
Chapter 4-Baire category

1 Nowhere dense sets and meager sets

We now introduce some notions of topological smallness and bigness.

Definition 1.1 Let X be a topological space, and S⊆X . We say that S is
(a) nowhere dense if its closure S has empty interior,
(b) meager if it is a countable union of nowhere dense sets,
(c) comeager if its complement ¬S is meager.

Examples. (a) Any compact subset of the Baire space N is nowhere dense.
(b) A countable subset of a perfect space is meager.

Definition 1.2 A topological space X is Baire if it satisfies one of the following equivalent condi-
tions:

(a) every nonempty open set is non-meager,
(b) every comeager set is dense,
(c) the intersection of countably many dense open sets is dense.

Example. Every completely metrizable space is Baire, by Baire’s theorem.

Exercise. Any open subset of a Baire space, equipped with the induced topology, is also a Baire
space.

Exercise. We identify C with the power set of ω, using characteristic functions. Prove that if G⊆C is
comeager, then we can find a partition (A0, A1) of ω and, for ε∈ 2, Bi⊆Ai such that if A⊆ω and
A ∩Aε=Bε for some ε∈2, then A∈G.

2 Baire measurability

We now introduce a notion of regularity, being equal to an open set modulo a meager set.

Definition 2.1 Let X,Y be topological spaces, S⊆X , and f :X→Y be a function. We say that
(a) S has the Baire property (denoted BP) if there is an open subset O of X such that the

symmetric difference S∆O :=(S\O) ∪ (O\S) is meager,
(b) f is Baire measurable if the pre-image of any open subset of Y has the Baire property in X .
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Exercise. Prove that S has BP if and only if S is the union of a Gδ set and a meager set.

Definition 2.2 Let X be a set. A σ-algebra on X is a family of subsets of X containing ∅ and closed
under complements and countable unions (and thus countable intersections).

Proposition 2.3 Let X be a topological space. Then the family of the subsets of X having the BP is
a σ-algebra on X , contains the open subsets of X and the meager subsets of X .

Proof. Note first that ifO is an open subset ofX , thenO\O is closed nowhere dense and thus meager.
Similarly, if C is a closed subset of X , then C \Int(C) is closed nowhere dense and thus meager.
Assume now that S⊆X has the BP, which gives an open subset O of X such that S∆O is meager.
Note that (¬S)∆(¬O) is meager, so that (¬S)∆Int(¬O) is meager, so ¬S has the BP. Finally, if
each Sn has the BP with witness On, then

⋃
n∈ω Sn has the BP with witness

⋃
n∈ω On. �

Proposition 2.4 Let X be a topological space, and S ⊆ X having the BP . Then S is meager, or
there is a nonempty open subset O of X such that O\S is meager.

Proof. As S has the BP, there is a witness O. If S is not meager, then O is as desired. �

Theorem 2.5 Let X be a Baire space, Y be a second countable space, and f :X → Y be a Baire
measurable function. Then we can find a dense Gδ subset G of X such that the restriction f|G of f to
G is continuous.

Proof. Let (On) be a countable basis for the topology of Y . As f−1(On) has the BP in X , we get an
open subsetUn ofX and a countable union of closed nowhere dense sets Fn with f−1(On)∆Un⊆Fn.
Then Gn :=X\Fn is a countable intersection of dense open subsets of X , as well as G :=

⋂
n∈ω Gn.

As X is Baire, G is a dense Gδ subset of X . As f−1(On) ∩G=Un ∩G, f|G is continuous. �

3 The Kuratowski-Ulam theorem

We now consider sets in product spaces. We will see a Fubini-like theorem for Baire category.

Lemma 3.1 Let X be a topological space, Y be a second countable space, S ⊆X×Y , x∈X and
Sx :={y∈Y | (x, y)∈S} be the vertical section of S at x.

(a) If S is nowhere dense, then Sx is nowhere dense in Y for comeagerly many x∈X .
(b) If S is meager, then Sx is meager in Y for comeagerly many x∈X .

Proof. (a) We can assume that Y is not empty and S is closed. Let O be the complement of S. It is
enough to show that Ox is dense for comeagerly many x∈X . Let (Yn) be a basis for the topology of
Y made of nonempty sets. Then On := projX

(
O ∩ (X×Yn)

)
is dense open in X . If x∈

⋂
n∈ω On,

then Ox ∩ Yn is not empty for all n, i.e., Ox is dense.

