
Chapter 5-Borel sets and functions

1 The Borel hierarchy

Definition 1.1 Let X,Y be topological spaces.
(a) A subset of X is a Borel set if it is in the σ-algebra generated by the open subsets of X .
(b) A function f : X → Y is a Borel function if the pre-image by f of any open subset of Y

is a Borel subset of X . If f is a Borel bijection with Borel inverse, then we say that f is a Borel
isomorphism.

Any continuous function is Borel. Note that the Borel sets have the BP, and every Borel function
is Baire-measurable. Also, the class of Borel subsets of X contains, the open, the closed, the Fσ, the
Gδ subsets of X .

Definition 1.2 (1) If Γ is a class of sets, then
(a) Γ̌ :={¬S | S∈Γ} is the class of the complements of the elements of Γ,
(b) Γσ is the class of countable unions of elements of Γ,
(c) Γ(X) is the class of subsets of X which are in Γ.

(2) Let ω1 be the first uncountable ordinal. We define, by induction on 1 ≤ ξ < ω1, the following
classes of subsets of the metrizable spaces:

Σ0
1=open Σ0

2=Fσ Σ0
ξ =(

⋃
1≤η<ξ Π0

η)σ

∆0
1=clopen ∆0

2=Σ0
2 ∩Π0

2 · · · ∆0
ξ =Σ0

ξ ∩Π0
ξ · · ·

Π0
1=closed Π0

2=Gδ Π0
ξ =Σ̌0

ξ

In the picture above, the inclusion of classes hold from the left to the right, by transfinite induction,
since we saw that in any metrizable space a closed set is Gδ. This gives a ramification of the Borel
sets in a hierarchy of at most ω1 levels, called the Borel hierarchy, or hierarchy of the Borel classes.
This is the most classical hierarchy of topological complexity in descriptive set theory. Note that the
class of Borel sets is the σ-algebra

⋃
ξ<ω1

Σ0
ξ =
⋃
ξ<ω1

Π0
ξ =
⋃
ξ<ω1

∆0
ξ .

Proposition 1.3 The Borel classes are closed under finite unions and intersections, and continuous
pre-images. Moreover, Σ0

ξ is closed under countable unions, Π0
ξ is closed under countable intersec-

tions, and ∆0
ξ is closed under complements.

Proof. We argue by transfinite induction. �

Exercise. Prove that C0 :={(xn)∈ [0, 1]ω | (xn) converges to 0} is Π0
3.
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Exercise. (a) Let (fn) be a sequence of Borel functions from a topological space X into a metrizable
space Y . We assume that this sequence converges pointwise to a function f :X→Y , i.e.,

(
fn(x)

)
n∈ω

converges to f(x) for each x∈X . Prove that f is Borel.

(b) Let X be a topological space and f :X→R be a lower (resp., upper) semi-continuous function,
i.e., {x∈X | f(x)>a} (resp., {x∈X | f(x)<a}) is open for each a∈R. Prove that f is Borel.

Theorem 1.4 (Lebesgue, Hausdorff) Let X be a metrizable space. Then the class of Borel functions
from X into R is the smallest class of functions from X into R which contains all the continuous
functions and is closed under pointwise limit.

Proof. Let S be the smallest class of functions from X into R which contains all the continuous
functions and is closed under pointwise limit. Note that S is a vector space, i.e., if a, b ∈ R and
f, g∈S , then af+bg∈S .

Let us prove that the characteristic function χB of any Borel subset B of X is in S . Assume first
that O is an open subset of X , which gives an increasing sequence (Cn) of closed subsets of X with
unionO. Urysohn’s lemma gives fn :X→R continuous such that 0≤fn≤1, fn=1 onCn, and fn=0
on ¬O. Note that (fn) converges pointwise to χO, so that χO ∈S. We then note that χ¬B = 1−χB .
Finally, if (Bn) is a sequence of pairwise disjoint sets, then the sequence

(
χB0 + · · ·+χBp

)
p∈ω

pointwise converges to χ⋃
n∈ω Bn

. For instance, if B ∈Σ0
2(X), then B=

⋃
n∈ω Cn, where the Cn’s

are closed. Thus B is the disjoint union of the Cn\(
⋃
p<n Cp)’s. Note that ¬

(
Cn\(

⋃
p<n Cp)

)
is

the disjoint union of ¬Cn and
⋃
p<n Cp. Thus χB∈S . We then argue inductively.

