Chapter 4-Baire category

1 Nowhere dense sets and meager sets

We now introduce some notions of topological smallness and bigness.

Definition 1.1 Let X be a topological space, and $S \subseteq X$. We say that S is

(a) nowhere dense if its closure \overline{S} has empty interior,

(b) meager if it is a countable union of nowhere dense sets,

(c) **comeager** if its complement $\neg S$ is meager.

Examples. (a) Any compact subset of the Baire space \mathcal{N} is nowhere dense.

(b) A countable subset of a perfect space is meager.

Definition 1.2 A topological space X is **Baire** if it satisfies one of the following equivalent conditions:

- (a) every nonempty open set is non-meager,
- (b) every comeager set is dense,
- (c) the intersection of countably many dense open sets is dense.

Example. Every completely metrizable space is Baire, by Baire's theorem.

Exercise. Any open subset of a Baire space, equipped with the induced topology, is also a Baire space.

Exercise. We identify C with the power set of ω , using characteristic functions. Prove that if $G \subseteq C$ is comeager, then we can find a partition (A_0, A_1) of ω and, for $\varepsilon \in 2$, $B_i \subseteq A_i$ such that if $A \subseteq \omega$ and $A \cap A_{\varepsilon} = B_{\varepsilon}$ for some $\varepsilon \in 2$, then $A \in G$.

2 Baire measurability

We now introduce a notion of regularity, being equal to an open set modulo a meager set.

Definition 2.1 Let X, Y be topological spaces, $S \subseteq X$, and $f: X \rightarrow Y$ be a function. We say that

(a) S has the **Baire property** (denoted **BP**) if there is an open subset O of X such that the symmetric difference $S\Delta O := (S \setminus O) \cup (O \setminus S)$ is meager,

(b) f is **Baire measurable** if the pre-image of any open subset of Y has the Baire property in X.

Exercise. Prove that S has BP if and only if S is the union of a G_{δ} set and a meager set.

Definition 2.2 Let X be a set. A σ -algebra on X is a family of subsets of X containing \emptyset and closed under complements and countable unions (and thus countable intersections).

Proposition 2.3 Let X be a topological space. Then the family of the subsets of X having the BP is a σ -algebra on X, contains the open subsets of X and the meager subsets of X.

Proof. Note first that if O is an open subset of X, then $\overline{O} \setminus O$ is closed nowhere dense and thus meager. Similarly, if C is a closed subset of X, then $C \setminus Int(C)$ is closed nowhere dense and thus meager. Assume now that $S \subseteq X$ has the BP, which gives an open subset O of X such that $S \Delta O$ is meager. Note that $(\neg S)\Delta(\neg O)$ is meager, so that $(\neg S)\Delta Int(\neg O)$ is meager, so $\neg S$ has the BP. Finally, if each S_n has the BP with witness O_n , then $\bigcup_{n \in \omega} S_n$ has the BP with witness $\bigcup_{n \in \omega} O_n$. \Box

Proposition 2.4 Let X be a topological space, and $S \subseteq X$ having the BP. Then S is meager, or there is a nonempty open subset O of X such that $O \setminus S$ is meager.

Proof. As S has the BP, there is a witness O. If S is not meager, then O is as desired.

Theorem 2.5 Let X be a Baire space, Y be a second countable space, and $f: X \to Y$ be a Baire measurable function. Then we can find a dense G_{δ} subset G of X such that the restriction $f_{|G}$ of f to G is continuous.

Proof. Let (O_n) be a countable basis for the topology of Y. As $f^{-1}(O_n)$ has the BP in X, we get an open subset U_n of X and a countable union of closed nowhere dense sets F_n with $f^{-1}(O_n)\Delta U_n \subseteq F_n$. Then $G_n := X \setminus F_n$ is a countable intersection of dense open subsets of X, as well as $G := \bigcap_{n \in \omega} G_n$. As X is Baire, G is a dense G_δ subset of X. As $f^{-1}(O_n) \cap G = U_n \cap G$, $f_{|G}$ is continuous.

3 The Kuratowski-Ulam theorem

We now consider sets in product spaces. We will see a Fubini-like theorem for Baire category.

Lemma 3.1 Let X be a topological space, Y be a second countable space, $S \subseteq X \times Y$, $x \in X$ and $S_x := \{y \in Y \mid (x, y) \in S\}$ be the vertical section of S at x.

