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Abstract. The operation V → V ω is a fundamental operation over finitary lan-
guages leading to ω-languages. Since the set Σω of infinite words over a finite
alphabet Σ can be equipped with the usual Cantor topology, the question of the
topological complexity of ω-powers of finitary languages naturally arises and has
been posed by Niwinski [Niw90], Simonnet [Sim92] and Staiger [Sta97a]. It has
been recently proved that for each integer n ≥ 1, there exist some ω-powers of
context free languages which are Π0

n-complete Borel sets, [Fin01], that there ex-
ists a context free language L such that Lω is analytic but not Borel, [Fin03], and
that there exists a finitary language V such that V ω is a Borel set of infinite rank,
[Fin04]. But it was still unknown which could be the possible infinite Borel ranks
of ω-powers.

We fill this gap here, proving the following very surprising result which shows
that ω-powers exhibit a great topological complexity: for each non-null countable
ordinal ξ, there exist some Σ0

ξ-complete ω-powers, and some Π0
ξ-complete ω-

powers.
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1 Introduction

The operation V → V ω is a fundamental operation over finitary languages leading to
ω-languages. It produces ω-powers, i.e. ω-languages in the form V ω , where V is a
finitary language. This operation appears in the characterization of the class REGω of
ω-regular languages (respectively, of the class CFω of context free ω-languages) as the
ω-Kleene closure of the family REG of regular finitary languages (respectively, of the
family CF of context free finitary languages) [Sta97a].

Since the set Σω of infinite words over a finite alphabet Σ can be equipped with
the usual Cantor topology, the question of the topological complexity of ω-powers of
finitary languages naturally arises and has been posed by Niwinski [Niw90], Simonnet
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[Sim92], and Staiger [Sta97a]. A first task is to study the position of ω-powers with
regard to the Borel hierarchy (and beyond to the projective hierarchy) [Sta97a, PP04].

It is easy to see that the ω-power of a finitary language is always an analytic set
because it is either the continuous image of a compact set {0, 1, . . . , n}ω for n ≥ 0 or
of the Baire space ωω.

It has been recently proved, that for each integer n ≥ 1, there exist some ω-powers
of context free languages which are Π0

n-complete Borel sets, [Fin01], and that there
exists a context free language L such that Lω is analytic but not Borel, [Fin03]. Notice
that amazingly the language L is very simple to describe and it is accepted by a simple
1-counter automaton.

The first author proved in [Fin04] that there exists a finitary language V such that
V ω is a Borel set of infinite rank. However the only known fact on their complexity is
that there is a context free language W such that Wω is Borel above Δ0

ω, [DF06].
We fill this gap here, proving the following very surprising result which shows that

ω-powers exhibit a great topological complexity: for each non-null countable ordinal
ξ, there exist some Σ0

ξ-complete ω-powers, and some Π0
ξ-complete ω-powers. For that

purpose we use a theorem of Kuratowski which is a level by level version of a theorem
of Lusin and Souslin stating that every Borel set B ⊆ 2ω is the image of a closed subset
of the Baire space ωω by a continuous bijection. This theorem of Lusin and Souslin
had already been used by Arnold in [Arn83] to prove that every Borel subset of Σω,
for a finite alphabet Σ, is accepted by a non-ambiguous finitely branching transition
system with Büchi acceptance condition and our first idea was to code the behaviour of
such a transition system. This way, in the general case, we can manage to construct an
ω-power of the same complexity as B.

The paper is organized as follows. In Section 2 we recall basic notions of topology
and in particular definitions and properties of Borel sets. We proved our main result in
Section 3.

2 Topology

We first give some notations for finite or infinite words we shall use in the sequel,
assuming the reader to be familiar with the theory of formal languages and of ω-
languages, see [Tho90, Sta97a, PP04]. Let Σ be a finite or countable alphabet whose
elements are called letters. A non-empty finite word over Σ is a finite sequence of let-
ters: x = a0.a1.a2 . . . an where ∀i ∈ [0; n] ai ∈ Σ. We shall denote x(i) = ai the
(i + 1)th letter of x and x�(i + 1) = x(0) . . . x(i) for i ≤ n, is the beginning of length
i + 1 of x. The length of x is |x| = n + 1. The empty word will be denoted by ∅ and
has 0 letters. Its length is 0. The set of finite words over Σ is denoted Σ<ω. A (finitary)
language L over Σ is a subset of Σ<ω. The usual concatenation product of u and v
will be denoted by u�v or just uv. If l ∈ ω and (ai)i<l ∈ (Σ<ω)l, then �

i<l ai is the
concatenation a0 . . . al−1.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a0a1 . . . an . . .,
where for all integers i ≥ 0 ai ∈ Σ. When σ is an ω-word over Σ, we write σ =
σ(0)σ(1) . . . σ(n) . . . and σ�(n + 1) = σ(0)σ(1) . . . σ(n) the finite word of length
n + 1, prefix of σ. The set of ω-words over the alphabet Σ is denoted by Σω. An
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ω-language over an alphabet Σ is a subset of Σω. If ∀i∈ω ai ∈Σ<ω, then �
i∈ω ai is

the concatenation a0a1 . . .. The concatenation product is also extended to the product
of a finite word u and an ω-word v: the infinite word u.v or u�v is then the ω-word
such that: (uv)(k) = u(k) if k < |u| , and (u.v)(k) = v(k − |u|) if k ≥ |u|.

