Chapter 4-Baire category

1 Nowhere dense sets and meager sets

We now introduce some notions of topological smallness and bigness.
Definition 1.1 Let X be a topological space, and $S \subseteq X$. We say that S is
(a) nowhere dense if its closure \bar{S} has empty interior,
(b) meager if it is a countable union of nowhere dense sets,
(c) comeager if its complement $\neg S$ is meager.

Examples. (a) Any compact subset of the Baire space \mathcal{N} is nowhere dense.
(b) A countable subset of a perfect space is meager.

Definition 1.2 A topological space X is Baire if it satisfies one of the following equivalent conditions:
(a) every nonempty open set is non-meager,
(b) every comeager set is dense,
(c) the intersection of countably many dense open sets is dense.

Example. Every completely metrizable space is Baire, by Baire's theorem.
Exercise. Any open subset of a Baire space, equipped with the induced topology, is also a Baire space.

Exercise. We identify \mathcal{C} with the power set of ω, using characteristic functions. Prove that if $G \subseteq \mathcal{C}$ is comeager, then we can find a partition $\left(A_{0}, A_{1}\right)$ of ω and, for $\varepsilon \in 2, B_{i} \subseteq A_{i}$ such that if $A \subseteq \omega$ and $A \cap A_{\varepsilon}=B_{\varepsilon}$ for some $\varepsilon \in 2$, then $A \in G$.

2 Baire measurability

We now introduce a notion of regularity, being equal to an open set modulo a meager set.
Definition 2.1 Let X, Y be topological spaces, $S \subseteq X$, and $f: X \rightarrow Y$ be a function. We say that
(a) S has the Baire property (denoted $\mathbf{B P}$) if there is an open subset O of X such that the symmetric difference $S \Delta O:=(S \backslash O) \cup(O \backslash S)$ is meager,
(b) f is Baire measurable if the pre-image of any open subset of Y has the Baire property in X.

Exercise. Prove that S has BP if and only if S is the union of a G_{δ} set and a meager set.
Definition 2.2 Let X be a set. $A \sigma$-algebra on X is a family of subsets of X containing \emptyset and closed under complements and countable unions (and thus countable intersections).

Proposition 2.3 Let X be a topological space. Then the family of the subsets of X having the $B P$ is a σ-algebra on X, contains the open subsets of X and the meager subsets of X.

Proof. Note first that if O is an open subset of X, then $\bar{O} \backslash O$ is closed nowhere dense and thus meager. Similarly, if C is a closed subset of X, then $C \backslash \operatorname{Int}(C)$ is closed nowhere dense and thus meager. Assume now that $S \subseteq X$ has the BP, which gives an open subset O of X such that $S \Delta O$ is meager. Note that $(\neg S) \Delta(\neg O)$ is meager, so that $(\neg S) \Delta \operatorname{Int}(\neg O)$ is meager, so $\neg S$ has the BP. Finally, if each S_{n} has the BP with witness O_{n}, then $\bigcup_{n \in \omega} S_{n}$ has the BP with witness $\bigcup_{n \in \omega} O_{n}$.

Proposition 2.4 Let X be a topological space, and $S \subseteq X$ having the $B P$. Then S is meager, or there is a nonempty open subset O of X such that $O \backslash S$ is meager.

Proof. As S has the BP, there is a witness O. If S is not meager, then O is as desired.

Theorem 2.5 Let X be a Baire space, Y be a second countable space, and $f: X \rightarrow Y$ be a Baire measurable function. Then we can find a dense G_{δ} subset G of X such that the restriction $f_{\mid G}$ of f to G is continuous.

Proof. Let $\left(O_{n}\right)$ be a countable basis for the topology of Y. As $f^{-1}\left(O_{n}\right)$ has the BP in X, we get an open subset U_{n} of X and a countable union of closed nowhere dense sets F_{n} with $f^{-1}\left(O_{n}\right) \Delta U_{n} \subseteq F_{n}$. Then $G_{n}:=X \backslash F_{n}$ is a countable intersection of dense open subsets of X, as well as $G:=\bigcap_{n \in \omega} G_{n}$. As X is Baire, G is a dense G_{δ} subset of X. As $f^{-1}\left(O_{n}\right) \cap G=U_{n} \cap G, f_{\mid G}$ is continuous.

