
CH A P T ER 3.4

Observatory mathematics in the nineteenth 
century
David Aubin

The value of the service of an Assistant to the Observatory’, the Astronomer 
Royal George Biddell Airy wrote in 1861, ‘depends very materially on his 

acquaintance with Observatory Mathematics’.1 3 ere is a rather strange ring to 
this expression. One knows, of course, that mathematics has always been used 
extensively in observatories. Ever since permanent astronomical stations were set 
up in Europe during the Renaissance, observers have drawn on the most elabor-
ate mathematical tools available to them to correct the observational data they 
produced and to come up with theoretical predictions to which it could be com-
pared. Up until the nineteenth century, astronomers played a central role in the 
development of many parts of mathematics. Indeed, together with geometry and 
arithmetic, astronomy had always been considered as one of the main branches 
of mathematics.

Still, in what sense can one talk of ‘observatory mathematics’? Should one 
understand the expression as designating the subset of mathematics that was 
especially relevant to the scientiM c activities carried out inside observatories? Or 
is there—has there ever been—a speciM c character common to all mathematical 

1. ‘Remarks on the neglect, by the Junior Assistants, of the course of education and scientiM c preparation 
recommended to them’ (4 December 1861). Cambridge University Library, Airy’s Papers, RGO 6/43, 235.
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tools and concepts used in those places? If so, what sense is there in carving out a 
portion of mathematics on the basis of it being used in a speciM c institution?

In this paper I want to introduce the question of place and space in the his-
tory of mathematics by looking at the various ways in which mathematics was 
practised at a speciM c location—the observatory—in a given period—the nine-
teenth century. My claim is that this exercise will enrich our understanding of 
changes undergone by mathematics in that period. As Michel de Certeau (1984) 
has shown, a focus on place as ‘practised space’—that is, space where human 
practices are deployed—can help the historian identify cultural practices that are 
common to the users of the same space but that are not necessarily talked about. 
3 e issue of place in the history of science was in fact inaugurated by a debate 
about Tycho Brahe’s observatory (Hannaway 1986; Shackelford 1993). Numerous 
studies have since been devoted to the topic, mapping out various spatial aspects 
of the laboratory and M eld sciences (Ophir and Shapin 1991; Livingstone 1995; 
Kuklick and Kohler 1996; Smith and Agar 1998).

At M rst sight, the history of mathematics, where disciplinary approaches have 
been dominant for so long, would seem more immune to spatial approaches than 
any other part of the history of science. What scientiM c domain could be less 
tied to a speciM c place than mathematics? Mathematicians only need pen and 
paper. And even those, the Bourbaki mathematician André Weil once wrote, 
could sometimes be dispensed with.2 Historians, however, have shown that the 
universality of mathematics was actually forged in large part in the nineteenth 
and early twentieth centuries (Parshall and Rice 2002). A few institutional sur-
veys underscore the imprint made on mathematics by particular institutions (the 
École polytechnique, Göttingen, the Institute for Advanced Study . . .). Even Weil 
would at times concur—if only for opportunistic reasons—that institutional his-
tories may be indispensable:

It is unthinkable that anyone would write the history of mathematics in the 20th 
Century without devoting a large portion of it either to the Institute [of Advanced Study 
in Princeton] as such, or to the mathematics which have been done here, which comes 
very much to the same thing.3

Similarly, I contend that to study the history of mathematics in the nineteenth 
century it might be useful to pay special attention to the observatory. It has 
recently been suggested that a tight focus on observatory techniques can pro-
vide new insights about the social organization of science for the nineteenth-
century state (Aubin 2002; Boistel 2005; Lamy 2007; Aubin, Bigg, and Sibum 

2. ‘Let others besiege the oq  ces of the mighty in the hope of getting the expensive apparatus, without 
which no Nobel prize comes within reach. Pencil and paper is all the mathematician needs; he can even some-
times get along without these’ (Weil 1950, 296).

3. André Weil, ‘Talk to the Trustees of the Institute for Advanced Study, by Professor André Weil, April 1, 
1960,’ Archives of the Institut des hautes études scientiM ques, Bures-sur-Yvette.

04-Rost-Chap03.indd   Sec3:27404-Rost-Chap03.indd   Sec3:274 6/23/2008   6:50:17 PM6/23/2008   6:50:17 PM



Observatory mathematics in the nineteenth century 275

 forthcoming). Observatory techniques have been deM ned as the coherent set of 
physical, methodological, and social techniques rooted in the observatory because 
they were either developed or extensively used there. Among them, mathemat-
ical techniques M gure prominently. Whether concerned with astronomy, geo-
desy, meteorology, physics, or sociology, in their quest for precision observatory 
scientists were both major consumers and producers of mathematical knowledge 
and techniques. Most of the founders of the German mathematical renaissance 
around 1800 had strong ties to observatories (Mehrtens 1981, 414–5). 3 e same 
is true of other countries. Some observatory scientists, such as Pierre-Simon 
Laplace or Carl Friedrich Gauss, are even considered among the most outstand-
ing mathematicians of all time. 3 e roster of famous mathematicians who worked 
in (and o. en directed) observatories includes Friedrich Wilhelm Bessel, Nikolai 
Lobatchevski, August Möbius, Adolphe Quetelet, and William Rowan Hamilton. 
Others, like Augustin-Louis Cauchy, Karl Weirstrass, Henri Poincaré, and David 
Hilbert, were o. en passionately interested in celestial mechanics and gravita-
tion theory. So, while mathematical techniques centrally belonged to the arsenal 
of the observatory, the mathematics developed to serve various observatory sci-
ences equally became prominent areas of mathematics.

3 e special relation between mathematics and the observatory—or between 
mathematics and astronomy—is of course in no way a characteristic solely of the 
nineteenth century. Recall how mathematical analysis has, since Isaac Newton’s 
time, been closely tied with the problems of celestial mechanics. I focus on the 
nineteenth century because the observatory was, at that time, the place that (as 
opposed to the Academy of Sciences earlier or the laboratory later) best embo-
died the intimate link between science, states, and societies in Europe and North 
America. I do so also because mathematics was then undergoing crucial changes 
that our look at the observatory will lead us to reinterpret in signiM cant ways.

Indeed, we have a paradoxical view of nineteenth-century mathematics. In 
historical lectures, Felix Klein said that in earlier times ‘independent works of 
pure mathematics were overshadowed by the powerful creation in which pure 
and applied mathematics united to answer the demands of the times’ (Klein 1979, 
2). But in the nineteenth century, mathematics increasingly seemed to be split 
in two. While the use and application of mathematics went on unabated, pure 
mathematics—and especially its most abstract and foundational aspects—took 
centre stage. Mathematics took on larger and larger new territories, providing 
tools for describing, controlling, and changing the world. In the physical as well 
as in the social realm, scores of laws expressed in the forms of dic erential equa-
tions were derived by scientists. 3 e number of phenomena that were subjected 
to precise quantitative measurement increased tremendously. In oq  ces, factories, 
army barracks, schools, and observatories, people with elementary or advanced 
mathematical skills multiplied. While the mathematical apprehension of our 
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world progressed, mathematics as an academic discipline became increasingly 
abstract. Foundational questions started to assume a primary importance for 
the professional community: ‘a revolution [ . . . ] characterized by a change in the 
ontological status of the basic objects of study’ (Gray 1992, 226). Pure mathem-
atics was detaching itself from the physical world at the very moment when it 
seemed more applicable than ever.

