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1 Introduction

We first recall the definition of some graph-theoretic notions used in this paper. In the sequel,
X,Y will be sets. The diagonal of X is the set ∆(X) :={(x, y)∈X2 | x=y}. Moreover, A will be
a (binary) relation on X (i.e., a subset of X2). We say that A is irreflexive, or a digraph, if A does
not meet ∆(X). We set A−1 :={(x, y)∈X2 | (y, x)∈A}. We say that A is symmetric if A=A−1,
and that A is a graph if A is irreflexive and symmetric. We also say that A is antisymmetric if
A ∩ A−1 ⊆ ∆(X), and that A is an oriented graph if A is irreflexive and antisymmetric. The
symmetrization of A is s(A) :=A ∪ A−1. An A-path is a finite sequence (xi)i≤n of points of X
such that (xi, xi+1)∈A if i<n. We say that A is acyclic if there is no injective A-path (xi)i≤n with
n≥2 and (xn, x0)∈A. In practice, we will consider acyclicity only for symmetric relations since this
is what matters in our Cantor-like constructions. We will say that A is s-acyclic if s(A) is acyclic. If
A,B are relations on X,Y respectively, then a map h :X→Y is a homomorphism from (X,A) into
(Y,B) if A⊆(h×h)−1(B), and a reduction from (X,A) into (Y,B) if A=(h×h)−1(B).

In [K-S-T], the authors characterize the analytic graphs A having a Borel countable coloring
(i.e., a Borel homomorphism from (X,A) into (ω, 6=)). In order to do this, they introduce a graph
G0 on the Cantor space 2ω. We will consider the dissymetrized version G0 of G0, so that G0 is the
symmetrization s(G0) of the oriented graph G0. The following result, often called the G0 dichotomy,
is essentially proved in [K-S-T].

Theorem 1.1 (Kechris, Solecki, Todorčević) Let X be a Polish space, and A be an analytic relation
on X . Then exactly one of the following holds:

(a) there is a Borel countable coloring of A,

(b) there is a continuous homomorphism from (2ω,G0) into (X,A).

The authors conjecture the injectivity of the continuous homomorphism when (b) holds. In [L3],
it is proved that this is not possible in general because of cycles, with a counter-example having
countable vertical sections. However, the authors show that the injectivity is possible in several cases,
in particular for acyclic analytic graphs with s(G0). The following is essentially proved in [K-S-T].

Theorem 1.2 (Kechris, Solecki, Todorčević) Let X be a Polish space, and A be an analytic digraph
on X . We assume that A is s-acyclic. Then exactly one of the following holds:

(a) there is a Borel countable coloring of A,

(b) there is an injective continuous homomorphism from (2ω,G0) into (X,A).

It is natural to ask for a reduction instead of a homomorphism in (b). Recall that if X,Y are
topological spaces, and A,B are relations on X,Y respectively, then

(X,A) vc (Y,B) ⇔ there is an injective continuous reduction h from (X,A) into (Y,B).

This is the notation for the injective continuous reducibility. If h is only Borel, then we say that
(X,A) is Borel reducible to (Y,B) (notion widely studied when A and B are analytic equivalence
relations). In [L3], we can find the following result. We say that a relation is locally countable if it
has countable horizontal and vertical sections (this also makes sense in a rectangular product X×Y ).
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Theorem 1.3 (Miller) Let X be a Polish space, and A be an analytic oriented graph on X . We
assume that A is locally countable and s-acyclic. Then exactly one of the following holds:

(a) there is a Borel countable coloring of A,
(b) there is an injective continuous reduction from (2ω,G0) into (X,A).

A more general version of this is in [L-M] (see Theorem 15), with the same kind of assumptions.
In [L3], Theorem 1.1 is applied to the theory of potential complexity (notion defined in [Lo2]).

Definition 1.4 (Louveau) Let X , Y be Polish spaces, B be a Borel subset of X×Y , and Γ be a class
of sets closed under continuous pre-images. We say that B is potentially in Γ

(
denoted B∈pot(Γ)

)
if there are finer Polish topologies σ, τ on X,Y respectively such that B, viewed as a subset of the
product (X,σ)×(Y, τ), is in Γ.

One of the motivations for introducing this notion was that it is a natural invariant for the Borel
reducibility, in the sense that a relation Borel reducible to a relation potentially in Γ has also to be
potentially in Γ. Theorem 1.1 was used in the first proof of the following result. A set S separates a
set A from a set B if A⊆S⊆¬B. If (A,A′), (B,B′) are pairs of disjoint subsets of X×X ′, Y ×Y ′
respectively, then a rectangular reduction from (X,X ′, A,A′) into (Y, Y ′, B,B′) holds on A ∪ A′
if there are maps h :X→Y and h′ :X ′→Y ′ such that A⊆ (h×h′)−1(B) and A′⊆ (h×h′)−1(B′).
Here again, the properties of injectivity and continuity will refer to the maps h and h′.

Theorem 1.5 LetX,Y be Polish spaces, andA,B be disjoint analytic subsets ofX×Y . Then exactly
one of the following holds:

(a) the set A is separable from B by a potentially closed set,
(b) a continuous rectangular reduction from

(
2ω, 2ω,G0,∆(2ω)

)
into (X,Y,A,B) holds on the

set G0 ∪∆(2ω).
Moreover, we can ensure neither that a continuous rectangular reduction holds on the whole

product 2ω×2ω, nor that an injective continuous rectangular reduction holds on G0 ∪∆(2ω).

This result was generalized to all non self-dual Borel classes in [L4], and to all Wadge classes of
Borel sets in [L5]. For instance, the following is proved in [L4].

Theorem 1.6 (1) (Debs-Lecomte) Let ξ ≥ 1 be a countable ordinal. Then there is a Borel relation
S on 2ω such that for any Polish spaces X,Y , and for any disjoint analytic subsets A,B of X×Y ,
exactly one of the following holds:

(a) the set A is separable from B by a pot(Π0
ξ) set,

(b) a continuous rectangular reduction from (2ω, 2ω, S, S\S) into (X,Y,A,B) holds on S.
(2) (Debs) We cannot replace S\S with ¬S in (b).

Theorem 1.6.(2) shows that it is not possible to have a reduction on the whole product in general.
However, part of the motivation leading to Theorem 1.6 was to get a reduction on the whole product,
like in the classical notion of Borel reducibility. There are cycle problems behind the last assertion
of Theorem 1.5, proved in [L3], and also behind Theorem 1.6.(2). This leads to assume s-acyclicity
to get reduction results on the whole product, which is the goal of this paper. However, note that the
s-acyclicity property holds in the domain side in Theorems 1.5 and 1.6. In this paper, we will assume
s-acyclicity on the range side.
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As in Theorem 1.3, we are looking for minimum sets. However, for some classes of sets, there is
no minimum set but a family of minimal sets. This leads to the following.

Definition 1.7 Let C be a class, and≤ be a quasi-order (i.e., a reflexive transitive relation) on C. We
say that B⊆C is
(1) a basis for C if for any element a of C there is b in B with b ≤ a,
(2) an antichain if the elements of B are pairwise ≤-incomparable.

If moreover B is a singleton {b}, then we say that b is minimum among elements of C.

Intuitively, we are looking for basis as small as possible for the inclusion, i.e., for antichain basis.
In practice, C will always be a class of pairs of the form (X,A), where X is a Polish space and A
is a relation on X . The elements of our basis will be of the form (2ω, B) (except where indicated),
and ≤ will always be vc, so that we will not mention the Polish spaces, 2ω and vc. For example,
Theorem 1.3 says that G0 is minimum among analytic locally countable s-acyclic oriented graphs
without Borel countable coloring.

We prove the following sufficient condition for reducing G0.

Theorem 1.8 {(1, 12),G0, s(G0)} is an antichain basis for the class of analytic relations, contained
in a pot(Σ0

2) symmetric acyclic relation, without Borel countable coloring. In particular,
(i) G0 is minimum among analytic oriented graphs, contained in a pot(Σ0

2) acyclic graph, without
Borel countable coloring,

(ii) s(G0) is minimum among analytic graphs, contained in a pot(Σ0
2) acyclic graph, without

Borel countable coloring.

Note that this extends Theorem 1.3. Indeed, under the assumptions of Theorem 1.3, the reflexion
theorem gives a Borel locally countable s-acyclic digraph B containing A. It remains to note that B
is pot(Σ0

2) since a Borel set with countable vertical sections has Σ0
2 vertical sections and is therefore

pot(Σ0
2) (see [Lo1]). We will see that this is a real extension, in the sense that we can find a Σ0

2 acyclic
graph D on 2ω and Borel oriented subgraphs of D, without Borel countable coloring, of arbitrarily
high potential complexity (see Proposition 3.17). Theorem 1.8 applies to analytic relations whose
closure is s-acyclic. More generally, all the dichotomy results in this paper work for Borel relations
whose closure is an s-acyclic oriented graph, and for Borel graphs whose closure is an acyclic graph.
We always prove more than that, in different directions.

In the sequel, Γ will be a class of sets closed under continuous pre-images. The dual class of Γ
is Γ̌ :={¬A | A∈Γ}. If Γ 6= Γ̌ is a Borel class, then we say that Γ is a non self-dual Borel class (this
means that Γ is of the form Σ0

ξ or Π0
ξ). Now we can state our main positive result.

Theorem 1.9 Let Γ be a non self-dual Borel class. Then there is a concrete finite vc-antichain basis
for the class of non-pot(Γ) Borel relations whose closure has acyclic symmetrization.

In fact, we always prove more than that. The reason why we state our main result as above is
that our strengthenings depend on the class Γ considered. A much more precise (and long) statement
will be given later (see Theorem 4.1). The assumption on the closure in the statement above works in
every case, but quite often much weaker assumptions are sufficient. In particular, we do not always
refer to a superset (the closure here). We now extract the essence of Theorem 4.1.
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If Γ is the class of open sets, then we provide a three-element antichain basis for the class of
non-potentially open Borel s-acyclic relations. In particular, we do not refer to a superset here. As a
consequence, ∆(2ω) is minimum among non-potentially open Borel s-acyclic quasi-orders (or partial
orders, i.e., antisymmetric quasi-orders).

If Γ is the class of closed sets, then we provide a seventeen-element antichain basis for the class
of non-potentially closed Borel subsets of a potentially closed s-acyclic relation. Recall that a set is in
the class D2(Σ0

1) if it is the difference of two open sets. We will see that any pot
(
Ď2(Σ0

1)
)

s-acyclic
relation is in fact potentially closed (see Proposition 7.3). In particular, we can replace the assumption
“potentially closed” with “pot

(
Ď2(Σ0

1)
)
”. We get minimum objects in the case of oriented graphs,

graphs, quasi-orders and partial orders.

If the rank of Γ is at least two, then we provide a fifteen-element antichain basis for the class of
non-potentially Γ Borel subsets of a potentially Σ0

2 s-acyclic relation. Again, this gives minimum
objects in the case of oriented graphs, graphs, quasi-orders and partial orders.

We will now state our main negative result, showing the optimality of some of the assumptions in
Theorem 4.1.

Notation. If Γ 6= Γ̌ is a Borel class, then we denote by

Γ⊕ Γ̌ :={(A ∩ C) ∪ (B\C) | A∈Γ, B∈ Γ̌, C∈∆0
1}

the successor of Γ in the Wadge quasi-order.

Theorem 1.10 Let Γ be a non self-dual Borel class.

(1) If Γ 6=Σ0
1, then there is no relation which is minimum among non-pot(Γ) Borel s-acyclic oriented

graphs.

(2) If Γ is of rank at least two, then there is no relation which is minimum among non-pot(Γ) Borel
subsets of a pot(Γ⊕ Γ̌) s-acyclic oriented graph.

(3) If Γ=Π0
1, then there is no relation which is minimum among non-pot(Γ) Borel locally countable

subsets of a pot
(
D2(Σ0

1)
)

s-acyclic oriented graph.

A common strategy is used to prove Theorems 1.8 and 4.1. In both cases, we want to build a
reduction. Using some known results about injective homomorphisms (Theorem 1.2) and injective
reductions (Corollary 1.12 in [L4] and its injective version due to Debs), we work in the domain
space only, with some concrete examples instead of the abstract notions of Borel chromatic number
or potential Borel class. However, the injective version due to Debs is not true if the rank of Γ is at
most two, because of cycle problems again. We use some injectivity results in the style of Debs’s one
for the first Borel classes, in the acyclic case (see [L-Z]).

