
Descriptive set theory
Chapter 1-General topology

Descriptive set theory is the study of the definable subsets of the Polish topological spaces. In this
theory, sets are classified in hierarchies, according to their topological complexity. This is a way of
differentiating the objects of a big collection. Another motivation is as follows. In mathematics, an
important concern is to prove existence results. Saying that there is an object satisfying a property is
equivalent to say that the set of the objects satisfying this property is nonempty. And one way to prove
that a set is nonempty is to prove that it is complex. Another concern is to look for simple characteri-
zations of some properties. Proving that a property is complex is one way to rule out the possibility to
characterize it simply. Descriptive set theory has been one of the main areas of research in set theory
for more than one century now. Moreover, its concepts ans results are being used in diverse fields of
mathematics, such as mathematical logic, combinatorics, topology, real and harmonic analysis, func-
tional analysis, measure and probability theory, potential theory, ergodic theory, operator algebras,
and topological groups and representations.

1 Topological spaces

Topology is a part of mathematics giving a precise meaning to the intuitive notions of “being
close”, “being the limit”. The goal of this chapter is to recall the notions and results from topology
that will be used later, not to give a course on topology.

Definition 1.1 Let X be a set. A topology on X is a set τ of subsets of X , the open sets, such that
(a) the empty set and the whole set X are open,
(b) the intersection of finitely many open sets is open,
(c) the union of any family of open sets is open.

If τ is a topology on X , then (X, τ) is called a topological space. If there is no ambiguity, we will
also say that X is a topological space.

Notation. If X is a set, then 2X is the set of all subsets of X . It is also the discrete topology on X .

We now see how to construct an open set, starting with an arbitray subset of the ambient space.

Definition 1.2 Let X be a topological space, x∈X , and S be a subset of X .
(a) A neighborhood of x is a subset of X containing an open set containing x.
(b) S is closed if the complement of S is open. The closure of S is the intersection S of the closed

sets containing S. The set S is dense in X if S=X .
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(c) The interior of S is the union Int(S) of the open sets contained in S.

Note that S is open (resp., closed) if and only if S is equal to Int(S) (resp., S). The following
notion is necessary to understand an important result in descriptive set theory, the perfect set theorem.

Definition 1.3 Let X be a topological space, and x∈X .
(a) The point x is isolated if {x} is an open set.
(b) The space X is perfect if it has no isolated point.

Definition 1.4 Let (X, τ), (Y, σ) be topological spaces, and f :X→Y be a function.
(a) We say that f is continuous if, for each O in σ, f−1(O) is in τ , i.e., if the pre-image of any

open set is open.
(b) We say that f is open if, for each O in τ , f [O] is in σ, i.e., if the image of any open set is open.
(c) We say that f is a homeomorphism if f is a bijection from X onto Y and f, f−1 are contin-

uous.

The continuous functions are the ones preserving the topology.

2 Operations

The purpose of this section is to see how to build new topological spaces out of old ones.

2.1 Induced topology

Given a topological space X and a subset S of X , there is a natural way to equip S with a
topology.

Definition 2.1 Let (X, τ) be a topological space, and S ⊆ X . The induced topology τS on S is
defined by τS :={O ∩ S | O∈τ}.

One can check that this defines indeed a topology.

Exercise. Let X,Y be topological spaces, and f :X→ Y be a function. Prove that f is continuous
if and only if its co-restriction f :X→ f [X] is continuous, f [X] being equipped with the topology
induced by that of Y .

2.2 Sum topology

Notation. Let X,Y be sets. The sum of X and Y is the set X⊕Y :=({0}×X) ∪ ({1}×Y ).

Definition 2.2 Let (X, τ), (Y, σ) be topological spaces. The sum topology on X⊕Y is

{({0}×O′) ∪ ({1}×O′′) | O′∈τ ∧O′′∈σ}.