The prefix relation is denoted ≺: the finite word u is a prefix of the finite word v
(respectively, the infinite word v), denoted u ≺ v, if and only if there exists a finite
word w (respectively, an infinite word w), such that v = u�w.

If s≺α=α(0)α(1)..., then α−s is the sequence α(|s|)α(|s|+1)...
For a finitary language V ⊆ Σ<ω, the ω-power of V is the ω-language

V ω = {u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V }

We recall now some notions of topology, assuming the reader to be familiar with
basic notions which may be found in [Kur66, Mos80, Kec95, LT94, Sta97a, PP04].

There is a natural metric on the set Σω of infinite words over a countable alphabet
Σ which is called the prefix metric and defined as follows. For u, v ∈ Σω and u �= v
let d(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer n such that the (n + 1)th

letter of u is different from the (n + 1)th letter of v. The topology induced on Σω by
this metric is just the product topology of the discrete topology on Σ. For s ∈ Σ<ω,
the set Ns :={α∈Σω | s≺α} is a basic clopen (i.e., closed and open) set of Σω. More
generally open sets of Σω are in the form W�Σω, where W ⊆ Σ<ω.

The topological spaces in which we will work in this paper will be subspaces of Σω

where Σ is either finite having at least two elements or countably infinite.
When Σ is a finite alphabet, the prefix metric induces on Σω the usual Cantor topol-

ogy and Σω is compact.
The Baire space ωω is equipped with the product topology of the discrete topology

on ω. It is homeomorphic to P∞ :={α∈2ω | ∀i∈ω ∃j≥ i α(j)=1}⊆2ω, via the map
defined on ωω by H(β) :=0β(0)10β(1)1 . . .

We define now the Borel Hierarchy on a topological space X :

Definition 1. The classes Σ0
n(X) and Π0

n(X) of the Borel Hierarchy on the topologi-
cal space X are defined as follows:

Σ0
1(X) is the class of open subsets of X .

Π0
1(X) is the class of closed subsets of X .

And for any integer n ≥ 1:
Σ0

n+1(X) is the class of countable unions of Π0
n-subsets of X .

Π0
n+1(X) is the class of countable intersections of Σ0

n-subsets of X .
The Borel Hierarchy is also defined for transfinite levels. The classes Σ0

ξ(X) and
Π0

ξ(X), for a non-null countable ordinal ξ, are defined in the following way:
Σ0

ξ(X) is the class of countable unions of subsets of X in ∪γ<ξΠ0
γ .

Π0
ξ(X) is the class of countable intersections of subsets of X in ∪γ<ξΣ0

γ .

Suppose now that X ⊆Y ; then Σ0
ξ(X)={A ∩ X | A∈Σ0

ξ(Y )}, and similarly for Π0
ξ ,

see [Kec95, Section 22.A]. Notice that we have defined the Borel classes Σ0
ξ(X) and

Π0
ξ(X) mentioning the space X . However when the context is clear we will sometimes

omit X and denote Σ0
ξ(X) by Σ0

ξ and similarly for the dual class.
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The Borel classes are closed under finite intersections and unions, and continuous
preimages. Moreover, Σ0

ξ is closed under countable unions, and Π0
ξ under countable

intersections. As usual the ambiguous class Δ0
ξ is the class Σ0

ξ ∩ Π0
ξ .

The class of Borel sets is Δ1
1 :=

⋃
ξ<ω1

Σ0
ξ =

⋃
ξ<ω1

Π0
ξ , where ω1 is the first

uncountable ordinal.
The Borel hierarchy is as follows:

Σ0
1 =open Σ0

2 . . . Σ0
ω . . .

Δ0
1 =clopen Δ0

2 Δ0
ω Δ1

1
Π0

1 =closed Π0
2 . . . Π0

ω . . .

This picture means that any class is contained in every class to the right of it, and the
inclusion is strict in any of the spaces Σω.

For a countable ordinal α, a subset of Σω is a Borel set of rank α iff it is in Σ0
α ∪Π0

α

but not in
⋃

γ<α(Σ0
γ ∪ Π0

γ).
We now define completeness with regard to reduction by continuous functions. For a

countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0
α (respectively, Π0

α)-complete
set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α (respectively, E ∈ Π0
α)

iff there exists a continuous function f : Y ω → Σω such that E = f−1(F ). Σ0
n

(respectively, Π0
n)-complete sets, with n an integer ≥ 1, are thoroughly characterized

in [Sta86].
Recall that a set X ⊆ Σω is a Σ0

α (respectively Π0
α)-complete subset of Σω iff it is

in Σ0
α but not in Π0

α (respectively in Π0
α but not in Σ0

α), [Kec95].
For example, the singletons of 2ω are Π0

1-complete subsets of 2ω. The set P∞ is a
well known example of a Π0

2-complete subset of 2ω.
If Γ is a class of sets, then Γ̌ :={¬A | A∈Γ} is the class of complements of sets in

