
Chapter 8-Applications: some dichotomy results

1 The Hurewicz dichotomy

We first prove the level one version of a general Louveau result, which is a strong form of the
effective separation theorem. The general result is as follows.

Theorem 1.1 (Louveau) Let ξ ≥ 1 be a recursive ordinal, X be a Polish recursive space, and
A,B⊆X in Σ 1

1 be disjoint. We assume that A is separable from B by a Σ0
ξ set. Then A is sep-

arable from B by a set which is Σ0
ξ and ∆1

1.

Theorem 1.2 (Louveau) Let X be a Polish recursive space, and A,B⊆X in Σ 1
1 be disjoint. We as-

sume thatA is separable fromB by an open set. Then there isD⊆ω in ∆1
1 such that

⋃
n∈D N(X,n)

separates A from B. In particular, A is separable from B by a set which is open and ∆1
1.

Proof. We define P ⊆ X×ω by P (x, n) ⇔ x /∈ A ∨ x ∈ N(X,n) ⊆ ¬B. Note that P is in Π 1
1 .

Kreisel’s easy uniformization theorem gives P ∗ in Π 1
1 uniformizing P . In particular, P ∗ is the graph

of a partial function f :X→ω. As A is separable from B by an open set, f is in fact defined on X .
Note that f(x) = n ⇔ P ∗(x, n) ⇔ ∀m ∈ ω m= n ∨ ¬P ∗(x,m), so that f is ∆1

1-recursive. Note
that the Σ 1

1 set f [X] is contained in the Π 1
1 set {n∈ω | N(X,n)⊆¬B}. As Σ 1

1 has the separation
property, there is D ⊆ ω in ∆1

1 such that f [X] ⊆D ⊆ {n ∈ ω | N(X,n) ⊆ ¬B}. The set D is as
desired. �

A generalization of the Hurewicz dichotomy is as follows.

Theorem 1.3 (Louveau-Saint Raymond) Let ξ ≥ 1 be a countable ordinal, A be a Σ0
ξ subset of C,

B :=C\A, X be a Polish space, and A,B be disjoint analytic subsets of X . Then one of the following
holds:

(a) A is separable from B by a Π0
ξ set,

(b) there is f :C→X continuous such that A⊆f−1(A) and B⊆f−1(B).

These authors obtained a further generalization.

Definition 1.4 Let Γ be a class of subsets of zero-dimensional Polish spaces. We say that Γ is a
Wadge class if there is A⊆ωω which is Γ-complete.

The Wadge hierarchy is obtained by the inclusion of the Wadge classes. The Wadge hierarchy
of Wadge classes of Borel sets is much finer than the hierarchy obtained by the inclusion of the non
self-dual Borel classes Σ0

ξ and Π0
ξ . It is the finest hierarchy of topological complexity considered in

descriptive set theory.
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Theorem 1.5 (Louveau-Saint Raymond) Let Γ be a non self-dual Wadge class of Borel sets, A∈Γ(C),
B :=C\A, X be a zero-dimensional Polish space, and A,B be disjoint analytic subsets of X . Then
one of the following holds:

(a) A is separable from B by a Γ̌ set,

(b) there is f :C→X continuous such that A⊆f−1(A) and B⊆f−1(B).

Notation. Let Pf :={α∈C | ∃m∈ω ∀n≥m α(n)=0}, and P∞ :=C\Pf . The following is proved
in [L-SR].

Theorem 1.6 (Hurewicz) Let X be a Polish space, and A,B be disjoint analytic subsets of X . Then
exactly one of the following holds:

(a) A is separable from B by a Π0
2 set,

(b) there is f :C→X one-to-one and continuous such that Pf ⊆f−1(A) and P∞⊆f−1(B).

Proof. By Baire’s theorem, Pf is not in Π0
2, so that (a) and (b) cannot hold simultaneously. In order

to simplify the notation, by relativization, we may assume that X is recursively presented and that
A,B∈Σ 1

1 . Let τ2 be the topology on X generated by the Π0
1 ∩ Σ 1

1 subsets of X , and N :=A
τ2 ∩B.

Note that Aτ2 ∈Π0
2 ∩ Σ 1

1 . Indeed, by Theorem 1.2,

x /∈Aτ2 ⇔ ∃C∈Π0
1 ∩ Σ 1

1 x∈C et C ∩A=∅
⇔ ∃D⊆ω in ∆1

1 x /∈
⋃
n∈D N(X,n) ∧ ∀y∈X

(
y /∈A ∨ y∈

⋃
n∈D N(X,n)

)
.

and we are done, using the coding system for ∆1
1 sets. Thus N ∈Σ 1

1 .

Case 1. N=∅.

The set Aτ2 is Π0
2 and separates A from B and (a) holds.

Case 2. N 6=∅.

We set D :=
{
s∈2<ω | s=∅ or

(
s 6=∅ and s(|s|−1)=1

)}
. Fix s∈2<ω. We set s− :=s|(|s|−1)

if s 6=∅, and

s0 :=

{
s− if s 6=∅ and s− /∈D,
s otherwise,

s1 :=

{
s if s=∅,
s|max{n< |s| | s|n∈D} otherwise.

We construct sequences

- (xs)s∈2<ω of points of X ,

- (Os)s∈2<ω of Σ 0
1 subsets of X ,

- (Us)s∈2<ω of Σ 1
1 subsets of X .
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We want these objects to satisfy the following conditions:

(1) Osε⊆Os
(2) xs∈Os ∩ Us et Us⊆Xlow

(3) diam(Os), diamGH(Us)≤2−|s|

(4) Os0 ∩Os1=∅
(5) Us⊆N ∩ Us1 if s∈D
(6) Us⊆A ∩ Us0 ∩ Us1 if s /∈D

Assume that this is done. Fix α∈C. Note that (Oα|n) is a decreasing sequence of nonempty closed
subsets of X with vanishing diameters, and thus defines f(α)∈X by

{f(α)} :=
⋂
n∈ω

Oα|n=
⋂
n∈ω

Oα|n.

This defines a function f : C → X such that f(α) = limn→∞ xα|n. Note that f is one-to-one and
continuous.

If α∈ Pf , then α|n /∈D if n≥ n0. Note that (Uα|n)n≥n0 is a decreasing sequence of nonempty
clopen subsets of (Xlow, τGH) with vanishing diameters, and thus defines F (α)∈A by

{F (α)} :=
⋂
n≥n0

Uα|n.

Moreover, F (α) is the limit, for τGH and thus for the initial topology of X , of (xα|n)n∈ω. Therefore,
f(α)=F (α)∈A.

If α ∈ P∞, then the sequence (nk)k∈ω of natural numbers for which α|nk ∈D is infinite. Note
that (Uα|nk)k∈ω is a decreasing sequence of nonempty clopen subsets of (Xlow, τGH) with vanishing
diameters, and thus defines F (α)∈N by {F (α)} :=

⋂
k∈ω Uα|nk . Moreover, F (α) is the limit, for

τGH and thus for the initial topology of X , of (xα|nk)k∈ω. Therefore, f(α)=F (α)∈N⊆B.

Let us show that the construction is possible. Let x∅ ∈N ∩ Xlow, which is nonempty since N
is a nonempty Σ 1

1 subset of X . We choose O∅ ∈ Σ 0
1 and U∅ ∈ Σ 1

1 with small diameter containing
x∅ with U∅⊆N ∩Xlow. Suppose that (xs)|s|≤l, (Os)|s|≤l and (Us)|s|≤l satisfying (1)-(5) have been
constructed, which is the case for l=0.

Let s∈2l. If s∈D, then we set xs1 :=xs. Note that xs∈A
τ2 ∩ Us1 ∩Os. As Us1 ∈Σ 1

1 , Us1 ∩Os
is τ2-open. Therefore, there is xs0 ∈ A ∩ Us1 ∩ Os ∩ Xlow. If s /∈ D, then we set xs0 := xs. As
xs∈Us1 ∩Os, there is xs1∈Us1 ∩Os. Note that xs0∈A and xs1∈N , so that xs0 6=xs1.