3 The Kuratowski-Ulam theorem

We now consider sets in product spaces. We will see a Fubini-like theorem for Baire category.
Lemma 3.1 Let X be a topological space, Y be a second countable space, $S \subseteq X \times Y, x \in X$ and $S_{x}:=\{y \in Y \mid(x, y) \in S\}$ be the vertical section of S at x.
(a) If S is nowhere dense, then S_{x} is nowhere dense in Y for comeagerly many $x \in X$.
(b) If S is meager, then S_{x} is meager in Y for comeagerly many $x \in X$.

Proof. (a) We can assume that Y is not empty and S is closed. Let O be the complement of S. It is enough to show that O_{x} is dense for comeagerly many $x \in X$. Let $\left(Y_{n}\right)$ be a basis for the topology of Y made of nonempty sets. Then $O_{n}:=\operatorname{proj}_{X}\left(O \cap\left(X \times Y_{n}\right)\right)$ is dense open in X. If $x \in \bigcap_{n \in \omega} O_{n}$, then $O_{x} \cap Y_{n}$ is not empty for all n, i.e., O_{x} is dense.
(b) This follows from (a).

Lemma 3.2 Let X, Y be second countable spaces, $A \subseteq X$ and $B \subseteq Y$. Then $A \times B$ is meager if and only if A is meager or B is meager.

Proof. If $A \times B$ is meager and A is not meager, then there is $x \in X$ such that $(A \times B)_{x}=B$ is meager, by Lemma 3.1. Conversely, if A is meager and $A=\bigcup_{n \in \omega} N_{n}$ with N_{n} nowhere dense, then $A \times B=\bigcup_{n \in \omega} N_{n} \times B$, so it is enough to show that $N_{n} \times B$ is nowhere dense. This comes from the fact that if O is dense open in X, then $O \times Y$ is dense open in $X \times Y$.

Theorem 3.3 (Kuratowski-Ulam) Let X, Y be second countable spaces, and $S \subseteq X \times Y$ having the $B P$.
(a) S_{x} has the BP for comeagerly many $x \in X$. Similarly, $S^{y}:=\{x \in X \mid(x, y) \in S\}$ has the BP for comeagerly many $y \in Y$.
(b) S is meager is equivalent to S_{x} is meager for comeagerly many $x \in X$, and to S^{y} is meager for comeagerly many $y \in Y$.
(c) S is comeager is equivalent to S_{x} is comeager for comeagerly many $x \in X$, and to S^{y} is comeager for comeagerly many $y \in Y$.

Proof. Let O be an open set and M be a meager set with $S \Delta O \subseteq M$.
(a) Note that, for any $x \in X, S_{x} \Delta O_{x} \subseteq M_{x}$. By Lemma 3.1, S_{x} has the BP for comeagerly many $x \in X$.
(b) By Lemma 3.1, if S is meager, then S_{x} is meager for comeagerly many $x \in X$. Conversely, if S is not meager, then O is not meager, which gives open sets $U \subseteq X$ and $V \subseteq Y$ such that $U \times V \subseteq O$ and $U \times V$ is not meager. By Lemma 3.2, U, V are not meager. This gives $x \in U$ such that S_{x} and M_{x} are meager. As $V \backslash M_{x} \subseteq O_{x} \backslash M_{x} \subseteq S_{x}, V \subseteq S_{x} \cup M_{x}$ is meager, a contradiction.
(c) This comes from (b).

4 Meager relations

We now strengthen the perfect set theorem.
Notation. If X is a set, then $\Delta(X):=\{(x, x) \mid x \in X\}$ is the diagonal of X.
Theorem 4.1 (Mycielski-Kuratowski) Let X be a nonempty perfect Polish space, and $R \subseteq X^{2}$ be meager. Then X contains a copy C of the Cantor space \mathcal{C} such that $(x, y) \notin R$ if $x \neq y \in C$.

