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CHAPTER 68

GEORGE DAVID BIRKHOFF,
DYNAMICAL SYSTEMS (1927)

David Aubin

The first book to expound the qualitative theory of systems defined by differential equa-
tions, Birkhoft’s Dyramical systems created a new branch of mathematics separate from its
roots in celestial mechanics and making broad use of topology. Important for several fields
of mathematics, its impact became massive recently with the spread of ‘chaos theory’.

-First publieation.. Providence, Rhode Island: American Mathematical Society (Colloguium

Publications Series, no. 9), 1927. viil 4 293 pages.

Revised edition. Introduction and addendum by Jiirgen Moser, preface by Marston Morse.
1966. xii + 305 pages. Tenth printing 1999,

Russian translation. Dinamicheskie sistemy (trans. E.M. Livenson, ed. A.A. Markov, V.V,
Nemytskij and V.V. Stepanov), Moscow and Leningrad: ‘Gostekhizdat’, 1941. [Repr.
Izhevsk: Izd. dom “Udmurtskij Univ.’, Nauchno-Izdatel’skij Tsentr ‘Regulyarnaya i
Khaoticheskaya Dinamika’, 1999 (Seriya Regulyarnaya i Khaoticheskaya Dinamika,
no. 8).]

Related articles: Poincaré (§48), Lyapunov (§51), Einstein (§63).

1 INTRODUCTION

‘History has responded to these pages on Dynamical Systems in an unmistakable way’.
When this book by George David Birkhoff (1884-1944) was reissued in 1966, nearty 40
years after its first publication and more than 20 years after its author’s death, Marston
Morse stressed its historical legacy in his new preface (p. v). A decade later, such a remark
would have seemed superfluous. The craze for ‘deterministic chaos’ was in full swing and
scores of scientists were striving to master dynamical systems theory. Undoubtedly rooted
in multifaceted work of Henri Poincaré (1854-1912) at the turn of the century, this theory
as Birkhoff defined it was a branch of mathematics that dealt with the global qualitative
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behavior of systems governed by deterministic laws (that is, where randomness played no
part). In retrospect, Dynamical systems (hereafter, *DS”) stands strangely isolated among
the mathematical literature of its time as a fundamental intermediary between Poincaré’s
perceptive work and the modern theory.

Deterministic chaos and dynamical systems theory have had a perplexing history [Aubin
and Dahan-Dalmedico, 2002}, That older results that could have been ‘forgotterf for sev-
eral decades gave rise to widespread puzzlement. Albeit well received by the mathematical
press when it was first published in 1927, DS was a textbook for a field of mathematics
that barely existed for some decades to come. Its main domain of application—celestial
mechanics—seemed to have lost some of its urgency now that relativity theory and quan-
tum mechanics were revolutionizing physics. By insisting on considering general problems
of dynamics as opposed to particular ones and by looking globally at sets of motions rather
than particular orbits, Birkhoff’s way of approaching the topic was highly original. Not
only was he creating an up-to-date topological apparatus for the task at hand, he also con-
fronted head-on the problem of finding a role for dynamical theory when the fundamental
equations of physics were being recast. The striking contrast between conformist subject-
maltter and innovative mathematical and epistemological frameworks can account for the
‘unusual career of DS, both the relative oblivion into which it fell and its later success. More
than the results presented in the book, the main reason for its posthumous fame is surely
its style, which largely derives from the intellectual context in which it was produced, that
of American mathematics in the decade following the Great War.

2 CELESTIAL MECHANICS: THE HISTORICAL BACKGROUND

In the 19th century, the understanding of the analytic structure of the equations of motion
derived from Newtonian mechanics was greatly advanced with the work of Joseph Louis
Lagrange (§16), W.R. Hamilton and Carl Jacobi. In the paradigmatic field of celestial me-
chanics, Pierre-Simon Laplace had perfected Leonhard Euler’s perturbation method which
allowed him and his successors to compute planetary orbits very accurately in terms of
power series (§18). The discovery in 1846 of Neptune on the basis of computations made
by Urbain Leverrier and John C. Adams showed that results could be astonishing. But the
so-called three-body problem remained as frustrating as ever. The law of gravitation acting
upon three masses—especially the Sun, the Earth, and the Moon—gave rise to a system
of differential equations for which no explicit expression of the solution valid for all time
could be found. '