Γ. In particular, for every non-null countable ordinal α, Σ̌0
α = Π0

α and Π̌0
α = Σ0

α.
There are some subsets of the topological space Σω which are not Borel sets. In par-

ticular, there exists another hierarchy beyond the Borel hierarchy, called the projective
hierarchy. The first class of the projective hierarchy is the class Σ1

1 of analytic sets. A
set A ⊆ Σω is analytic iff there exists a Borel set B ⊆ (Σ × Y )ω, with Y a finite
alphabet, such that x ∈ A ↔ ∃y ∈ Y ω such that (x, y) ∈ B, where (x, y) ∈ (Σ × Y )ω

is defined by: (x, y)(i) = (x(i), y(i)) for all integers i ≥ 0.
A subset of Σω is analytic if it is empty, or the image of the Baire space by a con-

tinuous map. The class of analytic sets contains the class of Borel sets in any of the
spaces Σω. Notice that Δ1

1 = Σ1
1 ∩ Π1

1, where Π1
1 is the class of co-analytic sets, i.e.

of complements of analytic sets.
The ω-power of a finitary language V is always an analytic set because if V is finite

and has n elements then V ω is the continuous image of a compact set {0, 1, . . . , n−1}ω

and if V is infinite then there is a bijection between V and ω and V ω is the continuous
image of the Baire space ωω, [Sim92].

3 Main Result

We now state our main result, showing that ω-powers exhibit a very surprising topolog-
ical complexity.
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Theorem 2. Let ξ be a non-null countable ordinal.

(a) There is A⊆2<ω such that Aω is Σ0
ξ-complete.

(b) There is A⊆2<ω such that Aω is Π0
ξ-complete.

To prove Theorem 2, we shall use a level by level version of a theorem of Lusin and
Souslin stating that every Borel set B ⊆ 2ω is the image of a closed subset of the Baire
space ωω by a continuous bijection, see [Kec95, p.83]. It is the following theorem,
proved by Kuratowski in [Kur66, Corollary 33.II.1]:

Theorem 3. Let ξ be a non-null countable ordinal, and B ∈Π0
ξ+1(2

ω). Then there is
C ∈ Π0

1(ωω) and a continuous bijection f : C → B such that f−1 is Σ0
ξ-measurable

(i.e., f [U ] is Σ0
ξ(B) for each open subset U of C).

The existence of the continuous bijection f : C → B given by this theorem (without
the fact that f−1 is Σ0

ξ-measurable) has been used by Arnold in [Arn83] to prove that
every Borel subset of Σω, for a finite alphabet Σ, is accepted by a non-ambiguous
finitely branching transition system with Büchi acceptance condition. Notice that the
sets of states of these transition systems are countable.

Our first idea was to code the behaviour of such a transition system. In fact this can
be done on a part of ω-words of a special compact set K0,0. However we shall have
also to consider more general sets KN,j and then we shall need the hypothesis of the
Σ0

ξ-measurability of the function f .
We now come to the proof of Theorem 2.

Let Γ be the class Σ0
ξ , or Π0

ξ . We assume first that ξ≥3.

Let B ⊆ 2ω be a Γ-complete set. Then B is in Γ(2ω) but not in Γ̌(2ω). As B ∈Π0
ξ+1,

Theorem 3 gives C ∈Π0
1(P∞) and f . By Proposition 11 in [Lec05], it is enough to find

A⊆4<ω. The language A will be made of two pieces: we will have A=μ ∪ π. The set
π will code f , and πω will look like B on some nice compact sets KN,j . Outside this
countable family of compact sets we will hide f , so that Aω will be the simple set μω.

• We set Q := {(s, t) ∈ 2<ω ×2<ω | |s| = |t|}. We enumerate Q as follows. We start
with q0 := (∅, ∅). Then we put the sequences of length 1 of elements of 2×2, in the
lexicographical ordering: q1 := (0, 0), q2 := (0, 1), q3 := (1, 0), q4 := (1, 1). Then we
put the 16 sequences of length 2: q5 := (02, 02), q6 := (02, 01), . . . And so on. We will
sometimes use the coordinates of qN := (q0

N , q1
N ). We put Mj :=Σi<j 4i+1. Note that

the sequence (Mj)j∈ω is strictly increasing, and that qMj is the last sequence of length
j of elements of 2×2.

• Now we define the “nice compact sets”. We will sometimes view 2 as an alphabet, and
sometimes view it as a letter. To make this distinction clear, we will use the boldface
notation 2 for the letter, and the lightface notation 2 otherwise. We will have the same
distinction with 3 instead of 2, so we have 2 = {0, 1}, 3 = {0, 1,2}, 4 = {0, 1,2,3}.
Let N, j be non-negative integers with N ≤Mj . We set

KN,j := { γ = 2N � [ �
i∈ω mi 2Mj+i+1 3 2Mj+i+1 ]∈4ω | ∀i ∈ ω mi ∈ 2 = {0, 1}}.
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As the map ϕN,j : KN,j → 2ω defined by ϕN,j(γ) := �
i∈ωmi is a homeomorphism,

KN,j is compact.

• Now we will define the sets that “look like B”.

