is not personal in 
the usual sense, since it merely functions as a marker of the internal structure of 
the proof and will always show up at exactly the same place. Especially remark-
able are the impersonal imperatives that regularly feature in the description of 
the objects concerned: English has to paraphrase theses imperatives with ‘let’ 
which makes them less strong: for example, ‘let the straight lines AB, ΓΔ cut one 
another’ (Euclid), ‘let the polygon be circumscribed about a circle’ (Archimedes), 
or ‘let a plane be carried through the axis’ (Aristarchus). In the Greek, these are 
imperatives in the third person, mostly in the passive voice, and o+ en even in the 
perfect tense.22 Hundreds of these strange forms exist in the works of theoret-
ical mathematicians. As one would expect, these forms are hardly extant outside 
of mathematical language, that is, they are part of an exclusive discourse, of a 
sociolect. � e writers present their objects to the reader as independently given, 
as something that is just there and can be contemplated objectively (Lachterman 
1989, 65–67). � ey write themselves, their perceptions and their operations out of 
the picture, as it were,23 which tends to add an air of timeless truth to what they 
have to say. � e admirable rigor of this discourse is, however, achieved at the cost 
of explanation and, even more, any context of how the proof was found (famously 

22. � e Greek forms of the translations quoted are: temnetōsan (Euclid: ‘they shall cut one another!’), 
perigegraphthō (Archimedes: ‘it shall be circumscribed!’), and ekbeblēsthō (Aristarchus: ‘it shall be 
extended!’).

23. � e Aristotelian Aristoxenus (third century bc) explained mathematical imperatives in exactly this 
way (Harmonica II 33, pp 42–43, ed. Da Rios).
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criticized by Lakatos 1976). � is weird way of writing has no parallel in Greek 
writing and cannot be anything but a rhetorical stylization. � e oral discourse of 
Euclid as he tried to convince a listener of any given proof would have probably 
contained many more personal markers (like demonstratives, interjections, or 
personal pronouns).24 � us, the main function of the rhetoric of impersonality is 
to convey objectivity. Generally, this is still (or again) the case in modern ‘hard’ 
science (Storer 1967, 79; Rheinberger 2003, 311–315).

As diQ erent as the texts of the two traditions may appear at ( rst glance, they 
also share at least two features. One is their regular use of diagrams, the second 
is the thorough standardization of their language.25

Greek theoretical mathematics always relies on a lettered diagram in order (a) 
to add to the logical force of the proof by means of visual evidence. � e 
lettered diagram has proved so powerful that it is still used in modern 
science, in a nearly unaltered form (occasionally, today it is ‘numbered’ 
rather than ‘lettered’). Neglected for a long time, the diagram in Greek 
theoretical mathematics has recently been rediscovered as a very import-
ant feature (Netz 1999a), crucial to the communicative success of any 
proof. However, to anyone examining the traditions and texts of practical 
mathematics, especially the Near Eastern ones, it becomes quite clear that 
the speci( c ‘theoretical’ Greek lettered diagram is somehow related, like 
a younger member of the same family, to the ‘numbered’ diagram that we 
( nd in the practitioners’ texts (see the example taken from the Papyrus 
Ayer above, Fig. 2.1.1) and, regularly, in Babylonian problem texts.26 � ere, 
the parts of the diagram are, usually, connected to the relevant portions of 
the text by repeating the paradigmatic measures given in the text. Greek 
theoretical mathematics uses generalized indices, that is, letters that, in 
this case, do not signify numbers. � e Greek lettered diagram is thus a 
generalization of the diagrams employed in the textbooks of practical 
mathematics and therefore closely related to the former (in my opinion, 
one of several reasons to think that Greek theoretical mathematics must 
have emerged from a practitioners’ background).

