Chapter 7-Effective descriptive set theory

Effective descriptive set theory is a very powerful tool to prove results of classical type (i.e., results
of descriptive set theory for which there is no effective descriptive set theory in their statement). It
can sometimes be replaced by some other tools, but sometimes no classical proof is known. Effective
descriptive set theory is based on the notion of a recursive function. We refer to [M] for the basic
notions of effective descriptive set theory.

1 Recursive functions

Intuitively, the recursive functions are the computable ones. Recall that the set of natural numbers
N is denoted by w.

Definition 1.1 (a) The class of recursive functions is the smallest collection of functions from some
w” into w (for some kew)

(a) containing

- the successor function S:w— w defined by S(n):=n-+1,

- the constants C¥ :w* — w defined by C¥(zq, -+ ,2_1):=n,
- the projections Pi”C :wP — w defined by Pf(a:o, cee T—1) = (where i < k),
(b) closed under
- composition (if g1, ..., gm and h:w™ —w are recursive, then x> h(gi (), ..., gm(z)) also),

2tk o are recursive, then f:w' ™ —w defined by

[ g(z)ifn=0,
f(nvx)'_{h(f(n_l,x),n—l,x) ifn>1,

- primitive recursion (if g and h:w

is also recursive),

- minimalization (if g : w'* — w is recursive and for all = there is n such that g(n,x) =0, then
x—min{n€w | g(n,x)=0} is also recursive).

(b) A k-ary relation on w, say R C w*, is a recursive relation if its characteristic function
Xr:wF —w, defined by xr(x):=1if R(x) (meaning that x € R), 0 otherwise, is recursive.

Exercise. Prove that the following functions and relations are recursive.
- The addition A:w? — w defined by A(n, m):=n+m.
- The multiplication M :w? — w defined by M(n, m):=n-m.



- The predecessor pd: w — w defined by pd(0):=0 and pd(n+1):=

- The arithmetic subtraction — :w? — w defined by k—n:=k—n if k>n, 0 otherwise.
- 5g:w—w defined by s¢g(0):=0 and sg(n):=1if n>1.

- 59 :w—w defined by 5g(0):=1 and 5g(n):=0if n>1.

)=
- [./.]:w? —w defined by [n/k]:= the unique ¢ such that, for some r < k, n=qk+r if n> k>0,
0 otherwise.

- rm : w? — w defined by rm(n, k) := the unique r < k such that, for some ¢, n = gk +r if
n, k>0, 0 otherwise.

= (m,n) & m=n,
-< (m,n) & m<n,
- < (m,n) & m<n.
- Prove that the class of recursive relations is closed under the operations —, A, \V, =, 35, V< and
substitution of recursive functions.

- Divides(m,n) < n divides m.
- Prime(m) < m is a prime number.

- p:w— w defined by p(i) :=p; := the i’th prime number.

- <. >:wF s wdefined by < ng, -+, np_q > anJrl : ~--pZi’11H if £>1, 1 otherwise.

- Seq(m) & wecan find k€w and (ng, - - - ,np_1) Ew” such that m =< ng, - -+, np_1 >.

- lh : w — w defined by Ih(m) := k if we can find & > 1 and (ng, --- ,np_1) € w* such that
m=<ng,---,nE_1 >, 0 otherwise.

- (.); :w — w defined for i € w by (m); := n; if we can find k> and (ng, - -- ,n_1) € w* such
that m=< ng,--- ,nr_1 >, 0 otherwise.

Proposition 1.2 A function f:wF — w is recursive if and only if Graph(f) is recursive.

Proof. Note that (z,n) € Graph(f) < f(z) =n. If f is recursive, then Graph( f) is recursive since
= is recursive and the class of recursive relations is closed under substitution of recursive functions.
Conve'rsely, note Fhat f(x) =min{ncw | @(XGraph(f) (z,m)) =0}. This shows that if Graph(f) is
recursive, then f is recursive. O

2 Recursive presentations

2.1 Recursively presented Polish spaces

Definition 2.1 (a) A recursive presentation of a Polish space X is a pair ( (zn), d) such that

- (zy,) is a dense sequence of points of X,
- d is a complete distance defining the topology of X such that the following relations are recur-
sive:
P(i, j,m, k) < d(zi, 25) < 524,
Qi,j,m, k) < d(xl,x])<

m
k+



(b) We say that (X (), d)) is a recursively presented Polish space if X is a Polish space and

((.Z‘n), d) is a recursive presentation of X. We will often say that X is a recursively presented Polish
space, for short, which means that it is given with a recursive presentation.

Not every Polish space admits a recursive presentation, but the usual spaces do.

Exercise. Find a recursive presentation of w, R, the Baire space N := w*, and the Cantor space
C:.=2v,

Exercise. Let (X;, (27, )new, di)

set, forn€w, T, = (x?n)o, e ,:cl(“n_)iil) and define d: 11, X; —R™ by

., be a finite sequence of recursively presented Polish spaces. We

d((zo, -+ s xk—1), (Yo, -+ » Yk—1)) :==maxjcr di(zi, ys)-

Prove that ( (zn), d) is a recursive presentation of 11, X;, called the product recursive presenta-
tion.

Definition 2.2 Ler X be a recursively presented Polish space. We say that X is
(a) of type 0 if X =w* for some k € w,

(b) of type 1 if X =11, X;, X; is either w or N for each i <k, and X; is N for at least one
1<k.

2.2 Basic spaces

In product spaces, it is more convenient in practice to work with the natural basis for the topology,
rather than the previous recursive presentation. This is why we introduce the following notion.

Definition 2.3 Let X be a topological space, and (N (X, n))n ., be an enumeration (possibly with

€
repetitions) of a basis for the topology of X. We say that <X, (N(X, n))new> is a basic space if

there is R C w? recursive such that v € N(X,m) N N(X,n) < Ipcw x € N(X,p) A R(m,n,p).
We will often say that X is a basic space, for short, which means that it is given with an enumeration
of a basis for its topology witnessing the fact that it has a basic space structure.

Proposition 2.4 Let X be a recursively presented Polish space. Then the formula

]V()(7 n) ::B(.%'(n)o, (n()z)j—l)

defines a basic space structure on X.

Proof. Note that x € N (X, m) N N (X, n) holds exactly when there are i, k €w such that

(k)1 (m)i (k)1 ()i (kh
(k)2 +1 (m)a+1 (k)2+1 (n)2+1 (k)2+1°

d(mi)$)< d(x(m)gaxi)< d(x(n)o>$i)<



Indeed, the implication from right to left is trivial, while if the left-hand side holds, then
k k
Ar={z€X | Frew d(z,7) < gy2ig A d(Tm)y 2) < gkt — 9edT A

n k
(2 (n),, %) < (15)2)411 - (14()2)41r1}

is open and nonempty (since x € A), so A must contain one ;. Using this equivalence and the
definition of a recursive presentation, it is easy to see that there is R C w3 recursive as desired. O

From now on, we view the space w as a basic space by setting N(w,n) := {n} (the relation
defined by R(m,n,p) <& m=n=p is a witness for the fact that w is a basic space). In N, we work
with the basic space structure given by Proposition 2.4.

Proposition 2.5 There are recursive functions g:w—w and h:w? —w such that
aeNWN,n) < (n)1 A0 AVi<g(n) a(i)=h(n,i),
where the N(N',n)’s are given by Proposition 2.4.

Proof. If (n); =0, then N(N,n)=0. If (n); #0, then N(N,n)={aeN | Vi<l a(i) =k;}, where
l, ko,--- ,k;_1 are effectively computable from n (if [ = 0, then N(N,n) = N). Write [ := g(n),
k;:=h(n, 1) with suitable recursive functions. O

Proposition 2.6 Let (X;); be a finite family of basic spaces. Then the formula

0 if =Seq(n) V lh(n) <k,
I <k N(Xi, (n)z) otherwise

defines a basic space structure on 11, X; called the product basic structure.
Proof. Clearly, (N (1L« X;, n))ne
the fact that (XZ-, (N(Xi, n))new) is basic. Then

N(Ilick Xiyn):= {
., 18 a basis for the topology of II,; X;. Let R; be a witness for

(zi)ick € N(Iick X3 m) N NIk Xiym)
Seq(m) A Seq(n) Alh(m),lh(n) >k AVi<k x;€ N (X, (m);) NN (X, (n);)
dpew Seq(p) ANlh(p)>k AVi<k z;€ N(X,(p)i) A
Seq(m) A Seq(n) Alh(m),lh(n)>k A Ri((m)i, (n)i, (p)l)
& dpew (@i)ick € N(Mick Xi,p) A
Vi<k Seq(m) A Seq(n) Alh(m),lh(n)>k A Ri((m)i, (n)i, (p),-),
so that we just have to set

to finish the proof. O

=
=

In the spaces of type 0 or 1 other than w and N, we work with the product basic structure.

Proposition 2.7 Let X, Y be basic spaces, and (N (X XY, n))n ., 8iven by Proposition 2.6. Then
there are recursive functions f, g, h such that N(X,m)x N (Y,n)= N(X xY, f(m, n)) and

N(XxY,n)=N(X,g(n))xN(Y,h(n)).

Proof. We just have to set f(m,n):=< m,n >, g(n):=(n)g and h(n):=(n);. O

4



3 The Kleene classes

3.1 Semirecursive sets and functions

We first work in some w*.

