Chapter 5-Borel sets and functions

1 The Borel hierarchy

Definition 1.1 Let X, Y be topological spaces.

(a) A subset of X is a **Borel set** if it is in the σ -algebra generated by the open subsets of X.

(b) A function $f : X \to Y$ is a **Borel function** if the pre-image by f of any open subset of Y is a Borel subset of X. If f is a Borel bijection with Borel inverse, then we say that f is a **Borel isomorphism**.

Any continuous function is Borel. Note that the Borel sets have the BP, and every Borel function is Baire-measurable. Also, the class of Borel subsets of X contains, the open, the closed, the F_{σ} , the G_{δ} subsets of X.

Definition 1.2 (1) If Γ is a class of sets, then

(a) $\check{\Gamma} := \{\neg S \mid S \in \Gamma\}$ is the class of the complements of the elements of Γ ,

 $\mathbf{\Delta}_2^0 = \mathbf{\Sigma}_2^0 \cap \mathbf{\Pi}_2^0 \qquad \qquad \cdots \qquad \mathbf{\Delta}_{\xi}^0 = \mathbf{\Sigma}_{\xi}^0 \cap \mathbf{\Pi}_{\xi}^0$

(b) Γ_{σ} is the class of countable unions of elements of Γ ,

(c) $\Gamma(X)$ is the class of subsets of X which are in Γ .

(2) Let ω_1 be the first uncountable ordinal. We define, by induction on $1 \le \xi < \omega_1$, the following classes of subsets of the metrizable spaces:

$$\Sigma_1^0 = open \qquad \qquad \Sigma_2^0 = F_\sigma \qquad \qquad \Sigma_\xi^0 = (\bigcup_{1 < \eta < \xi} \ \Pi_\eta^0)_\sigma$$

 $\Delta_1^0 = clopen$

 $\Pi_1^0 = closed$ $\Pi_2^0 = G_\delta$ $\Pi_\xi^0 = \check{\Sigma}_\xi^0$

In the picture above, the inclusion of classes hold from the left to the right, by transfinite induction, since we saw that in any metrizable space a closed set is G_{δ} . This gives a ramification of the Borel sets in a hierarchy of at most ω_1 levels, called the **Borel hierarchy**, or hierarchy of the **Borel classes**. This is the most classical hierarchy of topological complexity in descriptive set theory. Note that the class of Borel sets is the σ -algebra $\bigcup_{\xi < \omega_1} \Sigma_{\xi}^0 = \bigcup_{\xi < \omega_1} \Pi_{\xi}^0 = \bigcup_{\xi < \omega_1} \Delta_{\xi}^0$.

Proposition 1.3 The Borel classes are closed under finite unions and intersections, and continuous pre-images. Moreover, Σ_{ξ}^{0} is closed under countable unions, Π_{ξ}^{0} is closed under countable intersections, and Δ_{ξ}^{0} is closed under complements.

Proof. We argue by transfinite induction.

Exercise. Prove that $C_0 := \{(x_n) \in [0, 1]^{\omega} \mid (x_n) \text{ converges to } 0\}$ is Π_3^0 .

. . .

Exercise. (a) Let (f_n) be a sequence of Borel functions from a topological space X into a metrizable space Y. We assume that this sequence converges pointwise to a function $f: X \to Y$, i.e., $(f_n(x))_{n \in \omega}$ converges to f(x) for each $x \in X$. Prove that f is Borel.

(b) Let X be a topological space and $f: X \to \mathbb{R}$ be a **lower** (resp., **upper**) semi-continuous function, i.e., $\{x \in X \mid f(x) > a\}$ (resp., $\{x \in X \mid f(x) < a\}$) is open for each $a \in \mathbb{R}$. Prove that f is Borel.

Theorem 1.4 (Lebesgue, Hausdorff) Let X be a metrizable space. Then the class of Borel functions from X into \mathbb{R} is the smallest class of functions from X into \mathbb{R} which contains all the continuous functions and is closed under pointwise limit.

Proof. Let S be the smallest class of functions from X into \mathbb{R} which contains all the continuous functions and is closed under pointwise limit. Note that S is a vector space, i.e., if $a, b \in \mathbb{R}$ and $f, g \in S$, then $af + bg \in S$.

Let us prove that the characteristic function χ_B of any Borel subset B of X is in S. Assume first that O is an open subset of X, which gives an increasing sequence (C_n) of closed subsets of X with union O. Urysohn's lemma gives $f_n: X \to \mathbb{R}$ continuous such that $0 \le f_n \le 1$, $f_n = 1$ on C_n , and $f_n = 0$ on $\neg O$. Note that (f_n) converges pointwise to χ_O , so that $\chi_O \in S$. We then note that $\chi_{\neg B} = 1 - \chi_B$. Finally, if (B_n) is a sequence of pairwise disjoint sets, then the sequence $(\chi_{B_0} + \cdots + \chi_{B_p})_{p \in \omega}$ pointwise converges to $\chi_{\bigcup_{n \in \omega} B_n}$. For instance, if $B \in \Sigma_2^0(X)$, then $B = \bigcup_{n \in \omega} C_n$, where the C_n 's are closed. Thus B is the disjoint union of the $C_n \setminus (\bigcup_{p < n} C_p)$'s. Note that $\neg (C_n \setminus (\bigcup_{p < n} C_p))$ is the disjoint union of $\neg C_n$ and $\bigcup_{p < n} C_p$. Thus $\chi_B \in S$. We then argue inductively.

