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3 Forms of explanation in the catastrophe theory of René Thom:
topology, morphogenesis, and structuralism

David Aubin

Voici maintenant qu’aprés 1'Age des denrées et des matiéres, aprés celui de I'éner-
gie, nous avons commence 4 vivre celui de [a forme.—Pierre Auger, Proceedings of the
First International Conference on Cybernetics

Peut-8tre personne n’est plus capable que le mathématicien de suivre une question
de forme pure.—George D. Birkhoff, “Quelques éléments mathématiques de Part”

“Science, some say, is in crisis.” When the French mathematician René
Thom wrote this in 1975, the catastrophe theory he had imagined during
the previous decade had already made him famous. Thom nonetheless
agreed that science faced an unprecedented crisis. Decrease of governmen-
tal support, students’ disaffection from scientific careers, accumulation of
trash, and poisoning of the earth: albeit highly visible, these signs merely
pointed t0 a deeper malaise within science itself. Indeed, hidden behind
triumphant proclamations of progress and success, Thom saw a “manifest
stagnation of scientific thought vis-a-vis the central problems affecting our
knowledge of reality.” At bottom, he contended, this stagnation was due to
the fact that “science [had sunk] into the futile hope of exhaustively de-
scribing reality, while forbidding itself to ‘understand’ it.”*

Understanding—this was science’s “prime vocation,” and the way out of
the present crisis. Inspired by Kuhnian theses, Thom believed the crisis
presaged an important paradigm shift. Science “must come back to this
essential goal [which is] to understand reality, to simulate nature. . . . If, as I
wish to believe, this necessary mutation is to be accomplished, will we not
then be able to say of science that it remains man’s hope?”* The only
solution to the problem of contemporary science was more science. This
would not be the old science, but a new one, which would endeavor to
provide explanations rather than mere descriptions or predictions.

His own catastrophe theory, of course, was for Thom a prime example of
this new type of science.® Slowly appreciated when it was introduced in the




late 1g60s, catastrophe theory was propelled on a wave of hype and enthu-
siasm during the mid-1g70s only to die out in bitter controversies by the
end of the decade. Caught in fierce debates, the movement nearly vanished
from the scene of science. True, the theorems that Thom and his collabora-
tors proved, have survived as “a beautiful, intriguing field of pure mathe-
matics.”* Even the concepts they introduced lived on in other guises, as
Thom was clearly aware: “Sociologically speaking, it can be said that this
theory is a shipwreck. But in some sense, it is a subtle wreck, because the
ideas that I have introduced gained ground. In fact, they are now incorpo-
rated in everyday language. . . . The notions [of catasubphe theory] have
become part of the ordinary baggage of modelers. Therefore, itis true that,
in a sense, the ambitions of the theory failed, but in practice, the theory
has sueceeded.”?

This is especially true of chaos theory, with which catastrophe theory had
important interactions. Both inspired by topology, these theories shared
some of their mathematical concepts, their modeling practices, their prac-
titioners and institutional locations, their modes of explanation, and their
genetal aims. Only in the second half of the 1g70s did they definitely part
from each other.®

Moreover, catastrophe theory offered types of explanation that were dij-
rectly inspired not only by mathematics, but also by biology and structural-
ism. The new explanations were perceived as subverting dominant ideolo-
gies in all of these disciplines. Centered on problems of structure and
form, they aimed at providing accounts for the emergence and destruction
of morphologies, based not on underlying forces but on mathematical
principles.” “Thus, we are catching a glimpse of the possibility of creating
a dynamic structuralism,” Thom declared, while proposing explanations
that grew out of his interest in embryology.® We shall see, for example, how
the important concept of an “attractor” emerged from his understanding
of embryologist Conrad Hal Waddington’s epigenctic landscapes.

Finally, because of its interdisciplinary character, catastrophe theory
was, for people with widely differing agendas, a cultural connector linking
mathematics, biology, the social sciences, and philosophy. It represented
an incomplete transition from explanations in terms of a few simple, stable
forms to an understanding of nature in terms of the complex, the fluid, and
the muitiple. Indeed, it may be possible to see catastrophe theory as a
crucial transitional stage from structuralism to poststructuralism, perhaps
even from modernism to postmodernism.?

Although the global ambitions of catastrophe theory dimmed markedly
in the late 1970s, it remains of interest to determine what has survived “in
practice.” We can begin by understanding the specific context from which
catastrophe theory emerged. More specifically, we need to reconstitute and
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reinterpret the type of explanations Thom proposed. Today his project is
often obscured by the settlement that took place in the latter part of the
1970s, effectively dividing the world between stable and chaotic systems in
the course of opening new paths for understanding the sources of com-
plexity in the world.™®

This essay will explore the new forms of scientific explanation that Thom
offered as an alternative to what he denigrated as the traditional “reduc-
tionist approach.” Indeed, his philosophy of science could be summarized
as follows: first one classifies a phenomenology by describing its mor-
phologies, then one strives for explanations, which, as Thom believed,
could be achieved by following one of two philosophically distinct ap-
proaches, the reductionist or the structural. The former accounted for mor-
phogenesis in terms of other morphologies; the latter eschewed such at-
tempts and looked for autonomous, intrinsic explanations that did not
depend on other levels of reality.

None of these steps is self-evident. Their actualization depends on the
modeling practices that scientists have deployed. Indeed, morphologies,
like explanations, are not imposed on observers, but fashioned by the lens
they choose to wear. This is what is meant by modeling practices: the actual
processes by which scientists transform, using some specific means, a
given raw material, selected by them, into a product which they hope will
be considered knowledge about natural phenomena.** ‘Fogether with other
mathematicians—Ralph Abraham, Steve Smale, and Christopher Zeeman,
who often visited him at the Institut des hautes études scientifiques (1HES)
in Bures-sur-Yvette, France—René Thom proposed radically new modeling
practices. With catastrophe theory, he wished to redefine what it meant to
build a mathematical model. His experience in mathematics suggested
new means of knowledge production. His forays into embiyology shaped
his views on what should be sound raw material for modeling. And he
found in the French intellectual context—in structuralism—an inspiration
for his interpretation of product-knowledge. In each case (mathematics,
embryology, and structuralism), Thom used well established technical
achievemnents to go beyond and subvert the original framework to which
they belonged. The final part of this essay will examine Thom’s philosophy
of science as he described it around 1975, that is, after the main tenets of
catastrophe theory had been well publicized but just before harsh critiques
and the emergence of chaos made him retreat deeper into philosophy.

Sociologically speaking, a mathematician

A bold and comprehensive theory aimed at explaining the dynamics of
shapes in the everyday world, catastrophe theory has often been narrowly
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construed as a mathematical approach able to deal with abrupt, discon-
tinuous changes in nature—a rubber band that breaks, for example. For
Thom, however, it was always much more than this.

What was catastrophe theory?

From 1964 to 1968, on his own account, Thom worked on an ambitious
book, a manifesto, titled Structural Stability and Morphogenesis, which was not
published until 1g72, due to its publisher’s financial trouble.** For this
reason, catastrophe theory was first presented in two articles, both pub-
lished in 1968. To the proceedings of a theoretical biology symposium,
Thom contributed “A Dynamical Theory of Morphogenesis,” and for the
French journal LAge de la science, ke wrote “Topology and Meaning.”*? The
first article was concerned with biology, the second with semiotics. Not
centent with introducing a new mathematical language and exploring its
consequences in some areas of science, Thom alsa conceived of his book,
and both of these articles, as exposés of an original philosophy of science,
indeed a true “natural philosophy.”** The subtitle of his book, “An Outline
of a General Theory of Models,” revealed the extent of his ambitions.

