‘Chapter 12

FROM CATASTROPHE TO CHAOS: THE MODELING
PRACTICES OF APPLIED TOPOLOGISTS

David Aubin

Sociologiquement, on peut dire que [la théoric des catastrophes) a fait, .. un
naufrage subril, parce que la plupart des notions que j"ai introduites . . . ont
pénétré dans le bagage ordinaire des modélisateurs. Alors, il esr vrai que,
dans un sens, les ambitions de fa théorie ont fait nanfrage, mais la pratique,
elle, a réussi. [Thom, 1991, 47].

During World War II, American mathematician George D. Birkhoff
contended that ‘topology deserves to obtain 2 more prominent position
in physical theories than it has yet obtained’ [1943, 310]. Because of its
impact on various parts of mathematics, topology undoubtedly was
among the greatest successes of the twendeth century. But, prior to the

early 1970s, and despite Birkhoff's wish, topology had generally

retained the image of an abstruse pursuit that had found little concrete
applicarion elsewhere. Or to put it more accurately, very few leading
topologists paid any attention to the concrete. !

By the early 1990s, a compelling alternative had emerged, and this
image had become obsolete. For instance, British topologist E.C. Zeeman
characterized the history of topology as a succession of hegemonic
approaches branching off to establish new subspecialties. Afcer the
1890s when it untangled itself from its ‘applied origing,” topology was
‘analytic’ from 1900 to 1920, ‘geometric’ in the 1920s and 1930s, and
then ‘algebraic.” But, the 1960s saw the resurgence of a ‘geometric’
standpoint, and the 1970s were fabeled ‘differential.” The wheel having
rurned 2 full circle, Zeeman saw in the 1980s the triumph of
‘applications.’”> Now, ‘applied topnlogy’ is hard to find as a standard
classification in macthematics. In more than fifty years, the Mathematical
Revieww has recorded only one single use of the expression in the title of
an arricle? Clearly, the image of topology seems to have shifred
recently. ‘

Although part of larger mutations in the image of mathematics, this
shift is hest understood as resulting from the successful adaptation of
notions and practices coming from topology to the modeling of certain
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phenomena in the physical, life, and social sciences. This, I claim, was

the result a systematic effort undertaken by those 1 will cail *applied

topologists.” From the late 1950s onwards, they pursued vast programs,
well adapted to the then dominant ideology of pure mathematics
[Aubin, 1997}, Sometime in the 1960s, they turned their attention to the
real world. Exploiting the newest mathematical technologies of cheir
arsenal, they forged modeling practices capable of providing, or so they
wished, theoretical explanations for phenomena badly understood by
means of conventional approaches.* But in so doing, they retained the
Bourbakist ideal of exhibiting the deepest structures of the world.

Diversely known as the theories of catastrophes, dynamical systems,

and deterministic chaos, these modeling practices benefited from the
crucial catalytic role played by the Institut des hautes études
scientifigues (THES), ar Bures-sur-Yverte near Paris [Aubin, 1998a;
1998b]. Hired there in 1963, French mathemarician René Thom
welcomed notable visitors, such as E.C. Zeeman and the prodigious
Berkeley mathematician Steve Smale, With students and followers, they
forged a small community which promoted new methods for modeling,
as well as the mathematical technologies needed for the task. However,
following the media frenzy thar greeted catastrophe theory, a backlash
challenged the legitimacy of their approaches outside pure mathematics.

No matter how ‘applied,” topologists had trouble convincing commu-

nities of specialists of the fruitfulness of their methods. Was the world

actually structured by topological concepts, or did they merely provide a

language for grasping ie? Applied topologists’ responses to skepticism

varied greatly: Smale preferred to base his models on well-established

mathematization processes; Zeeman tried to convinee large audiences
that catastrophe theory could actually be used to generate differential-
equation models; and Thom embarked on a grandiose enterprise
intended to revolutionize the philosophy of science.

Ultimately, the success of some of the modeling practices promoted
by applied topologists depended on the willingness of other specialists
to claim them as their own. For this mediation, the IHES also provided a
well-suited environment. Inspired by Thom’s and Smale’s ideas, THES
physicist David Ruelle published, together with Dutch topologist Floris
Takens, 2 seminal article in 1971, whick in many ways launched the
study of chaotic dynamics. An untypical physicist because of his
emphasis on a mathematical rigor that bore Bourbaki’s stamp, Ruelle
served as mediator berween applied topologists and physicists. This was
by no means an obvious process. While topological modeling practices
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were widely picked up by specialists'in various disciplines, thits was done
ar the expense of substantial alterarions and a IO.SS of' rigor- As a
tradeoff, physicists exploited experiments and numerical simulations to
bypass mathematical failures and philosophical pretense.

To make these modeling practices explicit, it has been necessary to
select, as representative of particular variations, a few. heterogeneous
models, all of which constituted conscious and appealing attempts at
extending the reach of topological tools and practices (Table 1). Not all
of them, however, were promised a brilliant futare; with the benefit of
hindsight some might appear as rash acts of bra-vado soon 1o be h?lrshl);
dismissed. By using these particular models as signposts, an OVerview °
the evolution and diversification of topological modeling practices will

“be presented, and an important featare will be emphasized. This was the

way topological approaches called mto question the dominance of
differential equations in modeling. In other words, they challenged the
widespread assumption that theoretical accounts. of natur‘al phenom'ena
were a matter of writing down, and if possible solving, .the right
equation. Topological technotogies provided a language sx.uted f;)r_a
description of nature where differential equations were displaced mn
favor of much less important ontological commitments to fundamental
laws. . o 7

This story therefore goes counter to the traditm‘nal hlstonogra'phy oi
‘application’ in several ways: apphied topologists’ -C(-mstn%cnon .0
mathematical frameworks appears as being intimately intertwined with
their forging modeling practices applicable to concrete problems; the
role of mediators is emphasized; and the specmhstsj’ succe.ssfug
‘applications’ of topological practices are .<:1carly seen as- adaptat;o.ns
hetraying initial goals while offering original means of 1r1.nplementmg
abstract, philosophical undertakings. As a result, dlfff:rentlal topology
ceased to be just an abstract branch of mathematics to blecom.e a
reservoir of tools and practices to be used in those cases when equations
were hard to come by or solve.