- Let l ∈ ω. We define a function cl : B → Q by cl(α) := [f−1(α), α]�l. Note that Q is
countable, so that we equip it with the discrete topology. In these conditions, we prove
that cl is Σ0

ξ-measurable.

If l �= |q0| = |q1| then c−1
l (q) is the empty set. And for any q ∈ Q, and l =

|q0| = |q1|, it holds that c−1
l (q) = {α ∈ B | [f−1(α), α]�l = q} = {α ∈ B |

α�l = q1 and f−1(α)�l = q0}. But α�l = q1 means that α belongs to the basic open
set Nq1 and f−1(α)�l = q0 means that f−1(α) belongs to the basic open set Nq0 or
equivalently that α = f(f−1(α)) belongs to f(Nq0) which is a Σ0

ξ-subset of B. So

c−1
l (q) = Nq1 ∩ f(Nq0) is a Σ0

ξ-subset of B and cl is Σ0
ξ-measurable.

- Let N be an integer. We put

EN :={ α∈2ω | q1
Nα∈B and c|q1

N |(q
1
Nα)=qN }.

Notice that E0 = { α∈2ω | α∈ B and c0(α) = ∅} = B.

As c|q1
N | is Σ0

ξ-measurable and {qN}∈Δ0
1(Q), we get c−1

|q1
N |

({qN})∈Δ0
ξ(B)⊆Γ(B).

Therefore there is G ∈ Γ(2ω) with c−1
|q1

N |
({qN}) = G ∩ B. Thus c−1

|q1
N |

({qN}) ∈ Γ(2ω)

since Γ is closed under finite intersections. Note that the map S associating q1
Nα with

α is continuous, so that EN =S−1[c−1
|q1

N |
({qN})] is in Γ(2ω).

• Now we define the transition system obtained from f .

- If m∈2 and n, p∈ω, then we write n
m→ p if q0

n ≺q0
p and q1

p =q1
nm.

- As f is continuous on C, the graph Gr(f) of f is a closed subset of C ×2ω. As C
is Π0

1(P∞), Gr(f) is also a closed subset of P∞×2ω. So there is a closed subset F
of 2ω ×2ω such that Gr(f) = F ∩ (P∞×2ω). We identify 2ω ×2ω with (2×2)ω, i.e.,
we view (β, α) as [β(0), α(0)], [β(1), α(1)], ... By [Kec95, Proposition 2.4], there is
R ⊆ (2×2)<ω, closed under initial segments, such that F = {(β, α) ∈ 2ω ×2ω | ∀k ∈
ω (β, α)�k ∈ R}; notice that R is a tree whose infinite branches form the set F . In
particular, we get

(β, α)∈Gr(f) ⇔ β ∈P∞ and ∀k∈ω (β, α)�k∈R.

- Set Qf := {(t, s)∈R | t �= ∅ and t(|t|−1)=1}. Notice that Qf is simply the set of
pairs (t, s)∈R such that the last letter of t is a 1.

We have in fact already defined the transition system T obtained from f . This transition
system has a countably infinite set Q of states and a set Qf of accepting states. The
initial state is q0 := (∅, ∅). The input alphabet is 2 = {0, 1} and the transition relation
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δ ⊆ Q × 2 × Q is given by: if m ∈ 2 and n, p ∈ ω then (qn, m, qp) ∈ δ iff n
m→ p.

Recall that a run of T is said to be Büchi accepting if final states occur infinitely often
during this run. Then the set of ω-words over the alphabet 2 which are accepted by the
transition system T from the initial state q0 with Büchi acceptance condition is exactly
the Borel set B.

• Now we define the finitary language π.

- We set

π :=

������������������
�����������������

s∈4<ω | ∃j, l∈ω ∃(mi)i≤l ∈2l+1 ∃(ni)i≤l, (pi)i≤l, (ri)i≤l ∈ωl+1

n0 ≤Mj

and
∀i≤ l ni

mi→ pi and pi+ri = Mj+i+1

and
∀i<l pi = ni+1

and
qpl ∈Qf

and
s = �

i≤l 2ni mi 2pi 2ri 3 2ri

������������������
�����������������

.

• Let us show that ϕN,j[πω ∩ KN,j]=EN if N ≤Mj .

Let γ ∈πω ∩ KN,j, and α :=ϕN,j(γ). We can write

γ = �
k∈ω [ �

i≤lk 2nk
i mk

i 2pk
i 2rk

i 3 2rk
i ].

As this decomposition of γ is in π, we have nk
i

mk
i→ pk

i if i≤ lk, pk
i =nk

i+1 if i< lk, and
qpk

lk

∈Qf , for each k∈ω. Moreover, pk
lk

=nk+1
0 , for each k∈ω, since γ ∈KN,j implies

that pk
lk

+ rk
lk

= rk
lk

+ nk+1
0 = Mj+1+m for some integer m. So we get

N
α(0)→ p0

0
α(1)→ . . .

α(l0)→ p0
l0

α(l0+1)→ p1
0

α(l0+2)→ . . .
α(l0+l1+1)→ p1

l1 . . .