We choose Os0, Os1 ∈Σ 0
1 disjoint with small diameter such that xsε ∈Osε ⊆Os, and Usε ∈Σ 1

1

with small diameter containing xsε such that Usε⊆Us if sε∈D ⇔ s∈D, Us0⊆A ∩ Us1 ∩Xlow if
s∈D, and Us1⊆Us1 if s /∈D. Thus (b) holds. �

Exercise. (Kechris-Saint Raymond) Let X be a Polish space and A be an analytic subset of X . Prove
that exactly one of the following holds: either there is a closed subset of X homeomorphic to N
contained in A, or A is contained in a Kσ subset of X .
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2 The Silver dichotomy

One of the main subject of research in descriptive set theory is the study of the complexity of
classification problems in mathematics. A classification problem is given by a collection of objects
X and an equivalence relation E on X . A complete classification of X up to E consists of a set
of invariants I and a function c :X→ I such that xEy ⇔ c(x) = c(y). The theory of equivalence
relations studies the set-theoretic nature of possible (complete) invariants and develops a mathematical
framework for measuring the complexity of classification problems. In order to compare equivalence
relations, we use the notion of reducibility. If E,F are equivalence relations on X,Y respectively,
then a reduction of (X,E) to (Y, F ) is a function f : X → Y such that xEy ⇔ f(x)Ff(y).
Intuitively this means that the classification problem represented by E is at most as complicated as
that of F , and that the F -classes are complete invariants for E. Note that the reduction function f
induces an injection from the quotient space X/E into Y/F . For this to be of any interest, I, c and
f must be as explicit and concrete as possible. This is the reason why we are particularily interested
in the case where I,X, Y are Polish, c, f are Borel, and E,F are Borel (or analytic). In this case, if
there is a Borel reduction of (X,E) to (Y, F ), then we write (X,E) ≤B (Y, F ). If moreover f can
be one-to-one and continuous, then we write (X,E) vc (Y, F ).

The proof of the following perfect set theorem for equivalence relations can be found in [G].

Theorem 2.1 (Silver) Let X a Polish space, and E be a Borel equivalence relation on X . Then
exactly one of the following holds:

(a) E has countably many equivalence classes (i.e., (X,E) ≤B (ω,=)),

(b) there is f : C → X one-to-one and continuous such that
(
f(α), f(β)

)
/∈ E if α 6= β (i.e.,

(C,=) vc (X,E)).

Proposition 2.2 Let X be a Polish space, and E be an equivalence relation on X . If there is a
nonempty open subset O of X such that E is meager on O2, then there is f :C→X one-to-one and
continuous such that

(
f(α), f(β)

)
/∈E if α 6=β.

Proof. Note that O is a nonempty Polish space. Moreover, O is perfect since otherwise it has an
isolated point x, and E ∩ O2 ⊇ {(x, x)} cannot be meager. It remains to apply the Mycielski-
Kuratowski theorem. �

Corollary 2.3 Let τ be the Gandy-Harrington topology on N , and E be an equivalence relation on
N . If there is a nonempty Σ 1

1 subset V ofN such that E is τ2-meager on V 2, then there is f :C→N
one-to-one and continuous such that

(
f(α), f(β)

)
/∈E if α 6=β.

Proof. By Gandy’s basis theorem, O :=Xlow ∩ V is a nonempty τ -open subset of Xlow. Now E is
τ2-meager on O2, and we saw that (Xlow, τ) is Polish. It remains to apply Proposition 2.2 since τ is
finer than the usual topology on N . �

Proof of Theorem 2.1. We will see that Silver’s theorem in fact holds for any co-analytic equivalence
relation. Note first that (a) and (b) cannot hold simultaneously. In order to simplify the notation, by
relativization, we may assume that X is recursively presented and that E∈Π 1

1 .
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We saw that there is π : N → X recursive and onto. We set E′ := (π×π)−1(E). Note that
E′ is a Π 1

1 equivalence relation on N . If E′ has countably many equivalence classes, then E too.
Assume that there is f :C→N one-to-one and continuous such that

(
f(α), f(β)

)
/∈E′ if α 6=β. Then

π ◦ f :C→X is one-to-one since E is reflexive, continuous, and as desired. This shows that we may
assume that X=N and E∈Π 1

1 .

Let τ be the Gandy-Harrington topology on N . We set

V :=N \{α∈N | ∃U ∈∆1
1(N ) α∈U⊆ [α]E}.

Case 1. V =∅.

Every E-equivalence class contains a nonempty ∆1
1 subset of N . As there are only countably

many ∆1
1 subsets of N , (a) holds.

Case 2. V 6=∅.

Note that V is Σ 1
1 . Indeed, α∈V ⇔ ∀U ∈∆1

1(N ) α /∈U ∨ ∃β∈U (α, β) /∈E. Using the coding
system for ∆1

1 sets, we get

α∈V ⇔ ∀n∈ω
(
(n∈C ∧ α∈P+

n )⇒ ∃β∈N (β /∈P−n ∧ (α, β) /∈E)
)
,

which shows that V is in Σ 1
1 . In order to see that (b) holds, it is enough to see that E is τ2-meager in

V 2, by Corollary 2.3. We proceed in several steps.

We first check that for every α ∈ V there is no Σ 1
1 set U such that α ∈ U ⊆ [α]E . We argue by

contradiction, which gives α and U . Then note that [α]E is Π 1
1 since

β∈ [α]E ⇔ ∀γ∈N γ /∈U ∨ (β, γ)∈E.

By the reduction property of Π 1
1 , we can find W,W ′ ⊆ N disjoint in Π 1

1 such that W ⊆ [α]E ,
W ′ ⊆ ¬U , and W ∪W ′ = [α]E ∪ ¬U = N . This implies that W is in ∆1

1 and U ⊆W , and thus
α /∈V , a contradiction. From this it follows immediately that every nonempty Σ 1

1 set U contained in
V meets more than one E-equivalence class.

We then note that E has the Baire property for τ2, and each E-equivalence class has the Baire
property for τ . By the Kuratowski-Ulam theorem, it is enough to see that, for all α ∈ V , [α]E is
meager in V . Thus it suffices to show that, for all α ∈ V , [α]E is not τ -comeager in any U ⊆ V
which is Σ 1

1 and nonempty. We argue by contradiction, which gives α and U . It is enough to check
that [α]2E is comeager in U2 for the Gandy-Harrington topology of N 2. Indeed, assume this. Since
U2\E is nonempty and Σ 1

1 , [α]2E ∩ U2\E is nonempty, which is absurd. It remains to note that the
projections from U2, equipped with the Gandy-Harrington topology of N 2, onto U , equipped with
the Gandy-Harrington topology of N , are continuous and open. �

We now consider a natural invariant for ≤B , the notion of potential complexity.
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Definition 2.4 (Louveau) Let Γ be a Borel class or a Wadge class of Borel sets, X,Y be Polish
spaces, and B be a Borel subset of X×Y . We say that B is potentially in Γ if we can find finer zero-
dimensional Polish topologies σ and τ on X and Y respectively such that B∈Γ

(
(X,σ)×(Y, τ)

)
.

One should emphasize the fact that the point of this definition is to consider product topologies.
Indeed, if B is a Borel subset of a Polish space X , then there is a finer Polish topology τ on X
such that B is a clopen subset of (X, τ). This is not the case in products: if for example Γ is a non
self-dual Wadge class of Borel sets, then there are sets in Γ(N 2) that are not in pot(Γ̌). For example,
the equality on C is not potentially open, since the potentially open sets are the countable unions
of Borel rectangles. The notion of potential complexity is an invariant for ≤B in the sense that if
(X,E) ≤B (Y, F ) and F ∈pot(Γ), then E∈pot(Γ) too.

Corollary 2.5 Let Γ∈{∆0
1,Σ

0
1}, X be a Polish space, and E be a Borel equivalence relation on X .

Then exactly one of the following holds.
(a) E is potentially in Γ,
(b) (C,=) vc (X,E).

Proof. As the equality on C is not potentially open, (a) and (b) cannot hold simultaneously. If E has
countably many Borel equivalence classes (Cn)n∈I , then E=

⋃
n∈I C

2
n is a countable union of Borel

rectangles, as well as ¬E =
⋃
n∈I Cn×(¬Cn), so that E is potentially clopen. It remains to apply

Silver’s theorem 2.1. �

3 The E0-dichotomy

This next dichotomy characterizes when a Borel equivalence relation is potentially closed. The
Borel equivalence relation just after the equality on C in ≤B is the relation on C defined by

E0 :={(α, β)∈C2 | ∃m∈ω ∀n≥m α(n)=β(n)},

which is the version of the Vitali equivalence relation, on C.

Theorem 3.1 (Harrington-Kechris-Louveau) Let X a Polish space, and E be a Borel equivalence
relation on X . Then exactly one of the following holds:

(a) (X,E) ≤B (C,=),
(b) (C,E0) vc (X,E).