Most historians of mathematics have focused on the ‘revolution’ at the expense 
of the routine expansion of mathematical territories. Even when they have not, 
historians have found it diq  cult to deal with both processes at once. By focusing 
on the observatory, as a speciM c place where mathematics was intensely used and 
produced, I hope to throw new light on those two parallel large-scale processes. 
When examining mathematical practice in observatories, the major role played 
by numbers is immediately striking. Numbers are the main mediators between 
the various parts and functions of the observatory. Faced with an ‘avalanche of 
printed numbers’ (Hacking 1990) in their practical work, observatory scientists 
developed tools and techniques that became prominent factors in both mathem-
atics’ move towards abstraction and its increasing appeal as a privileged instru-
ment for understanding nature and society.

3 ere are two aspects to my study. First, I examine the speciM c spatial arrange-
ment of mathematical work within observatories. I want to illuminate mathem-
atical practices at this site, including its social organization. In order to do this, 
I focus on a social history of numbers, tracing their trajectory from their pro-
duction with instruments to their insertion in observatory outputs. Second, I 
consider the observatory as the locus of particular mathematical cultures, which 
had important ec ects on the development of the M eld. I pay particular atten-
tion to three domains of mathematics: celestial mechanics, geometry, and sta-
tistics. In other words, this paper examines M rst the place of mathematics in the 
 nineteenth-century observatory and then resituates the observatory in the his-
tory of mathematics.4

THE PLACE OF MATHEMATICS IN THE OBSERVATORY

‘Every part of the operations of an observatory is mathematical,’ Airy wrote in 
the 1861 memo quoted above. ‘Mathematical Mechanics’ was involved in the con-
struction of all instruments. ‘3 e action and faults of telescopes and microscopes 
require for their understanding a knowledge of Mathematical Optics. Every dis-
cussion and interpretation of the observations requires Mathematical Astronomy. 

4. Computing aspects will be slightly downplayed here in order not to overlap too much with Mary 
Croarken’s Chapter 4.4 on human computers.
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3 e higher problems, such as the discovery of the elements of a comet’s orbit 
from observations, require the high Mathematics of Gravitational Astronomy.’ 
In a word, mathematics was omnipresent in the observatory.

Five years earlier, Airy had spelled out the mathematical knowledge he thought 
was indispensable at each level of the strict hierarchy he had devised for the 
workings of Greenwich. A M rst dra.  was drawn up on 20 November, 1856 and a 
slightly revised version was adopted on 10 May, 1857.5 At the bottom of the scale, 
according to this scheme, were supernumerary computers. In addition to being 
able to ‘write a good hand and good M gures’ and ‘to write well from dictation, 
to spell correctly and to punctuate fairly’, computers were to have rudimentary 
mathematical knowledge, essentially restricted to arithmetic, including vulgar 
and decimal fractions, extraction of square roots, use of logarithms, and the use 
of ±. Next came the Assistant, M rst grade, who was required to read French and 
to understand geometry (equivalent to the M rst four books of Euclid), plane trig-
onometry, and simple and quadratic equations. Assistants, second grade—like, 
at the time, Hugh Breen (who had been M rst been hired as a teenager computer 
in 1839)—needed to read Latin and speak a little French. In mathematics, they 
ought to understand simple algebraic rules such as the binomial theorem, spher-
ical trigonometry, and dic erential calculus (‘to Taylor’s theorem, and applications 
to small variations of plane and spherical triangles, &c.’), as well as to have some 
notions in integral calculus. Beyond pure mathematics, they should have elem-
entary knowledge of mechanics and optics and be able to master applications of 
plane and spherical trigonometry to astronomy. Long-time associates of Airy’s 
had then achieved the higher level of Assistants, third grade. Supposing they con-
formed to the requirements spelled out by their boss, Edwin Dunkin and James 
Glaisher would then have understood analytical geometry, conic sections, inte-
grations for surfaces and solids, advanced mechanics, optics, analytical mechan-
ics ‘especially in reference to Gravitational Astronomy’. More speciM cally, they 
would be conversant in the complete theory of telescopes and microscopes: object 
glasses, mirrors eyepieces, micrometers, etc. 3 ey would be able to apply meth-
ods for computing orbits of comets and planets. 3 ey should also read ordin ary 
German. Clearly the skills required to work in an observatory were many.

Airy’s memo not only sketched a relatively well deM ned perimeter of the know-
ledge required for working in an observatory, but also set up a scale of value in 
mathematical knowledge. While analysis and mixed mathematics (mechanics 
and optics) clearly stood at the top of his scale, geometry, elementary algebra, the 
M rst notions of calculus, and arithmetic especially, lay at the bottom. One may 
note that contemporary non-university mathematical textbooks re6 ected such 

5. Several slightly dic erent copies of this memo are extent in Airy’s papers in Cambridge University 
Library. Above and in the following I quote from RGO 6/43, pp. 170–175.
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scales, paying much attention to its lower parts and almost none to the top levels 
(Rogers 1981). In such textbooks, practical astronomy rather than analysis and 
rational mechanics o. en occupied the last and more diq  cult chapters, thus being 
set up as the ultimate goal of the ‘practical mathematician’.

In addition to establishing a scale of mathematical knowledge, Airy also put 
mathematics above all the rest in a general scale of knowledge. Recognizing that 
mathematical skills were not the only ones required from an observatory assist-
ant—he cited foreign languages, ‘general or photographic chemistry’, ‘telegraphic 
galvanism’, and so on—the Astronomer Royal nonetheless insisted on the special 
value of mathematical knowledge. Routine telescopic observations, ‘which a lad 
acquires in two months, and which a man scarcely improves in many years’, Airy 
added parenthetically, required few mathematical skills. Beyond those, the oper-
ations of an observatory required one to expand one’s knowledge ‘mainly in the 
mathematical direction’.6 And this alone allowed one to rise up the hierarchy at 
the observatory. Astronomers with a more democratic bent similarly concurred 
that mathematics was what blocked the masses from familiarity with observatory 
sciences. In his public lectures, the director of the Paris Observatory François 
Arago (1836) tried to introduce the subject without using advanced mathem-
atics. Like him, Alexander von Humboldt, John Herschel, Auguste Comte, and 
Laplace were much praised for presenting the public with treatises that circum-
vented mathematical technicalities.

But, as Yves Gingras (2001) has shown, mathematization also had an import-
ant social role as a technology demarcating insiders from outsiders (on this point, 
see also Schac er 1994a). Over the course of the nineteenth century, dozens of new 
observatories were set up all over the world and the number of stac  working in 
major national observatories increased signiM cantly. Con6 icts over the best ways 
to organize collective work inevitably arose. During the French Revolution, obser-
vatories in Paris were placed under the direction of the Bureau of Longitudes, a 
collegial body of astronomers, mathematicians, seamen, and instrument  makers 
specially set up for that purpose. Others opposed the view that collegiality 
would ensure that national observatories carried out their regular tasks prop-
erly. In the early twentieth century, the American astronomer Simon Newcomb 
drew the  following lesson from those discussions: ‘3 e go-as-you-please system 
works no better in a national observatory than it would in a business institu-
tion’ (Newcomb 1903, 332). More than a century earlier, in a memoir presented 
to the Revolutionary Comité de Salut Public (Committee of Public Salvation) in 
June 1793, the former head of the Paris Observatory Jacques-Dominique Cassini 
had similarly explained why, as far as the working of an observatory was con-

6. Airy, ‘Remarks on the neglect’ (note 1), RGO 6/43, pp. 235–236.
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cerned, he thought it necessary to go against the Republican principle of ‘sacred 
equality’:

In astronomy, one distinguishes between the astronomer and the observer: the former is 
the one who embraces this science as a whole, who knows the facts, the data, and draws 
results from them. 3 e observer is the one who is more speciM cally devoted to obser-
vation; he only needs to have good eyes, skill, strength and a lot of energy.7 (Cassini 
1810, 207).