The fact of considering Borel locally countable s-acyclic relations is natural if we look at Theorem
1.3, and also the assumption of Theorem 1.8. We would like to find, for each non self-dual Borel class
Γ, an antichain basis for the class of non-pot(Γ) Borel locally countable s-acyclic relations. Recall
that a Borel locally countable set is pot(Σ0

2). Theorem 4.1 solves the case Γ=Σ0
1.
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We use an injective version of Corollary 1.12 in [L4] for Γ = Π0
2 in the locally countable case

which improves Theorem 7 in [L2] (see [L-Z]). As a consequence, Theorem 4.1 will solve the case
Γ=Π0

2. It provides a seven-element antichain basis for the class of non-potentially Π0
2 Borel locally

countable s-acyclic relations. In particular, we do not refer to a superset here. Here again, this gives
minimum objects in the case of oriented graphs, graphs, quasi-orders and partial orders.

It remains to study the case Γ = Π0
1. Note that it is essential here to assume some acyclicity.

Indeed, Theorem 5 in [L3] gives a vc-antichain of size continuum made of D2(Σ0
1) oriented graphs

with locally countable closure which arevc-minimal among non-pot(Π0
1) Borel relations. Moreover,

Theorem 19 in [L-M] shows that there is no antichain basis for the class of non-pot(Π0
1) D2(Σ0

1)
oriented graphs with locally countable closure. All these counter-examples are constructed with dif-
ferent configurations of cycles. Note that the elements of an antichain basis have to be minimal in
the class considered. A minimality theorem is already a dichotomy result interesting in itself, and
possibly a first step towards the existence of an antichain basis. In order to try to extend Theorem 4.1
when Γ=Π0

1 in the locally countable case, we prove the following additional dichotomy results.

Theorem 1.11 There is a thirty one element antichain A′ made of D2(Σ0
1) s-acyclic relations, with

locally countable closure, which are minimal among non-pot(Π0
1) relations.

Another motivation for proving this is the following question, which has some reasonable chances
to have a positive answer.

Question. Is A′ a basis for the class of non-pot(Π0
1) Borel s-acyclic relations with locally countable

closure?

Note that we cannot hope for a single minimum set in Theorem 1.9, since the pre-image of a
symmetric set by a square map is symmetric. However, a positive result holds with rectangular
maps. We say that a relation A on X is bipartite if there are disjoint subsets S0, S1 of X such that
A⊆ (S0×S1) ∪ (S1×S0). Let C ⊆X×Y . We consider the bipartite oriented graph GC on X⊕Y
defined by (

(ε, z), (ε′, z′)
)
∈GC ⇔ (ε, ε′)=(0, 1) ∧ (z, z′)∈C.

Theorem 1.12 Let Γ be a non self-dual Borel class of rank at least two. There is a Γ̌ relation S on
2ω, contained in a closed set C with GC s-acyclic, such that for any Polish spaces X,Y , and for any
Borel subset B of X×Y contained in a pot(Σ0

2) set F with GF s-acyclic, exactly one of the following
holds:

(a) the set B is pot(Γ),
(b) an injective continuous rectangular reduction from (2ω, 2ω, S,¬S) into (X,Y,B,¬B) holds

on 2ω×2ω.

This result holds for Γ = Π0
1 when F is pot

(
Ď2(Σ0

1)
)

(except that S is not open, we can take
S=G0, and the class Ď2(Σ0

1) is optimal), and Γ=Σ0
1, in which case F does not have to be pot(Σ0

2).

The paper is organized as follows. In Section 2, we prove Theorem 1.8. In Section 3, we give
some material concerning potential Borel classes useful for the sequel. In Section 4, we prove some
general results about our antichain basis. In Sections 5-7, we prove Theorems 4.1, 1.10, 1.11 and 1.12
when the rank is at least three, two and one respectively.
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2 Countable Borel chromatic number

Basic facts and notions

The reader should see [K] for the standard descriptive set theoretic notation used in this paper. We
say that a relation A on X is connected if for each x, y ∈X there is an A-path (xi)i≤n with x0 =x
and xn=y. We start with a simple algebraic fact about connected acyclic graphs.

Lemma 2.1 Let G (resp., H) be an acyclic graph on X (resp., Y ), and h be an injective homomor-
phism from (X,G) into (Y,H). We assume that G is connected. Then h is an isomorphism of graphs
from (X,G) onto

(
h[X], H ∩ (h[X])2

)
.

Proof. Assume that (x, y) /∈ G. We have to see that
(
h(x), h(y)

)
/∈ H . As G is connected, there

is (xi)i≤n injective with x0 = x, xn = y, and (xi, xi+1) ∈ G if i < n. As (x, y) /∈ G, n 6= 1.
We may assume that n ≥ 2. As h is an injective homomorphism,

(
h(xi)

)
i≤n is injective and(

h(xi), h(xi+1)
)
∈H if i<n. The acyclicity of H gives the result. �

Notation. We have to introduce a minimum digraph without Borel countable coloring, namely G0.

Let ψ : ω→ 2<ω be a natural bijection. More precisely, ψ(0) := ∅ is the sequence of length 0,
ψ(1) :=0, ψ(2) :=1 are the sequences of length 1, and so on. Note that |ψ(n)|≤n if n∈ω. Let n∈ω.
As |ψ(n)| ≤ n, we can define sn := ψ(n)0n−|ψ(n)|. The crucial properties of the sequence (sn)n∈ω
are the following:

- (sn)n∈ω is dense in 2<ω. This means that for each s∈ 2<ω, there is n∈ ω such that sn extends s
(denoted s⊆sn).
- |sn|=n.

We put G0 := {(sn0γ, sn1γ) | n ∈ ω ∧ γ ∈ 2ω} ⊆ 2ω×2ω. Note that G0 is analytic (in fact a
difference of two closed sets) since the map (n, γ) 7→(sn0γ, sn1γ) is continuous.

If s∈2<ω, then Ns :={α∈2ω | s⊆α} is the associated basic clopen set. We identify (2×2)<ω

with
⋃
l∈ω (2l×2l), set T := {(s, t) ∈ (2×2)<ω | s 6= t ∧ (Ns×Nt) ∩ G0 6= ∅} and, for l ∈ ω,

Tl :=T ∩ (2l×2l). The set T ∪∆(2<ω) is a tree with body G0 =G0 ∪∆(2ω).

Proposition 2.2 Let l ≥ 1. Then s(Tl) is a connected acyclic graph on 2l. In particular, G0 is
s-acyclic.

Proof. This comes from Proposition 18 in [L3]. �

Notation. If s, t∈2l, then ps,t :=(us,ti )i≤Ls,t is the unique injective s(Tl)-path from s to t.

Here is another basic algebraic result about acyclicity.

Lemma 2.3 Let A be a relation on X .
(a) We assume thatA is irreflexive or antisymmetric, and thatA is s-acyclic. ThenGA is s-acyclic.
(b) We assume that there are disjoint subsets X0, X1 of X such that A⊆X0×X1, and that GA is

s-acyclic. Then A is s-acyclic.
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Proof. (a) Assume first that A is irreflexive. We argue by contradiction, which gives n ≥ 2 and an
injective s(GA)-path

(
(εi, zi)

)
i≤n such that

(
(ε0, z0), (εn, zn)

)
∈ s(GA). As A is s-acyclic, there is

k≥ 1 minimal for which there is i < n such that zi = zi+k. As A is irreflexive, k≥ 3. It remains to
note that the s(A)-path zi, ..., zi+k contradicts the s-acyclicity of A.

Assume now that A is antisymmetric. We argue by contradiction, which gives n ≥ 2 and an
injective s(GA)-path

(
(εi, zi)

)
i≤n such that

(
(ε0, z0), (εn, zn)

)
∈ s(GA). This implies that εi 6= εi+1

if i<n and n is odd. Thus (zi)i≤n is a s(A)-path such that (z2j)2j≤n and (z2j+1)2j+1≤n are injective
and (z0, zn)∈ s(A). As s(A) is acyclic, the sequence (zi)i≤n is not injective. We erase z2j+1 from
this sequence if z2j+1∈{z2j , z2j+2} and 2j+1≤n, which gives a sequence (z′i)i≤n′ which is still a
s(A)-path with (z′0, z

′
n′)∈s(A), and moreover satisfies z′i 6=z′i+1 if i<n′.

If n′< 2, then n= 3, z0 = z1 and z2 = z3. As A is antisymmetric and ε3 = ε1 6= ε2 = ε0, we get
z0 =z2, which is absurd. If n′≥2, then (z′i)i≤n′ is not injective again. We choose a subsequence of it
with at least three elements, made of consecutive elements, such that the first and the last elements are
equal, and of minimal length with these properties. The s-acyclicity ofA implies that this subsequence
has exactly three elements, say (z′i, z

′
i+1, z

′
i+2 =z′i).

If z′i = z2j+1, then z′i+1 = z2j+2, z′i+2 = z2j+4 and z2j+3 = z2j+2. As A is antisymmetric and
ε2j+3 =ε2j+1 6=ε2j+2 =ε2j+4, we get z2j+2 =z2j+4, which is absurd. If z′i=z2j , then z′i+1 =z2j+2,
and z′i+2 =z2j+3. As A is antisymmetric and ε2j+3 =ε2j+1 6=ε2j+2 =ε2j , we get z2j =z2j+2, which
is absurd.

(b) Let (zi)i≤n be an injective s(A)-path such that (z0, zn) ∈ s(A). As A⊆X0×X1, n is odd and(
(ε, z0), (1−ε, z1), (ε, z2), (1−ε, z3), ..., (ε, zn−1), (1−ε, zn)

)
is an injective s(GA)-path such that(

(ε, z0), (1−ε, zn)
)
∈s(GA) for some ε∈2. �

Remark. Proposition 2.2 says that s(G0) = s
(
s(G0)

)
is acyclic. But s(G0) is reflexive, and the

sequence
(
(0, 0∞), (1, 0∞), (0, 10∞), (1, 10∞)

)
is a s(Gs(G0))-cycle. This shows that the assumption

that A is irreflexive or antisymmetric is useful.

The next result implies that the s-acyclic reasonably definable relations are very small.

Lemma 2.4 Let A be a σ(Σ1
1) relation on a Polish space X such that GA is s-acyclic, and C,D be

Cantor subsets of X . Then A ∩ (C×D) is meager in C×D.

Proof. We argue by contradiction, which gives homeomorphisms ϕ : 2ω→C and ψ : 2ω→D. Then
(ϕ×ψ)−1(A) is not meager in 2ω×2ω and has the Baire property. By 19.6 in [K] we get Cantor sets
C ′⊆C and D′⊆D such that C ′×D′⊆A, and we may assume that they are disjoint. Take α0∈C ′,
α1 ∈D′, α2 ∈C ′\{α0}, and α3 ∈D′\{α1}. Then

(
(0, α0), (1, α1), (0, α2), (1, α3)

)
is an injective

s(GA)-path with
(
(0, α0), (1, α3)

)
∈s(GA), which contradicts the s-acyclicity of GA. �

Proof of Theorem 1.8

The next result will help us to prove Theorem 1.8 and will also be used later.
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Theorem 2.5 Let S be a Σ0
2 s-acyclic digraph on 2ω containing G0. Then there is f : 2ω → 2ω

injective continuous such that G0⊆(f×f)−1(G0)⊆(f×f)−1(S)⊆s(G0).

Proof. By Lemmas 2.3 and 2.4, S is meager, which gives a decreasing sequence (On)n∈ω of dense
open subsets of 2ω×2ω with ¬S=

⋂
n∈ω On. We define ϕn :Nsn0→Nsn1 by ϕn(sn0γ) :=sn1γ, so

that G0 =
⋃
n∈ω Gr(ϕn).