THE ABSTRACT ROOTS OF APPLIED TOPOLOGY

Having been awarded their Ph.D.s in the 1950s, Ren_é Thqm and Steve
Smale have both emphasized the special conditions_in which they ﬁrsit
approached topology. While the former modestly ac.knowledged that it
was his fuck to have joined the field just when ‘a river ... f}ooded the
domain,” the later simply wrote that he ‘was born into the “Golden Age

of Topology™’ [Thom, 1983, 21]; [Smale, 1990, 28]. A decade earlier,
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IN MATHEMATICS
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G.D. Birkhoff {1942} confidently suggested that topology would soon
‘areatly increase in scope and significance.” Having witnessed ‘a kind of
culmination in the abstract phase’ of the history of the field that had
performed the ‘essential rask of giving topological ideas their appro-
priate abstract setting,” he believed that the future would show the
usefulness of topology for dynamics.
The field indeed skyrocketed in the postwar years, but in a
direction hardly anticipated by Birkhoff. Following MacLane and
Eilenberg’s 1945 axiomatization of homology theory, extraordinary
technical developments in algebraic topology ignited an ‘explo-
sion’—an internal explosion, but also an external one, extending the
reach of topology ‘by the creation of methods applicable to new.
domains of the concrete’ [Lichnérowicz, 19551. The main motor
driving the explosion was the introduction of powerful algebraic
tools for the study of topology and geometry. While vast fields of
research opened up, extensions to concrete problems followed
traditional patterns, application remaining outside the province of
leading mathematicians. As put by Lichnérowicz, the next great
‘explosion’ took place in the direction of algebraic geometry: ‘I dare
say it was detopologized and partly transmuted into a purely abstract
geometry.” Still, the systematic algebraic atrack by the new
generation was resented by some old-guard mathematicians who
contended that ‘while we wrote algebraic GEOMETRY they make it
ALGEBRAIC geometry with all that it implies’ [Lefschetz, 1986, 3.
Similarly, Marston Morse criticized algebraic supremacy and disdain
for applications: ‘Forever the foundations and never the Cathedral’
jquoted in Bott, 1980, 908].

For those who would become applied topologists, these older
traditions (found in the work of Whitney, Morse, and later Lefschetz,
Birkhoff, and Poincaré) provided resources to complement the algebraic
dominance. But, in the context in which they produced their first results,
$male, Zeeman, and Thom approached ropological problems from
purely internal motives, without paying attention to applications. In so
doing, they achieved great successes acknowledged by their peers. In
1960, Smale proved the higher-dimensional Poincaré conjecture to
which Zeeman contributed a different proof: for this the former was
awarded a Fields Medal in 1966. Earlier, in 1958, Thom had already
received the Medal for his work on cobordism. However, albeit
educated by Bourbaki mathematicians, Thom, like Smale and Zeeman
for that matter, tackled topological problems from a geometric, more
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than algebraic, standpoint, When topology was in a ‘stage of Vigorous

. algebraicization,” Heinz Hopt wrate when presenting Thom his
Medal, Turked the danger of “totaliy ignoring the geometrical content of
topological problems.’

.

" In regard o this danger, I find that Thoin's accomplishments have
something that is extraordinarily encouraging and pleasing. While Thom
masters and naturally uses modern mathematical methods and while he sees
the algebraic side of his problems, his fundamencal ideas ..
perfectly geometric-anschaulick nature {Hopf 1960, Ixiii-Ixiv].

.are of a

By the late 19505, Thom and Smale were moving away from their
earlier concerns and embarking on ambitious programs. Reviving
interest in topological notions such as genericity and structural stabilicy,
they endeavored to construct global classification schemes for familiar
entities: real functions and differential equations, respectively. Ar the
end of decade, Thom’s project had partly been completed with the list of
the seven elementary catastrophes [Thom, 1975], while Smale’s, despite
bold conjectures and great advances, was facing grave difficulties
[Smale, 1969/70]. As a resule of constant interactions, however, bath
were then definitively turning away from abstract pursuits and engaging
in problems of modeling.’ ‘ '

THE EMERGENCE OF ‘TOPOLOGICAL MODELS’

In 1969, René Thom proposed noteworthy ‘topological models,” with
photographs of caustics and plaster models, in the journal Topology.
Concerned with the problem of explaining ‘the stability . .. of the global
spatio-temporal structure in terms of the organization of the structure
itself,” he thought of his models in terms of a ‘striking analogy between

 this fundamental problem of theoretical Biology and the main problem

considered by the  mathematical theory of Topology, which is to
reconstruct a global form . . . out of all its local properties’ [Thom, 1969,
313]. For him, it was not only the tools of topology which could be
applied to biology, but the very nature of both endeavors which
suggested that involved interactions could be productive for both
disciplines.

Obviousty, this dramatic extension of the meaning of model is but a
small part of the larger story of mathematical modeling, which o a large
extent remains to be told by historians of science.* The idea came ta
Thom from his encounter with an original topologist, Christopher
Zeeman, who had already spoken of topological models in an article by
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which Thom had been ‘singularly fascinated.” According to von
Neumann, ‘the sciences do not try to explain, they hardly even wy to
interpret, they mainly make models’ [quoted in Dahan Dalme‘daco,
1996, 179). Contrary to this pragmatism, Thom and Zeeman beheved
their models to be more than descriptions or computational techniques,
but forms of explanation.