Notation. If X, Y are sets and SC X x Y, then we set 3¥ S:={rc X | ycY (z,y)€S}.

Definition 3.1 Let R Cw”. We say that R is semirecursive if there is a recursive relation S C w*+!

such that R=3“S.

Exercise. Prove that a set R C w is semirecursive if and only if R is empty or there exists a recursive
function f:w — w which enumerates R, i.e., R={f(0), f(1), f(2),--- }.

Proposition 3.2 A relation R Cw" is recursive if and only if R and —R are semirecursive.

Proof. If R is recursive, then the relation S defined by S(x,n) < R(x) is also recursive, so that R
is semirecursive. Moreover, =R is also recursive, and thus semirecursive. Conversely, if R and =R
are semirecursive with recursive witnesses S, T, then S U T is recursive. Moreover, for any = € wh
there is n with (z,n) € S U T so the formula f(z):=min{n€w | (x,n) €S U T} defines a recursive
function, and z € R < S(z, f(z)) so R is recursive. O

Definition 3.3 Let X be a basic space, and S C X. We say that S is semirecursive if there is a
semirecursive subset S* of w such that S=\J,,cg« N(X,n). We say that S is recursive if S and =S
are semirecursive.

Intuitively, S is semirecursive if it can be written as a recursive union of basic neighborhoods.
Note that a subset S of w is semirecursive in the sense of Definition 3.1 if and only if it is semirecursive
in the sense of 3.3, so that our notion is not ambiguous for the space w. The same remark applies
for the product spaces w”, viewed as basic spaces. By Proposition 3.2, this remarks also holds for
recursive relations.

Definition 3.4 Ler X, -+, Xr_1,Y be basic spaces. We say that f:11;.;, X; —Y is trivial if

f(xoa e 7‘Tk—1):(xi07 tee )xil))

where g, - -+ , 1 <k.

Theorem 3.5 The class of semirecursive sets contains the emptyset, every basic space, every basic
neighborhood N (X, n) of a basic space, every recursive relation on some w®, and the basic neigh-
borhood relation {(x,n) € X xw | x € N (X, n)} for each basic space X ; moreover it is closed under
V, A, 3%, substitution of trivial functions, 3=, and V<.

Proof. Clearly, ) = J,.y N(X,n), X =U
these three sets are semirecursive. Every recursive relation on some w” is semirecurive by Proposition

3.2. In order to check that {(x,n) € X xw | x€ N(X,n)} is semirecursive, notice that

N(X,n)x{n}=N(X,n)xN(w,n)=N (X xw, f(n,n))

N(X,n), and N(X,n) =U,,e(ny N(X,m), s
k

new

using the recursive function f of Proposition 2.7.



Thus {(z,n) € X xw | z€ N(X,n)} =U,e, N(X Xw, f(n,n)). We are done since the range
of a semirecursive subset of some w” by a recursive function is semirecursive.

For the closure properties, suppose first that S = J,,cg- N(X,m) and T' = J
with both $* and 7™ semirecursive. Then S UT =J,,cg-p- IN(X,n). Similarly,

neT* N(Xa n)’

sSnT= |J NEXmNNX,n)= U N(X,p).
meS* neT™* meS* neT* pEw,R(m,n,p)

We are done since {pc€w | Im € S* In€T* R(m,n,p)} is semirecursive. This establishes closure
under V and A. To prove closure under 3*, suppose that S=3“T and T'=J,,c~ N (X Xw,n). Then

S(z)e3ImewIneT* (z,m) e N(Xxw,n)<ImewIneT* (x,m)e N (X, g(n))xN (w, h(n)),
where g, h are recursive and given by Proposition 2.7. The relation defined by
R(m,n) & méeN (w,h(n))

is easily proved recursive, so that S*:={p€cw | IneT* p=g(n)AIm ewR(m,n)} is semirecursive,
as wellas S={J,cg- N(X,p).

Suppose that f:1I;, ., X; —Y is trivial and defined by
f(x(h T 7:6]47—1) = (xi(n T 7x’il),
where ig, -+ i <k. If S=J,,cq» N(Y,n)and T(z) < S(f(x)), then

T(xo, - ,xk—1) < In € S* (ziy, -+ ,xi,) EN(Y,n)
& dn e S* inEN(XiOa (n)o) ANCRRIAN/ o7 GN(XQ, (n)l)

For a fixed j, z; € N(Xj, m) is equivalent to

dpew l‘()EN(Xo, (p)o) VAR /\$]’€N(Xj,m) VAR /\$k_1€N(Xk_1, (p)k:—l)

and to Ip € w (zg, -+ ,x)—1) € N(HKk X, gj(m,p)), where g; is recursive. Using the argument
which established that {(z,n) € X xw | z € N(X,n)} is semirecursive, it is easy to verify that each
relation R;(zq, -+ ,zk_1,m,p) < (20, ,xk—1) € N (Iicx Xi, gj(m, p)) is semirecursive, so by

closure under 3* we get
T(an o 7$k‘—1) & dnew R;FO('Z’O) T ,.Z'k_l,n) ARERRNA RZ(.Z‘(], e 7xk—17n)7

with suitable semirecursive R; ,---, R;, and T' is semirecursive by closure under A and 3. If

T(x,n) < Ji<n S(z,i) with S semirecursive, then
T(x,n) < Jicw i<nAS(z,i) < Jicw R(zx,n,i) NU(z,n,i),

where R(z,n,i) < i <n, U(x,n,i) < S(z,i) are both semirecursive by closure under the trivial
substitutions (z,n,i) — (i,n), (x,n,i) — (z,7) and the semirecursiveness of < and S. Now use
closure under A and 3.



Similarly, if T'(z,n) < Vi <n S(z,i) with S = {J,,cg« N(X xw,m), then let V C w? be
recursive with S* =3“V . Note that

T(x,n) & Vi<nImeS* (z,i) € N(X xw, m)
<:>Vz'§n5|q6w( 0,(q)1)6V (x4 EN(Xon (q)o)
& Ipewvi<n (((p)i)g (i), ) €V A (z, 1)€N<XXW ((p)i )0)
)

&S dpewVi<n ((p z) ((p)z)1 eVA a:EN(X, fl(p,i)) A ieN(w, fg(p,z'))
with f1, fo recursive by Proposition 2.7. Thus
T(x,n) < Jp,ucw Yi<n (((p)i)o, ((p)l)1> eV AVi<n fi(p,i)=(u); A
Vi<nzeN(X,(u);)) A Vi<niceN(w, f2(p,i)).

Now using the definition of a basic space and rearranging,

T(z,n) < Ju,p,vEw :EEN(X,g(u,n, U)) A R(n,p,u)
with a recursive function g and a recursive R, i.e.,

T(x,n) < Ju,p,v,mew m=g(u,n,v) Nx€ N(X,m) A R(n,p,u).

So T is semirecursive by the closure properties we have established already. O

Theorem 3.6 The class of recursive sets contains the emptyset, every basic space, every recursive
relation on some W¥, the set {(c,n,w) € N'xw? | a(n) =w}, and for each recursively presented
Polish space of type 0 or 1, every basic neighborhood N (X ,n), and the basic neighborhood relation

{(z,n)eX xw |zeN(X,n)};
moreover, it is closed under —, \V/, A\, substitution of trivial functions, 3=, and V<.

Proof. The closure properties are immediate from Theorem 3.5 and so are the facts that (), each basic
space and each recursive relation on some w” are recursive. Recall from Proposition 2.5 that there are
recursive functions g and h such that

aENWN,p) & (p)1#0AVn<g(p) a(n)=h(p,n),
where the N (A, n)’s are given by Proposition 2.4. This implies that
a(n)=w < Ipcwae N(N,p) An<g(p) A h(p,n)=

because the implication from right-to-left is trivial, and that from left-to-right is easy to check if we
choose p such that « € N(N,p) AVBEN(N,p) B(n)=w. It follows that

{(a,n,w) EN xW? | a(n)=w}
is semirecursive by Theorem 3.5, and it is also recursive, since

a(n)#w < Imecwm#w A a(n)=m.



Using again Proposition 2.5,
ag NN,p) < (p)1=0VIn<g(p) wew a(n)=w A w#h(p,n),

so {(a,p) e Nxw | a ¢ N(N,p)} is semirecursive and hence recursive by Theorem 3.5. The
corresponding set for w is trivially recursive, and then by Proposition 2.7 and closure under A,
{(z,p)e X xw | z€ N(X,p)} is recursive for every space X of type O or 1. O

Theorem 3.7 Let X,Y be basic spaces, and S C X XY (X xY being equipped with the product
basic structure). Then S is semirecursive if and only if there is S* C w? semirecursive such that
S(z,y) < Ip,gewzxz e NX,p) ANy € N(Y,q) A S*(p,q). More specifically, S C wx X is
semirecursive if and only if there is S* Cw? semirecursive such that

S(n,z) < Ipcwze N(X,p) A S*(n,p).

Proof. By definition, S C X x Y is semirecursive if and only if there is 7* C w semirecursive such
that S(z,y) < IneT™* (z,y) € N(X xY,n). Proposition 2.7 provides recursive functions g, h such
that S(z,y) < IneT* (z,y) € N(X,g(n)) x N (Y, h(n)). It remains to set

S*(p,q) & In€T™ p=g(n) A g=h(n).
If now S Cw x X, then the previous point provides U* C w? semirecursive such that
S(n,z) < Ip,gewneN(w,q) Nze N(X,p) NU(q,p).
It remains to set S*(n,p) < Igcw ne N(w,q) AU*(q, p). O

Theorem 3.8 Let X be a recursively presented Polish space of type 0 or 1, and S C X. Then S is
semirecursive if and only if there is R C X Xw recursive such that S=3“R.

