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Shifted quantum affine algebras arose [FT] in the study of quantizedK-theoretic
Coulomb branches of 3d N = 4 SUSY quiver gauge theories. A presentation of
shifted quantum affine algebras by generators and relations was given by Finkelberg-
Tsymbaliuk.

Let g be a simple complex finite-dimensional Lie algebra of rank n, and ĝ
the corresponding untwisted affine Kac-Moody algebra, central extension of the
loop algebra Lg = g ⊗ C[t±1]. Drinfeld and Jimbo associated to each complex
number q ∈ C∗ the quantum affine algebra Uq(ĝ) which is a Hopf algebra. Shifted
quantum affine algebras Uµ

q (ĝ) can be seen as variations of Uq(ĝ), but depending
on an integral coweight µ of the underlying simple Lie algebra g. These coweights
corresponding to shifts of formal power series in the Cartan-Drinfeld elements (that
is quantum analogs of the trh ∈ Lg, with r ∈ Z and h ∈ h in the Cartan subalgebra
of g). In particular U0

q (ĝ) is a central extension of the ordinary quantum affine
algebra Uq(ĝ).

In [H1], we develop the representation theory of shifted quantum affine algebras.
We establish several analogies with the representation theory of ordinary quantum
affine algebras, but also several new properties, in particular in relations to rep-
resentations of the ordinary Borel subalgebra Uq(b̂) ⊂ Uq(ĝ). Consider a category
Oµ of representations of Uµ

q (ĝ) which is an analog of the ordinary category O.

Theorem 1 [H1] The simple representations L(Ψ) in Oµ are parametrized by
n-tuples Ψ = (Ψi(z))1≤i≤n of rational fractions regular at 0 with deg(Ψi(z)) =
αi(µ).

For the moment, we assume that g is of simply-laced type.
For 1 ≤ i ≤ n and a ∈ C∗, let Ψi,a = (1 − δi,jza)j∈I and ω∨

i a fundamental
coweight. We have the following examples.

- L+
i,a = L(Ψi,a) is a one-dimensional representation of Uω∨

i
q (g) called a positive

prefundamental representation,

- L−
i,a = L(Ψ−1

i,a ) is an infinite-dimensional representation of U−ω∨
i

q (g) called a
negative prefundamental representation

- Vi,a = L(Ψi,aq−1Ψ−1
i,aq) is a finite-dimensional fundamental representation of

the ordinary quantum affine algebra (up to a twist).
Although individually each Uµ

q (ĝ) is not a Hopf algebra, one can define a ring
structure on the sum of Grothendieck groups

K0(O) =
⊕
µ

K0(Oµ)

from a procedure called fusion product. It contains the Grothendieck ring K0(Csh)
of finite-dimensional representations as a subring.
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For example, for g = sl2 we have the QQ-relation in K0(O) :

[L+
1,a][L

−
1,a] = 1 + [L(q−2)][L−

aq−2 ][L
+
aq2 ],

with L(q−2) one-dimensional representation associated to a constant ℓ-weight.

Theorem 2 [FH] Analog QQ-relations hold in K0(Osh) for general g, involving
new elements Qw(ωi),a ∈ K(Osh), where 1 ≤ i ≤ n, w is a Weyl group element
and a ∈ C∗.

The Qw(ωi),a will be called Q-variables. We have

Qωi,a = [L+
i,a] and Q−ωi,a = [L−

i,aq−h ],

with h the Coxeter number of g. In type A2, we have

Qs1(ω1),a = Qω2−ω1,a = L(Ψ2,aq−1Ψ−1
1,aq−2).

Recall that the cluster algebra A(Q) attached to a quiver Q is a commutative
ring with a distinguished set of generators called cluster variables and obtained
inductively by a procedure (mutations and exchange relations) from initial cluster
variables. The cluster variables are grouped into overlapping subsets (the clusters).
A cluster monomial is a monomial in cluster variables from a given cluster.

It is very useful to realize Grothendieck rings in terms of cluster algebras (see
[H2] for a recent review).

In the following, we will restrict to subcategories Osh
Z ⊂ Osh and CshZ ⊂ Csh

with an integrality conditions on possible simple constituents (the description of
such subcategories is sufficient to understand the whole category).

Theorem 3 [HL, KKOP, H1] The Grothendieck ring K0(CshZ ) has a structure
of a cluster algebra A(Γg) for an explicit quiver Γg with initial cluster variables
which are classes of positive prefundamental representations. Moreover, all cluster
monomials are classes simple objects.

In the sl2-case, the quiver Γsl2 is the infinite linear quiver :

· · · −→ • −→ • −→ · · ·

The initial cluster is formed of classes of 1-dimensional positive prefundamental
representations

· · · −→ L+
1,q−2 −→ L+

1,1 −→ L+
1,q2 −→ · · ·

For g = sl3, the quiver Γsl3 and the initial cluster are

· · · // [L+
1,q−2 ]

zz

// [L+
1,1]

//

{{

· · ·

· · · // [L+
2,q−3 ] //

bb

[L+
2,q−1 ] //

dd

[L+
2,q]

//

bb

· · ·

Theorem 4 [GHL1] The Grothendieck ring K0(Osh
Z ) is isomorphic to (a com-

pletion of) a cluster algebra AΓ′
∞
, with an explicit quiver Γ′

∞. The Q-variables
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are identified with cluster variables and the QQ-system above are identified with
exchange relations.

One of the crucial technical step in the proof of this Theorem is the convergence
of certain g-vectors of cluster variables for certain infinite sequences of mutations,
that we establish. This relies in part on a nice partition of the quiver in slices.

For g = sl2, the new quiver Γ′
∞ is obtained from the older quiver Γ∞ by inverting

the direction of one arrow :

· · · −→ • −→ • ←− • −→ • −→ · · ·
The initial variables are positive/negative prefundamental representations :

· · · −→ L+
1,q2 −→ L+

1,1 ←− L−
1,q−2 −→ L−

1,q−4 −→ · · ·

For g = sl3, the quiver Γ′
sl3

is also built from the periodic quiver Γsl3 , except
that it contains 3 quadrilaterals :

· · · • // •

��

•oo // •

��

• //oo · · ·

}}
· · · // • //

bb

•

__

•oo // •

__

// · · ·
The initial cluster variables are the [L+

1,q2r ], [L+
2,q2r−1 ], [L+

1,q2s ], [L+
2,q2s−1 ], with

r ≥ 0, s ≤ −2, as well as [Qs1(ω1),q−1 ] and [Qs1(ω1),q−3 ].
In general, we conjecture the following, that we establish for g = sl2 in [GHL1].

Conjecture [GHL1] All cluster monomials in AΓ′
∞

correspond to classes of
simple objects in O through our isomorphism.

In [GHL2] we investigate the non-simply laced types. There are several im-
portant differences, for example the nice partition of the quiver into slices does
not work here, and we need difference methods to establish the stabilization of
g-vectors.
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