Now let f :X→R be a Borel function. Note that f=f+−f−, where f+ := |f |+f2 and f− := |f |−f2 .
As |f |, f+ and f− are Borel, we may assume that f is non-negative. We set, for n≥1 natural number
and 1≤ i≤n2n, An,i :=f−1

(
[ i−12n ,

i
2n )
)
. We then put fn := Σ1≤i≤n2n

i−1
2n · χAn,i . As An,i is Borel,

fn∈S . As (fn) pointwise converges to f , f ∈S .

As the class of Borel functions contains all the continuous functions and is closed under pointwise
limit, the proof is complete. �

We will give a quantitative version of Theorem 1.4. In order to do this, we first establish some
important structural properties of the Borel classes.

Definition 1.5 Let Γ be a class of sets, X,Y be sets, and R⊆X×Y .

(a) A uniformization of R is a subset R∗ of R which is the graph of a partial function defined on
the projection projX [R] of R on X . Such a function is called a uniformizing function for R.

(b) The class Γ has the number uniformization property if, for any R⊆X×ω in Γ, there is a
uniformization R∗ of R in Γ.

(c) The class Γ has the reduction property if, for any A,B⊆X in Γ, there are A∗, B∗⊆X in Γ
disjoint such that A∗⊆A, B∗⊆B, and A∗ ∪B∗=A ∪B. We then say that A∗, B∗ reduce A,B.

(d) The class Γ has the separation property if, for any A,B⊆X in Γ disjoint, there is C⊆X in
Γ ∩ Γ̌ such that A⊆C⊆¬B.
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Theorem 1.6 In metrizable spaces, for any countable ordinal ξ ≥ 2, the class Σ0
ξ has the number

uniformization property and the reduction property, and the class Π0
ξ has the separation property.

This also holds for ξ=1 in zero-dimensional spaces.

Proof. Let ξ ≥ 2 be a countable ordinal, and R⊆X×ω in Σ0
ξ . We can write R=

⋃
i∈ω Ri, where

Ri is in Π0
ξi

and 1 ≤ ξi < ξ. Let k 7→
(
(k)0, (k)1

)
be a bijection from ω onto ω2, with inverse

< ., . >: ω2→ ω. We put Q(x, k) ⇔
(
x, (k)1

)
∈ R(k)0 , Q∗(x, k) ⇔ Q(x, k) ∧ ∀j < k ¬Q(x, j)

and R∗(x, n) ⇔ ∃i∈ω Q∗(x,< i, n >). Then R∗ is a uniformization of R in Σ0
ξ . Thus Σ0

ξ has the
number uniformization property. If moreover X is zero-dimensional and ξ = 1, then we can repeat
this proof, taking the Ri’s clopen.

If A,B⊆X are in Σ0
ξ , then we define R⊆X×ω by

R(x, n)⇔ (n=0 ∧ x∈A) ∨ (n=1 ∧ x∈B).

Note that R is in Σ0
ξ . This gives a uniformization R∗ of R in Σ0

ξ . We set A∗(x) ⇔ R∗(x, 0) and
B∗(x)⇔ R∗(x, 1). Note that A∗, B∗ reduce A,B.

If A,B ⊆X are in Π0
ξ disjoint, then ¬A,¬B are in Σ0

ξ , which gives A∗, B∗ reducing ¬A,¬B.
We just have to set C :=B∗. �

Definition 1.7 Let X be a set, and (Sn) be a sequence of subsets of X .

(a) limn∈ω Sn := {x∈X | ∀m∈ ω ∃n≥m x∈ Sn} is the set of points of X in infinitely many
Sn’s.

(b) limn∈ω Sn :={x∈X | ∃m∈ω ∀n≥m x∈Sn} is the set of points of X in all but finitely many
Sn’s.

(c) If limn∈ω Sn= limn∈ω Sn, then this set is denoted by limn∈ω Sn.

Proposition 1.8 (Kuratowski) Let ξ≥2 be a countable ordinal, X be a metrizable space, and S⊆X .
Then S ∈∆0

ξ+1 if and only if there is a sequence (Sn) of subsets of X in ∆0
ξ with S = limn∈ω Sn.

This also holds for ξ = 1 if X is zero-dimensional. If λ is an infinite limit countable ordinal, then
S∈∆0

λ+1 if and only if there is a sequence (Sn) of subsets of X in
⋃
η<λ ∆0

η with S= limn∈ω Sn.