At the Paris Observatory as at any national observatory, Cassini went on, a 
director was needed pour la même raison que l’on place un pilote dans un vais-
seau, un chef dans un bureau ‘for the same reason one places a pilot on a ship, 
a supervisor in an oq  ce’ (Cassini 1810, 206–207). 3 ere were a whole range of 
observations that needed to be carried out regularly and without interruption. 
While young observers could be found with enough zeal to fulM l this task, an 
experienced astronomer was needed to direct them. His special task would be 
not only to oversee the work of the observers but also to compile their results in 
general annual publications, presenting not simply gross observations but nicely 
reduced ones seamlessly woven into un narré instructif de l’histoire et des progress 
de l’astronomie ‘an instructive narrative of the history and progress of astron-
omy’ (Cassini 1810, 207).

In this context, exceptional mathematical skills were o. en singled out as those 
most likely to determine who would make a good observatory director. In the 
memos quoted above, Airy underscored his opinion that mathematical know-
ledge was what counted most to head an observatory. As an enticement for study-
ing abstract mathematics, he wrote that the ‘acquisition of these attainments 
would be at least as valuable to the Assistants (particularly if opportunities of 
quitting the Observatory should occur) as to the Observatory’. Later, especially 
a. er the emergence of astrophysics in the second half of the century, other types 
of skill seemed at least as important as mathematics for rising to the directorship 
of an observatory. But, as is well known, mathematics never completely lost its 
prominence as a tool for social selection.

3 e nineteenth-century observatory was a place where the quantitative spirit 
was valued most highly. Astronomy in particular was la science où l’on rencontre 
de plus fréquentes occasions de faire des calculs longs et compliqués ‘the science 
where one has most frequently the occasion to carry out long and complicated 
computations’ (Francœur 1830, vii). While Gauss’s love of numerical  calculation 

7. On distingue en astronomie l’astronome et l’observateur: le premier est celui qui embrasse l’ensemble de 
cette science, qui en connaît et approfondit toutes les théories, rassemble et compare les faits, les données, et 
en tire les résultats. L’observateur est celui qui se livre particulièrement à l’observation; il lui suq  t d’avoir de 
bon yeux, de l’adresse, de la force et beaucoup d’activité
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is legendary (Bourbaki 1994, 153), Airy is also known to have had a special 
 obsession with quantitative results. His son Wilfrid once recalled:

He was never satisM ed with leaving a result as a barren mathematical expression. He 
would reduce it, if possible, to a practical and numerical form, at any cost of labour: and 
would use any approximations which would conduce to this result, rather than leave the 
result in an unfruitful condition. He never shirked arithmetical work: the longest and 
most laborious reductions had no terrors for him, and he was remarkably skilful with 
the various mathematical expedients for shortening and facilitating arithmetical work of 
a complex character. 3 is power of handling arithmetic was of great value to him in the 
Observatory reductions and in the Observatory work generally (Airy 1896, 7).

3 e observatory indeed was a true factory of numbers and, as such, it needed 
competent people able to withstand the ‘avalanche’. Simon Schac er (1988) and 
Robert Smith (1991) have debated the most proper metaphor to describe the 
observatory—the factory or the accounting oq  ce. What is more signiM cant to us 
right now is that the production and treatment of numbers on a massive, ‘indus-
trial’ scale was observatory scientists’ main business over most of the nineteenth 
century. And this implied forms of social organization that put mathematics at 
the centre of observatory scientists’ practices (see also Ashworth 1994; 1998). But 
which part of mathematics?

A FACTORY OF NUMBERS

At the end of the eighteenth century, it appeared clear that an astronomical obser-
vatory should be built around its instruments and that the most important of 
them should generate numbers, accurate numbers. On ne peut s’occuper de la dis-
tribution d’un Observatoire qu’après avoir Q xé le nombre, la grandeur, la forme et 
l’usage des instruments dont on se propose de le meubler. ‘3 e proper distribution 
of an observatory can only be addressed a. er the number, size, shape and use of 
the instruments intended for it has been M xed’ (Cassini 1810, 74). While some of 
those instruments were portable, others needed to be precisely and M rmly posi-
tioned in a well-designed, controlled environment. Astronomers in Paris always 
complained that their observatory, built by Claude Perrault around 1667, was too 
monumental for this purpose. In a memoir he wrote to make explicit the demands 
an astronomer wished to place on architects eventually engaged designing a new 
observatory, Cassini insisted on two special types of telescope, respectively called 
the transit instrument and the mural quadrant (or circle) (for a detailed architec-
tural memoir on how to design an observatory around 1800, see Borheck 2005).

Both instruments consisted in a combination of telescope and graduated limb, 
and both were used in conjunction with other instruments (Chapman 1995). Fixed 
to a wall precisely oriented along the North–South line, the mural quadrant was 
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usually larger and more M nely graduated than the transit instrument. On a quad-
rant, special microscopes on the limb and wire nets, called micrometers, enabled 
a more precise reading of the graduations. Transit instruments were used together 
with highly precise astronomical clocks. While the former combination of instru-
ments was used to determine the right ascension of a star or planet above the celes-
tial equator, the second measured the exact time at which it crossed the meridian.

Using mural quadrants and transit instruments, both angular coordinates of a 
celestial body at a speciM c moment could therefore be measured to a remarkable 
degree of precision. In the eighteenth century, graduation had been improved 
by a factor of 200, from 20 seconds to a tenth of a second, and progress over 
the nineteenth century was no less spectacular (Frangsmyr et al. 1990, 6). 
Achromatic lenses and clock regulators further improved the precision of the 
measurements made in observatories. In the M rst half of the nineteenth century, 
quadrants and transit instruments were combined and signiM cantly transformed 
by German instrument makers (Chapman 1993), but the telescope’s function as 
observatory scientists’ main purveyor of numerical data was unchallenged until 
the last decades of the century brought the advent of photography, polarimetry, 
and spectroscopy. At the transit instrument, the astronomer ‘listens in silence 
to the ticking of the clock, and [ . . . ] notes exactly the hour, minute, second, and 
fraction of a second when the star passes each wire’ in the telescope (Biot 1810–1, 
I 55). In the dark, the observer at his eyepiece jotted down a few numbers on a 
paper slip (Lesté-Lasserre 2004). From then on, those numbers would be cop-
ied into large registers, preserved for centuries, averaged, combined with scores 
of other numbers, and transformed through various computational procedures, 
tabulated, printed in large folio volumes, distributed across the globe, and even-
tually picked up by seamen or theoreticians.