Topology of the Brain: The Irrelevance of Differential Equations

The intelligibility of the experimental ‘chaos’ depended on math'ema_tic.s’
very ‘power to simplify and explain,” Zeeman [1964"?] claimed in
accordance with the credo of a mathematician raised in Bourbalki’s
heydays. More than any other topologist of his time, howev‘cr, he
seriously worked out models, in particular ‘to try and explain thle
relationship between mind and brain® [Zeeman, 1965, 277]. His
principal goal was to provide explanations for such problems as:
How does the brain perceive an image from nervous impulses? To
tackle this question Zeeman used algebraic topology, because it qu
“well adapted to ignore local variations and capture g!of?a! properties
[277]. In biophysics, one usually started with eEectrochemlcal.prqper.nes
expressed as measurable quantities, then one derived and if possible
solved differential equations which they obeyed. But, as Zleeman
explained, models built with such equations ‘frequently give the

impression of being too derailed neurologically and-oversimplified in
- the large.’

To pursue an analogy, think of blowing up a balloon into a funny shape.
The local behaviour of the rubber marerial is described accurately by
differential equations, but globally the equations become e1th¢r.very
camplicated or else inadequate, whilst the topology remains very simple
[287].

Granted that mind mechanisms relied on interactions of neunrons,
algebraic topology, like a net catching global, relevant ‘Features i.n a sea
of local, irrelevant complexity, provided original tools enhancing the
understanding of the workings of the brain. '
Zeeman introduced ‘a simple model of the brain’ by organizing
neurons into a ¢cube of 10 billion dimensions called ‘the thought cube.”
To work with such a complicated construct, topological technigues
were called to the rescue. He devised the notion of tolerance spaces,
accounting for pairs of distinct ‘states of neural activity ... so close thff
they “feel the same™ and consequently give rise to the “same thought

CTHANGING IMAGES IN MATHEMATICS
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[282]). Modeling the brain, he was led to original and ‘precise’
mathematics.

Some features however made Zeeman’s mode! unattractive to
biojogists. Even if he claimed that it was ‘based on the well known
anatomicat structure of the brain,’ his model was too crude for them
[291-2]. It was moreover difficult to test-in the laboratory.

The results are expressed in geometrical language, and are gualitative rather
than quantitative. This means that so far the theory ... has arempted
explain phenomena rather than predict the measurements that experiment
would obtain [277].

As is well known, while Thom mathematically defined catastrophes,
Zeeman introduced the catchy phrase of catastropbe theory.” Extending
its range, he audacicusly developed scores of famous (and infamous)
models [Zeeman, 1977). Far from resulting from his mere reading of an
‘underground” copy of Thom’s manuscript, Zeeman’s interest stemmed
from constant contacts between the two men, thanks to which emerged
a modeling practice that topologists could call their own.

By the same token, exploiting topological tools to make sense of the
brain without paying attention to biochemical processes, Zeeman
mvented modeling procedures exhibiting many of the features which
became trademarks of catastrophe theory. In his model, the substrate
(the neurons) was replaced by an idealization with crude dynamics: the
thought cube. The model variables were more or less realistic, and
differential equations deemed uninteresting because conraining more
local information than needed. Topological technologies could filter out
irrelevant information in favor of meaningful wholes. Experimental
confirmation would be difficult, but perhaps not impossible; the goal of
modeling was to explain rather than to predicr. These features, which
would all explicitly or implicitly inform later attempts at forging
topological modeling practices, were more systematically expounded by
Thom, '

Topological Models in Biology: Dynamics without Equations

From 1966 onward, Thom publicly embarked on the ambitious adventure
of catastrophe theory, Although mentioning “topological models,” he
casually used the term to refer to abstract mathematical constructs. He
distinguished two kinds of models. On the one hand, he called differential
models those given by a dynamical system: dy/dt = Xi(x,7,0), where
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1 represented external parameters. Classic and common, these models
suffered from two well-known problems: X was rarely obvious to find
especially in the nonphysical sclences, and solutions were often
impossible to compute formally.

On the other hand, Thom defined a new type of mathematical model.
Inspired by -British embryologist C.H, Waddington, he -provided a
mathematical definition for his informal notion of chreods, or stable
pathways of development. For Thom, an ‘experimental morphology’
defined a ‘catastrophe set’ of discontinuities dividing the substrate into
regions controlled by chreods. This decomposition, he wrote, could *be
considered as a kind of generalized m-dimensional language: 1 propose

LR

“to call it a “semantic model”. He identified two kinds of problems to be

considered given such a model:

1} To classify all types of chreods, and ro understand the nature of the
dynamic processes which insure their stability.

2) ... Generally, there are some associations of chreods which appear more
frequently than others. One may speak, in that case, of a smulti-dimensional
syntax directing the semantic model. The problem is then to describe this
syntax [Thom, 1969, 321-322]. :

Like Zeeman’s, these were problems well suited for topology. Thom
referred to Poincaré’s qualitative dynamics, and more crucially to
Andronov and Pontrjagin’s notion of structural stability. Recent
developments due to Smale [1967] having weakened its usefulness,
Thom defined attractors and restricted his study to systems which had a
finite ser of structurally stable attractors. The decomposition of the
substrate in basins of attractors characterized ‘entirely the dynamical
behaviour of the system.” Thus were topological tools brought to bear
on the ‘semantic’ problems raised by Thom. ‘In such a model, the
fundamental phenomenon to be studied is the destruction of a
structurally stable attractor by variation of the vector field” {Thom,
1969, 323|. To use the tools of topological dynamics, he assumed that,
like for traditional models, natural processes were described by vector
fields. Inspired by Andronov, Thom allowed the eguation to vary, and
instead of studying solutions, he focused on global topological features,
But, contrary to Andronov, the ultimate validity of idealized differential
equations was irrelevant to Thom’s concerns.?