Anyone who works through the contents of either tradition will be amazed (b) 
by how extremely regulated, even standardized, these texts actually are. 
� e practitioners always use the recipe-structure, within a given text the 
introduction, the appeal to the second person, and the end of the actual 

24. � e mathematical passages in Aristotle or Plato (minus the general diQ erences between written prose 
and oral discourse) might be a model of how mathematicians talked about their objects.

25. A third, not dealt with here, is the ‘discrete’ and, for Greek prose, highly unusual status of the major 
text-units in both traditions (see Asper 2003, 8–9).

26. See, for example, TMS 1, IM 55357, YBC 8633, YBC 4675 (see Damerow 2001, 230, 234, 244, and 280), 
all from Old Babylonian times.
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problem always use exactly the same language. � ese texts, being stand-
ardized, are somewhat remote from oral discourse.27 Since these struc-
tures are very old and easily cross cultures and languages, one could guess 
that the most eQ ective way to protect this knowledge was to ensure that it 
was kept traditional, as is evident from the standardization of its textual 
forms. Although Greek theoretical mathematics is comparatively young, 
it is no less standardized, albeit in a more complex way and on several 
levels: the lexicon used is small, nearly free of synonyms, and con( ned by 
de( nitions that precede most extant works. Mathematical syntax is even 
more regulated: the same elements of any given argument show exactly 
the same form (Netz 1999a, 133–158 has listed more than a hundred 
such ‘formulas’). Even the whole proof always consists of the same parts, 
always introduced by the same particles.28 Of these, the famous phrase 
‘QED.’ (hoper edei deixai, ‘just what one had to prove’) is still used today. 
� erefore, the language of Greek theoretical mathematics strikes one as 
being far removed from living oral discourse and its common rhetorical 
strategies, and being just as far removed from other forms of written 
argument. Already by the fourth century bc, Aristotle’s readers did not 
appreciate mathematical prose aesthetically, because it was too diQ erent.29 
To understand why the theoretical tradition produced such unparalleled 
texts, why it even emerged this way, one has to dive deeply into historical 
inquiries, all of which greatly bene( t from remembering the strong tradi-
tions of Greek practical mathematics that must have been constantly pre-
sent in the environment of the theoreticians.

THEORETICAL MATHEMATICS IN ATHENS: 
GAMES OF DISTINCTION

� eoretical mathematics of the kind outlined in the last paragraph existed only 
in Greece and was, by comparison with the mighty tradition of practical math-
ematics, clearly a local phenomenon, the distinctive features of which call for 
historical explanation or, at least, comment. � e traditional, that is, ultimately 
Aristotelian, narrative of how mathematics and philosophy emerged in archaic 
Greece tells us that it all began in Asia Minor (modern Turkey), in the sixth 
 century bc, with half-mythical characters such as � ales of Miletus (c 600–550 bc) 

27. Eleanor Robson, however, mentions that, at least in Old Babylonian mathematics, the syntax is quite 
 natural and the terminology ‘local and ad hoc at best’ (personal communication).

28. � ese parts, slightly diQ erent depending on whether the proof is a problem or a theorem, and also con-
sistently standardized only in Euclid, were already isolated, described, and named by the ancient tradition, 
preserved in Proclus (( + h century ad): see Netz (1999b).

29. Aristotle, Rhet. 1404 a 12; Metaph. 995 a 8–12.
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and his Milesian ‘school’ or, somewhat later, Pythagoras of Samos (c 550–500 bc) 
and his followers. It is dis  cult or even impossible to reach ( rm ground here 
 (radical skepticism in Dicks 1959 and Burkert 1972). Both � ales and Pythagoras 
are credited with the discovery of geometrical theorems, for example the theo-
rem above quoted from Euclid is ascribed to � ales by ancient tradition. It is 
disputed, however, whether these ascriptions are to be trusted (rather not, is my 
guess). Whatever semi-theoretical practices they and their possible successors 
might have engaged in, it is quite certain that they did not produce texts showing 
the characteristics discussed above. It was disputed already in antiquity whether 
they had even produced texts at all. � e earliest history of Greek theoretical 
mathematics that we can lay our hands on begins in the late ( + h century bc at 
Athens, where the center of theoretical mathematics in the Greek world would be 
located for some 120 years, until other centers emerged in the beginning of the 
third century bc, most notably at Alexandria in Egypt.