A striking paradox raised by Thom may illustrate his epistemological
concerns.” Consider an eroding cliffand the developing egg of a frog. In the
formet case, suppose that [ater microclimatic conditions and the geological
nature of the soil are known, then knowledge of the physical and chemical
forces at play will be excellent. Nevertheless, it is impossible to predict the
future shape of the cliff. As for the egg, Thom contended, although knowl-
edge of the substrate and developmental mechanisms is sketchy, we can still
be pretty sure that it will end up as a frog! In his view, this paradox showed
that blind reliance on reductionist arguments obscured problems of forms.
Clearly, a new method was needed that would focus on shapes, account for
their stability, and explain their creation and destruction.

For Thom, catastrophe theory supplied this method. In summary, its
goal was to understand natural phenomena by approaching them directly,
rather than relying on traditional reductionism. Its main concern was the
creation and destruction of forms, but more precisely, as they arise at the
mundane level of everyday life. Catastrophe theory posited the existence of
a mathematically defined structure responsible for the stability of these
forms, which he called the logos of the form. Consequently, he rejected the
idea that the universe was governed by chaos or chance. The models buiit
with the help of catastrophe theory were inherently qualitative—not quan-
titative—which meant that they were not suited for action or prediction,
but rather aimed at describing, and intelligibly understanding, natural
phenomena. Finally, Thom recognized that catastrophe theory was not a
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proper scientific theory, but rather a method or a language that could not
be tested experimentally and therefore was not falsifiable in the sense of
Karl Popper. ' :

Mathematical styles: Bourbaki against intuition

At the source of catastrophe theory, we find 2 man who still “sociologi-
cally” defines himself as a2 mathematician. Born in 1923, René Thom re-
calls a “decisive encounter with Euclidean geometry” during his lycée years,
when he fell for “the geometric mode of thought and type of proof”*
However, his geometric, intuitive vision of mathematics was opposed to
the dominant trend. In 1943, Thom experienced at the Ecole normale
supérieure “the excitement born with Bourbakist ideas.”” Some of the
Bourbaki group, already important members of the French mathematical
community, were among Thom’s professors. Bourbaki “was a symbol . . .
of the triumph of abstraction over application, of formalism over intu-
ition.”*® The Bourbaki group did not reject geometry as much as the in-
tuitive approach to Euclidean geometry, upon which Thom’s mathematical
intuition and philosophy were built. Thom’s opinion of Bourbaki was thus
quite ambivalent. As one of Bourbaki’s most successful students, Thom
praised his introduction into France of the mathematics of Gottingen. But
as David Hilbert himself once wrote, two tendencies were present in math-
ematics: “On the one hand, the tendency toward abstraction, [seeking] to
crystallize the logical relation inherent in the maze of material that is being
studied, and to correlate the material in a systematic and orderly manner.
On the other hand, the tendency toward intuitive understanding, [fostering] a
more immediate grasp of the objects one studies, a live rapport with them,
s0 to speak.”*®

For Thom, Bourbaki had clearly chosen the first path, thus failing to
keep Hilbert’s mathematics alive. “It is a bit as if, at the time of Vesaleus,
when the method of dissection eventually imposed itself, one had wanted
to identify the study of human beings with the analysis of cadavers.”™
Bourbaki’s ascetic formalism killed mathematics.

Thom knew Bourbaki very well. He was once almost recruited by them
but says that he literally fell asleep during the lectures.” Nevertheless, he
was learning. Thom’s early achievement was to reconcile his powerful
geometric intuition with Bourbaki’s arsenal. In 1946, he moved to Stras-
bourg with his mentor Henri Cartan, who had oriented him toward dif-
ferential topology. This, in part, motivated Thom’s ambigitous assessment
of Bourbaki. Multidimensional spaces—which topologists mostly study—
are difficult to visualize. So, a systematic, formal mode of thought, how-
ever boring and counterintuitive it might be, is then incomparably useful.
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1. René Thom lecturing on catastrophe theory at Memorial University, Canada, in
the early 1g70s, with a section of the cusp behind him. Source: Photo Section, ETV
Centre, Memorial University.

Indeed, Thom mastered the techniques offered by Bourbaki’s edifice well
enough to obtain results, which, according to Jean Dieudonné, marked
“the modern rise of differential topology.”* In 1958, he was awarded the
highest distinction for a mathematician—the Fields Medal.

On this occasion, Heinz Hopf identified Thom’s strengths. This was a
time when topology was in a “stage of vigorous . . . algebraicization.” Not
only had algebra been found to provide “a means to treat topological
problems,” but also “it rather appears that most of [these] problems them-
selves possess an explicitly algebraic side.” $till, for Hopf, there lurked the
danger of “totally ignoring the geometrical content of topological prob-
lems. “In regard to this danger, I find that Thom’s accomplishments have
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something that is extraordinarily encouraging and pleasing. While Thom
masters and naturally uses modern mathematical methods and while he
sees the algebraic side of his problems, his fundamental ideas . . . are of a
petfectly geometric-anschaulich nature.”? Thom was able to use Bourbakist
algebraic methods in solving topological problems without losing sight of
their anschaulich, or intuitive, character. Tim Poston, a later catastrophist,
vividly contrasted Thom’s style with a traditional approach a la Bourbaki.
“Some mathematicians go at their work like engineers building a six-lane
highway through the jungle, laying out surveying lines, clearing the under-
brush, and so on. But Thom is like some creature of the mathematical
jungle, blazing a trail and leaving just a few marks on his way to the next
beautiful clearing.”? Indeed, Thom came to view rigor in mathematics as
counterintuitive and counterproductive. “Absolute rigor is only possible in
and by insignificance.” True to his preference for meaningful wholes over
insignificant details, he held that rigor hid the essential. In mathematical
research, it should always come second. “Rigor, in mathematics, is essen-
tally a question of housekeeping [intendance].”>

Mathematical interlude I: Thom’s cobordism theory

Thom’s work on cobordism, for which he was awarded the Fields Medal,
clearly illustrates his intuitive approach as allied with the profound knowl-
edge of Bourbakist methods that guided most of his mathematical work.?
As Hopf testified, cobordism was important because of the way it mixed
topological and algebraic approaches in the classification of manifolds. In
the following, the definition of a few concepts will be recalled. Briefly,
Thom’s cobordism theory enabled him to construct groups (1" out of equiv-
alence classes of manifolds of dimension n, and to classify these groups.

Topology is a generalization of geometry that studies spaces with the
degree of generality appropriate to a specific problem. One central concern
of topology is to study the propetties of spaces that do not change under a
continuous transformation, that is, translation, rotation, and stretching
without tearing. One such property is expressed by the concept of dimen-
sion: a curve is one-dimensional; a surface has two dimensions; ordinary
space, three; and the space-time of general relativity, four.

Mathematicians faced with the problem of characterizing a space locally
isomorphic to a Euclidean space use the notion of manifold. An n-dimen-
sional manifold is a space M, such that a neighborhood V exists around
each point p of M in one-to-one correspondence with a subset W of the
n-dimensional Euclidean space R®. The study of manifolds is called dif- .
ferential geometry, and the classification of all manifolds of a given dimen-
sion is an important problem of topology. It is also possible to define
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R
2. The manifold composed of two circles is cobording with the manifold consisting
of a single circle because there is a “pant-shaped” smooth surface joining them.
Since this is true for manifolds combining any number of circles, the group O is
the one-element trivial group.

manifolds with edges. If the manifold with edges has n+1 dimensions, then
the edges are n-dimensional manifolds. For example, a sheet of paper
rolled into a cylinder has two circles as edges. A manifold with three circles
as edges is pictured in figure 2.