Up to that point, in rational mechanics, one mostly tried to find a local trajectory, that is,
solve a system of differential equations with given initial conditions without paying much
attention to global behaviors. For complicated problems, the influence of each major planet
was treated as a perturbation and solutions expressed in forms of power series. In his fa-
mous entry to King Oscar of Sweden’s prize of 1889, Poincaré showed that such power
series were in general divergent (§48.5). Renouncing the idea of obtaining convergent se-
ries, several methods—analytic, extremal or topological—were laid out by Poincaré and
explored by a few of his followers. His work on curves defined by differentiat equations, on
celestial mechanics whether concerned with astral orbits or shapes of rotating fluid masses,
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even his path-breaking development of topology, always emphasized the global behavior
of solutions to a system.

Among the few astronomers and mathematicians who were inspired by Poincaré’s ideas,
Birkhoff went the furthest in developing a full-fledged theory of dynamical systems de-
tached from its roots in celestial mechanics, and making a systematic use of topology.
Having been exposed to the three most prominent currents of mathematical thought in the
United States, Birkhoff was well prepared to tread this topelogical road. His constant in-
sistence on marrying analysis with topology at the highest level of abstraction possible had
no other root.

Born in 1884 in Michigan, Birkhoff was awarded a Ph.D. by the University of Chicago
in 1907. He was one of the first leading American mathematicians to be fully trained in the
Unites States without having made the trip to Europe. But he had divided his time between
the leading centers of American mathematics. At Harvard, William Osgood and Maxime
Bocher introduced him to classical analysis, while at Chicago he learnt the abstract modern
ideas of Eliakim Hastings Moore’s ‘general analysis’ [Siegmund-Schiiltze, 1998]. Through
his interactions with Oswald Veblen at Princeton University, where he taught from 1909
to 1912, Birkhoff encountered a third significant current of mathematical thought: analysis
sifus, as the nascent field of topology was then called (compare §76.1).

Shortly after Poincaré’s untimely death in 1912, Birkhoff suddenly established his in-
ternational mathematical stature with a coup d’éclat when he published the proof of a con-
jecture known as “Poincaré’s last geometric theorern’. The theorem stated that continuous,
one-to-one, area-preserving me;ps from the annulus to itself rotating points on the bound-
aries in opposite directions had at least two fixed points [Poincaré, 1912; Birkhoff, Papers,
vol. 1,673-681]. As Poincaré had already seen, this theorem has important consequences
for dynamics.

3 THE CONTENTS OF BIRKHOFF*'S BOOK

DS was published in 1927, when Birkhoff was 43 years old; it is summarised in Table 1.
A professor of mathematics at Harvard University since 1912, he was by then a well-
respected statesman of the American mathematical community, active in the American
Academy of Sciences and the National Research Council, as well as having served as the
president of the American Mathematical Society,

Before 1927, the only source on general dynamics had been the three volumes of
Poincaré’s Les méthodes nouvelles de la mécanique céleste (1892—1899), characterized by
George Darwin as ‘for half a century to come [. . .] the mine from which humbler investiga-
tors will excavate their materials’ [Barrow-Green, 1997, 152]. But Poincaré’s magisterial
treatise contained much that was cumbersome to use, at times obscure, and at times—Tfor
those interested in general dynamics—unduly concerned with details of celestial mechan-
ics. For Birkhoff, on the other hand, dynamics ought not to address a single problem, but
rather directly tackle the most general class of dynamical systems defined by the differen-
tial equations

dxifdt = Xi(x1, ..., %), i=1,...,n ()
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Table 1. Contents by chapters of Birkhoff’s book.

Ch. | Page| “Title’: other included topics

1 1 | “Physical aspects of dynamical systems’: general analytic discussion,
conservation of energy, Lagrangian equations.

It 33 | “Variational principles and applications’: Hamiltonian dynamics,

I 59| ‘Formal aspects of dynamics’: formal series.

v 97| ‘Stability of periodic motions’.

v 123 | ‘Bxistence of periodic motions’: variational principles (geodesics), analytic
continuation.