What is known about the persons involved and the contexts in which such a 
peculiar body of knowledge emerged? As always, too little. Partly because the 
impersonality of theoretical mathematics prevented authors from telling us any-
thing about themselves (except in occasional introductory letters), partly because 
the older tradition was obliterated by the star mathematical writers of the third 
century bc. � e sources are thus mostly indirect, scattered, and do not go back 
further than the fourth century bc: quotations found in Late Antique commenta-
tors from the earliest historical account of mathematics, by Eudemus of Rhodes, 
an Aristotelian scholar (fourth century bc),30 and occasional remarks in the 
works of Plato and Aristotle.

A+ er the shadowy prehistory of theoretical mathematics in eastern Greece,31 the 
political and economical power of Athens in the second half of the ( + h century 
attracted Greeks from Asia Minor who probably came as political representatives 
of their Ionian city-states. Two mathematicians from the island of Chios who were 
active at Athens are still known: Oenopides, who applied geometrical models to 
astronomical problems and is credited with a couple of methodological achieve-
ments, and, more prominently, Hippocrates, who seems to be the founder of the 
tradition of Elements, that is comprehensive axiomatic-deductive treatises in the 
later style of Euclid. His is the ( rst theoretical text that we have in Greek math-
ematics: a short passage on the quadrature of ‘lunules’, that is, certain segments 
of circles, quoted by Simplicius through Eudemus (see Netz 2004). Although dis-
puted in almost all its details, this text shows all the features that struck the reader 
as peculiar in the above quoted examples, especially the standardization, the 

30. Proclus in his commentary on the ( rst book of Euclid’s Elements, Eutocius (sixth century ad) com-
menting on Archimedes’ works, and Simplicius (sixth century ad) on Aristotle’s Physics. See Zhmud (2002).

31. � ere are more names, for example Phocus from Samos and Mandrolytus from Priene, but absolutely 
nothing is known about them.
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impersonality, and those strange imperatives. No diagrams have been preserved, 
but the text obviously relies on several lettered diagrams. Hippocrates is usually 
dated to 430–420 bc (see Burkert 1972, 314 n. 77). � erefore, by this time there 
must have already existed generic conventions for how to write theoretical math-
ematics. Furthermore, there must have been a desire to communicate the know-
ledge to someone, that is, to readers. For Eudemus, writing about a hundred years 
later, Hippocrates was the founder of the genre that included Elements and, appar-
ently, the ( rst ‘real’ theoretical mathematician in Athens. A+ er him, throughout 
the fourth century bc, we hear of about twenty names (all in Proclus) and even 
groups of people in Athens associated with theoretical mathematics, partly in 
contact with philosophers and astronomers. It is clear, though, that at least some 
mathematicians were not part of any of these other groups, especially not the 
Pythagoreans or, later, the followers of Plato. From about 400 bc onwards, at the 
latest, a mathematical community, however small, must have existed in Athens.