Proof. One way is immediate by Theorem 3.5. For the converse, let S* be a semirecursive subset
of w with P(z) < In € wn € S* Ax € N(X,n), and R* C w? recursive with S* = F“R*,
Then P(z) < 3n,p € w R*(n,p) Az € N(X,n) & Jqg € w R*((¢)o, (¢)1) Az € N(X,(¢)o).
Thus it is enough to show that the relation S(z,q) < x € N (X, (¢)o) is recursive when X is
of type 0 or 1. It is by Theorem 3.6, since S(z,q) < Im € w (q)go = m A x € N(X,m) and
=S(z,q) &< Imew (¢Qo=mAx ¢ N(X,m). O

Proposition 3.9 A function f:w* —w is recursive if and only if Graph(f) is semirecursive.

Proof. If f is recursive then Graph(f) is semirecursive, by Propositions 1.2 and 3.2. Conversely,
assume that Graph(f) is semirecursive, which gives R C w**2 such that Graph(f) =3“ R. Note that

flz)= (min{nEw | R(z, (n)o, (n)1) })0, so that f is recursive. O

Definition 3.10 Ler XY be basic spaces. We say that a function f: X —Y is
(a) X9-recursive if {(z,n) € X xw | f(z) € N(Y,n)} is semirecursive in X x w, equipped with
the product basic structure,

(b) a recursive isomorphism if f is a bijection such that both f and = are X0-recursive.



Proposition 3.11 A function f:w* —w is recursive if and only if f is X-recursive. So in the sequel
we will say that f is a recursive function if f is X\ -recursive.

Proof. By Proposition 3.9 it is enough to prove that f is X-recursive if and only if Graph(f) is
semirecursive. We just have to apply the definition of N (w,n). U

Along similar lines, the following holds.

Proposition 3.12 Let X be a recursively presented Polish space of type 0 or 1, Y be a recursively
presented Polish space of type 0, and S C X XY semirecursive. Then there is S* C S semirecursive
which the graph of a function defined on 3¥ S. If moreover X = 3Y' S, then there is a recursive
function f: X —Y such that S(x, f(x)) foreach x € X.

Proof. Theorem 3.8 provides R C X XY X w recursive such that S=3“R. We set, if Y =wh,
S*(.’Ii,y) & dnew R(m,y,n) AVm << Yo, s Yk—1,10 > _\R(LL', (m)07 T (m>k)

Then S* is semirecursive by Theorem 3.5, and contained in S. If S*(z,y) and S*(z, ') both hold,
then we can find natural numbers n and n’ with R(z, y,n), R(z,y’,n’), and ~R(z, (m)o, - - , (m)i)
ifm<<wyo, - ,yp—1,n >0orm<<ypy, - ,Y,_q,n >. This shows that y=y' and S* is the graph
of a partial function f.

If z € 3¥' 9, then we can find y € Y and n € w with R(z,y,n), and if we choose them in such a
way that < 4o, - -+ ,Yk_1,n > is minimal, then f(z) is defined and equal to 3. If now X =3¥'S, then
note that

f(@)EN(Y,n) & Imew (a: ((m)o, -+ ,(m)k_1)> €S* A ((m)o,-+ -, (m)r_1) EN(Y, ),
so f is recursive by Theorem 3.5. U

Exercise. Prove that the following functions are recursive.
- [+ N Xw—w defined by f(a,n):=a(n):=< a(0), -+ ,a(n—1) >.
-< . >N XN =N defined by < o, f > (2n):=a(n) and < o, B > (2n+1):=5(n).
- (). :N'xw— N defined by ();(n):=a(< i,n >).
- X N =N defined by v* =< v(1),7(2), - - >.

Proposition 3.13 The class of semirecursive sets is closed under recursive substitution.

Proof. Let X,Y be basic spaces, f : X — Y be recursive, S C Y be semirecursive, and S* be a
semicursive subset of w with S=|J,,cg- N(Y,n). Note that

S(f(z)) © 3IneS* f(x)eN(Y,n).
It remains to apply Theorem 3.5. g

We met two basic structures on a product X x Y of two recursively presented Polish spaces. We
now check that these two structures are recursively equivalent, and thus can be identified.



Proposition 3.14 Let X,Y be recursively presented Polish spaces, Py be X XY equipped with the
basic structure defined by the product recursive presentation, and Py be X XY equipped with the
product of the basic structures given by Proposition 2.4. Then Py and P, are recursively isomorphic.

Proof. We will check that the identity function is a recursive isomorphism from Py onto P;. Let, for

e€2, (No(X xY, n))n c., D€ given by the basic structure on P:. Note that

(z,y) € No(X xY,n) & :EyeB(xy(no,( )jr)

(z,9) € B((2((m)o)o» Y((n )) ((;12)+1) .

@%B(%’«n) o ) 2+1) B(¥(mo)1» fyss1)

& x€N(X, <((n)o)o, (n)1, ( )2 >) ANyEN(X, <((n)o)1, (n)1,(n)2 >
(n

)
& (z,y) e N1 (X XY, << ((n)o)o, (1)1, (n)2 >, < ((n)o)1, (n)1, (n)2 >))
& dpew (z,y) e N (X XY, p)A

p={ < ((n)o)o, (n)1, (n)2 >, < ((n)o)1, (n)1, (n)2 > )

Using Theorem 3.7, this shows that the identity function from P; into Fj is recursive. Conversely,
the previous computation shows that

reN(X,n) < Ipcw (z,y) € No(X XY, p) An=< ((p)o)o, (p)1, (p)2 >,
so that the projection from Fy into X is recursive. Similarly, the projection into Y is recursive. As
(z,y) EN1 (X xY,n) & z€N(X,(n)o) ANye N(Y, (n)1),
we are done by Theorem 3.5 and Proposition 3.13. U

3.2 Polish recursive spaces

Definition 3.15 A basic space X is Polish recursive if it is recursively isomorphic to a basic space
defined by a recursively presented Polish space.

In the sequel, we will work in Polish recursive spaces.
Theorem 3.16 Let X be a Polish recursive space. Then there is w: N — X recursive and onto.

Proof. We may assume that X is a basic space defined by a recursively presented Polish space. Let
(z,,) be the dense sequence coming from the recursive presentation of X. To each o € N we assign
the sequence () )new by the recursion z§ := 1,y and

R { Ta(n+1) if d(xg, xa(n+1)) <27,
i % if d(ﬂ?%, xa(n—l—l)) >2™"

For each n, d(zj,,z; 1) < 27", so that (z;)new. is Cauchy and we can set m(a) := lim, o 7.

Note that 7 is recursive. If € X, let a(n) := min{k € w | d(z,7;) < 277!} and check that
m(a) =1imy 00 Ton) =1 O
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3.3 The Kleene classes

Notation. If ' is a class of sets, then 3V T':={3¥ S | S€T}. Recall that T':={~S | S€T'}. We now
introduce the Kleene classes, which are classes of subsets of Polish recursive spaces. We first set, for

new,
XY :=the class of semirecursive sets

110:= 50
20 =3
A):=x0n11)

The sets in |J,,»; X9 are called arithmetical. They are the effective versions of the Borel sets of
finite rank. Similarly,

=3V

.=l

ot =3}

Al sl 7
The sets in | J,,~; 2! are the effective versions of the projective sets. We can also define the rela-
tivized Kleene classes X° (), II%(x), X (x), II! (x) by the general process as follows.

Let I" be a class of subsets of Polish recursive spaces, X be a Polish recursive space, and z € X.
We say that a subset P of a Polish recursive space Y is in the relativization I'(z) of T to x if there is
QC X xY inT such that P(y) < Q(x,y).

We next define A% () := X9(z) N II9(x) and Al (z):= X} (x) N II}(z). One should be careful
with this notation, since it is not the case that A% (x) is the relativization of A? to z. We will not
always bother to state explicitly results about these relativized classes since they are similar to those
about the non-relativized classes, and they are obtained (usually) by the same arguments.

Definition 3.17 A class of subsets of Polish recursive spaces is called adequate if it contains the
recursive subsets and is closed under recursive substitution, \V, A, 3=, and V<.

Theorem 3.18 Let I be an adequate class. Then I, 3¢, W, =g I, and YNT are also adequate.
Moreover, 3*T is closed under 3%, V*T" is closed under V*, FNT is closed under 3¥ for each Polish
recursive space Y, and VYN is closed under VY for each Polish recursive space Y .

