
Chapter 6-Analytic and co-analytic sets

1 Definition and characterizations

Definition 1.1 Let X be a Polish space, and A⊆X . We say that A is analytic if we can find a Polish
space Y and f :Y →X continuous with A=f [Y ]. The class of analytic sets is denoted by Σ1

1.

Theorem 1.2 Let X be a Polish space. Then there is a C-universal set for the analytic subsets of X .

Proof. Let F be C-universal for the closed subsets of X×N . We set

A :={(α, x)∈C×X | ∃γ∈N (α, x, γ)∈F}.

Then A is C-universal for the analytic subsets of X . Indeed, as the projections are continuous, A and
its vertical sections are analytic. Conversely, let A be an analytic subset of X , C be a closed subset
ofN , and f :C→X continuous with A=f [C]. Note that G :={(x, γ)∈X×N | x=f(γ)} is closed
and x∈A⇔ ∃γ∈N (x, γ)∈G. This gives α∈C with G=Fα. Then A=Aα. �

As any nonempty Borel set is a continuous image of N , any Borel set is analytic. This inclusion
is strict in uncountable spaces.

Corollary 1.3 (Souslin) Let X be an uncountable Polish space. Then there is an analytic subset of
X which is not Borel.

Proof. Theorem 1.2 provides A which is C-universal for the analytic subsets of C. Note that A is not
Borel. We argue by contradiction to see that. Then ¬A is Borel, as well as A :={β∈C | (β, β) /∈A}.
This gives α∈C with A=Aα. Note that α∈A ⇔ (α, α)∈A ⇔ α /∈A, which is absurd. It remains
to note that any uncountable Polish space contains a homeomorphic copy of C. �

Exercise. Let X be a Polish space, and A⊆X . Then the following are equivalent:
(a) A is analytic,
(b) we can find a Polish space Y and a Borel subset B of X×Y with A=projX [B],
(c) we can find a closed subset C of X×N with A=projX [C],
(d) we can find a Gδ subset G of X×C with A=projX [G].

Proposition 1.4 The class of analytic sets is closed under countable unions, countable intersections,
and direct images and pre-images by Borel functions.

Proof. Let X be a Polish space, (An) be a sequence of analytic subsets of X , (Yn) be a sequence of
Polish spaces, and fn :Yn→X continuous with An = fn[Yn]. Then the sum ⊕n∈ω Yn is Polish, and
the function (n, y) 7→fn(y) is continuous with range

⋃
n∈ω An which is therefore analytic.
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Now let Z :={(yn)∈Πn∈ω Yn | ∀m,n∈ω fn(yn)=fm(ym)}. Note that Z is a closed subset of
Πn∈ω Yn, and thus a Polish space. We define f :Z→X by f

(
(yn)

)
:=f0(y0). Then f is continuous

and f [Z]=
⋂
n∈ω An which is therefore analytic.

Let Y be a Polish space and f :X→Y be Borel. Note that

y∈f [A0]⇔ ∃x∈X x∈A0 ∧ f(x)=y ⇔ ∃x∈X (y, x)∈A,

where A := {(y, x)∈ Y ×X | x∈A0 ∧ f(x) = y}. As the projection is continuous, it is enough to
prove that A is analytic. As {(y, x)∈Y ×X | f(x)=y} is Borel, it is enough to prove that

{(y, x)∈Y ×X | x∈A0}=Y ×A0

is analytic. We define f∗0 : Y ×Y0→ Y ×X by f∗0 (y, y0) :=
(
y, f0(y0)

)
. Note that f∗0 is continuous

and f∗0 [Y ×Y0]=Y ×A0 which is therefore analytic.

Finally, let B be an analytic subset of Y . Note that x∈ f−1(B) ⇔ ∃y∈Y f(x) = y ∧ y∈B, so
that f−1(B) is analytic as above. �

2 The separation theorem

The following separation theorem is of fundamental importance.

Definition 2.1 Let X be a Polish space, and A,B⊆X be disjoint. We say that A is Borel-separable
from B if there is a Borel subset C of X with A⊆C⊆¬B.

Lemma 2.2 Let X be a Polish space, and (Pm), (Qn) be sequences of subsets of X such that, for all
m,n∈ω, Pm is Borel-separable from Qn. Then

⋃
m∈ω Pm is Borel-separable from

⋃
n∈ω Qn.

