Chapter 3-The Cantor and the Baire spaces

1 Trees

The concept of a tree is a basic combinatorial tool in descriptive set theory. What is referred to a tree in this domain is not, however, the same notion as the one used in graph theory or combinatorial set theory, although it is closely related.

Definition 1.1 Let S be a nonempty set.

(a) We denote by $S^{<\omega}$ the set of finite sequences of elements of S.

(b) If s is an element of $S^{<\omega}$, then the **length** of s is denoted by |s|, so that

$$s = (s(0), \cdots, s(|s|-1)).$$

The empty sequence has length 0 and is denoted by \emptyset . If $x \in S^{\omega}$, then the length |x| of x is ω .

(c) If $s \in S^{<\omega}$, and $t \in S^{\le\omega}$ is a finite or infinite sequence of elements of S, then we say that s is an **initial segment** of t, which we denote by $s \subseteq t$, if $|s| \le |t|$ and s(i) = t(i) if i < |s|.

(d) A tree on S is a subset T of $S^{<\omega}$ closed under initial segments, i.e., if $t \in T$ and $s \subseteq t$, then $s \in T$.

(e) If $x \in S^{\leq \omega}$ and n < |x|, then $x|n := (x(0), \dots, x(n-1))$ is the initial segment of x of length n. If x is finite, then x||x| := x.

(f) An infinite branch of a tree T on S is a sequence $x \in S^{\omega}$ such that $x|n \in T$ for each $n \in \omega$. The set of infinite branches of T is denoted by [T]. The tree T is well founded if [T] is empty.

(g) A tree T on S is **pruned** if, for every $s \in T$, there is $t \in T$ such that $s \subsetneq t$ (i.e., $s \subseteq t$ and $s \neq t$).

(h) A tree T on S is finite splitting if, for every $s \in T$, there are at most finitely many $a \in S$ with $sa \in T$.

Exercise. (König's lemma) Prove that a finite splitting tree is infinite if and only if it is not well founded.

Exercise. If T is a well founded tree, then we inductively define, for $s \in T$,

$$\rho_T(s) := \sup\{\rho_T(sa) + 1 \mid sa \in T\},\$$

and the **rank** of *T* by $\rho(T) := \sup\{\rho_T(s)+1 \mid s \in T\}$. If *T'* is another tree, then a function $\varphi: T \to T'$ is **strictly monotone** if $\varphi(s) \subsetneq \varphi(t)$ whenever $s \subsetneq t$. Prove that if *T'* is well founded, then *T* is well founded with $\rho(T) \le \rho(T')$ if and only if there is $\varphi: T \to T'$ strictly monotone.

Notation. We put the discrete topology on S, so that S is metrizable. We then put the product topology on S^{ω} , so that S^{ω} is metrizable again, and the metric defined by

$$d(x,y) := \begin{cases} 2^{-n-1} \text{ if } x \neq y \land n := \min\{i \in \omega \mid x(i) \neq y(i)\} \\ 0 \text{ otherwise} \end{cases}$$

defines the topology of S^{ω} . The standard basis for this topology is given by the clopen sets

$$N_s := \{ x \in S^\omega \mid s \subseteq x \},\$$

for $s \in S^{<\omega}$. In particular, S^{ω} , equipped with this topology, is zero-dimensional. Note that the Cantor space and the Baire space are particular cases of this construction.

Exercise. Let S be nonempty set. Prove that the function $T \mapsto [T]$ is a bijection from the set of pruned trees on S onto the set of closed subsets of S^{ω} .

Definition 1.2 Let X be a topological space, C be a closed subset of X, and $r : X \to C$ be a continuous function. We say that r is a **retraction** if r is the identity on C.

Proposition 1.3 Let S be a nonempty set, and $C \subseteq F$ be closed nonempty subsets of S^{ω} . Then there is a retraction from F onto C.

Proof. Let T, R be pruned trees on S with C = [T] and F = [R]. Note that $T \subseteq R$. We define $\varphi: R \to T$. In fact, $\varphi(s)$ is defined by induction on |s|. We first set $\varphi(\emptyset) := \emptyset$. Then, if $s \in S^{<\omega}$, $a \in S$ and $sa \in R$, $\varphi(sa) := sa$ if $sa \in T$, $\varphi(s)b$, where $b \in S$ is arbitrary with $\varphi(s)b \in T$, if $sa \notin T$. This is possible since T is pruned. As $\varphi(s) \subsetneq \varphi(sa)$, we can define $r(x) := \lim_{n \to \infty} \varphi(x|n)$, and r is as desired.