(b) This follows from (a). �

Lemma 3.2 Let X,Y be second countable spaces, A⊆X and B⊆Y . Then A×B is meager if and
only if A is meager or B is meager.
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Proof. If A×B is meager and A is not meager, then there is x ∈ X such that (A×B)x = B is
meager, by Lemma 3.1. Conversely, if A is meager and A=

⋃
n∈ω Nn with Nn nowhere dense, then

A×B=
⋃
n∈ω Nn×B, so it is enough to show that Nn×B is nowhere dense. This comes from the

fact that if O is dense open in X , then O×Y is dense open in X×Y . �

Theorem 3.3 (Kuratowski-Ulam) Let X,Y be second countable spaces, and S⊆X×Y having the
BP.

(a) Sx has the BP for comeagerly many x∈X . Similarly, Sy :={x∈X | (x, y)∈S} has the BP
for comeagerly many y∈Y .

(b) S is meager is equivalent to Sx is meager for comeagerly many x∈X , and to Sy is meager
for comeagerly many y∈Y .

(c) S is comeager is equivalent to Sx is comeager for comeagerly many x ∈ X , and to Sy is
comeager for comeagerly many y∈Y .

Proof. Let O be an open set and M be a meager set with S∆O⊆M .

(a) Note that, for any x ∈X , Sx∆Ox ⊆Mx. By Lemma 3.1, Sx has the BP for comeagerly many
x∈X .

(b) By Lemma 3.1, if S is meager, then Sx is meager for comeagerly many x∈X . Conversely, if S is
not meager, then O is not meager, which gives open sets U ⊆X and V ⊆Y such that U×V ⊆O and
U×V is not meager. By Lemma 3.2, U, V are not meager. This gives x∈U such that Sx and Mx are
meager. As V \Mx⊆Ox\Mx⊆Sx, V ⊆Sx ∪Mx is meager, a contradiction.

(c) This comes from (b). �

4 Meager relations

We now strengthen the perfect set theorem.

Notation. If X is a set, then ∆(X) :={(x, x) | x∈X} is the diagonal of X .

Theorem 4.1 (Mycielski-Kuratowski) Let X be a nonempty perfect Polish space, and R ⊆ X2 be
meager. Then X contains a copy C of the Cantor space C such that (x, y) /∈R if x 6=y∈C.

Proof. As R is meager, there is an increasing sequence (Cl) of closed nowhere dense relations on X
whose union contains R. We set Ul :=X2\Cl, so that Ul is dense open in X2. Fix a complete metric
d≤1 defining the topology of X . We construct a family (Os)s∈2<ω of nonempty open subsets of X
satisfying the following properties:

(1) Osε⊆Os
(2) diam(Os)≤2−|s|

(3) Os0 ∩Os1=∅
(4) Os×Ot⊆Ul if s 6= t∈2l
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Assume that this is done. Fix α∈ C. Then (Oα|n) is a decreasing sequence of nonempty closed
subsets of X with vanishing diameters. As X is complete, its intersection, equal to

⋂
n∈ω Oα|n, is a

singleton h(α). Note that h is injective and continuous, and thus a homeomorphism onto its range C
by compactness of C. If x 6=y∈C, then we can write x=h(α) and y=h(β), where α 6=β∈C. This
gives l0 with α(l0) 6= β(l0). If l > l0, then α|l 6= β|l, so that (x, y)∈Oα|l×Oβ|l⊆Ul and (x, y) /∈R
since (Cl) is increasing.

We now construct Os, by induction on |s|. We first set O∅ :=X . We enumerate

{(s, t)∈2l+1×2l+1 | s 6= t}

by {(si, ti) | i<N}. We construct, inductively on i, a family (Ois)s∈2l+1 of nonempty open subsets
of X satisfying the following properties:

(1) Oisi⊆Osi|l ∩
⋂
j<i O

j
si

(2) diam(Oisi)≤2−l−1

(3) Oisi×O
i
ti⊆Ul+1\∆(X)

(4) Ois⊆Os|l ∩
⋂
j<i O

j
s

Then we will just have to take Os :=ON−1s . Note that (Osi|l ∩
⋂
j<i O

j
si)×(Oti|l ∩

⋂
j<i O

j
ti

) meets
Ul+1 \∆(X) since Ul+1 is dense open and ∆(X) is closed nowhere dense since X is perfect. Let
(x, y) be in the intersection I . We choose open subsets Oisi , O

i
ti of X with diameter at most 2−l−1

such that (x, y)∈Oisi×O
i
ti ⊆Oisi×O

i
ti
⊆ I . If s∈ 2l+1\{si, ti}, then we set Ois :=Os|l ∩

⋂
j<i O

j
s.