Proof. Let Rm,n be a Borel subset of X separating Pm from Qn. Then
⋃
m∈ω

⋂
n∈ω Rm,n is Borel

and separates
⋃
m∈ω Pm from

⋃
n∈ω Qn. �

Theorem 2.3 (Lusin) Let X be a Polish space, and A,B be disjoint analytic subsets of X . Then A
is Borel-separable from B.

Proof. We may assume that A,B are nonempty, which gives continuous surjections f :N →A and
g :N → B. We set, for s ∈ ω<ω, As := f [Ns] and Bs := g[Ns]. Note that As =

⋃
m∈ω Asm and

Bs=
⋃
n∈ω Bsn. We argue by contradiction. By Lemma 2.2, we can inductively construct α, β∈N

such that, for each n∈ω, Aα|n is not Borel-separable from Bβ|n. Note that f(α) 6= g(β) since A,B
are disjoint. Let O,U be disjoint open sets with f(α)∈O and g(β)∈U . By continuity, if n is big
enough, then f [Nα|n]⊆O and g[Nβ|n]⊆U , so O separates Aα|n from Bβ|n, which is absurd. �

Corollary 2.4 Let X be a Polish space, and (An) be a sequence of pairwise disjoint analytic subsets
of X . Then there is a sequence (Bn) of pairwise disjoint Borel ssubsets of X such that An⊆Bn for
each n.

Corollary 2.5 (Souslin) Let X be a Polish space, and B⊆X . Then B is Borel if and only if B and
¬B are analytic. For this reason, we denote by ∆1

1 the class of Borel sets.
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Proof. As the class of Borel sets is closed under complements, if B is Borel, then B and ¬B are
analytic. Conversely, assume that B and ¬B are analytic. Theorem 2.3 gives a Borel set separating
B from ¬B, which shows that B is Borel. �

Exercise. Let X,Y be Polish spaces and f :X→Y be a function. Prove that f is Borel if and only if
its graph is Borel if and only if its graph is analytic.

Exercise. Let X be a Polish space and A⊆X be analytic. Prove that A is countable or contains a
homeomorphic copy of the Cantor space C. In particular, every uncountable analytic subset of X has
size continuum. This is the perfect set theorem for analytic sets.

3 Borel injections

Corollary 1.3 shows that a continuous image of a Borel set may not be Borel. We will see that
this cannot happen in the injective case.

Theorem 3.1 (Lusin-Souslin) Let X,Y be Polish spaces, f :X→Y be a continuous function, and B
be a Borel subset of X such that f|B is one-to-one. Then f [B] is Borel.

Proof. We may assume that X=N and B is closed. We set, for s∈ω<ω, Bs :=f [B ∩Ns]. As f|B is
one-to-one, Bsm ∩Bsn=∅ if m 6=n. Moreover, B∅=f [B],

⋃
n∈ω Bsn=Bs, and Bs is analytic. By

Corollary 2.4, we can find a family (B′s)s∈ω<ω of Borel subsets of Y with B′∅=Y , Bs ∪ B′sn⊆B′s,
and B′sm ∩ B′sn = ∅ if m 6= n. We finally define, by induction on |s|, a family (B∗s )s∈ω<ω of Borel
subsets of Y such that

(1) B∗∅=B′∅
(2) B∗(n0) =B′(n0) ∩B(n0)

(3) B∗(n0,··· ,nk) =B′(n0,··· ,nk) ∩B
∗
(n0,··· ,nk−1) ∩B(n0,··· ,nk)

Note that Bs ⊆B∗s ⊆Bs if s 6= ∅. It is enough to prove that f [B] =
⋂
k∈ω

⋃
s∈ωk B

∗
s . If y ∈ f [B],

then let β ∈ B with y = f(β), so that y ∈
⋂
k∈ω Bβ|k, and thus y ∈

⋂
k∈ω B∗β|k. Conversely, if

y∈
⋂
k∈ω

⋃
s∈ωk B

∗
s , then there is a unique β ∈ N such that y ∈

⋂
k∈ω B∗β|k ⊆

⋂
k∈ω Bβ|k. In

particular, Bβ|k and B ∩ Nβ|k are nonempty for each k. As B is closed, β ∈ B. Thus f(β) is in⋂
k∈ω Bβ|k. Note that y=f(β). Indeed, we argue by contraction to see that. Let O be an open subset

of Y such that f(β)∈O and y /∈O. As f is continuous, we can find a natural number k0 such that
f [Nβ|k0 ]⊆O. Then y /∈f [Nβ|k0 ]⊇Bβ|k0 , which is absurd. �

Corollary 3.2 Let X,Y be Polish spaces, f :X→Y be a Borel function, and B be a Borel subset of
X such that f|B is one-to-one. Then f [B] is Borel and f is a Borel isomorphism from B onto f [B].