� ere are reasons to believe that this theoretical knowledge did not suddenly 
fall from the sky or oQ  the trees, but diQ erentiated itself from the practitioner’s 
knowledge. First, some of the terminology in Euclid betrays a practical origin, 
for example the term for ‘drawing a straight line’ (teinō, literally ‘stretch out’), 
goes back almost certainly to the aforementioned surveying practices of the 
‘rope-stretchers’. Similarly, expressions for geometrical entities as angles, certain 
 ( gures, or the perpendicular go back to cra+ smen’s traditions.32 Second, the curi-
ous de( nition of the line in Euclid (Book 1, def. 2) as ‘a length without width’ 
makes perfect sense when one realizes that the experts of the practical traditions, 
when concerned with measuring, always assume a standard width for every line 
they measure. � e theoretician’s text is being implicitly, but quite openly polem-
ical here (Høyrup 1996, 61, according to whom the same is true for Elem. 2.1–10). 
� ird, there is a model for conceptualizing the emergence of theoretical math-
ematics from practitioners’ knowledge. A typical genre of such practitioners’ 
groups and their competitive struggles is the riddle, used by experts to challenge 
one another. Such riddles are characteristically compound problems, and apply 
practical methods to improbable problems that already touch upon a theoret-
ical realm (Høyrup 1997, 71–72). According to the traditional histories of Greek 
mathematics, three problems were at the center of the ( eld’s attention from the 
beginning: how to square the circle, how to trisect an angle, and how to double 
the cube (Saito 1995). On the one hand, these are problems to solve, not theo-
rems to prove, and, therefore, belong to the practical sphere. On the other hand, 
it is not quite clear in what situation one would be faced with the task of, for 
example, doubling a cube. � erefore, one model for the transition from practice to 

32. Gandz (1929–31, 273–275). More examples in Burkert (1982, 135–136; Hoyrup 2002a, 400–405).
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theory might indeed be the riddle, which pushed competitive practitioners 
towards theory.

One can draw another inference from the impersonality and the uniquely 
coherent terminology of Greek mathematical theory. In other intellectual ( elds, 
most notably in medicine and philosophy, one observes the opposite: texts are 
strongly personal and terminology changes between individuals or, at least, 
between groups (Netz 1999a, 122 f.).33 In these cases, both personality and group-
related terminology function as instruments in a competitive struggle among the 
participants in the ( eld, a competition aimed at patients, in the case of the physi-
cians, and at the glory of being right in the philosophers’ discussions. As was the 
case with the authorial ‘I’, in mathematical texts the reader comes across only one 
standardized usage of an ‘integrative we’ (reserved for the formula ‘ . . . as we will 
show . . . ’), meant to conjure up a group spirit, so o+ en used in philosophy and 
medicine. In medicine, personality and polemics in the texts rej ect a competitive 
( eld, at least partially for economic reasons (Miller 1990, 39). Mathematical prac-
titioners were specialized professionals, paid for their services. � e sheer imper-
sonality of the texts, in the case of theoretical mathematics, however, hints instead 
at a ( eld comparatively free from economic pressures, a ( eld that, for precisely 
that reason, remained fairly autonomous. � e group of theoretical mathemati-
cians in Athens must therefore have been quite homogenous in social terms.

Perhaps it would be adequate to think of theoretical mathematics as some 
form of game rather than something pertaining to a professional occupation, 
which it has become today, and which practical mathematics has always been. 
� e persons who played this game were certainly at home in the upper circles of 
Athenian society (evidence collected by Netz 1999a, 279 f.), similarly to Plato and 
his followers who eagerly absorbed theoretical mathematics. From the majority’s 
perspective, comedians could already make fun of mathematicians in 414 bc.34 
� ey must have felt like an elitist little group among Athenians. For them, the-
oretical mathematics was probably a status practice, perhaps enforced by the fact 
that the most common status practice, that is, politics, became quite dangerous 
for the old upper class at the end of the ( + h century. Mathematics was, as phil-
osophy was to become, a status-conscious way to keep one’s head down.35 � ere 
were, however, practitioners around who were, for Athenians from good families, 
socially unacceptable but who also had some share in mathematical knowledge 
and its practices. I suggest that many of the odd features of the theorists, such 
as expressly refusing to mention any practical applications or any useful eQ ect, 
worked intentionally as distinctive markers, meant to distinguish the precious 

33. � e last becomes very clear in the writings of the physician Galen (second century ad), especially in his 
treatise on terminology (On medical names, extant only in Arabic).