We construct Ψ:2<ω→2<ω and δ∈ωω strictly increasing satisfying the following conditions:

(1) ∀s∈2<ω ∀ε∈2 Ψ(s)$Ψ(sε)
(2) ∀l∈ω ∃kl∈ω ∀s∈2l |Ψ(s)|=kl
(3) ∀n∈ω ∀v∈2<ω ∃w∈2<ω

(
Ψ(sn0v),Ψ(sn1v)

)
=(sδ(n)0w, sδ(n)1w)

(4) ∀(s, t)∈(2×2)<ω\
(
s(T ) ∪∆(2<ω)

)
NΨ(s)×NΨ(t)⊆O|s|

Assume that this is done. We define f :2ω→2ω by {f(α)}=
⋂
n∈ω NΨ(α|n), and f is continuous. In

order to see that f is injective, it is enough to check that Ψ(s0) 6=Ψ(s1) if s∈2<ω. Assume that s∈2l.
We fix, for each i <L :=Ls,sl , ni :=ns,sli ∈ω and εi := εs,sli ∈ 2 such that us,sli+10∞=ϕεini(u

s,sl
i 0∞),

so that Ψ(s1)0∞ = ϕ−ε0δ(n0)...ϕ
−εL−1

δ(nL−1)ϕδ(l)ϕ
εL−1

δ(nL−1)...ϕ
ε0
δ(n0)

(
Ψ(s0)0∞

)
. Thus Ψ(s0) 6= Ψ(s1) since

kl+1>δ(l)≥supi<L
(
1+δ(ni)

)
. Note that

ϕδ(n)

(
f(sn0γ)

)
∈ϕδ(n)[

⋂
p∈ω

NΨ(sn0(γ|p))]⊆
⋂
p∈ω

ϕδ(n)[NΨ(sn0(γ|p))]=
⋂
p∈ω

NΨ(sn1(γ|p)) ={f(sn1γ)},

so that G0⊆(f×f)−1(G0).

Conversely, ∆(2ω)⊆ (f×f)−1
(
∆(2ω)

)
⊆ (f×f)−1(¬S). If (α, β) /∈s(G0) ∪∆(2ω), then there

is n0∈ω such that (α|n, β|n) /∈s(T ) ∪∆(2<ω) if n≥n0, so that(
f(α), f(β)

)
∈
⋂
n≥n0

NΨ(α|n)×NΨ(β|n)⊆
⋂
n≥n0

On⊆¬S.

It remains to prove that the construction is possible. We first set Ψ(∅) := ∅. Assume that Ψ[2≤l]
satisfying (1)-(4) has been constructed, which is the case for l = 0. Note that Ψ|2l is an injective
homomorphism from s(Tl) into s(Tkl), and therefore an isomorphism of graphs onto its range by
Lemma 2.1. Moreover, δ(n) < kl if n < l. Let δ(l) ≥ supn<l

(
1+δ(n)

)
such that Ψ(sl) ⊆ sδ(l).

We define temporary versions Ψ̃(uε) of the Ψ(uε)’s by Ψ̃(uε) := Ψ(u)(sδ(l)ε−sδ(l)|kl), ensuring
Conditions (1), (2) and (3).

For Condition (4), note that L := Ls,t ≥ 2. Here again, Ψ̃|2l+1 is an isomorphism of graphs
onto its range. This implies that

(
Ψ̃(us,ti )

)
i≤L is the injective s(T )-path from Ψ̃(s) to Ψ̃(t). Thus(

Ψ̃(us,ti )0∞
)
i≤L is the injective s(G0)-path (and also s(S)-path) from Ψ̃(s)0∞ to Ψ̃(t)0∞. Therefore(

Ψ̃(s)0∞, Ψ̃(t)0∞
)
∈¬s(S)⊆Ol+1 since L≥2. This gives m∈ω with NΨ̃(s)0m×NΨ̃(t)0m⊆Ol+1.

It remains to set Ψ′(uε) :=Ψ̃(uε)0m, which ensures the inclusion NΨ′(s)×NΨ′(t)⊆Ol+1. �
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Corollary 2.6 Let X be a Polish space, A be an analytic subset of a pot(Σ0
2) s-acyclic digraph G on

X . Then exactly one of the following holds:
(a) there is a Borel countable coloring of (X,A),
(b) there is f :2ω →X injective continuous with G0⊆(f×f)−1(A)⊆(f×f)−1(G)⊆s(G0).

Proof. By Theorem 1.1, (a) and (b) cannot hold simultaneously. So assume that (a) does not hold.
Let τ be a finer Polish topology on X such that G∈Σ0

2

(
(X, τ)2

)
. Theorem 1.2 gives g :2ω →(X, τ)

injective continuous with G0⊆(g×g)−1(A). We now apply Theorem 2.5 to S :=(g×g)−1(G), which
gives h : 2ω →2ω injective continuous with G0⊆ (h×h)−1(G0)⊆ (h×h)−1(S)⊆s(G0). It remains
to set f :=g ◦ h. �

Proof of Theorem 1.8. By Theorem 1.1, 12, G0 and s(G0) are in the context of Theorem 1.8. Assume
that A is an analytic relation on a Polish space X , without Borel countable coloring, contained in a
pot(Σ0

2) symmetric acyclic relation S. If A is not irreflexive, then let (x, x) ∈ A, and 0 7→ x is a
witness for (1, 12) vc (X,A). So we may assume that A and S are irreflexive. Corollary 2.6 gives
f :2ω→X with G0⊆A′ :=(f×f)−1(A)⊆s(G0). By Theorem 1.2 again, two cases can happen.

Either there is a Borel countable coloring of R :=A′\<lex. This gives a non-meager R-discrete
Gδ subset G of 2ω. Note that A′ ∩ G2 is an analytic oriented graph on G without Borel countable
coloring and (f×f)−1(S) ∩G2 is a pot(Σ0

2) acyclic graph containing A′ ∩G2. Corollary 2.6 gives
g : 2ω→G injective continuous with G0 ⊆ (g×g)−1(A′ ∩ G2)⊆ s(G0). Thus (2ω,G0) vc (X,A)
since A′ ∩G2 is an oriented graph.

Or there is h :2ω→2ω injective continuous with G0⊆(h×h)−1(R). Note thatA′′ :=(h×h)−1(A′)
is analytic, contains s(G0), and is contained S′ :=(h×h)−1

(
(f×f)−1(S)

)
, which is a pot(Σ0

2) acyclic
graph.

Indeed, if (α, β)∈ s(G0)\G0, then (α, β)∈G−1
0 ,
(
h(β), h(α)

)
∈A′\<lex⊆ s(G0)\G0 =G−1

0 ,
and

(
h(α), h(β)

)
∈G0⊆A′. Corollary 2.6 gives i :2ω→2ω with

G0⊆(i×i)−1
(
s(G0)

)
⊆(i×i)−1(S′)⊆s(G0).

Thus s(G0)⊆(i×i)−1(A′′)⊆s(G0) and
(
2ω, s(G0)

)
vc (X,A). �

Question. Can we extend Theorem 1.8 to any acyclic graph?

The next remark essentially says that Theorem 1.8 applies to analytic relations whose tree has
s-acyclic levels.

Proposition 2.7 Let X be a Polish space, C be a closed subset of the Baire space, b : C → X be
a continuous bijection, and A an analytic relation on X . We assume that the levels of the tree of
s
(
(b×b)−1(A)

)
are acyclic. Then A is contained in a pot(Π0

1) symmetric acyclic relation.

Proof. The levels of the tree of s
(
(b×b)−1(A)

)
are defined, for each l∈ω, by

Ll :={(s, t)∈ωl×ωl | (Ns×Nt) ∩ s
(
(b×b)−1(A)

)
6=∅}.

As they are acyclic, s
(
(b×b)−1(A)

)
is acyclic too. Thus s

(
(b×b)−1(A)

)
is a closed symmetric

acyclic relation containing (b×b)−1(A). We are done since b is a Borel isomorphism. �
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3 Potential Borel classes

Notation. Fix some standard bijection < ., . >:ω2→ω, for example

(n, p) 7→< n, p >:=
(n+p)(n+p+1)

2
+p.

Let I :ω→ω2 be its inverse (I associates
(
(l)0, (l)1

)
with l).

We identify (2l)2 and (22)l, for each l∈ω+1.

Definition 3.1 Let F⊆
⋃
l∈ω (2l)2≡(22)<ω. We say that F is a frame if

(1) ∀l∈ω ∃!(ul, vl)∈F∩(2l)2,
(2) ∀p, q∈ω ∀w∈2<ω ∃N ∈ω (uq0w0N , vq1w0N )∈F and (|uq0w0N |)0 =p,
(3) ∀l>0 ∃q<l ∃w∈2<ω (ul, vl)=(uq0w, vq1w).

If F={(ul, vl) | l∈ω} is a frame, then we will call T the tree on 22 generated by F:

T :=
{

(u, v)∈(2×2)<ω | u=∅ ∨
(
∃q∈ω ∃w∈2<ω (u, v)=(uq0w, vq1w)

)}
.

The existence condition in (1) and the density condition (2) ensure that dT e is big enough to
contain sets of arbitrary high complexity. The uniqueness condition in (1) and condition (3) ensure
that dT e is small enough to make the reduction in Theorem 3.3 to come possible. The last part of
condition (2) gives a control on the verticals which is very useful to construct complex examples.
This definition is a bit different from Definition 2.1 in [L5], where (|uq0w0N |−1)0 is considered
instead of (|uq0w0N |)0 in Condition (2). This new notion is simpler and more convenient to study
the equivalence relations associated with ideals (see [C-L-M] for a use of this kind of equivalence
relations). In most cases, our examples will be ideals (see Lemma 3.16). Also, we do not need
Condition (d) in [L5] ensuring that T ∩ (dd)l is ∆1

1 when d=ω, which is clear when d=2.

Notation. We set, for l∈ω, M(l) :=max{m∈ω | m(m+1)
2 ≤ l}, so that M(l)=(l)0+(l)1.

Lemma 3.2 There is a frame.

Proof. We first set (u0, v0) :=(∅, ∅). Note that

(l)0+(l)1 =M(l)≤M(l)(M(l)+1)

2
≤ l,

for each l∈ω. This allows us to define

(ul+1, vl+1) :=(u((l)1)0 0 ψ(((l)1)1) 0l−((l)1)0−|ψ(((l)1)1)|, v((l)1)0 1 ψ(((l)1)1) 0l−((l)1)0−|ψ(((l)1)1)|).

Note that (ul, vl) is well defined and |(ul, vl)|= l, by induction on l. It remains to check that condition
(2) in the definition of a frame is fulfilled. We set n :=ψ−1(w), and l :=

〈
p+1, < q, n >

〉
. It remains

to put N := l−q−|w|: (uq0w0N , vq1w0N )=(ul+1, vl+1), and

(|uq0w0N |)0 =(l+1)0 =(<p,< q, n >+1>)0 =p.

This finishes the proof. �
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In the sequel, T will be the tree generated by a fixed frame F . We set, for each l∈ω,

Tl :=T ∩ (2l × 2l).

The proof of Proposition 3.2 in [L4] shows that s(GTl) is an acyclic graph if l ∈ω, and Lemma 2.3
shows that s(Tl) is acyclic if l≥1 since dT e⊆N0×N1 (it is also connected, by induction on l). Using
Theorem 1.10 in [L4], this gives the next result, without the injectivity complement due to Debs.

Theorem 3.3 Let Γ be a non self-dual Borel class, S∈ Γ̌(dT e), X,Y be Polish spaces, and A,B be
disjoint analytic subsets of X×Y .
(1) (Debs-Lecomte) One of the following holds:

(a) the set A is separable from B by a pot(Γ) set,
(b) a continuous rectangular reduction from (2ω, 2ω, S, dT e\S) into (X,Y,A,B) holds on dT e.

(2) (Debs) If moreover Γ is of rank at least three, then an injective continuous rectangular reduction
holds in (b).

Notation. We use complex one-dimensional sets to build complex two-dimensional sets, using the
symmetric difference. More precisely, recall that the symmetric difference α∆β of α, β∈2ω is the
element of 2ω defined by (α∆β)(m) = 1 exactly when α(m) 6= β(m). We associate the following
two-dimensional sets to the one-dimensional set I⊆2ω. We set

EI :={(α, β)∈2ω×2ω | α∆β∈I}

and SI := dT e ∩ EI . If I is a nonempty ideal (i.e., I is closed under taking subsets and finite
unions), then EI is the equivalence relation associated with I. The following result ensures that SI
is complicated if I is.

Definition 3.4 Let I ⊆ 2ω, 2ω being identified with the power set of ω. We say that I is vertically
invariant if, whenever i :ω→ω is injective such that

(
i(m)

)
0

=(m)0 for each m∈ω, then, for each
N⊆ω, N ∈I ⇔ i[N ]∈I.

Recall that E0 :={(α, β)∈2ω×2ω | ∃m∈ω ∀n≥m α(n)=β(n)}.

Theorem 3.5 Let Γ be a non self-dual Borel class, I ⊆ 2ω be a vertically and E0-invariant true Γ̌
set, (u, v)∈T and G be a dense Gδ subset of 2ω. Then SI ∩

(
(Nu ∩G)×(Nv ∩G)

)
is not separable

from its complement in dT e by a pot(Γ) set.