Proof. We apply Theorem 3.1 to the projection of X×Y onto Y and the set (B×Y ) ∩ Graph(f). �

Exercise. Let (X, τ) be a Polish space, and τ ′ be a Polish topology on X containing τ . Then τ, τ ′

have the same Borel sets.

We now prove the Borel Schröder-Bernstein theorem.
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Theorem 3.3 Let X,Y be Polish spaces, and f :X→Y , g :Y →X be Borel injections. Then we can
find Borel sets A⊆X , B⊆Y with f [A]=Y \B and g[B]=X\A. In particular, X and Y are Borel
isomorphic.

Proof. We first show that there is a Borel set A⊆X such that g−1(X \A) = Y \f [A]. We define a
function h :2X→2X by h(S) :=X\g

[
Y \f [S]

]
. We inductively define Xn⊆X as follows: X0 :=∅,

Xn+1 := h(Xn). Then we set A :=
⋃
n∈ω Xn. As h(

⋃
n∈ω Xn) =

⋃
n∈ω h(Xn), h(A) = A. By

Corollary 3.2, the Xn’s and A are Borel, so we are done. It remains to define i :X→Y by

i(x) :=

{
f(x) if x∈A,
g−1(x) otherwise,

and set B :=Y \f [A] to finish the proof, by Corollary 3.2 again. �

A consequence of this is the isomorphism theorem.

Theorem 3.4 Let X,Y be Polish spaces. Then X,Y are Borel isomorphic if and only if they have
the same cardinality.

Proof. It is enough to prove that any uncountable Polish space X is Borel isomorphic to C. We
saw that we can find a closed subset C of N and a continous bijection b : C → X , and that C is
homeomorphic to a Gδ subset of C. By Corollary 3.2, b is a Borel isomorphism. This provides a
Borel injection f :X→C. We also saw that there is a Borel injection g :C→X . It remains to apply
Theorem 3.3. �

4 Well-founded trees

The following is perhaps the archetypical Σ1
1-complete set.

Exercise. Using the characteristic functions, we can view the trees on ω as elements of 2ω
<ω

. We
equip 2 with the discrete topology and 2ω

<ω
with the product topology. We call Tr the set of charac-

teristic functions of trees on ω. Prove that Tr is a closed subset of 2ω
<ω

.

Notation. We set IF :={χT ∈Tr | T is not well founded}.

Theorem 4.1 The set IF is Σ1
1-complete.

Proof. Note that IF is Σ1
1 since α∈ IF ⇔ ∃β ∈N ∀n∈ω α(β|n) = 1. If now A⊆N is Σ1

1, then
there is a pruned tree T on ω2 such that α∈A⇔ ∃β∈N ∀n∈ω (α, β)|n∈T . The section function
α 7→χTα is continuous fromN into Tr. Moreover, α∈A⇔ χTα ∈IF , so that IF is Σ1

1-complete.�

Definition 4.2 Let X be a Polish space, and C⊆X . We say that C is co-analytic if ¬C is analytic.
The class of co-analytic sets is denoted by Π1

1.

Remarks. (a) The set WF := {χT ∈ Tr | T is well founded} of characteristic functions of well
founded trees on ω is Π1

1-complete.

(b) Note that Π1
1 = Σ̌1

1. By Corollary 2.5, ∆1
1 =Σ1

1 ∩Π1
1. So this notation is coherent with the one

used for the Borel classes.
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5 Wellorderings

The set of wellorderings is of great importance for the sequel, in classical descriptive set theory
as well as in effective descriptive set theory and our applications.

Notation. (a) Fix a bijection < ., . >:ω2→ω. With each α∈N we associate the binary relation ≤α
on ω defined by ≤α:={(m,n)∈ω2 | α(< m,n >)=1} and we put

α∈LO ⇔ ≤α is a linear ordering

⇔


∀m,n∈ω m≤αn⇒ (m≤αm ∧ n≤αn)
∀m,n∈ω (m≤αn ∧ n≤αm)⇒ m=n
∀m,n, p∈ω (m≤αn ∧ n≤α p)⇒ m≤α p
∀m,n∈ω (m≤αm ∧ n≤αn)⇒ (m≤αn ∨ n≤αm)

α∈WO⇔ ≤α is a wellordering
⇔ α∈LO∧ <α has no infinite descending chains
⇔ α∈LO ∧ ∀β∈N

(
∀n∈ω β(n+1) ≤α β(n)

)
⇒
(
∃n∈ω β(n+1)=β(n)

)
.