Now let $f: X \to \mathbb{R}$ be a Borel function. Note that $f = f^+ - f^-$, where $f^+ := \frac{|f| + f}{2}$ and $f^- := \frac{|f| - f}{2}$. As |f|, f^+ and f^- are Borel, we may assume that f is non-negative. We set, for $n \ge 1$ natural number and $1 \le i \le n2^n$, $A_{n,i} := f^{-1}\left(\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right)\right)$. We then put $f_n := \sum_{1 \le i \le n2^n} \frac{i-1}{2^n} \cdot \chi_{A_{n,i}}$. As $A_{n,i}$ is Borel, $f_n \in S$. As (f_n) pointwise converges to $f, f \in S$.

As the class of Borel functions contains all the continuous functions and is closed under pointwise limit, the proof is complete. \Box

We will give a quantitative version of Theorem 1.4. In order to do this, we first establish some important structural properties of the Borel classes.

Definition 1.5 Let Γ be a class of sets, X, Y be sets, and $R \subseteq X \times Y$.

(a) A uniformization of R is a subset R^* of R which is the graph of a partial function defined on the projection $proj_X[R]$ of R on X. Such a function is called a uniformizing function for R.

(b) The class Γ has the number uniformization property if, for any $R \subseteq X \times \omega$ in Γ , there is a uniformization R^* of R in Γ .

(c) The class Γ has the **reduction property** if, for any $A, B \subseteq X$ in Γ , there are $A^*, B^* \subseteq X$ in Γ disjoint such that $A^* \subseteq A$, $B^* \subseteq B$, and $A^* \cup B^* = A \cup B$. We then say that A^*, B^* **reduce** A, B.

(d) The class Γ has the separation property if, for any $A, B \subseteq X$ in Γ disjoint, there is $C \subseteq X$ in $\Gamma \cap \check{\Gamma}$ such that $A \subseteq C \subseteq \neg B$.

Theorem 1.6 In metrizable spaces, for any countable ordinal $\xi \ge 2$, the class Σ_{ξ}^{0} has the number uniformization property and the reduction property, and the class Π_{ξ}^{0} has the separation property. This also holds for $\xi = 1$ in zero-dimensional spaces.

Proof. Let $\xi \ge 2$ be a countable ordinal, and $R \subseteq X \times \omega$ in Σ_{ξ}^{0} . We can write $R = \bigcup_{i \in \omega} R_i$, where R_i is in $\Pi_{\xi_i}^{0}$ and $1 \le \xi_i < \xi$. Let $k \mapsto ((k)_0, (k)_1)$ be a bijection from ω onto ω^2 , with inverse $< ., . >: \omega^2 \to \omega$. We put $Q(x, k) \Leftrightarrow (x, (k)_1) \in R_{(k)_0}, Q^*(x, k) \Leftrightarrow Q(x, k) \land \forall j < k \neg Q(x, j)$ and $R^*(x, n) \Leftrightarrow \exists i \in \omega \ Q^*(x, < i, n >)$. Then R^* is a uniformization of R in Σ_{ξ}^{0} . Thus Σ_{ξ}^{0} has the number uniformization property. If moreover X is zero-dimensional and $\xi = 1$, then we can repeat this proof, taking the R_i 's clopen.

If $A, B \subseteq X$ are in $\Sigma_{\mathcal{E}}^0$, then we define $R \subseteq X \times \omega$ by

$$R(x,n) \Leftrightarrow (n = 0 \land x \in A) \lor (n = 1 \land x \in B).$$

Note that R is in Σ_{ξ}^{0} . This gives a uniformization R^{*} of R in Σ_{ξ}^{0} . We set $A^{*}(x) \Leftrightarrow R^{*}(x,0)$ and $B^{*}(x) \Leftrightarrow R^{*}(x,1)$. Note that A^{*}, B^{*} reduce A, B.

If $A, B \subseteq X$ are in Π^0_{ξ} disjoint, then $\neg A, \neg B$ are in Σ^0_{ξ} , which gives A^*, B^* reducing $\neg A, \neg B$. We just have to set $C := B^*$.

Definition 1.7 Let X be a set, and (S_n) be a sequence of subsets of X.

(a) $\overline{\lim}_{n \in \omega} S_n := \{x \in X \mid \forall m \in \omega \exists n \ge m \ x \in S_n\}$ is the set of points of X in infinitely many S_n 's.

(b) $\underline{lim}_{n\in\omega} S_n := \{x \in X \mid \exists m \in \omega \forall n \ge m \ x \in S_n\}$ is the set of points of X in all but finitely many S_n 's.

(c) If $\overline{\lim}_{n \in \omega} S_n = \underline{\lim}_{n \in \omega} S_n$, then this set is denoted by $\lim_{n \in \omega} S_n$.

Proposition 1.8 (Kuratowski) Let $\xi \ge 2$ be a countable ordinal, X be a metrizable space, and $S \subseteq X$. Then $S \in \Delta_{\xi+1}^0$ if and only if there is a sequence (S_n) of subsets of X in Δ_{ξ}^0 with $S = \lim_{n \in \omega} S_n$. This also holds for $\xi = 1$ if X is zero-dimensional. If λ is an infinite limit countable ordinal, then $S \in \Delta_{\lambda+1}^0$ if and only if there is a sequence (S_n) of subsets of X in $\bigcup_{\eta < \lambda} \Delta_{\eta}^0$ with $S = \lim_{n \in \omega} S_n$.