This is essentially Lemma 2.6 in [L5], when s=∅ and G=2ω. The general proof is very similar,
but we give it for completeness. The first part of the next definition gives the objects expressing the
complexity of SI on some generic vertical (SI)α. The second part gives a condition on I which is
sufficient to ensure the complexity of SI , together with a topological complexity condition.

Definition 3.6 Let n∈ω\{0}, α∈2ω, F :2ω→2ω, and I⊆2ω. We say that

(a) (n, α, F ) is a transfer triple if, for any β∈2ω, there is an injection i :ω→ω such that

i[{m∈ω | β(m)=1}]=
{
k≥n |

(
α∆F (β)

)
(k)=1

}
,

and
(
i(m)

)
0
=(m)0 if m∈ω,

12



(b) I is transferable if β∈I ⇔ α∆F (β)∈I for any transfer triple (n, α, F ) and any β∈2ω,

(c) I is weakly transferable if β ∈ I ⇔ α∆F (β) ∈ I for any transfer triple (1, α, F ) and any
β∈2ω.

We could also mention {m ∈ ω | β(m) = 0}, but we really care about the value 1. The reason
why we wrote “n ∈ ω\{0}” is that (γ∆δ)(0) = 1 if (γ, δ) ∈ dT e. The following lemma is the key
ingredient in the proof of Theorem 3.5.

Lemma 3.7 Let (u, v)∈T andG be a denseGδ subset 2ω. Then we can find n∈ω\{0}, α∈Nun ∩G
and F :2ω→Nvn ∩G continuous such that

(a) (u, v)⊆(un, vn),

(b) for any β∈2ω,
(
α, F (β)

)
∈dT e,

(c) (n, α, F ) is a transfer triple.

If moreover u=∅, then we can have n=1.

Proof. We set (u′, v′) :=

{
(0, 1) if u=∅,
(u, v) otherwise.

Let M ∈ ω be such that (u′0M , v′0M ) ∈ F and

(|u′|+M)0 =(0)0. We set n :=

{
1 if u=∅,
|u′|+M otherwise.

Let (Oq)q∈ω be a decreasing sequence of

dense open subsets of 2ω whose intersection is G. We construct finite approximations of α and F .
The idea is to linearize the binary tree 2<ω. This is the reason why we will use the bijection ψ defined
in the introduction. In order to construct F (β), we have to imagine, for each length l, the different
possibilities for β|l. More precisely, we construct a map l : 2<ω → ω\{0}. We want the map l to
satisfy the following conditions:

(1) l(∅)= |u′|+M
(2) ∀w∈2<ω\{∅} Nul(w)

∪Nvl(w)
⊆O|w|

(3) ∀w∈2<ω ∀ε∈2 ∃zwε∈2<ω (ul(wε), vl(wε))=(ul(w)0zwε, vl(w)εzwε)

(4) ∀r∈ω ul(ψ(r))0⊆ul(ψ(r+1))

(5) ∀w∈2<ω
(
l(w)

)
0
=(|w|)0

Assume that this construction is done. As ul(0q) $ ul(0q+1) for each natural number q, we can
define α := supq∈ω ul(0q). Similarly, as vl(β|q) $ vl(β|(q+1)), we can define F (β) := supq∈ω vl(β|q),
and F is continuous. Note that α ∈

⋂
q∈ω Nul(0q) ⊆ Nul(∅) ∩

⋂
q>0 Oq ⊆ Nun ∩ G. Similarly,

F (β)∈
⋂
q∈ω Nvl(β|q)⊆Nvl(∅) ∩

⋂
q>0 Oq⊆Nvn ∩G.

(b) Note first that l(w)≥ |w| since l(wε)> l(w). Fix q ∈ ω. We have to see that
(
α, F (β)

)
|q ∈ T .

Note that ul(w)⊆α since ul(0|w|)⊆ul(w)⊆ul(0|w|+1). Thus
(
α, F (β)

)
|l(β|q) = (ul(β|q), vl(β|q))∈F .

This implies that
(
α, F (β)

)
|l(β|q)∈T . We are done since l(β|q)≥q.

(c) Assume that m∈ω and β(m)=1. We set w :=β|m, so that vl(w)1⊆vl(w1) =vl(β|(m+1))⊆F (β).
As
(
l(w)

)
0

= (m)0, k := l(w) ≥ n and (k)0 = (m)0. But ul(w)0 ⊆ ul(w1) ⊆ α, so that α
(
l(w)

)
is

different from F (β)
(
l(w)

)
.
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Assume that k≥ n and α(k) 6=F (β)(k). Note that the only coordinates where α and F (β) can
differ are below n or one of the l(β|q)’s. This givesmwith k= l(β|m), and (m)0 =

(
l(β|m)

)
0
=(k)0.

Note that α
(
l(β|m)

)
=ul(β|(m+1))

(
l(β|m)

)
=0 6=F (β)

(
l(β|m)

)
=vl(β|(m+1))

(
l(β|m)

)
=β(m). So

β(m)=1.

Now it is clear that the formula i(m) := l(β|m) defines the injection we are looking for. So let us
prove that the construction is possible. We construct l(w) by induction on ψ−1(w).

We first choose x∈ 2<ω such that Nul(∅)0x⊆O1 and y∈ 2<ω such that Nvl(∅)0xy⊆O1. Then we
choose L∈ω with (ul(∅)0xy0L, vl(∅)0xy0L)∈F and (|ul(∅)0xy0L|)0 =(1)0. We put z0 :=xy0L and
l(0) := l(∅)+1+|z0|. Assume that

(
l(w)

)
ψ−1(w)≤r satisfying (1)-(5) have been constructed, which is

the case for r=1.

Fix s ∈ 2<ω and ε ∈ 2 such that ψ(r+ 1) = sε, with r ≥ 1. Note that ψ−1(s) < r, so that
l(s) < l

(
ψ(r)

)
, by induction assumption. We set t :=

(
ul(ψ(r))−ul(ψ(r))|(l(s)+1)

)
0. We choose

x′ ∈ 2<ω such that Nul(s)0tx
′ ⊆O|s|+1 and y′ ∈ 2<ω such that Nvl(s)εtx

′y′ ⊆O|s|+1. Then we choose
N ∈ω such that (ul(s)0tx

′y′0N , vl(s)εtx
′y′0N )∈F and

(
l(s)+1+|tx′y′|+N

)
0

=(|s|+1)0. We put
zsε := tx′y′0N and l(sε) := l(s)+1+|zsε|. �

Proof of Theorem 3.5. Let us prove that I is transferable. Let (n, α, F ) be a transfer triple, and β in
2ω. This gives an injection i :ω→ω with

(
i(m)

)
0
=(m)0 if m∈ω. We set A :={m∈ω | β(m)=1}.

As I is vertically invariant, A∈I is equivalent to i[A]∈I. But i[A] ={k≥n |
(
α∆F (β)

)
(k) = 1}.

As I is E0-invariant, i[A]∈I is equivalent to {k∈ω |
(
α∆F (α)

)
(k)=1}∈I, so that

β∈I ⇔ A∈I ⇔ {k∈ω |
(
α∆F (β)

)
(k)=1}∈I ⇔ α∆F (β)∈I.

Thus I is transferable.

We argue by contradiction. This gives P ∈ pot(Γ), and a dense Gδ subset H of 2ω such that
P ∩H2∈Γ(H2). Lemma 3.7 provides n∈ω\{0} such that (u, v)⊆(un, vn), α∈Nun ∩G ∩H and
F : 2ω→Nvn ∩ G ∩ H continuous. We set S := SI ∩

(
(Nun ∩ G ∩ H)×(Nvn ∩ G ∩ H)

)
. Then

S⊆P ∩H2 ∩ (Nun×Nvn)⊆¬dT e ∪ S. We set D :=
{
β∈2ω |

(
α, F (β)

)
∈P ∩H2

}
. Then D∈Γ.

Let us prove that I =D, which will contradict the fact that I /∈Γ. Let β ∈ 2ω. As I is transferable,
β∈I is equivalent to α∆F (β)∈I. Thus

β∈I ⇒ α∆F (β)∈I ⇒
(
α, F (β)

)
∈S⊆P ∩H2 ⇒ β∈D.

Similarly, β /∈I ⇒ β /∈D, and I=D. �

Notation. In Theorem 3.5, if s=∅ and G=2ω, then we do not need to assume that I is E0-invariant.
It is enough to assume that I is invariant under the following map. Let h0 : 2ω → 2ω be the map
defined by h0(α) :=< 1−α(0), α(1), α(2), ... >. Note that Gr(h0) is a subgraph of s(G0), so that it
is acyclic. Similarly, we define h0(s) when ∅ 6=s∈2<ω.
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Corollary 3.8 Let Γ be a non self-dual Borel class of rank at least two, I ⊆ 2ω be a vertically and
h0-invariant true Γ̌ set, X be a Polish space, and A,B be disjoint analytic relations on X .
(1) Exactly one of the following holds:

(a) the set A is separable from B by a pot(Γ) set,
(b) there is f :2ω→X continuous with SI⊆(f×f)−1(A) and dT e\SI⊆(f×f)−1(B).

(2) If moreover Γ is of rank at least three, then we can have f injective in (b).
(3) (Debs) We cannot replace dT e\SI with ¬SI in (b).

Proof. (1) We first prove the fact that Theorem 3.5 holds if I is only h0-invariant, when s= ∅. The
proof of Theorem 3.5 shows that I is weakly transferable if I is vertically and h0-invariant. It remains
to apply Lemma 3.7 to (u, v) :=(∅, ∅) and G :=H .

By Theorem 3.5, (a) and (b) cannot hold simultaneously. Assume that A is not separable from B
by a pot(Γ) set. This gives disjoint Borel subsets C0, C1 ofX such thatA∩(C0×C1) is not separable
fromB∩(C0×C1) by a pot(Γ) set since the rank of Γ is at least two (consider a countable partition of
the diagonal of X into Borel rectangles with disjoint sides). We may assume that C0, C1 are clopen,
refining the Polish topology if necessary. Theorem 3.3 gives, for each ε∈2, fε : 2ω→Cε continuous
such that SI⊆(f0×f1)−1

(
A ∩ (C0×C1)

)
and dT e\SI⊆(f0×f1)−1

(
B ∩ (C0×C1)

)
. It remains to

set f(α) :=fε(α) if α∈Nε since dT e⊆N0×N1.

(2) We apply Theorem 3.3 and the disjointness of C0 and C1.

(3) See Theorem 1.13 in [L4]. �

We will construct some examples satisfying the assumptions of Theorem 3.5.

Notation and definition. We set FIN :={α∈2ω | ∃m∈ω ∀n≥m α(n)=0}. Note that E0 =EFIN.
We say that I⊆2ω is free if I⊇FIN.

Proposition 3.9 Let I⊆2ω be a free vertically invariant ideal. Then I is transferable.

Proof. Let (n, α, F ) be a transfer triple, and β ∈ 2ω. This gives an injection i : ω → ω such that(
i(m)

)
0

= (m)0 if m∈ω. We set N := {m∈ω | β(m) = 1}. As I is vertically invariant, N ∈I is
equivalent to i[N ] ∈ I. But i[N ] = {k ≥ n |

(
α∆F (β)

)
(k) = 1}. As I is a free ideal, i[N ] ∈ I is

equivalent to {k∈ω |
(
α∆F (β)

)
(k)=1}∈I, so that

β∈I ⇔ N ∈I ⇔ {k∈ω |
(
α∆F (β)

)
(k)=1}∈I ⇔ α∆F (β)∈I.

This finishes the proof. �

Notation. We now introduce the operations that will be used to build our examples. They involve
some bijection from ω2 onto ω, which will not always be < ., . >. Indeed, in order to preserve the
property of being vertically invariant, we will consider the bijection ϕ :ω2→ω defined by

ϕ(n, p) :=
〈
< n, (p)0 >, (p)1

〉
,

with inverse q 7→
((

(q)0

)
0
, <
(
(q)0

)
1
, (q)1 >

)
.
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Let α∈2ω and n∈ω. Recall that (α)n∈2ω is defined by (α)n(p) :=α(< n, p >). Similarly, we
define n(α)∈2ω by n(α)(p) :=α

(
ϕ(n, p)

)
.

If α0, ..., αl∈2ω, then we define maxi≤l αi∈2ω by (maxi≤l αi)(p) :=maxi≤l αi(p).

If α, β∈2ω, then we say that α≤β when α(n)≤β(n) for each n∈ω.

Proposition 3.10 Let α, β, α0, ..., αl∈2ω and n∈ω. Then

(1) α≤β ⇒ (α)n≤(β)n,

(2) (maxi≤l αi)n=maxi≤l (αi)n,

(3) α∈FIN⇒ (α)n∈FIN.