Note that LO is closed and WO is co-analytic. If α∈LO, then we denote by |α| the order type of
≤α. Recall that two ordered sets X,Y are said to have the same order type just when they are order
isomorphic, i.e., when there exists a bijection f :X→Y such that both f and its inverse are strictly
increasing. Every well-ordered set is order-equivalent to exactly one ordinal. In particular, the map
α 7→|α| takes WO onto the set of countable ordinals and provides a coding for this set.

(b) For s, t∈ω<ω, we set

s≤BK t⇔ t⊆s or, for the least k with s(k) 6= t(k), s(k)<t(k).

So ≤BK is the lexicographical ordering, except that a longer word is considered less than a smaller
one. ≤BK is a linear ordering with top element ∅. This ordering is called the Brouwer-Kleene
ordering.

Proposition 5.1 Let T be a tree on ω. The following are equivalent.

(a) T is wellfounded,

(b) (T,≤BK) is a wellordering.

Proof. If α is a branch through T , then the sequence (α|n) is strictly decreasing in (T,≤BK). So (b)
implies (a). Suppose conversely that (sn) is strictly decreasing in (T,≤BK). Note that, except maybe
for s0, |sn| ≥ 1 and the sequence

(
sn(0)

)
n≥1

must be decreasing in ω, hence is constant from some
n0 on. But then except maybe for sn0 (which could be

(
sn0(0)

)
), the length of sn is greater or equal

to 2 from this point on, and the sequence
(
sn(1)

)
n≥n0

must be decreasing in ω, hence stabilizes from
some n1 on, etc. So we can easily construct an increasing sequence (nk)k∈ω of natural numbers such
that, for n>nk, |sn|≥k+1 and sn(k)=snk(k). But α defined by α(k) :=snk(k) is a branch through
T . �

Corollary 5.2 (Lusin-Sierpinski) The set WO is Π1
1-complete, and LO\WO is Σ1

1-complete.
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Proof. As LO is closed and WO is Π1
1, LO\WO is Σ1

1. Fix a bijection b : ω→ ω<ω. We define
f :Tr→N by

f(α)(< m,n >)=1⇔
(
α
(
b(m)

)
=α
(
b(n)

)
=1 ∧ b(m)≤BK b(n)

)
∨

(
α
(
b(m)

)
=1 6=α

(
b(n)

))
∨
(
α
(
b(m)

)
=α
(
b(n)

)
=0 ∧m≤n

)
.

Note that f(α)∈LO for each α∈ Tr. Intuitively, if χT ∈ Tr is the characteristic function of a tree
T on ω, then the ordering f(χT ) of ω<ω is as follows: we put the elements of T before the elements
of ω<ω \T , the elements of T are ordered by ≤BK , and the elements of ω<ω \T are ordered by
b−1(s)≤ b−1(t). By Proposition 5.1, χT ∈WF is equivalent to f(χT )∈WO. As f is continuous,
WO is Π1

1-hard and thus Π1
1-complete. Similarly, LO\WO is Σ1

1-hard and thus Σ1
1-complete. �

A consequence of this is the following representation theorem for co-analytic sets.

Theorem 5.3 (Lusin-Sierpinski) Let X be a Polish space and P be a subset of X . Then P is Π1
1 if

and only if there is a Borel function f :X→N such that, for all x∈X , f(x)∈LO and

(∗) x∈P ⇔ f(x)∈WO.

If in addition X is zero-dimensional, then (∗) holds with a continuous f .

Proof. If f exists, then P is Π1
1 by Proposition 1.4. Assume first that X is zero-dimensional. Corol-

lary 5.2 (and its proof) provides f : X → N continuous such that, for all x ∈ X , f(x) ∈ LO and
x∈P ⇔ f(x)∈WO. If X is arbitrary, then we can find a closed subset C of N and a continuous
bijection b :C→X . By Corollary 3.2, b−1 is Borel, and we just have to use the zero-dimensional case
and to compose to conclude. �

6 Co-analytic ranks

Definition 6.1 Let P be a set. A norm on P is a function from P into the ordinals.

A key property of the co-analytic sets is that they admit norms with nice definability properties.
Roughly speaking, given a Π1

1 set P in a Polish space, there is a norm ϕ :P→ω1 such that the initial
segments Pξ :={x∈P | ϕ(x)≤ξ} are “uniformly” Borel. We now make this more precise.