Let us also define equivalence relations and equivalence classes. An
equivalence relation, symbolized by ~, over a set § is defined so that, for all
a, b, and cin S, the three following properties are satisfied: (1) reflexiviey:
a~a; (2) symmetiy: if a~b then b~a; and (3) transitivity: if a~b and b~,
then a~c. The equivalence class [a] of an element a of S is the subset of §
that contains all the elements b that are equivalent to a, that is, all s in S
stch that b~aq,

Thom defined two manifolds M and N, both of dimension n, to be
cobording (in French, cobordantes, from bord or “edge”) if there was a
manifold P of dimension n+z so that M and N formed its edge. He then
showed that cobording manifolds formed an equivalence class. For exam-
ple, one circle is cobording with the manifolds formed by the nonintersect-
ing union of two circles, because it is possible to unite them with a two-
dimensional manifold with edges (figure 2).

Thom realized that the set 3" of ali these equivalence classes formed a
group, the group operation being defined as the nonintersecting union
of manifolds. Exploiting modern formalism with the help of Jean-Pierre
Serre, Thom identified the structure of those groups. He found that

O=Z; W=P==q; (I*=Z; P=Z; Qr=(y=o.

(He also provided partial results for higher dimensions.)

It is worthwhile to note that if M is cobording with N, then it is possible
for M to evolve in time and become N. Thus cobordism can be seen as the
study of possible continuous transformations of a given shape. Retrospec-
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tively, Thom also saw it this way: “The problem of cobordism . . . is of
knowing when two manifolds can be deformed one into the other without
encountering a singularity in the resulting space, at any moment in this
deformation.” The example of a circle becoming two circles can, very
crudely of course, model cell division (figure 2). '

The mathematical background of catastrophe theory

When Thom moved to Strasbourg in 1946, it hardly corresponded to the
provincial exile that successful French professors often had to endure be-
fore they could trek back to Paris. In addition to the presence there of
Thom’s thesis director Henri Cartan, the Bourbakist Charles Ehresmann
directed a topology seminar, where in 1950 Thom heard Hassler Whitney
describe his work on singularities of mappings from the plane to the
plane.* Thom also became acquainted with Morse theory concerning the
relation between the topology of spaces and the singularities of real func-
tions defined on them.

From his stay in Strasbourg, Thom drew resources congenial to his
attack on the problems of singularity theory, which he founded with Morse
and Whitney. Just like “living beings,” Paul Montel wrote in 1930, “func-
tions are characterized by their singularities.”* Trying to make sense of
multidimensional spaces, Thom considered singular points a blessing. He
once discussed “a philosophical aspect” motivating the emphasis put on
singularities, thus revealing his topological intuition. “A space is a rather
complex thing that is difficult to perceive globally.” To study its structure,
one may however project it on the real line. “In this flattening operation,
the space resists: it reacts by creating singularities for the function. The
singularities of the function are in some sense the vestiges of the topology
that was killed: . . . its screams.”*® Publishing in 1955 his first article on
singularities, Thom knew that he had found a great topic: “There is hardly
any doubt . . . that the study of the local properties of singularities of
differential mappings opens the door to an extremely rich domain,”** His
work on singularities provided him crucial mathematical tools for catas-
trophe theory: the concepts of genericity and of structural stability, as well as a
classification of singularities later to become a list of the seven elementary
catastrophes.

As an intuitive way of saying that some properties were much more
common than others, the concept of genericity had been loosely used by
Italian algebraic geometers since the beginning of the century. After a
“memorable discussion” with the Bourbakist Claude Chevalley at Colum-
bia in 1952, Thom had the idea of extending its use to other domains. “I
quickly perceived. that this phenomenon of ‘genericity’ was an essential
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source for our present worldview.”*? As for structural stability, it had been
introduced from Russia (where it was known as roughness) by Princeton
topologist Solomon Lefschetz, who since World War II had been reviving
the qualitative study of ordinary differential equations and whom Thom

visited in the early 1960s.3 Structural stability was the assumption that, in .

order to be physically useful, systems had to exhibit similar behavior when
slightly perturbed. That this concept was pivotal for catastrophe theory is
reflected in the title of Thom's book, Structural Stability and Morphogenesis.
Central to Stephen Smale’s contemporary development of modern dynam-
ical systems theory, the conjunction of genericity and structural stability
likewise guided Thom's research program in singularity theory. Smale
wished to show that structurally stable systems were generic; Thom, that
structurally stable mappings were generic.>

Mathematical interlude II: singularity theory

The “screaming” projection that René Thom described to show the impor-
tance of singularities was called a Morse function. It was a2 smooth map-
ping f from an n-dimensional manifold M to the real line R. As Thom
described it, one of Morse’s crucial results allowed “the determination of
the relations between the topological characteristics” of M and the singular
points of . Consider a smooth differentiable mapping ffrom R™ to R", or
more generally from an m-dimensional manifeld M to an n-dimensional
manifold N. Then, a point p in M was a singular point of f if there was a
direction along which the derivative of f at p vanished.

The name of the game then was, as often in modern mathematics, to
classify and characterize singularities. For an arbitrary mapping fand arbi-
trary manifolds M and N, this was a very hard problem.* Thom focused on
low-dimensional spaces and on structurally stable mappings, that is, those
whose topological character was preserved under small perturbations. He
hoped that structurally stable mappings would prove to be very common,
so that every mapping was either stable ot, in a topological sense, very
close to one that was: in mathematical parlance, they were generic.

In the above example of real functions, a generic singular point p was
such that the second derivative of f at p was nonzero: f* (p) # o. Morse
theory showed that using an appropriate change of variable x — y(x}, such
that y(p) = o, then f could be written as f{y) = * y* in a small neighbor-
hood. This completely classified the generic singular points for real fanc-
tions: there was, essentially, only one kind of singularity that could occur,
soon to be identified, in Thom’s language, with the catastrophe called
a fold.

"Whitney completely classified the singularities that “a good approxima-
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3. The fold and the cusp catastrophes.

tion” of any mapping from the plane to the plane was allowed to have.?” He
considered a surface S (a sheet, for example) projected on a plane under-
neath. The surface S was just a different parametrization of the plane.
Often, there was no problem; there was a one-to-one correspondence be-
tween the points of § and those below. But it might happen that there was a
fold, close to which two points from the surface were projected onto the
same point in the plane; this was a singularity. Isolated points could even -,
be encountered around which three points of S were projected onto the
same point in the plane: these were cusp singularities. These two were the
only local singularities that would survive small perturbations of the sheet.

Thom’s elementary catastrophe theory basically extended this classifica-
tion to higher dimensions, but with a slight difference. In Structural Sta-
bility, he recognized that the essential characteristics of a smooth function
could be analyzed by studying its embedding into a smooth family of
functions F(x,u), such that Ffx,0) = f{x), which he called an unfolding of the
function f (where x and u are multidimensional vectors). “The goal of
catastrophe theory is to detect properties of a function by studying its
unfoldings.”* An infinite number of unfoldings existed for a given func-
tion f. The question was to know if one existed that captured the essential
information about all of them. Such an unfolding, when it existed and the
number of dimensions of the variable u was minimal, was called universal.
The fold and the cusp, discussed earlier, were universal unfoldings of f{x)
= x* and x*, respectively (see figure 3). The tricky part of this program was
to find universal unfoldings.