Proof. Assume first that $S \in \Delta_{\xi+1}^0$. We can write $S = \bigcup_{n \in \omega} A_n$ and $\neg S = \bigcup_{n \in \omega} B_n$, where (A_n) and (B_n) are sequences of Π_{ξ}^0 subsets of X. Moreover, replacing A_n with $\bigcup_{p \leq n} A_p$ if necessary, we may assume that (A_n) is increasing, and similarly with (B_n) . Theorem 1.6 provides $S_n \in \Delta_{\xi}^0$ with $A_n \subseteq S_n \subseteq \neg B_n$. Now note that

$$S = \bigcup_{n \in \omega} A_n = \underline{\lim}_{n \in \omega} A_n \subseteq \underline{\lim}_{n \in \omega} S_n \subseteq \overline{\lim}_{n \in \omega} S_n \subseteq \overline{\lim}_{n \in \omega} \neg B_n = \bigcap_{n \in \omega} \neg B_n = S_n$$

so that $\lim_{n \in \omega} S_n$ is defined and equal to S. Conversely, $S \in \Delta^0_{\xi+1}$ if (S_n) is a sequence of subsets of X in Δ^0_{ξ} with $S = \lim_{n \in \omega} S_n$.

In particular, $S \in \Delta_{\lambda+1}^{0}$ if (S_n) is a sequence of subsets of X in $\bigcup_{\eta < \lambda} \Delta_{\eta}^{0}$ with $S = \lim_{n \in \omega} S_n$. Assume now that $S \in \Delta_{\lambda+1}^{0}$. We can write $S = \bigcup_{n \in \omega} \bigcap_{m \in \omega} B_{n,m} = \bigcap_{m \in \omega} \bigcup_{n \in \omega} C_{n,m}$, where $(B_{n,m})_{n,m \in \omega}$ and $(C_{n,m})_{n,m \in \omega}$ are sequences of subsets of X in $\bigcup_{\eta < \lambda} \bigcup_{\eta < \lambda} \Delta_{\eta}^{0}$. As above, we may assume that $\bigcup_{n \in \omega} C_{n,m+1} \subseteq \bigcup_{n \in \omega} C_{n,m}$. We put $S_n := \bigcup_{k \leq n} ((\bigcap_{j \leq n} B_{k,j}) \cap (\bigcup_{l \leq n} C_{l,k}))$. Note first that $S \subseteq \underline{\lim}_{n \in \omega} S_n$. Indeed, let $x \in S$, which gives $k \in \omega$ such that $x \in \bigcap_{j \in \omega} B_{k,j}$. Note also that there is $i_k \in \omega$ with $x \in C_{i_k,k}$. Let $N := \max(k, i_k)$. If $n \geq N$, then $C_{i_k,k} \subseteq \bigcup_{l \leq n} C_{l,k}$, so that $x \in (\bigcap_{j \leq n} B_{k,j}) \cap C_{i_k,k} \subseteq (\bigcap_{j \leq n} B_{k,j}) \cap (\bigcup_{l \leq n} C_{l,k}) \subseteq S_n$. Note then that $\neg S \subseteq \underline{\lim}_{n \in \omega} \neg C_{l,k}$ if $k \geq k_0$. Note also that, for each j, there is $i_j \in \omega$ with $x \notin B_{j,i_j}$. Let $M := \max_{k \leq k_0} i_k$, $n \geq M$, and $k \leq n$. If $k \leq k_0$, then $x \in \neg B_{k,i_k} \subseteq \bigcup_{j \leq n} \neg B_{k,j}$ or $C_{l,k}$ and thus $x \notin S_n$. Therefore $S = \lim_{n \in \omega} S_n$.

Definition 1.9 Let Γ be a class of subsets of metrizable spaces, X, Y be metrizable spaces, and $f: X \rightarrow Y$ be a function.

(a) f is **Baire class one** if the pre-image by f of any open subset of Y is a subset of X in Σ_2^0 .

(b) Inductively, if $\xi \ge 2$ is a countable ordinal, then f is **Baire class** ξ if f is the pointwise limit of a sequence of functions (f_n) , where f_n is Baire class $\xi_n < \xi$.

(c) f is Γ -measurable if the pre-image by f of any open subset of Y is a subset of X in Γ .

The following is an extension and refinement of Theorem 1.4.

Theorem 1.10 (Lebesgue, Hausdorff, Banach) Let $\xi \ge 1$ be a countable ordinal, X, Y be metrizable spaces with Y separable, and $f: X \to Y$ be a function. Then f is Baire class ξ if and only if f is $\Sigma^0_{\xi+1}$ -measurable. In particular, f is Borel if and only if f is Baire class ξ for some countable ordinal $\xi \ge 1$.

Proof. Assume first that f is Baire class ξ . We argue by induction on ξ , the case $\xi = 1$ coming from the definitions. Assume that f is the limit of (f_n) , where f_n is Baire class $\xi_n < \xi$. Let

$$O = \bigcup_{m \in \omega} B_m = \bigcup_{m \in \omega} \overline{B_m}$$

be an open subset of Y, where the B_m 's are open balls. Note that

$$f^{-1}(O) = \bigcup_{m,N \in \omega} \bigcap_{n \ge N} f_n^{-1}(\overline{B_m})$$

is in $\Sigma^0_{\xi+1}$.