Proof. Assume first that S ∈∆0
ξ+1. We can write S =

⋃
n∈ω An and ¬S =

⋃
n∈ω Bn, where (An)

and (Bn) are sequences of Π0
ξ subsets of X . Moreover, replacing An with

⋃
p≤n Ap if necessary, we

may assume that (An) is increasing, and similarly with (Bn). Theorem 1.6 provides Sn ∈∆0
ξ with

An⊆Sn⊆¬Bn. Now note that

S=
⋃
n∈ω

An= limn∈ω An⊆ limn∈ω Sn⊆ limn∈ω Sn⊆ limn∈ω ¬Bn=
⋂
n∈ω
¬Bn=S,

so that limn∈ω Sn is defined and equal to S. Conversely, S ∈∆0
ξ+1 if (Sn) is a sequence of subsets

of X in ∆0
ξ with S= limn∈ω Sn.
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In particular, S ∈∆0
λ+1 if (Sn) is a sequence of subsets of X in

⋃
η<λ ∆0

η with S= limn∈ω Sn.
Assume now that S ∈∆0

λ+1. We can write S =
⋃
n∈ω

⋂
m∈ω Bn,m =

⋂
m∈ω

⋃
n∈ω Cn,m, where

(Bn,m)n,m∈ω and (Cn,m)n,m∈ω are sequences of subsets of X in
⋃
η<λ

⋃
η<λ ∆0

η. As above, we
may assume that

⋃
n∈ω Cn,m+1⊆

⋃
n∈ω Cn,m. We put Sn :=

⋃
k≤n

(
(
⋂
j≤n Bk,j) ∩ (

⋃
l≤n Cl,k)

)
.

Note first that S ⊆ limn∈ω Sn. Indeed, let x∈S, which gives k ∈ω such that x∈
⋂
j∈ω Bk,j . Note

also that there is ik∈ω with x∈Cik,k. Let N :=max(k, ik). If n≥N , then Cik,k⊆
⋃
l≤n Cl,k, so that

x∈ (
⋂
j≤n Bk,j) ∩ Cik,k ⊆ (

⋂
j≤n Bk,j) ∩ (

⋃
l≤n Cl,k)⊆Sn. Note then that ¬S ⊆ limn∈ω (¬Sn).

Indeed, let x /∈ S, which gives k0 ∈ ω such that x ∈
⋂
l∈ω ¬Cl,k0 , and thus x ∈

⋂
l∈ω ¬Cl,k if

k ≥ k0. Note also that, for each j, there is ij ∈ ω with x /∈ Bj,ij . Let M := maxk≤k0 ik, n ≥M ,
and k ≤ n. If k ≤ k0, then x ∈ ¬Bk,ik ⊆

⋃
j≤n ¬Bk,j . If k ≥ k0, then x ∈

⋂
l≤n ¬Cl,k. Thus

x∈(
⋃
j≤n ¬Bk,j) ∪ (

⋂
l≤n ¬Cl,k) and thus x /∈Sn. Therefore S= limn∈ω Sn. �

Definition 1.9 Let Γ be a class of subsets of metrizable spaces, X,Y be metrizable spaces, and
f :X→Y be a function.

(a) f is Baire class one if the pre-image by f of any open subset of Y is a subset of X in Σ0
2.

(b) Inductively, if ξ≥2 is a countable ordinal, then f is Baire class ξ if f is the pointwise limit of
a sequence of functions (fn), where fn is Baire class ξn<ξ.

(c) f is Γ-measurable if the pre-image by f of any open subset of Y is a subset of X in Γ.

The following is an extension and refinement of Theorem 1.4.

Theorem 1.10 (Lebesgue, Hausdorff, Banach) Let ξ≥1 be a countable ordinal, X,Y be metrizable
spaces with Y separable, and f :X → Y be a function. Then f is Baire class ξ if and only if f is
Σ0
ξ+1-measurable. In particular, f is Borel if and only if f is Baire class ξ for some countable ordinal

ξ≥1.

Proof. Assume first that f is Baire class ξ. We argue by induction on ξ, the case ξ= 1 coming from
the definitions. Assume that f is the limit of (fn), where fn is Baire class ξn<ξ. Let

O=
⋃
m∈ω

Bm=
⋃
m∈ω

Bm

be an open subset of Y , where the Bm’s are open balls. Note that

f−1(O)=
⋃

m,N∈ω

⋂
n≥N

f−1n (Bm)

is in Σ0
ξ+1.