This finishes the proof. �

Exercise. (Galvin) LetX be a nonempty perfect Polish space, andR⊆X2 be non meager and having
the Baire property. Prove that we can find copies C0, C1 of C in X with C0×C1⊆R.

5 Choquet and strong Choquet games

Being a Baire space can be expressed in terms of a game.

Definition 5.1 Let X be a nonempty topological space.

(a) The Choquet game GX on X is defined as follows. Players 1 and 2 take turns in playing
nonempty open subsets of X

1 U0 U1

· · ·
2 V0 V1

in such a way that U0 ⊇ V0 ⊇ U1 ⊇ V1 · · · We say that 2 wins this run of the game if
⋂
n∈ω Vn

(=
⋂
n∈ω Un) is nonempty (1 wins if

⋂
n∈ω Vn is empty).

(b) Let

TX :={s∈(2X)<ω | ∀i< |s| s(i) is a nonempty open subset of X ∧ ∀i< |s|−1 s(i)⊇s(i+1)}.
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A strategy for 1 in GX is a subtree σ of TX such that

(1) σ 6=∅
(2) ∀(U0, V0, · · · , Un)∈σ, ∀Vn⊆Un nonempty open, (U0, V0, · · · , Un, Vn)∈σ
(3) ∀(U0, V0, · · · , Un−1, Vn−1)∈σ, ∃!Un nonempty open such that (U0, V0, · · · , Un)∈σ

Similarly, we define the notion of a strategy for 2 in GX .
(c) A strategy σ for 1 is a winning strategy for 1 if 1 wins every run (U0, V0, U1, V1, · · · )∈ [σ].

Similarly, we define the notion of a winning strategy for 2 in GX .

Theorem 5.2 (Oxtoby) Let X be a nonempty topological space. Then X is a Baire space if and only
if player 1 has no winning strategy in the Choquet game GX .

Proof. Assume first that X is not a Baire space, and let U0 be a nonempty open subset of X and (On)
be a sequence of dense open subsets of X whose intersection does not meet U0. Player 1 first plays
U0. Then player 2 plays V0⊆U0. Note that U1 :=V0 ∩ O0 is nonempty, so that 1 can play it. Then
2 plays V1 ⊆U1. Note that U2 := V1 ∩ O1 is nonempty, so that 1 can play it. And so on. Note that⋂
n∈ω Un⊆

⋂
n∈ω On ∩ U0=∅, so that this strategy is winning for 1.

Assume now that player 1 has a winning strategy σ in the Choquet game GX . Let U0 be player
1’s first move according to σ. We will show that U0 is not Baire. We construct a nonempty pruned
tree S ⊆ σ as follows. We determine inductively which sequences from σ of length n we put in
S. First ∅ ∈ S. If (U0, V0, · · · , Un−1, Vn−1) ∈ S, then (U0, V0, · · · , Un) ∈ S, for the unique Un
with (U0, V0, · · · , Un)∈ σ. If now p := (U0, V0, · · · , Un)∈ S and Vn ⊆Un is nonempty open, then
let V ∗n := Un+1 be what σ requires 1 to play next. Zorn’s lemma gives a maximal collection Vp of
nonempty open subsets Vn ⊆ Un such that {V ∗n | Vn ∈ Vp} is pairwise disjoint. We put in S all
(U0, V0, · · · , Un, Vn, V ∗n ) with Vn ∈Vp. Then Up := {V ∗n | Vn ∈Vp} is a family of pairwise disjoint
sets and

⋃
Up is dense in Un, by maximality. We now set Wn :=

⋃
{Un | (U0, V0, · · · , Un) ∈ S}.

Note that Wn is open and dense in U0 for each n. It remains to show that
⋂
n∈ω Wn = ∅. We argue

by contradicton, which gives x∈
⋂
n∈ω Wn. Then there is a unique (U0, V0, U1, V1, · · · )∈ [S] such

that x∈
⋂
n∈ω Un, which contradicts the fact that (U0, V0, U1, V1, · · · )∈ [σ] and σ is winning for 1.�

Definition 5.3 A nonempty topological space X is a Choquet space if player 2 has a winning strat-
egy in the Choquet game GX .

By Theorem 5.2, every Choquet space is Baire. A strong version of the Choquet game will help
us to characterize the Polish spaces.

