
Chapter 2-Polish spaces

1 Definition and examples

As we saw in the introduction, descriptive set theory is the study of the definable subsets of the
Polish topological spaces. We now define this notion.

Definition 1.1 A topological space X is
(a) completely metrizable if there is a metric d defining the topology of X such that (X, d) is

complete,
(b) Polish if it is separable and completely metrizable.

Definition 1.2 A subset S of a topological spaceX isGδ if S is the intersection of a countable family
of open subsets of X . We say that S is Fσ if the complement of S is Gδ.

Proposition 1.3 Let X be a metrizable space, and C be a closed subset of X . Then C is Gδ.

Proof. Let d be a metric defining the topology of X . Note that

C=
⋂
n∈ω
{x∈X | d(x,C)<

1

n+ 1
},

so we are done since x 7→d(x,C) is continuous. �

Proposition 1.4 The class of
(a) completely metrizable spaces is closed under countable products and topological sums,
(b) Polish spaces is closed under countable products and countable topological sums.

Proof. Let (Xi)i∈I be a sequence of completely metrizable spaces.

(a) We saw that Πi∈I Xi is metrizable if I is countable. Assume that the Xi’s are completely metriz-
able. The proof of this fact shows that if

(
(xni )i∈I)

)
n∈ω is Cauchy, then (xni )n∈ω is Cauchy for each

i∈I , so that (xni )n∈ω converges to xi∈Xi. Now
(
(xni )i∈I)

)
n∈ω converges to (xi)i∈I . Thus Πi∈I Xi

is completely metrizable.

Let di be a metric on Xi defining its topology. We set d
(
(i, x), (j, y)

)
:= di(x, y) if i = j, 1

otherwise. Then d is a metric on ⊕i∈I Xi defining its topology, and we can chek that it is complete.

(b) We apply (a) and the fact that the class of separable spaces is closed under countable products and
countable topological sums. �
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Examples. Prove that the following spaces are Polish:

- the space ω of natural numbers, equipped with the discrete topology.

- the space R of real numbers, equipped with the usual topology.

- the Cantor space C := {0, 1}ω := 2ω, equipped with the product topology of the discrete
topologies.

- the Baire space N :=ωω, equipped with the product topology of the discrete topologies.

- the Hilbert cube [0, 1]ω, equipped with the product topology of the usual topologies.

- the Rω, equipped with the product topology of the usual topologies.

- any separable Banach space.

- Let X be a metrizable compact space, Y be a Polish space with witness d, and C(X,Y ) be the
space of continuous functions from X into Y . Note that the formula

du(f, g) :=supx∈X d
(
f(x), g(x)

)
defines a metric on C(X,Y ), the uniform metric.

Theorem 1.5 Let X be a metrizable compact space, and Y be a Polish space. Then C(X,Y ),
equipped with the topology defined by the uniform metric, is Polish.

Proof. If (fn) is Cauchy, then
(
fn(x)

)
is Cauchy for each n, and thus converges to f(x)∈Y . Note

that f is continuous and (fn) converges to f . Thus C(X,Y ) is completely metrizable. It remains to
see that it is separable. Fix a metric dX on X defining its topology, and set

Cm,n :=
{
f ∈C(X,Y ) | ∀x, y∈X

(
dX(x, y)<

1

m+ 1
⇒ d

(
f(x), f(y)

)
<

1

n+ 1

)}
.

Choose Xm ⊆ X finite with X ⊆
⋃
x∈Xm

B(x, 1
m+1). Let Dm,n ⊆ Cm,n countable such that, for

every f ∈ Cm,n and every η > 0, there is g ∈ Dm,n with d
(
f(y), g(y)

)
< η

3 for each y ∈ Xm.
Then

⋃
m,n∈ω Dm,n is dense in C(X,Y ). Indeed, if f ∈ C(X,Y ) and η > 0, then let n > 3

η and
m such that f ∈ Cm,n (which is possible since f is uniformly continuous). Let g ∈ Dm,n be such
that d

(
f(y), g(y)

)
< 1

n+1 for each y ∈Xm. If x∈X , then let y ∈Xm with dX(x, y)< 1
m+1 . Then

d
(
f(x), g(x)

)
<η. Thus du(f, g)≤η. �

Theorem 1.6 Every separable metrizable space is homeomorphic to a subspace of the Hilbert cube.

Proof. Let (X, d) be a separable metric space. We saw that we may assume that d(x, y)≤ 1 for any
x, y. Let {xn | n ∈ ω} be dense in X . We define f : X → [0, 1]ω by f(x)(n) := d(x, xn). Note
that f is one-to-one and continuous. It remains to show that f−1 : f [X]→X is continuous. Assume
that

(
f(xm)

)
converges to f(x), i.e.,

(
d(xm, xn)

)
m∈ω converges to d(x, xn) for all n. Fix η>0 and

n such that d(x, xn)< η. Let M ∈ ω such that, for each m≥M , d(xm, xn)< η. If m≥M , then
d(xm, x)<2η. Thus (xm) converges to x. �

An important class of Polish spaces is that of the metrisable compact spaces.
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Theorem 1.7 Let X be a compact Haudorff topological space. Then the following are equivalent:

(a) X is Polish,

(b) X is homeomorphic to a subspace of the Hilbert cube,

(c) X is metrizable,

(d) X is second countable.