A beautiful, intriguing field of pure mathematics

The relationship between catastrophe theory and mathematics has always
been contested. On the one hand, the mathematician John Guckenheimer
wrote that Structural Stability and Morphogenesis “contains much of interest to
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mathematicians and has already had a significant impact upon mathe-
matics, but [it] is not a work of mathematics.” On the other hand, authors
of recent textbooks often feel the need to stress its mathematical nature.
One started by emphasizing that “catastrophe theory is a branch of mathe-
matics.” Another asserted that this branch had in fact been “discovered”
by Whitney and transformed “into a ‘cultural’ tool” by Thom.*

There can be no doubt that Thom’s mathematical experience made ca-
tastrophe theory possible and shaped his philosophy. As early as 1967, he
divided catastrophes into two categories on the basis of his mathematical
knowledge: the seven elementary catastrophes arising in simple systems and
generalized catastrophes, which lived in more complex spaces arising with
global loss of symmetry.*® Thom wrote very little about the latter, since the
mathematical basis for their classification was lacking. As for the former,
they were those sudden discontinuities that occurred in systems whose
dynamics were controlled by a gradient (or potential). The classic image
“of a ball rolling around a landscape and ‘seeking’ through the agency of
gravitation to settle in some position which, if not the lowest possible, then
at least lower than any other nearby” was offered by Tim Poston and lan
Stewart.*

One of the most powerful results from singularity theory, and one that
made catastrophe theory possible, was a complete classification of the
elementary catastrophes that arose in systems described by less than four
internal parameters. In this case, Thom conjectured that only seven ele-
mentary catastrophes existed: the fold, cusp, swallowtail, butterfly, and the
three umbilics. Later widely known as “Thom’s theorem,” this conjecture
was fully proved by Bernard Malgrange and John N. Mather, who used a
heavy arsenal of functional analysis and algebraic topology.** Elementary
catastrophe theory showed for certain that for gradient dynamical systems
with a small number of parameters, abrupt generic changes had to be
described locally by one of Thom’s elementary catastrophes.

It was Christopher Zeeman’s exploitation of Thom’s theorem that made
the international fame of catastrophe theory and later brought discredit to
it. But this barely touched on Thom’s own vision for his theory.® Too
tight a focus on this theorem betrays his philosophy and misses the point
of his most important innovations for the practice of modeling, a fact
recognized by some catastrophists. “It is not Thom’s theorem, but Thom’s
theory, that is the important thing: the assemblage of mathematical and
physical ideas that [ie behind the list of elementary catastrophes and make
itwork,”* ‘

Thom emphatically concurred with this view. He granted that advances
in topology had made his philosophy possible and that mathematical con-
cerns shaped his theory. Indeed, 2 larger body of qualitative mathematics
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would have been quite beneficial for catastrophe theory. But such mathe-
matical tools were just one facet of 4 general method of scientific inquiry.

Catastrophe theory is not a theory that is part of mathematics. It is a
mathematical theory to the extent that it uses mathematical instruments
for the interpretation of a certain number of experimental data. It is a
hermeneutical theory, or even better, a methodology, more than a theory,
aiming at interpreting experimental data and using mathematical instru-
ments whose list is, for that matter, not a priori defined.*

The most casual reading of Thom’s work reveals that his thought was
framed by mathematical language. His emphasis on shapes and qualitative
theories can be traced directly back to his work on topology, where mea-
surements are eschewed, and on singularity theory, where global proper-
ties can be extracted from the local study of critical points. But Thom did
not come up with catastrophe theory until he had experimented with bio-
logical theories. These are at least as important as his mathematical prac-
tice in explaining catastrophe theory. In fact, it was from his reading of
embryology textbooks that he adopted the notion of attractor, later to figure
prominently in the modeling and experimental practice of chaos.

Toward a theoretical biology?

Overlooking beautiful Lake Como, in the village of Beilagio, Italy, stands
Villa Serbelloni owned by the Rockefeller Foundation. There, on 28 August
1966, a select group of computer scientists, mathematicians, physicists,
and, of course, biologists (but hardly any molecular biologists!) gathered
“to explore the possibility that the time [was] ripe to formulate some skele-
ton of concepts and methods around which Theoretical Biology [could]
grow.”* There also, René Thom introduced the notion of catastrophe. Far
from being the first application of catastrophe theory to another discipline,
Thom’s theory of morphogenesis, as we shall see, grew out of his foray
into embryology, which, at 2 mathematical level, helped him conceptualize
the notion of attractor, and, ata philosophical level, gave Thom an example
of a practice that used morphological raw materials.

From pure mathematics to theoretical biology, 1960-1968

In 1963, René Thom joined the faculty of the Institut des hautes études
scientifiques (1H%£s), where he would have no iteaching obligatien and
could devote most of his time to research, and where he would slowly move
away from mathematics and venture into biology and linguistics.*” At the
1HES, he noted, “I had more leisure time, I was less preoccupied by teach-
ing and administrative tasks. My purely mathematical productivity seemed
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to be declining and I began to be more interested in the periphery, that is,
to possible applications.” Perhaps he had finally succumbed to a taste for
philosophy that he had neglected since his lycée years.* For all his success,
Thom seemed to have found mathematics hard to practice and somewhat
dissatisfying. “If you don’t need to work in mathematics for a living you
need much courage to do it, because, in spite of all, mathematics is diffi-
cult!”* However, he did not immediately abandon all concern with pure
mathematics: throughout the 1960s he published articles on singularity
theory, introducing many concepts picked up by other mathematicians.*
Ultimately, one might concur with Zeeman: “In a sense Thom was forced
to invent catastrophe theory in order to provide himself with a canvas large
enough to display the diversity of his interest.”**

In 1960, while in Strasbourg, Thom had already begun to experiment
with caustics—those [uminous outlines formed, for example, by sunlight
in a cup of coffee. With singularities proving so fruitful in mathematics, he
wondered whether they would be just as useful in the study of the physical
world. Armed with a few simple instruments, he studied several caustics
and their perturbations. The rays reflected by a spherical mirror, for exam-
ple, formed a luminous curve with a cusp: a singularity. “This cusp has the
marvelous property of being stable. If the orientation of the light rays is
slightly changed, one sees that the cusp subsists. This is the physical effect of a
theorem of mathematics.”?

Stumbling upon an unexpected behavior in optics, Thom then turned to
biology. In 1961, while visiting the Natural History Museum in Bonn, he hit
upon a plaster model of the gastrulation of a frog egg. “Looking at the circu-
lar groove taking shape and then closing up, I saw . . . the image of a cusp
associated to a singuolarity. This sort of mathematical ‘vision’ was at the
origin of the models I later proposed to embryology.”** Thom also recalled
that around 1962 he was struck by some mathematical models for biclogy: a
proposal by the physicist Max Delbrtick in 1949 to account for cell differen-
tiation in terms of transitory perturbations of the cell’s chemical environ-
ment, and Christopher Zeeman’s articles on the topology of the brain,
suggesting that topology could be applied to biolegical phenomena.™

In his preface to Structural Stability and Morphogenesis, Thom singled out
four biologists as his precursors. In addition to D’Arcy Wentworth Thomp-
son’s classic On Growth and Form, he mentioned two “physiclogists™: Jakob
von Uexkiill and Kurt Goldstein.®® In their works Thom found a way of
treating organisms as wholes, a nonreductionist approach to biology that
provided mechanisms accounting for the finality of living beings. Above
all, he was impressed by the writings of the fourth man he cited: British
biologist Conrad Hal Waddington. In 1968, Thom claimed two sources for
his theory of morphogenesis: “On the one hand, there are my own re-
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searches in differential topology and analysis on the problem called struc-
tural stability. . . . On the other hand, there are writings in Embryology, in
particular those of C. H. Waddington whose ideas of ‘chrecd’ and ‘epi-
genetic landscape’ seem to be precisely adapted to the abstract schema that
I met in my theory of structoral stability.” '

This acknowledgment of Thom’s—that his catastrophe theory derived
also from embryology rather than having been merely applied to it—has
rarely been taken seriously by commentators. But it is at the interface with
biology that Thom would develop 2 mathematical picture of competition
between attractors in dynamical systems—a picture that would become one
of the cornerstones of both catastrophe and chaos theories.