Assume now that f is $\Sigma_{\xi+1}^0$ -measurable. We argue by induction on ξ , the case $\xi=1$ coming from the definitions once again. We first solve the case where Y=2 and f is the characteristic function χ_S of $S \subseteq X$. Note that $S \in \Delta_{\xi+1}^0$. If $\xi = \eta + 1$ is a successor ordinal, then we can write $S = \lim_{n \to \infty} S_n$, for some sequence (S_n) of subsets of X in $\Delta_{\eta+1}^0$, by Proposition 1.8. By induction assumption, χ_{S_n} is Baire class η . As χ_S is the pointwise limit of (χ_{S_n}) , f is Baire class ξ . If ξ is a limit ordinal, then we can write $S = \lim_{n \to \infty} S_n$, for some sequence (S_n) of subsets of X in $\bigcup_{\eta < \xi} \Delta_{\eta}^0$, by Proposition 1.8. Say that $S_n \in \Delta_{\eta_n+1}^0$ with $\eta_n < \xi$. By induction assumption, χ_{S_n} is Baire class η_n . As χ_S is the pointwise limit of (χ_{S_n}) , f is Baire class ξ . The preceding argument can be extended to the case where Y is finite. For this, note that if $(S_i)_{i < k}$ is a partition of X, $S_i = \lim_{n \to \infty} S_n^i$ for i < k, and $T_n^i := S_n^i \setminus (\bigcup_{j < i} S_n^j)$, then T_n^0, \dots, T_n^{k-1} are pairwise disjoint and still $S_i = \lim_{n \to \infty} T_n^i$.

Note also that if Y is finite with a metric d and if $f, g: X \to Y$ are such that $d(f(x), g(x)) \leq \delta$ for all x and $(f_n), (g_n)$ are sequences of Σ_{η}^0 -measurable functions with $f = \lim_{n \to \infty} f_n, g = \lim_{n \to \infty} g_n$ pointwise, then we can find a sequence (g'_n) of Σ_{η}^0 -measurable functions with $g = \lim_{n \to \infty} g'_n$ and $d(f_n(x), g'_n(x)) \leq \delta$ for all x. For that just define

$$g'_n(x) := \begin{cases} g_n(x) \text{ if } d(f_n(x), g_n(x)) \le \delta, \\ f_n(x) \text{ otherwise.} \end{cases}$$

Assume now that Y is an arbitrary metrizable separable space. Considering an embedding of Y into $[0,1]^{\omega}$ if necessary, we can find a metric d defining the topology of Y such that, for any $\delta > 0$, there are finitely many points y_0, \dots, y_{n-1} of Y such that $Y \subseteq \bigcup_{i < n_k} B(y_i, \delta)$. For each natural number k, this gives $Y^k := \{y_0^k, \dots, y_{k-1}^k\} \subseteq Y$ such that $Y \subseteq \bigcup_{i < n_k} B(y_i^k, 2^{-k})$ and $Y^k \subseteq Y^{k+1}$. Note that $f^{-1}(B(y_i^k, 2^{-k})) \in \Sigma_{\xi+1}^0$. By the reduction property, we get a partition $(A_i^k)_{i < n_k}$ of X into $\Delta_{\xi+1}^0$ sets with $A_i^k \subseteq f^{-1}(B(y_i^k, 2^{-k}))$. We define $f^k : X \to Y^k$ by $f^k(x) = y_i^k \Leftrightarrow x \in A_i^k$. Note that f^k is $\Sigma_{\xi+1}^0$ -measurable. By the finite case, we get a sequence (f_n^k) of functions with $f^k = \lim_{n \to \infty} f_n^k$ pointwise, as well as $\eta_{k,n} < \xi$ such that f_n^k is Baire class $\eta_{k,n}$. Since $d(f(x), f^k(x)) \le 2^{-k}$, so that $d(f^k(x), f^{k+1}(x)) \le 2^{1-k}$, we may assume by the preceding remark that $d(f_n^k(x), f_n^{k+1}(x)) \le 2^{1-k}$. We now set $f_n := f_n^n$. Note that f_n is Baire class ξ_n for some $\xi_n < \xi$, and $f = \lim_{n \to \infty} f_n$, so that f is Baire class ξ .

Our definition of a Baire class ξ function is not uniform. We can make it uniform in some cases. Note that the pointiwse limit of a sequence of continuous functions is Baire class one. The converse is false in general (consider any non constant Baire class one function from \mathbb{R} into 2).

Definition 1.11 Let (f_n) be a sequence of functions from a set S into a metric space X, and $f: S \to X$ be a function. We say that (f_n) converges uniformly to f if, for any $\eta > 0$, there is $N \in \omega$ such that, for each $n \ge N$ and each $s \in S$, $d(f_n(s), f(s)) < \eta$.

Lemma 1.12 Let X be a metrizable space, and (p_n) be a sequence of pointwise limits of a sequence of continuous functions from X into \mathbb{R} which converges uniformly to p. Then p is also the pointiwse limit of a sequence of continuous functions.

Proof. It is enough to show that if (q_n) is a sequence of pointwise limits of a sequence of continuous functions from X into \mathbb{R} such that q_n is uniformly bounded by 2^{-n} , then $\sum_{n \in \omega} q_n$ is the pointwise limit of a sequence of continuous functions. So let $(q_i^n)_{i \in \omega}$ be a sequence of continuous functions from X into \mathbb{R} pointwise converging to q_n . We can assume that q_i^n is uniformly bounded by 2^{-n} . So $r_i := \sum_{n \in \omega} q_i^n$ is continuous and it is enough to show that (r_i) pointwise converges to $\sum_{n \in \omega} q_n$. Fix $x \in X$ and $\eta > 0$. Find N so that, for all i, $|\sum_{n > N} q_i^n(x)| \le \frac{\eta}{3}$ and $|\sum_{n > N} q_n(x)| \le \frac{\eta}{3}$. Then $|r_i(x) - \sum_{n \in \omega} q_n(x)| \le \frac{2\eta}{3} + \sum_{n \le N} |q_i^n(x) - q_n(x)|$ and we are done.

Lemma 1.13 Let X be a separable metrizable space, and $S \subseteq X$ in Δ_2^0 . Then χ_S is the pointiwse limit of a sequence of continuous functions.