Proof. For further use, we first prove that E0 is not potentially Gδ. We argue by contradiction, which
gives a finer Polish topology τ on X such that E0 ∈ Π0

2

(
(X, τ)2

)
. The identity map from (X, τ)

into X is continuous, so that its inverse is Borel. This gives a dense Gδ subset G of X on which the
two topologies coincide. We define, for s ∈ 2<ω, fs : C → C by f(α)(n) := 1−α(n) if n < |s| and
s(n) = 1, f(α)(n) :=α(n) otherwise. Note that (α, β)∈E0 if and only if there is s∈ 2<ω such that
β= fs(α). Moreover, fs is a homeomorphism. In particular,

⋂
s∈2<ω f−1s (G) is a dense Gδ subset

of C contained in G and E0-invariant. So we may assume that G is E0-invariant. Note that E0 ∩ G2

is a Π0
2 subset of G (for both topologies). Pick α ∈G. Then the equivalence class C of α is a Π0

2

subset of G and thus C, and C is dense in C. As C is countable, it is comeager in C. But there is no
comeager dense Gδ subset of C, by Baire’s theorem.
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If (a) holds, then E is potentially closed and thus potentially Gδ. This and the previous point
show that (a) and (b) cannot hold simultaneously.

In order to simplify the notation, by relativization, we may assume thatX is recursively presented

and that E ∈∆1
1. Let τ be the Gandy-Harrington topology on X . We set E :=E

τ2 . If A⊆X , then
[A]E :={x∈X | ∃y∈A (x, y)∈E}. We say that A is E-invariant if A=[A]E .

Case 1. E=E.

Claim 1. Let A,B ∈Σ 1
1 (X) with [A]E ∩ [B]E = ∅. Then there is C ∈∆1

1(X) which is E-invariant
and separates A from B.

Indeed, note that [A]E , [B]E are Σ 1
1 . The separation theorem gives C0∈∆1

1(X) separating [A]E
from [B]E . As [C0]E is Σ 1

1 and disjoint from [B]E , the separation theorem gives C1 ∈ ∆1
1(X)

separating [C0]E from [B]E . Continuing like this, we get a sequence (Cn) of ∆1
1 subsets of X with

[Cn]E ⊆ Cn+1 ⊆ ¬[B]E . Note that C :=
⋃
n∈ω Cn is E-invariant and separates A from B. The

problem is that C is not necessarily ∆1
1 since this class is not closed under countable unions. So we

have to make the construction uniformly to solve this problem.

Let Uω2×X ∈Σ 1
1 (ω3×X) be ω-universal for Σ 1

1 (ω2×X). Note that

Uω×X :=
{

(e, n, x)∈ω2×X |
(
(e)0, (e)1, n, x

)
∈Uω2×X}

is ω-universal for Σ 1
1 (ω×X). Similarly, UX :=

{
(e, x) ∈ ω×X |

(
(e)0, (e)1, x

)
∈ Uω×X

}
is ω-

universal for Σ 1
1 (X). We define subsets of ω2×X , P0 and P1, by P0(m,n, x) ⇔ (m,x) /∈ UX

and P1(m,n, x) ⇔ (n, x) /∈ UX . Note that P0, P1 are Π 1
1 . The reduction property of Π 1

1 provides
P ∗0 , P

∗
1 ∈Π 1

1 (ω2×X) disjoint with P ∗ε ⊆Pε and P ∗0 ∪ P ∗1 =P0 ∪ P1. Let eε∈ω with ¬P ∗ε =Uω2×X
eε .

We define f, g :ω2→ω by f(m,n) :=
〈
< e0,m >, n

〉
and g(m,n) :=

〈
< e1,m >, n

〉
. Note that

f, g are recursive. Assume that UXm and UXn are disjoint. Then (¬UXm ) ∪ (¬UXn )=X ,

(P ∗0 )m,n ∪ (P ∗1 )m,n=(P0)m,n ∪ (P1)m,n=X ,

(Uω2×X
e0 )m,n ∩ (Uω2×X

e1 )m,n=(¬P ∗0 )m,n ∩ (¬P ∗1 )m,n=∅. Note that

x∈(Uω2×X
e0 )m,n ⇔ (e0,m, n, x)∈Uω2×X ⇔ (< e0,m >, n, x)∈Uω×X ⇔

(
f(m,n), x

)
∈UX

and, similarly, x∈ (Uω2×X
e1 )m,n ⇔

(
g(m,n), x

)
∈UX , so that UXf(m,n), U

X
g(m,n) are disjoint. More-

over, UXm ⊆ UXf(m,n), U
X
n ⊆ UXg(m,n), and UXg(m,n) = ¬UXf(m,n). This shows that UXf(m,n) ∈ ∆1

1(X)

separates UXm from UXn . In other words, the separation theorem is uniform.

We now check that the map A 7→ [A]E is uniform, for Σ 1
1 sets A. In order to see this, consider

B := {(n, x) ∈ ω×X | ∃y ∈ UXn (x, y) ∈ E}. As B is Σ 1
1 , there is e ∈ ω with B = Uω×Xe . Thus

[UXn ]E =UXh(n), where h is recursive defined by h(n) :=< e, n >.

Fix now a Σ 1
1 code p0 for [B]E , and pick C0 ∈ ∆1

1(X) separating [A]E from [B]E , and Σ 1
1

codes m0 and n0 for C0 and ¬C0 respectively. We inductively define kω→ ω by k(0) := m0 and
k(n+1):=f

(
h
(
k(n)

)
, p0

)
.
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We also set k′(0) :=n0 and k′(n+1) := g
(
h
(
k(n)

)
, p0

)
. Then k(n), k′(n) are Σ 1

1 codes of Cn
and ¬Cn, for a sequence (Cn) as above. Finally, note that

x∈C ⇔ ∃n∈ω x∈UXk(n) ⇔ ∀n∈ω x /∈UXk′(n),

so that C∈∆1
1 as desired. �

If now (x, y) /∈ E, then there are A,B ∈ Σ 1
1 with x ∈ A, y ∈ B, and (A×B) ∩ E = ∅, so that

[A]E , [B]E are disjoint. Claim 1 provides C ∈∆1
1(X) which is E-invariant and separates A from B.

In particular, x∈C and y /∈C. Let (In) be an enumeration of the E-invariant ∆1
1 subsets of X . We

define f :X→C by f(x)(n) :=1 if x∈In, 0 otherwise. Then f is Borel and

(x, y)∈E ⇔ f(x)=f(y).

Case 2. E 6=E.

Let us check that E is Σ 1
1 . In order to do this, we use the coding of ∆1

1 sets we met. Recall that
there are C⊆ω and P+, P−⊆ω×X in Π 1

1 such that

(a) for any n∈C, P+
n and P−n are complements of each other,

(b) for any A⊆X in ∆1
1 there is n∈C such that A=P+

n .

The previous arguments show that

(x, y) /∈E ⇔ ∃A∈∆1
1(X) A is E-invariant ∧ x∈A ∧ y /∈A

⇔ ∃n∈C P+
n is E-invariant ∧ x∈P+

n ∧ y∈P−n
⇔ ∃n∈C

(
∀z, t∈X

(
z /∈P−n ∧ (z, t)∈E

)
⇒ t∈P+

n

)
∧ x∈P+

n ∧ y∈P−n ,

so we are done.

We set Y :={x∈X | Ex 6=Ex}. As E is Σ 1
1 and E 6=E, Y is a nonempty Σ 1

1 subset of X .

Claim 2. We equip E with the topology induced by τ2. Then E ∩ Y 2 is dense and meager in E ∩ Y 2.

Indeed, the density comes from the fact that Y is τ -open. As E is Borel for the usual topology,
it is also Borel for τ2. Thus E ∩ Y 2 is Borel in (E ∩ Y 2, τ2). In this space, E ∩ Y 2 has the Baire
property. We argue by contradiction, which givesA,B∈Σ 1

1 (X) such thatA,B⊆Y , E∩(A×B) 6=∅,
and E ∩ (A×B) is comeager in E ∩ (A×B). By considering if necessary the two projections of
E ∩ (A×B), we may assume that ∀x∈A ∃y∈B (x, y)∈E and ∀x∈B ∃y∈A (x, y)∈E.

Let us prove that E ∩A2⊆E. We argue by contradiction. We set

E
3
:={(x, y, z)∈X3 | (x, z), (y, z)∈E}.

We equip E3 with the topology induced by τ2×τ , where τ2 is the Gandy-Harrington topology on X2.
By Claim 1, E=

⋂
{C2 ∪ (¬C)2 | C ∈∆1

1(X) is E-invariant}. In particular, E is a Gδ equivalence
relation on X , for τ2. As the projections (X3, τ2× τ)→ (X2, τ) are continuous, E3 is a nonempty
Gδ subset of (X3, τ2× τ). In particular, E3 is a strong Choquet space, and in particular a Baire space.