Definition 5.4 Let X be a nonempty topological space.
(a) The strong Choquet game GsX on X is defined as follows. Players 1 and 2 take turns in

playing points of X and nonempty open subsets of X

1 x0, U0 x1, U1

· · ·
2 V0 V1

in such a way that U0⊇ V0⊇U1⊇ V1 · · · and xn ∈ Vn. We say that 2 wins this run of the game if⋂
n∈ω Vn (=

⋂
n∈ω Un) is nonempty (1 wins if

⋂
n∈ω Vn is empty).
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(b) X is a strong Choquet space if player 2 has a winning strategy in the strong Choquet game
GsX .

Exercise. (a) Any strong Choquet space is Choquet.
(b) Every nonempty completely metrizable space is strong Choquet.
(c) Products of strong Choquet spaces are strong Choquet.
(d) Nonempty Gδ subspaces of strong Choquet spaces are strong Choquet.

6 Characterization of Polish spaces

Theorem 6.1 (Choquet) Let X be a nonempty metrizable separable space, and X̂ be a Polish space
in which X is dense. Then X is strong Choquet if and only if X is Gδ in X̂ if and only if X is Polish.

Proof. The last equivalence is known. If X is Polish, then X is strong Choquet by the last ex-
ercise. Conversely, let d be a metric defining the topology of X̂ , and σ be a winning strategy
for 2 in the strong Choquet game GsX . Using point-finite refinement, we can construct (as in the
proof of Theorem 5.2) a tree S of sequences of the form

(
x0, (V0, V̂0), x1, (V1, V̂1), · · · , xn

)
or(

x0, (V0, V̂0), x1, (V1, V̂1), · · · , xn, (Vn, V̂n)
)
, where Vi is open in X , V̂i is open in X̂ , xi∈ V̂i−1 ∩X

(with V̂−1 := X̂), xi ∈ Vi, V̂i ∩ X ⊆ Vi, V̂0 ⊇ V̂1 ⊇ · · · , and
(
(x0, X), V0, (x1, V̂0 ∩ X), V1, · · ·

)
is

compatible with σ, such that S additionally has the following property: for each

p=
(
x0, (V0, V̂0), x1, (V1, V̂1), · · · , xn−1, (Vn−1, V̂n−1)

)
∈S

(including the empty sequence), if

Vp :=
{
V̂n | (x0, (V0, V̂0), x1, · · · , (Vn−1, V̂n−1), xn, (Vn, V̂n)

)
∈S
}

,

then X ∩ V̂n−1 ⊆
⋃
Vp, diam(Ṽn) < 2−n for all V̂n ∈ Vp, and for every x̂ ∈ X̂ there are at most

finitely many
(
xn, (Vn, V̂n)

)
with

(
x0, (V0, V̂0), · · · , (Vn−1, V̂n−1), xn, (Vn, V̂n)

)
∈S and x̂∈ V̂n. Let

Wn :=
⋃{

Ṽn |
(
x0, (V0, V̂0), · · · , xn, (Vn, V̂n)

)
∈S
}

. Then Wn is open and X⊆Wn (as we can see
by an easy induction on n). It remains to show that

⋂
n∈ω Wn⊆X . Let x̂∈

⋂
n∈ω Wn. Consider the

subtree Sx̂ of S consisting of all initial segments of the sequences(
x0, (V0, V̂0), · · · , xn, (Vn, V̂n)

)
∈S

for which x̂ ∈ V̂n. Since x̂ ∈
⋂
n∈ω Wn, Sx̂ is infinite. By the preceding conditions on S, it

is also finite splitting. So, by König’s Lemma, [Sx̂] 6= ∅. Say
(
x0, (V0, V̂0), · · ·

)
∈ [Sx̂]. Then(

(x0, X), V0, (x1, V̂0∩X), V1, (x2, V̂1∩X), · · ·
)

is a run ofGsX compatible with σ, so
⋂
n∈ω V̂n∩X

is not empty; thus, since diam(V̂n)<2−n, x̂∈X . �

The next characterization will be very important in the applications.

Theorem 6.2 (Choquet) A nonempty, second countable topological space is Polish if and only if it is
T1, regular, and strong Choquet.

Proof. We apply Theorem 6.1 and the Urysohn Metrization Theorem. �

Exercise. (Sierpinski) Let X be a Polish space, Y be a metrizable separable space, and f :X→Y be
a function. Prove that if f is continuous, open and onto, then Y is Polish.
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