Proof. We can write $S = \bigcup_{n \in \omega} C_n$ and $\neg S = \bigcup_{n \in \omega} F_n$, where $(C_n), (F_n)$ are increasing sequences of closed subsets of X. Urysohn's lemma provides $f_n : X \to \mathbb{R}$ continuous such that $f_n(x) = 1$ if $x \in C_n$ and $f_n(x) = 0$ if $x \in F_n$. It remains to note that (f_n) pointwise converges to χ_S .

Theorem 1.14 (Lebesgue, Hausdorff, Banach) Let X, Y be separable metrizable spaces with X zerodimensional or $Y = \mathbb{R}$, and $f: X \to Y$ be a Baire class one function. Then f is the pointiwse limit of a sequence of continuous functions.

Proof. If X is zero-dimensional, then we argue as in the proof of Theorem 1.10. So assume that $Y = \mathbb{R}$. Consider a homeomorphism $h : \mathbb{R} \to (0, 1)$. If $f : X \to \mathbb{R}$ is Baire class one, then so is $h \circ f : X \to (0, 1)$. If the result holds for $g : X \to \mathbb{R}$ Baire class one with $g[X] \subseteq (0, 1)$, then $h \circ f = \lim_{n \to \infty} g_n$ with $g_n : X \to \mathbb{R}$ continuous. By replacing g_n with $(g_n \lor \frac{1}{n+1}) \land (1-\frac{1}{n+1})$, we can assume that $g_n[X] \subseteq (0, 1)$. Then $f_n := h^{-1} \circ g_n$ is as desired. So we may assume that $f[X] \subseteq (0, 1)$.

We set, for $N \ge 2$ and $i \le N-2$, $A_i^N := f^{-1}\left(\left(\frac{i}{N}, \frac{i+2}{N}\right)\right)$. Note that A_i^N is Σ_2^0 and $X = \bigcup_{i \le N-2} A_i^N$. The reduction property gives $B_i^N \subseteq A_i^N$ in Δ_2^0 such that X is the disjoint union $\bigcup_{i \le N-2} B_i^N$. Note that $\chi_{B_i^N}$ is Baire class one and if $g_N := \sum_{i \le N-2} \frac{i}{N} \cdot \chi_{B_i^N}$, then (g_n) converges to f uniformly. It remains to apply Lemmas 1.12 and 1.13.

Exercise. Prove that semi-continuous functions on metrizable spaces are Baire class one.

Notation. If X, Y are sets and $R \subseteq X \times Y$, then $\exists^Y R := \{x \in X \mid \exists y \in Y (x, y) \in R\}$. If Γ is a class of sets, then $\exists^Y \Gamma$ is the class of sets of the form $\exists^Y R$ for some $R \in \Gamma$.

The following fact will be important when we will study effective descriptive set theory.

Proposition 1.15 Let $n \ge 1$ be a natural number and X be a metrizable space. Then

$$\boldsymbol{\Sigma}_{n+1}^0(X) = \exists^{\omega} \boldsymbol{\Pi}_n^0(X).$$

Proof. Assume first that n = 1. If $S \in \Sigma_2^0(X)$, then we can find a sequence (C_n) of closed subsets of X with union S. We define $R \subseteq X \times \omega$ by $R(x, n) \Leftrightarrow x \in C_n$. Note that R is closed and $S = \exists^{\omega} R$, so that $S \in \exists^{\omega} \Pi_1^0(X)$. Conversely, let $R \subseteq X \times \omega$ be closed with $S = \exists^{\omega} R$. Note that $S = \bigcup_{n \in \omega} R^n$ is the countable union of the horizontal sections $R^n := \{x \in X \mid (x, n) \in R\}$ of R. As the function $f_n : x \mapsto (x, n)$ is continuous and $R^n = f_n^{-1}(R)$, R^n is closed and $S \in \Sigma_2^0(X)$. We then argue by induction.

2 Universal sets

The Borel classes provide for each Polish space X a hierarchy of at most ω_1 levels. We will see that this hierarchy is strict when X is uncountable. This is based on the existence of universal sets for the classes Σ_{ξ}^0 and Π_{ξ}^0 .

Definition 2.1 Let Γ be a class of sets, X, Y be sets. A subset \mathcal{U} of $Y \times X$ is Y-universal for the subsets of X in Γ if $\mathcal{U} \in \Gamma$ and, for each $S \in \Gamma(X)$, there is $y \in Y$ such that

$$S = \mathcal{U}_y := \{ x \in X \mid (y, x) \in \mathcal{U} \}$$

is the vertical section of \mathcal{U} at y.

Such a universal set provides a coding of the sets in $\Gamma(X)$.

Theorem 2.2 Let X be a metrizable separable space, and $\xi \ge 1$ be a countable ordinal. Then there is a C-universal set for the subsets of X in Σ_{ε}^{0} , and similarly with Π_{ε}^{0} .

Proof. We proceed by induction on ξ . Let (O_n) be a countable basis for the topology of X. We put

$$\mathcal{U}(\alpha, x) \Leftrightarrow \exists n \in \omega \; \alpha(n) = 1 \land x \in O_n.$$

Note that \mathcal{U} is open, and if $O \subseteq X$ is open, then we can find $\alpha \in \mathcal{C}$ such that $O = \bigcup_{\alpha(n)=1} O_n$, so that $O = \mathcal{U}_{\alpha}$. Thus \mathcal{U} is \mathcal{C} -universal for $\Sigma_1^0(X)$.