“Wad” and the synthesis of biology

According to Waddington, the main problem of biclogy was to account for
the characteristics that defined living organisms: form and end. “How
does development produce entities which have Form, in the sense of inte-
gration or wholeness; how does evolution bring into being organisms
which have Ends, in the sense of goal-seeking or directiveness?”>” Organ-
isms retained their shapes in spite of the fact that matter was'continuously
flowing through them. Development always ended up in the same final -
state, after having passed through the same stages. These problems of
organization were fundamental questions, only to be solved by a synthesis
of evolution, embryology, and genetics. Although Waddington believed
that genes were the major cause for development, he never denied the
influence of the rest of the organism. Thus, he thought that, while part of
the answer lay in genetics, the main focus of study should not be the genes
themselves but the nature of the causal relationship between the organism
and its genes. For this science, he coined the name epigenetics.®® -
Being “stuck” with a biological order “in which there [was] an ines-
capable difference between the genotype—what is transmitted, the bNa—
and the phenotype—what is produced when the genotype is used zs in-
structions,” the epigeneticist’s task was to come up with mechanisms that
could explain the phenotype in terms of the genotype.® Epigenetics had
two main aspects: changes in cellular composition (cell differentiation),
and changes in geometrical form (morphogenesis). Development followed
definite pathways, which were resistant to change. The description of these
pathways and the genetic influences on them was thus a major task of
epigenetics. In 1939 Waddington introduced an intermediary space be-
tween the genotype and the phenotype, which he called the epigenetic land-
scape. In a unique visual representation, it combined all the development
paths, which were pictured as valleys (figures 4 and 5).%° The epigenetic
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landscape had ro physical reality, but it helped visualize the various de-
velopmental processes. :

Consider a more or less flat, or rather undulating surface, which is
tilted so that points representing later states are lower than those
representing earlier ones [figure 4]. Then if something, such as a ball,
were placed on the surface it would run down towards some final end

state at the bottom edge. . . . We can, very diagrammatically, mark
along it one position to correspond, say, to one eye, and another to the
brain.** ' ‘

The image of the ball rolling down a surface is of course reminiscent of
the potential functions of catastrophe theory. Moreover, the valleys formed
on the epigenetic landscape had the property of being stable, in the sense
that after a small perturbation in its trajectory, the ball tended to go back to
the valley. These stable pathways of change, Waddington called creodes, and
later chreods.5* In his work on Drosophila during the 1930s, Waddington had
studied the switches that can occur among several developmental paths. If
a gene were active at a particular moment in the sequence of events, then
the eye had a different tint of red. At the switches an important phenome-
non teok place. The ball had to choose among several pathways (figure 6).
René Thom would see in this a topelogical change in the set of minima
{(singularities) of the potential function: a catastrophe!

Attractors in dynamical theories of morphogenesis

In his “dynamical theory of morphogenesis,” Thom intreduced a bio-
chemical model of cellular differentiation. Independently, Waddington and
Delbriick had proposed that gradients in the concentrations of some pos-
tulated chemical substance might account for the phenomenon.® In their
schemes, the cell was constantly processing chemical substances so that
the different concentrations changed in a complex way—given by coupled,
nonlinear equations. In a biological system, a flux equilibrium was even-
tually reached; that is, concentrations remained stable even though chemi-
cal substances always flowed through the cell. Waddington and Delbriick
considered that several stable regimes were achievable, The classification
of these stable regimes became, in Thom’s scheme, the description of the
system’s morphologies. Herce one of his most innovative ideas: to con-
sider systems, even physical ones, in terms of the different end points they
can reach, which he translated as a study of forms in nature. It expressed in
a mathematical language adapted to the physical sciences the concept of
finality in biology.

These different stable regimes of the system Thom called attractors.®
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4. “Part of an Epigenetic Landscape. The path followed by the ball, as it rolls down
towards the spectator, corresponds to the developmental history of a particular part
of the egg, There is first an alternative, towards the right or the left. Along the
former path, a second alternative is offered; along the path to the left, the main
channel continues leftwards, but there is an alternative path which, however, can
only be reached over a threshold.” Source: Conrad Hal Waddington, The Strategy of
the Genes: A Discussion of Seme Aspects of Theoretical Biology (London: Allen and Unwin,

1957), 29-

5. “The complex system of interactions underlying the epigenetic landscape. The pegs in the
ground represent genes; the strings leading from them the chemical tendencies
which the genes produce. The modelling of the epigenetic landscape, which slopes
down from above one’s head towards the distance, is controlled by the pull of these
numerous guy-ropes which are ultimately anchored to the genes.” Source: Wad-
dington, Strategy of the Genes, 36.
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6. “ ‘Organic selection’ {the Baldwin effect) and genetic assimilation. The diagram above
shows part of an epigenetic landscape, with a main valley leading to the adult
character X and a side branch leading to Y; the developing tissue does not get into
the Y path unless an environmental stimulus (hollow arrow) pushes it over the
threshold. The three diagrams below show ways in which the ‘acquired character’ Y
might become incorporated into the genotype. On the left, the original environ-
mental stimulus is replaced by a mutant allele (dark arrow) which happens to turn
up; this is ‘organic selection.’ On the right are two medes of ‘genetic assimilation.’
In the central one, the threshold protecting the wild type is lowered to some extent,
but there is an identifiable major gene which helps push the developing tissues into
the Y path. On the right, the genotype as a2 whole causes the threshold to disappear
and there is no identifiable ‘switch gene.” Note that in both the genetic assimilation
diagrams there has been a ‘tuning’ of the acquired character, i.e., the Y valley is
deepened and its end-point shified from Y to ¥'.” Source; Waddington, Strategy of the
Genes, 167.

They were regions of the configuration space stable under the dynamical
equations of the system and such that any configuration close enough to an
atrractor would approach it asymptotically. The basin of the atiractor was a
region containing the attractor and inside of which any initial condition feil
back to it. Of course Thom was aware that to achieve a complete topologi-
cal description of attractors and basins of a general system would be a
difficult task. It was an imaginable one, however, and, in essence, this task
became a major focus for research on chaotic systems.

For local systems where, for example, the concentration of chemical
substances was given at each point of space and time, attractors could
differ from point to point. Thus the domain of space under study—the
cell—was divided into several regions associated with different atiractors.

1r2  David Aubin

These regions were separated by surfaces that Thom called “shock waves.”
Using Thom’s theorem, he could establish that for gradient dynamics;
these surfaces could only exhibit a small number of singularities, which
were elementary catastrophes. Starting with a local singular situation in a
dynamical system, he could say what ulterior catastrophes were contained
in the “universal catastrophe space” associated with the singularity. For
example, if one started with a local critical cusp situation, the only other
catastrophes that could occur later were folds. Of course, all of this was
local in a topological sense: some finite time limit existed beyond which
anything could happen. There was no way of knowing how large this limit
was; it could be as small as one wished but not zero. It could even be
impossible to detect; hence Thom was reluctant to accept that catastrophe
theory could be submitted to experimental control.