One can check that this defines indeed a topology. Note that the definition of the topological sum
of two spaces can be extended to an arbitrary sums.
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Exercise. Prove that if X,Y, Z are topological space and fX :X→Z, fY : Y →Z are continuous,
then the function f : X⊕Y → Z defined by f(0, x) := fX(x) and f(1, y) := fY (y) is continuous
for the sum topology, and that conversely every continuous map f :X⊕Y →Z can be decomposed
likewise.

2.3 Product topology

The following notion will be used to construct two very important spaces in descriptive set theory,
the Cantor space and the Baire space.

Definition 2.3 Let
(
(Xi, τi)

)
i∈I be a family of topological spaces. The product topology on Πi∈I Xi

is the topology whose open sets are the unions of the products of the form Πi∈I Oi, where Oi∈τi for
each i∈I , and Oi=Xi except for finitely many i’s in I .

Exercise. Let
(
(Xi, τi)

)
i∈I be a family of topological spaces, i∈I , and πi :Πi∈I Xi→Xi defined by

πi
(
(xi)i∈I

)
:=xi be the i’th projection. Prove that πi is continuous for the product topology.

In fact, the product topology is the smallest topology making all the projections continuous.

3 Generating topologies

Exercise. Let X be a set, and (τi)i∈I be a non-empty family of topologies on X . Then
⋂
i∈I τi is a

topology on X . It is the biggest topology contained in each τi, for the inclusion.

Definition 3.1 Let X be a set, F ⊆2X , and TF be the set of all topologies on X containing F . The
topology generated by F is

⋂
τ∈TF τ . It is denoted by τ(F).

Note that TF is not empty since it contains 2X , and τ(F) is the smallest topology containing F .

Definition 3.2 Let (X, τ) be a topological space.
(a) A basis for the topology of X is a collection B ⊆ τ with the property that every open set is

the union of elements of B (by convention, the empty union gives the empty set).
(b) A subbasis for the topology of X is a collection S ⊆ τ with the property that the set of finite

intersections of sets in S is a basis for the topology of X .

Exercise. Let X be a set, and B ⊆ 2X . Then B is a basis for a topology on X if and only if the
intersection of two members of B can be written as a union of members of B and X=

⋃
{B | B∈B}.

Proposition 3.3 Let X be a set, and F⊆2X . Then τ(F) is the set of unions of finite intersections of
elements of F (by convention, the empty intersection gives X).

We now relativize the notion of a basis to the points of the ambient space.

Definition 3.4 Let X be a topological space, and x∈X .
(a) A family U of neighborhoods of x is a neighborhood basis for x if for every neighborhood N

of x, there is U ∈U such that U⊆N .
(b) X is first countable if all its elements have a countable neighborhood basis.

Exercise. Any countable product of first countable spaces is first countable.
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Notation. We denote by ω the set N of natural numbers, sometimes viewed as an ordinal or a cardinal.
A sequence (xn)n∈ω of points of a set X will sometimes be denoted by (xn), when there is no
ambiguity.

We now define the basic notion of a limit of a sequence of points of a topological space.

Definition 3.5 Let X be a topological space. A sequence (xn) of points of X is convergent if there
is x ∈ X such that, for every open neighborhood O of x there is N ∈ ω such that, for all n ≥ N ,
xn∈O. In this case, we say that (xn) converges to x and that x is the limit of (xn).

Exercise. Let X be a first countable space, and S ⊆X . Then S is the set of limits of sequences of
elements of S. In particular, S is closed if and only if every convergent sequence of elements of S
onverges to an element of S.

Proposition 3.6 Let X,Y be topological spaces, X being first countable, and f : X → Y be a
function. Then f is continuous if and only if, for every x∈X and every sequence (xn) converging to
x,
(
f(xn)

)
converges to f(x).

Proof. Assume that f is continuous andO is an open neighborhood of f(x). Then f−1(O) is an open
neighborhood of x, which gives N ∈ ω such that, for all n≥N , xn ∈ f−1(O). Then f(xn) ∈O if
n≥N , showing that

(
f(xn)

)
converges to f(x). Conversely, assume that C is a closed subset of Y .