Then we note that if \mathcal{U} is \mathcal{C} -universal for $\Gamma(X)$, then $\neg \mathcal{U}$ is \mathcal{C} -universal for $\dot{\Gamma}(X)$. In particular, there is a \mathcal{C} -universal set for $\Pi_1^0(X)$, and if there is a \mathcal{C} -universal set for $\Sigma_{\xi}^0(X)$, then there is a \mathcal{C} -universal set for $\Pi_{\xi}^0(X)$.

Assume now that there is a C-universal set \mathcal{U}_{η} for $\Pi^{0}_{\eta}(X)$, for each $\eta < \xi$. Let, for $n \in \omega$, $\eta_{n} < \xi$ such that $\eta_{n} \leq \eta_{n+1}$ and $\xi = \sup\{\eta_{n}+1 \mid n \in \omega\}$. Let $< ., . >: \omega^{2} \to \omega$ be a bijection, and, for $\alpha \in C$ and $n \in \omega$, $(\alpha)_{n} \in C$ defined by $(\alpha)_{n}(p) := \alpha(< n, p >)$. Then $\alpha \mapsto (\alpha)_{n}$ is continuous and for any $(\alpha_{n}) \in C^{\omega}$ there is $\alpha \in C$ such that $(\alpha)_{n} = \alpha_{n}$ for each n. We put

$$\mathcal{U}(\alpha, x) \Leftrightarrow \exists n \in \omega ((\alpha)_n, x) \in \mathcal{U}_{\eta_n}.$$

Then \mathcal{U} is \mathcal{C} -universal for $\Sigma^0_{\mathcal{E}}(X)$.

Theorem 2.3 Let X be an uncountable Polish space, and $\xi \ge 1$ be a countable ordinal. Then $\Sigma^0_{\xi}(X) \ne \Pi^0_{\xi}(X)$. Therefore $\Delta^0_{\xi}(X) \subsetneqq \Sigma^0_{\xi}(X) \subsetneqq \Delta^0_{\xi+1}(X)$, and similarly for $\Pi^0_{\xi}(X)$.

Proof. As X is uncountable, we may assume that $\mathcal{C} \subseteq X$. So if $\Sigma^0_{\mathcal{E}}(X) = \Pi^0_{\mathcal{E}}(X)$, then

$$\boldsymbol{\Sigma}^{0}_{\boldsymbol{\varepsilon}}(\boldsymbol{\mathcal{C}}) = \boldsymbol{\Pi}^{0}_{\boldsymbol{\varepsilon}}(\boldsymbol{\mathcal{C}}).$$

Let \mathcal{U} be \mathcal{C} -universal for $\Sigma_{\xi}^{0}(\mathcal{C})$. We put $S := \{ \alpha \in \mathcal{C} \mid (\alpha, \alpha) \notin \mathcal{U} \}$. Then $S \in \Pi_{\xi}^{0}(\mathcal{C}) = \Sigma_{\xi}^{0}(\mathcal{C})$, which gives $\beta \in \mathcal{C}$ such that $S = \mathcal{U}_{\beta}$. Now $\beta \in S \Leftrightarrow (\beta, \beta) \in \mathcal{U} \Leftrightarrow \beta \notin S$, which is absurd. \Box

Exercise. Let X be an uncountable Polish space, and $\lambda \ge 1$ be a countable limit ordinal. Prove that $\bigcup_{\xi < \lambda} \Sigma_{\xi}^{0}(X) \subsetneqq \Delta_{\lambda}^{0}(X)$.

Exercise. A class of sets is called **self-dual** if it is closed under complements. Let Γ be a class of subsets of metrizable spaces closed under continuous pre-images and self-dual. Prove that, for any X, there is no X-universal set for $\Gamma(X)$. Conclude that, for any $1 \le \xi < \omega_1$, there is no X-universal set for $\Gamma(X)$.

3 Complete sets

We first give a few notions of game theory. More precisely, we will discuss infinite games with perfect information.

Definition 3.1 Let S be a nonempty set, $T \subseteq S^{<\omega}$ be a nonempty pruned tree on S, and $A \subseteq [T] \subseteq S^{\omega}$. (a) The game G(T, A) on S is defined as follows. Players 1 and 2 take turns in playing

in such a way that $(s_n) \in [T]$. We say that 1 wins this run of the game if $(s_n) \in A$.

(b) A strategy for 1 in G(T, A) is a subtree σ of T such that

(1) σ is nonempty pruned,

(2) if $(s_0, s_1, \dots, s_{2j}) \in \sigma$ and $s_{2j+1} \in S$ satisfies $(s_0, \dots, s_{2j}, s_{2j+1}) \in T$, then

$$(s_0,\cdots,s_{2j},s_{2j+1})\in\sigma$$
,

(3) if $(s_0, s_1, \dots, s_{2j-1}) \in \sigma$, then there is a unique $s_{2j} \in S$ with $(s_0, \dots, s_{2j-1}, s_{2j}) \in \sigma$.

Intuitively, σ tells 1 what to play, knowing 2's previous moves. Similarly, we define the notion of a strategy for 2 in G(T, A).

(c) A strategy σ for 1 is a winning strategy for 1 if $[\sigma] \subseteq A$. Similarly, we define the notion of a winning strategy for 2.

(d) The game G(T, A) is determined if one of the two players has a winning strategy.

The next theorem is very important, and we will not prove it.

Theorem 3.2 (Martin) Let S be a nonempty set, and T be a nonempty pruned tree on S. We equip S with the discrete topology, and S^{ω} with the product topology. Let $A \subseteq [T]$ be Borel. Then the game G(T, A) is determined.

An important way to compare the topological complexity of sets is to use pre-images by continuous functions.

Definition 3.3 *Let* X, Y *be sets,* $A \subseteq X$ *and* $B \subseteq Y$.