Proof. The results for VT, VNT and —T follow from those for 3*T and FVT. If R C X is recursive,
then we set P(z,n) < R(x), so that P is recursive by Theorem 3.6 and thus in I, and R=3“P is in
T If f: X — Y isrecursive and PCY xw isin T, then f(z) €3“P < dpew P(f(:z:),p), so that
3“T is closed under recursive substitution. If P,Q C X xw are in I, then

red’PUIQ & Ipew P(x,p) V Q(x,p),
so that 3T is closed under V. Similarly, 3“T" is closed under 3*. Moreover,
zeIPNIQ < Ip,gew P(x,p) ANQ(z,q) & Incw P(:J:, (n)o) A Q(m, (n)l)

so that 3“T" is closed under A.
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If now PC X xw? is in T, then

Im<n (z,m)e3F*P < Ipcw Im<n P(x,m,p),
Ym<n (z,m)€3*P < Ipew Vm<n P(z,m, (p)m).

so that 3T is closed under 3= and V<. Similarly, VT contains the recursive subsets and is closed
under recursive substitution. In order to prove the closure of VT under V, A, 35, V< and V, we
use quantifier contractions. For example, to prove closure under IV, assume that

Q(z,a) & IBEN P(z,, )

with P in I'. Then 3a € N Q(z,a) < Ja,8 € N P(z,o,8) < 3y € N P(z, (7)o, (¥)1) and
PNQisin VT by closure of I" under recursive substitution. To take one more example, suppose that
Q(z,m) & 3BeN P(x,m,[). Then

Vm<n Q(z,m) < Vm<n3IeN P(x,m,B) < IyeN Vm<n P(m,m, (y)m)

and again V=Q is in INT by closure of I' under recursive substitution and V<. If Y is a Polish
recursive space and Q C X xY isin VT, then Theorem 3.16 provides m: N —Y recursive and onto.
Then 3y €Y Q(z,y) & JaeN Q(z,m()) and 3V Q is in FVT by closure of IVT under recursive
substitution and FV. 0

Corollary 3.19 The Kleene classes are adequate. Moreover, 2,9 is closed under 3%, HT? is closed
under V%, E}L is closed under V% and 3¥ for each Polish recursive space Y, and H& is closed under
“ and Y for each Polish recursive space Y. The relativizations share these properties.

Proof. By Theorem 3.5 and Proposition 3.13, %7 is adequate and closed under 3. By Theorem 3.18
and induction, the Kleene classes are adequate. The proof of Theorem 3.18 shows that X! is closed
under V. Thus 7} is closed under 3*. |

Proposition 3.20 Let X be a Polish recursive space. Then X (X)C X9(X).

Proof. Assume first that X is a basic space defined by a recursively presented Polish space. We define
arelation P on X xw? by P(x,i,m, k) < d(x;,z) < 5. Note that

(n)1 m

P(x,i,m, k)= IncwzeN(X,n)A(n)g=1iA < ,
(2,1, ) (X A o= A <

so that P is in X?(X xw?). Similarly, we define a relation Q on X xw? by

Q(z,i,m, k) < d(x;,x)> k:i—kl

Note that Q(z,i,m,k) & In € wa € N(X,n) A 5+ (é;;)il < d(wi, T(n),), s0 that Q is in
29(X xw?). Moreover,

P(z,i,m, k) < 3Im/, k’ewk,+1<k+1/\ k,+1<d(xl, x)
s3I kK ew k,+1<k+1/\—|Q(x,z,m,k’).

12



Assume now that S € £P(X). This gives S* C w semirecursive such that S={/J, .¢. N(X,n),
and R Cw? recursive with S*=3“R. Now

reS & IneS d(z(),,r)< (é;;)i_l & 3n,pew R(n,p) A P(z, (n)o, (n)1, (n)2)

< In,p,m' k' €w R(n,p) A kﬁ—/l < (éi)il A _\Q(I" (n)o,m’, k:’)

Thus S is in 29(X).

If now X is an arbitrary Polish recursive space, then it is recursively isomorphic to a basic space
defined by a recursively presented Polish space. We just have to use the closure of X and XY under
recursive substitution. U

Theorem 3.21 The inclusions hold from left to right in the following picture:

In particular, every arithmetical set is A%.

Proof. The inclusion X C IIJ is proved by vacuous quantifier. If S € XP(X), then we define
TC X xwby T(x,n) < S(x). Then T is in X and S =V*T, so that S is in I). Proposition 3.20
shows that XY C X and thus X C AJ and II) C A9. By induction, we get our inclusions for the
arithmetical hierarchy.

A vacuous quantifier argument shows that I7 is contained in X}. Thus X} contains XY, and
also X by Proposition 3.20. This implies that [T and A{ also contain XY and 7. By the closure
properties, every arithmetical set is Al. The inclusion X} C I} is proved by vacuous quantifier. As
mcirt, ¥ C ¥} By induction, we get all the remaining inclusions. O

Definition 3.22 Ler X, Y be Polish recursive spaces, f: X —Y and T be a Kleene class. We say that
f is D-recursive if the {(z,n) € X xw | f(z) € N(Y,n)} is in I. In particular, f is recursive if f is
X0-recursive.

Theorem 3.23 The classes X}, I}, Al are closed under Al-recursive substitution.

Proof. Let f: X —Y be Al-recursive. If ACY is %}, pick a IT subset of Y x A" with A=3V B,
and write A(f(z)) © JaeN B(f(z),a). As =B is X7, there is a X} subset P* of w? such that
(y,a)¢B < Ip,ncwyeN(Y,p) Nae N(N,n) A P*(p,n). Finally,

A(f(z)) @ JaeN Vp,new f(z)EN(Y,p)Vag NN, n)V =P (p,n),

which is X} by the closure properties of this class which contains I and Al. Thus X} is closed
under Al-recursive substitution. Thus I7}', Al are also closed under Al-recursive substitution. [
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Theorem 3.24 Let X, Y be Polish recursive spaces, and f: X — Y. The following are equivalent.
(a) f is Al-recursive,
(b) f is le—recursive,
(¢) Graph(f):={(z,y) € X xY | f(z)=y} is Z{,
(d) Graph(f) is Af.

Proof. (a) = (b) is immediate and (b) = (c) follows from the equivalence
f(@)=y & Vnew (ye N(Y,n) = f(z)eN(Y,n)).
In order to prove (c) = (d), note that f(x)#y < Jz€Y f(x)=2z A z#y. For (d) = (a), we use

f)eN(Y,n) & yeY f(z)=yAyeN(Y,n)
e VyeY f(x)#yVyeN(Y,n).

and Corollary 3.19. 0

3.4 Partial functions

Definition 3.25 Let I" be a class of subsets of Polish recursive spaces.

(a) We say that T is a X-class if it contains E{), and is closed under trivial substitutions, V/, A, 3=,
V< and 3¢,

(b) Let X,Y be Polish recursive spaces, and f: X — Y be a partial function. We say that f is
I'-recursive on its domain if there is P € X X w in I such that, for each x in the domain of f and
eachn€w, f(x) e N(Y,n) < P(x,n). If f is T-recursive on its domain and the domain of f is in
I, then we say that f is a I'-recursive partial function.

(c) We say that I" has the substitution property if for each Polish recursive spaces X,Y, each
partial function f: X —Y which is I'-recursive on its domain, and each Q CY in T, there is Q* C X

in T such that Q*(z) < Q(f(x)) if f(z) is defined.

Theorem 3.26 (a) XY has the substitution property.
(b) If T is a X-class with the substitution property, then so is each relativization I'(z).

(c) If T is a S-class closed under ¥ and either 3¥ or VY, then T has the substitution property;
in particular, X}, IT} do.

Proof. (a) Suppose that @ C Y is semirecursive, so that Q(y) < In € w y € N(Y,n) A Q*(n),
with a semirecursive Q*. If f: X — Y is partial and computed on its domain by some semirecursive
PC Xxw,put@Q'(z) < Incw P(x,n) AQ*(n). If f(x) is defined, then f(z) e N(Y,n) < P(x,n),
so that Q'(z) < Inecw f(z)EN(Y,n) AQ*(n) & Q(f(x)).

(b) Suppose that @ C Y is in I'(z), so that Q(y) < Q'(z,y) for some @’ in I" and suppose that
f:X —Y is computed on its domain by some P C X xw in I'(z). Again P(x,n) < P'(z,z,n)
for some P’ in I. Now P’ computes on its domain the partial function f' : Z x X — Y defined
as follows. f’(2/,x) is defined exactly when, for some y € Y, y € N(X,n) & P'(z',z,n), and
f'(Z',x)e N(Y,n) & P'(2/,z,n). Notice that, for the specific fixed z, f(z) is defined exactly when
f'(z,x) is defined, and f(x) is f'(z, x) in this case.
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The partial function g(z’, z) = (2/, f’(2’,z)) is I-recursive on its domain, so by the substitution
property for T, there is some Q" C Z x X in T so that Q" (%', z) & Q’(z’, f’(z’,m)) if g(2/, ) is
defined. Setting 2’ := z, we get Q" (z,2) < Q'(z, f'(z,2)) and Q"(z,z) & Q(f(x)) if f(x) is
defined, and we can take Q*(z) < Q" (z, ).

(¢) Suppose that the partial function f: X — Y is computed on its domain by PC X xwinI', QCY
isin I" and T is closed under v+ and 3. Take

Q*(z) & IeY Q(y) AVnew (ye N(Y,n) = P(z,n)).
This is easily in I' and if f(x) is defined, then for any y,
Vnew (yeN(Y,n) = P(z,n)) = Vnew (ye N(Y,n) = f(z)eN(Y,n)) = y=f(z),
so that Q*(z) < Q(f(z)). Similarly, if T is closed under V¥, take
Q*(z) ©VyeY Q(y) VIncw (P(z,n) Ayg N(Y,n)).
This finishes the proof. 0
We now prove a tranfer result.