While meridian observations, even routine ones, required great manual skill, 
the level of mathematical sophistication involved at each step of these processes 
varied greatly. Barely literate teenagers could spend weeks ticking each number 
in long columns just to make sure that no mistake was made when they were cop-
ied from one register to another. But reductions were not trivial computations. 
In fact it was argued that since the reduction of other people’s observations only 
inspired ‘boredom and disgust’, it was the observers’ task to ‘compute’ their own 
observations: ‘being the only one to know well the circumstances that go with 
them, he knows more than anyone else how to choose those that are most trust-
worthy’ (Cassini 1810, 190). 3 is is why any observatory scientist needed to be at 
least conversant in mathematical techniques.

3 e mathematical treatment of data served various purposes. Raw data was of 
little use to the outside community. Reductions made observations at dic erent loca-
tions and times comparable with each other. Because a variety of factors ac ected 
the interpretation of data, that data was corrected using various mathematical 
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algorithms. Corrections increased the precision of the observation, for example 
by taking into account 6 aws in the construction or alignment of the telescope, 
by compensating for dic erences in individual perception (the personal equation), 
or by compensating for aberration (itself dependent on the angle of observation, 
but also on temperature and atmospheric pressure at the time of measurement). 
Logarithms were said to be artiQ ce admirable qui, en abrégeant les calculs, étend 
pour ainsi dire la vie des astronomes (comme) le télescope avait aggrandi (sic) leur 
vue ‘admirable artiM ce that, by shortening computations, extends astronomers’ 
lives (just as) the telescope has increased their sight’ (Biot 1803, 26).

In this sense, mathematics was therefore just another instrument in obser-
vatory scientists’ panoply.8 As such, mathematics was accordingly taken into 
account in the spatial arrangement of observatories. At Greenwich, around 1850, 
it was highly symbolic that, between the transit room, where most transit obser-
vations were made, and the east room, previously devoted to Bird’s now derelict 
quadrant and where jotting books and correspondence were stored, stood the 
computing room—‘the grand scene of labour of the whole Observatory’:

It is only by exception that the astronomer or his assistants are to be found using the 
instruments, even during the regular hours of observatory work; but they are nearly sure 
to be found assembled in the Computing Room, busied, at dic erent tables, with their 
silent and laborious tasks,—the assistants on watch turning an eye now and then to a 
small time-piece which regulates their task of allowing no celestial object of consequence 
to pass the meridian unobserved. (Forbes 1850, 449)

Produced in the transit room and stored in the east room, observatory num-
bers were processed in the computing room located between them. Besides tele-
scopes, there was a wide variety of instruments (thermometers, barometers, 
magnetometers, polarimeters, and so on), which, alone or in conjunction with 
clocks, also gave out numbers. In the natural history of numbers churned out by 
observatories, the operations carried out in the computing room were therefore 
crucial mediating steps between the instruments producing the numbers and the 
outside consumers of these numbers.

Prior to the 1830s, the proportion of published numbers with respect to over-
all production was rather small. When published, numbers o. en played a part 
in narratives that underscored diq  culties encountered (Terrall 2006). As pub-
lication became an indispensable part of the public observatory’s mission, the 
labour that went into preparing such publications was increasingly erased. When 
Airy endeavoured to make old Greenwich observations public, he coped with the 
amount of work involved neither by relying on mathematical innovations nor 
by having recourse to technical advances (contrary to Charles Babbage’s hopes, 
see Schac er 1994b), but by organizing work hierarchically. A senior wrangler at 

8. A similar argument is made by Switjink (1987) without making explicit what is owed to observatory 
culture.
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Cambridge, Airy owed much of his professional success to his mathematical tal-
ents, and these he attributed in large part to his ‘high appreciation of order’. He 
sometimes went as far as to consider mathematics ‘as nothing more than a system 
of order carried to a considerable extent’ (Airy 1896, 6). For reducing the lunar 
and planetary observations of his predecessors, the Astronomer Royal designed 
several printed skeleton forms which were used by lower level stac  to carry out 
computations. Mathematical operations involved in data reductions were there-
fore for the most part reduced to elementary operations. 3 ey mainly consisted 
in carrying out additions and subtractions in decimal and sexagesimal forms, 
and in using numerical tables. Mathematical tasks were split in two: the execu-
tion of computations was rendered as mechanical as possible, while the algorith-
mic part of the work—deciding on the computations that needed to be done and 
in what order—remained the Astronomer Royal’s responsibility.

In the nineteenth century, observatory mathematics was therefore character-
ized by the same paradox as the one already mentioned for the whole of mathem-
atics. Obsessively quantitative, it nevertheless put non-numerical practices at the 
top of its hierarchical scale. Publications streaming out of observatories spread 
were overM lled with numbers. 3 is type of production was a tremendous boost to 
the widespread dic usion of mathematical practices not only among physicists and 
statisticians, but also among cra. smen (such as instrument and clock makers), 
military oq  cers, and seafarers. Nevertheless, forced to manipulate great quan-
tities of numbers, observatory scientists became famous, won prizes and medals, 
and were elected to academy seats not because of their computations but for the 
ingenious ways they devised for avoiding them. ‘To the astronomer’ belonged the 
task of ‘looking for ways to shorten [computations], since by his constant prac-
tice, he is better placed than anyone to perceive the shortcomings of methods 
and resources to be drawn on to make them more bearable’ (Delambre 1810, 
100).9 3 ese methods also played a role, which remains to be studied carefully 
by historians, in widening the number of mathematically literate people in the 
nineteenth century. We will now examine in more details the various  methods 
they developed, by focusing on a few famous instances where observatory math-
ematics had a great impact on the M eld as a whole.

THE OBSERVATORY IN THE HISTORY OF MATHEMATICS

Up until the end of the eighteenth century, it went without saying that astronomy 
had its place in any book on the history of mathematics. Mathematics and astron-
omy were so close to one other that they were for all purposes united.

9. C’est à l’astronome à chercher les moyens de les abréger, puisque, par un usage continuel, il est plus à 
portée que personne d’apercevoir les inconvéniens des methods, et les resources qu’on peut avoir pour le 
rendre plus supportables.
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‘An astronomer, in order to be skilful, must be a Geometer [that is, a mathematician]; a 
Geometer, to deal with grand topics, need to have some of the Astronomer’s knowledge. 
[ . . . ] 3 e Astronomer in his observatory, the Geometer in his cabinet—this is always the 
same man who observes and meditates, who applies to the heavens either his senses or 
his thought’ (Bailly 1785, III 208).

As James Pierpont’s address to the Saint-Louis International Congress attests, by 
1904 the situation had completely changed. As the title of this talk made explicit, 
‘the history of mathematics in the nineteenth century’ could now be written by 
focusing exclusively on the pure domain (complex variables, algebraic functions, 
dic erential equations, groups, inM nite aggregates, non-Euclidean geometry, and 
so on) without even mentioning applications, let alone the observatory sciences.