Assume now that f is Σ0
ξ+1-measurable. We argue by induction on ξ, the case ξ=1 coming from

the definitions once again. We first solve the case where Y =2 and f is the characteristic function χS
of S⊆X . Note that S∈∆0

ξ+1. If ξ=η+1 is a successor ordinal, then we can write S= limn→∞ Sn,
for some sequence (Sn) of subsets of X in ∆0

η+1, by Proposition 1.8. By induction assumption, χSn

is Baire class η. As χS is the pointwise limit of (χSn), f is Baire class ξ. If ξ is a limit ordinal, then
we can write S= limn→∞ Sn, for some sequence (Sn) of subsets of X in

⋃
η<ξ ∆0

η, by Proposition
1.8. Say that Sn∈∆0

ηn+1 with ηn<ξ. By induction assumption, χSn is Baire class ηn. As χS is the
pointwise limit of (χSn), f is Baire class ξ.
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The preceding argument can be extended to the case where Y is finite. For this, note that if
(Si)i<k is a partition of X , Si= limn→∞ Sin for i<k, and T in :=Sin\(

⋃
j<i S

j
n), then T 0

n , · · · , T k−1n

are pairwise disjoint and still Si= limn→∞ T in.

Note also that if Y is finite with a metric d and if f, g :X→Y are such that d
(
f(x), g(x)

)
≤δ for

all x and (fn), (gn) are sequences of Σ0
η-measurable functions with f= limn→∞ fn, g= limn→∞ gn

pointwise, then we can find a sequence (g′n) of Σ0
η-measurable functions with g = limn→∞ g′n and

d
(
fn(x), g′n(x)

)
≤δ for all x. For that just define

g′n(x) :=

{
gn(x) if d

(
fn(x), gn(x)

)
≤δ,

fn(x) otherwise.

Assume now that Y is an arbitrary metrizable separable space. Considering an embedding of Y into
[0, 1]ω if necessary, we can find a metric d defining the topology of Y such that, for any δ > 0, there
are finitely many points y0, · · · , yn−1 of Y such that Y ⊆

⋃
i<n B(yi, δ). For each natural number k,

this gives Y k := {yk0 , · · · , ykk−1} ⊆ Y such that Y ⊆
⋃
i<nk

B(yki , 2
−k) and Y k ⊆ Y k+1. Note that

f−1
(
B(yki , 2

−k)
)
∈Σ0

ξ+1. By the reduction property, we get a partition (Aki )i<nk
of X into ∆0

ξ+1

sets with Aki ⊆ f−1
(
B(yki , 2

−k)
)
. We define fk :X→ Y k by fk(x) = yki ⇔ x∈Aki . Note that fk

is Σ0
ξ+1-measurable. By the finite case, we get a sequence (fkn) of functions with fk = limn→∞ fkn

pointwise, as well as ηk,n < ξ such that fkn is Baire class ηk,n. Since d
(
f(x), fk(x)

)
≤ 2−k, so that

d
(
fk(x), fk+1(x)

)
≤21−k, we may assume by the preceding remark that d

(
fkn(x), fk+1

n (x)
)
≤21−k.

We now set fn :=fnn . Note that fn is Baire class ξn for some ξn<ξ, and f= limn→∞ fn, so that f is
Baire class ξ. �

Our definition of a Baire class ξ function is not uniform. We can make it uniform in some cases.
Note that the pointiwse limit of a sequence of continuous functions is Baire class one. The converse
is false in general (consider any non constant Baire class one function from R into 2).

Definition 1.11 Let (fn) be a sequence of functions from a set S into a metric spaceX , and f :S→X
be a function. We say that (fn) converges uniformly to f if, for any η>0, there is N ∈ω such that,
for each n≥N and each s∈S, d

(
fn(s), f(s)

)
<η.

Lemma 1.12 Let X be a metrizable space, and (pn) be a sequence of pointwise limits of a sequence
of continuous functions from X into R which converges uniformly to p. Then p is also the pointiwse
limit of a sequence of continuous functions.

Proof. It is enough to show that if (qn) is a sequence of pointwise limits of a sequence of continuous
functions from X into R such that qn is uniformly bounded by 2−n, then Σn∈ω qn is the pointwise
limit of a sequence of continuous functions. So let (qni )i∈ω be a sequence of continuous functions
from X into R pointwise converging to qn. We can assume that qni is uniformly bounded by 2−n.
So ri := Σn∈ω q

n
i is continuous and it is enough to show that (ri) pointwise converges to Σn∈ω qn.