Proposition 3.27 Let X be a Polish recursive space. Then there exists ix : X — N one-to-one and
220 -recursive, with H20 range, whose inverse is recursive on its domain.

Proof. Let Y be a basic space defined by a recursively presented Polish space and r: X — Y be a
recursive isomorphism. We define iy : Y — N by

2y(y)(n):{ lifye N(Y,n),

0 otherwise.
Note that iy is one-to-one. It is XJ-recursive since, using Proposition 2.5,
iy (y) EN(N,n) & (n)1#0AVi<g(n) iy (y)(i)=h(n,1)
& (n)1£0 AVi<g(n) <(h(n,z'):1 AYEN(Y,i)) Vv
(h(n,i)=0 A y¢ N(Y, i))).
We now use an idea in the proof of Proposition 2.4. We define S C w? by
() (k)
(n)a+1 (k)2 + 1’
which implies that N (Y, k) C N(Y,n). The proof of Proposition 2.4 shows that the relation R C w?
defined by R(m,n, k) < S(k,m) A S(k,n) is a witness for the fact that <Y, (N(Y, n))n6w> is a
basic space. Now the equivalence

S(k7 TL) g d<y(k)07 y(n)o) <

Vnew a(n)=1= (n); #0
Vm,n,pew a(m)=a(n)=1= Jkcw ak)=1AR(m,n, k) A
k _
075(15)2)j_1§2 8
Vnew (Fkew S(k,n) Aa(k)=1= a(n)=1)

aciylY] < aeCA

shows that iy [Y] is in IIJ. The inverse jy : iy[Y] — Y of iy is recursive on its domain since
Jy(@)eN(Y,n) & a(n)=1. It remains to set i x :=iy o r, by Theorem 3.26.(a). O
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3.5 Universal sets

Theorem 3.28 Let ' be a Kleene class of the form X9, 11, X! or II', T be its corresponding
boldface class, and X be a Polish recursive space. Then there exists UX C N x X in T which is
universal for all subsets of X in T, i.e., for every PC X inT there is a« € N such that P:Z/l;lx .

Proof. Any open set is the union of a subfamily of the basis (N (X, n))n , of X. Butas it may be

€
the case that no N (X, n) is empty, we need the empty union to get the empty set, so we define UX
by (o, z) €UX ©a(0)#£0AIp>13g€w alp)=q Az € N(X,q). By Theorem 3.5, U~ is a X7
subset of A" x X. If a(0) =0, then 2/ is empty. So the empty set is coded. If now P is a nonempty
open set, pick o € A/ enumerating the non empty set of ns with N(X,n) C P. Then clearly P =1/,

The result follows by a trivial induction. O

Corollary 3.29 X9 = |, 20(). Similarly, IIY = Uyepny I (), B = Upen 2i(a), and
I =U,cn I} (). We can also say that AY =], AY(a) and AT=,ep Al(a).

Proof. Let us check the left to right inclusion in the last assertion, the other ones being immediate
consequences of Theorem 3.28. For example, let B € AY(X). We can find o, 3 € N such that
Be XY (a)N IY(B). Note that BE XY (< a, B >) NI (< a, B >)C A< a, B >). O

Corollary 3.30 The inclusions in Theorem 3.21 are strict in N.

Proof. We apply Cantor’s diagonal method. Theorem 3.28 provides UN C N x N in T which is
universal for all subsets of N in T'. We set a € H < (o, o) €UV Clearly H CN is in T'. Now H is
not in I', otherwise we could find oo € such that - H :Z/{év . In particular,

a¢H < aEUQ/ S acH,
a contradiction. O

If X is an arbitrary Polish space and (x,) is any dense sequence in X, we can always pick
a € N such that the associated relations P and @ become recursive in . Then (X ; ((a:n), d))

becomes a recursively-in-a presented Polish space. The slogan behind Theorem 3.28 and Corollary
3.29 is “boldface=topological”. It explains why the classical theory, concerned with the topological
notions, and the modern theory of the effective notions, can be put in a unified theory. In fact the
effective (or also called lightface) results, once relativized, automatically give results for their boldface
counterparts. We will not write explicitly the relativized-to-a results, although we will often use
them: adding everywhere the symbols («) would not help understanding the ideas, and would be
notationally awkward. But the reader must consider these relativized-to-a statements as part of this
course, for they play a fundamental role: they are the bridge between the classical and the effective
approaches to descriptive set theory.

Theorem 3.28 provides N -parametrizations of the elements of some Kleene classes. We can also
find w-parametrizations of the elements of these Kleene classes. This is a much deeper result, based
on the following result, called the enumeration theorem for semirecursive relations on w, that we
will not prove here.
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Theorem 3.31 (Kleene) Let k> 1.
(a) There is a 210 subset S** of wxw such that for every 2'10 subset S of W* there is n € w such
that S :8;:'“.

(b) There is a XY subset T of N'xwx wF such that, for every o€ N, the section T;* Cw xwk
is in 20 (a) and universal for all subsets of w* in T'().

Corollary 3.32 Let I be a Kleene class of the form X9, II0, X! or I}, and X be a Polish recursive
space.

(a) There exists UX Cwx X in T which is universal for all subsets of X in T, i.e., for every PC X
in T there is n € w such that P=U.X.

(b) The relativized result also holds, in fact uniformly. There exists VX C N xw x X in T such
that, for every a € N, the section VX Cwx X is in T'(«) and universal for all subsets of X in T'(c).

Proof. (a) Theorem 3.31 provides a X subset S of wxw such that for every % subset S of w there

is p € w such that S =S;’. We put UX(n,x) & Ipcwaz € N(X,p) AS¥(n,p). By 3.7, UX is
universal for all open subsets of X. The result follows by a trivial induction.

(b) We argue as in (a). O

4 The basic representation theorem for 7/ sets

4.1 The representation

Theorem 4.1 Let X be a Polish recursive space.

(a) Aset SC X xN'(1>1)isin X if and only if there is a set Q C X xw' in 50 such that
S(z, a0, ,qq—1) & Imew Q(m,oTo(m), e ,al_l(m)) and, for each n € w,

(Q(z,ag(m), -+ ,ari(m)) Am<n) = Q(z,a(n), - , @ 3(n)).

Moreover, if X is of type 0 or 1, then (Q may be chosen to be recursive.
(b)A set PCX isin Hll if and only if there is a set Q C X Xw in Z{) such that

P(z) & VaeN Imew Q(z,a(m))

and, for each n € w, (Q (:r:,&(m)) Am< n) = Q(az,a(n)). Moreover, if X is of type 0 or 1, then

Q may be chosen to be recursive.

Proof. (b) follows immediately from (a). In order to prove (a), we take [ =1 for simplicity of notation.
Suppose by Theorem 3.7 that S(z,a) < Ip,qew x € N(X,p) Nae€ N(N,q) A S*(p, q) with S*
semirecursive, so there is a recursive R such that

S(z,a) < Ip,q,ncwazeN(X,p) Nae NN, q) A R(p, g,n).
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By Proposition 2.5, there are recursive functions g, h such that
a€NWN,q) < (01 #0AVi<g(q) ali) =h(q,1),

so that whenever m > g(q), we easily have a € N(N, q) < (q)1 #0 AVi<g(q) (a(m)),=h(q, ).
Now put

Q(z,w) < Seq(w) A Ip,q,n<Ih(w) z€ N(X,p) A (q)1#0 A g(q) <lh(w) A
Vi<g(q) (w)i=h(q,i) A R(p,q,n)

and verify easily that S(z,a) < Im € w Q(z,a(m)). If X is of type 0 or 1, then Q is recursive
since {(x,p) € X xw | v€ N(X, p)} is recursive by Theorem 3.6. O

We can now state the basic representation theorem for I7}' sets.

Theorem 4.2 (Lusin-Sierpinski, Kleene) Let X be a Polish recursive space and P be a subset of X.
Then P is Hll if and only if there is a A%-recursive function f: X — N such that for all x € X,
f(x)e LO and

(%) P(z) < f(x)eWO.
In fact, if P is I}, then we can choose f:X — N so that for all x € X, <f(x) is a non-empty linear

ordering, (x) holds, and the relation R(x,m,n) < f(x)(m)=n is arithmetical; if in addition X is
of type 0 or 1, then (x) holds with a recursive f.

Proof. Theorem 4.1 provides a set () C X x w semirecursive (or recursive if X is of type 0 or 1) such
that
P(z) & VaeN Imew Q(z,a(m))

and, for each n € w, (Q(:c,a(m)) A m<n> = Q(z,a(n)).

For each z € X, put T'(z) :={(ug, - ,u—1) €Ew<¥ | =Q(z, < ug, -+ ,u—1 >)}, so that T'(z)
is a tree on w and clearly P(z) < T'(x) is wellfounded. What we must do is replace 7'(x) by a linear
ordering on w which will be wellfounded precisely when 7'(x) is. Put

Vo, , Vk—1 Ug, =+, U1 Vo, ,Vk—1), (UO, " ", U1 €
( )>"( ) & ( ) ( JET () A
(U0>UO\/(U():uO/\’U1>’u,1)V(UoZUO/\Ulzul/\1}2>U2)\/--'\/
(Uozuo/\v1:u1/\---/\vk_lzuk_l/\k<l)),

where > on the right is the usual “greater than” in w.

