
Chapter 3-The Cantor and the Baire spaces

1 Trees

The concept of a tree is a basic combinatorial tool in descriptive set theory. What is referred to a
tree in this domain is not, however, the same notion as the one used in graph theory or combinatorial
set theory, although it is closely related.

Definition 1.1 Let S be a nonempty set.

(a) We denote by S<ω the set of finite sequences of elements of S.

(b) If s is an element of S<ω, then the length of s is denoted by |s|, so that

s=
(
s(0), · · · , s(|s|−1)

)
.

The empty sequence has length 0 and is denoted by ∅. If x∈Sω, then the length |x| of x is ω.

(c) If s∈S<ω, and t∈S≤ω is a finite or infinite sequence of elements of S, then we say that s is
an initial segment of t, which we denote by s⊆ t, if |s|≤|t| and s(i)= t(i) if i< |s|.

(d) A tree on S is a subset T of S<ω closed under initial segments, i.e., if t∈ T and s⊆ t, then
s∈T .

(e) If x∈S≤ω and n< |x|, then x|n :=
(
x(0), · · · , x(n−1)

)
is the initial segment of x of length

n. If x is finite, then x||x| :=x.

(f) An infinite branch of a tree T on S is a sequence x∈ Sω such that x|n∈ T for each n∈ ω.
The set of infinite branches of T is denoted by [T ]. The tree T is well founded if [T ] is empty.

(g) A tree T on S is pruned if, for every s∈T , there is t∈T such that s$ t (i.e., s⊆ t and s 6= t).

(h) A tree T on S is finite splitting if, for every s∈T , there are at most finitely many a∈S with
sa∈T .

Exercise. (König’s lemma) Prove that a finite splitting tree is infinite if and only if it is not well
founded.

Exercise. If T is a well founded tree, then we inductively define, for s∈T ,

ρT (s) :=sup{ρT (sa)+1 | sa∈T},

and the rank of T by ρ(T ) :=sup{ρT (s)+1 | s∈T}. If T ′ is another tree, then a function ϕ :T→T ′

is strictly monotone if ϕ(s)$ϕ(t) whenever s$ t. Prove that if T ′ is well founded, then T is well
founded with ρ(T )≤ρ(T ′) if and only if there is ϕ :T→T ′ strictly monotone.
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Notation. We put the discrete topology on S, so that S is metrizable. We then put the product topology
on Sω, so that Sω is metrizable again, and the metric defined by

d(x, y) :=

{
2−n−1 if x 6=y ∧ n :=min{i∈ω | x(i) 6=y(i)}
0 otherwise

defines the topology of Sω. The standard basis for this topology is given by the clopen sets

Ns :={x∈Sω | s⊆x},

for s∈S<ω. In particular, Sω, equipped with this topology, is zero-dimensional. Note that the Cantor
space and the Baire space are particular cases of this construction.

Exercise. Let S be nonempty set. Prove that the function T 7→ [T ] is a bijection from the set of pruned
trees on S onto the set of closed subsets of Sω.

Definition 1.2 Let X be a topological space, C be a closed subset of X , and r : X → C be a
continuous function. We say that r is a retraction if r is the identity on C.

Proposition 1.3 Let S be a nonempty set, and C⊆F be closed nonempty subsets of Sω. Then there
is a retraction from F onto C.

Proof. Let T,R be pruned trees on S with C = [T ] and F = [R]. Note that T ⊆ R. We define
ϕ :R→T . In fact, ϕ(s) is defined by induction on |s|. We first set ϕ(∅) :=∅. Then, if s∈S<ω, a∈S
and sa∈R, ϕ(sa) := sa if sa∈ T , ϕ(s)b, where b∈ S is arbitrary with ϕ(s)b∈ T , if sa /∈ T . This
is possible since T is pruned. As ϕ(s)$ϕ(sa), we can define r(x) := limn→∞ ϕ(x|n), and r is as
desired. �

2 The Cantor space

We first prove the topological continuum hypothesis.

Proposition 2.1 Let X be a nonempty perfect completely metrizable space. Then the Cantor space
C is homeomorphic to a subset of X .

Proof. Fix a complete metric d≤1 defining the topology of X . We construct a family (Os)s∈2<ω of
nonempty open subsets of X satisfying the following properties:

(1) Osε⊆Os
(2) diam(Os)≤2−|s|

(3) Os0 ∩Os1=∅

Assume that this is done. Fix α ∈ C. Then (Oα|n) is a decreasing sequence of nonempty closed
subsets of X with vanishing diameters. As X is complete, its intersection, equal to

⋂
n∈ω Oα|n, is a

singleton h(α). Note that h is injective and continuous, and thus a homeomorphism onto its range by
compactness of C.