In his theory, Thom saw “a mathematical justification for the idea of
‘epigenetic landscape,’ suggested 20 years earlier by Waddington.” This
was not mere gesture: the ideas of conflicting attractors had been de-
scribed almost word for word by the biologist.

f1] At each step [of development] there are several genes acting, and
the actual development which occurs is the result of a balance be-
tween opposing gene-instigated tendencies. [2] At certain stages in
the development of an organ, the system is in a more than usually
unstable condition, and the slightest disturbances at such times may
produce large effects on later events. . . . [3] An organ or tissue is
formed by a sequence of changes which can be called the “epigenetic
paths.” ... And also each path is “canalized,” or protected by thresh-
old reactions so that if the development is mildly disturbed it nev-
ertheless tends to regulate back to the normal end-result.%

Although he hardly knew enough mathematics, Waddington claimed that
Thom had “shown how such ideas as chreods, the epigenetic landscape,
switching points, ete.,—which previously were expressed only in the unso-
phisticated language of biology—can be formulated more adequately.”s How-
ever, catastrophe theory explained biological structures by describing “the
basic and universal constraints of stability imposed on epigenetic mecha-
nisms,” independently of DNA, and therefore never answered the ques-
tion that had prompted Waddington to imagine epigenetic landscapes and
chreods in the first place, that is, the link between development and ge-
netics, Contentiously, Thom insisted that “only a mathematician, a topalo-
gist, could have written [this theory], and the time may be very near when,
even in biology, it might be necessary to think.”®

Revealing contrasts exist between Thom’s writings on biology and those
of Jacques Monod, the Nobe!l prize-winning molecular biologist whose
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work would reach a broad audience. A chapter of Monod’s Chance and
Necessity, published in 1970, was devoted to the problem of spontaneous
morphogenesis of living organisms. But Monod’s picture was almost to-
tally opposed to Thom’s. Indeed, Monod explained his aims as follows:

In this chapter I wish to show that this process of spontaneous and
autonomous morphogenesis rests, at bottom, upon the stereospecific
recognition properties of proteins; that is primarily a« microscopic process
before manifesting itself in macroscopic structures. . . . But we must
hasten to say that this “reduction to the microscopic” of morphoge-
netic phenomena does not yet constitute a working theory of phe-
nomena. Rather, it simply sets forth the principle in whose terms such
a theory would have to be formulated if it were to aspire to anything
better than simple phenomenological description.®

As opposed to Thom’s reduction of morphogenetic processes to a cer-
tain mathematical idealism, Monod argued for the “principle” of reducing
them to molecular interaction. As Monod’s remarks indicate, this was
nothing more than a “principle” and certainly not a full theory. But Monod
puta great deal of faith in this principle.

I for my pait remain convinced that only the shape-recognizing and
stereospecific binding properties of proteins will in the end provide
the key to these [morphogenetic] phenomena. . . . In a sense, a very
real sense, it is at the level of chemical organization that the secret of
life lies, if indeed there is any one such secret.™

Emphasizing the molecular and chemical properties of the substratum,
the forces acting between organic macromolecules, and quantitative stud-
ies, Monod’s discourse sounded like a diatribe directed at Thom, or con-
versely.™ Just as uncompromising, the mathematician emphasized that
no theoretical explanation was conceivable in biology without the aid of
mathematics.

There should not exist any other theorization than mathematical;
concepts used in each discipline that are not susceptible of gathering
a consensus around their use (let us think, for example, of the concept
of information in Biology) should be progressively eliminated after
having fulfilled their heuristic function. In this view of science, only
the mathematician, who knows how to characterize and generate
stable forms in the long term, has the right to use (mathematical)
concepts; only he, at bottom, has the right to be intelligent.”

In this context, one is hardly surprised by the fact that Thom’s theory
had little impact on biology.” However, his forays into embryology pro-
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vided Thom with crucial intuition about ways to study dynamical systems
with finality. In no small sense, his introduction of the concept of the
attractor, and the even more important concept of the basin of an attractor,
can be seen as stemming from his involvement in biology.

Topology and meaning

Having pointed out the relevance of topological concepts and practices for
the modeling of biological phenomena, Thom saw no reason to stop there.
Since the early 1970s, his main fields of research, besides philosophy, have
been linguistics and semiotics. With his incursion into the human seiences,
‘Thom was bound to confront structuralism. Never himself a structuralist
per se, but trained in the mathematical structuralism of Bourbaki, he was
attracted by this movement. With some adjustments, his theories could be
made to fit into structuralist modes of thought. But because he began to
work on linguistics so late, catastrophe theory was only mildly affected by
structuralism in practice. Increasingly faced with strong opposition to his
ideas about modeling, Thom pondered the epistemological foundations of
catastrophe theory. In attempting to articulate the kind of knowledge that
the theory produced, he used structuralist resources most obviously.

Catastrophes, man, and language

In his manuscript of Structural Stability and Morphogenesis, Thom titles chap-
ter 13 “I’homme.” It would be published with substantial additions under
the title “From Catastrophes to Archetypes: Thought and Language.” The
original chapter aimed at extending the techniques and assumptions of
catastrophic models of morphogenesis to human thought processes and
societies. He actually developed few of the models he suggested. Always
a mathematical terrorist, Thom used mathematical notations and lan-
guage only to express vague correspondences among neurological states,
thoughts, and language.’

His basic assumption was that there existed a few “functional chreods,”
later renamed “archetypal chreods,” that expressed simple hiological ac-
tions: to throw a projectile, to capture something, to reproduce, and so
forth. These chreods had been internalized in the human brain, whose
mental activity (activité psychique) he identified with a dynamical system. By
analogy with the epigenetic landscape, Thom postulated that this psycho-
logical system was divided among basins and attractors. “The sequence of

- our thoughts and our acts is 2 sequence of attractors, which succeed each

other in ‘catastrophes.’ 77
Language, Thom then claimed, was a translation of these mental attrac-
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tors. A mental atlas of dynamic chreods existed that was common to all
human beings. An idea was a mental attractor. When one wished to formu-
late a sentence expressing an idea, it was mathematically projected onto a
space of admissible sentences, where several attractors competed. One was
eventually chosen, and the sentence was uttered. All this was manifestly
programmatic and rather vague.

In the Parisian intellectual climate of the late 1960s, Thom could not
avoid structuralism, especially since he dealt with language. As early as
1968, he noted that “the problem of meaning has returned to the forefront
of philosophical inquiry.””> Nevertheless, semiotics was first introduced in
Thom’s work not as a quest in itself, but as a method for biology. Indeed,
he considered Saussure’s notions of signified and signifier as congenial to the
goals of epigenetics, which were to find the connections between’genetics
and embryology. “Is not such a discipline which tries to specify the connec-
tion between a global dynamic situation [the organism] (the ‘signified"),
and the local morphology in which it appears [DNA] (the ‘signifier”), pre-
cisely a ‘semiology’?” He portrayed his method for morphogenesis as a
problem of semantics. “The decomposition of a morphological process
taking place in R™ can be considered as a kind of generalized m-dimensional
language; T propose to call it a ‘semantic model.” 776

7- Waddington’s switching diagram. “The formation of eye colors in Drosephila. The
pigment-forming process normally runs down the line through the ca* substance,
the v* substance, and the ™ substance, to give wild type pigment. The genes, ca, v
and en interrupt this sequence, so that the process takes an altered course, to give
claret, vermilion or cinnabar pigmentation.” Source: Conrad Hal Waddington,
Organisers and Genes (Cambridge: Cambridge University Press, 1940), 77.

cat™\substance

v\substance

claret vermilion cinnabar wild
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. 8. Thom’s analogy between graphs of sentences and development. Source: Thom,

“Structuralism and Biology,” in Conrad Hal Waddington (ed.), Towards & Theoretical
Biology (BEdinburgh: Edinburgh University Press, 1972}, 4:80.