It is enough to prove that S :=f−1(C) is closed. By the previous exercise, it is enough to check that
every convergent sequence (xn) of elements of S converges to an element of S. Let x be the limit of
(xn). Note that f(xn)∈C for each n. By assumption,

(
f(xn)

)
converges to f(x). Thus f(x) is in C

which is closed, and we are done. �

In the Cantor space and the Baire space, there will be a combinatorially very nice basis for the
topology, having the following property.

Definition 3.7 Let X be a topological space, and S⊆X . We say that
(a) S is clopen if S is closed and open,
(b) X is zero-dimensional if there is a basis for the topology of X made of clopen sets.

4 Notions of separation

The notion of separation of sets is crucial in descriptive set theory.

Definition 4.1 Let X be a topological space. We say that X is
(a) T1 if every singleton of X is closed,
(b) Hausdorff if every two distinct points of X have disjoint open neighborhoods,
(c) regular if, for any x in X and any open neighborhood N of x, there is an open neighborhood

O of x such that O⊆N ,
(c) normal if, for any disjoint closed subsets C,F of X , there are disjoint open subsets O,U of

X such that C⊆O and F ⊆U .

Note that every Hausdorff space is T1, and every zero-dimensional space is regular.
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Lemma 4.2 (Urysohn) Let X be a normal space, and C,F be disjoint closed subsets of X . Then
there is a continuous function f :X→ [0, 1] such that f(x)=0 if x∈C, and f(x)=1 if x∈F .

Proof. We first construct a family (Oq)q∈Q∩[0,1] of open subsets of X containing C and contained in
X\F such that Oq⊆Or if q<r. Let (qn) be an enumeration of Q∩ [0, 1] with q0 :=0 and q1 :=1. We
proceed by induction on n. We first set O1 :=X\F and choose O0 such that C⊆O0⊆O0⊆O1. We
now want to construct Oqn+1 , with n≥1. Take k, l≤n such that qk≤qn+1 is maximal, and ql≥qn+1

is minimal. By normality, we get Oqn+1 with Oqk⊆Oqn+1⊆Oqn+1⊆Oql .

We now set f(x) := inf({1}∪{q∈Q∩[0, 1] | x∈Oq}). Note that f(x)≤q if x∈Oq, and f(x)≥q
if x /∈Oq. Thus f(x)=0 if x∈C, and f(x)=1 if x∈F . If b∈ (0, 1], then f−1

(
[0, b)

)
=
⋃
q<b Oq. If

now a∈ [0, 1), then f−1
(
(a, 1]

)
=
⋃
q>a X\Oq. Thus f is continuous. �

5 Metrizability, the Baire theorem

An important method to construct a topology is to use a metric.

Definition 5.1 Let X be a set, and d :X2→ [0,∞) be a function. We say that d is a metric on X if,
for x, y, z∈X ,

(a) d(x, y)=0 if and only if x=y,
(b) d(x, y)=d(y, x),
(c) d(x, y)≤d(x, z)+d(z, y).

We say that (X, d) is a metric space if X is a set and d is a metric on X .

Example. X=R, equipped with d defined by d(x, y) := |x−y|, is a metric space.

We can associate a topology to a metric. In order to do this, we need the following notation.

Notation. Let (X, d) be a metric space, x ∈ X , and r > 0. The open ball Bd(x, r) of center x
and radius r consists in all the points which are r-close to x: Bd(x, r) := {y ∈ X | d(x, y) < r}.
When the metric d is clear from the context, we will skip the index and simply write B(x, r) for
the open ball of center x and radius r. We also define the closed ball of center x and radius r by
Bd(x, r] :={y∈X | d(x, y)≤r}.

Definition 5.2 Let (X, τ) be a topological space. We say that X is metrizable if there is a metric d
on X such that the open balls form a basis for τ .

Remarks. (a) If X is a metrizable space with witness d, then X is first countable since, for any x in
X ,
(
B(x, 1

n+1)
)
n∈ω is a countable neighborhood basis for x.