It is immediate that if (vg, -+ ,vg—1), (uo,- - ,u;—1) are both in T'(x) and (vg,--- ,vE_1) is a
proper initial segment of (ug,- - ,u;—_1), then (vg, -+ ,vg_1) >% (ug,- -+ ,u;_1); thus if T'(x) has
an infinite branch, then >* has an infinite descending chain. Assume now that >* has an infinite
descending chain, say v® >* v >* v* >* ..., where v’ = (v}, v}, -+ ,v]_,), and consider the
following array.
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0_ (0 .0
v’ =(vg, v, A 1)
1_ (1 .1 1
v = (v, vy, ’Ull—l)
Ul:(UE),U’i, 7”[21_1>
The definition of > implies immediately that v > v} >v3 >, i.e., the first column is a nonin-

creasing sequence of integers. Hence after a while they all are the same, say vé =k for ¢ > 1. Now
the second column is nonincreasing below the level g, so that, for some i1, k1, v} = k1 for ¢ > ;.
Proceeding in the same way we find an infinite sequence kg, k1, - - - such that for each [,

(ko, -+, ki—1) €T (z),
so T'(x) is not wellfounded. Thus we have shown that
P(z) < T(x) is wellfounded < >* has no infinite descending chains.
Finally put

u<tv & A <uIk<v Seq(u) Alh(u)=1A Seq(v) ANlh(v)=k A
u=vV ((U>07 T (U)kfl) >* ((u)07 R (u)lfl)

and notice that <” is always a linear ordering, it is not empty (because the code 1 of the empty
sequence is in its field), and P(z) <<% is a wellordering. Moreover, the relation

P(z,u,v) & u<’v
is easily arithmetical for arbitrary X and recursive if X is of type O or 1. It remains to take

1if (n)o Sx (n)l,
0 otherwise.

fa)mi={

This finishes the proof. O

4.2 I1}'-norms

Theorem 4.3 The set WO is Hll. Moreover, there are relations, <y in Hll and <x: in 211, on N such
thata<pf & a<sf < (aeWO A |a|<|B]) if Be WO.

Proof. The definition of WO shows that it is IT{'. Then copy the proof of the classical version of this
result. Simply note that we can replace the boldface classes by the lightface ones. 0

Proposition 4.4 The relations
(a) ceWONBeLOAN(BeWO = |a|<|B])
(b)) ae WO ANBELON(BEWO = |a|<|5])
(c)aeWOABELOA (BEWO = (|B|<|a] V |a|<|B]))
are IT} in N2
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Proof. We copy the proof of the classical version of this result. Simply note that we can replace the
boldface classes by the lightface ones. g

Definition 4.5 Let X be a Polish recursive space, PC X in Hll, and @ be a function from P into the
ordinals. We say that  is a II} -norm if the following relations

<ty Plx)A(-P(y) Ve(z)<e(y))
<ty e Px)A(=P(y) Ve(r)<e(y))

are in II}.

Theorem 4.6 Let X be a Polish recursive space and P C X in II!. Then P admits a II-norm (we
say that II| is normed).

Proof. Theorem 4.2 provides a A%—recursive function f: X — N such that, for all z € X, < F(@) isa

non-empty linear ordering,
() P(z) & f(x)eWO

and the relation R(z,n,p) < f(x)(n)=p is arithmetical. We put ¢(x) :=|f(z)|. By Proposition
4.4, <% and <}, are in . O

*

The fact that IT}! is normed has several important consequences. We now give some of them. We
first prove the easy uniformization theorem.

Theorem 4.7 (Kreisel) Let X be a Polish recursive space, and P C X Xw in Hll. Then P can be
uniformized by some P* in II}.

Proof. We copy the proof of the classical version of this result. Simply note that we can replace the
boldface classes by the lightface ones. O

Definition 4.8 Let I' be a class of subsets of Polish recursive spaces.

(a) We say that " has the reduction property if for any Polish recursive space X and any
A, BC X inT, there are A*, B* C X disjoint in I such that A*C A, B*CB, and A*UB*=AUB.

(b) We say that I has the separation property if for any Polish recursive space X and any disjoint
A BCX inT, thereis DC X inT NT such that ACDC—B.

Theorem 4.9 The class I1} has the reduction property, and X} has the separation property.

Proof. We copy the proof of the classical version of this result. Simply note that we can replace the
boldface classes by the lightface ones. U

Exercise. (Novikov, Kleene, Addison) Prove that 1! does not have the separation property.

An important consequence of this is the existence of a coding system for A} sets.

Theorem 4.10 Let X be a Polish recursive space. Then there are C Cw and PT, P~ Cwx X in II}
such that

(a) for any n € C, P;} and P, are complements of each other,
(b) for any AC X in Al there is n€ C such that A= P;.
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Proof. Corollary 3.32 provides X Cw x X in I} which is universal for all subsets of X in II}'. We
copy the proof of the classical version of this result, replacing C with w. Simply note that we can
replace the boldface classes by the lightface ones. U

Another important consequence of the fact that I7;! is normed is the following reflection theorem.

Definition 4.11 Let X be a Polish recursive space, and ® C 2% We say that ® is Hll on 2’11 if, for
any Polish recursive space Y and any ACY x X in X}, the set Ap:={y€Y | A,e®}isin II}.

Theorem 4.12 Let X be a Polish recursive space, and ® C2X. We assume that ® is II}' on 5. Then
forany SC X in 211 N ® thereis DC X in A% N P such that S C D.

Proof. We copy the proof of the classical version of this result. Simply note that we can replace the
boldface classes by the lightface ones. U

4.3 The parametrization of A] points

Definition 4.13 (a) Let X be a Polish recursive space, x € X and T" be a Kleene class. We say that x
is a ['-recursive point if the set of codes of neighborhoods of x is in T, i.e., if

{new|zeN(X,n)}

is in . We will also say that x is in T. We say that x is recursive if x is in XV.

(b) A countable ordinal ¢ is a recursive ordinal if there is o« € WO N XY such that |a| = €.
Similarly, for each Polish recursive space and each x € X, a countable ordinal £ is a recursive in x
ordinal if there is « € WO N XY (x) such that |a| =¢.

c e ordinal wy ™, calle e urch-Kleene wi, is the first non recursive ordinal. Similarly,

(c) The ordinal 1CK lled the Church-Kl th t dinal. Similarly,

or each Polish recursive space and each x € X, the ordinal w¥ is the first non recursive in x ordinal.
4 1

Remark. As there are only countably many recursive functions from some w* into w, 2Y(X) is
countable for each Polish recursive space X, as well as the set of X -recursive points of X. In
particular, w{'¥ is well defined and countable. Similarly, w? is well defined and countable.

Proposition 4.14 The set {a e N | a € 50} is X5,

Proof. Theorem 3.31 provides a X} subset S* of w? such that for every X subset S of w there is
p€Ew such that S=S§). Thus

aeX) e {new|aeNWN,n)teX & IpcwVnew (ae NN, n) & (p,n)€SY),
which provides a X definition of our set. O

Notation. If (Z, <) is a wellordering, then we can define, by induction on <, the rank function p of
<, from Z into the ordinals, by p(2):={p(y) | y€ Z Ay < z}. Note that p maps Z onto some ordinal
. This is because, if « is the least ordinal not in the range of p, then, by induction on <, p(z) <« if
z € Z. We denote this ordinal by p(Z), so that p(Z) ={p(z) | z€ Z}. The ordinal p(Z) is called the
rank of the wellordering.
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It is the unique ordinal isomorphic to the wellordering, and p is the unique isomorphism from the
wellordering onto it. If f is an order preserving function from Z into the ordinals, then p(z) < f(z)
for each z € Z. Note that the order type of (Z,<) is p(Z). One also denotes by p(z, Z) the rank
p(z) of z in Z. Note that if Z|, :={y € Z | y < z} is ordered by the restriction of <, then Z|, is a
wellordering, and p(Z|,) =p(z, Z).

Proposition 4.15 There is a recursive function .|.: N'xw — N, sending LOxw into LO and WO xw
into WO, and such that, for c e WO,

_J0ifn¢gD,,
‘O“”“{ p(n, (Da, <a)) if n€ Dy

Proof. We set

_Jal<m,p>)ifn,m,pe Dy Am,p<qn,
(aln)(<m,p >)_{ 0 otherwise.
This function is as desired. O
Proposition 4.16 The equality w{® ={|a| | « € WO N £} holds.

Proof. If « € WO N XY and |a| = &, then, by Proposition 4.15, a|n is in WO for each n and the
|an| <&. As a|n is recursive, the set of recursive ordinals is a (countable) ordinal. U

We now prove the boundedness theorem for WO.
Theorem 4.17 Let SCWO be a X} set. Then sup{|a| | a€ S} <w{k.

Proof. We argue by contradiction. Let C be a II;' subset of w. Theorem 4.2 provides a recursive
function f:w — N such that for all n € w, f(n) € LO and C(n) < f(n) € WO. Now note that,
for every n, f(n) is a recursive element of NV, hence if f(n) € WO, then |f(n)| <w{¥. So we get
neC < f(n)eWO A|f(n)| <w{E. Now note that

neC & 3IBes BEWOV (f(n)eWO A |f(n)|<|B)),

which gives a X definition of C' by Proposition 4.4.(b). As there is in w a II{ non X set C by
Corollary 3.30, we get our contradiction. U

Corollary 4.18 (Spector) The equality W™ =sup{|a| | « € WO N AL} holds.