In 1970, Thom presented a more sophisticated catastrophe-theoretical
model of language.” His goal was to explain the syntactical structure of
atomic sentences (basically, those with one verb), in terms of their mean-
ing. He was struck by the resemblance between the tree-shaped graphs that
linguist Louis Tesniére used to analyze the structure of sentences and
Waddington’s chreods (figures 7 and 8).” Indeed, stripped of the out-of-
equilibrium position, the epigenetic landscape became a switching dia-
gram, like a tree. In Tesniére’s view, verbs were the center of gravity of
sentences. They became, in Thom’s view, the attractors of mental activities,
and words were chreods. He developed a visual representation of the verbs
associated with spatiotemporal activities by using sections of elementary
catastrophe surfaces. This was, he would say twenty years later, a “geo-
metrization of thought and linguistic activities.”™ The main benefit of
such an analysis was to establish a map from signified to signifier, which
went against the Saussurean dogma that the relation between signifier and
signified is arbitrary. Classifying syntactical structures into sixteen cate-
gories, Thom claimed that “the topological type of the interaction deter-
mines the syntactical structure of the sentence which describes it.”* Mean-
ing and structure were no longer independent. Thus, with catastrophe
theory and the biological analogy, Thom subverted classical structuralist
ideas, which explains why his work would be picked up by philosophers
like Michel Serres and Jean-Frangois Lyotard, who explicitly opposed the
structuralist project.®

Structuralism and biology: explaining forms

Thom confronted structuralism head on in 1972: “Can structuralist de-
velopments in anthropological sciences (such as linguistics, ethnology,
and so on) have a bearing on the methodology of biology? I believe
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this is s0.” By then what he called structuralism was merging with his
own method.

The task of any structuralist theory is: (1} to form a finite lexicon of
elementary chreods; (2) to build experimentally the “corpus” of the
empirical morphology; . . . (3) to define “conditional chreods,” ob-
jects of the theory; (4) to describe the internal structure of a condi-
tional (or elementary) chreod by associating a mathematical object
to it, whose internal structure is isomorphic to the structure of the
chreod.®

Catastrophe theory and structuralism reinforced each other, The semantic
analogy was common among molecular biologists who were prone to
interpret the living order in terms of the DNA code as a static linear string.
For Thom, this was wrongheaded because if biology could indeed be seen
as a semantic model, it was a dynamical, multidimensional one, The DNA
code by itself was a semantic model of dimension one: how could it de-
scribe the spatial processes of biology?®

In contaet with structuralist linguistics, Thom extracted a philosophy of
science that he thought would be able to make sense of the knowledge his
approach had produced, and not only in the human sciences. Henceforth,
Thom distinguished two approaches to scientific knowledge: the reduction-
ist and the structural.* Both approaches aimed at simplifying the description
of empirically observed morphologies. But the latter refused to do so by
attributing causal effects to factors outside the observed morphology. The
only admissible causality was structural.

Thom had obviously modeled his “structural approach” on the linguists’
claims to knowledge production. He thought some human sciences had
succeeded in building nonreductionist theories, especially formal linguis-
tics and Lévi-Strauss’s structural analysis of myths. They held a “paradig-
matic value: they show the way in which a purely structural, morphological
analysis of empirical data can be engaged.” It would indeed be absurd,
Thom contended following Lévi-Strauss, to base linguistics on reduction-
ist assumptions. “It would consist in an attempt at explaining the syntacti-
cal structure of a sentence of words by an interaction of phonemes of a
phonologic character.”s

Like Swiss psychologist Jean Piaget, Thom saw a serious epistemnologi-
cal problem in structuralism, namely that it could not account for the
cmergence of its structures because, historically, structuralist linguistics
was synchronic, that is, static in time.® Thus the hope for the future lay in
synthesizing both approaches. Nothing prevented linguists from conceiv-
ing time as another dimension of space-time: “we can make a structural

118 David Aubin

theory of the changes of forms, considered as a morphology on the prod-

©uct space of the [conjoined] substrate space and time axis.”® Indeed,
- catastrophe theory provided a way of building a dynamic structuralism that
- would explain the emergence of structure. As he had done with the struc-

turalist mathematics of Bourbaki, Thom used structuralist linguistic prac-

- tices to undermine the very project of structuralism.

Shapes, logoi, and catastrophes: Thom’s philosophy of science

As we have seen, René Thom was among those who loudly contested the
success of reductionist science. That science in the twentieth century had
been mainly a reductionist enterprise was a commounplace. In their ef-
forts to understand the world—or, more precisely, pursuing the Lapla-
cian dream, to predict its future course—scientists followed Jean Perrin’s
ideal: “to explain complex visible things with the help of simple invisible
things.”* Thom contended that this approach was far from having lived up
to its promises. “The Universe is nothing more than a brew of electrons,
protons, [and] photons,” he wrote. “How can this brew settle down, on
our scale, into a relatively stable and coherent form far from the quantum-
mechanistic chaos?”® .

Thom believed that physicists overreached themselves when they claimed
to be able to explain the everyday world. “Realization of the ancient dream of
the atomist—to reconstruct the universe and all its propetties in one theery
of combinations of elementary particles and their interactions—has scarcely
been started.” Thom adamantly opposed dogmatic reductionism: “this
primitive and alimost cannibalistic delusion about knowledge, [which de-
mands] thatan understanding of something requires first that we dismantle
it, like a child who pulls a watch to pieces and spreads out the wheels in
order to understand the mechanism.”* He did recognize reduct.ioni_sm, in
principle, as a valid approach to knowledge, but one which was unachiev-
able at the practical level.

“Reality presents itself to us as phenomena and shapes.”** Thom’s pro-
gram was to make the morphologies of our day-to-day reality the object of
a dynamical science of shapes. In a given domain of experience, his model-
ing practice could be summarized as follows: find the shapes that are
usually encountered, establish a list of these shapes according to the_lr
topologic character, and find the underlying dynamics that governs their
emergence and destruction.” Thom took his cue from D’Arcy Thompson,
who had recognized the morphological problems arising in the physical
sciences. Thompson, however, had confidence that physics was capable of
explaining morphologies. “The waves of the sea, the little ripples on the
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shore, the sweeping curve of the sandy bay between the headlands, the
outline of the hill, the shape of the clouds, all these are so many riddles of
form, so many problems of morphology, and all of them the physicist can more
ot less easily read and adequately solve.”®* Listing similar natural shapes, Thom
disagreed that traditional physics could do it:

Many phenomena of common experience, in themselves trivial (often
to the point that they escape attention altogether!)—for example, the
cracks in an old wall, the shape of a cloud, the path of a falling leaf, or
the froth on a pint of beer—are very difficult to formalize, but is it not
possible that a mathematical theory launched for such homely phe-
nomena might, in the end, be more profitable for science (than large
particle accelerators]?*

Catastrophe theory was thus an attempt at formalizing in rigorous mathe-
matical language a dynamics of forms. And in Structural Stability, the first
seven chapters gave an outline of a general theory of morphology, appli-
cable to all problems of shape.

But it was one thing to focus on forms and quite another to focus on the
specific ones that he and Thompson listed. Just as Thom questioned the per-
tinence to the everyday world of explanations in texms of electrons, he also
noticed that science was quite unable to account for “the froth on a pint of
beer.” The French mathematician Benoit Mandelbrot, inventor of fractals,
shared this concern. “Clouds are not spheres, mountains are not cones.”**

If Mandelbrot saw himself as a new Euclid, Thom thought of himself'as
picking up a broken line of thought just where Heraclitus had left it.
Around 500 BC, Greek philosopher Heraclitus already noticed the differ-
ence between knowledge and understanding. “Many people do not under-
stand the sorts of things they encounter! Nor do they recognize them even
after they have had experience of them, though they themselves think [they
do].”® In Heraclitus’s fragments, Thom found inspiration. Christening
his elementary catastrophes with names like swallowtail and butterfly, he
applied Heraclitus’s precept to irregular figures impossible to visualize.”