Proof. As R is meager, there is an increasing sequence $\left(C_{l}\right)$ of closed nowhere dense relations on X whose union contains R. We set $U_{l}:=X^{2} \backslash C_{l}$, so that U_{l} is dense open in X^{2}. Fix a complete metric $d \leq 1$ defining the topology of X. We construct a family $\left(O_{s}\right)_{s \in 2}<\omega$ of nonempty open subsets of X satisfying the following properties:
(1) $\overline{O_{s \varepsilon}} \subseteq O_{s}$
(2) $\operatorname{diam}\left(O_{s}\right) \leq 2^{-|s|}$
(3) $O_{s 0} \cap O_{s 1}=\emptyset$
(4) $O_{s} \times O_{t} \subseteq U_{l}$ if $s \neq t \in 2^{l}$

Assume that this is done. Fix $\alpha \in \mathcal{C}$. Then $\left(\overline{O_{\alpha \mid n}}\right)$ is a decreasing sequence of nonempty closed subsets of X with vanishing diameters. As X is complete, its intersection, equal to $\bigcap_{n \in \omega} O_{\alpha \mid n}$, is a singleton $h(\alpha)$. Note that h is injective and continuous, and thus a homeomorphism onto its range C by compactness of \mathcal{C}. If $x \neq y \in C$, then we can write $x=h(\alpha)$ and $y=h(\beta)$, where $\alpha \neq \beta \in \mathcal{C}$. This gives l_{0} with $\alpha\left(l_{0}\right) \neq \beta\left(l_{0}\right)$. If $l>l_{0}$, then $\alpha|l \neq \beta| l$, so that $(x, y) \in O_{\alpha \mid l} \times O_{\beta \mid l} \subseteq U_{l}$ and $(x, y) \notin R$ since $\left(C_{l}\right)$ is increasing.

We now construct O_{s}, by induction on $|s|$. We first set $O_{\emptyset}:=X$. We enumerate

$$
\left\{(s, t) \in 2^{l+1} \times 2^{l+1} \mid s \neq t\right\}
$$

by $\left\{\left(s_{i}, t_{i}\right) \mid i<N\right\}$. We construct, inductively on i, a family $\left(O_{s}^{i}\right)_{s \in 2^{l+1}}$ of nonempty open subsets of X satisfying the following properties:

$$
\begin{aligned}
& \text { (1) } \overline{O_{s_{i}}^{i} \subseteq O_{s_{i} \mid l} \cap \bigcap_{j<i} O_{s_{i}}^{j}} \\
& \text { (2) } \operatorname{diam}\left(O_{s_{i}}^{i}\right) \leq 2^{-l-1} \\
& \text { (3) } O_{s_{i}}^{i} \times O_{t_{i}}^{i} \subseteq U_{l+1} \backslash \Delta(X) \\
& \text { (4) } O_{s}^{i} \subseteq O_{s \mid l} \cap \bigcap_{j<i} O_{s}^{j}
\end{aligned}
$$

Then we will just have to take $O_{s}:=O_{s}^{N-1}$. Note that $\left(O_{s_{i} \mid l} \cap \bigcap_{j<i} O_{s_{i}}^{j}\right) \times\left(O_{t_{i} \mid l} \cap \bigcap_{j<i} O_{t_{i}}^{j}\right)$ meets $U_{l+1} \backslash \Delta(X)$ since U_{l+1} is dense open and $\Delta(X)$ is closed nowhere dense since X is perfect. Let (x, y) be in the intersection I. We choose open subsets $O_{s_{i}}^{i}, O_{t_{i}}^{i}$ of X with diameter at most 2^{-l-1} such that $(x, y) \in O_{s_{i}}^{i} \times O_{t_{i}}^{i} \subseteq \overline{O_{s_{i}}^{i}} \times \overline{O_{t_{i}}^{i}} \subseteq I$. If $s \in 2^{l+1} \backslash\left\{s_{i}, t_{i}\right\}$, then we set $O_{s}^{i}:=O_{s \mid l} \cap \bigcap_{j<i} O_{s}^{j}$. This finishes the proof.