These properties are also true with n(.) instead of (.)n.

Proof. This is immediate. �

Notation. We now recall the operations of Lemma 1 in [Ca] (see also [Ka]). Let J ,J0,J1, ...⊆2ω.

- ~J :=(J0,J1, ...)

- ~Jm :={α∈2ω | ∀n∈ω n(α)∈Jn}, and Jm :=(J ,J , ...)m

- ~J a :={α∈2ω | ∃p∈ω ∀n≥p n(α)∈Jn}, and J a :=(J ,J , ...)a

Remark. Proposition 3.10 implies that ~Jm, ~J a are ideals if the Jn’s are, free if the Jn’s are.

Lemma 3.11 Let n∈ω, J ⊆2ω, and I :={α∈2ω | n(α)∈J }. Then I is vertically invariant if J is.

Proof. Let i : ω → ω be injective such that
(
i(m)

)
0

= (m)0 for each m ∈ ω, and N ⊆ ω with
characteristic function χN . Then

N ∈I ⇔ χN ∈I ⇔ n(χN )∈J ⇔ {p∈ω | n(χN )(p)=1}∈J
⇔ {p∈ω | χN

(
ϕ(n, p)

)
=1}∈J ⇔ {p∈ω | ϕ(n, p)∈N}∈J .

Similarly, i[N ]∈I ⇔ {p∈ω | ϕ(n, p)∈ i[N ]}∈J . Recall that ϕ(n, p) =
〈
< n, (p)0 >, (p)1

〉
. We

define I :ω→ω by I(p) :=
〈

(p)0,
(
i
(〈
< n, (p)0 >, (p)1

〉))
1

〉
, so that (p)0 =

(
I(p)

)
0

for each p∈ω.

Moreover, I is injective. Indeed, I(p)=I(p′) implies successively that (p)0 =(p′)0,

i
(〈
< n, (p)0 >, (p)1

〉)
=
〈(
i
(〈
< n, (p)0 >, (p)1

〉))
0
,
(
i
(〈
< n, (p)0 >, (p)1

〉))
1

〉
=
〈
< n, (p)0 >,

(
I(p)

)
1

〉
=
〈
< n, (p′)0 >,

(
I(p′)

)
1

〉
= i

(〈
< n, (p′)0 >, (p

′)1

〉)
,〈

< n, (p)0 >, (p)1

〉
=
〈
< n, (p′)0 >, (p

′)1

〉
, (p)1 =(p′)1 and p=p′. Now note that

ϕ
(
n, I(p)

)
=
〈
< n,

(
I(p)

)
0
>,
(
I(p)

)
1

〉
=
〈
< n, (p)0 >,

(
I(p)

)
1

〉
= i

(〈
< n, (p)0 >, (p)1

〉)
= i

(
ϕ(n, p)

)
.
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Thus
ϕ(n, p)∈ i[N ]⇔ ∃(n′, p′)∈ω2 ϕ(n′, p′)∈N ∧ ϕ(n, p)= i

(
ϕ(n′, p′)

)
⇔ ∃(n′, p′)∈ω2 ϕ(n′, p′)∈N ∧ ϕ(n, p)=ϕ

(
n′, I(p′)

)
⇔ ∃p′∈ω ϕ(n, p′)∈N ∧ p=I(p′)
⇔ p∈I[{p′∈ω | ϕ(n, p′)∈N}].

Therefore I[{p′∈ω | ϕ(n, p′)∈N}]={p∈ω | ϕ(n, p)∈ i[N ]}. As J is vertically invariant,

N ∈I ⇔ {p′∈ω | ϕ(n, p′)∈N}∈J ⇔ I[{p′∈ω | ϕ(n, p′)∈N}]∈J
⇔ {p∈ω | ϕ(n, p)∈ i[N ]}∈J ⇔ i[N ]∈I.

This finishes the proof. �

Corollary 3.12 Let J0,J1, ...⊆2ω. Then ~Jm, ~J a are vertically invariant if the Jn’s are.

Proof. We set, for n ∈ ω, In := {α ∈ 2ω | n(α) ∈ Jn}, so that the In’s are vertically invariant, by
Lemma 3.11. Let i :ω→ω be injective such that

(
i(m)

)
0

= (m)0 for each m∈ω, and N ⊆ω with
characteristic function χN . Then

N ∈ ~Jm⇔ χN ∈ ~Jm ⇔ ∀n∈ω n(χN )∈Jn ⇔ ∀n∈ω χN ∈In
⇔ ∀n∈ω N ∈In ⇔ ∀n∈ω i[N ]∈In ⇔ i[N ]∈ ~Jm.

The proof is similar with ~J a. �

The next result is proved in [Ca] (see Lemmas 1 and 2).

Lemma 3.13 (Calbrix) Let J0,J1, ...⊆2ω and 1≤ξ<ω1.
(a) Assume that the Jn’s are Π0

ξ-complete. Then ~J a is Σ0
ξ+1-complete.

(b) Assume that the Jn’s are Σ0
ξ-complete. Then ~Jm is Π0

ξ+1-complete.

(c) Assume that Jn is Σ0
2n+2-complete. Then ~Jm is Π0

ω-complete.
(d) Assume that λ= supn∈ω ↑ ω+2ξn+1 is an infinite limit ordinal, and Jn is Σ0

ω+2ξn+1-complete.

Then ~Jm is Π0
λ-complete.

In the same spirit, we have the following.

Lemma 3.14 Let J0,J1, ...⊆ 2ω, and λ= supn∈ω ↑ ξn be an infinite limit ordinal. We assume that
Jn is Π0

ξn
-complete. Then ~J a is Σ0

λ-complete.

Proof. Assume that A :=
⋃
n∈ω ↑ An, where An ∈Π0

ξn
(2ω) (this is a typical Σ0

λ set since (ξn)n∈ω
is strictly increasing). Let fn : 2ω→ 2ω continuous with An = f−1

n (Jn). We define f : 2ω→ 2ω by
f(α)(q) :=f((q)0)0(α)(<

(
(q)0

)
1
, (q)1 >). Note that f is continuous and n

(
f(α)

)
=fn(α) since

n
(
f(α)

)
(p)=f(α)

(
ϕ(n, p)

)
=f(α)

(〈
< n, (p)0 >, (p)1

〉)
=fn(α)(p).

Then
f(α)∈ ~J a⇔ ∃p∈ω ∀n≥p n

(
f(α)

)
∈Jn ⇔ ∃p∈ω ∀n≥p fn(α)∈Jn

⇔ ∃p∈ω ∀n≥p α∈An ⇔ ∃p∈ω α∈Ap ⇔ α∈A.
This finishes the proof. �
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We are now ready to introduce some examples.

Notation. We set
- I3 :={α∈2ω | ∀n∈ω (α)n∈FIN},
- I4+2n :=Ia3+2n if n∈ω,
- I5+2n :=Im4+2n if n∈ω,
- Iω :=(I3, I5, ...)a and Jω :=(FIN, I4, I6, ...)m,
- Iω+2ξ+1 :=Imω+2ξ and Jω+2ξ+1 :=Jaω+2ξ if ξ<ω1,
- Iω+2ξ+2 :=Iaω+2ξ+1 and Jω+2ξ+2 :=Jmω+2ξ+1 if ξ<ω1,
- Iλ :=(Iω+2ξ0+1, Iω+2ξ1+1, ...)

a and Jλ :=(Jω+2ξ0+1, Jω+2ξ1+1, ...)
m if

λ=supn∈ω ↑ ω+2ξn+1

is an infinite limit countable ordinal.

Corollary 3.15 All the sets previously defined are free and vertically invariant ideals, and in partic-
ular transferable. Moreover,

- FIN is Σ0
2-complete,

- I2+2ξ+1 is Π0
2+2ξ+1-complete and Jω+2ξ+1 is Σ0

ω+2ξ+1-complete,

- I4+2ξ is Σ0
4+2ξ-complete and Jω+2ξ is Π0

ω+2ξ-complete.

Proof. It is clear that
- FIN and I3 are free ideals,
- FIN is vertically invariant and Σ0

2-complete.

Let us prove that I3 is vertically invariant. Let i :ω→ω be injective such that
(
i(m)

)
0
=(m)0 for

each m∈ω, and N⊆ω with characteristic function χN . Then

N ∈I3⇔ χN ∈I3 ⇔ ∀n∈ω (χN )n∈FIN⇔ ∀n∈ω ∃m∈ω ∀p≥m (χN )n(p)=0
⇔ ∀n∈ω ∃m∈ω ∀p≥m < n, p > /∈N.

Thus N /∈I3 ⇔ ∃n∈ω ∃∞p∈ω < n, p >∈N . Similarly,

i[N ] /∈I3⇔ ∃n∈ω ∃∞p∈ω < n, p >∈ i[N ]
⇔ ∃n∈ω ∃∞p∈ω ∃(n′, p′)∈ω2 < n′, p′ >∈N and < n, p >= i(< n′, p′ >)
⇔ ∃n∈ω ∃∞p∈ω ∃p′∈ω < n, p′ >∈N and p=

(
i(< n, p′ >)

)
1

⇔ ∃n∈ω ∃∞p′∈ω < n, p′ >∈N
⇔ N /∈I3.

since p′ 7→
(
i(< n, p′ >)

)
1

is injective because
(
i(< n, p′ >)

)
1

=
(
i(< n, p′′ >)

)
1

implies suc-
cessively that

〈
n,
(
i(< n, p′ >)

)
1

〉
=
〈
n,
(
i(< n, p′′ >)

)
1

〉
, i(< n, p′ >) = i(< n, p′′ >) and

p′=p′′.

I3 is Π0
3-complete by Lemma 1 in [Ca]. The rest follows from the remark before Lemma 3.11,

Corollary 3.12, Proposition 3.9, and Lemmas 3.13 and 3.14. �
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We now introduce some examples satisfying the assumptions of Theorem 3.5.

Lemma 3.16 Let Γ be a non self-dual Borel class of rank at least two. Then there is a vertically and
E0-invariant true Γ̌ set I ⊆ 2ω such that SI and S¬I are dense in dT e. We can take I := FIN if
Γ=Π0

2, and I :=I3 :={γ∈2ω | ∀n∈ω (γ)n∈FIN} if Γ=Σ0
3.

Proof. If the rank of Γ is infinite or if Γ is in {Π0
2,Σ

0
3,Π

0
4,Σ

0
5, ...}, then we apply Corollary

3.15, and in this case I can even be a free ideal, so that EI is an equivalence relation. If Γ is in
{Σ0

2,Π
0
3,Σ

0
4,Π

0
5, ...}, then we take the complement of this ideal. It is also a vertically and E0-

invariant true Γ̌ set. It remains to see the density in dT e. So let (u, v) ∈ T . By Theorem 3.5,
SI ∩ (Nu×Nv) is not pot(Γ) and S¬I ∩ (Nu×Nv) is not pot(Γ̌), so that these sets are not empty.�

Proposition 3.17 We can find a D2(Σ0
1)⊆Σ0

2 acyclic graph D on 2ω and Borel oriented subgraphs
of D, without Borel countable coloring, of arbitrarily high potential complexity.

Proof. We set, for ε ∈ 2, ψε(α) := εα, which defines homeomorphisms ψε : 2ω → Nε. We set
D :=s

(
(ψ0×ψ1)−1(dT e)

)
\∆(2ω), so thatD is aD2(Σ0

1) graph on 2ω. Let us check thatD is acyclic.
We argue by contradiction, which gives n≥2 and an injectiveD-path (γi)i≤n with (γ0, γn)∈D. This
gives (εi)i≤n such that (εiγi, (1−εi)γi+1) ∈ s(dT e) if i < n and (εnγ0, (1−εn)γn) ∈ s(dT e). As
s(dT e) contains the couples of the form (0γ, 1γ), this contradicts the acyclicity of s(dT e).

Corollary 3.15 gives a free vertically invariant ideal I ⊆ 2ω complete for a non self-dual Borel
class Γ of arbitrarily high rank. Theorem 3.5 shows that SI /∈pot(Γ̌). Note that the set

GI :=(ψ0×ψ1)−1(SI)

is Borel and not pot(Γ̌). Thus GI \∆(2ω)⊆D ∩ <lex is a Borel oriented subgraph of D and not
pot(Γ̌) in general. The freeness of I implies that there is no Borel countable coloring of GI \∆(2ω).
This finishes the proof. �

4 Some general facts

Antichains

In order to state the details of our main positive result, we need some notation.