Meanwhile it seemed that ‘mathematics [had] separated from astronomy, geo-
desy, physics, statistics, etc.’, a fact that Klein (1979, 3) attributed to the profes-
sionalization and specialization of the sciences that were consequences of the 
social and cultural upheavals unleashed by the French Revolution. 3 e increasing 
autonomy of the mathematical M eld, as well as the growing number of mathem-
aticians earning a living as teachers, had important ec ects in shaping the evo-
lution of the M eld towards foundational and structural aspects of mathematics 
(Mehrtens, Bos, and Schneider 1981). Nevertheless, for most of the nineteenth 
century the observatory remained one of the central scientiM c institutions of 
every nation that wished to be called ‘civilized’. It was, as we have seen, a place 
where mathematics was its workers’ daily bread. 3 at observatories went on to 
play major roles in the development of the physical and mathematical sciences 
therefore comes as no surprise.

3 e question, however, is whether observatory mathematics le.  a speciM c 
imprint on nineteenth-century mathematics. In this second section, I would like 
to suggest that the ‘values of precision’ (Wise 1995) so dear to observatory culture 
had in fact everything to do with some of the evolutions of mathematics in that 
period. In 1846, the alliance between precise observation and precise computation 
was fully realized when it became possible to predict the presence of a missing 
planet just by taking into account anomalies in the orbit of its neighbour. Urbain 
Le Verrier and John C Adams acquired instant universal fame when they com-
puted the orbit of Neptune to explain why Uranus was deviating from the orbit 
assigned by Newton’s gravitational theory. 3 e uncanny M t between theory and 
observation was a product of the extreme precision that characterized observa-
tory culture. In the second half of the nineteenth century, conM dence in the value 
of Newton’s law of gravitation, in observational accuracy, and in the analytical 
methods brought to perfection by Laplace (the so-called ‘French Newton’), was 
so high that some astronomers actually spent decades of their lives computing 
numerical tables, developing a single function, or trying to determine the value 
of a single number such as the solar parallax (Aubin 2006). If a discrepancy was 
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found, instruments, theory, or both were usually blamed. Other times, extreme 
precision also provided a test for the eq  ciency of mathematical methods them-
selves, and even for the soundness of the foundations of mathematics.

In the following I will use an abundant secondary literature to discuss three 
famous instances where observatory culture seemed to be pushing known math-
ematics to its limits with considerable impact on its future development: (1) Gauss 
and non-Euclidean geometry; (2) Quetelet’s uses of statistics and his theory of the 
average man; and (3) Poincaré’s solution to the three-body problem. All three epi-
sodes have given rise to controversies among historians, and underscore the diq  -
culty of discussing the relationship between mathematical innovations and their 
social environments. My claim is that by considering each of these contributions 
as anchored in observatory culture, we may gain insight into how conceptions of 
space, time, and society are related to the foundations of mathematics.

GEODESY, GEOMETRY, AND THE CONCEPT OF SPACE

3 ere has been much debate about the exact relationship between Gauss’s unpub-
lished anticipations of non-Euclidean geometry and the commission he received 
in 1820 to carry out the geodetic survey of the state of Hanover. Director of the 
Göttingen Observatory since 1807, Gauss was a natural choice for this task. For 
most of the eighteenth and nineteenth centuries, geodesy was closely associated 
with observatories, since the precise measurement of the earth and that of the 
heavens were interdependent. Careful astronomical observations of M xed stars 
were crucial in any geodetic survey, while it had always been important for the 
purpose of comparing observations to know the exact geodetic position of obser-
vatories with respect to one another. In the early nineteenth century, moreover, 
the skills needed to carry out a geodetic survey were close to those developed in 
observatories. 3 e lengthy trigonometric computations involved were exactly of 
the type observatory scientists were well equipped to carry out, intellectually as 
well as materially. When repeating circles and theodolites were introduced to geo-
detic practice, the observatory scientist’s special skill with the telescope became 
so indispensable that, even in the turbulent times of the French Revolution, only 
astronomers could be sent out, at great risk to themselves, to survey the country 
from Dunkirk to Barcelona (Adler 2002).

Gauss’s correspondents, however, thought that the director of the Göttingen 
observatory could have made better use of his precious time than to spend days 
and nights crisscrossing the countryside for up to six months a year. His friends’ 
and colleagues’ opinions notwithstanding, Gauss seems to have relished this 
exercise in high numerical and instrumental precision. In September 1823, to 
link up his triangulation of Hanover with existing ones to the east and the south, 
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Gauss, together with Christian Ludwig Gerling, measured the angles of a large 
triangle between Brocken, Hohehagen, and Inselsberg (BHI). Since that time, it 
has o. en been said that Gauss undertook the task just to be able to check whether 
the sum of the angles would add up to 180°, as expected in Euclidean geometry 
(Miller 1972).

3 e claim that Gauss made this measurement only to test Euclidean geometry 
is of course ludicrous. But a detailed examination of his geodetic work concluded 
that Gauss was bothered enough by the axiom of parallels to bring it up in fre-
quent conversations, sometimes making mention of this large triangle: ‘3 e myth 
of the BHI triangle as a deliberate test of Euclidean geometry appears a fanciful 
embroidery upon indubitable fact, encouraged possibly by reports made by Gauss 
in his inner circle’ (Breitenberger 1984, 289). 3 e precision of Gauss’s trigono-
metric surveys was indeed extraordinary (Scholz 2004). In other contemporary 
surveys (that of Baron von Krayenhoc  in the Dutch Counties, for instance) the 
error in closing triangles was o. en of the same order of magnitude as the cor-
rection that needed to be made to account for the curvature of the earth surface. 
In Gauss’s survey, however, the closing error was smaller than the latter correc-
tion. In this context, Scholz wrote, it was imaginable for Gauss to provide a lower 
bound for the curvature of physical space, although he never expressed it that 
way—and for good reason, if we are to follow Gray (2006), since we have no indi-
cation that the key concepts of three-dimensional Euclidean geometry were ever 
truly achieved by Gauss.

If one had no need for non-Euclidean geometry to carry out a precise geodetic 
survey, nor did one need to be immersed in the tedium of measuring angles in the 
M eld to breed doubts about the validity of the parallel postulate, the fact is that to 
discover—or invent—non-Euclidean geometry one needed to spend much time 
developing a logically coherent ediM ce, not checking whether numbers added up. 
Mathematicians who were versed in observatory techniques knew only too well 
that absolute precision was not achievable. But they were also acutely aware of 
whether errors were signiM cant or not. In his geodetic survey (as well as in his 
magnetic experiments, see Aubin 2005), Gauss used observatory precision tech-
nologies to extend the limits of what could be explained mathematically.

Indeed, what may be more signiM cant for the invention of non-Euclidean 
geometry is the realization that physical and mathematical spaces need not coin-
cide. Neither Girolamo Saccheri, Johann Heinrich Lambert, nor Adrien Marie 
Legendre, who had tried to show before Gauss that contradicting the parallel pos-
tulate led to inconsistencies, ever harboured doubts about the fact that they were 
working with physical space (Alexander 2006). By contrast, having served as head 
of the observatory in Kazan, Lobatchevski thought that the nature of phys ical 
space could be tested by precisely measuring the angles of a large stellar triangle. 
An alumnus of the Royal Engineering College in Vienna and a sub-lieutenant in 
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the army engineering corps, Janós Bolyai was certainly familiar with geodetic 
techniques. When a correspondent of Gauss’s, Ferdinand Karl Schweikardt, came 
up with the basic idea of a geometry where the sum of the angles of a triangle was 
not equal to 180°, he named it ‘astral geometry’, because he conjectured that one 
might be able to observe this departure from Euclidean geometry in triangles 
drawn in the heavens between stars. It is also highly signiM cant that despite his 
qualms Gauss expressed his ideas about non-Euclidean geometry quite freely to 
other observatory directors such as Bessel and Schumacher.