Thom's models were no more amenable to experimental control than
Zeeman's. His method merely provided an ‘art of models.” Faced with
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the ‘need ... to classify the {empirical] data,” modelers could use his
proposals as a substitute to ‘pure chance and lucky guess’ and achieve ‘a
gua.]itative understanding of the process studied.” However, the most
'mportant consequence of Thom’s proposals lay not in his strenuous
fefforts at constructing a philosophy of science, but rather in the
introduction of modeling practices taken up by some topologists, as the
following examination of three models shows. , ‘

APPLIED TOPOLOGY? MODELING PRACTICES AT BAHIA, 1971

In ]971, the University of Bahta, Brazil, held a symposium on
dynamical systems that provided an occasion for applied topologists
to proclaim vocally that one could put ‘under the sway of the
n‘fathematician a vast array of phenomena thus far considered beyand
his reach’ [Peixoto, 1973, xiii). Although most participants dealt with
pure mathematics, Smale, Thorn, and Zeeman presented models based
on differential topology. Thom’s article aimed at providing a geome;ric
mterpretation of language and its grammatical categories. Inhis paper
Zeeman intended to ‘abstract the main dynamical qualities of rhf;
heartbeat_ and nerve impulse, and then bujld the simplest mathemarical
model with these qualities.’ By far the most mathematically involved
Smale’s contribution attempted to put time back into the equations 0;
equilibrium economics. A comparison of these three arricles m:;kes
points of convergence and divergence appear explicitly,

The Babia Models: Topological Modeling at Work

Of tbe three, Thom’s [1973] article was the most verbose. Were jt not
for its mathematical metaphors, it would have seemed closer to a
philosophical paper. As it is difficult to consider this paper as an actual
f"lttemp't at mathematical modeling, its legacy still being a matter of
tmportant dispute, it will not be discussed in detail. However, one
should note that, while often claiming that his practice was indepcr’)dt;nt
of the substrate, Thom made clear that it was rather withont substrate
_ln_ his purely topological modeling, no variable nor equation qu
mvolved. In the absence of precise substrata lay the most extrema\e
difference between Thom’s practice and that of other applied
topologists, R

Catastrophbe Theory & la Zeeman: Deriving Equations from Topology

A perfect exemplar of the modeling practice most often associared with
catastrophe theory, Zeeman's Bahia paper was an exposé of the way in
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which this theory provided ‘not only a better conceptual understanding,
... but also explicit equations for testing experimentally.” He took
seriously the idea that global analysis modeled gualities. For the
heartbeat and nerve impulse, he contended, three main dynamical
qualities were displayed: ‘(l) stable equilibrium; (II) threshold, for
triggering an action; (I1I) return to equilibrium’ [Zeeman, 1973, 6841
Clearly, these were not simple physiological descriptions, but idealiza-
tions of biochemical processes, crucially informed by the types of
behavior best suited for qualitative dynamics. Equilibrium meant ‘look
for attractors’, and threshold that a catastrophe was involved. Starting
from the three qualities, Zeeman derived the simplest mathematical

model displaying such features:

ei= (P —x+b), b=x-x.

where dots denoted derivation with respect to time [699].

At this point catastrophe theory explicitly entered Zeeman's modeling
practice. Using general arguments for deriving his ‘simpiest’ model, he
needed ‘Thom’s deep uniqueness theorent’ to argue that these models
were indeed the right ones. ‘Let us pause for a moment to consider what

we are doing,” Zeeman wrote:

The topologist regards polynomials as rather special, and tends to turn his
nose up at so crude a criterion of simplicity ... So perhaps we ought to
consider all possible surfaces models}. Now comes the truly astonishing
fact: when we do consider ail surfaces, not only is this particular surface the
simplest example, but in a certain sense it is . . . the unique example. Herein
lies the punch of the deep and beautiful catastrophe theory [704].

A common strategy among applied topologists consisted in substituting
mathematical justifications for metaphysical assumptions, namely in
this case, the postulate of simplicity.!® As Zeeman interpreted it, Thom’s
theorem implied that if the dynamics were postulated to depend on a
generic potential, then the simplest model represented ‘the most
complicated thing that could happen locally ... The theorem is the
key'mathematical fact behind our whole approach’ [706]. His actual use
of topology was therefore limited but crucial. ‘

Next, by confronting his model with observations, experiments, and
empirical models, Zeeman wished to interpret its variables in terms of
physical parameters, but very loosely: one variable, for example, being
identified as ‘chemical control ... possibly membrane potential’ [712-3]. In
striking contrast to his previous attitude when modeling the brain,

CHANGING IMAGES IN MATHEMATICS
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differential equations remained the goal of Zeeman’s modeling practice,
using topological qualities to get them, rather than observations of
empirical quantities. Using radical means to derive applied mathema-
ticians’ classical objects, he laid himself open to the harshest critiques
lesp. Zahler and Sussmann 1977].

Topologizing the Mathematical: The Case of Econontics

Before his 1970 visit to the IHES, Steve Smale had scarcely dared to
publish articles devoted to mathemartical modeling. Inspired by Thom, and
wondering ‘whether I should explicitly direct my work. toward socially-
positive goals,” he turned to applications [Smale, 1972, 3]. At Bahia, albeit
Providing economic justifications, he nevertheless expressed his problem
In uncompromising mathematical terms:

One s given real differentiable functions 1,: W —» R defined on a manifeld
W, say i = 1, ... ym. Whar is the nature of curves @ R - W with the
derivative (d/dt}{i;0)it) positive for all i, t|Smale, 1973, 532/

Contrary to Thom and Zeeman, Smafe chose to rely on a rigorous,
axiomatized treatment—provided by [Debreu, 1959]—of the domain he
was dealing with. Entering a field already using  sophisticared
mathematical techniques, which he translated into a topological
" framework, he was making them artractive to the modern mathema-
tician, ... brought up in the purist, Bourbakist style of education’

{Smale, 1980, 100]. Economics provided him with interesting mathe-
matical problems where he could use dynamical systems theory. Thus,
as opposed to Thom and Zeeman who did not prove anything, the main
body of Smale’s paper was a list of theorems proved for the sake of pure
mathematics. Building on an already well-mathematized discipline and
not turning his back on the specialists” previous work, Smale promoted
modeling practices that could be more easily adapred to established
practices.'! '

- Since Smale made no actual attempe ac building cconomic maodels, his
Bahia article provides a poor example of his modeling practice. Like
Thom and Zeeman, however, he saw in topology a reservoir of
techniques for the modeling of phenomena in biology, mechanics,
electronics, ete. Abstracting topological features from known models,
his modeling practice consisted in topologizing extent models and
accounting for their dynamic behavior. This led him to specify
assumptions hidden in models, understand some of their c'()nsequences‘,
and modify hypotheses when needed. Later, Smale promptly recognized
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the importance of the Ruelle-Takens model, and crucially mediated
between mathematicians and physicists.