(b) If the topology of X is defined by a metric d, then (xn) converges to x if and only if for every
η>0 there is N ∈ω such that, for all n≥N , d(x, xn)<η.

Exercise. Let (X, d) be a metric space, and d′(x, y)=min
(
1, d(x, y)

)
. Then d′ is a metric which also

defines the topology induced by d.

Exercise. Let X be a metrizable space, with witness d. Then any closed ball Bd(x, r] is closed.
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Proposition 5.3 Every metrizable space is Hausdorff and regular, and thus T1.

Proof. LetX be a metrizable space, with witness d. If x 6=y are inX , then the open ballsB(x, d(x,y)2 ),
B(y, d(x,y)2 ) are disjoint open neighborhoods of x, y respectively. Thus X is Hausdorff. If now N is
an open neighborhood of x, then there is r>0 such that B(x, r)⊆N . We set O :=B(x, r2), so that O
is an open neighborhood of x. If y∈O, then d(x, y)≤ r

2<r since Bd(x, r2 ] is closed, so that y∈N .�

Exercise. Prove that every metrizable space is normal.

Proposition 5.4 Let (X, d) be a metric space, and S be a nonempty subset of X . Then the map
x 7→d(x, S) := infy∈S d(x, y) is continuous.

Proof. This comes from the fact that, for all x, y∈X , d(x, y)≥|d(x, S)−d(y, S)|. �

Theorem 5.5 Any countable product of metrizable spaces is metrizable.

Proof. Let (Xn) be a sequence of metrizable spaces, and (dn) be a sequence of metrics such that dn
is a witness for the metrizability of Xn, for each n. We set

d
(
(xn), (yn)

)
:=Σn∈ω 2−nmin

(
1, dn(xn, yn)

)
.

We saw that (xn, yn) 7→min
(
1, dn(xn, yn)

)
is a metric on Xn defining the topology induced by dn,

for each n. This implies that d is a metric on Πn∈ω Xn. In order to see that d defines the product
topology, we need to show that the identity map on Πn∈ω Xn is a homeomorphism when on one side
we put the product topology and on the other side the topology induced by d. Since Πn∈ω Xn is
first countable for the product topology, by Proposition 3.6, we only need to check that for a sequence(
(xmn )n∈ω)

)
m∈ω of elements of Πn∈ω Xn and (x′n)∈Πn∈ω Xn,

(
(xmn )n∈ω

)
)m∈ω converges to (x′n) in

the product topology if and only if d
(
(xmn ), (x′n)

)
tends to 0. By the dominated convergence theorem

for series, d
(
(xmn ), (x′n)

)
tends to 0 if and only if dn(xmn , x

′
n) tends to 0 for all n, which holds if and

only if
(
(xmn )n∈ω

)
m∈ω tends to (x′n) in the product topology as desired. �

Definition 5.6 Let (X, d) be a metric space, and S be a subset of X . The diameter of S is

diamd(S) :=supx,y∈S d(x, y).

A sequence (Sn) of subsets of X has vanishing diameters if
(
diamd(Sn)

)
converges to 0.

The following two notions will be crucial to define the notion of a Polish space.

Definition 5.7 Let (X, d) be a metric space. A sequence (xn) of points of X is Cauchy if for every
η>0 there is N ∈ω such that, for all m,n≥N , d(xm, xn)<η.

One can check that if (X, d) be a metric space and (xn) is convergent for the topology defined
by d, then (xn) is Cauchy. The converse does not hold in general, for instance with X=(0, 1) and d
defined by d(x, y) := |x−y|, where the sequence ( 1

n+1) is Cauchy but not convergent. This leads to
the following definition.
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Definition 5.8 A metric space (X, d) is complete if every Cauchy sequence is convergent.

Exercise. Let X be a set, and l∞(X,R) be the set of bounded functions from X into R. We set
d(f, g) :=supx∈X |f(x)−g(x)|. Prove that d is a metric on l∞(X,R) and

(
l∞(X,R), d

)
is complete.