In particular we have

q0
N ≺ q0

p0
0

≺ . . . ≺ q0
p0

l0
≺ q0

p1
0

≺ . . . ≺ q0
p1

l1
. . .

because n
m→ p implies that q0

n ≺ q0
p. Note that |q1

pk
lk

| = |q1
N |+Σj≤k (lj +1) because

n
m→ p implies that |q1

p| = |q1
n|+1, so that the sequence (|q0

pk
lk

|)k∈ω is strictly increasing

since |q0
n| = |q1

n| for each integer n. This implies the existence of β ∈ P∞ such that
q0
pk

lk

≺ β for each k ∈ ω. Note that β ∈ P∞ because, for each integer k, qpk
lk

∈ Qf .

Note also that (β, q1
Nα)�k ∈ R for infinitely many k’s. As R is closed under initial

segments, (β, q1
Nα)�k∈R for every k∈ω, so that q1

Nα=f(β)∈B. Moreover,
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c|q1
N |(q

1
Nα)=(β�|q1

N |, q1
N )=(q0

N , q1
N )=qN ,

and α∈EN .

Conversely, let α ∈ EN . We have to see that γ := ϕ−1
N,j(α) ∈ πω. As γ ∈ KN,j , we are

allowed to write γ = 2N � [ �
i∈ω α(i) 2Mj+i+1 3 Mj+i+1 ]. Set β := f−1(q1

Nα).

There is a sequence of integers (kl)l∈ω such that qkl
=(β, q1

Nα)�l. Note that N
α(0)→

k|q1
N |+1

α(1)→ k|q1
N |+2 . . . As N ≤ Mj we get k|q1

N |+i+1 ≤ Mj+i+1. So we can define
n0 := N , p0 := k|q1

N |+1, r0 := Mj+1 −p0, n1 := p0. Similarly, we can define p1 :=
k|q1

N |+2, r1 :=Mj+2−p1. We go on like this until we find some qpi in Qf . This clearly
defines a word in π. And we can go on like this, so that γ ∈πω.

Thus πω ∩KN,j is in Γ(KN,j)⊆Γ(4ω). Notice that we proved, among other things,
the equality ϕ0,0[πω ∩ K0,0]=B. In particular, πω ∩ K0,0 is not in Γ̌(4ω).

Notice that πω codes on K0,0 the behaviour of the transition system accepting B.
In a similar way πω codes on KN,j the behaviour of the same transition system but
starting this time from the state qN instead of the initial state q0. But some ω-words
in πω are not in K0,0 and even not in any KN,j and we do not know what is exactly
the complexity of this set of ω-words. However we remark that all words in π have the
same form 2N � [ �

i≤l mi 2Pi 3 2Ri ].

• We are ready to define μ. The idea is that an infinite sequence containing a word in μ
cannot be in the union of the KN,j’s. We set

μ0:=

����������
���������

s∈4<ω | ∃l∈ω ∃(mi)i≤l+1 ∈2l+2 ∃N ∈ω ∃(Pi)i≤l+1, (Ri)i≤l+1 ∈ωl+2

∀i≤ l+1 ∃j ∈ω Pi =Mj

and
Pl �=Rl

and
s = 2N � [ �

i≤l+1 mi 2Pi 3 2Ri ]

����������
���������

,

μ1:=

����������
���������

s∈4<ω | ∃l∈ω ∃(mi)i≤l+1 ∈2l+2 ∃N ∈ω ∃(Pi)i≤l+1, (Ri)i≤l+1 ∈ωl+2

∀i≤ l+1 ∃j ∈ω Pi =Mj

and
∃j ∈ω (Pl =Mj and Pl+1 �=Mj+1)

and
s = 2N � [ �

i≤l+1 mi 2Pi 3 2Ri ]

����������
���������

,

μ :=μ0 ∪ μ1.

All the words in A will have the same form 2N � [ �
i≤l mi 2Pi 3 2Ri ]. Note

that any finite concatenation of words of this form still has this form. Moreover, such a
concatenation is in μi if its last word is in μi.
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• Now we show that μω is “simple”. The previous remarks show that

μω ={ γ ∈4ω | ∃i∈2 ∀j ∈ω ∃k, n∈ω ∃t0, t1, . . . , tn ∈μi n≥j and γ
k=�
l≤n tl }.

This shows that μω ∈Π0
2(4

ω).

Notice again that all words in A have the same form 2N � [ �
i≤l mi 2Pi 3 2Ri ]. We

set

P :={2N � [ �
i∈ω mi 2Pi 3 2Ri ]∈4ω | N ∈ω and ∀i ∈ ω mi ∈2, Pi, Ri ∈ ω

and ∀i∈ω ∃j ∈ω Pi =Mj}.

We define a map F :P \μω → ({∅} ∪ μ)×ω2 as follows.
Let γ := 2N � [ �

i∈ω mi 2Pi 3 2Ri ] ∈ P \μω, and j0 ∈ ω with P0 = Mj0 . If
γ ∈KN,j0−1, then we put F (γ) := (∅, N, j0). If γ /∈KN,j0−1, then there is an integer l
maximal for which Pl �=Rl or there is j∈ω with Pl =Mj and Pl+1 �=Mj+1. Let j1 ∈ω
with Pl+2 =Mj1 . We put

F (γ) :=(2N � [ �
i≤l mi 2Pi 3 2Ri ] � ml+1 2Pl+1 3, Rl+1, j1).