Fix x ∈ X and η > 0. Find N so that, for all i, |Σn>N qni (x)| ≤ η
3 and |Σn>N qn(x)| ≤ η

3 . Then
|ri(x)−Σn∈ω qn(x)|≤ 2η

3 +Σn≤N |qni (x)−qn(x)| and we are done. �

Lemma 1.13 Let X be a separable metrizable space, and S ⊆X in ∆0
2. Then χS is the pointiwse

limit of a sequence of continuous functions.
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Proof. We can write S=
⋃
n∈ω Cn and ¬S=

⋃
n∈ω Fn, where (Cn), (Fn) are increasing sequences

of closed subsets of X . Urysohn’s lemma provides fn : X → R continuous such that fn(x) = 1 if
x∈Cn and fn(x)=0 if x∈Fn. It remains to note that (fn) pointwise converges to χS . �

Theorem 1.14 (Lebesgue, Hausdorff, Banach) LetX,Y be separable metrizable spaces withX zero-
dimensional or Y =R, and f :X→Y be a Baire class one function. Then f is the pointiwse limit of
a sequence of continuous functions.

Proof. If X is zero-dimensional, then we argue as in the proof of Theorem 1.10. So assume that
Y = R. Consider a homeomorphism h : R→ (0, 1). If f : X → R is Baire class one, then so is
h ◦ f : X → (0, 1). If the result holds for g : X → R Baire class one with g[X] ⊆ (0, 1), then
h◦ f= limn→∞ gn with gn :X→R continuous. By replacing gn with (gn∨ 1

n+1)∧ (1− 1
n+1), we can

assume that gn[X]⊆(0, 1). Then fn :=h−1 ◦ gn is as desired. So we may assume that f [X]⊆(0, 1).

We set, forN≥2 and i≤N−2,ANi :=f−1
(
( i
N ,

i+2
N )
)
. Note thatANi is Σ0

2 andX=
⋃
i≤N−2 A

N
i .

The reduction property gives BN
i ⊆ANi in ∆0

2 such that X is the disjoint union
⋃
i≤N−2 B

N
i . Note

that χBN
i

is Baire class one and if gN := Σi≤N−2
i
N · χBN

i
, then (gn) converges to f uniformly. It

remains to apply Lemmas 1.12 and 1.13. �

Exercise. Prove that semi-continuous functions on metrizable spaces are Baire class one.

Notation. If X,Y are sets and R⊆X×Y , then ∃YR :={x∈X | ∃y∈Y (x, y)∈R}. If Γ is a class
of sets, then ∃Y Γ is the class of sets of the form ∃YR for some R∈Γ.

The following fact will be important when we will study effective descriptive set theory.

Proposition 1.15 Let n≥1 be a natural number and X be a metrizable space. Then

Σ0
n+1(X)=∃ωΠ0

n(X).

Proof. Assume first that n=1. If S∈Σ0
2(X), then we can find a sequence (Cn) of closed subsets of

X with union S. We define R⊆X×ω by R(x, n) ⇔ x∈Cn. Note that R is closed and S = ∃ωR,
so that S ∈∃ωΠ0

1(X). Conversely, let R⊆X×ω be closed with S=∃ωR. Note that S=
⋃
n∈ω Rn

is the countable union of the horizontal sections Rn := {x∈X | (x, n)∈R} of R. As the function
fn : x 7→ (x, n) is continuous and Rn = f−1n (R), Rn is closed and S ∈Σ0

2(X). We then argue by
induction. �

2 Universal sets

The Borel classes provide for each Polish space X a hierarchy of at most ω1 levels. We will see
that this hierarchy is strict when X is uncountable. This is based on the existence of universal sets for
the classes Σ0

ξ and Π0
ξ .

Definition 2.1 Let Γ be a class of sets, X,Y be sets. A subset U of Y ×X is Y -universal for the
subsets of X in Γ if U ∈Γ and, for each S∈Γ(X), there is y∈Y such that

S=Uy :={x∈X | (y, x)∈U}

is the vertical section of U at y.
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Such a universal set provides a coding of the sets in Γ(X).

Theorem 2.2 Let X be a metrizable separable space, and ξ≥ 1 be a countable ordinal. Then there
is a C-universal set for the subsets of X in Σ0

ξ , and similarly with Π0
ξ .

Proof. We proceed by induction on ξ. Let (On) be a countable basis for the topology of X . We put

U(α, x)⇔ ∃n∈ω α(n)=1 ∧ x∈On.