2 The Cantor space

We first prove the topological continuum hypothesis.

Proposition 2.1 Let X be a nonempty perfect completely metrizable space. Then the Cantor space C is homeomorphic to a subset of X.

Proof. Fix a complete metric $d \le 1$ defining the topology of X. We construct a family $(O_s)_{s \in 2^{\le \omega}}$ of nonempty open subsets of X satisfying the following properties:

(1)
$$\overline{O_{s\varepsilon}} \subseteq O_s$$

(2) diam $(O_s) \le 2^{-|s|}$
(3) $O_{s0} \cap O_{s1} = \emptyset$

Assume that this is done. Fix $\alpha \in C$. Then $(\overline{O_{\alpha|n}})$ is a decreasing sequence of nonempty closed subsets of X with vanishing diameters. As X is complete, its intersection, equal to $\bigcap_{n \in \omega} O_{\alpha|n}$, is a singleton $h(\alpha)$. Note that h is injective and continuous, and thus a homeomorphism onto its range by compactness of C.

We now construct O_s , by induction on |s|. We first set $O_{\emptyset} := X$. Given O_s , we choose $x_{s0} \neq x_{s1}$ in O_s , which is possible since X is perfect. We then choose O_{s0}, O_{s1} small enough balls with centers x_{s0}, x_{s1} respectively. **Theorem 2.2** (*Cantor-Bendixson*) Let X be a Polish space. Then X is the disjoint union of a closed perfect set and a countable set.

Proof. We set $C := \bigcup \{ O \subseteq X \mid O \text{ is open countable} \}$. By Lindelöf's lemma, C is countable open. We set $P := X \setminus C$, so that P is closed and X is the disjoint union of P and C. If $x \in P$, then every neighborhood N of x is uncountable. Thus $N \setminus C$ is uncountable. In particular, x is not isolated in P for the induced topology. Thus P is perfect.

Corollary 2.3 Let X be an uncountable Polish space. Then X contains a homeomorphic copy of C and thus has size continuum.

Proof. By Theorem 2.2, X contains a nonempty perfect Polish subspace. By Proposition 2.1, this subspace contains a homeomorphic copy of C. This shows that X has size at least continuum. As X can be seen as a subspace of the Hilbert cube, X has size at most continuum. Thus X has size continuum.

We now prove that the Cantor space is in some sense universal for metrizable compact spaces.

Theorem 2.4 Let X be a nonempty metrizable compact space. Then X is a continuous image of C.

Proof. We first show that the Hilbert cube is a continuous image of C. The function $f: \alpha \mapsto \sum_{n \in \omega} \frac{\alpha(n)}{2^{n+1}}$ is a continuous bijection from C onto [0, 1]. Thus $(\alpha_n) \mapsto (f(\alpha_n))$ maps C^{ω} , which is homeomorphic to C, to the Hilbert cube. As every metrizable compact space is homeomorphic to a compact subspace of the Hilbert cube, for every metrizable compact space X there is a closed subset C of C and a continuous onto function from C onto X. It remains to apply Proposition 1.3.

We now characterize the Cantor space, up to homeomorphism.

Theorem 2.5 (Brouwer) The Cantor space C is the unique, up to homeomorphism, nonempty perfect zero-dimensional metrizable compact space.

Proof. We saw that C has these properties. Now let X be such a space, and d be a metric defining its topology. We construct a family $(C_s)_{s \in 2^{\leq \omega}}$ of nonempty clopen subsets of X satisfying the following conditions:

(1)
$$C_{\emptyset} = X$$

(2) $C_{s0} \cup C_{s1} = C_s$
(3) $\lim_{n \to \infty} \operatorname{diam}(C_{\alpha|n}) = 0$ if $\alpha \in \mathcal{C}$
(4) $C_{s0} \cap C_{s1} = \emptyset$

Assume that this is done. Fix $\alpha \in C$. Then $(C_{\alpha|n})$ is a decreasing sequence of nonempty closed subsets of X with vanishing diameters. As X is complete, its intersection is a singleton $h(\alpha)$. Note that h is injective and continuous, and thus a homeomorphism onto its range by compactness of C. By (2), the range of h is X.