8



We set Z := {(x, y, z)∈E3 | x, y ∈A ∧ z ∈B}. Note that Z is a nonempty open subset of E3.
The two projections previously considered are also open. As E∩ (A×B) is comeager in E∩ (A×B),
Z1 :={(x, y, z)∈Z | (x, z)∈E} and Z2 :={(x, y, z)∈Z | (y, z)∈E} are comeager in Z for τ2×τ .
Now note that Z3 :={(x, y, z)∈Z | (x, y) /∈E} is nonempty, and open for τ2×τ . By Baire’s theorem,
Z3 has to meet Z1 ∩ Z2, which contradicts the transitivity of E.

Note now that E ∩ [A]2E⊆E. Indeed, if (x, y)∈E ∩ [A]2E , then pick z, t∈A with (x, z)∈E and
(y, t)∈E. Note that (z, t)∈E which is an equivalence relation, and (z, t)∈since E ∩ A2⊆E. Thus
(x, y) ∈E, by transitivity of E. This implies that [A]E = [A]E . Indeed, we argue by contradiction
to see that. We set A′ := {x∈X | ∃y ∈ [A]E (x, y)∈E ∧ (x, y) /∈E}. Then A′ is a nonempty Σ 1

1

set, and E ∩ (A′×[A]E) is not empty. By density, E ∩ (A′×[A]E) is not empty. This gives x∈A′
and z ∈ [A]E with (x, z)∈E. As x∈A′, there is y ∈ [A]E with (x, y)∈E and (x, y) /∈E. But then
y, z ∈ [A]E and (y, z)∈E, so that (y, z)∈E, which contradicts the transitivity of E. If now x∈A
and (x, y)∈E, then y∈ [A]E , and as E ∩ [A]2E⊆E, (x, y)∈E. Thus Ex=Ex, which contradicts the
fact that A⊆Y . �

By Claim 2, there is a decreasing sequence (Wn) of τ2-open subsets of X2 such that Wn⊆Y 2,
E ∩Wn is dense in E ∩ Y 2, and E ∩ (

⋂
n∈ω Wn)=∅. Moreover, since the diagonal

∆(X) :={(x, x) | x∈X}

is contained in E and τ2-closed, we may assume that ∆(X) does not meet W0. We construct se-
quences

- (xs)s∈2<ω\{∅} of points of X ,
- (Us)s∈2<ω\{∅} of Σ 1

1 subsets of X ,
- (Ek,s)k∈ω,s∈2<ω of Σ 1

1 subsets of X2.

We want these objects to satisfy the following conditions:

(1) Ek,∅=E ∩ (X2)low
(2) Usi⊆Us⊆Y ∩Xlow ∧ Ek,si⊆Ek,s
(3) xs∈Us ∧ (x0k0s, x0k1s)∈Ek,s
(4) diamGH(Us), diamGH(Ek,s)≤2−|s|

(5) (xs, xt)∈E if |s|= |t|
(6) Us×Ut⊆W|s| if |s|= |t| ∧ s(|s|−1)<t(|s|−1)

Assume that this is done. Fix α∈C. Note that (Uα|n) is a decreasing sequence of nonempty clopen
subsets of Xlow with vanishing GH-diameters, and thus defines f(α)∈X by {f(α)} :=

⋂
n∈ω Uα|n.

This defines a function f : C → X such that f(α) = limn→∞ xα|n. Note that f is continuous (for
(X, τ), and thus for X). The map f is also injective since if α 6=β, then there is n with α(n) 6=β(n),
and

(
f(α), f(β)

)
∈ Uα|(n+1)×Uβ|(n+1) ⊆ Wn+1 ⊆ W0 ⊆ ¬∆(X). If (α, β) /∈ E0, then there is

(nk)k∈ω strictly increasing such that α(nk) 6=β(nk) for each k. Again,
(
f(α), f(β)

)
∈
⋂
k∈ω Wnk+1,

so that
(
f(α), f(β)

)
/∈ E. If now (α, β) ∈ E0, then we can find k ∈ ω, s, t ∈ 2k, and γ ∈ 2ω with

(α, β)=(sγ, tγ). We prove that
(
f(sγ), f(tγ)

)
∈E by induction on k, the case k=0 being clear.
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So assume that s1, t1 ∈ 2k, i, j ∈ 2 and (s, t) = (s1i, t1j). If i = j, then we are done by
induction assumption. Assume for example that i < j. The induction assumption ensures that(
f(s10γ), f(0k0γ)

)
∈E and

(
f(t11γ), f(0k1γ)

)
∈E. So it is enough to show that(

f(0k0γ), f(0k1γ)
)
∈E.

Note that (Ek,γ|l)l∈ω is a decreasing sequence of nonempty clopen subsets of (X2)low with vanishing
GH-diameters, hence

⋂
l∈ω Ek,γ|l consists of a single point, which must be

(
f(0k0γ), f(0k1γ)

)
. As

Ek,∅=E ∩ (X2)low,
(
f(0k0γ), f(0k1γ)

)
∈E.

Let us show that the construction is possible. As E ∩W0 is dense open in E ∩ Y 2 and E ∩ Y 2

is dense in E ∩ Y 2, E ∩W0 ∩ Y 2 is not empty, as well as E ∩W0 ∩ Y 2 ∩ (X2)low. We choose
(x0, x1) ∈ E ∩W0 ∩ Y 2 ∩ (X2)low. As (X2)low ⊆X2

low, x0, x1 ∈ Y ∩ Xlow. We choose Σ 1
1 sets

U0, U1 with GH-diameter at most 2−1 such that xε∈Uε⊆Y ∩Xlow and U0×U1⊆W1. Assume that
(xs)|s|≤l, (Us)|s|≤l and (Ek,s)k+1+|s|≤l satisfying (1)-(6) have been constructed, which is the case for
l=1.

We set E2l
:={(ys)s∈2l | ∀s, t∈2l (ys, yt)∈E}. Consider the space E2l×E2l , with the product

topology τ2l×τ2l of the Gandy-Harrington topology τ2l on X2l . A typical element of E2l×E2l is
denoted by y=

(
(ys0)s∈2l , (ys1)s∈2l

)
. We set

Yl :={y∈E
2l×E2l | ∀s∈2l ys0, ys1∈Us ∧ ∀k,m≤ l ∀s∈2m

k+1+m= l⇒ (y0k0u0, y0k1u0), (y0k0u1, y0k1u1)∈Ek,s}.

Note that Yl is an open subset of E2l×E2l containing
(
(xs)s∈2l , (xs)s∈2l

)
, by the induction assump-

tion. Note then that, for each s, t∈2l, the projection map y 7→(ys0, yt1) from

{y∈Yl | (y0l0, y0l1)∈E}

into E ∩ Y 2 is continuous and open. As E ∩Wl+1 is dense in E ∩ Y 2, the set

Vl :={y∈Yl | ∀s, t∈2l (ys0, yt1)∈Wl+1}

is open and nonempty. But then the set V ∗l :={(y0l0, y0l1)∈E ∩ Y 2 | ∃(ys0, ys1)s∈2l\{0l} y∈Vl} is
open and nonempty, hence meets E. In other words, we can find a family (xsi)s∈2l,i∈2 such that

(a) ∀s, t∈2l ∀i, j∈2 (xsi, xtj)∈E
(b) ∀s∈2l ∀i∈2 xsi∈Us
(c) ∀k,m≤ l ∀s∈2m ∀i∈2 (x0k0si, x0k1si)∈Ek,s if k+1+m= l
(d) ∀s, t∈2l (xs0, xt1)∈Wl+1

(e) (x0l0, x0l1)∈E

As Wl+1 is τ2-open, we can find neighborhoods of small diameter Usi of xsi such that Usi⊆Us, and
Us0×Ut1⊆Wl+1 for all s, t∈2l. We can choose, for k,m≤ l and s∈2m with k+1+m= l, Ek,si∈Σ 1

1

of small GH-diameter with (x0k0si, x0k1si)∈Ek,si⊆Ek,s. Finally, we set El,∅ :=E ∩ (X2)low. �
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Corollary 3.2 Let Γ∈ {Π0
1,∆

0
2,Π

0
2}, X be a Polish space, and E be a Borel equivalence relation

on X . Then exactly one of the following holds.
(a) E is potentially in Γ,
(b) (C,E0) vc (X,E).

Proof. As E0 is not potentially Gδ, (a) and (b) cannot hold simultaneously. If (X,E) ≤B (C,=),
then E is potentially closed. It remains to apply the Harrington-Kechris-Louveau theorem 3.1. �

This kind of result cannot be extended to higher classes.