A New Status for Differential Eq'uationsﬁ

‘In a large number of cases, a kinship of structures in extremely diverse
domains has been noticed. This allows today’s mathematician, without
becoming an expert in a branch that is not the object of his study, to
understand its essential [features].” In 1968, this was how director Léon
Motchane explained the fruitfulness with which many mathematicians
orbiting the IHES were tackling concrete problems. Their effort was
systematic and concerted. Designed to promote the advancement of
‘fundamental research’ but sponsored by industry, the Institut of Bures-
sur-Yvette provided a fertile ground for the development of topelogical
modeling practices. Beyond applied topologists’ personal motives, one
must note how well this undertaking fitted with the ideology of research
promaoted by Motchane, Indeed, by insisting on the independence of
research while emphasizing potential concrete benefits for industry, he
favored abstract frameworks which paid attention to the outside workd.
Vehemently autonomous with respect to traditional practices in the
sciences, applied topologists developed models intended as intelligible
explanations rather than computing procedures for action [Aubin,
1998b]. By contingency, the THES provided an impuise and some of the
means for the emergence of a community of mathematicians willing to
adapt their practice to the concrete. By 1971, the most eminent among
them, Smale, Thom, and Zeeman each believed that, armed with their
ropological background, they could build dyndntical models for all sorts
of sciences, while keeping them at arm’s lengeh. Dynamics however had
an unusual sense: it emphasized changes, but not forces responsible for
change. '

Clearly, it was not a unified moedeling practice that emerged from
applied topologists’ work. Their respective attitudes differed markedly
with respect to the sciences they intruded, with respect to extant models,
experimental results, or lterature. Ac first glance, the most important
difference concerned the goal of modeling and the place they assigned to
differential equations. As mentioned, a most striking aspect of Zeeman’s
modeling practice lay in the Copernican reversal he advocated. Instead
of looking for equations obeyed by observable variables, he derived
them through topological consideracions; only as a second step did he
identify his variables witly observations. Still, the derivation of equations
remained the goat of his practice. On the contrary, Thom’s and Smale’s
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papers. made little use of substrata, variables, or equations. Conse-
quently, by proposing mathematical descriptions .in the absence of

" equations, the latter two opposed more drasticaily traditional practices
than the former who merely proposed new means to achieve srandard
objectives,

To emphasize this opposition too scrongly nonetheless is deceptive,
since all shared a belief that topology served to constrain possible
representations of phenomena. For Thom, more than a mere reservoir

* of metaphors, mathematics provided a way of thinking. For Smale, the
mathematician proved theorems which disturbed the established
consensus. Of course, Zeeman was the most explicit in expressing this
belief, attracting the obvious criticism that he let mathematics dictate

“what reality. should be like. As a consequence of this shared belief,
applied topologists challenged the traditional role ascribed to differ-
ential equations in modeling. Although a dynamical substrate in terms
of vector fields was always assumed, they paid little artention ro usual
ways of deriving equations. While Zeeman’s Bahia models proposed new
ways of achieving standard goals, other models, including his own of the
brain, suggested methods not only to analyze global features without
solving equations, but more mmportantly to provide explanations of
phenomena when underlying dynamical equations were not precisely
known. This last suggestion would be widely taken up by physicists.

TOPOLOGICAL PHYSICS? MODELING PRACTICES OF CHAQS

Remarkably, applied topologists® efforts, which if restricted to them
only might have remained rather sterile, were expanded upon by some
physicists. In this process, the IHES served as a crucial mediator. s
physics section had always been characterized by a focus on rigor, and
some noticeable instances of interactions with mathematicians had
already taken place [Zeeman, 1964b); [Froissart, 1966]. That Ruclle
and Takens’s theory of turbulence relied on concepts introduced by
Smale and Thom is clear simply by looking at their joint paper. But
Ruelle’s modeling practice also was shaped by his situation at the IHES,
which was not only an opportunity for him to learn about recent
theories, but showed him how to exploit them for model-huilding, as a
comparison with the Bahia models will make clear,

Ruelle-Takens: A New Definition for Turbulence

Russian physicist Lev Landau 11944| and German mathematician
Eberhard Hopf [1942; 1948] contended thar when a fluid was
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submirted to increasing external stress, it went through a series of
bifurcations, where appearing frequencies gave rise to quasiperiodic
motions that seemed increasingly turbulent. Being in contact with
applied topologists, Ruelle and Takens suggested, but did not show
rigorously, that this bifurcation sequence stopped after the manifesta-
tion of three different modes because a ‘strange attractor’ appeared in a
‘generic’ manner. As the title of their paper indicated, what was at stake
was the very nature of turbulence. Aperiodic—not quasiperiodic—
motion was the definition they offered for it.

There was a striking feature in Ruelle and Takens’s article which
brought out the new status they assigned to differential equations.
Indeed, they did not feel the need to write down the Navier-Stokes
equations (NSE), the fundamental law for fluid flows, more explicitly
than:

% = X, (v).
‘For our present purposes,” they added, ‘it is not necessary to specify
further ... X,,” [Ruelle and Takens, 1971, 168]. A unique parameter
depending on physical characteristics, p represented external stress on
the fluid (e.g. the Reynolds or Rayleigh number). The determination of
critical values at which motion became turbulent had motivated studies
for almost a century [Aubin, 1998a]. Not interested in particular critical
values, Ruelle and Takens only looked at general features of motion as
the parameter increased. .