We now construct $(C_s)_{s\in 2^{<\omega}}$. We first consider a partition $(X_i)_{0<i\leq n}$ of X into nonempty clopen subsets of X with diameter at most $\frac{1}{2}$. We then set $C_{0^{i_1}} := X_{i+1}$, $C_{0^i} := \bigcup_{i<j\leq n} X_j$ if i < n-1, and $C_{0^{n-1}} := X_n$. Then we repeat this process in each X_i .

3 The Baire space

We now prove that the Baire space is universal for zero-dimensional metrizable separable spaces.

Theorem 3.1 (a) Every zero-dimensional metrizable separable space is homeomorphic to a subspace of \mathcal{N} , and also \mathcal{C} .

(b) Every zero-dimensional Polish space is homeomorphic to a closed subset of \mathcal{N} , and to a G_{δ} subset of \mathcal{C} .

Proof. Note first that \mathcal{N} is homeomorphic to a G_{δ} subset of \mathcal{C} . Indeed, the map $\alpha \to 0^{\alpha(0)} 10^{\alpha(1)} 1 \cdots$ is a homeomorphism from \mathcal{N} onto the G_{δ} subset $\{\beta \in \mathcal{C} \mid \forall m \in \omega \exists n \ge m \ \alpha(n) = 1\}$ of \mathcal{C} . So it is enough to prove the assertions about \mathcal{N} .

(a) Let X be as in the statement. Fix a metric $d \le 1$ defining the topology of X. We construct a family $(C_s)_{s \in \omega^{<\omega}}$ of possibly empty clopen subsets of X satisfying the following conditions:

(1)
$$C_{\emptyset} = X$$

(2) $\bigcup_{n \in \omega} C_{sn} = C_s$
(3) diam $(C_s) \le 2^{-|s|}$
(4) $C_{sm} \cap C_{sn} = \emptyset$ if $m \ne n$

Assume that this is done. We set $D := \{ \alpha \in \mathcal{N} \mid \bigcap_{n \in \omega} C_{\alpha|n} \neq \emptyset \}$. Fix $\alpha \in D$. Then $(C_{\alpha|n})$ is a decreasing sequence of subsets of X with vanishing diameters. By definition of D, its intersection is a singleton $h(\alpha)$. Note that $h: D \to X$ is injective and continuous. By (2), h is onto. As $h[N_s \cap D] = C_s$, h is a homeomorphism. It remains to note that we can construct $(C_s)_{s \in 2^{<\omega}}$.

(b) It is enough to see that D is closed if (X, d) is complete. Assume that (α_n) is a sequence of points of D converging to $\alpha \in \mathcal{N}$. Then $(f(\alpha_n))$ is Cauchy since, given $\eta > 0$, there are N with $\operatorname{diam}(C_{\alpha|N}) < \eta$ and M such that $\alpha_n|N = \alpha|N$ for all $n \ge M$, so that $d(f(\alpha_m), f(\alpha_n)) < \eta$ if $m, n \ge M$. Thus $(f(\alpha_n))$ converges to $y \in X$. As the C_s 's are closed, $y \in C_{\alpha|n}$ for each n, so that $\alpha \in D$ and $f(\alpha) = y$.

The Baire space is in some other sense universal for Polish spaces.

Theorem 3.2 Let X be Polish space. Then X is a bijective continuous image of a closed subset of \mathcal{N} . If moreover X is nonempty, then X is a continuous image of \mathcal{N} .