Exercise. (Galvin) Let X be a nonempty perfect Polish space, and $R \subseteq X^{2}$ be non meager and having the Baire property. Prove that we can find copies C_{0}, C_{1} of \mathcal{C} in X with $C_{0} \times C_{1} \subseteq R$.

5 Choquet and strong Choquet games

Being a Baire space can be expressed in terms of a game.
Definition 5.1 Let X be a nonempty topological space.
(a) The Choquet game G_{X} on X is defined as follows. Players 1 and 2 take turns in playing nonempty open subsets of X

$$
\begin{array}{lllll}
1 & U_{0} & & U_{1} & \\
2 & & & & \\
2 & & & V_{1}
\end{array}
$$

in such a way that $U_{0} \supseteq V_{0} \supseteq U_{1} \supseteq V_{1} \cdots$ We say that 2 wins this run of the game if $\bigcap_{n \in \omega} V_{n}$ $\left(=\bigcap_{n \in \omega} U_{n}\right.$) is nonempty (1 wins if $\bigcap_{n \in \omega} V_{n}$ is empty).
(b) Let

$$
\mathcal{T}_{X}:=\left\{s \in\left(2^{X}\right)^{<\omega}|\forall i<|s| s(i) \text { is a nonempty open subset of } X \wedge \forall i<|s|-1 s(i) \supseteq s(i+1)\} .\right.
$$

A strategy for 1 in G_{X} is a subtree σ of \mathcal{T}_{X} such that
(1) $\sigma \neq \emptyset$
(2) $\forall\left(U_{0}, V_{0}, \cdots, U_{n}\right) \in \sigma, \forall V_{n} \subseteq U_{n}$ nonempty open, $\left(U_{0}, V_{0}, \cdots, U_{n}, V_{n}\right) \in \sigma$
(3) $\forall\left(U_{0}, V_{0}, \cdots, U_{n-1}, V_{n-1}\right) \in \sigma, \exists!U_{n}$ nonempty open such that $\left(U_{0}, V_{0}, \cdots, U_{n}\right) \in \sigma$

Similarly, we define the notion of a strategy for 2 in G_{X}.
(c) A strategy σ for 1 is a winning strategy for 1 if 1 wins every run $\left(U_{0}, V_{0}, U_{1}, V_{1}, \cdots\right) \in[\sigma]$. Similarly, we define the notion of a winning strategy for 2 in G_{X}.

Theorem 5.2 (Oxtoby) Let X be a nonempty topological space. Then X is a Baire space if and only if player 1 has no winning strategy in the Choquet game G_{X}.

Proof. Assume first that X is not a Baire space, and let U_{0} be a nonempty open subset of X and $\left(O_{n}\right)$ be a sequence of dense open subsets of X whose intersection does not meet U_{0}. Player 1 first plays U_{0}. Then player 2 plays $V_{0} \subseteq U_{0}$. Note that $U_{1}:=V_{0} \cap O_{0}$ is nonempty, so that 1 can play it. Then 2 plays $V_{1} \subseteq U_{1}$. Note that $U_{2}:=V_{1} \cap O_{1}$ is nonempty, so that 1 can play it. And so on. Note that $\bigcap_{n \in \omega} U_{n} \subseteq \bigcap_{n \in \omega} O_{n} \cap U_{0}=\emptyset$, so that this strategy is winning for 1.