Proof. Let a € WO be A}. Then {a} is A} since S € {a} & Vnew (e N(X,n) & S€N(X,n)).
By Theorem 4.17, |a| <w{'K. O

This result is rather surprising, as one might expect to get longer wellorderings in the complicated
pointclass A} than one gets in 3.

Theorem 4.19 Let X,Y be Polish recursive spaces, f: X —Y be a II{ -recursive partial function,
QCY in II! and RC X defined by R(x) < f(x) is defined N\ Q(f(x)). Then R is in II}.
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Proof. Choose Q* C X in I by Theorem 3.26 and the substitution property, so that, if f(x) is
defined, Q*(z) < Q(f(x)). Notice that R(z) < f(z) is defined A Q*(x). O
We now prove the parametrization theorem for the points in A1.
Theorem 4.20 There is a I1{ -recursive partial function d :w — N such that, for every a €N,
a€ A}l & Jicw d(i) is defined A d(i) =

Similarly, for any Polish recursive space X, there is a Hll—recursive partial functiond:wx X — N
such that, for every (z,a) € X XN,

a€Al(x) & Jicw d(i,x) is defined A d(i, x) = .
Proof. We prove the second assertion, the first being simpler. Corollary 3.32 provides
UXX9 C o x X xw?

in I} which is universal for all subsets of X x w? in II{. Theorem 4.7 provides U* C UX xw? jn
. . . 2 . . 2 .

T} uniformizing UX*“". Here we are thinking of /X *“" as a subset of (wx X xw) X w, i.e., we

uniformize only on the last variable.

Now d(i, x) is defined exactly when Vn € w 3m ew U* (i, z,n, m), and, if this is the case, we set
d(i, z) := a, where for all n,m, a(n)=m < U*(i,x,n, m). We omit the trivial computation which
establishes that d is IT}!-recursive partial.

From this it follows that d(i, z) € N(N,n) < (n)1 #0 AVj < g(n) U*(i,z, j, h(n,j)), where
g:w—w and h:w?—w are the recursive functions given by Proposition 2.5. This shows that d (i, )
is in IT{ (z). Now the relation Q(a,n) < a ¢ N(N,n) is in II? and thus in II!. Since the partial
function (i, z,n) — (d(é, ), n) is II-recursive on its domain, the substitution property established
in Theorem 3.26 gives Q* in I} so that d(i,z) ¢ N(N,n) & Q*(i,z,n) if d(i,z) is defined, so
that d(4, x) is also X (x), and hence A}(z).

Conversely, if o€ Al(x), choose i so that a(n) =m < UX** (i, 2, n,m) so that

a(n)=m < U (i,z,n,m)
and hence d (¢, z) is defined and d (i, z) = av. O
These last results allow us to prove the theorem on restricted quantification, which is as follows.
Theorem 4.21 (Kleene) Let X be a Polish recursive space, Q C X x N in Hll and put
P(z) & 3ac Al Q(z,a).
Then P is in II}\. Similarly, if Z is a Polish recursive space, Q C X x Z x N is in II{ and
P(z,2) & Jac Al(2) Q(z, 2, a),

then P is in IT}.
Proof. Taking the second case, P(z,z) < Ji€w d(i, 2) is defined AQ(z,z,d(i,2)), so Pisin II}!
by Theorems 4.19 and 4.20. O

Exercise. Prove that the collection of IT}!-recursive partial functions is closed under composition.
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5 Gandy’s basis theorem

We now introduce Kleene’s O.

Theorem 5.1 (1) There is a Hll relation © C w? such that
(a) O is a wellordering of domain(O):={ncw | (n,n) € O} of order type W'~,
(b) O is Al in domain(O) x w.
(2) Similarly, there is a Hf relation @ C N x w? such that, for each aeN,
Ou:={(m,n)€w? | (a,m,n) € O}

satisfies
(a) Oy is a wellordering of domain(Q,,):={ncw | (n,n) € Oy} of order type w,
(b) Oy is A}(a) in domain(O,) x w.

Proof. (1) Corollary 3.30 provides C' C w in II;} but not in X}\. Theorem 4.2 provides f : w — N
recursive such that, for all n €w, <y, is a non-empty linear ordering and

C(n) & f(n)eWO < f(n)eWO A |f(n)] <wfE.

Note that sup{|f(n)| | C(n)} = w{'X. Indeed, we argue by contradiction, which gives a € WO
recursive such that |f(n)| < |al if C(n). Theorem 4.3 provides a X relation <y, on A/ such that
f(n)<sa & (f(n)eWO A|f(n)|<|al). Then C(n) < f(n)<s a. This gives a X} definition of
C', which is absurd. We set

C:i={neC|Vm<n mgCV [f(m)|<[f(n)|V[f(n)|<|f(m)]}.
By Proposition 4.4.(c), C* is II} and n+ | f(n)] is one-to-one on it. As
sup{[f(n)[ | C*(n)}=sup{[f(n)] | C(n)},

sup{|f(n)| | C*(n)} =w{X. Note then that the relation m € C* A (n€ C* = [f(m)| < |f(n)|) is
1! in w?. Indeed, it is equivalent to

meC* A (ngCV (neC A3p<n peCALf()|=1F)]) VI (m)|<|f(n)

which is II! by Theorem 4.3 and Proposition 4.4.(a).
Note also that the relation m € C* A (n€ C* = | f(m)|<|f(n)]) is II! in w?. We set
O:={(m,n)€w? | m,ne C* A|f(m)| <|f(n)[},
so that O is a wellordering of domain(Q) =C* in I} which is A{ in domain(O) x w.

It remains to see that p(O) = w{'. Note that p(0) < w{'E since p(m, 0) < |f(m)| if m € C*.
Assume that p(0) <w{K, which gives o€ WO recursive with p(O) = |a. we set

ﬁ@%:{0ﬁn¢pw

the unique m € C* with p(m, O) =|a|n|if n€ D,
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Note that 3 € Al. Indeed, it is enough to see that the relation R on w? defined by
R(n,m) < neD, AmeC* A p(m,O)=|a|n|
is II! since B(n)=m < Vp#m B(n)#p. Note first that

p(m,0)<|aln| & FIyeN Tpew p<an A Vg#r#mew
(@1 g0V (r,m)E 0V y(q) <a¥(r) <ap).

so that the relation n€ D, A meC* A p(m, O) > |aln| is II. Now
p(m, O)>laln| < IveN Tpew f(p)<sf(m) A f(m)Znf(p) AVe#rew
(4 ainr v (FO0) <250) A 56) 207 (1) A

FO@) <2 F60) A £60) £nf6@)) )

where <y, and <py are given by Theorem 4.3, so that the relation n € D, Ame C* A p(m, O) < |a|n|
is IT}, as well as R. As € A, C* ={mcw | Inc D, m=p(n)} is Al too. But this contradicts
the fact that sup{|f(n)| | C*(n)} =w{¥, by Theorem 4.17.

(2) We argue as in (1), starting with C C A xw such that, for every 8 €N, the section C is in I1{ (3)
but not in X} (). This is possible by Corollary 3.32. O

We are now ready to prove Spector’s criterion.
Theorem 5.2 Let o, 3€ N with a € A}(3). Then w¢ <wf & 0, € AL(B).

Proof. If O, is A}(B), then p(O,) = w® is a A}(B)-recursive ordinal, hence recursive in 3 by the
relativized version of Corollary 4.18, and so w{ < wf .

Conversely suppose that o € A}(3) and w¢ < wf . Let f be recursive in « such that

(m,n)€0q < f(m,n)eWO
< f(m,n)eWO A |f(m,n)| <wf.

Let v € WO be recursive in § such that |y|=w{’. Then
(m,n)€0q < f(m,n)eWO A |f(m,n)|<|y].
As a€ A(B), fis A}(B)-recursive, so the above equivalence gives a Al(3) definition of O,. O

Notation (1) We define a coding s:w —w<* by s(n):=s,,:= (((n)l)o, e ((n)l)(n)rl), ie., by

considering first n as a pair ((n)o, (n)1) and then (n); as a (n)o-tuple, using the appropriate brackets.
So any n=< 0,k > codes the empty sequence, < 1,k > codes (k), and, for p > 2, < p, k > codes

((B)o, -+ (K)p-1)-

25



(2) We define Bo €N by

0 otherwise,

Bo(n):= { Lif ((n)o. (n)1) €O
and similarly for O, for each a €N
(3) We set, for any ordinal {, WO :={a WO | |a| <&}

Theorem 5.3 Let X be a Polish recursive space and A be a nonempty 211 (resp., 211 () subset of
X. Then A contains a point x which is A}(Bo) (resp., A (Bo,,))-

Proof. Proposition 3.27 provides ix : X — N one-to-one and X-recursive, with IIJ range, whose
inverse jx :ix[X]— X is recursive on its domain. We define A’ C A by

A/(ﬁ) = ﬁeix[X] /\jx(ﬁ)EA.

By Corollary 3.19 and Theorems 3.21, 3.26.(c), A’ =ix[A] is a nonempty X} set. Assume that 3 € A’
is A}(Bo), which gives S Cwx A in X! and PCwx A in I} such that

BEN(N,p) < (p,fo)eS < (p,Bo) € P.