Theorem 3.3 (Clemens-Lecomte-Miller) Let Γ be a Borel class containing Σ0
2. Then there is no

Borel equivalence relation E on a Polish space X such that, for any Borel equivalence relation E on
a Polish space X , exactly one of the following holds:

(a) E is in potentially in Γ,
(b) (X,E) vc (X,E) (or even (X,E) ≤B (X,E)).

4 The G0-dichotomy

Another important subject of research in descriptive set theory is the study of the analytic digraphs
on Polish spaces. Recall that if X is a set, then the diagonal of X is ∆(X) := {(x, x) | x∈X}. A
binary relation onX is a digraph if it does not meet ∆(X). IfA,B are digraphs onX,Y respectively,
then a homomorphism of (X,A) to (Y,B) is a function f :X→ Y such that xAy ⇒ f(x)Bf(y).
A coloring from (X,A) into some set Y is a map c :X→Y such that c(x) 6=c(x′) if (x, x′)∈A, i.e.,
a homomorphism from (X,A) into (Y, 6=). The study of definable colorings of analytic graphs was
initiated in [K-S-T]. The Borel chromatic number of a digraph A on a Polish space X is the smallest
cardinality of a Polish space Y for which there is a Borel coloring from (X,A) into Y . If there is a
Borel homomorphism from (X,A) into (Y,B), then we write (X,A) �B (Y,B). If moreover f can
be continuous, then we write (X,A) �c (Y,B).

Notation. Let ψ :ω→2<ω be a natural bijection (ψ(0)=∅, ψ(1)=0, ψ(2)=1, ψ(3)=02, ψ(4)=01,
ψ(5) = 10, ψ(6) = 12, . . .). Note that |ψ(n)| ≤ n, so that we can define sn :=ψ(n)0n−|ψ(n)|. Some
crucial properties of (sn) are that it is dense (for each s∈ 2<ω, there is n such that s⊆ sn), and that
|sn|=n. We set G0 := {(sn0γ, sn1γ) | n∈ω ∧ γ ∈C}, which was introduced in [K-S-T] where the
following is proved.

Theorem 4.1 (Kechris, Solecki, Todorčević) Let X be a Polish space and A⊆X2 be analytic. Then
exactly one of the following holds:

(a) there is c :X→ω Borel such that c(x) 6=c(y) if (x, y)∈A (i.e., (X,A) �B (ω, 6=)),
(b) there is f : C →X continuous such that

(
f(α), f(β)

)
∈A if (α, β) ∈G0 (which means that

(C,G0) �c (X,A)).

Proof. Note first that we cannot have (a) and (b) simultaneously. Indeed, we argue by contradiction.
This gives g :C→ω Borel such that g(α) 6=g(β) if (α, β)∈G0. Let i0 be a natural number such that
G :=g−1({i0}) is not meager, and s∈2<ω such that Ns\G is meager.
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Let H be a dense Gδ subset of C such that H ∩Ns⊆G. We choose n∈ω with s ⊆ sn. Note that
hn :Nsn0→Nsn1 defined by hn(sn0γ) :=sn1γ is a homeomorphism. This implies that H ∩ h−1n (H)
is a dense Gδ subset of Nsn0. We choose sn0γ∈H ∩ h−1n (H). We get

(sn0γ, sn1γ)∈G0 ∩ (H ∩Ns)
2⊆G2,

which contradicts the definition of g.

In order to simplify the notation, by relativization, we may assume thatX is recursively presented
and that A∈Σ 1

1 . We say that S⊆X is A-discrete if A ∩ S2=∅. We put

U :={D∈∆1
1(X) | D is A-discrete}.

Note that U⊆X is in Π 1
1 since, using the coding system for ∆1

1 sets,

U(x)⇔ ∃n∈ω n∈C ∧ P+
n (x) ∧ ∀(y, z)∈X2

(
(y, z) /∈A ∨ y∈P−n ∨ z∈P−n

)
.

Case 1. U=X .

There is a partition (Dn) of X into A-discrete ∆1
1 sets. We define a function c : X → ω by

c(x)=n⇔ x∈Dn, so that c is Borel. If (x, y)∈A, then we cannot have c(x)= c(y) since the Dn’s
are A-discrete.

Case 2. U 6=X .

We set Y :=X\U , so that Y is a nonempty Σ 1
1 subset of X . We set

Φ:={S⊆X | S is A-discrete}.

As Φ is Π 1
1 on Σ 1

1 , the reflection theorem ensures that if S⊆X is in Σ 1
1 and A-discrete, then there is

D⊆X in ∆1
1 which is A-discrete and contains S. This gives the following key property:

∀S∈Σ 1
1 (X) (∅ 6=S⊆Y ⇒ A ∩ S2 6=∅).

We construct sequences

- (xs)s∈2<ω of points of Y ,

- (Vs)s∈2<ω of Σ 1
1 subsets of X ,

- (Un,t)(n,t)∈ω×2<ω of Σ 1
1 subsets of X2.

We want these objects to satisfy the following conditions:

(1) xs∈Vs⊆Y ∩Xlow and (xsn0t, xsn1t)∈Un,t⊆A ∩ Y 2 ∩ (X2)low,

(2) Vsm⊆Vs and Un,tm⊆Un,t,

(3) diamGH(Vs)≤2−|s| and diamGH(Un,t)≤2−n−1−|t|.
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Assume that this is done. Fix α∈ C. Then (Vα|p) is a decreasing sequence of nonempty clopen
subsets of (Xlow, τGH) with vanishing diameters, so there is f(α) in their intersection. This defines
f : C →X . Note that dGH

(
xα|p, f(α)

)
≤ diamGH(Vα|p)≤ 2−p, so that f is continuous and (xα|p)

tends to f(α) for τGH .

If (sn0γ, sn1γ)∈G0, then (Un,γ|p)p∈ω is a decreasing sequence of nonempty clopen subsets of(
(X2)low, τGH

)
with vanishing diameters, so there is (x, y) in their intersection. Note that (x, y) is

in A. Moreover, the sequence
(
(xsn0(γ|p), xsn1(γ|p))

)
p∈ω tends to (x, y) for τGH , and for τ2GH too.

As (xsnε(γ|p))p∈ω tends to f(snεγ) for each ε ∈ 2, we get f(sn0γ) = x and f(sn1γ) = y. Thus(
f(sn0γ), f(sn1γ)

)
∈A.

So it is enough to see that the construction is possible. As Y is a nonempty Σ 1
1 subset of X , we

can choose x∅ ∈ Y ∩ Xlow, and V∅⊆X in Σ 1
1 such that x∅ ∈ V∅⊆ Y ∩ Xlow and diamGH(V∅)≤ 1.

Assume that (xs)|s|≤l, (Vs)|s|≤l and (Un,t)n+1+|t|≤l satisfying (1)-(3) have been constructed, which
is the case for l=0. Let S be the following set:

{x∈X | ∃(xs)s∈2l ∈X2l xsl =x ∧ ∀s∈2l xs∈Vs ∧ ∀n<l ∀t∈2l−n−1 (xsn0t, xsn1t)∈Un,t}.

Then S∈Σ 1
1 (X), xsl ∈S⊆Y by induction assumption. So there is (xsl0, xsl1) in A∩ S2 ∩ (X2)low,

by the key property. As xslε∈S, we get (xsε)s∈2l\{sl}. It remains to choose

- Vsε⊆X in Σ 1
1 with xsε∈Vsε⊆Vs and diamGH(Vsε)≤2−l−1, for s∈2l and ε∈2.

- Ul,∅⊆X2 in Σ 1
1 with (xsl0, xsl1)∈Ul,∅⊆A ∩ Y 2 ∩ (X2)low and diamGH(Ul,∅)≤2−l−1.

- Un,tε ∈Σ 1
1 (Xd) with (xsn0tε, xsn1tε)∈Un,tε ⊆Un,t and diamGH(Un,tε)≤ 2−l−1, for (n, t) in

ω×2<ω with n+1+|t|= l and ε∈2. �

Problem. (Miller) Use the G0-dichotomy to prove Silver’s theorem.

Theorem 4.1 can be used to characterize the potentially closed sets.

Theorem 4.2 (Lecomte) Let X,Y be Polish spaces, and A,B be disjoint analytic subsets of X×Y .
Then exactly one of the following holds:

(a) A is separable from B by a potentially closed set,

(b) there are f : C →X , g : C → Y continuous such that the inclusions G0 ⊆ (f×g)−1(A) and
∆(C)⊆(f×g)−1(B) hold.