(a) A reduction of A to B is a function $f: X \to Y$ such that $A = f^{-1}(B)$.

(b) If moreover X, Y are topological spaces, then we say that A is Wadge reducible to B, denoted by $(X, A) \leq_W (Y, B)$ or $A \leq_W B$, if there is a continuous reduction of A to B.

Remarks. (a) Note that \leq_W is a **quasi-order**, i.e., a reflexive and transitive relation. It is called the **Wadge quasi-order**.

(b) Note that the only continuous functions from \mathbb{R} into \mathcal{N} are the constant functions, because the only clopen subsets of \mathbb{R} are the whole space and the empty set. So the Wadge quasi-order is not very interesting in non zero-dimensional spaces. This is the reason why the Wadge quasi order is studied in zero-dimensional spaces, to ensure the existence of enough continuous functions.

Recall that a zero-dimensional Polish space is homeomorphic to a closed subset of \mathcal{N} , and that a closed subset of \mathcal{N} is of the form [T], for some pruned tree T on ω .

Lemma 3.4 (Wadge) Let S, T be nonempty pruned trees on ω , and $A \subseteq [S]$, $B \subseteq [T]$ be Borel. Then $A \leq_W B$ or $B \leq_W \neg A$.

Proof. Consider the Wadge game on ω , defined as follows. Players 1 and 2 take turns in playing

in such a way that $\alpha \in [S]$ and $\beta \in [T]$. We say that 2 wins this run of the game if $\alpha \in A \Leftrightarrow \beta \in B$. This game can be seen as a Borel game G(U, C) for some suitable nonempty pruned tree on ω and some Borel subset C of [U]. By Theorem 3.2, this game is determined.

···,

If 2 has a winning strategy, then this strategy can be seen as a map $\varphi : S \to T$ such that $s \subseteq t \Rightarrow \varphi(s) \subseteq \varphi(t)$ and $|\varphi(s)| = |s|$. It defines a continuous map $f : [S] \to [T]$ by $f(\alpha) := \lim_{n \to \infty} \varphi(\alpha|n)$. As φ is winning for 2, $\alpha \in A \Leftrightarrow f(\alpha) \in B$, so that $A \leq_W B$.

Note that 1 wins the run above of the Wadge game if $\alpha \notin A \Leftrightarrow \beta \in B$. As above, if 1 has a winning strategy, then $B \leq_W \neg A$.

Remark. If *B* is Σ_{ξ}^{0} (resp., Π_{ξ}^{0}) and $A \leq_{W} B$, then *A* is Σ_{ξ}^{0} (resp., Π_{ξ}^{0}). So Σ_{ξ}^{0} and Π_{ξ}^{0} are initial segments of \leq_{W} . We will see that any set in $\Sigma_{\xi}^{0} \setminus \Pi_{\xi}^{0}$ is maximal for \leq_{W} in Σ_{ξ}^{0} , and similarly if we exchange Σ_{ξ}^{0} and Π_{ξ}^{0} .

Definition 3.5 Let Γ be a class of subsets of Polish spaces, Y be a Polish space and $B \subseteq Y$.

(a) We say that B is Γ -hard if, for any zero-dimensional Polish space X and any $A \subseteq X$ in Γ , $A \leq_W B$.

(b) If moreover B is in Γ , then we say that B is Γ -complete.

Remark. If Γ is not self dual on zero-dimensional spaces and closed under continuous pre-images, then no Γ -hard set is in $\check{\Gamma}$. If A is Γ -hard and $A \leq_W B$, then B is Γ -hard. This is a very common method for proving that a set is Γ -hard: choose a known Γ -hard set A, and show that $A \leq_W B$.

Theorem 3.6 (Wadge) Let X be a zero-dimensional Polish space, and $A \subseteq X$ be a Borel set.

- (a) A is Σ^0_{ξ} -complete if and only if A is in $\Sigma^0_{\xi} \setminus \Pi^0_{\xi}$.
- (b) A is Σ_{ξ}^{0} -hard if and only if A is not in Π_{ξ}^{0} .

Moreover, we can exchange Σ_{ε}^{0} *and* Π_{ε}^{0} .

Proof. If A is Σ_{ξ}^{0} -hard, then A is not in Π_{ξ}^{0} since $\Sigma_{\xi}^{0}(\mathcal{N}) \neq \Pi_{\xi}^{0}(\mathcal{N})$. If now A is not in Π_{ξ}^{0} , Y is zero-dimensional and $B \subseteq Y$ is in Σ_{ξ}^{0} , then, by Lemma 3.4, $B \leq_{W} A$ since otherwise $A \leq_{W} \neg B$. Thus A is Σ_{ξ}^{0} -hard.

Exercise. Let \mathcal{U} be \mathcal{C} -universal for the $\Sigma_{\mathcal{E}}^0$ subsets of \mathcal{N} . Prove that \mathcal{U} is $\Sigma_{\mathcal{E}}^0$ -complete.

Exercise. We set $\mathbb{P}_f := \{ \alpha \in \mathcal{C} \mid \exists m \in \omega \ \forall n \geq m \ \alpha(n) = 0 \}$ and $\mathbb{P}_{\infty} := \mathcal{C} \setminus \mathbb{P}_f$. Prove that \mathbb{P}_f is Σ_2^0 -complete and \mathbb{P}_{∞} is Π_2^0 -complete.