Once a description of natural forms was achieved, the next pressing
concern was their stability, especially if one believed that they emerged
from a “brew of electrons.” Returning to his quarrel with reductionist
physics, Thom noticed that “although certain physicists maintain that the
order of our world is the inescapable consequence of elementary disorder,
they are still far from being able to furnish us with a satisfactory explana-
tion of the stability of commaon objects and their qualitative properties.” In
other words, the physicists were not able to understand the morphologies
of the world in terms of atoms.

Thom believed that the explanation lay in an ideal mathematical struc-
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ture. “The stability of a form rests definitively upon a structure of algebraic-
geometric character . . . endowed with the property of structural stability
with respect to the incessant perturbations affecting it. It is this algebraic-
geometric entity that 1 propose, recalling Heraclitus, to call the logos of
the form.”** For Heraclitus, the logos was the “true discourse according to
which everything happens. It was the truth of this world.”* Thom attrib-
uted a logos to each form; it was “a formal structure which insures its unity
and stability.” One may note here that he was indeed applying Perrin’s
precept, except that Thom’s “simple invisible things” were mathematical
strictures as opposed to atoms. For all his structuralist talk, Thom’s phi-
losophy is well captured by the term “neoreductionism,” a word that Giot-
gio Israel has used to characterize von Neumann’s approach.

Thom felt he needed to emphasize that he studied morphology without
regard to the substrate. In his manuscript, written in 1966, he had not
mentioned this.*®* As a Bourbakist topologist, he believed in the universal
relevance of his mathematics. But after having presented his theory to
biologists, he underscored its independence from specific material bases.
“The essence of our theory, which is a certain knowledge of the properties
peculiar to the substrates of the forms, or the nature of the forces at work,
may seem difficult to accept, especially on the part of experimenters.”*2

Again, Thom saw himself as heir to D’Arcy Thompson, whe, “in some
pages of rare insight, compared the form of a jellyfish to that of the diffu-
sion of a drop of ink in water.”** The only thing that Thompson lacked,
‘Thom added, was a formal foundation in topology, which provided the
basis for explaining morphogenesis without relying on material proper-
ties. He endorsed a strong idealism: “The hypothesis that Platonic ideas
give shape to the universe,” he wrote in 1970, “is the most natural and,
philosophically, the most economical, 04

There was a drawback to this all-encompassing vision. Based on to-
pology, Thom’s method was not suited to quantitative analysis and mea-
surement. It had to remain qualitative. Traditionally, this was a serious
problem: “probably [one of scientists’] most deeply held values con-
cerns predictions; . . . quantitative predictions are preferable to qualitative
ones.”% But Thom saw the qualitative aspect of catastrophe theory in a
positive light. To understand the world one had to rid oneself of “the
intolerant view of dogmatic quantitative science.” To expose this common
prejudice, he loved to recall Rutherford’s dictum: “Qualitative is nothing
but poor quantitative!” But “what condemns these speculative [qualitative]
theories in our eyes,” Thom wrote, “is not their qualitative character but
the relentlessly naive form of, and the lack of precision in, the ideas they
use.” Now, he claimed, everything had changed since one could “present
qualitative results in a rigorous way, thanks to recent progress in topology
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and differential analysis, for we know how to define a form. ™% Catastrophe
theory was the rigorous way to think about quality.

Intelligibility of the world was the benefit and the ultimate goal of
Thom’s approach. He defended Descartes against Newton: “Descartes,
with his vortices, his hooked atoms, and the like, explained everything and
calculated nothing; Newton, with the inverse square law of gravitation,
calculated everything and explained nothing.” Again and again, Thom
opposed explanation to prediction, intelligibility to control, understanding
to action: “just as precise knowledge of a pathology often makes us antici-
pate, powerlessly, the sickness and death of a dear one, it is not impossible
that an increased understanding will make us foresee the development of a
catastrophe, a catastrophe whose theory will make us know the very reason
of our powerlessness.”*” Ultimately, he believed that a theory would be
totally intelligible when the theory itself could decide on its own validity: “a
theory of meaning whose nature is such that the act of knowing itself is a consequence
of the theory.”**® While Thom never claimed that catastrophe theory could
live up to this feat, he nevertheless thought that it made the world more
intelligible.

He often insisted that catastrophe theory was not a proper scientific
theory. It was a language, a method. Nowhere was this more evident than
when he confronted the delicate question of experimental control, He
always admitted that an experiment that would falsify or, for that matter,
confirm his theories was in principle impossible because catastrophe the-
ory was inherently qualitative. It might eventually provide the basis for
elaborating a quantitative model susceptible of experimental control, but
in general, the necessary mathematics did not vet exist. And even if it were
possible to analyze mathematically the dynamical processes that insured
the stability of a form, “this analysis is often arbitrary; it often leads to
several models between which we can only choose for reasons of economy
or mathematical elegance.”'®

But, once again, according to Thom, the drawback was not fatal. He
saw at least two reasons to fustify scientists’ interest in the theory. First,
catastrophe theory questioned the traditional “qualitative carving out of
reality . . . into the big disciplines: Physics, Chemistry, Biclogy.”** It would
integrate this taxonomy of experience into “an abstract general theory,
rather than blindly accept{ing] it as an irreducible fact of reality.” Second,
catastrophe theory could replace the “lucky guess” of previous model con-
struction in science. “The ultimate aim of science is not to amass un-
differentiated empirical data,” he wrote, “but to organise this data in a
more or less formalised structure, which subsumes and explains it.”11 On
the path toward a “general theory of models,” catastrophe theory showed
the way of the future.
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Conclusion

With catastrophe theory, René Thom believed that he was breaking away
from centuries of reductionist thinking. He developed models for biology,
linguistics, and semiotics displaying his vision of a structural science, He
introduced a new modeling practice and tried to codify its epistemological
rules. Based on his mathematical experience, catastrophe theory used to-
pology as a resource for grasping a world of qualities and shapes. Embryol-
0gy suggested to him a new starting point for theory, namely the end of a
dynamic process: its morphology. Thom never argued for the intrinsic
superiority of his method, but rather for jts greater capacity to explain the
world as it is perceived. Catastrophe theory provided “schemes of intel-
ligibility. And this seems quite valuable to me.”*™

In developing catastrophe theory, Thom introduced important mathe-
matical concepts and attempted to extend them beyond their rigorous
limits. In doing so, his speculations were often rejected by mathematical
communities. His insistence on denying the possibility of experimentation
Wwas met with suspicion by practicing biologists. Finally, it was the non-
genericity of structural stability for nongradient systems that discredited
the general ambitions of catastrophe theory. As for elementary catastrophe
theory applied to the physical sciences, it did not seem to explain anything
that was not already known.

Thom’s program, however, was richer than just concepts, models, the-
orems, and theories. His modeling practice presented some appealing
aspects, some explanatory strategies that would be taken up by “chaolo-
gists.” In 1971, using Thom’s concept of attractors and his geometric
vision of dynamical systems, David Ruelle and Floris Takens conjectured
that the attractor usually posited for turbulence was not structurally stable,
and thus introduced the notion of strange attraciors at the roots of chaos
theory.** But, contrary to Thom’s model, theirs was successfully submitted
to the verdict of experiments, in the laboratory and on the computer. This
would be 2 decisive difference.

Notes

For their help and comments I an indebted to the participants in the Princeton work-
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Dalmedico, and Michael §. Mahoney. T thank the Institut des hautes études scientifiques
of Bures-sur-Yvette and its director Jean-Pierre Bourguignon for generous access to their
archives. I am grateful to René Thom for having commented on an earlier version and
responding to my questions. This work was suppotted by the Social Science and Human-
ities Research Council of Canada and the John C. Slater Fellowship of the American
Philosophical Society.
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