Note that U is open, and if O⊆X is open, then we can find α∈C such that O=
⋃
α(n)=1 On, so that

O=Uα. Thus U is C-universal for Σ0
1(X).

Then we note that if U is C-universal for Γ(X), then ¬U is C-universal for Γ̌(X). In particular,
there is a C-universal set for Π0

1(X), and if there is a C-universal set for Σ0
ξ(X), then there is a

C-universal set for Π0
ξ(X).

Assume now that there is a C-universal set Uη for Π0
η(X), for each η <ξ. Let, for n∈ω, ηn<ξ

such that ηn≤ ηn+1 and ξ= sup{ηn+1 | n∈ω}. Let < ., . >:ω2→ω be a bijection, and, for α∈C
and n∈ω, (α)n ∈ C defined by (α)n(p) :=α(< n, p >). Then α 7→ (α)n is continuous and for any
(αn)∈Cω there is α∈C such that (α)n=αn for each n. We put

U(α, x)⇔ ∃n∈ω
(
(α)n, x

)
∈Uηn .

Then U is C-universal for Σ0
ξ(X). �

Theorem 2.3 Let X be an uncountable Polish space, and ξ ≥ 1 be a countable ordinal. Then
Σ0
ξ(X) 6=Π0

ξ(X). Therefore ∆0
ξ(X)$Σ0

ξ(X)$∆0
ξ+1(X), and similarly for Π0

ξ(X).

Proof. As X is uncountable, we may assume that C⊆X . So if Σ0
ξ(X)=Π0

ξ(X), then

Σ0
ξ(C)=Π0

ξ(C).

Let U be C-universal for Σ0
ξ(C). We put S :={α∈C | (α, α) /∈U}. Then S∈Π0

ξ(C)=Σ0
ξ(C), which

gives β∈C such that S=Uβ . Now β∈S ⇔(β, β)∈U ⇔β /∈S, which is absurd. �

Exercise. Let X be an uncountable Polish space, and λ≥ 1 be a countable limit ordinal. Prove that⋃
ξ<λ Σ0

ξ(X)$∆0
λ(X).

Exercise. A class of sets is called self-dual if it is closed under complements. Let Γ be a class of
subsets of metrizable spaces closed under continuous pre-images and self-dual. Prove that, for any
X , there is no X-universal set for Γ(X). Conclude that, for any 1≤ ξ <ω1, there is no X-universal
set for ∆0

ξ(X).

3 Complete sets

We first give a few notions of game theory. More precisely, we will discuss infinite games with
perfect information.
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Definition 3.1 Let S be a nonempty set, T ⊆S<ω be a nonempty pruned tree on S, andA⊆ [T ]⊆Sω.

(a) The game G(T,A) on S is defined as follows. Players 1 and 2 take turns in playing

1 s0 s2
· · · ,

2 s1 s3

in such a way that (sn)∈ [T ]. We say that 1 wins this run of the game if (sn)∈A.

(b) A strategy for 1 in G(T,A) is a subtree σ of T such that

(1) σ is nonempty pruned,

(2) if (s0, s1, · · · , s2j)∈σ and s2j+1∈S satisfies (s0, · · · , s2j , s2j+1)∈T , then

(s0, · · · , s2j , s2j+1)∈σ,

(3) if (s0, s1, · · · , s2j−1)∈σ, then there is a unique s2j∈S with (s0, · · · , s2j−1, s2j)∈σ.

Intuitively, σ tells 1 what to play, knowing 2’s previous moves. Similarly, we define the notion of
a strategy for 2 in G(T,A).

(c) A strategy σ for 1 is a winning strategy for 1 if [σ]⊆A. Similarly, we define the notion of a
winning strategy for 2.

(d) The game G(T,A) is determined if one of the two players has a winning strategy.

The next theorem is very important, and we will not prove it.

Theorem 3.2 (Martin) Let S be a nonempty set, and T be a nonempty pruned tree on S. We equip S
with the discrete topology, and Sω with the product topology. Let A⊆ [T ] be Borel. Then the game
G(T,A) is determined.

An important way to compare the topological complexity of sets is to use pre-images by continu-
ous functions.

Definition 3.3 Let X,Y be sets, A⊆X and B⊆Y .

(a) A reduction of A to B is a function f :X→Y such that A=f−1(B).

(b) If moreover X,Y are topological spaces, then we say that A is Wadge reducible to B,
denoted by (X,A) ≤W (Y,B) or A ≤W B, if there is a continuous reduction of A to B.