- (a) If S is nowhere dense, then S_x is nowhere dense in Y for comeagerly many $x \in X$.
- (b) If S is meager, then S_x is meager in Y for comeagerly many $x \in X$.

Proof. (a) We can assume that Y is not empty and S is closed. Let O be the complement of S. It is enough to show that O_x is dense for comeagerly many $x \in X$. Let (Y_n) be a basis for the topology of Y made of nonempty sets. Then $O_n := \operatorname{proj}_X (O \cap (X \times Y_n))$ is dense open in X. If $x \in \bigcap_{n \in \omega} O_n$, then $O_x \cap Y_n$ is not empty for all n, i.e., O_x is dense.

(b) This follows from (a).

Lemma 3.2 Let X, Y be second countable spaces, $A \subseteq X$ and $B \subseteq Y$. Then $A \times B$ is meager if and only if A is meager or B is meager.

Proof. If $A \times B$ is meager and A is not meager, then there is $x \in X$ such that $(A \times B)_x = B$ is meager, by Lemma 3.1. Conversely, if A is meager and $A = \bigcup_{n \in \omega} N_n$ with N_n nowhere dense, then $A \times B = \bigcup_{n \in \omega} N_n \times B$, so it is enough to show that $N_n \times B$ is nowhere dense. This comes from the fact that if O is dense open in X, then $O \times Y$ is dense open in $X \times Y$.

Theorem 3.3 (*Kuratowski-Ulam*) Let X, Y be second countable spaces, and $S \subseteq X \times Y$ having the *BP*.

(a) S_x has the BP for comeagerly many $x \in X$. Similarly, $S^y := \{x \in X \mid (x, y) \in S\}$ has the BP for comeagerly many $y \in Y$.

(b) S is meager is equivalent to S_x is meager for comeagerly many $x \in X$, and to S^y is meager for comeagerly many $y \in Y$.

(c) S is comeager is equivalent to S_x is comeager for comeagerly many $x \in X$, and to S^y is comeager for comeagerly many $y \in Y$.

Proof. Let O be an open set and M be a meager set with $S\Delta O \subseteq M$.

(a) Note that, for any $x \in X$, $S_x \Delta O_x \subseteq M_x$. By Lemma 3.1, S_x has the BP for comeagerly many $x \in X$.

(b) By Lemma 3.1, if S is meager, then S_x is meager for comeagerly many $x \in X$. Conversely, if S is not meager, then O is not meager, which gives open sets $U \subseteq X$ and $V \subseteq Y$ such that $U \times V \subseteq O$ and $U \times V$ is not meager. By Lemma 3.2, U, V are not meager. This gives $x \in U$ such that S_x and M_x are meager. As $V \setminus M_x \subseteq O_x \setminus M_x \subseteq S_x$, $V \subseteq S_x \cup M_x$ is meager, a contradiction.

(c) This comes from (b).

4 Meager relations

We now strengthen the perfect set theorem.

Notation. If X is a set, then $\Delta(X) := \{(x, x) \mid x \in X\}$ is the diagonal of X.

Theorem 4.1 (Mycielski-Kuratowski) Let X be a nonempty perfect Polish space, and $R \subseteq X^2$ be meager. Then X contains a copy C of the Cantor space C such that $(x, y) \notin R$ if $x \neq y \in C$.

Proof. As R is meager, there is an increasing sequence (C_l) of closed nowhere dense relations on X whose union contains R. We set $U_l := X^2 \setminus C_l$, so that U_l is dense open in X^2 . Fix a complete metric $d \le 1$ defining the topology of X. We construct a family $(O_s)_{s \in 2^{<\omega}}$ of nonempty open subsets of X satisfying the following properties:

$$\begin{array}{l} (1) \ O_{s\varepsilon} \subseteq O_s \\ (2) \ \operatorname{diam}(O_s) \leq 2^{-|s|} \\ (3) \ O_{s0} \cap O_{s1} = \emptyset \\ (4) \ O_s \times O_t \subseteq U_l \ \mathrm{if} \ s \neq t \in 2^l \end{array}$$