Proof. If (a) and (b) hold simultaneously, then G0 can be separated from ∆(C) by a potentially closed
set. In other words, ∆(C) can be separated from G0 by a potentially open set, which has to be a
countable union of Borel rectangles An×Bn. We set Cn := An ∩ Bn, so that

⋃
n∈ω C2

n separates
∆(C) from G0. We then set Dn :=Cn\(

⋃
p<n Cp), so that (Dn) is a partition of C into Borel sets and⋃

n∈ω D2
n separates ∆(C) from G0. In other words, the map c :C→ω defined by c(α) :=n if α∈Dn

contradicts Theorem 4.1. So (a) and (b) cannot hold simultaneously.
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If B is empty, then (a) holds. So assume that B is not empty, which gives s : ωω → X×Y
continuous such that s[ωω]=B. We set s(α) :=

(
s0(α), s1(α)

)
, so that (s0×s1)[∆(ωω)]=B. We set

R :=(s0×s1)−1(A), so that R is an analytic relation on ωω. So we can apply Theorem 4.1.

If there is c :ωω→ω Borel such that c(x) 6=c(y) if (x, y)∈R, then we set Cn :=c−1({n}). Note
that ∆(ωω)⊆

⋃
n∈ω C2

n⊆¬R, so that B ⊆
⋃
n∈ω (s0[Cn]×s1[Cn])⊆¬A. The reflection theorem

gives sequences (Xn), (Yn) of Borel sets with
⋃
n∈ω (s0[Cn]×s1[Cn])⊆

⋃
n∈ω (Xn×Yn)⊆¬A. As⋃

n∈ω (Xn×Yn) is potentially open, (a) holds.

If there is h :C→ωω continuous such that
(
h(α), h(β)

)
∈R if (α, β)∈G0, then we set f :=s0 ◦h

and g :=s1 ◦ h. �

One can check that Theorem 4.1 is also a consequence of Theorem 4.2. Theorem 4.2 can be
extended to any Borel class and any Wadge class of Borel sets.

Theorem 4.3 (Lecomte) Let Γ be a Wadge class of Borel sets, or the class ∆0
ξ for some 1≤ ξ <ω1.

Then there are Borel binary relations S0, S1 on C such that for any Polish spaces X,Y , and for any
disjoint analytic subsets A,B of X×Y , exactly one of the following holds:

(a) A is separable from B by a set potentially in Γ,
(b) there are f : C →X , g : C → Y continuous such that the inclusions S0 ⊆ (f×g)−1(A) and

S1⊆(f×g)−1(B) hold.

The proof of this result provides a new proof of the Louveau-Saint Raymond Theorems 1.3 and
1.5. These proofs involve games, which is not the case in higher dimensions. Theorem 4.1 can be
extended to any countable dimension. This is straightforward in finite dimension. This is not the case
in countably infinite dimension, and we now prove this extension.

Notation. Let, for 2≤κ≤ω, ψκ :ω→κ<ω be a bijection. More precisely,

- If κ < ω, then ψκ(0) := ∅ is the sequence of length 0, ψκ(1) := 0, ..., ψκ(κ) := κ−1 are the
sequences of length 1, and so on.

- If κ = ω, then let (pn)n∈ω be the sequence of prime numbers, and I : ω<ω → ω defined by
I(∅) := 1, and I(s) := p

s(0)+1
0 ...p

s(|s|−1)+1
|s|−1 if s 6= ∅. Note that I is one-to-one, so that there is an

increasing bijection ϕ :Seq := I[ω<ω]→ω. If t∈Seq, then we will denote by t := I−1(t) the finite
sequence of natural numbers coded by the natural number t. We set ψω :=(ϕ ◦ I)−1 :ω→ω<ω.

Note that |ψκ(n)|≤n if n∈ω. Indeed, this is clear if κ<ω. If κ=ω, then

I[ψω(n)|0]<I[ψω(n)|1]<...<I[ψω(n)],

so that (ϕ ◦ I)[ψω(n)|0]<(ϕ ◦ I)[ψω(n)|1]<...<(ϕ ◦ I)[ψω(n)]=n. This implies that |ψω(n)|≤n.
Fix n∈ω. As |ψκ(n)|≤n, we can define sn,κ :=ψκ(n)0n−|ψκ(n)|.

The sequence (sn,κ)n∈ω satisfies the following properties:

- (sn,κ)n∈ω is dense in κ<ω (i.e., any element of κ<ω can be extended by one of the sn,κ’s),
- the length of sn,κ is n.
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We put G0,κ :={(sn,κ i γ)i∈κ | n∈ω ∧ γ∈κω}⊆(κω)κ. In particular, G0,2=G0.

Theorem 4.4 (Kechris, Solecki, Todorčević) Let 2 ≤ κ < ω, X be a Polish space, and A ⊆Xκ be
analytic. Then exactly one of the following holds:

(a) there is c :X→ω Borel such that
(
c(xi)

)
i∈κ /∈{(ni)i∈κ∈ω

κ | ∀i∈κ ni=n0} if (xi)i∈κ∈A,

(b) there is f :κω→X continuous such that
(
f(αi)

)
i∈κ∈A if (αi)i∈κ∈G0,κ.

We cannot directly extend Theorem 4.1 to the case κ=ω. In order to get a positive result in the
case of the infinite dimension, we put G := {α ∈ ωω | ∃∞n ∈ ω sn,ω 0⊆ α}. Note that G is a Gδ
subset of ωω, and thus a Polish space.

Theorem 4.5 (Lecomte) Let X be a Polish space, and A⊆Xω be analytic. Then exactly one of the
following holds:

(a) there is c :X→ω Borel such that
(
c(xi)

)
i∈ω /∈{(ni)i∈ω∈ω

ω | ∀i∈ω ni=n0} if (xi)i∈ω∈A,

(b) there is f :G→X continuous such that
(
f(αi)

)
i∈ω∈A if (αi)i∈ω∈G0,ω ∩Gω.

Proof. As in the proof of Theorem 4.1, we see that (a) and (b) cannot hold simultaneously.

Note that there is a recursive map s̃ :ω→ω such that s̃(l) codes sl,ω, i.e., s̃(l) = I(sl,ω). Indeed,
there is a recursive map ϕ̃ :ω→ω whose restriction to Seq is an increasing bijection from Seq onto
ω. Now (ϕ̃|Seq)−1 defines a recursive map ψ̃ :ω→ω. It remains to note that s̃(l)= t is equivalent to

t∈Seq ∧ lh(t)= l ∧ ∀i<l
(
i<lh

(
ψ̃(l)

)
∧ (t)i=(ψ̃(l))i

)
∨
(
i≥ lh

(
ψ̃(l)

)
∧ (t)i=0

)
.

We may assume that

- the Xωl’s are recursively presented Polish spaces, for l∈ω,

- the projections are recursive,

- the maps Πl :ω×Xωl→X defined by

Πl

(
t, (xs)s∈ωl

)
=x ⇔ t∈Seq and lh(t)= l and x=xt

are partial recursive functions on {t∈ω | t∈Seq and lh(t)= l}×Xωl , for l∈ω,

- the maps Π′l :ω
2×Xωl→Xω defined by

Π′l
(
n, t, (xs)s∈ωl

)
=(yi)i∈ω ⇔ t∈Seq and n+1+lh(t)= l and ∀i∈ω yi=xsn,ωit

are partial recursive functions on {(n, t)∈ω2 | t∈Seq and n+1+lh(t)= l}×Xωl , for l∈ω,

- A∈Σ 1
1 (Xω).

We set Φ :={C⊆X | A ∩ Cω =∅}. As Φ is Π 1
1 on Σ 1

1 , the first reflection theorem ensures that
if C ∈ Σ 1

1 (X) is in Φ, then there is D ∈∆1
1(X) which is in Φ and contains C. As in the proof of

Theorem 4.1 we may assume that U 6=X , so that Y :=X\U is a nonempty Σ 1
1 subset of X .
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The previous point gives the following key property:

∀C∈Σ 1
1 (X) (∅ 6=C⊆Y ⇒ A ∩ Cω 6=∅).

We construct (xs)s∈ω<ω ⊆Y , (Vs)s∈ω<ω ⊆Σ 1
1 (X), and (Un,t)(n,t)∈ω×ω<ω ⊆Σ 1

1 (Xω) satisfying the
following conditions:

(1) xs∈Vs⊆Y ∩Xlow and (xsn,ωit)i∈ω∈Un,t⊆A ∩ Y ω ∩ (Xω)low,

(2) Vsm⊆Vs and Un,tm⊆Un,t,

(3) diamdX (Vsl,ω0)≤2−l and
(
sn,ω0t=sl,ω0 ⇒ diamdXω (Un,t)≤2−l

)
,

(4) For any fixed |s|, the relation “x∈Vs” is a Σ 1
1 condition in (x, s),

(5) For any fixed n and fixed |t|, the relation “(xi)i∈ω∈Un,t” is a Σ 1
1 condition in

(
(xi)i∈ω, t

)
.