• Fix γ ∈Aω . If γ /∈μω, then γ ∈P \μω, F (γ) :=(t, S, j) is defined. Note that t 2S ≺γ,
and that j >0. Moreover, γ−t 2S ∈K0,j−1. Note also that S ≤Mj−1 if t=∅, and that
t 2S γ(|t|+S) 2Mj 3 /∈μ. Moreover, there is an integer N ≤ min(Mj−1, S) (N =S if
t=∅) such that γ−t 2S−N ∈πω ∩KN,j−1, since the last word in μ in the decomposition
of γ (if it exists) ends before t 2S .

• In the sequel we will say that (t, S, j)∈({∅} ∪ μ) × ω2 is suitable if S ≤Mj if t=∅,
t(|t|−1)=3 if t∈μ, and t 2S m 2Mj+1 3 /∈μ if m∈2. We set, for (t, S, j) suitable,

Pt,S,j :=
{

γ ∈4ω | t 2S ≺γ and γ−t 2S ∈K0,j

}
.

Note that Pt,S,j is a compact subset of P \μω, and that F (γ)=(t, S, j+1) if γ ∈Pt,S,j .
This shows that the Pt,S,j’s, for (t, S, j) suitable, are pairwise disjoint. Note also that
μω is disjoint from

⋃
(t,S,j) suitable Pt,S,j .

• We set, for (t, S, j) suitable and N ≤min(Mj, S) (N =S if t=∅),

At,S,j,N :=
{

γ ∈Pt,S,j | γ−t 2S−N ∈πω ∩ KN,j

}
.

Note that At,S,j,N ∈Γ(4ω) since N ≤Mj .

• The previous discussion shows that

Aω =μω ∪
⋃

(t,S,j) suitable

⋃

N ≤ min(Mj, S)
N = S if t = ∅

At,S,j,N .
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As Γ is closed under finite unions, the set

At,S,j :=
⋃

N ≤ min(Mj , S)
N = S if t = ∅

At,S,j,N

is in Γ(4ω). On the other hand we have proved that μω ∈Π0
2(4ω)⊆Γ(4ω), thus we get

Aω ∈Γ(4ω) if Γ=Σ0
ξ .

Consider now the case Γ=Π0
ξ . We can write

Aω =μω\

⎛

⎝
⋃

(t,S,j) suitable

Pt,S,j

⎞

⎠ ∪
⋃

(t,S,j) suitable

At,S,j ∩ Pt,S,j.

Thus

¬Aω =¬

⎡

⎣μω ∪

⎛

⎝
⋃

(t,S,j) suitable

Pt,S,j

⎞

⎠

⎤

⎦ ∪
⋃

(t,S,j) suitable

Pt,S,j\At,S,j.

Here ¬
[
μω ∪

(⋃
(t,S,j) suitable Pt,S,j

)]
∈ Δ0

3(4
ω) ⊆ Γ̌(4ω) because μω is a Π0

2-

subset of 4ω and (
⋃

(t,S,j) suitable Pt,S,j) is a Σ0
2-subset of 4ω as it is a countable union

of compact hence closed sets. On the other hand Pt,S,j\At,S,j ∈Γ̌(4ω), thus ¬Aω is in
Γ̌(4ω) and Aω ∈Γ(4ω). Moreover, the set Aω ∩ P∅,0,0 =πω ∩ P∅,0,0 =πω ∩K0,0 is not
in Γ̌. This shows that Aω is not in Γ̌. Thus Aω is in Γ(4ω)\Γ̌.

We can now end the proof of Theorem 2.

(a) If ξ = 1, then we can take A := {s ∈ 2<ω | 0 ≺ s or ∃k ∈ ω 10k1 ≺ s} and
Aω =2ω\{10ω} is Σ0

1\Π0
1.

• If ξ = 2, then we will see in Theorem 4 the existence of A ⊆ 2<ω such that Aω is
Σ0

2\Π0
2.

• So we may assume that ξ≥3, and we are done.

(b) If ξ=1, then we can take A :={0} and Aω ={0ω} is Π0
1\Σ0

1.

• If ξ=2, then we can take A :={0k1 | k∈ω} and Aω =P∞ is Π0
2\Σ0

2.

• So we may assume that ξ≥3, and we are done. �

As we have said above it remains a Borel class for which we have not yet got a complete
ω-power: the class Σ0

2. Notice that it is easy to see that the classical example of Σ0
2-

complete set, the set 2ω \ P∞, is not an ω-power. However we are going to prove the
following result.
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Theorem 4. There is a context-free language A⊆2<ω such that Aω ∈Σ0
2\Π0

2.

Proof. By Proposition 11 in [Lec05], it is enough to find A⊆3<ω. We set, for j<3 and
s∈3<ω,

nj(s):= Card{i< |s| | s(i)=j},

T := {α∈3≤ω | ∀l<1+|α| n2(α�l)≤n1(α�l)}.