34. Aristophanes in his Birds (v. 1005), targeted at the astronomer Meton.
35. Netz (1999a, 293–294); Fowler (1999, 372). See also Carter (1986, 131–186).
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game of distinction36 from sordid occupations that were carried out by people for 
hire.37 Plato himself de( nes, quite polemically, the diQ erence between practical 
calculations and theoretical mathematics (Philebus 56 D 3–57 A 3, a perspective 
that is still inherent in the modern opposition of ‘pure’ and ‘applied’ sciences). 
Ancient narratives concerning the emergence of mathematics proper always 
stress its emancipation from the demands of daily and practical life.38 Later, this 
game of distinction eQ ortlessly blended into the Platonic disdain for everything 
material. (It is dis  cult to decide whether Platonism adopted theoretical mathem-
atics because it perfectly satis( ed the Platonists’ desire for immaterial, transcend-
ent truths, or whether Plato and his followers edged theoretical mathematics even 
further into the ivory tower.) Certainly the game of distinction was already being 
played before Plato had even dreamed of his forms. A late and, almost certainly, 
inauthentic anecdote illustrates my point nicely:

Someone who had taken up geometry with Euclid, asked a+ er he had understood the 
( rst theorem: ‘What is my pro( t now that I have learned that?’ And Euclid called for his 
servant and said: ‘Give him a triōbolon, since he must always make a pro( t out of what 
he learns’.39

� e point of theoretical mathematics is precisely that one does not gain any mate-
rial pro( t from it. � e triōbolon, here probably synonymous with ‘small change’, 
was the day’s wage of an unskilled worker in classical Athens, which would bring 
out the contempt for ‘work’ on behalf of the mathematicians even better. � e 
anecdote, one of several about Euclid that are all best met with skepticism, prob-
ably belongs to a Platonist milieu which began to dominate theoretical math-
ematics some time a+ er Euclid’s lifetime.

For an Athenian gentleman devoted to theoretical mathematics between 420 
and 350 bc, however, professional experts of lower social status were not the only 
group from which it was necessary to demarcate his own pursuits: since the mid-
dle of the ( + h century, there had been the sophists and, increasingly, the philoso-
phers, both of whom had their own ways for intruding into pure and agoraphobic 
mathematics. � e sophists were professional experts of knowledge and, as such, 
promised to teach political success, which in a society largely based on public 
debate depended largely on the use of rhetoric. Some of the sophists, apparently 
trying to top all existing forms of knowledge, tackled the conventions of theor-
etical mathematics with rather silly objections.40 Others tried their ingenuity by 

36. � e expression is taken from Bourdieu (1979, 431 (jeu distinctif)). Of course, ancient Athenian upper-
classes had, just as their modern equivalents, several ‘games of distinction’ at their disposal, for example, chariot 
races.

37. What Netz (2002b) has termed the ‘marginalization of the numerical’ in theoretical mathematics, I 
see as one more of these distinguishing moves targeted against the practitioners whose practices were almost 
exclusively numerical.

38. For example, Aristotle, Metaph. 981 b 20–25; Proclus, In Eucl. p. 25.12–26.9.
39. Stobaeus, Anthologium 2.31.114 (p. 228.25–29 ed. Wachsmuth/Hense).
40. Protagoras in Aristotle, Metaph. 998 a 2 f.; compare Anal. post. 76 b 39–77 a 4.
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solving the quadrature of the circle, again in pointedly amateurish fashion.41 By 
doing this, the sophists aimed probably not at the mathematicians, but at poten-
tial customers to whom they could demonstrate that they ‘knew everything’, 
which was the typical sophistic claim (Hippias in Plato, Hippias maior 285 B 
7–286 A 5). Viewed from this perspective, the mathematical excursions of the 
sophists indicate that they had found a body of theoretical mathematical know-
ledge at Athens, against which they tried to set themselves up as experts. � ere 
is no indication, however, that the mathematicians even bothered to engage with 
these dilettante newcomers.