To the scientist working in the observatory and in the M eld, the dic erence 
between physical and mathematical space perhaps went without saying. To illus-
trate the way in which observatory scientists might be drawn to special ideas 
about space, let me quote from Emmanuel Liais, the French astronomer who 
founded the Rio de Janeiro Observatory and extensively surveyed Brazil:

In 1862, I was travelling through the Brazilian campos [ . . . ]. Constantly admiring the 
various but indeM nite panoramas in front of me, my thoughts inexorably dri. ed towards 
immensity and my attention was caught by our ideas relative to space [l’espace]. [ . . . ] 
From the physical point of view, space indeed is another thing than from the point of 
view of mathematics.10 (Liais 1882, 6–7)11

Liais went on to explain that physical space had many more properties than 
mathematical space, that even the fact that it could measured away from the earth 
was debatable and that mathematical space was a mere abstraction. Experience of 
space in the Brazilian wilderness or on top of German hills was certainly dic er-
ent to experiencing it in one’s armchair. With theodolites, clocks, and numbers, 
observatory scientists constructed spatial networks. In these networks, observa-
tories were crucial nodes that Bruno Latour (1987) has, for good reason, called 
‘centres of calculation’. Observatory scientists were thereby reconstructing phys-
ical space in a manner that went hand in hand with the reconstruction of the 
mathematical concept of space.

QUETELET AND STATISTICAL THINKING

From the perspective of the conceptual history of mathematics, the geodetic 
exper ience is less signiM cant as an inspiration for non-Euclidean geometry than 

10. En 1862, je circulais dans les campos brésiliens ( . . .). En voyant continuellement des tableaux variés 
mais indéM nis se succéder, ma pensée se reportait invinciblement vers l’immensité, et mon attention se M xait 
sur nos idées relatives à l’espace. ( . . .) L’espace, en ec et, au point de vue physique est autre chose qu’au point 
de vue mathématique.

11. Although this comment was made long a. er Gauss’s measurement, it is roughly contemporary with 
Bernhard Riemann’s famous Habilitation lecture that brought non-Euclidean geometry to a large public 
(Gray 2005).
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as a M eld where the least-square method was directly and systematically applied, 
in particular by Gauss (Rondeau Jozeau 1997). If errors in measurement were dis-
tributed according to the bell curve, Gauss showed that the most probable value 
for the ‘true measure’ was the mean value. In the history of statistics, observatory 
scientists are quite prominent (Sheynin 1984; Stigler 1986; Porter 1986; Armatte 
1995; Desrosières 1998). But pride of place is o. en given to Quetelet, whose work, 
it was claimed, ‘helped create a climate of awareness [ . . . ] that was to lead to truly 
major advances in statistical methods’ (Stigler 1986, 215). With his book On man 
(1835), Quetelet tried to develop statistical methods in order to found sociology. 
As such, it was a major step in the development of mathematical tools for the social 
sciences, as well as in the design of general strategies for making mathematics rele-
vant to the social realm. As the founding director of the Brussels Observatory, 
Quetelet drew extensively from an array of analogies he found in his daily practice. 
He introduced the central concept of the ‘average man’ as the formal analogue of 
the average position of a star deduced from several measurements. 3 e distinction 
made by Laplace in the study of planetary motion between periodic and secular 
motion was also mobilized in Quetelet’s work on social phenomena.

My claim is that Quetelet’s debt to observatory culture is perhaps less deep 
but much wider than historians have usually been willing to admit. While his-
torians have fallen prey to the temptation of over-interpreting the meaning of 
his formal analogies, they have neglected to consider the full range of observa-
tory techniques he drew on. In the domain of number manipulation, especially, 
Quetelet mobilized the whole array of table construction, averaging, corrections, 
and data standardization. Observation was also organized in ways taken from 
observatory culture, with standardized instruments distributed across a network 
of trained observers. In my view, Quetelet therefore had ambitions to understand 
and perhaps manage the sublunar world (meteors, the weather, plants, animals, 
and humans) by applying to it the observatory techniques that helped to under-
stand and manage time and space (Aubin, forthcoming).

3 e heuristic value of analogies with celestial mechanics M rst occurred to him 
at the time of Belgian independence in 1830. He later explained the growing 
importance such analogies would assume for him:

At a time when passions were vividly excited by the political events, I sought to distract 
me by establishing analogies between the principles of mechanics and what was happen-
ing in front of my eyes. 3 ese rapprochements I had made without at M rst attributing 
more value than to a spiritual game later came to take the character of truth.12 (Quetelet 
1848, 104)

12. Dans un moment où les passions étaient vivement excitées par les événements politiques, j’avais cher-
ché, pour me distraire, à établir des analogies entre les principes de la mécanique et ce qui se passait sous mes 
yeux. Ces rapprochements que j’avais faits, sans y attacher d’abord plus de valeur qu’à un jeu de l’esprit, me 
parurent ensuite prendre le caractère de la vérité.
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3 is retrospective account is corroborated by several other documents, such 
as the letter Queletet sent to the minister Sylvain Van de Weyer on 22 August 
1834:

3 e most interesting part of my work will be, I think, the theory of population. I was able 
to import it entirely into the domain of the exact sciences [ . . . ]. 3 e great problems of 
population motion will be as solvable as those concerning the motion of celestial bodies; 
and what is most remarkable is the astonishing analogy that exists between the formulas 
that are used for the computations. I think I have partly realized what I have been say-
ing for a long time about the possibility of making a social mechanics, just as we have a 
celestial mechanics.13 (quoted in Delmas 2004, 57–58)

In his unpublished thesis, Michel Armatte (1995) also quoted portions from 
this interesting letter and discussed the way its author was clearly conscious of 
the analogical transfer of methods from celestial mechanics that he was operat-
ing. 3 e question is: what exactly was transferred and how? At the conference 
organized for Quetelet’s bicentennial in 1996, the historian of statistics Stephen 
M Stigler (1997) opposed the received wisdom according to which it was neces-
sary to insist on Quetelet’s astronomical training in order to understand the intel-
lectual sources of his social thinking. Canonical thinking was that Quetelet had 
sought to repeat in the social sphere what Newton had achieved for the planet ary 
spheres. Stigler thought that this was ‘misleading’:

3 e problem, as I see it, is that astronomy, as it was conceived in the 1820s, encompassed 
a much richer variety of mathematical and empirical problems that can be captured by 
any simple description; certainly it was much more than Newtonian or Laplacian celes-
tial mechanics. It is quite proper to associate Quetelet with astronomy, but with which 
part?