When 1 = 0, the fluid tended to rest; for small , it tended toward a
stationary motion in which the velocity field remained constant. At a
criical value gy, the system went though a Hopf bifurcation: the
velocity ficld started to oscillate at a given frequency wy. In phase space,
while F‘nr stationary flows a fixed point existed which was an attractor

- of the system, when the oscillatory mode appeared this point exploded

into a closed curve, At a further critical value ua, a second bifurcation
gave rise to a frequency o, and so on. When p increased sufficiently,
‘the fluid motion becomes very complicated, irregular and chaotic, we
have turbulence’ [Ruelle and Takens, 1971, 168]. But how to describe
this ‘chaotic” low? Based on their ropological knowledge, Ruelle and
Takens claimed that since the quasiperiodic motion was not generic for
general dissipative systems, it had no chance of being observed. One had
to look elsewhere for a ‘mathematical explanation® of turbulence

[Ruelle, 1972).
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Topology in the Ruelle-Takens Model

Compared to the Bahia models, Ruelle and Takens’s was closest ro
Smale’s. Since fluid mechanics is one of the oldest mathematized
disciplines, this might have been expected. Given by the velocity field of
fluid flows and’ NSF, Ruelic and Takens’s substrare was quite
uncontroversial. But as in the above, identification of model variables
with observable ones was not immediare, for the phase space of the

velocity field was infinite-dimensional, a problem as far.as dynamical -

systems theory was concerned. Thus, while the substratum was
straightforward, the pertinence of reducing it to a low-dimensional
marifold was not obvious. ‘

When, using an example of Smale’s (the famous horseshoe), they
defined strange attractors and argued for their. genericity, Ruelle and
Takens made one crucial conceptual innovation in dynamical systems
theory. But more importantly, they adapred a crucial part of applied
topologists’ modeling practices. Revived by Thom, the notion of
genericity was the core of applied topologists’ work both in
mathematics and modeling. Still, Thom [1975, 35] was aware of its
slipperiness, and Smale [1967, 748] made a welcome clarification when
he restricted its use to propertics of topological spaces rather than
points. The use of genericity remained an are difficult to make rigorous.
One of the weakest in Zeeman’s use of catastrophe theory for madeling,
this point remained a tricky matter for physicists, as we shall see.

Noting that Smale’s horseshoe was stable under small perturbarions,
Ruelle and Takens concluded that ‘the existence of such a “strange”
attractor therefore is not a non-generic pathology’ [Ruelle and Takens,
1971, 171]. By indicating that in the neighborhood of quasiperiodic
motions in more than 3 dimensions a generic ser of such attractors
should exist, they felt entitled to pronounce that quasiperiodic.motions
could not physically occur. But one should note the tentativeness of
their language:

For i > 0 we know very little about the veetor feld X,;. Therefore it is
reasonable o study generic deformations from the situation at e =01In
other words we shall ignore possibilities of deformations which are fn some
seuse exceptional ... It appears ... that a three-dimensional viscous ﬂuic‘l
conforms to the pattern of generic behavior which we discuss {Ruclle and
Takens, 1971, 168, my emphasis].

By adapting topological modeling practices to the turbulence problem,
Ruelle and Takens were in a situation similar to Smale’s. A huge
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lirerature could be tapped into in order to argue for the plausibility of
their model, but this had to be done in a new framework, which, in
traditionat views, stilf lacked a solid mathemarical basis. Significantly,
most references to this literature were included in an appendix written
later and a note published in a following volume of the journal. Ruelle
and Takens had come up with their model while trying to adapt

topological practices to the turbulence problem, but still tried ro root it
-in a mathematized tradition. More significantly still, the process by

which their paper became a seminal one was hardly straightforward.

_ The resistance they encountered was overcome only after specialists in

the mathematical study of fluid dynamics could incorporate topological
practices into their analytical framework, and after experimental results
indicated that the Ruelle=Takens model accounted for observation more
accurately than Hopfs and Landauw’s. '

Topological Modeling by Physicists: The Example of Intermittence

Ruelle and Takens’s proposal revolutionized the way theoretical
physicists could deal with differential equations. This alternative
modeling pracrice displaced earlier emphases put on specific models of
nature in order to tackle classes of models. That they made no use of the
specific form of NSE was sympromatic. A hydrodynamicist later wrote
that this was ‘a point of philosophy’ without arguing about the
relevance of NSE, ‘T ought to confess we can forget about them here’
[Velarde, 1981, 210]. Without resolving the conundrum of the
relationship between fundamental laws and observation, this practice
made models cheap and dispensable, and focused rather on essential
topological features of observed behaviors assimilated to structural, yet
dynamical, characteristics of classes of models. In short, physicists were
now allowed to stop looking for specific representations of nature, and
acquired means of studying the consequences of the mode of
representation itseif. : '

Characteristic of applied topologists’ modeling  practices, this
apﬁroach would exert an important appeal in the following decade.
In the last section of this chapter, the discussion of another model for
the onser of rurbulence will underscore the fact that the extension of
topological modeling practices to physics was done at the expense of the
rigor thar applied topologists wished to retain and in interaction with
the results of experimentation and simulation, The model selected for
discussion is known as the Pomeau-Manneville scenario. Developed in
the late 1970s, it is representative of the tradeoffs accompanying the
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adaption of topological modeling practices to physics and other

mathematized disciplines. ,

One of the rare theoretical physicists who paid early attention to the
Ruelle-Takens model, Yves Pomean, from-the French Commissariat &
Iénergie atomique {CEA), had arrived, by 1976, at a coherent picture of
chaotic behavior. Tnspired by Thom, Smale, and Ruelle, he adbpted a
“highly mathematical [anguage. But, Pomeau understood that merely to
propose ‘revolutionary’ models was not enough. One needed to get
one’s hands dirty, compare theory with experiment, collaborate with
people from previously separate disciplines, and forge a common
language. In 1976, two CEA experimental physicists, Pierre Bergé and