Proof. (a)⇒ (d) We know that metrizable separable spaces are second-countable.

(d)⇒ (b) As X is Hausdorff, X is T1. As X is Hausdorff compact, X is regular. As X is also second
countable, X is metrizable separable. It remains to apply Theorem 1.6.

(b)⇒ (c) This follows from the metrizability of [0, 1]ω along with the fact that subspaces of metrizable
spaces are metrizable.

(c) ⇒ (a) Let d be a metric inducing the topology of X . We know that (X, d) must be complete,
precompact and thus separable. �

2 Polish subspaces of Polish spaces

Notation. Let X be a topological space, (Y, d) be a metric space, S⊆X , and f :S→Y . Then

oscf (x) := inf{diam(f [O ∩ S]) | O open neighborhood of x}

is the oscillation of f at x.

Theorem 2.1 (Kuratowski) LetX be a metrizable space, Y be a completely metrizable space, S⊆X
and f :S→Y be a continuous function. Then we can find a Gδ subset G of X with S⊆G⊆S and
g :G→Y continuous extending f .

Proof. We set G :=S ∩ {x∈X | oscf (x)=0}. Note that

oscf (x)=0⇔ ∀n∈ω there is an open neighborhood O of x with diam(f [O ∩ S])<
1

n+ 1
,

so that {x∈X | oscf (x) = 0} is Gδ, as well as the closed set S, by Proposition 1.3. Thus G is Gδ
and contained in S. If x∈S, then x∈S and oscf (x)=0 since f is continuous.

Now let x ∈ G. As x ∈ S, there is a sequence (xn) of points of S converging to x. Then(
diam(f [{xn+1, xn+2, · · · }])

)
n∈ω converges to 0, so that the sequence

(
f(xn)

)
is Cauchy and thus

converges to g(x)∈Y . Note that g is well defined, and extends f . In order to see that g is continuous,
we need to check that oscg(x) = 0 for each x∈G. If O is open in X , then g[O ∩ G]⊆ f [O ∩ S], so
diam(g[O ∩G])≤diam(f [O ∩ S]) and oscg(x)=oscf (x)=0. �

Theorem 2.2 A subspace of a Polish space is Polish if and only if it is Gδ.
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Proof. LetX be a Polish space, and Y ⊆X . Assume first that Y , equipped with the induced topology,
is Polish. Consider the identity function IdY of Y , which is continuous. Theorem 2.1 gives a Gδ
subset G of X with Y ⊆ G ⊆ Y and g : G→ Y continuous extending IdY . As Y is dense in G,
g=IdG, so G=Y .

Conversely, assume that Y =
⋂
n∈ω On, where the On’s are open subsets of X . We set

Cn :=Y \On.

Let d be a metric defining the topology of X . We define a new metric on Y by

d′(x, y) :=d(x, y)+Σn∈ω min
(

2−n−1,

∣∣∣∣ 1

d(x,Cn)
− 1

d(y, Cn)

∣∣∣∣) .
Note that d′ defines the topology of Y . It remains to see that (Y, d′) is complete. So let (yi) be
a Cauchy sequence. It is also Cauchy in (X, d), and thus converges to y ∈ X . If n is fixed, then(∣∣∣ 1

d(yi,Cn)

∣∣∣)
i∈ω

converges in R. Thus
(
d(yi, Cn)

)
i∈ω is bounded away from 0. As it converges to

d(y, Cn), d(y, Cn) 6=0 and y∈On. Thus y∈Y . It remains to note that (yi) converges to y in Y . �

Similarly, the following holds.

Theorem 2.3 Every Polish space is homeomorphic to a closed subspace of Rω.

Proof. Let X be a Polish space. By Theorems 1.6 and 2.2, we may assume that X is a Gδ subset
of of the Hilbert cube. So we can write X =

⋂
n∈ω On, where the On’s are open subsets of [0, 1]ω.

We set Cn := Y \On. Let d be a metric defining the topology of [0, 1]ω. We define f :X→Rω by
f(x)(2n) := 1

d(x,Cn)
and f

(
(xi)i∈ω

)
(2n+1):=xn. Note that f is one-to-one and continuous. We now

check that f [X] is closed and f−1 :f [X]→X is continuous: if (yn) :=
(
f(xn)

)
converges to y∈Rω,

then (xn) converges to x ∈ [0, 1]ω and also ( 1
d(xn,Ci)

)n∈ω converges for each i, so
(
d(xn, Ci)

)
n∈ω

is bounded away from 0. Thus
(
d(xn, Ci)

)
n∈ω converges to d(x,Ci) 6= 0, and x ∈ X . Note that

f(x)=y. �
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