Notation. If R is a relation on 2ω, then R= := R, R� := R ∪ ∆(2ω), R@ := R ∪ ∆(N0) and
RA :=R ∪∆(N1).

We introduce a bipartite version of G0. We set B0 :={(0α, 1β) | (α, β)∈G0}. In particular, with
a slight abuse of notation, B0 =GG0 . We will repeat this abuse of notation.

We now give the detailed versions of Theorems 1.9 and 1.11.
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Theorem 4.1 Let Γ be a non self-dual Borel class. Then there is a concrete relation R on 2ω, con-
tained in N0×N1, satisfying the following properties.

(1) R is complete for the class of sets which are the intersection of a Γ̌ set with a closed set.

(2) If Γ 6=Σ0
1, then the set

A :=
{
Ae | A∈{R,R ∪R−1

, R ∪ (R
−1\R−1)} ∧ e∈{=,�,@,A}

}
∪
{
s(R)e | e∈{=,�,@}

}
is an antichain made of non-pot(Γ) s-acyclic relations.

(3) If Γ is of rank at least two, then

(i) A is a basis for the class of non-pot(Γ) Borel subsets of a pot(Σ0
2) s-acyclic relation G,

(ii) R is minimum among non-pot(Γ) Borel subsets of a pot(Σ0
2) s-acyclic oriented graph G,

(iii) s(R) is minimum among non-pot(Γ) Borel graphs contained in a pot(Σ0
2) acyclic graph G.

(iv) R ∪∆(2ω) is minimum among non-pot(Γ) Borel quasi-orders (or partial orders) contained
in a pot(Σ0

2) s-acyclic relation G.

(4) If Γ=Π0
2, then

(i) the set
{
Re | e ∈ {=,�,@,A}

}
∪
{
s(R)e | e ∈ {=,�,@}

}
is a basis for the class of

non-pot(Γ) Borel locally countable s-acyclic relations,

(ii) R is minimum among non-pot(Γ) Borel locally countable s-acyclic oriented graphs,

(iii) s(R) is minimum among non-pot(Γ) Borel locally countable acyclic graphs.

(iv) R∪∆(2ω) is minimum among non-pot(Γ) Borel locally countable s-acyclic quasi-orders (or
partial orders).

(5) If Γ=Π0
1, then R=B0 and

(i) the conclusions of (3).(ii), (3).(iii) and (3).(iv) remain true if G is potentially closed,

(ii) the set A ∪ {G0, s(G0)} is an antichain basis for the class of non-pot(Γ) Borel subsets of a
potentially closed s-acyclic relation.

(6) If Γ = Σ0
1, then R = {(0α, 1α) | α ∈ 2ω} and the conclusions of (3).(ii) and (3).(iii) remain

true if the potential complexity of G is arbitrary. In fact, {∆(2ω), R, s(R)} is an antichain basis for
the class of non-pot(Γ) Borel s-acyclic relations, and ∆(2ω) is minimum among non-pot(Γ) Borel
s-acyclic quasi-orders (or partial orders).

Theorems 1.9 is an immediate corollary of Theorem 4.1. Let us precise our optimality considera-
tions in Theorem 4.1.

(2) The assumption is optimal, because of (6). For instance, ∆(2ω) vc {(0α, 1α) | α∈2ω}�, but the
converse fails.

(3).(ii) By Theorem 1.10.(2), the assumption “G is pot(Σ0
2)” is optimal for Γ=Σ0

2. We do not know
whether this assumption is optimal if the rank of Γ is at least three (Theorem 1.10.(2) just says that
we cannot replace Σ0

2 with Γ⊕ Γ̌).

(3).(i) and (3).(iii) We do not know whether the assumption on G is optimal.

(5) By Theorem 1.10.(3), the class Ď2(Σ0
1) is optimal.
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In order to give the detailed version of Theorem 1.11, we introduce the following examples:

T0 :=
{(
εα, (1−ε)β

)
| ε∈2 ∧ (α, β)∈G0

}
,

U0 :=Gs(G0) ∪ T0.

Note that s(T0)=s(U0)=s(Gs(G0)). We will prove the following additional dichotomy results.

Theorem 4.2 The set A′ :=A ∪ {G0, s(G0)} ∪
{
Ae | A∈{Gs(G0),U0} ∧ e∈{=,�,@,A}

}
∪{

Ae | A∈ {T0, s(T0)} ∧ e∈{=,�,@}
}

is a vc-antichain made of D2(Σ0
1) s-acyclic relations, with locally countable closure, which are

vc-minimal among non-pot(Π0
1) relations.

The following lemma gives a way of expanding antichains.

Lemma 4.3 Let A, B be vc-antichains made of nonempty subsets of (N0×N1) ∪ (N1×N0) such
that each element A of A has the property that

(
2ω, A ∩ (N0×N1)

)
6vc
(
2ω, A ∩ (N1×N0)

)
.

(a)
{
Ae | A∈B ∧ e∈{=,�,@}

}
is a vc-antichain.

(b)
{
Ae | A∈A ∧ e∈{=,�,@,A}

}
is a vc-antichain.

(c) If A ∪ B is a vc-antichain, then so is{
Ae | A∈A ∧ e∈{=,�,@,A}

}
∪
{
Ae | A∈B ∧ e∈{=,�,@}

}
.

Proof. (a) Let A,B ∈B and e, e′ ∈{=,�,@} such that Ae vc Be′ with witness f . Then f is also a
witness for A vc B since A=Ae\∆(2ω) and B=Be′ \∆(2ω). As B is an antichain, we must have
A=B. Assume that e 6=e′. As A= is irreflexive and A� is reflexive, e′=@.

If e is =, then pick
(
εα, (1− ε)β

)
∈ A. As f is injective, f(εα) 6= f

(
(1− ε)β

)
, so that(

f(εα), f
(
(1−ε)β

))
is of the form

(
ε′γ, (1−ε′)δ

)
. Assume for example that ε′ = 0, the other

case being similar. Then
(
f(εα), f(εα)

)
∈Ae′ , so that (εα, εα)∈Ae=A, which is absurd.

If e is not =, then it is�. Here again, we pick
(
εα, (1−ε)β

)
, and get ε′. Assume for example that

ε′= 1, the other case being similar. Then
(
f(εα), f(εα)

)
/∈Ae′ , so that (εα, εα) /∈Ae=A ∪∆(2ω),

which is absurd.

(b) Let A,B ∈A and e, e′ ∈ {=,�,@,A} such that Ae vc Be′ with witness f . As in (a) we must
have A=B, e′ ∈ {@,A}, and e∈ {@,A} too. Assume that e is @ and e′ is A, the other case being
similar. Here again, we pick

(
εα, (1−ε)β

)
, and get ε′. Assume for example that ε′=0, the other case

being similar. Then
(
(1−ε)β, (1−ε)β

)
∈Ae, so that ε=1. This shows that ε 6=ε′. ThusA∩ (N0×N1)

is reducible to A ∩ (N1×N0) with witness f , which contradicts our assumption.

(c) Let A,B∈A∪B and e, e′∈{=,�,@,A} such that Ae vc Be′ with witness f . As in (a) we must
have A=B. It remains to apply (a) and (b). �
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Corollary 4.4 Let Γ be a non self-dual Borel class of rank at least two, and R be a true Γ̌ relation
on 2ω, contained in N0×N1, and such that R\R is dense in R. Then{

Ae | A∈{R,R ∪R−1
, R ∪ (R

−1\R−1)} ∧ e∈{=,�,@,A}
}
∪
{
s(R)e | e∈{=,�,@}

}
is an antichain made of Γ̌⊕ Γ sets.

Proof. We setA :={R,R∪R−1
, R∪ (R

−1\R−1)} and B :={s(R)}. By Lemma 4.3.(c), it is enough
to check that A ∪ B is an antichain.

Note the elements ofA are not reducible to s(R) since they are not symmetric. Similarly, the sets
R ∪R−1

, s(R) are not reducible to R,R ∪ (R
−1\R−1) since they are not antisymmetric.

If A :=R∪ (R
−1\R−1) is reducible to R with witness f , then f is a homomorphism from R into

itself. Thus f is a homomorphism from R into itself. Therefore f is a homomorphism from R
−1 into

itself, which is absurd.

As s(R) is not closed and s(R ∪ R−1
) = s(A) = s(R) is, the sets R, s(R) are not reducible to

R ∪R−1, A.

If A is reducible to B :=R∪R−1 with witness g, then g is a homomorphism from R\R into itself
since R\R=B\B⊆A\A. Thus g is a homomorphism from R into itself, by our density assumption.
Therefore g reduces R and R−1 to themselves, which is absurd. �

For Γ=Π0
1, a similar conclusion holds, for slightly different reasons. In this case, we setR :=B0,

N0 :=R ∪R−1 and M0 :=R ∪ (R
−1\R−1).

Proposition 4.5 The set
{
Ae | A∈{B0,N0,M0} ∧ e∈{=,�,@,A}

}
∪
{
s(B0)e | e∈{=,�,@}

}
is an antichain made of D2(Σ0

1) sets.

Proof. We set A := {B0,N0,M0} and B := {s(B0)}. By Lemma 4.3.(c), it is enough to check that
A ∪ B is an antichain. We argue as in the proof of Corollary 4.4, except for the following.

If M0 is reducible to N0 with witness g, then g is a homomorphism from

B0\B0 ={(0α, 1α) | α∈2ω}

into itself again. This gives k injective continuous such that g(εα) = εk(α) if ε ∈ 2 and α ∈ 2ω.
Therefore g reduces B0 and B−1

0 to themselves, which is absurd. �

For Γ=Σ0
1, we have a smaller antichain. In this case, we set

R :={(0α, 1α) | α∈2ω}=R ∪ (R
−1\R−1),

so that R ∪R−1
=s(R).
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Proposition 4.6 The set{
{(0α, 1α) | α∈2ω}e | e∈{=,�,@,A}

}
∪
{
s({(0α, 1α) | α∈2ω})e | e∈{=,�,@}

}
is an antichain made of non-pot(Σ0

1) closed sets.

Proof. The intersection of the elements of our set with N0×N1 is {(0α, 1α) | α ∈ 2ω}, which is
not a countable union of Borel rectangles, and thus is not pot(Σ0

1). So they are not pot(Σ0
1). We set

A :=
{
{(0α, 1α) | α∈ 2ω}

}
and B :=

{
s({(0α, 1α) | α∈ 2ω})

}
. By Lemma 4.3.(c), it is enough to

check thatA∪B is an antichain. But {(0α, 1α) | α∈2ω} is antisymmetric and s({(0α, 1α) | α∈2ω})
is symmetric. �

Minimality

We are now interested in the minimality of R and its associated relations among non-pot(Γ)
relations when R is not pot(Γ). Indeed, the intersection of the associated relations with N0×N1 is
exactly R, so that they are not pot(Γ) in this case. We start with a simple fact.

Proposition 4.7 Let Γ be a Borel class, and R be a relation on 2ω, which is vc-minimal among
non-pot(Γ) relations. Then s(R) is also vc-minimal among non-pot(Γ) relations if it is not pot(Γ).

Proof. Assume that (X,S) vc
(
2ω, s(R)

)
with witness f , whereX is Polish and S is not pot(Γ). We

set B :=(f×f)−1(R), so that (X,B) vc (2ω, R), S=B ∪B−1 and B /∈pot(Γ). By the minimality
of R, (2ω, R) vc (X,B), and

(
2ω, s(R)

)
vc
(
X, s(B)

)
=(X,S). �

Similarly, the following holds.

Lemma 4.8 Let Γ be a Borel class. Assume that O⊆N0×N1 is minimum among non-pot(Γ) Borel
subsets of a pot(Σ0

2) s-acyclic oriented graph. Then s(O) is minimum among non-pot(Γ) Borel
graphs contained in a pot(Σ0

2) acyclic graph.

Proof. As O ⊆N0×N1 is not pot(Γ), s(O) is not pot(Γ) too. Let B be a non-pot(Γ) Borel graph
on a Polish space X , contained in a pot(Σ0

2) acyclic graph G, C be a closed subset of ωω and
b :C→X be a continuous bijection. Note that B =

(
B ∩ (b× b)[≤lex]

)
∪
(
B ∩ (b× b)[≥lex]

)
.