VI 150 ‘Application of Poincaré’s geometric theorem’: Poincaré map.

VII | 189 ‘General theory of dynamical systems’: topological definitions.

VIII; 209 ‘The case of two degrees of freedom’.

X 260 | “The problem of three bodies”. [End 295.]

In DS, Birkhoff summarized more than 15 years of his own research along three main
axes: the general theory of dynamical systems; the special case with two degrees of free-
dom; and the three-body problem in celestial mechanics. These topics form the subject of
the last three chapters (VII, VI, and IX), which have been the most widely admired and
studied. In the first two chapters, Birkhoff’s treatment was traditional: he gave proofs for
existence, uniqueness and continuity theorems, and then discussed Lagrange’s equations,
Hamiltonian mechanics, and changes of variables. In chapter I, solutions were studied
in their formal aspects, that is as power series about which questions of CONVEIgence were
systematically laid aside as irrelevant to the matter at hand. The next chapter followed
Poincaré’s idea of investigating the stability of formal solutions near equilibrium or peri-
odic motion. But Birkhoff again went further in considering a vast array of definitions for
stability: complete or trigonometric stability, stability of the first order, permanent stability
‘for which small displacements from equilibrium remain srmall over time’ {p- 121), semi-
permanent stability, unilateral stability (due to Lyapunov: §51), and stability in the sense
of Poisson (due to Poincaré).

Chapter V presented four methods by means of which the existence of periodic motions
could be established. The first of these made use of the variational principles of dynam-
ics, for example by considering geodesics on a surface and their deformations (a method
developed by Jacques Hadamard). A second variational method was called the ‘minimax’
method, whereby new geodesics were found by considering the lower limit of the length
of geodesics stretched by a rotation of the manifold. The minimax method was the original
stimulus for Morse theory, which made topological considerations effective for analysis
[Morse, 1934, iv]. The third method, due to George W. Hill and Poincaré, looked at the
analytic continuation of periodic orbits already known to exist.

The fourth method showing the existence of periodic motion was a generalization of
Poincaré’s idea of transverse section. Birkhoff’s formal theory of Poincaré sections would
become an indispensable element of dynamical systems theorists’ toolkit {Chapter VI).
This gave a dynamical problem a ‘striking change of form’. When a continuous dynam-
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ical flow was cut transversally by a surface S, each time the continuous dynamical flow
was crossing S, the dynamical equation defined a point P; on the surface. Successive in-
tersections defined a one-to-one analytic transformation T" of the seciion surface § into
itself. Poincaré had used the idea to transform the reduced three-body problem into the
transformation of the ring into itself. Birkhoff showed that there was a great variety of cir-
cumstances where one could use this method. The example of a billiard ball rolling on a
flat surface with curved boundaries concretely illustrated the power of the method.

4 BIRKHOFF'S MAIN AMBITION

This was to develop a ‘General theory of dynamical systems’, which is sammarized in
Chapter VII of DS. ‘The final aim of the theory of motion must be directed toward the
qualitative determination of all possible types of motions and of the interrelation of these
motions’ (p. 189). As Koopman [1930] wrote in a review, ‘[t]he only property made use
of in this chapter is the bare fact that the curves are integral curves of analytic differential
equations. The treatment has the aspect of a study in point-set theory’. With this work
begun in 1912, dynamical systems theory was thoroughly infused with topological ideas.

Birkhoff showed that for arbitrary dynamical systems there always was a closed set of
‘central motions’ endowed with a certain property of ‘recurrence’ and towards which all
other motions of the system in general tended asymptotically. Considering the equation of
motion (1), he looked at states of motion as points in a closed n-dimensional manifold M.
To each point Pg of M (initial conditions), one could associate via (1) a curve of motion
lying on M. He then divided the manifold M into two non-intersecting sets: the open set of
wandering points, that is, those starting from which the equations of motion would define
a trajectory filling open »-dimensional continua in M; and the complementary closed set
M of non-wandering points. As time increased or decreased, he showed, every wandering
point approached the set M| of non-wandering points.