Let RC N Xw be semirecursive such that jx () € N(X,n) < R(y,n) if y€ix[X]. Note that

jx(B)EN(X,n) & IyeN Vpew (yE NN, p) vV BEN(N,p)) Ajx(v)€N(X,n)
©V76NHPGW(7¢N(N,19)VB€N( ,p))vjx(v) N(X,n)
& IyeN Vpew (YENWN,p)V (p, Bo) €S) A R(v,n)
@VveNﬂpew(7¢N(N’p)\/(p,ﬁo) P)V R(v,n),

so that jx (3) € Ais Al(Bp). So we may assume that X =N

We can assume that A is [T, as the projection of a Al (Bp) pointin N% is Al(B0). Theorem 4.1
provides @ Cw recursive (coding a tree 7" on w) such that A(«) < Vm € w Q(a@(m)) and, for each
new, Q(a(n)) = Vm<n Q(a(m)). We inductively define

a(n):=min{pcw | IyeN (aln)pCy AVmew Q(F(m))}.

Intuitively, « is the left-most branch of the tree 7" coded by ). As A is nonempty, « is well defined
and in A. So it is enough to show that o € A}(80). We set, for each s €w<¥

:{t€w<w ‘< 8(0)7 T 78(|S’_1)7t(0)7 e 7t(’t’_1) >€Q}’
and define a recursive function f:w— N by

lifs,€Ts, Nsq€Ts, Nsp<BKSq
0 otherwise,

f@ﬂ<nq>%={

so that f(n) € LO for each n, and f(n) € WO if and only if T, is wellfounded.
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By definition of «, 7 is the left-most branch if and only if
ViewVk<y(i) f(<~v(0), - ,v(i—1),k >)eWOw1c;< A F(<~(0), -+ ,v(3) >)¢W0wlo;<.

So it is enough to prove that WO, cx is Al(Bo). Butas Bo € WO and |Bo| = Wi, we get
WO, cx={aeWO ||a|<|Bol} so WO,cx is Ai(Bp) and we are done. O

Notation Let X be a Polish recursive space. We define X, := {7 € X | w¥ =w{'K}, and similarly
X ={reX |wl=w}ifacN.

Theorem 5.4 (Gandy) Let X be a Polish recursive space and A be a nonempty X} (resp., X}(c))
subset of X. Then A meets X, (resp., X

low’*

Proof. Proposition 3.27 provides iy : X — N one-to-one and X-recursive, with II) range, whose
inverse jx :ix[X]— X is recursive on its domain. We define A’ C N by

A'(B) & Beix[X] A jx(B)eA.

By Corollary 3.19 and Theorems 3.21, 3.26.(c), A’ = ix[A] is a nonempty X} set. Assume that
B e AN Nipw. Then jx(8) € A and wCX = wf = sup{|a| | a € WO N AL(8)}. Assume that
a € Al(B). Then there are S C wx N in X} and P C wx N in I} such that, for each n € w,
a€N(N,n) & S(n,B) & P(n,B3). We define S', P' Cwx X by §'(n,z) < S(n,ix(z)) and
P'(n,z) < P(n,ix(z)). By Theorem 3.23, " is in X} and P’ is in II}'. Moreover,

(%) aeNWN,n) & S (n,jx(8) < P (n,jx(B)).

so that o € Aj(jx(B)). Conversely, assume that v € A{(jx(3)), which gives S’ C w x X in
2l and P/ C wx X in II! such that, for each n € w, (*) holds. we define S, P C wx N by
S(n,v) & ve€ix[X] A S (n,jx (7)) and P(n,v) < vy€ix[X] A P'(n,jx(v)). By Corollary 3.19
and Theorems 3.21, 3.26.(c), S is in X and P is in II!. Moreover,

a€NWN,n) & S(n,B) & P(n,p),
so that av€ A}(3). Thus jx (8) € Xjow- S0 we may assume that X =N/.

We define BC N by y€ B < V€ A~y€ AL(B). By Theorem 4.20, B is II!. And as A is non
empty, pick 3y € A. Then BC{yeN | v€ Ai(By)}, so B is countable. Note also that if v € B and
B € Al(y), then 3 € B by transitivity. Consider C':= A"\ B. The set C is X} and non empty in \/,
hence by Theorem 5.3 it contains a point 3 € Al(80p). But then, by the preceding remark, 30 € C
(for if Bp € B, any A%(ﬁo) point would be in B too). By definition of C' this means that there is
3 € A such that O ¢ Al(3). By Theorem 5.2, this implies that wf =w{K as desired. O
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6 The Gandy-Harrington topology

Definition 6.1 Let X be a Polish recursive space. The Gandy-Harrington topology on X is gener-
ated by the X\ subsets of X. We denote it by .

Theorem 6.2 Let X be a nonempty Polish recursive space. The Gandy-Harrington topology has the
following properties:

(a) it is second countable,

(b) it is finer than the initial topology of X, and is in particular T1,

(c) it is not regular (and thus not metrizable) in general,

(d) it is strong Choquet,

(e) the set X oy, IS 211, and thus T -open, and dense,

(Hif SCXis 211, then S N Xjo is Tqr-clopen in Xy,

(g) the set Xy, equipped with Tqy, is a zero-dimensional Polish space.

Proof. (a) This comes from the fact that the set of 211 subsets of X is countable.

(b) Any basic open set N(X,n) is semirecursive, and thus Y. Thus 7gy is finer than the initial
topology of X. As X is Polish, its topology is Hausdorff, as well as 7z which is therefore 77.

(c) We will check that in NV, 7y is not regular. By Theorem 3.28 provides UN CN?in 1} which
is universal for all subsets of A in II}. We set P := {a € N | (a, ) € UN'}. Note that P is in
IT}. But it is not in 31, Indeed, we argue by contradiction. This gives 3 € A with =P :L{é\/ . Now
B¢P < (5,5) eUN & B e P, which is absurd. This implies that P is T¢;z-closed but not Teu-T19.
Thus 7g g is not metrizable, and not regular by (a).

(d) We first prove the result in /. We describe a strategy 7 for Player 2. Player 1 first plays o9 € N/
and a 7gg-open neighborhood Uy of og. Let Lg in 211 with o € Lo C Uy. Let Cy C N2 be Hlo
with Lo = FVCy. This gives ap € A such that (00, ap) € Co. We set wp := a1, s) := ap|1 and
Vo :=m0[CoN (N, X ng)]. Note that V; is in X} and thus 7 g-open. Moreover, o9 € Vo C Lo C Uy,
so that Player 2 respects the rules of the game if he plays Vj.

Now Player 1 plays o1 € Vj and a 7 7-open neighborhood Uy of o1 contained in V. Let Ly in X}
with o1 € Ly CU;. Let Cy CN? be 110 with Ly =3V (). This gives oy € NV such that (o1, ) € Cy.
As o1 € Vp, there is oy € N such that (01, a() € Co N (N, X ng). We set wy 1= 0712, s 1= |2,
sg:=aq|l and Vi :=my[Cp N (Ny, X Ngo)] N mo[Cr N (Nw, X N1 )]. Here again, Vi is 7¢r-open.
Moreover, o1 € V1 CU; and Player 2 can play V.

Next, Player 1 plays 09 € V} and a 7gp-open neighborhood Uz of oo contained in V;. Let Lo
in 211 with o9 € Ly C Us. Let Cy € N2 be Hlo with Ly = EINCg. This gives as € N such that
(02, a) € Cy. As g9 € V1, there is o) €N such that (o2, o)) € C1 N (Ny, ><N8(1)). As o9 € V7, there is
ap €N such that (02, o) € Co N (N, X Nyo). We set wa :=072]3, s9:=af|3, st:=a}|2, s3:=an|l
and V5 :=0[Co N (N, X Nyo)] N 7o[C1 N (N, X N1)] N wo[Co N (Nuwy X N2)]. Here again, V3 is
Tg-open. Moreover, o2 € Vo CUs and Player 2 can play V5.
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If we go on like this, we build w; € W't and s} € w<* such that wy Cw; C- - and s Gt G-
This allows us to define o :=1lim;_,o, w; €N and, for each n € w, oy, :=1lim;_,, 5] €N. As (0, )
is the limit of (wy, s?) as [ goes to infinity and NN, X Nsl” meets C,, (which is closed in N x \),
(0,00) €Cy. Thus 0 €(),,c, T0[Cn)l=Nnew Ln EMnew Un SNnew Vao so that 7 is winning for
Player 2.

By Proposition 3.27, the result also holds in X.
(e) By Corollary 4.18, w{ < wlc K is equivalent to

Vae Ai(z) (/e WO = 38,7€N B is recursive and

7 is an order-preserving bijection from (w, <) onto (w, <)),

which is X! by Proposition 4.14 and Theorem 4.21. This shows that X, is . By Theorem 5.4,
Xiow 18 T r-dense.

(f) By definition, SN X}, is T¢-open in X,,,. Theorem 4.2 provides a A%—recursive map f: X - N
such that X \ (S N Xjo) = fH(WO). We get

€ Xiow \ (S N Xiow) € € Xjgw A E|§<w?K flx)eWO N |f(zx)|<LE.
This proves that S N X, is Tgr-closed in X4, by Theorem 4.3.

(g) By (f), our space is zero-dimensional, and thus regular. By (a), (b), (d) and Choquet’s theorem, it
is Polish. O
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