Assume now that player 1 has a winning strategy σ in the Choquet game G_{X}. Let U_{0} be player 1's first move according to σ. We will show that U_{0} is not Baire. We construct a nonempty pruned tree $S \subseteq \sigma$ as follows. We determine inductively which sequences from σ of length n we put in S. First $\emptyset \in S$. If $\left(U_{0}, V_{0}, \cdots, U_{n-1}, V_{n-1}\right) \in S$, then $\left(U_{0}, V_{0}, \cdots, U_{n}\right) \in S$, for the unique U_{n} with $\left(U_{0}, V_{0}, \cdots, U_{n}\right) \in \sigma$. If now $p:=\left(U_{0}, V_{0}, \cdots, U_{n}\right) \in S$ and $V_{n} \subseteq U_{n}$ is nonempty open, then let $V_{n}^{*}:=U_{n+1}$ be what σ requires 1 to play next. Zorn's lemma gives a maximal collection \mathcal{V}_{p} of nonempty open subsets $V_{n} \subseteq U_{n}$ such that $\left\{V_{n}^{*} \mid V_{n} \in \mathcal{V}_{p}\right\}$ is pairwise disjoint. We put in S all $\left(U_{0}, V_{0}, \cdots, U_{n}, V_{n}, V_{n}^{*}\right)$ with $V_{n} \in \mathcal{V}_{p}$. Then $\mathcal{U}_{p}:=\left\{V_{n}^{*} \mid V_{n} \in \mathcal{V}_{p}\right\}$ is a family of pairwise disjoint sets and $\bigcup \mathcal{U}_{p}$ is dense in U_{n}, by maximality. We now set $W_{n}:=\bigcup\left\{U_{n} \mid\left(U_{0}, V_{0}, \cdots, U_{n}\right) \in S\right\}$. Note that W_{n} is open and dense in U_{0} for each n. It remains to show that $\bigcap_{n \in \omega} W_{n}=\emptyset$. We argue by contradicton, which gives $x \in \bigcap_{n \in \omega} W_{n}$. Then there is a unique $\left(U_{0}, V_{0}, U_{1}, V_{1}, \cdots\right) \in[S]$ such that $x \in \bigcap_{n \in \omega} U_{n}$, which contradicts the fact that $\left(U_{0}, V_{0}, U_{1}, V_{1}, \cdots\right) \in[\sigma]$ and σ is winning for $1 . \square$

Definition 5.3 A nonempty topological space X is a Choquet space if player 2 has a winning strategy in the Choquet game G_{X}.

By Theorem 5.2, every Choquet space is Baire. A strong version of the Choquet game will help us to characterize the Polish spaces.

Definition 5.4 Let X be a nonempty topological space.
(a) The strong Choquet game G_{X}^{s} on X is defined as follows. Players 1 and 2 take turns in playing points of X and nonempty open subsets of X

in such a way that $U_{0} \supseteq V_{0} \supseteq U_{1} \supseteq V_{1} \cdots$ and $x_{n} \in V_{n}$. We say that 2 wins this run of the game if $\bigcap_{n \in \omega} V_{n}\left(=\bigcap_{n \in \omega} U_{n}\right)$ is nonempty (1 wins if $\bigcap_{n \in \omega} V_{n}$ is empty).
(b) X is a strong Choquet space if player 2 has a winning strategy in the strong Choquet game G_{X}^{s}.

Exercise. (a) Any strong Choquet space is Choquet.
(b) Every nonempty completely metrizable space is strong Choquet.
(c) Products of strong Choquet spaces are strong Choquet.
(d) Nonempty G_{δ} subspaces of strong Choquet spaces are strong Choquet.

6 Characterization of Polish spaces

Theorem 6.1 (Choquet) Let X be a nonempty metrizable separable space, and \hat{X} be a Polish space in which X is dense. Then X is strong Choquet if and only if X is G_{δ} in \hat{X} if and only if X is Polish.
Proof. The last equivalence is known. If X is Polish, then X is strong Choquet by the last exercise. Conversely, let d be a metric defining the topology of \hat{X}, and σ be a winning strategy for 2 in the strong Choquet game G_{X}^{s}. Using point-finite refinement, we can construct (as in the proof of Theorem 5.2) a tree S of sequences of the form $\left(x_{0},\left(V_{0}, \hat{V}_{0}\right), x_{1},\left(V_{1}, \hat{V}_{1}\right), \cdots, x_{n}\right)$ or $\left(x_{0},\left(V_{0}, \hat{V}_{0}\right), x_{1},\left(V_{1}, \hat{V}_{1}\right), \cdots, x_{n},\left(V_{n}, \hat{V}_{n}\right)\right)$, where V_{i} is open in X, \hat{V}_{i} is open in $\hat{X}, x_{i} \in \hat{V}_{i-1} \cap X$ (with $\hat{V}_{-1}:=\hat{X}$), $x_{i} \in V_{i}, \hat{V}_{i} \cap X \subseteq V_{i}, \hat{V}_{0} \supseteq \hat{V}_{1} \supseteq \cdots$, and $\left(\left(x_{0}, X\right), V_{0},\left(x_{1}, \hat{V}_{0} \cap X\right), V_{1}, \cdots\right)$ is compatible with σ, such that S additionally has the following property: for each