A similar argument can be made about the philosophers in Athens.42 Followers 
of Socrates took a great interest in theoretical mathematics: First, the Socratic 
Bryson (c 365 bc) tried to square the circle (Aristotle, Anal. post. 75 b 40–76 a 3). 
Similar to Antipho, he proceeded from premises that were too general and thus 
failed. Aristotle calls this attempt ‘sophistic’, thereby indicating an outsider’s 
approach. Second, and far more importantly, Plato and his circle discovered in 
mathematical knowledge a paradigm of the epistemological quality they were 
generally a+ er. Plato’s criticisms of mathematical methods show that, again, his 
is an outsider’s interest.43 Most of the people in the Academy were not math-
ematicians, but were eager to discuss meta-mathematical questions and to apply 
the deductive logic of mathematical proofs to dialectics and even to science in 
general (as Aristotle did in his Second analytics). � ere is no reason to assume 
that the mathematicians were interested in these generalizations. Proclus has 
preserved a signi( cant statement of the otherwise unknown mathematician 
Amphinomus (( rst half of the fourth century bc) who boldly contended that it is 
not the business of the mathematician to discuss the epistemological foundations 
of his work.44 � e mathematicians’ desire to distinguish themselves from other 
discourses of knowledge obviously worked to distance themselves from the phi-
losophers, too. � e clearer the distinction and the more exclusive the group, the 
more enjoyable were the games of distinction.

THE LACK OF INSTITUTIONS FOR THEORETICAL 
MATHEMATICS

Since games require peers, but not necessarily readers, the remarkable form 
of mathematical texts deserves our attention, too. � ey probably also served a 

41. Hippias in Proclus, In Eucl. p. 272.7–10; Antipho in Simplicius, In Arist. Phys. I 2, p. 54.12–55.11 ed. 
Diels.

42. � ere is a dubious tradition that Anaxagoras, a friend of Pericles, engaged in theoretical mathematics, 
in approximately 450 bc (Ps.-Plato, Amat. 132 A 5 f.; Proclus, In Eucl. p. 65.21–66.1).

43. Plato, Resp. 510 C 2–D 2; 533 B 6–C 4.
44. Proclus, In Eucl. p. 202.9–12.
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certain function within their original contexts of communication. Many of the 
features of the theoretical tradition have the eQ ect of ensuring the correct under-
standing of the texts, especially multi-leveled standardization. In a social context 
where mathematics is regularly explained by a teacher to disciples, texts used in 
instruction can aQ ord to be less rigorous and less standardized because there is 
always the option of live dialogue to ensure that the knowledge is transmitted. 
� e texts of the practical tradition were probably always accompanied by per-
sonal, oral instruction that ( lled in the gaps, explained terms, and so on. Unlike 
these practical texts, the theoretical tradition produced autonomous texts, that 
is, texts that were able to exclude misunderstandings all by themselves, that were 
able to force readers into a consensus by realizing the mathematical truth. � is is 
the reason for de( ning crucial terms, standardizing the structure of proofs, and 
for excluding the context of discovery, every personal trace, and all controversy. 
Greek mathematical prose in the theoretical tradition is a paradigm of written 
knowledge transmission, rigorous in a way that still works today for any reader of 
Euclid or Archimedes. � e lettered diagram plays not a small part in this achieve-
ment because it transports visual evidence from the author to the reader.45 For all 
these reasons, one can happily read these texts alone, without a teacher, and still 
be fairly sure (as much as is possible in written communication, and compared 
to, say, poetic or historiographic texts) that one understands the argument in the 
way the authors intended it to be understood. � us, the theoreticians have cre-
ated a powerful, very reliable means of purely written communication.