We now construct Os, by induction on |s|. We first set O∅ :=X . Given Os, we choose xs0 6=xs1
in Os, which is possible since X is perfect. We then choose Os0, Os1 small enough balls with centers
xs0, xs1 respectively. �
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Theorem 2.2 (Cantor-Bendixson) Let X be a Polish space. Then X is the disjoint union of a closed
perfect set and a countable set.

Proof. We set C :=
⋃
{O⊆X | O is open countable}. By Lindelöf’s lemma, C is countable open.

We set P :=X \C, so that P is closed and X is the disjoint union of P ans C. If x∈P , then every
neighborhood N of x is uncountable. Thus N \C is uncountable. In particular, x is not isolated in P
for the induced topology. Thus P is perfect. �

Corollary 2.3 Let X be an uncountable Polish space. Then X contains a homeomorphic copy of C
and thus has size continuum.

Proof. By Theorem 2.2, X contains a nonempty perfect Polish subspace. By Proposition 2.1, this
subspace contains a homeomorphic copy of C. This shows that X has size at least continuum. As
X can be seen as a subspace of the Hilbert cube, X has size at most continuum. Thus X has size
continuum. �

We now prove that the Cantor space is in some sense universal for metrizable compact spaces.

Theorem 2.4 Let X be a nonempty metrizable compact space. Then X is a continuous image of C.

Proof. We first show that the Hilbert cube is a continuous image of C. The function f :α 7→Σn∈ω
α(n)
2n+1

is a continuous bijection from C onto [0, 1]. Thus (αn) 7→
(
f(αn)

)
maps Cω, which is homeomorphic

to C, to the Hilbert cube. As every metrizable compact space is homeomorphic to a compact subspace
of the Hilbert cube, for every metrizable compact space X there is a closed subset C of C and a
continuous onto function from C onto X . It remains to apply Proposition 1.3. �

We now characterize the Cantor space, up to homeomorphism.

Theorem 2.5 (Brouwer) The Cantor space C is the unique, up to homeomorphism, nonempty perfect
zero-dimensional metrizable compact space.

Proof. We saw that C has these properties. Now let X be such a space, and d be a metric defining its
topology. We construct a family (Cs)s∈2<ω of nonempty clopen subsets ofX satisfying the following
conditions:

(1) C∅=X
(2) Cs0 ∪ Cs1=Cs
(3) limn→∞ diam(Cα|n)=0 if α∈C
(4) Cs0 ∩ Cs1=∅

Assume that this is done. Fix α ∈ C. Then (Cα|n) is a decreasing sequence of nonempty closed
subsets of X with vanishing diameters. As X is complete, its intersection is a singleton h(α). Note
that h is injective and continuous, and thus a homeomorphism onto its range by compactness of C.
By (2), the range of h is X .

We now construct (Cs)s∈2<ω . We first consider a partition (Xi)0<i≤n of X into nonempty clopen
subsets of X with diameter at most 1

2 . We then set C0i1 :=Xi+1, C0i :=
⋃
i<j≤n Xj if i<n−1, and

C0n−1 :=Xn. Then we repeat this process in each Xi. �
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3 The Baire space

We now prove that the Baire space is universal for zero-dimensional metrizable separable spaces.

Theorem 3.1 (a) Every zero-dimensional metrizable separable space is homeomorphic to a subspace
of N , and also C.

(b) Every zero-dimensional Polish space is homeomorphic to a closed subset of N , and to a Gδ
subset of C.

Proof. Note first that N is homeomorphic to a Gδ subset of C. Indeed, the map α→0α(0)10α(1)1 · · ·
is a homeomorphism from N onto the Gδ subset {β ∈C | ∀m∈ω ∃n≥m α(n) = 1} of C. So it is
enough to prove the assertions about N .

(a) LetX be as in the statement. Fix a metric d≤1 defining the topology ofX . We construct a family
(Cs)s∈ω<ω of possibly empty clopen subsets of X satisfying the following conditions:

(1) C∅=X
(2)

⋃
n∈ω Csn=Cs

(3) diam(Cs)≤2−|s|

(4) Csm ∩ Csn=∅ if m 6=n

Assume that this is done. We set D := {α ∈ N |
⋂
n∈ω Cα|n 6= ∅}. Fix α ∈D. Then (Cα|n) is a

decreasing sequence of subsets ofX with vanishing diameters. By definition ofD, its intersection is a
singleton h(α). Note that h :D→X is injective and continuous. By (2), h is onto. As h[Ns∩D]=Cs,
h is a homeomorphism. It remains to note that we can construct (Cs)s∈2<ω .