3 e solution oc ered by Stigler deserves a closer look. According to him, Quetelet 
was neither the mechanician, nor the physicist, nor even the astro nomer of the 
social, but its ‘meteorologist’. It is true that at the Brussels observatory, which for 
many years lacked proper instruments, Quetelet spent as much—if not more—
time working in meteorology and climatology than in either astronomy or the 
social sciences. He moreover published several books on Belgian meteorology and 
climatology compared to that of the world. But his scientiM c practice was intim-
ately linked with the site he was establishing, that is, an observatory. To Quetelet, 
as far as scientiM c practice went, the meaningful category was not astronomy, 

13. La partie la plus curieuse du travail sera, je crois, la théorie de la population. Je suis parvenu à la 
 transporter entièrement dans le domaine des sciences exactes ( . . .). On pourra résoudre les grands problèmes 
des mouvements de population comme ceux des mouvements des corps célestes ; et ce qu’il y a de plus remar-
quable, c’est l’étonnante analogie qui existe entre les formules qui servent à ces calculs. Je crois avoir réalisé 
en partie ce que j’ai dit depuis longtemps sur la possibilité de faire une mécanique sociale comme ĺ on a une 
mécanique céleste.
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physics, or meteorology, but the observatory sciences. And while the misconcep-
tion that astronomical practice in the 1820s could be reduced to Laplacian celes-
tial mechanics has been a block to a proper understanding of Quetelet’s thinking, 
there is no doubt that ,for someone like Quetelet, underestimating the unity of 
the observatory sciences and overvaluing disciplinary boundaries would not be 
of much help either. Like many of his colleagues and correspondents in obser-
vatories around the globe, Quetelet was not set on enlar ging the dominion of 
Laplacian determinism. Rather, he was trying to adapt what he perceived as a 
coherent set of knowledge and techniques that characterized the practice of the 
observatory sciences to the needs of the world outside the observatory, whether 
physical or social.

Quetelet’s practice in the social sciences is characterized by a strong faith in the 
quantiM cation of the sciences. One should remember here that the quantiM cation 
of statistics—that is, the ‘science of the state’, as it was still understood etymo-
logically—was no trivial business and faced M erce resistance (Quetelet 1830). To 
him, numbers seemed more objective, less controversial, and less prone to betray-
ing political and ideological a priori opinions than other types of description (on 
the history of objectivity, see Daston and Galison 1992). But Quetelet could draw 
on the observatory tradition for material and conceptual techniques to manipu-
late numbers in large quantities. Tables, equations, averaging, and graphical tools 
all M gure prominently in his social physics, as well as probability theory.

In the 1830s and 1840s, Quetelet’s network of collaborators in the physical 
and in the social sciences, in Belgium and abroad, expanded steadily. Standard 
instruments were distributed, procedures were shared. By mid-century, it seemed 
clear that greater coordination was needed. In 1853, Quetelet welcomed two 
inter national congresses to Brussels, within two months of one another. 3 e M rst 
was devoted to navigation and climate science, under the inspiration of Admiral 
Matthew Fountain Maury, the head of the US Naval Observatory, while the second 
founded a series of International Statistical Congresses that is uninterrupted to 
this day. In both cases, the ideals of the observatory sciences were held in high 
respect. 3 e aim was to set up vast instrumental networks covering the whole 
globe and churning out standardized numerical data. Historians have shown the 
major impact of this vision on the future development of mathematical statistics 
as well as the social sciences (Armatte 1995; Desrosières 1998).

In this story, the powerful in6 uence of observatories would quickly wane. 
Quetelet’s role in the history of mathematics was therefore not so much to use 
astronomical analogies at a conceptual level, as it was to adapt the very wide 
arsenal of tools he had found and developed in the observatory tradition in order 
to make them pertinent to the sciences of man. In so doing, he mobilized prob-
ability theory to an extent rarely done before by physical scientists, leading to 
important innovations by James Clerk Maxwell and Ludwig Boltzmann, who 
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set out the foundations of statistical physics (Porter 1986). Similarly, this use of 
statistical and probabilistic tools led to the further development of mathemat-
ical statistics (Stigler 1986; Hacking 1990). As the nineteenth century unfolded, 
it became less and less a characteristic of the observatory to insist on the pre-
cise production of numbers, while the mathematical techniques developed for 
manipulating data were increasingly used outside the observatory. Mathematical 
statistics was no longer typically associated with the observatory (though some 
observatory scientists did contribute to it). But, signiM cantly, it was again through 
the exact quantitative confrontation of mathematics with observations that tech-
niques were developed for standardizing data on an international scale. Numbers 
extended their empire to society and, by the same token, so did the mathematical 
techniques for producing and manipulating numbers (Porter 1995).

POINCARÉ, ANALYSIS, AND CELESTIAL MECHANICS

International congresses similar to those Quetelet presided over in Brussels—
the Congress for establishing a Prime Meridian, in Washington in 1882, the 
Geodetic International Conference in Rome in 1883, the Solvay Congresses, and 
so  on—loom large in Peter Galison’s account of the origins of relativity theory 
(2003). 3 e close alliance of precision technology (clocks, telegraphs, and the-
odolites) with numerical precision, in short everything I have associated with the 
observatory culture of the early nineteenth century, are described as the basis for 
the material cultures of Albert Einstein and Henri Poincaré. At the beginning 
of the twentieth century, they had independently developed similar ideas about 
time and space—although claims in favour of Poincaré’s contributions to rela-
tivity theory have been greatly exaggerated (Gingras 2007). But a clerk in a Bern 
patent oq  ce could not see things identically to someone sitting on various coun-
cils and bureaus. 3 e worldview of a young theoretical physicist in the German 
cultural sphere was dic erent from that of an established professor of mathemat-
ics, physics, and mechanics at the Sorbonne.

What Poincaré’s story illustrates well in my opinion is that the extreme preci-
sion of observatory science provided incentives to re-examine the inner workings 
of its mathematical technologies. Poincaré had no intention of revolutionizing 
physics or mathematics. Instead of questioning Newtonian tenets, he wished 
to M ll the blanks in the picture. In the process, he developed his own philoso-
phy of science, conventionalism. Conventionalism proposes that the statements 
with which we choose to express the laws of physics, mechanics, and astronomy 
are used not because they are real but because, due to their simplicity, they are 
the most convenient we can think of. 3 is was a very dic erent attitude from 
Einstein’s, who thought that new principles were needed to replace old ones. 
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In Galison’s assessment, there thus was a form of ‘optimistic modernism’ in 
Poincaré’s conventionalism.

Lately, our understanding of Poincaré’s work has had to be reconsidered. One 
reason has been the recent discovery of an error he made. In 1889, he submitted 
a fundamental essay to a prize competition organized by Gusta Mittag-Le  ́ er 
on the three-body problem. When Edvard Phragmén started to edit the paper 
and found the error, Poincaré was devastated. Reworking the argument, he was 
led to discover ‘homoclinic’ points, ‘the M rst mathematical description of chaotic 
motion in a dynamical system’ (Barrow-Green 1997, 71).

As opposed to the M rst dra.  of Poincaré’s prize-winning essay, which ‘conveys 
a sense of optimism about the ultimate resolution of the problem’, the tenor of 
the second dra.  was ‘quite dic erent: the future progress of the problem has lost 
its air of inevitability’ (Barrow-Green 1997, 75). ‘Chaos’ is of course the second 
reason why Poincaré’s work is now seen in a dic erent light (Aubin and Dahan-
Dalmedico 2002). While some scientists and popularizers have hailed chaos as a 
new scientiM c revolution—the third of the century a. er relativity and quantum 
mechanics—others pointed out that it had M rst been explored towards the end of 
nineteenth or the beginning of the twentieth century (Hirsch 1984; Diacu and 
Holmes 1996). Most people, however, have agreed on one point—namely, that a 
new look at many parts of Poincaré’s work (his memoirs on curves deM ned by dif-
ferential equations, his study of the three-body problem in celestial mechanics, 
his pioneering work in dynamical systems theory and topology, his contributions 
to ergodic theory, and so on) played crucial parts in the emergence of chaos the-
ory in the mid-1970s. While it is no doubt true that Poincaré’s work foreshad-
owed concerns, and introduced key concepts and methods used in chaos theory, 
it is hard to explain why the great burst of activity only took place several decades 
a. er his death. 3 is problem has given rise to various attempts to account for this 
‘nontreatment’ (esp. Kellert 1993), but most have eschewed the admittedly ardu-
ous task of placing Poincaré among contemporary observatory scientists.