Assume that this is done. Fix $\alpha \in C$. Then $(\overline{O_{\alpha|n}})$ is a decreasing sequence of nonempty closed subsets of X with vanishing diameters. As X is complete, its intersection, equal to $\bigcap_{n \in \omega} O_{\alpha|n}$, is a singleton $h(\alpha)$. Note that h is injective and continuous, and thus a homeomorphism onto its range C by compactness of C. If $x \neq y \in C$, then we can write $x = h(\alpha)$ and $y = h(\beta)$, where $\alpha \neq \beta \in C$. This gives l_0 with $\alpha(l_0) \neq \beta(l_0)$. If $l > l_0$, then $\alpha|l \neq \beta|l$, so that $(x, y) \in O_{\alpha|l} \times O_{\beta|l} \subseteq U_l$ and $(x, y) \notin R$ since (C_l) is increasing.

We now construct O_s , by induction on |s|. We first set $O_{\emptyset} := X$. We enumerate

$$\{(s,t) \in 2^{l+1} \times 2^{l+1} \mid s \neq t\}$$

by $\{(s_i, t_i) \mid i < N\}$. We construct, inductively on *i*, a family $(O_s^i)_{s \in 2^{l+1}}$ of nonempty open subsets of X satisfying the following properties:

$$(1) \overline{O_{s_i}^i} \subseteq O_{s_i|l} \cap \bigcap_{j < i} O_{s_i}^j$$

$$(2) \operatorname{diam}(O_{s_i}^i) \le 2^{-l-1}$$

$$(3) O_{s_i}^i \times O_{t_i}^i \subseteq U_{l+1} \setminus \Delta(X)$$

$$(4) O_s^i \subseteq O_{s|l} \cap \bigcap_{j < i} O_s^j$$

Then we will just have to take $O_s := O_s^{N-1}$. Note that $(O_{s_i|l} \cap \bigcap_{j < i} O_{s_i}^j) \times (O_{t_i|l} \cap \bigcap_{j < i} O_{t_i}^j)$ meets $U_{l+1} \setminus \Delta(X)$ since U_{l+1} is dense open and $\Delta(X)$ is closed nowhere dense since X is perfect. Let (x, y) be in the intersection I. We choose open subsets $O_{s_i}^i, O_{t_i}^i$ of X with diameter at most 2^{-l-1} such that $(x, y) \in O_{s_i}^i \times O_{t_i}^i \subseteq \overline{O_{s_i}^i} \times \overline{O_{t_i}^i} \subseteq I$. If $s \in 2^{l+1} \setminus \{s_i, t_i\}$, then we set $O_s^i := O_{s|l} \cap \bigcap_{j < i} O_{s_i}^j$. This finishes the proof.

Exercise. (Galvin) Let X be a nonempty perfect Polish space, and $R \subseteq X^2$ be non meager and having the Baire property. Prove that we can find copies C_0, C_1 of C in X with $C_0 \times C_1 \subseteq R$.

5 Choquet and strong Choquet games

Being a Baire space can be expressed in terms of a game.

Definition 5.1 Let X be a nonempty topological space.

(a) The Choquet game G_X on X is defined as follows. Players 1 and 2 take turns in playing nonempty open subsets of X

in such a way that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \cdots$ We say that 2 wins this run of the game if $\bigcap_{n \in \omega} V_n$ (= $\bigcap_{n \in \omega} U_n$) is nonempty (1 wins if $\bigcap_{n \in \omega} V_n$ is empty). (b) Let

 $\mathcal{T}_X := \{ s \in (2^X)^{<\omega} \mid \forall i < |s| \ s(i) \ is \ a \ nonempty \ open \ subset \ of \ X \land \forall i < |s| - 1 \ s(i) \supseteq s(i+1) \}.$

A strategy for 1 in G_X is a subtree σ of \mathcal{T}_X such that

(1) $\sigma \neq \emptyset$ (2) $\forall (U_0, V_0, \cdots, U_n) \in \sigma, \forall V_n \subseteq U_n \text{ nonempty open, } (U_0, V_0, \cdots, U_n, V_n) \in \sigma$ (3) $\forall (U_0, V_0, \cdots, U_{n-1}, V_{n-1}) \in \sigma, \exists ! U_n \text{ nonempty open such that } (U_0, V_0, \cdots, U_n) \in \sigma$

Similarly, we define the notion of a strategy for 2 in G_X .