Assume that this is done. Fix α∈G. Then (Vα|p)p∈ω is a decreasing sequence of nonempty clopen
subsets of (Xlow, τGH) whose dX -diameters tend to zero, so there is f(α) in their intersection. This
defines f :G→X . Note that dX

(
xα|p, f(α)

)
≤diamdX (Vα|p), so that f is continuous and (xα|p)p∈ω

tends to f(α) in (X, τGH).

If (sn,ωiγ)i∈ω∈G0,ω∩Gω, then (Un,γ|p)p∈ω is a decreasing sequence of nonempty clopen subsets
of
(
(Xω)low, τGH

)
whose dXω -diameters tend to zero, so there is (αi)i∈ω in their intersection. Note

that (αi)i∈ω ∈A. Moreover, the sequence
(
(xsn,ωi(γ|p))i∈ω

)
p∈ω tends to (αi)i∈ω in (Xω, τGH), and

in (X, τGH)ω too. As (xsn,ωi(γ|p))p∈ω tends to f(sn,ωiγ) in (X, τGH), we get f(sn,ωiγ) = αi, for
each i∈ω. Thus

(
f(sn,ωiγ)

)
i∈ω∈A.

So it is enough to see that the construction is possible. If V∅ is any Σ 1
1 set, then clearly (4) holds

for s of length 0. Now suppose that Vs has been defined for all s∈ ω≤l and that (4) holds. Then in
order to define Vr for r∈ωl+1, while ensuring (4), we will let Vsl,ω0⊆Vsl,ω be some chosen Σ 1

1 set of
diameter at most 2−l (to be determined later on) and Vsm :=Vs for all sm 6=sl,ω0. Then for r∈ωl+1

x∈Vr ⇔ (r=sl,ω0 and x∈Vsl,ω0) or (r=sm 6=sl,ω0 and x∈Vs),

which is Σ 1
1 in (x, r) by the induction hypothesis.

Similarly, if Un,∅ is any Σ 1
1 set, then clearly (5) holds for t of length 0. Now suppose that Un,t

has been defined for all t ∈ ω≤k and that (5) holds. Then in order to define Un,r for r ∈ ωk+1,
while ensuring (5), we again split into two cases. If sn,ω0r= sn,ω0t0 = sl,ω0, then Un,r ⊆Un,t will
be some chosen Σ 1

1 set of diameter at most 2−l (to be determined later on). On the other hand, if
sn,ω0r=sn,ω0tm 6=sl,ω0, then we set Un,r :=Un,t. Then for r∈ωk+1

(xi)i∈ω∈Un,r ⇔


(sn,ω0r=sn,ω0t0=sl,ω0 and (xi)i∈ω∈Un,r)
or
(sn,ω0r=sn,ω0tm 6=sl,ω0 and (xi)i∈ω∈Un,t),

which is Σ 1
1 in

(
(xi)i∈ω, r

)
by the induction hypothesis, since sn,ω0r=sl,ω0 can hold for only finitely

many (n, r)∈ω×ω<ω.
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Notice that in this way (2) and (3) are also satisfied, so it remains to define Vsl,ω0, Un,∅ and Un,r
for sn,ω0r=sl,ω0 of diameter small enough such that (1) also holds.

- As Y is a nonempty Σ 1
1 subset of X , we can choose x∅∈Y ∩Xlow, and set V∅ :=Y ∩Xlow.

- The key property applied to V∅ gives (xi)i∈ω ∈A ∩ V ω
∅ ∩ (Xω)low. We choose U0,∅∈Σ 1

1 (Xω)
such that (xi)i∈ω ∈U0,∅⊆A ∩ V ω

∅ ∩ (Xω)low and diamdXω (U0,∅)≤1. Then we choose V0∈Σ 1
1 (X)

such that x0 ∈ V0 ⊆ V∅ and diamdX (V0) ≤ 1. Assume that (xs)|s|≤l, (Vs)|s|≤l, and (Un,t)n+1+|t|≤l
satisfying (1)-(5) have been constructed, which is the case for l≤1.

- We put

C :=
{
x∈X | ∃(ys)s∈ωl ∈Xωl ysωl =x and ∀s∈ωl ys∈Vs and ∀n<l ∀t∈ωl−n−1

(ysn,ωit)i∈ω∈Un,t
}
.

Then xsl,ω ∈C, by induction assumption. Moreover, C ∈Σ 1
1 , by conditions (4) and (5) since Σ 1

1 is
closed under ∀ω. The key property applied to C gives (xsl,ωi)i∈ω∈A∩Cω∩(Xω)low. As xsl,ωm∈C,
there is (xsm)s∈ωl\{sl,ω} ⊆X such that xsm ∈ Vs for each s ∈ ωl and (xsn,ωitm)i∈ω ∈ Un,t for each
n<l and each t∈ωl−n−1. This defines (xs)s∈ωl+1 .

We choose Ul,∅∈Σ 1
1 (Xω) such that (xsl,ωi)i∈ω∈Ul,∅ ⊆A ∩ V ω

sl,ω
∩ (Xω)low and

diamdXω (Ul,∅)≤2−l,

and Vsl,ω0∈Σ 1
1 (X) such that xsl,ω0∈Vsl,ω0⊆Vsl,ω and diamdX (Vsl,ω0)≤2−l. If

sn,ω0r=sn,ω0t0=sl,ω0,

then we choose Un,r∈Σ 1
1 (Xω) such that diamdXω (Un,r)≤2−l and (xsn,ωir)i∈ω∈Un,r⊆Un,t. �

Passing to complements, Theorem 4.2 characterizes when two disjoint analytic binary relations
can be separated by a potentially open set. We saw that the potentially open sets are the countable
unions of Borel rectangles. It is natural to ask about a level by level version of this. We will prove
such a version at the level two. The problem at the level three is still open.

Notation. Let b :ω→3<ω be the following bijection: b(0) :=∅ is the sequence of length 0, b(1) :=2,
b(2) :=1, b(3) :=0 are the sequences of length 1, and so on. Note that |b(n)|≤n if n∈ω. Let n∈ω.
As |b(n)|≤n, we can define tn := b(n)2n−|b(n)|. Note that (tn)n∈ω is dense in 3<ω and |tn|=n. We
then put X :=3ω\{tn1∞ | n∈ω}, Y :=3ω\{tn0∞ | n∈ω}, A :=∆(3ω\{tnε∞ | n∈ω ∧ ε∈2}) and
B :={(tn0∞, tn1∞) | n∈ω}.

Theorem 4.6 (Lecomte-Zelený) Let X,Y be Polish spaces, and A,B be disjoint analytic subsets of
X×Y . Then exactly one of the following holds:

(a) A is separable from B by a (Σ0
2×Σ0

2)σ set,
(b) there are f : X→X , g : Y→ Y continuous such that the inclusions A⊆ (f×g)−1(A) and

B⊆(f×g)−1(B) hold.
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Proof. We argue by contradiction for the exactly part, which gives Cn∈Π0
1(X) andDn∈Π0

1(Y) with
A⊆

⋃
n∈ω (Cn×Dn)⊆¬B. In particular, 3ω\{tnε∞ | n∈ω ∧ ε∈2}⊆

⋃
n∈ω Cn ∩Dn, and Baire’s

theorem gives n and s∈3<ω such that Ns\{tnε∞ | n∈ω ∧ ε∈2}⊆Cn ∩Dn. Note that Ns ∩X⊆Cn
and Ns ∩ Y⊆Dn. Choose p with s⊆ tp. Then (tp0

∞, tp1
∞)∈B ∩ (Cn×Dn), which is absurd.