When he submitted his paper in 1889, Poincaré was not directly involved with 
the observatory.14 But through his training at the École polytechnique he was 
fully aware of its scientiM c culture and trained in the use of theodolites and of the 
least-square method. Poincaré shared with Cauchy, Le Verrier, and Weierstrass 
a strong interest in the problem of the stability of the solar system. Further, his 
main sources very much belonged to the observatory: Hugo Glydén was director 
of the Stockholm Observatory; Andres Lindstedt had observed at Hamburg and 
Dorpat; George W Hill worked for the US Nautical Almanac Oq  ce.

14. Poincaré was nominated as a member the Bureau of Longitudes in 1893, joined the editorial board of 
the Bulletin astronomique published by the Paris Observatory in 1897, and the Paris Observatory Council in 
1900.

04-Rost-Chap03.indd   Sec3:29204-Rost-Chap03.indd   Sec3:292 6/23/2008   6:50:19 PM6/23/2008   6:50:19 PM



Observatory mathematics in the nineteenth century 293

A source for Poincaré’s optimism may be found in observatory culture. Although 
the social history of celestial mechanics in the nineteenth century remains to be 
written, there is little doubt that it constitutes one of the most optimistic branches 
of science at a time when there was particular optimism about science. A. er the 
discovery of Neptune, the highpoint of celestial mechanics was perhaps Charles-
Eugène Delaunay’s publication of his Moon theory (2 vols, 1860; 1867). In these 
books, Delaunay pushed to the extreme the formal analytical expansion of a single 
function. He spent twenty years of his life developing it to the seventh order (and 
sometimes even to the ninth order), computing over 1259 terms in the expansion 
series for the moon’s longitude and 1086 for its latitude. Although this extraordin-
ary ec ort has sometimes been ridiculed, Delaunay’s work is emblematic of the 
tremendous optimism invested both in the precision of the measurements made 
in the observatory and in the precision of the analytical method.

In the 1860s, however, mathematicians at the university and astronomers in 
the observatory were already starting to move apart from one another. 3 e rise 
of astrophysics implied great changes in observatory culture (Le Gars 2007). New 
instrumentation had given rise to new problems about the physical nature of celes-
tial bodies. To provide answers to these questions, mathematical tools seemed 
less useful than those taken from physics and chemistry. Similarly, the now fully 
professionalized mathematical community was shi. ing its focus (Lützen 2003). 
Unlike earlier generations of observatory mathematicians, Poincaré was no com-
puter. ‘3 e mathematical style of Poincaré was intensely modern. [ . . . ] Few of 
his results depend on long or diq  cult computations. He said of himself with a 
furtive touch of humor [ . . . ] that he was poor at arithmetic’ (Veblen 1912, viii). 
Mathematicians were now emphasizing rigour, which led them to reconsider the 
concept of convergence. Where astronomers had been content with series whose 
terms decreased rapidly, mathematicians insisted that convergence had to be 
proved formally (Barrow-Green 1997, 18). For someone like Poincaré, rigour held 
the key to the elusive proof of the stability of the solar system.

If we follow Galison (2003), we recognize in Poincaré’s conventionalism the 
technical world of diplomats, scientists, and engineers, where international con-
ventions, telegraphy, and maps were used by modern states and businesses to 
control time and space. My account suggests that it was this same enterprise that 
required the foundations of mathematics to be opened up and examined anew. But 
for this task, a new generation of mathematicians, with few ties with the observa-
tory, was coming along: they would focus more on the implications of Poincaré’s 
work in logic, geometry, and philosophy than in old-fashioned celestial mechan-
ics. A product of the mathematical culture of the observatory, Poincaré’s homo-
clinic points did not seem fundamental enough to modern mathematicians, yet 
too mathematically rigorous to the observatory community. 3 is is probably why 
very few people at the time were able to understand their signiM cance.
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CONCLUSION

For all the inaccuracies he is known to have perpetrated in his historical work, 
Eric Temple Bell was drawing attention to an interesting characteristic of 
 nineteenth-century mathematics when he wrote:

Too o. en for comfort, mathematics in the nineteenth century followed the same formula 
of glut without digestion as the rest of civilization in that heroic age of expansion at any 
cost. But according to the abstractionists of 1940, the discarnate spirit of simplicity was 
then about to descend and bless all mathematics, and the more rococo masterpieces of 
the nineteenth century were to be preserved only in museums frequented exclusively by 
historians. (Bell 1992, 410)

Like Bell’s abstractionists, historians of mathematics have paid greater atten-
tion to the foundational aspects of mathematics than to the bulk of the mathem-
atical work done in the period. By examining the place of mathematics in a 
speciM c but signiM cant site, we have been able to grasp the signiM cance of some of 
the ‘rococo masterpieces’ of observatory mathematics. Computing astronomical 
tables, eliminating errors in geodetic surveys, compiling social data, and analyt-
ically expanding solutions of dic erential equations represented massive ec orts 
that led to impressive results. Other sites, like accounting oq  ces, army training 
grounds, or engineering projects would similarly unveil interesting aspects of the 
mathematical practice of the period.

In the course of the nineteenth century, precision instruments, mathemat-
ical techniques of number manipulation, and social techniques for establishing 
standardized conventions became ubiquitous. Because of the prominent position 
occupied by the observatory in the nineteenth-century worldview, it had a special 
ec ect on mathematics as a discipline, and many mathematical innovations came 
out of the work of observatory scientists. But my study has shown that, more than 
what it directly contributed in terms of mathematical concepts or theories, the 
importance of observatory mathematics may lie in what it teaches us about trans-
formations in the relationship between mathematics and the world. Or rather, 
observatory mathematics is an especially good platform from which to look at 
the way in which mathematics was transformed between 1800 and 1900 so as to 
become an autonomous logical construct—a construct that was actually made to 
account for the physical and social worlds that shaped each other.

An anonymous reviewer wrote in 1900 that:

A really good history of mathematics in the nineteenth century has yet to be written; it 
would probably require the combined labour of an organised body of experts. [ . . . ] For 
the history of modern mathematics is not mainly that of individual discoveries, however 
brilliant; but that of the systematic investigation of mathematical notions such as ‘num-
ber’, ‘continuity’, ‘function’, ‘limit’ and the like. (GBM 1900, 511)
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I hope to have shown that the intense examination of the abstract, founda-
tional, and structural aspects of mathematics that was to characterize the next 
half-century was a direct consequence of collective ec orts made by observatory 
scientists to construct both a world that could be mathematized and a mathem-
atics whose basic concepts were precise enough to account for increasingly large 
chunks of that world.
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