(c) A strategy σ for 1 is a winning strategy for 1 if 1 wins every run $(U_0, V_0, U_1, V_1, \dots) \in [\sigma]$. Similarly, we define the notion of a winning strategy for 2 in G_X .

Theorem 5.2 (Oxtoby) Let X be a nonempty topological space. Then X is a Baire space if and only if player 1 has no winning strategy in the Choquet game G_X .

Proof. Assume first that X is not a Baire space, and let U_0 be a nonempty open subset of X and (O_n) be a sequence of dense open subsets of X whose intersection does not meet U_0 . Player 1 first plays U_0 . Then player 2 plays $V_0 \subseteq U_0$. Note that $U_1 := V_0 \cap O_0$ is nonempty, so that 1 can play it. Then 2 plays $V_1 \subseteq U_1$. Note that $U_2 := V_1 \cap O_1$ is nonempty, so that 1 can play it. And so on. Note that $\bigcap_{n \in \omega} U_n \subseteq \bigcap_{n \in \omega} O_n \cap U_0 = \emptyset$, so that this strategy is winning for 1.

Assume now that player 1 has a winning strategy σ in the Choquet game G_X . Let U_0 be player 1's first move according to σ . We will show that U_0 is not Baire. We construct a nonempty pruned tree $S \subseteq \sigma$ as follows. We determine inductively which sequences from σ of length n we put in S. First $\emptyset \in S$. If $(U_0, V_0, \dots, U_{n-1}, V_{n-1}) \in S$, then $(U_0, V_0, \dots, U_n) \in S$, for the unique U_n with $(U_0, V_0, \dots, U_n) \in \sigma$. If now $p := (U_0, V_0, \dots, U_n) \in S$ and $V_n \subseteq U_n$ is nonempty open, then let $V_n^* := U_{n+1}$ be what σ requires 1 to play next. Zorn's lemma gives a maximal collection \mathcal{V}_p of nonempty open subsets $V_n \subseteq U_n$ such that $\{V_n^* \mid V_n \in \mathcal{V}_p\}$ is pairwise disjoint. We put in S all $(U_0, V_0, \dots, U_n, V_n, V_n^*)$ with $V_n \in \mathcal{V}_p$. Then $\mathcal{U}_p := \{V_n^* \mid V_n \in \mathcal{V}_p\}$ is a family of pairwise disjoint sets and $\bigcup \mathcal{U}_p$ is dense in U_n , by maximality. We now set $W_n := \bigcup \{U_n \mid (U_0, V_0, \dots, U_n) \in S\}$. Note that W_n is open and dense in U_0 for each n. It remains to show that $\bigcap_{n \in \omega} W_n = \emptyset$. We argue by contradicton, which gives $x \in \bigcap_{n \in \omega} W_n$. Then there is a unique $(U_0, V_0, U_1, V_1, \dots) \in [S]$ such that $x \in \bigcap_{n \in \omega} U_n$, which contradicts the fact that $(U_0, V_0, U_1, V_1, \dots) \in [\sigma]$ and σ is winning for 1.

Definition 5.3 A nonempty topological space X is a **Choquet space** if player 2 has a winning strategy in the Choquet game G_X .

By Theorem 5.2, every Choquet space is Baire. A strong version of the Choquet game will help us to characterize the Polish spaces.

Definition 5.4 *Let X be a nonempty topological space.*

(a) The strong Choquet game G_X^s on X is defined as follows. Players 1 and 2 take turns in playing points of X and nonempty open subsets of X

in such a way that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \cdots$ and $x_n \in V_n$. We say that 2 wins this run of the game if $\bigcap_{n \in \omega} V_n$ (= $\bigcap_{n \in \omega} U_n$) is nonempty (1 wins if $\bigcap_{n \in \omega} V_n$ is empty).

. . .

(b) X is a strong Choquet space if player 2 has a winning strategy in the strong Choquet game G_X^s .

Exercise. (a) Any strong Choquet space is Choquet.

- (b) Every nonempty completely metrizable space is strong Choquet.
- (c) Products of strong Choquet spaces are strong Choquet.
- (d) Nonempty G_{δ} subspaces of strong Choquet spaces are strong Choquet.