In order to simplify the notation, by relativization, we may assume that X,Y are recursively
presented and that A,B∈Σ 1

1 . Let τX2 , τ
Y
2 be the topology on X,Y generated by the Π0

1∩Σ 1
1 subsets

of X,Y respectively, and N :=A ∩BτX2 ×τY2 . Note first that

(x, y) /∈BτX2 ×τY2 ⇔ ∃CX ∈Π0
1 ∩ Σ 1

1 (X) ∃CY ∈Π0
1 ∩ Σ 1

1 (Y ) (x, y)∈CX×CY ⊆¬B,

so that ¬BτX2 ×τY2 =
⋃
CX∈Π0

1∩Σ1
1 (X),CY ∈Π0

1∩Σ1
1 (Y ),CX×CY ⊆¬B (CX×CY )∈(Σ0

2×Σ0
2)σ since τX2 , τ

Y
2

have a countable basis. Moreover, BτX2 ×τY2 ∈Σ 1
1 (X×Y ). Indeed,

(x, y) /∈BτX2 ×τY2 ⇔ ∃DX , DY ∈∆1
1(ω) x /∈

⋃
n∈DX N(X,n) ∧ y /∈

⋃
n∈DY N(Y, n) ∧

∀(z, t)∈X×Y
(
(z, t) /∈B ∨ z∈

⋃
n∈DX N(X,n) ∨ t∈

⋃
n∈DY N(Y, n)

)
.

In order to se this, assume first that (x, y) /∈BτX2 ×τY2 , which gives CX , CY as above. Then

CX⊆PX :={x∈X | ∀y∈Y y /∈CY ∨ (x, y) /∈B}.

The set PX is Π 1
1 . In particular, the Σ 1

1 set ¬PX is separable from the Σ 1
1 set CX by the open set

¬CX . Theorem 1.2 providesDX ∈∆1
1(ω) such that

⋃
n∈DX N(X,n) separates ¬PX fromCX . Note

then that CY ⊆ PY := {y ∈ Y | ∀x ∈X x ∈
⋃
n∈DX N(X,n) ∨ (x, y) /∈ B}. The set PY is Π 1

1 .
In particular, the Σ 1

1 set ¬PY is separable from the Σ 1
1 set CY by the open set ¬CY . Theorem 1.2

provides DY ∈∆1
1(ω) such that

⋃
n∈DY N(Y, n) separates ¬PY from CY . We are done, using the

coding system for ∆1
1 sets. Thus N ∈Σ 1

1 (X×Y ).

Case 1. N=∅.

The set ¬BτX2 ×τY2 is (Σ0
2×Σ0

2)σ and separates A from B and (a) holds.

Case 2. N 6=∅.

We say that s∈3<ω is suitable if there is no triple (n, ε, k)∈ω×2×ω such that s= tnε
k+1. Note

that if s is not suitable, then the triple (n, ε, k) is unique, by the third crucial property of (tn)n∈ω:
∀ε∈2 ∀p<n tn 6⊆ tpε∞. If ∅ 6= s is suitable, then we set s− := s|max{l < |s| | s|l is suitable}. We
construct

- a sequence (xs)s∈3<ω of points of X ,
- a sequence (ys)s∈3<ω of points of Y ,
- a sequence (Xs)s∈3<ω of Σ 0

1 subsets of X ,
- a sequence (Ys)s∈3<ω of Σ 0

1 subsets of Y ,
- a sequence (Ss)s∈3<ω suitable of Σ 1

1 subsets of X×Y .

18



We want these objects to satisfy the following conditions:

(1) (xs, ys)∈Xs×Ys
(2) (xs, ys)∈Ss⊆N ∩ (X×Y )low if s is suitable
(3) Xsε⊆Xs if s is suitable or s= tn0k+1, and Xtn1k+1ε⊆Xtn

(4) Ysε⊆Ys if s is suitable or s= tn1k+1, and Ytn0k+1ε⊆Ytn
(5) Ss⊆Ss− if ∅ 6=s is suitable
(6) diam(Xs), diam(Ys)≤2−|s|

(7) diamGH(Ss)≤2−|s| if s is suitable
(8) (xtn0, ytn1)∈

(
Π0[(Xtn×Ytn) ∩ Stn ]×Π1[(Xtn×Ytn) ∩ Stn ]

)
∩B

(9) (xtn0k+1 , ytn1k+1)=(xtn0, ytn1)

Assume that this is done. Let α ∈X. Then the sequence (pk) of integers such that α|pk is suitable
or of the form tn0k+1 is infinite, by the third crucial property of (tn)n∈ω. Condition (3) implies that
(Xα|pk)k∈ω is decreasing. Moreover, (Xα|pk)k∈ω is a sequence of nonempty closed subsets of X
whose diameters tend to 0, so that we can define f(α) by {f(α)} :=

⋂
k∈ω Xα|pk =

⋂
k∈ω Xα|pk .

This defines a continuous map f :X→X with f(α)= limk→∞ xα|pk . Similarly, we define g :Y→Y
continuous with g(β)= limk→∞ yβ|qk .

If α /∈ {tnε∞ | n ∈ ω ∧ ε ∈ 2}, then the sequence (kj) of integers such that α|pkj is suitable is
infinite. Note that (Sα|pkj

)j∈ω is a decreasing sequence of nonempty closed subsets of (X×Y )low

whose GH-diameters tend to 0, so that we can define F (α) by {F (α)} :=
⋂
j∈ω Sα|pkj

⊆N ⊆ A.
As F (α) is the limit (in (X×Y,GH), and thus in X×Y ) of (xα|pkj

, yα|pkj
)j∈ω, we get the equality

F (α)=
(
f(α), g(α)

)
. Thus A⊆(f×g)−1(A).

Note that xtn0 = xtn02 = ... = xtn0q+1 for each n. Thus f(tn0∞) = limq→∞ xtn0q = xtn0.
Similarly, g(tn1∞)=ytn1 and

(
f(tn0∞), g(tn1∞)

)
=(xtn0, ytn1)∈B. Thus B⊆(f×g)−1(B).

Let us prove that the construction is possible. As N is not empty, we can choose (x∅, y∅) in
N ∩ (X×Y )low, a Σ 1

1 subset S∅ of X×Y with (x∅, y∅)∈S∅⊆N ∩ (X×Y )low of GH-diameter at
most 1, and a Σ 0

1 neighborhood X∅ (resp., Y∅) of x∅ (resp., y∅) of diameter at most 1. Assume that
(xs)s∈3≤l , (ys)s∈3≤l , (Xs)s∈3≤l , (Ys)s∈3≤l and (Ss)s∈3≤l satisfying (1)-(9) have been constructed,
which is the case for l=0.

Note that (xtl , ytl)∈ (Xtl×Ytl) ∩ Stl ⊆B
τX2 ×τY2 since tl is suitable. As Πε[(Xtl×Ytl) ∩ Stl ] is

Σ 1
1 , Πε[(Stl×Ytl) ∩ Stl ]∈Σ 1

1 ∩Π0
1. In particular, Πε[(Xtl×Ytl) ∩ Stl ] is τ2-open. This shows the

existence of (xtl0, ytl1)∈
((
Xtl ∩Π0[(Xtl×Ytl) ∩ Stl ]

)
×
(
Ytl ∩Π1[(Xtl×Ytl) ∩ Stl ]

))
∩B. We set

xtl1 :=xtl , ytl0 :=ytl . We defined xs, ys when s∈3l+1 is not suitable but s|l is suitable.

Assume now that s is suitable, but not s|l. This gives (n, ε, k, ε′) ∈ ω× 2×ω× 3 such that
s= tnε

k+1ε′, with ε′ 6=ε. Assume first that ε=0. Note that

xtn0k+1 =xtn0∈Xtn0k+1 ∩Π0[(Xtn×Ytn) ∩ Stn ].

This gives xs∈Xtn0k+1 ∩Π0[(Xtn×Ytn) ∩ Stn ], and also ys with

(xs, ys)∈
(
(Xtn ∩Xtn0k+1)×Ytn

)
∩ Stn =(Xtn0k+1×Ytn) ∩ Stn .
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If ε=1, then similarly we get (xs, ys)∈(Xtn×Ytn1k+1) ∩ Stn .

If s and s|l are both suitable, or both non suitable, then we set (xs, ys) := (xs|l, ys|l). So we
defined xs, ys in any case. Note that Conditions (8) and (9) are fullfilled, and that (xs, ys)∈Ss− if s
is suitable. Moreover, xs ∈Xs|l if s|l is suitable or s|l= tn0k+1, and xs ∈Xtn if s= tn1k+1ε, and
similarly in Y . We choose Σ 0

1 sets Xs, Ys of diameter at most 2−l−1 with

(xs, ys)∈Xs×Ys⊆Xs×Ys⊆


Xs|l×Ys|l if s is not suitable or s|l is suitable,

Xs|l×Ytn if s= tn0k+1ε′ ∧ ε′ 6=0,

Xtn×Ys|l if s= tn1k+1ε′ ∧ ε′ 6=1.

It remains to choose, when s is suitable, Ss ∈ Σ 1
1 (X×Y ) of GH-diameter at most 2−l−1 such that

(xs, ys)∈Ss⊆Ss− . �
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