. Monigue Dubois had built a Rayleigh-Bénard system—a cellular cavity

fitled with fluid where a gradient of temperature induced convection. A
singular phenomenon caught their attention: ‘the velocity amplitude
shows intermittent periodic oscillations versus tfime’ |Bergé and Dubaois,
1976]. Studying 'a computer madel, Pomeau noticed similar intermittent
flashes. Together with Paul Manneville, 2 young CEA theoretician, they
came up with a series of bifurcations, different from the Ruelle-Takens
scheme, leading to the onset of rurbulence, :
Pomeau and his collaborators faced similar data on systems that
a priori had little to do with one another: time series exhibiting regular
periodic behavior randomly and abruptly disrupted by erratic bursts. In
trying to find a common cause for these behaviors, a dynamical systems
approach proved useful. Disputing the claim that the Ruelle-Takens
model was the only way ro rurbulence, they contended: ‘theories based
on genericity arguments [are} sufficiently versatile to allow for different
possible transitions’ {Bergé & al., 1980, L341]. They considered a
Poincaré map of a dynamical model v,y = f{y.. #), where for the
control parameter r slightly below a critical value rr, the curve f had
two intersection points with the diagonal, while ‘for r = rp the curve is
lifted up and no longer crosses the [diagonal] so that a “channel”
appears between them’ (Fig. 1) [Pomeau and Mannevilie, 1980, 190].
This simple picture, they contended, was *displaying generic features
susceptible of explaining the experimental observations’ [Bergé & al.,
1980, L343}, When the system passed through the channel, its behavior
seemed regular. Leaving the channel, it explored chaotically other
regions of phase space until it was again trapped into such a channel.
Pomeau and Manneviile’s modeling practice lay in between that of
applied topologists and the traditional practice of physicists based on
explicit dynamical systems. Like applied topologists, they started with
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FIGURE 1 POINCARE MAP FROM THE LORENZ MODEL, WITH THE PARAMETER r SLIGHTLY
ABOVE THE CRITICAL TURBULENT VALUE ry. CORRESPONDING TO THE REGULAR FLUID
MOTION, THE SLOW DRIFT THROUGH THE CHANNEL IS QUITE IMPERCEPTIBLE ON
EXPERIMENTAL OR NUMERICAL TIME RECORDS. REDRAWN FROM IPOMEAL AND MANMEVILLE

1980, FIG. 4}

features to be explained topologically, rather than by relying on precise

differential equations; bifurcations again were interpreted as sources .for

change. Like them, they assumed that an ‘unknown realistic dy.namx?al ‘
system’ existed, which ‘should share some generic propertleslwlth

already well studied models’ [Bergé & al., 1980, 1.342]. Propertles‘ of

other systems provided an explanation for experimental. behawgs

stemming from a similar, but unknowr, equation. Un1111<e v:apphc:d

topologists, however, they neglected to ground their model in rigorous

mathematics. “The reader must be warned that the discussion is made i#

phrysical terms. No proof is given’ [Pomeau and Manneville, 1979, 331].

Their use of genericity arguments was especially loose. For themI, a

generic property was simply one often encountered \.vhen varying
parameters in namerical simulations or laboratory expenmen-ts,

In their footsteps, Jean-Tierre Eckmann, from Geneva, reviewed r.hc
physicist’s attitude  with regard to topological method.s, which
constituted a ‘language for describing deterministic evolution equa-
vions. 2 Although a rigorous classification was far from achieved,
experiments could guide physicists to relevant bifurcarions. ’I?opology
did not constrain reality. On the contrary, reality prescribed the
topological notions that could be usefully mobilized for the under-
standing of phenomena. While Ruelle and Takens had argued that
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topological considerations alone implied that the onset of turbulence was
due to the stability of strange atrractors, the physicists countered that
many ‘scenarios’ could take pla_ce. All that Eckmann could say was if
certain things happen as the parameter is varied, then certain other things
are likely to happen as the parameter is varied further.” Linked \Vi;[‘]
genericity, the definition of fikely, ‘in a physical context,” was tricky.

I do not intend to go to any philosophical depth but, rather, take a
pragmatic stand. {1} One never knows exactly which equation . . . is relevant
for th.c description of the system. {2} When an experiment is repeated, the
eguatllon may have slightly changed ... (3} The equation under investiga-
tion is one among several, all of which are very close to each ather
[Eckmann, 1981, 646].

Inspired by Thom and Ruelle, this type of mathematization was
‘answering new types of questions which are more or less independent
of detailed knowledge of the dynamics of any given physical systemn’
|Collet & af., 1981, 1} Its validity therefore did not depena on
fundamental laws. Out of a mathematical faflure, a modeling practice
was built by physicists for physicists. While mathematicians had not
succeeded in classifying generic bifurcations, Eckmann’s scheme
provided an experizent-based topology of dynamical systems.

CONCLUSION

In 1977, m the midst of raging controversies, René Thom granted that
catastrophe ‘theory could have the same fate as cybernetics or

_information theory ... a considerable sociological craze, which short

of effective success ends up by falling on the distaff side’ [Thom, 1977a
681]. And to a large extent it did. To explain the strong rejection hf’t
encountered, Thom mustered sociclogical arguments. ‘It was a
corporate reaction: the whole community of applied mathematicians
rose up against the theory’ [Thom 1992, 45|. He went as far as
suggesting that ‘the interests of the computer industry [were] perhaps
not entirely foreign to this affair’ [Thom, 1977b, 196]. Fundamentaih‘f
devohtec[‘ to comgpstation, they just had to oppose an essenria[i;'
qt%allt'nnve enterprise! It is not uncommon for scientists t6 ascribe the
‘re]ectlon of endeared theories 1o social factors. But, if we accept Thom’s
interpretation, how are we to account for the face that, although shariné
many practical features with catastrophe theory, the qualitative study of

Chi:‘lOth systems was rather welcomed by applied mathematicians and
thé computer industry alike?
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In fact, Thom perceptively hinted at the different ways in which
topological modeling could be put to use when he suggested that
catastrophe theory followed a ‘wofold way.’