Theorem 6.2 There are binary relations on N , ≤Π in Π1
1 and ≤Σ in Σ1

1, such that, for β ∈WO,
α≤Πβ ⇔ α≤Σβ ⇔ (α∈WO ∧ |α|≤|β|).

Proof. We define ≤Π and ≤Σ as follows:

α≤Σβ⇔ α∈LO ∧ ∃γ∈N γ maps ≤α into ≤β in a one-to-one order-preserving manner
⇔ α∈LO ∧ ∃γ∈N ∀m,n∈ω m<αn⇒ γ(n)<β γ(m).

It is immediate that ≤Σ is Σ1
1 and, for β∈WO, α≤Σβ ⇔ (α∈WO ∧ |α|≤|β|). For ≤Π, take

α≤Πβ⇔ α∈WO ∧ there is no order-preserving map of ≤β onto a proper initial segment of ≤α
⇔ α∈WO ∧ ∀γ∈N ¬∃k∈ω ∀m,n∈ω

(
n≤βm⇔ γ(n)≤α γ(m)<α k

)
,

where of course we abbreviate p<α q ⇔ p≤α q ∧ p 6=q. �

6



Notation. We set, for α∈N , Dα :={n∈ω | α(< n, n >)=1}.

Proposition 6.3 The relations
(a) α∈WO ∧ β∈LO ∧ (β∈WO ⇒ |α|≤|β|)
(b) α∈WO ∧ β∈LO ∧ (β∈WO ⇒ |α|< |β|)
(c) α∈WO ∧ β∈LO ∧

(
β∈WO ⇒ (|β|< |α| ∨ |α|< |β|)

)
are Π1

1 in N 2.

Proof. We define R⊆N 3 by

R(α, β, γ)⇔


∀n∈Dα γ(n)∈Dβ ∧
∀m,n∈ω

(
m≤αn⇔ γ(m)≤β γ(n)

)
∧

∀m,n∈ω
((
m∈Dβ ∧ n∈Dα ∧m≤β γ(n)

)
⇒ ∃p∈Dα m=γ(p)

)
.

The relation R is Π0
2 and expresses the fact, for α, β in LO, that ≤α is embedded, via γ, in ≤β as an

initial segment. Now (b) is equivalent to α∈WO ∧ β∈LO ∧ ¬∃γ∈N R(β, α, γ). Moreover, (c) is
equivalent to α∈WO ∧ β∈LO ∧ ¬

(
∃γ∈N R(β, α, γ) ∧ ∃δ∈N R(α, β, δ)

)
. Similarly, if

R′(α, β, γ)⇔ R(α, β, γ) ∧ ∃n∈Dβ ∀m∈Dα γ(m) 6=n,

R′ is ∆0
3 and expresses the fact, for α, β in LO, that ≤α is embedded, via γ, in ≤β as a strict initial

segment. And (a) is equivalent to α∈WO ∧ β∈LO ∧ ¬∃γ∈N R′(β, α, γ). Thus (a)-(c) are Π1
1. �

Definition 6.4 Let X be a Polish space, P ⊆X in Π1
1, and ϕ be a norm on P . We say that ϕ is a

Π1
1-norm if the following relations

x≤∗ϕ y ⇔ x∈P ∧
(
y∈P ⇒ ϕ(x)≤ϕ(y)

)
x<∗ϕ y ⇔ x∈P ∧

(
y∈P ⇒ ϕ(x)<ϕ(y)

)
are in Π1

1.

Theorem 6.5 Let X be a Polish space and P ⊆X in Π1
1. Then P admits a Π1

1-norm (we say that
Π1

1 is normed).

Proof. Theorem 5.3 provides a Borel function f :X→N such that, for all x∈X , ≤f(x) is a linear
ordering and x∈P ⇔ f(x)∈WO. We put ϕ(x) := |f(x)|. By Proposition 6.3, ≤∗ϕ and <∗ϕ are in
Π 1

1. �

The fact that Π 1
1 is normed has several important consequences. We now give some of them.

Theorem 6.6 The class Π1
1 has the number uniformization property and the reduction property, and

the class Σ1
1 has the separation property.