$$
p=\left(x_{0},\left(V_{0}, \hat{V}_{0}\right), x_{1},\left(V_{1}, \hat{V}_{1}\right), \cdots, x_{n-1},\left(V_{n-1}, \hat{V}_{n-1}\right)\right) \in S
$$

(including the empty sequence), if

$$
\mathcal{V}_{p}:=\left\{\hat{V}_{n} \mid\left(x_{0},\left(V_{0}, \hat{V}_{0}\right), x_{1}, \cdots,\left(V_{n-1}, \hat{V}_{n-1}\right), x_{n},\left(V_{n}, \hat{V}_{n}\right)\right) \in S\right\},
$$

then $X \cap \hat{V}_{n-1} \subseteq \bigcup \mathcal{V}_{p}$, $\operatorname{diam}\left(\tilde{V}_{n}\right)<2^{-n}$ for all $\hat{V}_{n} \in \mathcal{V}_{p}$, and for every $\hat{x} \in \hat{X}$ there are at most finitely many $\left(x_{n},\left(V_{n}, \hat{V}_{n}\right)\right)$ with $\left(x_{0},\left(V_{0}, \hat{V}_{0}\right), \cdots,\left(V_{n-1}, \hat{V}_{n-1}\right), x_{n},\left(V_{n}, \hat{V}_{n}\right)\right) \in S$ and $\hat{x} \in \hat{V}_{n}$. Let $W_{n}:=\bigcup\left\{\tilde{V}_{n} \mid\left(x_{0},\left(V_{0}, \hat{V}_{0}\right), \cdots, x_{n},\left(V_{n}, \hat{V}_{n}\right)\right) \in S\right\}$. Then W_{n} is open and $X \subseteq W_{n}$ (as we can see by an easy induction on n). It remains to show that $\bigcap_{n \in \omega} W_{n} \subseteq X$. Let $\hat{x} \in \bigcap_{n \in \omega} W_{n}$. Consider the subtree $S_{\hat{x}}$ of S consisting of all initial segments of the sequences

$$
\left(x_{0},\left(V_{0}, \hat{V}_{0}\right), \cdots, x_{n},\left(V_{n}, \hat{V}_{n}\right)\right) \in S
$$

for which $\hat{x} \in \hat{V}_{n}$. Since $\hat{x} \in \bigcap_{n \in \omega} W_{n}, S_{\hat{x}}$ is infinite. By the preceding conditions on S, it is also finite splitting. So, by König's Lemma, $\left[S_{\hat{x}}\right] \neq \emptyset$. Say $\left(x_{0},\left(V_{0}, \hat{V}_{0}\right), \cdots\right) \in\left[S_{\hat{x}}\right]$. Then $\left(\left(x_{0}, X\right), V_{0},\left(x_{1}, \hat{V}_{0} \cap X\right), V_{1},\left(x_{2}, \hat{V}_{1} \cap X\right), \cdots\right)$ is a run of G_{X}^{s} compatible with σ, so $\bigcap_{n \in \omega} \hat{V}_{n} \cap X$ is not empty; thus, since $\operatorname{diam}\left(\hat{V}_{n}\right)<2^{-n}, \hat{x} \in X$.

The next characterization will be very important in the applications.
Theorem 6.2 (Choquet) A nonempty, second countable topological space is Polish if and only if it is T_{1}, regular, and strong Choquet.
Proof. We apply Theorem 6.1 and the Urysohn Metrization Theorem.
Exercise. (Sierpinski) Let X be a Polish space, Y be a metrizable separable space, and $f: X \rightarrow Y$ be a function. Prove that if f is continuous, open and onto, then Y is Polish.