Fither, starting from known scientific quantitative laws, ... you insert the
CT formalisms ... this is the ‘physical” way. Or, starting from a poorly
understood experimental morphology, one postulates ‘a priori” the validity
of CT formalism, and one tries to reconstruct the underlying dynamics
which genecates this morphotogy: this is the ‘metaphysical” way [Thom,
1976, 235]. :

Ridiculed by critics, this alternative amounted, in their view, to a choice
between triviality and arbitrariness, if not nonsense. Using Thom’s
dichotomy, the models discussed above can be seen as teeading the
‘metaphysical’ way in Thom’s and Zeeman’s cases, and following the
‘physical’ way for the others, The Ruelle-Takens model aptly showed
that chis latter way by no means implied triviality. Topological
modeling practices provided means to account for behaviors without
solving equations and could even be exploited to exhibit hitherto
unsuspected phenomena. :

As suggested by the case of fluid mechanics, corporate reactions were
not directed against the goal of the modeling defended by applied
topologists, so much as against.its means. Even if especially exciting
because they allowed new kinds of questions to be tackled, ropological
tools, people objected, had no right to constrain reality, at least for as
long as the general mathematical framework was not completely proved
rigorously, something that was not likely to happen quickly. Specialists
opposed the perception that models conld be built while neglecting
established traditions, literature, experimental and numerical results,
ete. But they acknowledged that tools coming out of applied topologists’
work ‘provided bases for a new hybrid language useful in the
description—not the constriction—of reality. ‘

By discussing the modeling practices of applied topologists and their
adaptation by physicists, this chapter has demonstrated remarkable
shifts in the practice of some topologists who imagined that they could
extend their skitls to the world of models, and in that of some physicists
who started to adapt concepts and practices of this heretofore abstruse
branch of mathematics, topology. In this process, of course, images
were not left untouched. But was the reverse also true? How did global
shifts in images of mathematics also contribute to the emergence of
altérnative practices for topologists and physicists alike? The puzzling
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issues raised by Dahan Dalmedico [1996] about the hegemony of pure
mathematics in 1945-70, and the subsequent feeling that, after decades
of Bourbakism, mathematics went back ro the concrete [Houzel, 1979],

are nicely illustrated by the story of applied topologists. Other case
studies are needed to complete the picture.
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NOTES

1. Classic histories of topology bear a strong Bourbakise stamp [Dieudonné 198%; 1994; Ponr
1?74]. Recent studies, devoted to earlier periods, have however tended 1o dispute the internalist
view; see e.g. [Epple 1998; and Feffer 1997,

2. The transparencies of Zeeman's lecture delivered on Ocrober 27, 1993 at Berkeley, are
reproduced on the World Wide Web: hrrp:/fwww.math.ursa.edufecs/|_hr.hem. By no mcm;; was
he alone in seeing the traditional image of wpology as having been radically ch:\i!cngud- see ey
‘{Browder 1989; jaffe and Quinn 1993-1994; Atiyah 1993]. ‘ ’ o

3. [Henderson and Maunders 1969]). Reviewing a paper on ‘Hilbert’s Sixteenth Problem,” by
George Wilson {Topology, 17 119781 53-73), H.B, Griffiths also useﬂ the expression f’wi[i‘q
quatation marks). CF, Mathematical Review, item 58816684,

4, By wodeling practice, 1 mean the actual activities in which scientists engage when they build
.modeIs. They include tacit sets of assumptions, mathematical technologies, and framewarks for
interpreting results; see [Aubin 1998a]. On ‘theoretical technologies,” which include conceprs
tools, and practice, see | Warwick 1952, ,

5. Applied topologists were sensitive to changes in the social and political status of marhematics,
Growing demands for utility and concerns for the political responsibility of marhematricians w':I:c
among the factors that directed cheir attention to issues of modeling |r\.ubin 1998a]. In addition
euj(momic conditions may also have been involved, although as far as I was able te determine Ihi;
was never mentioned by promgonists. In the U5, the ever increasing production of new
topologists in 19511975 was accompanied, in 1967-1974, by a funding cur of nea rly 40% [or
research [Cohn 1986, 38L

6. One source for the emergence of ‘a new paradigm for making mathematics useful n1;1rhumntic-11
modelling,” has been examined in {Alberts 1994, 2801, For another viewpoint, se; Hsrael 199(;]

7. Tor histories of catastrophe theory, see JAubin forthecoming: Ekeland 1988; and Woodcock 'lmi
Davis 19781 l

8. f‘\ndronov’s philosophical concerns leading to the concept of structural stability are found in the
introduction to Andronov et al. [1966). About Andronov, see [Diner 1992; and Dahan
Dalmedico 1995), . o

. . : . .
9. [Thom 1969], 333-334. For extended discussions of wpological models in biology, see [Thom
1975}, ch. 9-11, '
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10, In modeling actual systems, many assumptions and idealizations always are involved. How one
metivates them can vary, In some cases, philosophical arguments are used: e.g. nature selects the
simplest equation consistent with hypotheses. Zeeman's gist was 10 justify with a theorem what
hitherto had been merely postulated.

11. A deeper analysis of the reception, adapration, and development of Smale’s ideas in economics is
called for, as it would provide fascinating insights into the processes by which wpological
practices entered the social sciences, o

13, |Eckmann 19811, 643. Although this has not been attempted here, a linguistic analysis in terms of
“pidgins’ and ‘creoles’ might be enlightening for the study of the history of chaos [Galison 19971,
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