Then B ∩ (b×b)[≤lex] or B ∩ (b×b)[≥lex] is a non-pot(Γ) Borel oriented graph, both of them since
B ∩ (b×b)[≥lex]=

(
B ∩ (b×b)[≤lex]

)−1. Moreover, B ∩ (b×b)[≤lex] is contained in the pot(Σ0
2)

s-acyclic oriented graph G ∩ (b×b)[≤lex]. Therefore (2ω, O) is reducible to
(
X,B ∩ (b×b)[≤lex]

)
,

which implies that
(
2ω, s(O)

)
vc (X,B). This finishes the proof. �

Proposition 4.9 Let Γ 6=Σ0
1 be a non self-dual Borel class, and A be a digraph on 2ω, vc-minimal

among non-pot(Γ) relations. Then A� is vc-minimal among non-pot(Γ) relations if it is not pot(Γ).

Proof. Assume that (X,S) vc (2ω, A�) with witness f , whereX is Polish and S is not pot(Γ). Then
S is reflexive and f is also a witness for

(
X,S \∆(X)

)
vc (2ω, A). As Γ⊇Π0

1, S \∆(X) is not
pot(Γ). By the minimality of A, (2ω, A) vc

(
X,S\∆(X)

)
, which implies that

(
2ω, A�) vc (X,S).

This finishes the proof. �

The reason why we exclude A for s(R) is the following.
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Proposition 4.10 Let R be a relation on 2ω contained in N0×N1. We assume that

(1) (2ω, R) vc (2ω, R−1),

(2) the projections of R are N0 and N1.

Then
(
2ω, s(R)@

)
vc
(
2ω, s(R)A

)
.

Proof. Let f be a witness for (2ω, R) vc (2ω, R−1). Then f reduces s(R) to itself, and is a homo-
morphism from R into R−1. By (2), f changes the first coordinate. Therefore f reduces s(R)@ to
s(R)A. �

Proposition 4.11 Let Γ be a non self-dual Borel class, and R be a relation on 2ω which is minimum
among non-pot(Γ) Borel subsets of a closed s-acyclic oriented graph. Then (2ω, R) vc (2ω, R−1).

Proof. Note that R−1 is a non-pot(Γ) Borel subset of a closed s-acyclic oriented graph, which gives
the result. �

Examples and homomorphisms

For Γ of rank at least two, the following is a key tool.

Theorem 4.12 Let I ⊆ 2ω be a vertically invariant set, and F be a Σ0
2 relation on 2ω containing

dT e ∩ E0.

(a) If F is an s-acyclic oriented graph, then there is an injective continuous homomorphism
f :2ω→2ω from (dT e,¬dT e, EI ,¬EI) into (dT e,¬F,EI ,¬EI).

(b) If F is an acyclic graph, then there is an injective continuous homomorphism f :2ω→2ω from
(dT e,¬s(dT e), EI ,¬EI) into (dT e,¬F,EI ,¬EI) (and thus from

(
dT e ∩ EI , dT e\EI ,¬s(dT e)

)
into (dT e ∩ EI , dT e\EI ,¬F )).

Proof. (a) By Lemmas 2.3 and 2.4, F is meager, which gives a decreasing sequence (Om)m∈ω of
dense open subsets of 2ω such that ¬F =

⋂
m∈ω Om. We inductively construct δ ∈ ωω, and define

a function f :2ω→2ω by f(α) := α(0)0δ(0)α(1)0δ(1)..., so that f will be injective continuous. The
approximations fm : 2m→2<ω of f are defined by fm(s) :=s(0)0δ(0)...s(m−1)0δ(m−1). We define
km by Σi<m

(
1+δ(i)

)
, so that fm(s)∈2km for each s∈2m. We will build δ satisfying the following

properties:
(1)
(
fm(um), fm(vm)

)
∈F , so that (fm×fm)[Tm]⊆Tkm

(2) (km)0 =(m)0

(3) ∀(u, v)∈(2m×2m)\Tm Nfm(u)×Nfm(v)⊆Om
Assume that this is done. If (α, β)∈dT e, then (α, β)|m∈Tm for each m∈ω, so that(

fm(α|m), fm(β|m)
)

=
(
f(α), f(β)

)
|km∈Tkm

for each m∈ω and
(
f(α), f(β)

)
∈dT e.

If (α, β) /∈ dT e, then there is m0 ∈ ω such that (α, β)|m /∈ Tm if m ≥m0. By Condition (4),(
fm(α|m), fm(β|m)

)
⊆
(
f(α), f(β)

)
∈Om if m≥m0, so that

(
f(α), f(β)

)
/∈F .
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We define i :ω→ω by i(m) :=km. Note that i is injective and
(
i(m)

)
0

= (m)0 for each m∈ω.
Fix ζ ∈ 2ω. We define A := {m ∈ ω | ζ(m) = 1}. Note that i[A] = {p ∈ ω | f(ζ)(p) = 1} since
km ∈ i[A] if and only if ζ(m) = 1. As I is vertically invariant, A∈I is equivalent to i[A]∈I. Thus
ζ ∈ I is equivalent to f(ζ) ∈ I. It remains to note that f(α∆β) = f(α)∆f(β), and to apply the
previous point to ζ :=α∆β, to see that (α, β)∈EI if and only if

(
f(α), f(β)

)
∈EI .

So let us prove that the construction is possible. Note first that(
f0(u0), f0(v0)

)
=
(
f0(∅), f0(∅)

)
=(∅, ∅)∈F⊆T

for any δ ∈ ωω. Assume that δ(q) is constructed for q < m, which is the case for m = 0. If
(u, v) ∈ Tm+1, then we can find q ≤ m and w ∈ 2m−q with (u, v) = (uq0w, vq1w). In particular,(
fq(uq), fq(vq)

)
∈F and

(
fm+1(u), fm+1(v)

)
|(km+1) is equal to(

fq(uq) 0 0δ(q)w(0)0δ(q+1)...w(|w|−1) , fq(vq) 1 0δ(q)w(0)0δ(q+1)...w(|w|−1)
)
∈T

since q+|w|=m. This implies that the map φ :s 7→fm+1(s)|(km+1) is an injective homomorphism
of graphs from

(
2m+1, s(Tm+1)

)
into

(
2<ω, s(T )

)
. As

(
2m+1, s(Tm+1)

)
is acyclic connected and(

2<ω, s(T )
)

is acyclic, this map is an isomorphism onto its range by Lemma 2.1. In particular, it
preserves the lengths of the injective paths. If (u, v) ∈ (2m+1×2m+1)\Tm+1, then there are three
cases:

- (v, u)∈Tm+1,
(
φ(v), φ(u)

)
∈T ,

(
φ(v)0∞, φ(u)0∞

)
∈dT e∩E0⊆F ,

(
φ(u)0∞, φ(v)0∞

)
/∈F since

F is an oriented graph.

- u=v, and
(
φ(u)0∞, φ(v)0∞

)
/∈F since F is irreflexive.

- (u, v) /∈ s(Tm+1) ∪ ∆(2m+1), in which case the injective s(Tm+1)-path from u to v has length
at least 3. Thus the injective s(T )-path from φ(u) to φ(v) has length at least 3, and the injective
s(dT e ∩ E0)-path and the injective s(F )-path from φ(u)0∞ to φ(v)0∞ have length at least 3. Thus(
φ(u)0∞, φ(v)0∞

)
is not in F since F is s-acyclic.

In every case,
(
φ(u)0∞, φ(v)0∞

)
∈Om+1. We choose M ∈ω big enough so that

Nφ(u)0M×Nφ(v)0M ⊆Om+1

for each (u, v)∈(2m+1×2m+1)\Tm+1. There is N ∈ω such that if δ(m) :=M+N , then(
fm+1(um+1), fm+1(vm+1)

)
∈F

and (km+1)0 =(m+1)0.

(b) This is a consequence of the proof of (a). �

Remark. When F is meager, we can replace the assumption “F is an s-acyclic oriented graph” (resp.,
“F is an acyclic graph”) with “F is an oriented graph (resp., a graph) and F ∩ E0⊆s(dT e ∩ E0)”.

The version of Theorem 4.12 for Γ=Π0
1 is as follows.
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Theorem 4.13 Let F be a closed relation on 2ω such that B0⊆F ⊆(N0×N1) ∪ (N1×N0).
(a) If F is an s-acyclic oriented graph, then there is an injective continuous homomorphism

f :2ω→2ω from (B0,B0\B0,¬B0) into (B0,B0\B0,¬F ).
(b) If F is an acyclic graph, then there is an injective continuous homomorphism f :2ω→2ω from(

B0,B0\B0,¬s(B0)
)

into (B0,B0\B0,¬F ).

Proof. (a) The proof is quite similar to that of Theorem 2.5. Note that ¬F is a dense open set, by
Lemmas 2.3 and 2.4. We define ψ0 :=h0|N0

and ψn+1 :N0sn0→N1sn1 by ψn+1(0sn0γ) := 1sn1γ,
so that B0 =

⋃
n∈ω Gr(ψn).

We construct Ψ:2<ω→2<ω and δ∈ωω strictly increasing satisfying the following conditions:

(1) ∀s∈2<ω ∀ε∈2 Ψ(s)$Ψ(sε)
(2) ∀l∈ω ∃kl∈ω ∀s∈2l |Ψ(s)|=kl
(3) δ(0)=0 ∧ ∀v∈2<ω ∃w∈2<ω

(
Ψ(0v),Ψ(1v)

)
=(0w, 1w)

(4) ∀n∈ω ∀v∈2<ω ∃w∈2<ω
(
Ψ(0sn0v),Ψ(1sn1v)

)
=(0sδ(n+1)−10w, 1sδ(n+1)−11w)

(5) ∀(s, t)∈(2×2)<ω (Ns×Nt) ∩ B0 =∅ ⇒ NΨ(s)×NΨ(t)⊆¬F

Assume that this is done. We define f : 2ω→ 2ω by {f(α)}=
⋂
n∈ω NΨ(α|n), and f is continuous.

Condition (4) ensures that B0⊆(f×f)−1(B0), and Condition (5) ensures that ¬B0⊆(f×f)−1(¬F ).
Note that B0\B0 ={(0γ, 1γ) | γ∈2ω}=Gr(ψ0). Condition (3) ensures that B0\B0⊆(f×f)−1(B0\B0).
In order to see that f is injective, it is enough to check that Ψ(s0) 6= Ψ(s1) if s∈ 2<ω, and we may
assume that s 6=∅.

We set, for l∈ω, Bl :={(s, t)∈2l×2l | (Ns×Nt)∩ s(B0) 6=∅}. Note that (2l, Bl) is a connected
acyclic graph if l≥1, by induction on l. Indeed, B1 ={(0, 1), (1, 0)} and

Bl+1 ={(sε, tε) | (s, t)∈Bl ∧ ε∈2} ∪ {(0sl−10, 1sl−11), (1sl−11, 0sl−10)}

if l≥1. As (2l, Bl) is isomorphic to (2l×{ε}, Bl+1), (2l+1, Bl+1) is a connected acyclic graph.

If (s, t)∈ (2×2)<ω, then qs,t :=(vs,ti )i≤Ls,t is the unique injective B|s|-path from s to t. Assume
that s ∈ 2l. We fix, for each i < L := Ls,0sl−1

, ni := n
s,0sl−1

i ∈ ω and εi := ε
s,0sl−1

i ∈ 2 such that
v
s,0sl−1

i+1 0∞=ψεini(v
s,0sl−1

i 0∞), so that

Ψ(s1)0∞=ψ−ε0δ(n0)...ψ
−εL−1

δ(nL−1)ψ0ψδ(l)ψ
εL−1

δ(nL−1)...ψ
ε0
δ(n0)

(
Ψ(s0)0∞

)
.

As kl+1>δ(l)>supi<L δ(ni), Ψ(s0) 6=Ψ(s1).

It remains to prove that the construction is possible. We first set Ψ(∅) := ∅. As F is a closed
oriented graph and (0∞, 10∞)∈B0, (10∞, 0∞) /∈F . This gives N ∈ω such that N10N×N0N+1⊆¬F ,
and we set Ψ(ε) :=ε0N . Assume that Ψ[2≤l] and

(
δ(j)

)
j<l

satisfying (1)-(5) have been constructed,
which is the case for l≤ 1. Let l≥ 1. Note that Ψ|2l is an injective homomorphism from s(Bl) into
s(Bkl), and therefore an isomorphism of graphs onto its range by Lemma 2.1. Moreover, δ(n+1)<kl
if n<l−1. Let δ(l)>supn<l−1 δ(n+1) such that Ψ(0sl−1)−0⊆sδ(l)−1. We define temporary versions
Ψ̃(uε) of the Ψ(uε)’s by Ψ̃(uε) :=Ψ(u)

(
sδ(l)−1ε−sδ(l)−1|(kl−1)

)
, ensuring Conditions (1)-(4).
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For Condition (5), if s(0) = t(0), then NΨ(s)×NΨ(t) will be a subset of N2
0 ∪ N2

1 ⊆ ¬F . If
(Nt×Ns) ∩ B0 6= ∅, then

(
Ψ̃(t)0∞, Ψ̃(s)0∞

)
∈ B0 ⊆ F and

(
Ψ̃(s)0∞, Ψ̃(t)0∞

)
/∈ F . This gives

M ∈ω such that NΨ̃(s)0M×NΨ̃(t)0M ⊆¬F , and we set Ψ′(uε) :=Ψ̃(uε)0M .