Proof. Let X be a Polish space, and P ⊆X×ω in Π1
1. Theorem 6.5 provides a Π1

1-norm ϕ on P . We
now put (x, n)∈P ∗ ⇔ (x, n)∈P ∧ ∀m∈ω (x, n)≤∗ϕ (x,m) ∧

(
(x, n)<∗ϕ (x,m) ∨ n≤m

)
, or in

other words

(x, n)∈P ∗ ⇔ (x, n)∈P ∧ ϕ(x, n)= inf{ϕ(x,m) | (x,m)∈P} ∧
n= inf{m∈ω | (x,m)∈P ∧ ϕ(x,m)=ϕ(x, n)}.
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Clearly P ∗ is in Π1
1 and

(x, n)∈P ∗∧ (x, n′)∈P ∗ ⇒ (x, n)∈P ∧ (x, n′)∈P ∧ϕ(x, n)=ϕ(x, n′)∧n≤n′∧n′≤n⇒ n=n′,

so P ∗ is the graph of a function. If x∈∃ωP , then let ξ := inf{ϕ(x, n) | (x, n)∈P},

n := inf{m∈ω | (x,m)∈P ∧ ϕ(x,m)=ξ},

and verify easily that P ∗(x, n). Thus P ∗ uniformizes P and thus Π1
1 has the number uniformization

property. As for the class Σ0
ξ , we deduce from this the fact that Π1

1 has the reduction property. As for
the class Π0

ξ , we deduce from this the fact that Σ1
1 has the separation property. �

An important consequence of this is the existence of a coding system for ∆1
1 sets.

Theorem 6.7 Let X be a Polish space. Then there are C⊆C and P+, P−⊆C×X in Π1
1 such that

(a) for any α∈C, P+
α and P−α are complements of each other,

(b) for any A⊆X in Borel there is α∈C such that A=P+
α .

Proof. Theorem 1.2 provides UX ⊆ C×X in Π1
1 which is universal for all subsets of X in Π1

1. If
α, β∈C, then we define < α, β >∈C by < α, β > (2n) :=α(n) and < α, β > (2n+1):=β(n). We
define Q+, Q−⊆C×X by

Q+(< α, β >, x)⇔ UX(α, x),
Q−(< α, β >, x)⇔ UX(β, x).

Note that Q+, Q− are in Π1
1. Theorem 6.6 provides P+, P− ⊆ C ×X disjoint in Π1

1 such that
P+⊆Q+, P−⊆Q−, and P+ ∪ P−=Q+ ∪Q−. We set α∈C ⇔ Q+

α ∪Q−α =X ⇔ P+
α ∪ P−α =X .

Then C is in Π1
1 and we are done. �

We now prove the boundedness theorem for WO.

Theorem 6.8 Let S⊆WO be a Σ1
1 set. Then sup{|α| | α∈S}<ω1.

Proof. We argue by contradiction. Let C be a Π1
1 subset of C. Theorem 5.3 provides a continuous

function f :C→N such that for all α∈C, f(α)∈LO and α∈C ⇔ f(α)∈WO. Now note that, for
every α, if f(α)∈WO, then |f(α)|<ω1. So we get α∈C ⇔ f(α)∈WO ∧ |f(α)|<ω1. Now note
that α∈C ⇔ ∃β∈S β /∈WO ∨

(
f(α)∈WO ∧ |f(α)|≤ |β|

)
, which gives a Σ1

1 definition of C by
Proposition 6.3.(b). As there is in C a Π1

1 non Σ1
1 set C by Corollary 1.3, we get our contradiction.�

Another important consequence of the fact that Π1
1 is normed is the following reflection theorem.

Definition 6.9 Let X be a Polish space, and Φ⊆ 2X . We say that Φ is Π1
1 on Σ1

1 if, for any Polish
space Y and any A⊆Y ×X in Σ1

1, the set AΦ :={y∈Y | Ay∈Φ} is in Π1
1.

Theorem 6.10 Let X be a Polish space, and Φ⊆2X . We assume that Φ is Π1
1 on Σ1

1. Then for any
S⊆X in Σ1

1 ∩ Φ there is D⊆X in ∆1
1 ∩ Φ such that S⊆D.

Proof. Theorem 6.5 provides a Π1
1-norm ϕ on P :=X\S. We argue by contradiction. Then

x∈S ⇔ {y∈X | y 6<∗ϕx}∈Φ.

Indeed, if x∈S, then {y∈X | y 6<∗ϕ x}=S, while if x /∈S, then D :={y∈X | y 6<∗ϕ x} is Borel and
S⊆D. As <∗ϕ is in Π1

1 and Φ is Π1
1 on Σ1

1, S∈Π1
1 and thus S∈∆1

1, a contradiction. �
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