� e practitioners imparted their knowledge from generation to generation 
within a guild-like institutionalized framework. For theoretical mathemat-
ics, however, there was no institutional background in ( + h- and fourth-century 
Greece (of course not, since the point of this socially distinctive game was its 
being ‘useless’). In its infancy, Greek theoretical mathematics lacked institution-
alization, which Netz (1999a) has shown convincingly. Plato and Aristotle lament 
that the city-state has no esteem for and, accordingly, provides no structures for 
theoretical mathematics.46 True, Plato makes his guardians learn abstract math-
ematics—but his point seems to be that in real-life Athens nobody did (Resp. 525 
B 3–528 E 2). Initially, Greek mathematicians had too few people around to talk 
to, so they resorted to writing and travel. Mathematicians were forced to write 
rather than discuss (compare Plato, / eaetetus 147 D 3) and, therefore, developed 
textual forms that could function perfectly in writing alone. In places such as 
Syracuse or Cyrene, there might not have even been any continuous oral trad-
ition, a scenario quite diQ erent from our practical mathematicians whose group-
structure ensured that the trade was handed down from generation to generation. 

45. See, however, Saito, Chapter 9.2 in this volume on ‘over-speci( cation’.
46. Plato, Resp. 528 B 6–C 8; Aristotle, fr. 74.1 ed. Gigon (= Iamblichus, Comm. math. sci.).
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Standardization of proof-structure and the theoretical lexicon may have helped 
to increase the probability of successful knowledge-transmission.

� e situation was diQ erent in fourth-century Athens and in third- and second-
century Alexandria but, by then, the genre of mathematical prose had already 
emerged with its distinctive features. Besides, even in the third and second cen-
turies, letters and travel were typical for theoretical mathematicians outside of 
Alexandria, as can be glimpsed from the introductory letters of Archimedes, of 
Diocles (ed. Toomer 1976), and of Apollonius. Instead of walking into a classroom 
and presenting a new theorem to his graduate students, Archimedes in Syracuse 
sent letters to the other end of the world challenging his friends in Alexandria to 
( nd the proofs of the theorems he has just found.47 Further, the genre of Elements 
with its peculiar linguistic characteristics emerged as an ideal medium of how to 
store the pertinent knowledge and is still used in this capacity today.

From a modern perspective it is dis  cult to imagine that (theoretical) math-
ematics might not have been institutionalized in some way. In classical Greece, 
institutionalization proper did not begin with a sudden widespread interest in 
theoretical knowledge, but with practices of political representation. A+ er the fol-
lowers of Plato and Aristotle had developed a lively interest in theoretical math-
ematics throughout the latter half of the fourth century bc, Hellenistic dynasts, 
above all the Ptolemies in Alexandria, the Seleucids at Antioch in Syria and, on 
a less grand scale, Hiero at Syracuse in Sicily, sponsored theoretical mathematics 
just as they funded poets and grammarians: as a contemporary form of pan-
Hellenic representation. Intellectuals added to the royal splendor.

Paradoxically, we know next to nothing about Euclid. He may or may not have 
been the one who migrated from the then thriving mathematical scene of Athens 
to Alexandria, some time between 320 and 280 bc, and with whom mathemat-
ical institutionalization began at Alexandria.48 � ere, the Ptolemies had also 
established some center of engineering, not least because they were keenly inter-
ested in siege engines, for which the successful construction and use of practical 
mathematics was of great importance. � ere, a tradition of teaching and writing 
practical mathematics continued into Byzantine or even Arabic times. � e most 
important author of this tradition is the aforementioned Hero of Alexandria, who 
himself bridged both the practical and the theoretical traditions. Furthermore, 
the Ptolemies assembled mathematically minded astronomers in Alexandria, for 
instance Conon of Samos (third century bc) who also wrote on conic sections. 
Apparently there was a nearby observatory. All these persons49 must have  constantly 
met and debated with one another. In Archimedes’ and Apollonius’ introductory 

47. Archimedes, Sph. cyl. praef. vol. 1, p. 168.3–5 ed. Heiberg 1972; Lin. spir. praef. vol. 2, p. 2.2–6; Meth. 
praef. vol. 2, p. 426.4–7.