Proof. The last assertion is a consequence of the first one and Proposition 1.3. For the first assertion, fix a complete metric $d \le 1$ defining the topology of X. We construct a family $(F_s)_{s \in \omega^{<\omega}}$ of F_{σ} subsets of X satisfying the following conditions:

(1)
$$F_{\emptyset} = X$$

(2) $\bigcup_{n \in \omega} F_{sn} = \bigcup_{n \in \omega} \overline{F_{sn}} = F_s$
(3) diam $(F_s) \leq 2^{-|s|}$
(4) $F_{sm} \cap F_{sn} = \emptyset$ if $m \neq n$

Assume that this is done. We set $D := \{ \alpha \in \mathcal{N} \mid \bigcap_{n \in \omega} F_{\alpha|n} \neq \emptyset \}$. Fix $\alpha \in D$. Then $(F_{\alpha|n})$ is a decreasing sequence of subsets of X with vanishing diameters. By definition of D, its intersection is a singleton $f(\alpha)$. Note that $f: D \to X$ is injective and continuous. By (2), f is onto. It remains to see that D is closed to see that f is as desired. Assume that (α_n) is a sequence of points of D converging to $\alpha \in \mathcal{N}$. As in the proof of Theorem 3.1, $(f(\alpha_n))$ is Cauchy. Thus $(f(\alpha_n))$ converges to $y \in X$ and $y \in \bigcap_{n \in \omega} \overline{F_{\alpha|n}} = \bigcap_{n \in \omega} F_{\alpha|n}$, so that $\alpha \in D$ and $f(\alpha) = y$.

In order to construct $(F_s)_{s\in\omega^{<\omega}}$, it is enough to show that for every F_{σ} set $F \subseteq X$ and every $\eta > 0$, we can write $F = \bigcup_{n\in\omega} F_n$, where the F_n 's are pairwise disjoint F_{σ} sets of diameter $<\eta$ such that $\overline{F_n} \subseteq F$. Let $(C_i)_{i\in\omega}$ be an increasing sequence of closed sets with union F. Note that

$$F = C_0 \cup \bigcup_{i \in \omega} (C_{i+1} \setminus C_i)$$

and this union is disjoint. Now write $C_0 = \bigcup_{j \in \omega} E_j^0$ and $C_{i+1} \setminus C_i = \bigcup_{j \in \omega} E_j^{i+1}$, where the E_j^i 's are pairwise disjoint F_σ sets of diameter smaller than η . Then $F = \bigcup_{i,j} E_j^i$ and $\overline{E_j^0} \subseteq C_0 \subseteq F$, $\overline{E_j^{i+1}} \subseteq \overline{C_{i+1} \setminus C_i} \subseteq C_{i+1} \subseteq F$.

We now characterize the Baire space, up to homeomorphism.

Theorem 3.3 (Alexandrov-Urysohn) The Baire space \mathcal{N} is the unique, up to homeomorphism, nonempty Polish zero-dimensional space for which all compact subsets have empty interior.

Proof. Assume that K is a compact subset of \mathcal{N} and n is a natural number. Then the restriction to K of the continuous n'th projection of \mathcal{N} on to ω is bounded. This shows that K has empty interior and \mathcal{N} has the properties in the statement. Assume now that X has these properties. Fix a complete metric $d \leq 1$ defining the topology of X. We construct a family $(C_s)_{s \in \omega^{<\omega}}$ of nonempty clopen subsets of X satisfying the following properties:

(1)
$$C_{\emptyset} = X$$

(2) $\bigcup_{n \in \omega} C_{sn} = C_s$
(3) diam $(C_s) \leq 2^{-|s|}$
(4) $C_{sm} \cap C_{sn} = \emptyset$ if $m \neq r$

Assume that this is done. Fix $\alpha \in \mathcal{N}$. Then $(C_{\alpha|n})$ is a decreasing sequence of nonempty closed subsets of X with vanishing diameters. As X is complete, its intersection is a singleton $h(\alpha)$. Note that h is injective and continuous. By (2), h is onto. As $h[N_s] = C_s$, h is a homeomorphism.

In order to construct $(C_s)_{s \in \omega^{<\omega}}$, it is enough to show that for every nonempty open set $O \subseteq X$ and every $\eta > 0$, we can write $O = \bigcup_{n \in \omega} O_n$, where the O_n 's are pairwise disjoint nonempty clopen sets of diameter $< \eta$. As \overline{O} is not compact, it is not precompact. This gives $0 < \eta' < \eta$ such that no cover of O by finitely many open sets of diameter smaller than η' exists. If we write $O = \bigcup_{j \in \omega} O_j$, where the O_j 's are pairwise disjoint clopen sets of diameter smaller than η' , infinitely many O_j 's are nonempty,

Exercise. Prove that the space $\mathbb{R} \setminus \mathbb{Q}$ is homeomorphic to \mathcal{N} .