Theorem 5.9 Let (X, d) be a metric space. Then (X, d) is complete if and only if every decreas-
ing sequence of nonempty closed sets with vanishing diameters has nonempty intersection, in fact a
singleton.

Proof. Assume first that (X, d) is complete. Fix a sequence (Cn) as in the statement. Consider a
sequence (xn) such that, for all n∈ω, xn ∈Cn. Let us show that (xn) is Cauchy. Given η > 0, find
N ∈ω such that diam(CN )<η. Then, for all m,n≥N , {xm, xn}⊆CN , so that d(xm, xn)<η by
definition of the diameter. We conclude that (xn) is Cauchy. By completeness we can consider the
limit x ∈X of the sequence (xn). Since each Cn is closed and contains all the xm’s for m≥ n, x
belongs to every Cn.

Conversely, let (xn) be a Cauchy sequence. We consider, for every n, the nonempty closed set
Cn :={xm | m≥n}. As (xn) is Cauchy, the sequence of sets (Cn) has vanishing diameters. Define
x∈X by {x} :=

⋂
n∈ω Cn. Given η>0, find N such that diam(CN )<η. Then d(x, xn)<η for all

n≥N because xn∈Cn and x∈Cn, so (xn) converges to x as desired. �

The following crucial result, known as Baire’s theorem, gives a necessary condition for being
complete.

Theorem 5.10 (Baire) Let (X, d) be a complete metric space, and (On) be a sequence of dense open
subsets of X . Then

⋂
n∈ω On is dense in X .

Proof. We need to show that every nonempty open set O meets
⋂
n∈ω On. As O0 is dense, O0 ∩ O

is a nonempty open set. This gives an open ball B0 ⊆ O0 ∩ O. By shrinking the radius of B0 if
necessary, we may assume that B0 ⊆ O0 ∩ O and diamd(B0) ≤ 1. Now B0 ∩ O1 is a nonmepty
open set, which gives an open ball B1 ⊆ B0 ∩ O1. Again by shrinking its radius we may assume
B1 ⊆B0 ∩ O1 and diamd(B1)≤ 1

2 . We continue this construction by induction: assuming that for
n≥1 we have build an open ball Bn, then the set Bn ∩On+1 is a nonempty open set, and we find an
open ball Bn+1⊆Bn ∩ On+1. By shrinking its radius we may assume that Bn+1⊆Bn ∩ On+1 and
diamd(Bn+1)≤ 1

2n+1 . Now observe that (Bn) is a decreasing sequence of closed sets with vanishing
diameters. Since (X, d) is complete, there is x∈X such that

⋂
n∈ω Bn={x} by Theorem 5.9. Since

B0⊆O, x∈O, and since Bn⊆On for every n, x∈
⋂
n∈ω On. Thus O ∩

⋂
n∈ω On 6=∅ as desired. �

6 Countability

Definition 6.1 A topological space is
(a) second countable if there is a countable basis for its topology,
(b) separable if it has a countable dense subset.

Note that a second countable space is separable.
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Exercise. Let X be an infinite set. We equip l∞(X,R) with the metric defined above, which defines
a topology. Prove that this space is not separable.

Exercise. (Lindelöf’s lemma) Let X be a second countable topological space. Then every open
cover of X contains a countable subcover: if (Oi)i∈I is an open cover of X , then there exists J ⊆ I
countable such that X⊆

⋃
i∈J Oi.

Exercise. Any countable product of separable topological spaces is separable for the product topol-
ogy. Any countable sum of separable topological spaces is separable for the sum topology.

Lemma 6.2 Every second countable regular space is normal.

Proof. Let C,F be disjoint closed subsets of a second countable regular space X . If x∈C, then by
regularity we can find an open neighborhoodOx of x such thatOx∩F =∅. AsX is second countable,
by Lindelöf’s lemma, we get J ⊆C countable such that C⊆

⋃
x∈J Ox. We can enumerate our open

sets with ω, which gives a sequence (Oi) of open subsets of X with C ⊆
⋃
i∈ω Oi and Oi ∩ F = ∅.