Remarks. (a) Note that ≤W is a quasi-order, i.e., a reflexive and transitive relation. It is called the
Wadge quasi-order.

(b) Note that the only continuous functions from R into N are the constant functions, because the
only clopen subsets of R are the whole space and the empty set. So the Wadge quasi-order is not very
interesting in non zero-dimensional spaces. This is the reason why the Wadge quasi order is studied
in zero-dimensional spaces, to ensure the existence of enough continuous functions.

Recall that a zero-dimensional Polish space is homeomorphic to a closed subset of N , and that a
closed subset of N is of the form [T ], for some pruned tree T on ω.
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Lemma 3.4 (Wadge) Let S, T be nonempty pruned trees on ω, and A⊆ [S], B⊆ [T ] be Borel. Then
A ≤W B or B ≤W ¬A.

Proof. Consider the Wadge game on ω, defined as follows. Players 1 and 2 take turns in playing

1 α(0) α(1)
· · · ,

2 β(0) β(1)

in such a way that α∈ [S] and β ∈ [T ]. We say that 2 wins this run of the game if α∈A ⇔ β ∈B.
This game can be seen as a Borel game G(U,C) for some suitable nonempty pruned tree on ω and
some Borel subset C of [U ]. By Theorem 3.2, this game is determined.

If 2 has a winning strategy, then this strategy can be seen as a map ϕ :S→T such that s⊆ t ⇒
ϕ(s)⊆ϕ(t) and |ϕ(s)|= |s|. It defines a continuous map f : [S]→ [T ] by f(α) := limn→∞ ϕ(α|n).
As ϕ is winning for 2, α∈A⇔ f(α)∈B, so that A ≤W B.

Note that 1 wins the run above of the Wadge game if α /∈ A ⇔ β ∈ B. As above, if 1 has a
winning strategy, then B ≤W ¬A. �

Remark. If B is Σ0
ξ (resp., Π0

ξ) and A ≤W B, then A is Σ0
ξ (resp., Π0

ξ). So Σ0
ξ and Π0

ξ are initial
segments of ≤W . We will see that any set in Σ0

ξ \Π0
ξ is maximal for ≤W in Σ0

ξ , and similarly if we
exchange Σ0

ξ and Π0
ξ .

Definition 3.5 Let Γ be a class of subsets of Polish spaces, Y be a Polish space and B⊆Y .
(a) We say that B is Γ-hard if, for any zero-dimensional Polish space X and any A⊆X in Γ,

A ≤W B.
(b) If moreover B is in Γ, then we say that B is Γ-complete.

Remark. If Γ is not self dual on zero-dimensional spaces and closed under continuous pre-images,
then no Γ-hard set is in Γ̌. If A is Γ-hard and A ≤W B, then B is Γ-hard. This is a very common
method for proving that a set is Γ-hard: choose a known Γ-hard set A, and show that A ≤W B.

Theorem 3.6 (Wadge) Let X be a zero-dimensional Polish space, and A⊆X be a Borel set.
(a) A is Σ0

ξ-complete if and only if A is in Σ0
ξ\Π0

ξ .

(b) A is Σ0
ξ-hard if and only if A is not in Π0

ξ .

Moreover, we can exchange Σ0
ξ and Π0

ξ .

Proof. If A is Σ0
ξ-hard, then A is not in Π0

ξ since Σ0
ξ(N ) 6= Π0

ξ(N ). If now A is not in Π0
ξ , Y is

zero-dimensional and B ⊆ Y is in Σ0
ξ , then, by Lemma 3.4, B ≤W A since otherwise A ≤W ¬B.

Thus A is Σ0
ξ-hard. �

Exercise. Let U be C-universal for the Σ0
ξ subsets of N . Prove that U is Σ0

ξ-complete.

Exercise. We set Pf := {α ∈ C | ∃m ∈ ω ∀n ≥m α(n) = 0} and P∞ := C \Pf . Prove that Pf is
Σ0

2-complete and P∞ is Π0
2-complete.
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Example. We set V := {α ∈ 2ω×ω | ∃n ∈ ω ∀p ∈ ω ∃q ≥ p α(n, q) = 1}. Note that V is in Σ0
3. In

fact V is Σ0
3-complete. Indeed, let X be a zero-dimensional Polish space, and A⊆X in Σ0

3. We can
write A=

⋃
n∈ω An, where An ∈Π0

2. As P∞ is Π0
2-complete, there is fn :X→C continuous such

that An = f−1n (P∞). We define f :X→ 2ω×ω by f(x)(n, q) := fn(x)(q). Note that f is continuous
and x∈A⇔ ∃n∈ω x∈An ⇔ ∃n∈ω fn(x)∈P∞ ⇔ f(x)∈V .