Further, Birkhoff constructed a sequence of sets My, M=, ..., where M was the set
of non-wandering points with respect to M, etc, This process had to end at some point
with a set C of central motions. This was a generalization of periodic motions to which
Poincaré had drawn attention. For Birkhoff, the first problem concerning the properties of
dynamical systems was the determination of central motions. The fact that for classical
dynamics, central motions were the totality of all motion made amply clear that he was
constructing a ‘general theory” with a wider range of applicability.

In 1912, Birkhoff also introduced the notions of ‘minimal’ or ‘recurrent’ sets of mo-
tions. Let a- and w-limit points be points towards which other motions tended as time ¢
approached —oo or +oo. If T was a closed, connected set of limit motions (i.e. trajectories
composed of limit points of a;motion} and T had no proper subset, then Birkhoff defined
the members of ¥ as recurrent motions and the set itself as minimal. He showed that a
motion was recurrent if and only if for any & = 0, curves of motion would remain for a
certain interval of time T within a distance ¢ of every point of the trajectory. In other word,
such motions came back arbitrary close to every point of the curve of motion. They were
in the set of central motions but the reverse was not necessarily true.

Based on an astute use of topology, these definitions greatly extended the possibility
of classifying the motions generated by dynamical systems. Solomon Lefschetz asked in
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his review [1929] how classical dynamics was ever able to do without them. Birkhoff’s
notion of non-wandering points was picked up by the Russian mathematician Aleksandr
Andronov, whose roughly contemporary work in this domain ranked equal in importance
with Birkhoff’s. And it prefigured the concept of ‘attractor’ that was fundamental for the
reconfiguration of dynamical systems theory from the mid-1960s onward. Made famous
by René Thom and Steve Smale, an attractor has been succinctly defined as ‘an inde-
composable, closed, invariant set [...] which attracts all orbits starting at points in some
neighborhood’ [Holmes, 1990].

5 BIRKHOFE'S LECTURE COURSE AND ITS CONTEXT

Though widely admired, the offshoot of the theory was somewhat disappointing. As Birk-
hoff acknowledged, the remarkable diversity and complexity of behaviors meant that ‘rig-
orously proven qualitative results are rare’ [Birkhoff, Papers, vol. 2, 246]. As was pointed
out by Koopman [1930], what was at stake was the value of a mathematical theory. To
reach & better grasp of both Birkhoffs approach to dynamics and the long-term reception
of DS, one must look at the American postwar context in which it was produced.

Prior to becoming the cornerstone of a branch of mathematics, the American Math-
ematical Society summer colloquiwm lectures upon which DS was based was the best
attended series so far. In September 1920, over 90 mathematicians gathered at the Uni-
versity of Chicago to hear Birkhoff, at the first of these events to take place after the end
of the Great War. For many, this was an inspiring return to normalcy. He treated his au-
dience with a review of recent developments in an honored field of mathematical physics
crowned with far-ranging philosophical speculations. As was the tradition, the lecturer em-
phasized his own contributions. In his five lectures, he reviewed traditional approaches to
dynamical problems, and summarised his own work on topological tools to describe the
various types of motion that could occur in a dynamical system making the crucial distine-
tion between hyperbolic and elliptic motions. His fourth lecture was an application of this
‘General analysis’ to the three-body problem. Concerned with the ‘significance of dynam-
ical systems for general scientific thought’, Birkhoff’s fifth lecture was not published in
DS. From their titles, themes broached—*The dynamical model in physics’, ‘Modern cos-
mogony and dynamics’, ‘Dynamics and biological thought’, ‘Dynamics and philosophical
speculation’—are tantalizing in their ambitions [Hurwitz, 1920].