Similarly, we get a sequence (Ui) of open subsets of X with F ⊆
⋃
i∈ω Ui and Ui ∩ C=∅. We then

set O′n :=On\(
⋃
i≤n Ui) and U ′n :=Un\(

⋃
i≤n Oi). These sets are open, (O′n) covers C, and (U ′n)

covers F . NowO′ :=
⋃
n∈ω O

′
n is an open set containingC, U ′ :=

⋃
n∈ω U

′
n is an open set containing

F , and O′, U ′ are disjoint. �

We are now ready to prove the important Urysohn Metrization Theorem.

Theorem 6.3 (Urysohn) Let X be a topological space. Then the following are equivalent:
(a) X is metrizable and separable,
(b) X is T1, regular and second countable.

Proof. (a)⇒ (b) We saw that X is Hausdorff and regular, and thus T1. Let (xn) be a dense sequence
in X , and d be a metric defining the topology of X . Then

(
B(xn,

1
p+1)

)
n,p∈ω is a countable basis for

the topology of X .

(b)⇒ (a) We already noticed that X is separable. By Lemma 6.2, X is normal. Let (On) be a basis
for its topology. If x∈On, then we can find m such that x∈Om⊆Om⊆On, by regularity of X . In
other words, {Om | Om⊆On} is a cover of On. If Om⊆On, then Lemma 4.2 provides a continuous
function fm,n :X → [0, 1] such that fm,n(x) = 0 if x ∈Om, and fm,n(x) = 1 if x /∈On. Note that
x∈On if and only if there is m such that fm,n(x)<1. Let

I :={(m,n)∈ω2 | Om⊆On}.

We can define Φ :X→ [0, 1]I by Φ(x)(m,n) := fm,n(x). Note that Φ is continuous. If x 6= y ∈X ,
then we can find n such that x ∈ On and y /∈ On, and m such that (m,n) ∈ I and x ∈ Om. Thus
fm,n(x)=0 and fm,n(y)=1. This shows that Φ is one-to-one. Now note that

Φ[On]=Φ[X] ∩
⋃

m∈ω,(m,n)∈I

π−1m,n
(
[0, 1)

)
,

so that Φ is open onto its range, and thus a homeomorphism onto its range. Thus X is metrizable. �
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Lemma 6.4 Let (Y, d) be a separable metric space, and U be a family of nonempty open subsets of
Y . Then U has a point-finite refinement V , i.e., V is a family of nonempty open sets with

⋃
V=

⋃
U ,

∀V ∈V ∃U ∈U V ⊆U , and ∀y ∈ Y {V ∈V | y ∈ V } is finite. Moreover, given η > 0, we can also
assume that diam(V )<η if V ∈V .

Proof. As Y is second countable, let (On) be a sequence of open sets such that
⋃
n∈ω On=

⋃
U and

∀n∈ω ∃U ∈U On⊆U . Furthermore, given η > 0, we can always assume that diam(On)<η. Next
write On=

⋃
p∈ω Onp with Onp open, Onp ⊆Onp+1, and Onp ⊆On. Put Vm :=Om\(

⋃
n<m Onm). First

we claim that
⋃
n∈ω Vn =

⋃
n∈ω On. Indeed, if x ∈

⋃
n∈ω On and m is least with x ∈ Om, then

x∈ Vm. Clearly, Vm⊆Om. Finally, if x∈On, then x∈Onp for some p, so x /∈ Vm if m>p, n. Let
V :={Vn | Vn 6=∅}. �

7 Compactness

The notion of compactness is a crucial smallness property.

Definition 7.1 A topological space is compact if every open cover of X contains a finite subcover.

Example. Every finite topological space is compact.

Exercise. Every closed subspace of a compact topological space is compact.

Exercise. Let X be a compact space, Y be a topological space, and f : X → Y be a continuous
function. Then f [X] is compact. In particular, if Y =R, equipped with the usual topology, then f is
bounded, i.e., f [X] has finite diameter. Conclude that R is not compact.