Example. We set $V := \{ \alpha \in 2^{\omega \times \omega} \mid \exists n \in \omega \forall p \in \omega \exists q \geq p \ \alpha(n,q) = 1 \}$. Note that V is in Σ_3^0 . In fact V is Σ_3^0 -complete. Indeed, let X be a zero-dimensional Polish space, and $A \subseteq X$ in Σ_3^0 . We can write $A = \bigcup_{n \in \omega} A_n$, where $A_n \in \Pi_2^0$. As \mathbb{P}_∞ is Π_2^0 -complete, there is $f_n : X \to \mathcal{C}$ continuous such that $A_n = f_n^{-1}(\mathbb{P}_\infty)$. We define $f : X \to 2^{\omega \times \omega}$ by $f(x)(n,q) := f_n(x)(q)$. Note that f is continuous and $x \in A \Leftrightarrow \exists n \in \omega \ x \in A_n \Leftrightarrow \exists n \in \omega \ f_n(x) \in \mathbb{P}_\infty \Leftrightarrow f(x) \in V$.

4 Turning Borel sets into clopen sets

The following theorem is a fundamental fact about Borel subsets of Polish spaces.

Lemma 4.1 Let (X, τ) be a Polish space, $C \subseteq X$ be closed, and τ_C be the topology generated by $\tau \cup \{C\}$. Then τ_C is Polish, C is clopen in τ_C , and τ_F , τ have the same Borel sets.

Proof. Note that τ_C is the sum of the relative topologies on C and $\neg C$.

Lemma 4.2 Let (X, τ) be a Polish space and (τ_n) be a sequence of Polish topologies on X containing τ . Then the topology τ_{∞} generated by $\bigcup_{n \in \omega} \tau_n$ is Polish. If moreover $\bigcup_{n \in \omega} \tau_n \subseteq \mathbf{\Delta}_1^1(X, \tau)$, then τ_{∞} , τ have the same Borel sets.

Proof. We set, for $n \in \omega$, $X_n := X$. Consider the function $\varphi: X \to \prod_{n \in \omega} X_n$ defined by

$$\varphi(x) := (x, x, \cdots).$$

Note that $\varphi[X]$ is closed in $\prod_{n \in \omega} (X_n, \tau_n)$. Indeed, if $(x_n) \notin \varphi[X]$, then we can find i < j with $x_i \neq x_j$. Let O, U be disjoint τ -open with $x_i \in O$ and $x_j \in U$. Then

$$(x_n) \in X_0 \times \cdots \times X_{i-1} \times O \times X_{i+1} \times \cdots \times X_{j-1} \times U \times X_{j+1} \times \cdots \subseteq \neg \varphi[X].$$

Thus $\varphi[X]$ is Polish. As φ is a homeomorphism from (X, τ_{∞}) onto $\varphi[X], (X, \tau_{\infty})$ is Polish.

Theorem 4.3 Let (X, τ) be a Polish space, and $B \subseteq X$ be Borel. Then there is a Polish topology τ_B on X containing τ such that B is clopen in τ_B , and τ_B , τ have the same Borel sets.

Proof. Consider the class \mathcal{A} of subsets A of X for which there is a Polish topology τ_A containing τ such that A is clopen in τ_A , and τ_A and τ have the same Borel sets. By Lemma 4.1, \mathcal{A} contains τ . Note that \mathcal{A} is closed under complements. If (A_n) is a sequence of elements of \mathcal{A} , then we get $\tau_n := \tau_{A_n}$. Lemma 4.2 provides τ_∞ . Then $A := \bigcup_{n \in \omega} A_n$ is τ_∞ -open and one more application of Lemma 4.1 shows that $A \in \mathcal{A}$. Thus \mathcal{A} is a σ -algebra, and contains the Borel subsets of (X, τ) . \Box

Exercise. (a) Let (X, τ) be a Polish space, and (S_n) be a sequence of Borel subsets of X. Prove that there is a zero-dimensional Polish topology τ' on X containing τ such that S_n is clopen in τ' for each n, and τ', τ have the same Borel sets.

(b) Let (X, τ) be a Polish space, Y be a second countable space, and $f : (X, \tau) \to Y$ be a Borel function. Prove that there is a zero-dimensional Polish topology τ' on X containing τ such that $f:(X, \tau') \to Y$ is continuous and τ', τ have the same Borel sets.

A first consequence of the previous theorem is the perfect set theorem for Borel sets.

Theorem 4.4 (Alexandrov, Hausdorff) Let X be a Polish space, and $B \subseteq X$ be Borel. Then either B is countable, or B contains a homeomorphic copy of the Cantor space C. In particular, every uncountable Borel subset of X has size continuum.

Proof. Theorem 4.3 gives a finer Polish topology τ_B on X such that B is clopen in τ_B , and τ_B has the same Borel sets as the initial topology of X. In particular, B, equipped with the topology induced by τ_B , is Polish. So if B is uncountable, it contains a homeomorphic copy of the Cantor space C. As τ_B is finer than the initial topology, this is also a homeomorphic copy of the Cantor space C with respect to the initial topology.

Another consequence is the following representation of Borel sets.

Theorem 4.5 (Lusin, Souslin) Let X be a Polish space, and $B \subseteq X$ be Borel. Then there is a closed subset C of \mathcal{N} and a continuous bijection $b: C \to B$. In particular, if B is nonempty, then there is a continuous surjection $s: \mathcal{N} \to B$ extending b.

Proof. Theorem 4.3 gives a finer Polish topology τ_B on X such that B is clopen in τ_B . In particular, B, equipped with the topology induced by τ_B , is Polish. This gives a closed subset C of \mathcal{N} and a bijection $b: C \to B$ continuous for $\tau_{B|B}$. As τ_B is finer than the initial topology, b is also continuous with respect to the initial topology. The last assertion comes from the existence of a retraction from \mathcal{N} onto C.