48. At least, this is what Pappus of Alexandria (fourth century ad) tells us (Coll. p. 678 ed. Hultsch).
49. More names and as  liations in Asper 2003, 27.
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letters, we strongly sense the existence of a small ‘scienti( c community’, again with 
notions of elitist distinction.50 � ere were several libraries that served scholarly 
purposes and the famous Mouseion, an institution that gathered and awarded 
royal stipends to scholars from a number of disciplines, including grammar and, 
probably, medicine. It was here, with this concentration of various sorts of math-
ematicians that a stable tradition of theoretical mathematics emerged that betrays 
signs of teaching and canonization (editions of mathematical ‘classics’, commen-
taries, and collections), with the later works more ( rmly embedded in Platonist 
philosophy and curriculum. But even then, theoretical mathematics remains a dis-
course based on writing and con( ned to very small, socially elevated circles. � ey 
were still not professionals in the modern sense, as the mathematical practitioners 
had always been. Despite the astonishing prominence of theoretical mathematics 
in modern times, which invites anachronistic re-projections, in ancient Greece 
theoretical mathematics must always have been an epiphenomenon, or rather, a 
marginal diQ erentiation, of strong practical traditions.

CONCLUSION: THE TWO MATHEMATICAL CULTURES OF 
ANCIENT GREECE COMPARED

Practical mathematics must have been present in all the previously mentioned times 
and places, albeit socially invisible. Mostly, its practitioners worked with their long-
established methods without ever paying attention to the theorists and their games. 
On the other hand, upper-class theorists must have aimed at staying clear of modest 
cra+ smen. Occasionally, one can suspect a direct, polemical reference by theoret-
ical mathematics directed against the practitioners. Platonic ideology contributed 
its share to the dichotomy, which was apparently quite strict at times. Rarely did 
somebody bridge the two traditions, which must have occurred regularly in the 
very beginnings of the theoretical tradition. One might understand these respective 
bodies of knowledge as complementary and, almost, as mutually explanative:

Greek practical mathematics:

was derivative of older traditions that, ultimately, originated in the ancient • 
Near East;

solved ‘real-life’ problems;• 

communicated actual procedures in order to convey general methods;• 

used written texts (if at all) as secondary means of knowledge storage and • 
instruction;

50. Both ask their addressees to distribute their ( ndings only to those who are deserving: Apollonius, Con. 
II praef. vol. 1, p. 192.5–8 ed. Heiberg 1893; Archimedes, Sph. cyl. I praef., vol. 1, p. 4.13 f.
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employed ‘social’ technologies of trust, that is a rhetoric based on insti-• 
tutional authority; for example, the guild’s pristine tradition, the special-
ist status of its practitioners, and the knowledge’s commonly accepted 
usefulness;

worked within a stable and highly traditional social—that is, institu-• 
tional—framework.

Greek theoretical mathematics:

emerged in sixth- to ( + h-century Greece, at least partly from a practical • 
background;

was a theoreticians’ game with artistic implications, pointedly removed • 
from ‘real life’;

communicated general theorems concerning ideal geometrical entities;• 

depended on writing and produced autonomous texts;• 

employed epistemological technologies of trust based on evidence and • 
logic;

was not institutionalized, at least not during its formative stages.• 

� e two ( elds diQ er so greatly with respect to their practices, traditions, milieus, 
functions, methods, and probably also the mindsets of their participants that 
I could not resist adopting the catchphrase of the ‘two cultures’. � us, when 
approaching mathematics in ancient Greece, perhaps one should rather think 
of two mathematical cultures, in many respects neat opposites.51 To the leading 
circles of any given ancient Greek community, the practitioners were probably 
almost socially invisible. As far as sizes of groups and social presence in everyday 
life are concerned, however, the theorists were never more than an epiphenom-
enon. Apparently, the unusual characteristics of theoretical mathematics evolved 
as markers of diQ erentiation, meant to stress a distance from the social and epi-
stemic background that was associated with practical mathematics.
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