Theorem 7.2 Let X be a Hausdorff compact space. Then X is regular.

Proof. Let x ∈X and N be an open neighborhood of x. If y /∈N , then there are disjoint open sets
Oy and Uy with x∈Oy and y ∈Uy since X is Hausdorff. Note that (Uy)y∈X\N is an open cover of
X\N . As X\N is closed in the compact space X , X\N is compact. This gives a finite subset F of
X\N such that (Uy)y∈F is an open cover of X\N . It remains to set O :=

⋂
y∈F Oy since x∈O and

O⊆N . �

Remark. This argument shows that if X is a Hausdorff space, K is a compact subspace of X , and
x∈X\K, then we can find disjoint open subsets O,U of X such that x∈O and K⊆U . This shows
that any compact subset of X is a closed subset of X . This fact implies the following result.

Exercise. Prove that every Hausdorff compact space is normal.

Exercise. (a) Let X be a compact space, an F be a family of open subsets of X . Suppose that F
separates points, meaning that for every x 6=y there are disjoint O,U ∈F such that x∈O and y∈U .
Show that F generates the topology of X .

(b) Deduce that every countable compact Hausdorff space is metrizable.
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Theorem 7.3 Let X be a compact Hausdorff space, Y be a Hausdorff space and f : X → Y be a
one-to-one and continuous function. Then f is a homeomorphism onto its range.

We now study the compactness in metric spaces.

Theorem 7.4 (Heine) Let (X, dX) be a metric compact space, (Y, dY ) be a metric space, and
f :X→Y be a continuous function. Then f is uniformly continuous, which means that for each
η>0, we can find δ>0 such that dX(x, y)<δ implies dY

(
f(x), f(y)

)
<η.

Proof. We set, for each x∈X , βx,η := 1
2δx, η2

, where δx, η
2

is given by the continuity of f at x. Note that(
B(x, βx,η)

)
x∈X is an open cover of X . As X is compact, we get a finite subcover

(
B(z, βz,η)

)
z∈F .

We set δ := minx∈F βx,η. If dX(x, y)< δ, then we choose z ∈ F such that dX(x, z)< βz,η. Then
dX(y, z)<δz, η

2
, thus dY

(
f(x), f(y)

)
<η. �

Definition 7.5 A metric space is precompact if, for each η > 0, we can cover X with finitely many
open balls of radius η.

Proposition 7.6 Let (X, d) be a precompact space. Then X is separable and second countable.

Proof. Note that X is separable, and thus second countable by Theorem 6.3. �

Theorem 7.7 (Bolzano-Weierstrass) Let (X, d) be a metric space. The following are equivalent:
(a) X is compact,
(b) every sequence has a converging subsequence.

Proof. (a) ⇒ (b) Let (xn) be a sequence of points of X , and Cn := {xm | m≥n}. Then (Cn) is
a decreasing sequence of nonempty closed subsets of X . Thus it has a nonempty intersection, by
compactness. Any point in the intersection is the limit of a subsequence of (xn).

(b) ⇒ (a) We first prove that (X, d) is precompact. We argue by contradiction, which gives η > 0.
Pick x0∈X . Then we can find, for each natural number n, xn+1∈X \

⋃
i≤n B(xi, η). This gives a

sequence (xn) such that d(xm, xn)≥ η if m 6= n. Such a sequence has no converging subsequence,
which is absurd.

By Proposition 7.6, X is second countable. Let (Oi)i∈I be an open cover of X . The Lindelöf
lemma gives J ⊆ I countable such that X ⊆

⋃
i∈J Oi, in other words we may assume that J = ω.

This gives a finite subcover, since otherwise we can construct a sequence (yj)j∈ω such that yj is in
X\(

⋃
i<j Oi). Such a sequence has no converging subsequence, which is absurd. �

Theorem 7.8 Let (X, d) be a metric space. The following are equivalent:
(a) X is compact,
(b) (X, d) is complete and precompact.