• We inductively define, for s∈T ∩ 3<ω, s←↩ ∈2<ω as follows:

s←↩ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∅ if s=∅,

t←↩ε if s= tε and ε<2,

t←↩, except that its last 1 is replaced with 0, if s= t2.

• We will extend this definition to infinite sequences. To do this, we introduce a notion
of limit. Fix (sn)n∈ω a sequence of elements in 2<ω. We define lim

n→∞ sn ∈ 2≤ω as

follows. For each t∈2<ω,

t≺ lim
n→∞ sn ⇔ ∃n0 ∈ω ∀n≥n0 t≺sn.

• If α ∈ T ∩ 3ω, then we set α←↩ := lim
n→∞ (α�n)←↩. We define e : T ∩ 3ω → 2ω by

e(α) :=α←↩. Note that T ∩ 3ω ∈Π0
1(3

ω), and e is a Σ0
2-measurable partial function on

T ∩ 3ω, since for t∈2<ω we have

t≺e(α) ⇔ ∃n0 ∈ω ∀n≥n0 t≺(α�n)←↩.

• We set E :={s∈T ∩ 3<ω | n2(s)=n1(s) and s �=∅ and 1≺ [s�(|s|−1)]←↩}. Note
that ∅ �= s←↩ ≺0ω, and that s(|s|−1)=2 changes s(0)= [s�(|s|−1)]←↩(0)=1 into 0 if
s∈E.

• If S ⊆3<ω, then S∗ :={�
i<l si ∈3<ω | l∈ω and ∀i < l si ∈ S}. We put

A :={0}∪E∪{�
j≤k (cj1)∈3<ω | [∀j ≤k cj ∈({0}∪E)∗] and [k>0 or (k=0 and c0 �=∅)]}.

• In the proof of Theorem 2.(b) we met the set {s∈2<ω | 0≺s or ∃k∈ω 10k1≺s}.
We shall denoted it by B in the sequel. We have seen that Bω =2ω\{10ω} is Σ0

1\Π0
1.

Let us show that Aω =e−1(Bω).

- By induction on |t|, we get (st)←↩ = s←↩t←↩ if s, t ∈ T ∩ 3<ω. Let us show that
(sβ)←↩ =s←↩β←↩ if moreover β ∈T ∩ 3ω.

Assume that t≺(sβ)←↩. Then there is m0 ≥|s| such that, for m ≥ m0,

t≺ [(sβ)�m]←↩ =[sβ�(m−|s|)]←↩ =s←↩[β�(m−|s|)]←↩.
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This implies that t ≺ s←↩β←↩ if |t|< |s←↩|. If |t|≥ |s←↩|, then there is m1 ∈ω such that,
for m ≥ m1, β←↩�(|t|−|s←↩|) ≺ [β�(m−|s|)]←↩. Here again, we get t ≺ s←↩β←↩. Thus
(sβ)←↩ =s←↩β←↩.

Let (si)i∈ω be a sequence such that for each integer i ∈ ω, si ∈ T ∩ 3<ω. Then
�

i∈ω si ∈T , and (�
i∈ω si)←↩ =�

i∈ω s←↩
i , by the previous facts.

- Let (ai)i∈ω be a sequence such that for each integer i ∈ ω, ai ∈ A\{∅} and α :=
�

i∈ω ai. As A⊆T , e(α)=(�
i∈ω ai)←↩ =�

i∈ω a←↩
i .

If a0 ∈{0} ∪ E, then ∅ �=a←↩
0 ≺0ω, thus e(α)∈N0 ⊆2ω\{10ω}=Bω.

If a0 /∈{0} ∪ E, then a0 =�
j≤k (cj1), thus a←↩

0 =�
j≤k (c←↩

j 1).
If c0 �=∅, then e(α)∈Bω as before.
If c0 =∅, then k>0, so that e(α) �=10ω since e(α) has at least two coordinates
equal to 1.

We proved that Aω ⊆e−1(Bω).

- Assume now that e(α)∈Bω . We have to find (ai)i∈ω ⊆A\{∅} with α=�
i∈ω ai. We

split into cases:

1. e(α)=0ω.
1.1. α(0)=0.
In this case α−0∈T and e(α−0)=0ω. Moreover, 0∈A. We put a0 :=0.

1.2. α(0)=1.
In this case there is a coordinate j0 of α equal to 2 ensuring that α(0) is replaced with
a 0 in e(α). We put a0 :=α�(j0+1), so that a0 ∈E ⊆A, α−a0 ∈T and e(α−a0)=0ω.

Now the iteration of the cases 1.1 and 1.2 shows that α∈Aω.

2. e(α)=0k+110ω for some k∈ω.

As in case 1, there is c0 ∈ ({0} ∪ E)∗ such that c0 ≺ α, c←↩
0 = 0k+1, α−c0 ∈ T and

e(α−c0) = 10ω. Note that α(|c0|) = 1, α−(c01) ∈ T and e[α−(c01)] = 0ω. We put
a0 :=c01, and argue as in case 1.

3. e(α)=(�
j≤l+1 0kj 1)0ω for some l∈ω.