6 Characterization of Polish spaces

Theorem 6.1 (*Choquet*) Let X be a nonempty metrizable separable space, and \hat{X} be a Polish space in which X is dense. Then X is strong Choquet if and only if X is G_{δ} in \hat{X} if and only if X is Polish.

Proof. The last equivalence is known. If X is Polish, then X is strong Choquet by the last exercise. Conversely, let d be a metric defining the topology of \hat{X} , and σ be a winning strategy for 2 in the strong Choquet game G_X^s . Using point-finite refinement, we can construct (as in the proof of Theorem 5.2) a tree S of sequences of the form $(x_0, (V_0, \hat{V}_0), x_1, (V_1, \hat{V}_1), \dots, x_n)$ or $(x_0, (V_0, \hat{V}_0), x_1, (V_1, \hat{V}_1), \dots, x_n, (V_n, \hat{V}_n))$, where V_i is open in X, \hat{V}_i is open in $\hat{X}, x_i \in \hat{V}_{i-1} \cap X$ (with $\hat{V}_{-1} := \hat{X}$), $x_i \in V_i$, $\hat{V}_i \cap X \subseteq V_i$, $\hat{V}_0 \supseteq \hat{V}_1 \supseteq \dots$, and $((x_0, X), V_0, (x_1, \hat{V}_0 \cap X), V_1, \dots)$ is compatible with σ , such that S additionally has the following property: for each

$$p = (x_0, (V_0, \tilde{V}_0), x_1, (V_1, \tilde{V}_1), \cdots, x_{n-1}, (V_{n-1}, \tilde{V}_{n-1})) \in S$$

(including the empty sequence), if

$$\mathcal{V}_p := \left\{ \hat{V}_n \mid (x_0, (V_0, \hat{V}_0), x_1, \cdots, (V_{n-1}, \hat{V}_{n-1}), x_n, (V_n, \hat{V}_n) \right\} \in S \right\},\$$

then $X \cap \hat{V}_{n-1} \subseteq \bigcup \mathcal{V}_p$, diam $(\tilde{V}_n) < 2^{-n}$ for all $\hat{V}_n \in \mathcal{V}_p$, and for every $\hat{x} \in \hat{X}$ there are at most finitely many $(x_n, (V_n, \hat{V}_n))$ with $(x_0, (V_0, \hat{V}_0), \cdots, (V_{n-1}, \hat{V}_{n-1}), x_n, (V_n, \hat{V}_n)) \in S$ and $\hat{x} \in \hat{V}_n$. Let $W_n := \bigcup \{\tilde{V}_n \mid (x_0, (V_0, \hat{V}_0), \cdots, x_n, (V_n, \hat{V}_n)) \in S\}$. Then W_n is open and $X \subseteq W_n$ (as we can see by an easy induction on n). It remains to show that $\bigcap_{n \in \omega} W_n \subseteq X$. Let $\hat{x} \in \bigcap_{n \in \omega} W_n$. Consider the subtree $S_{\hat{x}}$ of S consisting of all initial segments of the sequences

$$(x_0, (V_0, \hat{V}_0), \cdots, x_n, (V_n, \hat{V}_n)) \in S$$

for which $\hat{x} \in \hat{V}_n$. Since $\hat{x} \in \bigcap_{n \in \omega} W_n$, $S_{\hat{x}}$ is infinite. By the preceding conditions on S, it is also finite splitting. So, by König's Lemma, $[S_{\hat{x}}] \neq \emptyset$. Say $(x_0, (V_0, \hat{V}_0), \cdots) \in [S_{\hat{x}}]$. Then $((x_0, X), V_0, (x_1, \hat{V}_0 \cap X), V_1, (x_2, \hat{V}_1 \cap X), \cdots)$ is a run of G_X^s compatible with σ , so $\bigcap_{n \in \omega} \hat{V}_n \cap X$ is not empty; thus, since diam $(\hat{V}_n) < 2^{-n}$, $\hat{x} \in X$.

The next characterization will be very important in the applications.

Theorem 6.2 (*Choquet*) A nonempty, second countable topological space is Polish if and only if it is T_1 , regular, and strong Choquet.

Proof. We apply Theorem 6.1 and the Urysohn Metrization Theorem.

Exercise. (Sierpinski) Let X be a Polish space, Y be a metrizable separable space, and $f: X \to Y$ be a function. Prove that if f is continuous, open and onto, then Y is Polish.