Like other American scientists, mathematicians in the early 20th century were preoc-
cupied by issues of purity [Parshall and Rowe, 1994} ‘Gross utilitarianism is the obvi-
ous danger’ [Carmichael, 1919, 163]. While astronomers importantly shaped the emerg-
ing mathematical community in the United States, a younger generation centered around
Chicago ‘played a leadership role in defining the mathematical profession on American
shores in terms of pure, abstract, rigorous mathematics’ [Parshall, 2000, 8]. Their ethos
was ‘a privileging of pure over applied mathematics, of research over teaching, and of
educating future mathematicians over training others who needed advanced mathemati-
cal skills” [Butler Feffer, 1997, 66-67]. Birkhoff certainly agreed with a mild version of
this credo. Although he always emphasised applications in celestial mechanics, he never
computed an orbit.
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Since Poincaré had written his Méthodes nouvelles, two things had happened that trans-
formed the way dynamics was to be understood: the Great War and relativity theory (§63).
If its impact was no way overwhelming, the war effort in 1917-1918 introduced a crucial
inflexion in scientists’ self-perception [Aubin and Bret, 2003]. A handful of mathemati-
cians, Birkhoff among them, worked on war-related topics (ballistics, sound-ranging, and
submarine detection). But as opposed to physicists and chemists, they felt they had a harder
time convincing the country that their skills were required for warfare. The war led to a
reevaluation of the role played by formal mathematics in the physical sciences and some
soul-searching on the mathematicians™ part [Servos, 1986]. Some felt that overemphasis
on purity had led to a detrimental neglect of applied mathematics. To those concerned with
the role of mathematics in science and other human affairs, mathematicians often replied
that their inquiries were essential in understanding the deep structures of scientific thought.
‘Transcending the flux of the sensuous universe, there exists a stable world of pure thought,
a divinely ordered world of ideas, accessible to man, free from the mad dance of time, in-
finite and eternal’ [Keyser, 1915, 679]. Looking for stability in complex flows, dynamical
systems theory was Birkhoff’s attempt at accommodating two strong, yet antagonistic ten-
dencies of postwar American mathematics: the strive towards purity, if not purism; and the
acknowledgment, reinforced by the war, that mathematicians ought to be concerned with
applications.

The postwar situation was further complicated by revolutions in physics. Poincaré, it
was claimed, ‘was depressed when certain recent physical theories seemed to imply that
differential equations are not so fundamental to the understanding of phenomena as he
had supposed’ [Carmichael, 1917, 168]. More than physicists and astronomers, American
mathematicians often readily welcomed relativity theory [Goldberg, 1987]. Birkhoif pub-
lished two books on Einstein’s theory (1923, 1925); the first was, with Stanley Eddington’s
Mathematical theory of relativity of 1923, among the earliest books in English explaining
relativity with sufficient mathematical sophistication.

Like Veblen, Birkhoff argued that crises in fundamental physics increased the impor-
tance of the mathematician who provided a ‘rigorous and gualitative background’ to the
‘more physical, formal, and computational aspects of the sciences’ [Birkhoff, Papers,
vol. 2, 110]. Through the years, his position evolved and it later seemed that dynami-
cal systems theory was for skeptics. ‘At a time when no physical theory can properly be
termed fundamental—the known theories appear to be merely more or less fundamentalin
certain directions—it may be asserted with confidence that ordinary differential equations
in the real domain, and particularly equations of dynamical origin, will continue to hold a
position of the highest importance’ (DS, iii). ‘In view of the many indignities which me-
chanics has suffered in recent years’, a reviewer wrote with a sigh of relief, “this volume
merely illustrates that additional hypotheses are not as yet needed if one wishes to make
new discoveries in dynamics’ [Bartky, 1928].

6 ON THE IMPACT AND RENAISSANCE OF THE BOOK

DS was not Birkhoff’s last word on the topic. In particular, his proof in [Birkhoff, 1931]
of the ergodic theorem was deemed as important as his proof of Poincaré’s geometric the-
orem. Introduced by Ludwig Boltzmann, ergodicity has been a comerstone of statistical
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mechanics. It described systems such that each particular motion when continued indef-
initely passed through every configuration compatible with energy conservation. Allying
topological consideration with Henri Lebesgue’s theory of integration (§59.3), Birkhoff
developed the notion of transitivity introduced in DS (that is, the property of a dynamical
system whereby small neighborhoods of curves of motion filled the whole manifold up
to a set of measure zero) and showed that it was a widespread property for Hamiltonian
systems, Birkhoff knew that this property was not generic, but his results prompted further
developments in ergodic theory [Dahan-Dalmedico, 1995].