The previous cases show the existence of (cj)j≤l+1, where for each j ≤ l + 1 cj ∈
({0} ∪ E)∗ such that :
a0 :=�

j≤l+1 cj1≺α, α−a0∈T and e(α−a0)=0ω. We are done since a0 ∈A.

4. e(α)=�
j∈ω 0kj 1.

An iteration of the discussion of case 3 shows that we can take ai of the form
�

j≤l+1 cj1.
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• The previous discussion shows that Aω = e−1(Bω). As Bω is an open subset of 2ω

and e is Σ0
2-measurable, the ω-power Aω = e−1(Bω) is inΣ0

2(3
ω).

It remains to see that Aω = e−1(Bω) /∈Π0
2. We argue by contradiction.

Assume on the contrary that e−1(Bω) ∈ Π0
2(3

ω). We know that Bω = 2ω \{10ω} so
e−1({10ω}) = (T ∩ 3ω) \ e−1(Bω) would be a Σ0

2-subset of 3ω since T ∩ 3ω is closed
in 3ω. Thus e−1({10ω}) would be a countable union of compact subsets of 3ω.

Consider now the cartesian product ({0} ∪ E)N of countably many copies of ({0} ∪
E). The set ({0} ∪ E) is countable and it can be equipped with the discrete topology.
Then the product ({0} ∪ E)N is equipped with the product topology of the discrete
topology on ({0}∪E). The topological space ({0}∪E)N is homeomorphic to the Baire
space ωω.

Consider now the map h : ({0} ∪ E)N →e−1({10ω}) defined by h(γ) :=1[�i∈ω γi]
for each γ = (γ0, γ1, . . . , γi, . . .) ∈ ({0} ∪ E)N. The map h is a homeomorphism by
the previous discussion. As ({0} ∪ E)N is homeomorphic to the Baire space ωω, the
Baire space ωω is also homeomorphic to the space e−1({10ω}), so it would be also a
countable union of compact sets. But this is absurd by [Kec95, Theorem 7.10].

It remains to see that A is context-free. It is easy to see that the language E is in fact
accepted by a 1-counter automaton: it is the set of words s∈3<ω such that :

∀l∈ [1;|s|[ n2(s�l)<n1(s�l) and n2(s)=n1(s) and s(0)= 1 and s(|s|−1)=2.

This implies that A is also accepted by a 1-counter automaton because the class of 1-
counter languages is closed under concatenation and star operation. In particular A is
a context-free language because the class of languages accepted by 1-counter automata
form a strict subclass of the class of context-free languages, [ABB96]. �

Remark 5. The operation α → α←↩ we have defined is very close to the erasing op-
eration defined by Duparc in his study of the Wadge hierarchy, [Dup01]. However we
have modified this operation in such a way that α←↩ is always infinite when α is infinite,
and that it has the good property with regard to ω-powers and topological complexity.

4 Concluding Remarks and Further Work

It is natural to wonder whether the ω-powers obtained in this paper are effective. For
instance could they be obtained as ω-powers of recursive languages ?

In the long version of this paper we prove effective versions of the results presented
here. Using tools of effective descriptive set theory, we first prove an effective version
of Kuratowski’s Theorem 3. Then we use it to prove the following effective version of
Theorem 2, where Σ0

ξ and Π 0
ξ denote classes of the hyperarithmetical hierarchy and

ωCK
1 is the first non-recursive ordinal, usually called the Church-kleene ordinal.
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Theorem 6. Let ξbe a non-null ordinal smaller than ωCK
1 .

(a) There is a recursive language A⊆2<ω such that Aω ∈Σ0
ξ \Π0

ξ.

(b) There is a recursive language A⊆2<ω such that Aω ∈Π 0
ξ \Σ0

ξ .

The question, left open in [Fin04], also naturally arises to know what are all the pos-
sible infinite Borel ranks of ω-powers of finitary languages belonging to some natural
class like the class of context free languages (respectively, languages accepted by stack
automata, recursive languages, recursively enumerable languages, . . . ).
We know from [Fin06] that there are ω-languages accepted by Büchi 1-counter au-
tomata of every Borel rank (and even of every Wadge degree) of an effective analytic
set. Every ω-language accepted by a Büchi 1-counter automaton can be written as a
finite union L =

⋃
1≤i≤n U�

i V ω
i , where for each integer i, Ui and Vi are finitary lan-

guages accepted by 1-counter automata. And the supremum of the set of Borel ranks
of effective analytic sets is the ordinal γ1

2 . This ordinal is defined by A.S. Kechris, D.
Marker, and R.L. Sami in [KMS89] and it is proved to be strictly greater than the or-
dinal δ1

2 which is the first non Δ1
2 ordinal. Thus the ordinal γ1

2 is also strictly greater
than the first non-recursive ordinal ωCK

1 . From these results it seems plausible that there
exist some ω-powers of languages accepted by 1-counter automata which have Borel
ranks up to the ordinal γ1

2 , although these languages are located at the very low level in
the complexity hierarchy of finitary languages.

Another question concerns the Wadge hierarchy which is a great refinement of the
Borel hierarchy. It would be interesting to determine the Wadge hierarchy of ω-powers.
In the full version of this paper we give many Wadge degrees of ω-powers and this
confirms the great complexity of these ω-languages.
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