4 Turning Borel sets into clopen sets

The following theorem is a fundamental fact about Borel subsets of Polish spaces.

Lemma 4.1 Let (X, τ) be a Polish space, C ⊆X be closed, and τC be the topology generated by
τ ∪ {C}. Then τC is Polish, C is clopen in τC , and τF , τ have the same Borel sets.

Proof. Note that τC is the sum of the relative topologies on C and ¬C. �

Lemma 4.2 Let (X, τ) be a Polish space and (τn) be a sequence of Polish topologies on X contain-
ing τ . Then the topology τ∞ generated by

⋃
n∈ω τn is Polish. If moreover

⋃
n∈ω τn ⊆∆1

1(X, τ),
then τ∞, τ have the same Borel sets.

Proof. We set, for n∈ω, Xn :=X . Consider the function ϕ :X→Πn∈ω Xn defined by

ϕ(x) :=(x, x, · · · ).

Note that ϕ[X] is closed in Πn∈ω (Xn, τn). Indeed, if (xn) /∈ ϕ[X], then we can find i < j with
xi 6=xj . Let O,U be disjoint τ -open with xi∈O and xj∈U . Then

(xn)∈X0×· · ·×Xi−1×O×Xi+1×· · ·×Xj−1×U×Xj+1×· · ·⊆¬ϕ[X].

Thus ϕ[X] is Polish. As ϕ is a homeomorphism from (X, τ∞) onto ϕ[X], (X, τ∞) is Polish. �

Theorem 4.3 Let (X, τ) be a Polish space, and B⊆X be Borel. Then there is a Polish topology τB
on X containing τ such that B is clopen in τB , and τB , τ have the same Borel sets.

Proof. Consider the class A of subsets A of X for which there is a Polish topology τA containing
τ such that A is clopen in τA, and τA and τ have the same Borel sets. By Lemma 4.1, A contains
τ . Note that A is closed under complements. If (An) is a sequence of elements of A, then we get
τn := τAn . Lemma 4.2 provides τ∞. Then A :=

⋃
n∈ω An is τ∞-open and one more application of

Lemma 4.1 shows that A∈A. Thus A is a σ-algebra, and contains the Borel subsets of (X, τ). �

Exercise. (a) Let (X, τ) be a Polish space, and (Sn) be a sequence of Borel subsets of X . Prove that
there is a zero-dimensional Polish topology τ ′ on X containing τ such that Sn is clopen in τ ′ for each
n, and τ ′, τ have the same Borel sets.
(b) Let (X, τ) be a Polish space, Y be a second countable space, and f : (X, τ)→ Y be a Borel
function. Prove that there is a zero-dimensional Polish topology τ ′ on X containing τ such that
f : (X, τ ′)→Y is continuous and τ ′, τ have the same Borel sets.

A first consequence of the previous theorem is the perfect set theorem for Borel sets.
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Theorem 4.4 (Alexandrov, Hausdorff) Let X be a Polish space, and B ⊆X be Borel. Then either
B is countable, or B contains a homeomorphic copy of the Cantor space C. In particular, every
uncountable Borel subset of X has size continuum.

Proof. Theorem 4.3 gives a finer Polish topology τB onX such thatB is clopen in τB , and τB has the
same Borel sets as the initial topology of X . In particular, B, equipped with the topology induced by
τB , is Polish. So if B is uncountable, it contains a homeomorphic copy of the Cantor space C. As τB
is finer than the initial topology, this is also a homeomorphic copy of the Cantor space C with respect
to the initial topology. �

Another consequence is the following representation of Borel sets.

Theorem 4.5 (Lusin, Souslin) Let X be a Polish space, and B⊆X be Borel. Then there is a closed
subset C of N and a continuous bijection b :C→B. In particular, if B is nonempty, then there is a
continuous surjection s :N→B extending b.

Proof. Theorem 4.3 gives a finer Polish topology τB on X such that B is clopen in τB . In particular,
B, equipped with the topology induced by τB , is Polish. This gives a closed subset C of N and a
bijection b :C→B continuous for τB |B . As τB is finer than the initial topology, b is also continuous
with respect to the initial topology. The last assertion comes from the existence of a retraction from
N onto C. �
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