DS also shaped much of the work done by Aleksandr Kolmogorov, Vladimir I. Arnol’d,
and Jirgen Moser in the 1950s and 1960s on the celebrated KAM theorem that inval-
idated Birkhoff’s ergodic conjecture [Diacu and Holmes, 1996]. Several other concepts
introduced by Birkhoff were later picked up by others. On the notion of recurrent motion,
Morse, Walter H. Gottschalk, and Gustav A. Hedlund built an abstract theory of symbolic
dynamics in 1955 that is used today in theoretical computer science. Apother example is
the ‘bad’ cirve studied by Birkhottf in 1932, a complicated state of motion that ultimately
formed the basis for Smale’s ‘horseshoe’, a stable, yet chaotic motion [Abraham, 1985].

Very technical, those developments kept the memory of Birkhoif’s DS alive, but re-
stricted to specialized fields of inquiry until dynamical systems theory was spectacularly
revived after the Second World War by Lefschetz {Dahan-Dalmedico, 1994]. But Lef-
schetz and his collaborators rediscovered the work of Poincaré through their close study
of Russian sources rather than in Birkhoff’s work. One reason for this was the insistence

_put on dissipative systems where energy is not conserved, as opposed to conservative ones
emphasized by Birkhoff. In DS, the section on dissipative systems occupied less than two
pages. He acknowledged that ‘[clonservative systems are often limiting cases of what is
found in nature’, but dissipative systems generally tended toward a the motion of a conser-
vative system with fewer degrees of freedom. :

The mathematicians’ more active participation to the Second World War and the Cold
War, as well as concerns with nonlinear oscillations arising from radio-engineering (B.
Van der Pol), led to an understanding of dynamical systems different than that stemming
from Birkhoff’s nearly exclusive concern with celestial mechanics, This crucial differ-
ence in emphasis is brought to light by comparing Birkhoff’s attitude concerning stability
with Andronov’s [Dahan-Dalmedico, 2004]. Both dealt with general systems of differential
equations using. many of the same sources (Poincaré, Lyapunov). They nonetheless ended
up with almost opposite views on stability. Inspired by the famous “problem of stability’
of the three-body problem, Birkhoff restricted the study of stability to that of orbits lying
near a periodic-(or central) motion. He thought one had to dictate, by convention or by a
judicious choice of problems to be answered, the kind of stability that one wanted to look
at: ‘All that stability can mean is that, for the system under consideration, those motions
whose curves lie in.a certain selected part of phase space from and after a certain instant
are by definition catled stable, and other motions unstable’ [Birkhoff, Papers, vol. 3, 602].
Concerned with radio systems, Andronov imagined a more general type of stability that
applied not only to solutions of a system of differential equations, but to the system itself.

-The only interesting systems for modeling, he thought, were structurally stable, that is,
keeping the same qualitative behavior under small deformations.
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In the 1960s, a generation too young to have had to participate to the war effort revived
widespread interest in DS. Less interested in control than their elders, Mauricio Peixoto
and Smale launched a general program of classification of dynamical systems that thrived
on the topological approach that was characteristic of Birkhoff’s work. Following the pub-
lication of Smale’s Differentiable dynamical systems in 1967, a blooming field was estab-
lished that had a profound impact on the way that the mathematical modeling of natural
phenomena was to be understood. Edward N. Lorenz in 1963 and David Ruelle in 1971
independently exhibited systems governed by simple deterministic laws that nonetheless
exhibited complex, apparenily erratic behaviors [Aubin, 2001].

All of a sudden, Dynamical systems enjoyed a second life. In this book, people interested
in chaos found a straightforward style that corresponded to their expectations. Physicists
liked to see equations of motion written in a form they recognized. They were comfortable
with discussions of Lagrangian and Hamiltonian functions. No fancy Bourbakist abstrac-
tion here defaced them [Aubin, 1997]. No more than an elementary topological knowledge
was required to grasp the most innovative ideas introduced in the book. Readers also ap-
preciated the self-contained character of the book and the tools presented in all generality,
in less than 300 pages of clear English prose. A generation mobilized against the Vietnam
war and intend to ‘explicitly direct [its] work toward socially-positive goals’ [Smale, 1972,
3] found in American struggles with issues of purity after the Great War in the face of new
wars and upheavals in physics an epistemological and moral framework with which they
felt comfortable. :
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