Proof. (a)⇒ (b) By Theorem 5.9, in order to see the completeness, it is enough to prove that every
decreasing sequence (Cn) of nonempty closed sets with vanishing diameters has nonempty intersec-
tion. By compactness, it is enough to prove that if F ⊆ω is finite, then

⋂
n∈F Cn is nonempty. Let

M :=maxF . It remains to note that CM ⊆
⋂
n∈F Cn.

Assume now that η>0. Note that
(
B(x, η)

)
x∈X is an open cover. The compacness gives a finite

subcover. Thus X is precompact.
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(b)⇒ (a) Let (xn) be a sequence of elements of X . As X is precompact, we can cover it with finitely
many open balls of radius 1. One of them, say B0, contains infinitely many elements of (xn). This
gives ϕ0 : ω→ ω strictly increasing such that xϕ0(n) ∈B0 for each n. As X is precompact, we can
cover it with finitely many open balls of radius 1

2 . One of them, say B1, contains infinitely many
elements of (xϕ0(n)). This gives ϕ1 :ω→ω strictly increasing such that xϕ0◦ϕ1(n) ∈B1 for each n.
We iterate this process, which gives a sequence (Bp) of open balls of radius 1

2p and a sequence (ϕp)
of strictly increasing functions from ω into itself such that xϕ0◦···◦ϕp(n) ∈Bp for each n. We set, for
n∈ω, ϕ(n) :=ϕ0 ◦ · · · ◦ ϕn(n). Note that ϕ :ω→ω strictly increasing. Let us show that (xϕ(n)) is
Cauchy. Let n ∈ ω, and p, q ≥ n. Note that xϕ(p), xϕ(q) ∈Bn, so that d(xϕ(p), xϕ(q))<

1
2n−1 . Thus

(xn) converges since X is complete. It remains to apply Theorem 7.7. �

Exercise. Let (X, d) be a complete metric space. Prove that a subset Y of X is precompact if and
only if Y is compact.

Theorem 7.9 Any countable product of metrizable compact spaces is metrizable compact.

Proof. Let us do the infinite case. Let (Xn) be a countable family of metrizable compact spaces. By
Theorem 5.5, Πn∈ω Xn is metrizable. By Theorem 7.7, it is enough to prove that any sequence of
elements of Πn∈ω Xn has a converging subsequence.

So let (fm)m∈ω be a sequence of elements of Πn∈ω Xn. We inductively build a sequence (ϕn)
of increasing functions from ω into itself and elements xn of Xn such that, for each n, the sequence(
fϕ0···ϕn(m)(n)

)
m∈ω converges to xn. We first apply the compactness ofX0 to find ϕ0 increasing and

x0∈X0 such that
(
fϕ0(m)(0)

)
converges to x0. Then, ϕ0, · · · , ϕn and x0, · · · , xn having been built,

we apply the compactness of Xn+1 to the sequence
(
fϕ0···ϕn(m)(n+1)

)
m∈ω to find ϕn+1 increasing

and xn+1∈Xn+1 such that
(
fϕ0···ϕn+1(m)(n+1)

)
m∈ω converges to xn+1.

Now consider the map ϕ :ω→ω given by ϕ(m) :=ϕ0 · · ·ϕm(m). Let us prove that (fϕ(m))m∈ω
converges to (xn). We need to show that, for all n ∈ ω,

(
fϕ(m)(n)

)
m∈ω converges to xn. So fix

n ∈ ω and let V be a neighborhood of xn. By the definition of ϕn,
(
fϕ0···ϕn(m)(n)

)
m∈ω tends to

xn. So there is M ∈ ω such that, for all m ≥ M , fϕ0···ϕn(m)(n) ∈ V . Up to replacing M by
max(M,n+1), we may as well assume that M>n. Now, for all m≥M , ϕn+1 · · ·ϕm(m)≥m, and
hence fϕ0···ϕnϕn+1···ϕm(m)(n)∈V , which by definition means fϕ(m)(n)∈V as desired. �

Remark. Tychonov proved that any product of compact spaces is compact. The proof we gave here
in the metrizable case avoids the use of the axiom of choice.
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