(b) It is enough to see that D is closed if (X, d) is complete. Assume that (αn) is a sequence of
points of D converging to α ∈ N . Then

(
f(αn)

)
is Cauchy since, given η > 0, there are N with

diam(Cα|N ) < η and M such that αn|N = α|N for all n ≥ M , so that d
(
f(αm), f(αn)

)
< η if

m,n≥M . Thus
(
f(αn)

)
converges to y ∈X . As the Cs’s are closed, y ∈Cα|n for each n, so that

α∈D and f(α)=y. �

The Baire space is in some other sense universal for Polish spaces.

Theorem 3.2 Let X be Polish space. Then X is a bijective continuous image of a closed subset of
N . If moreover X is nonempty, then X is a continuous image of N .

Proof. The last assertion is a consequence of the first one and Proposition 1.3. For the first assertion,
fix a complete metric d ≤ 1 defining the topology of X . We construct a family (Fs)s∈ω<ω of Fσ
subsets of X satisfying the following conditions:

(1) F∅=X

(2)
⋃
n∈ω Fsn=

⋃
n∈ω Fsn=Fs

(3) diam(Fs)≤2−|s|

(4) Fsm ∩ Fsn=∅ if m 6=n
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Assume that this is done. We set D := {α∈N |
⋂
n∈ω Fα|n 6= ∅}. Fix α∈D. Then (Fα|n) is a

decreasing sequence of subsets of X with vanishing diameters. By definition of D, its intersection is
a singleton f(α). Note that f :D→X is injective and continuous. By (2), f is onto. It remains to see
that D is closed to see that f is as desired. Assume that (αn) is a sequence of points of D converging
to α∈N . As in the proof of Theorem 3.1,

(
f(αn)

)
is Cauchy. Thus

(
f(αn)

)
converges to y∈X and

y∈
⋂
n∈ω Fα|n=

⋂
n∈ω Fα|n, so that α∈D and f(α)=y.

In order to construct (Fs)s∈ω<ω , it is enough to show that for every Fσ set F ⊆X and every η>0,
we can write F =

⋃
n∈ω Fn, where the Fn’s are pairwise disjoint Fσ sets of diameter <η such that

Fn⊆F . Let (Ci)i∈ω be an increasing sequence of closed sets with union F . Note that

F =C0 ∪
⋃
i∈ω

(Ci+1\Ci)

and this union is disjoint. Now write C0 =
⋃
j∈ω E0

j and Ci+1\Ci =
⋃
j∈ω Ei+1

j , where the Eij’s

are pairwise disjoint Fσ sets of diameter smaller than η. Then F =
⋃
i,j E

i
j and E0

j ⊆ C0 ⊆ F ,

Ei+1
j ⊆Ci+1\Ci⊆Ci+1⊆F . �

We now characterize the Baire space, up to homeomorphism.

Theorem 3.3 (Alexandrov-Urysohn) The Baire space N is the unique, up to homeomorphism, non-
empty Polish zero-dimensional space for which all compact subsets have empty interior.

Proof. Assume that K is a compact subset of N and n is a natural number. Then the restriction to K
of the continuous n’th projection ofN on to ω is bounded. This shows that K has empty interior and
N has the properties in the statement. Assume now thatX has these properties. Fix a complete metric
d≤ 1 defining the topology of X . We construct a family (Cs)s∈ω<ω of nonempty clopen subsets of
X satisfying the following properties:

(1) C∅=X
(2)

⋃
n∈ω Csn=Cs

(3) diam(Cs)≤2−|s|

(4) Csm ∩ Csn=∅ if m 6=n

Assume that this is done. Fix α ∈ N . Then (Cα|n) is a decreasing sequence of nonempty closed
subsets of X with vanishing diameters. As X is complete, its intersection is a singleton h(α). Note
that h is injective and continuous. By (2), h is onto. As h[Ns]=Cs, h is a homeomorphism.

In order to construct (Cs)s∈ω<ω , it is enough to show that for every nonempty open set O ⊆X
and every η>0, we can write O=

⋃
n∈ω On, where the On’s are pairwise disjoint nonempty clopen

sets of diameter <η. As O is not compact, it is not precompact. This gives 0<η′<η such that no
cover of O by finitely many open sets of diameter smaller than η′ exists. If we write O=

⋃
j∈ω Oj ,

where the Oj’s are pairwise disjoint clopen sets of diameter smaller than η′, infinitely many Oj’s are
nonempty, �

Exercise. Prove that the space R\Q is homeomorphic to N .
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