So we may assume that L := Ls,t ≥ 2. Here again, Ψ̃|2l+1 is an isomorphism of graphs onto
its range. This implies that

(
Ψ̃(vs,ti )

)
i≤L is the injective s(B|Ψ̃(s)|)-path from Ψ̃(s) to Ψ̃(t). Thus(

Ψ̃(vs,ti )0∞
)
i≤L is the injective s(B0)-path (and also s(F )-path) from Ψ̃(s)0∞ to Ψ̃(t)0∞. Thus(

Ψ̃(s)0∞, Ψ̃(t)0∞
)
/∈F since L≥2. We conclude as in the previous case.

(b) This is a consequence of the proof of (a) (here, Ψ(ε) :=ε). �

Remark. This proof shows that we can replace the assumption “F is closed” with “F is Σ0
2 and the

disjoint union s(F ) ∪ Gr(h0) is acyclic”. In the proof, we write ¬F =
⋂
l∈ω Ol, where Ol is dense

open, and replace ¬F with O|s| in (5).

For Γ=Π0
1, the following holds.

Lemma 4.14 The set R := B0 is a D2(Σ0
1) relation on 2ω, contained in N0×N1, satisfying the

following properties.
(1) For each s∈2<ω, and for each dense Gδ subset C of 2ω, R ∩

(
2×(Ns ∩ C)

)2 is not pot(Π0
1).

(2) R is s-acyclic.
(3) The projections of R are N0 and N1.

Proof. (1) As the maps f :α 7→0α and g :β 7→1β satisfy

G0 ∩ (Ns ∩ C)2 =(f×g)−1
(
R ∩

(
2×(Ns ∩ C)

)2),

it is enough to see that G0∩(Ns∩C)2 /∈pot(Π0
1). We argue by contradiction, which gives a countable

partition of Ns ∩C into Borel sets whose square does not meet G0. One of these Borel sets has to be
non-meager, which is absurd, as in the proof of Proposition 6.2 in [K-S-T].

(2) The map εα 7→(ε, α) is an isomorphism from s(B0) onto s(GG0
), which is acyclic by Proposition

2.2 and Lemma 2.3.

(3) Note that {(0α, 1α) | α∈2ω}⊆B0⊆N0×N1. �

Basis

We first introduce a definition generalizing the conclusion of Corollary 3.8. In order to make it
work for the first Borel classes, we add an acyclicity assumption.

Definition 4.15 Let I ⊆ 2ω, and Γ,Γ′ be classes of Borel sets closed under continuous pre-images.
We say that SI has the (Γ,Γ′)-basis property if for each Polish space X , and for each pair A,B
of disjoint analytic relations on X such that A is contained in a pot(Γ′) symmetric acyclic relation,
exactly one of the following holds:

(a) the set A is separable from B by a pot(Γ) set,
(b) there is g :2ω→X injective continuous such that SI⊆(g×g)−1(A) and dT e\SI⊆(g×g)−1(B).
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Corollary 3.8 says that if Γ is a non self-dual Borel class of rank at least three and I is a vertically
and h0-invariant true Γ̌ set, then SI has the (Γ,Γ′)-basis property for each class of Borel sets Γ′

closed under continuous pre-images.

Theorem 4.16 Let Γ be a non self-dual Borel class of rank at least two, I ⊆ 2ω be a vertically and
E0-invariant true Γ̌ set such that R := SI is dense in dT e (I = FIN if Γ=Π0

2), and Π0
1⊆Γ′⊆Σ0

2

be a class of Borel sets closed under continuous pre-images. We assume that R has the (Γ,Γ′)-basis
property. Then

{
R,R ∪ R−1

, R ∪ (R
−1\R−1), s(R)

}
is a basis for the class of non-pot(Γ) Borel

subsets of a pot(Γ′) acyclic graph.

Proof. By Theorem 3.5, all the examples are in the context of the theorem. So let B be a non-pot(Γ)
Borel relation on a Polish spaceX , contained in a pot(Γ′) acyclic graphH . We can change the Polish
topology and assume that H is in Γ′. We set G :=B ∩B−1.

Case 1 G is pot(Γ).

Assume first that Γ 6=Π0
2. Note that B\G is not separable from H \B by a pot(Γ) set P , since

otherwise B = (P ∩ H) ∪ G ∈ pot(Γ). As R has the (Γ,Γ′)-basis property, there is g : 2ω → X
injective continuous such that R ⊆ (g× g)−1(B \G) and R \R ⊆ (g× g)−1(H \B). Theorem
4.12 gives an injective continuous homomorphism h : 2ω→ 2ω from (dT e,¬s(dT e), EI ,¬EI) into
(dT e,¬(g×g)−1(H), EI ,¬EI). We set k :=g◦h andB′ :=(k×k)−1(B), so that (2ω, B′) vc (X,B)

and R ⊆ B′ ⊆ R ∪ (R
−1 \R−1). Indeed, h is a homomorphism from R−1 into itself, and g is a

homomorphism from R−1 into ¬B, since otherwise there is (α, β) ∈ R−1 with
(
g(α), g(β)

)
∈ B,

and
(
g(β), g(α)

)
∈G\G. If Γ=Π0

2, then we argue similarly: B\G is not separable from ¬B by a
pot(Γ) set, and we can apply Theorem 4.12 since (g×g)−1(H) contains R= dT e ∩ E0. So we may
assume that R⊆B⊆R ∪ (R

−1\R−1) and X=2ω. We write B=R ∪ S, where S is a Borel subset
of R−1\R−1.

Case 1.1 R is not separable from S−1 by a pot(Γ) set.

As R has the (Γ,Γ′)-basis property, we can find g′ : 2ω → 2ω injective continuous such that
R⊆ (g′×g′)−1(R) and R\R⊆ (g′×g′)−1(S−1)⊆ (g′×g′)−1(¬B). Note that (g′×g′)−1

(
s(R)

)
is

a closed acyclic graph containing dT e. Theorem 4.12 gives an injective continuous homomorphism
h′ : 2ω → 2ω from (dT e,¬s(dT e), EI ,¬EI) into (dT e,¬(g′×g′)−1

(
s(R)

)
, EI ,¬EI). The map

k′ :=g′ ◦ h′ reduces R ∪ (R
−1\R−1) to B.

Case 1.2 R is separable from S−1 by a pot(Γ) set.

Let Q⊆dT e⊆N0×N1 be such a set. Note that R is not separable from Q\R by a pot(Γ) set,
by Theorem 3.5. As R has the (Γ,Γ′)-basis property, there is g′′ : 2ω→2ω injective continuous with
R⊆(g′′×g′′)−1(R) and R\R⊆(g′′×g′′)−1(Q\R). Note that g′′ reduces R to B on s(R). Theorem
4.12 gives an injective continuous homomorphism l′′ : 2ω→ 2ω from (dT e,¬s(dT e), EI ,¬EI) into
(dT e,¬(g′′×g′′)−1

(
s(R)

)
, EI ,¬EI). Note that g′′ ◦ l′′ reduces R to B.
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Case 2 G is not pot(Γ).

Assume first that Γ 6=Π0
2. Note that G is not separable from H\B by a pot(Γ) set P , since other-

wise G=(P ∩H) ∩ (P ∩H)−1 would be pot(Γ). As in Case 1 we get g :2ω→X injective continu-
ous such thatR⊆(g×g)−1(G) andR\R⊆(g×g)−1(H\B). Theorem 4.12 gives an injective continuous
homomorphism h :2ω→2ω from (dT e,¬s(dT e), EI ,¬EI) into (dT e,¬(g×g)−1(H), EI ,¬EI). We
set k := g ◦ h and also B′ :=(k×k)−1(B), so that s(R)⊆B′ ⊆R ∪ R−1 and (2ω, B′) vc (X,B).
Indeed, h is a homomorphism from R

−1 ∩ EI into itself, and g is a homomorphism from R
−1 ∩ EI

into B, since G is symmetric. If Γ=Π0
2, then we argue similarly: G is not separable from ¬B by a

pot(Γ) set, and we can apply Theorem 4.12 since (g×g)−1(H) contains R= dT e ∩ E0. So we may
assume that X=2ω and s(R)⊆B⊆R ∪R−1. We write B=s(R) ∪ S, where S is a Borel subset of
R
−1\R−1.

Case 2.1 R is not separable from S−1 by a pot(Γ) set.

We argue as in Case 1.1 to see that
(
2ω, R ∪R−1) vc (2ω, B).

Case 2.2 R is separable from S−1 by a pot(Γ) set.

We argue as in Case 1.2 to see that
(
2ω, s(R)

)
vc (2ω, B). �

Remark. This shows that, under the same assumptions,
{
R,R ∪ R−1

, s(R)
}

is a basis for the class

of non-pot(Π0
2) pot(Σ0

2) s-acyclic digraphs. Indeed, R ∪ (R
−1\R−1) is not pot(Σ0

2).

Theorem 4.17 Let Γ be a non self-dual Borel class of rank at least two, I ⊆ 2ω given by Lemma
3.16, and ∆0

2⊆Γ′⊆Σ0
2 be Borel class. We assume that R :=SI has the (Γ,Γ′)-basis property. Then

A is a basis for the class of non-pot(Γ) Borel subsets of a pot(Γ′) symmetric acyclic relation.

Proof. By Theorem 3.5, all the examples are in the context of the theorem. So let B be a non-pot(Γ)
Borel relation on a Polish space X , contained in a pot(Γ′) symmetric acyclic relation. Note that
B\∆(X) is a non-pot(Γ) Borel relation on X , contained in a pot(Γ′) acyclic graph. Theorem 4.16
gives A in {R,R ∪ R−1

, R ∪ (R
−1 \R−1), s(R)} reducible to B \∆(X) with witness f . We set

B′ := (f×f)−1(B), so that (2ω, B′) vc (X,B) and A⊆B′⊆A ∪∆(2ω). This means that we may
assume that X = 2ω and there is a Borel subset J of 2ω such that B=A ∪∆(J). We set, for ε∈ 2,
Sε :={α∈2ω | εα∈J}. This defines a partition {S0 ∩ S1, S0\S1, S1\S0, (¬S0)∩ (¬S1)} of 2ω into
Borel sets. By Baire’s theorem, one of these sets is not meager.

Claim Let s∈2<ω, C be a dense Gδ subset of 2ω, and e∈{@,A}. Then

(a) A ∩
(
2×(Ns ∩ C)

)2 is not pot(Γ),

(b) (2ω, s(R)e) vc
(
2×Ns, s(R)e ∩ (2×Ns)

2
)
.

(a) Indeed, A∩
(
2×(Ns∩C)

)2∩ (N0×N1)=R∩
(
2×(Ns∩C)

)2. It remains to apply Theorem 3.5.
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(b) By (a), R ∩ (2×Ns)
2 is not pot(Γ), and it is reducible to R. By Corollary 4.4 and Theorem 4.16,

R is minimal among non-pot(Γ) sets, so that (2ω, R) vc
(
2×Ns, R ∩ (2×Ns)

2
)

with witness f .
Note that f is a homomorphism from dT e into itself, by density. In particular, f sends Nε into itself
for each ε∈2. This shows that f reduces s(R)e to s(R)e ∩ (2×Ns)

2. �

Case 1 S0 ∩ S1 is not meager.

Let s∈2<ω and C be a dense Gδ subset of 2ω such that Ns ∩ C⊆S0 ∩ S1. We set

A′ :=A ∩
(
2×(Ns ∩ C)

)2,

so that
(
2×(Ns ∩ C), A′

)
vc (2ω, A). The claim implies that A′ is not pot(Γ). Corollary 4.4 and

Theorem 4.16 show that A is minimal among non-pot(Γ) sets, so that (2ω, A) vc
(
2×(Ns ∩C), A′

)
with witness f ′. The map f ′ is also a witness for (2ω, A�) vc

(
2×(Ns∩C), A′∪∆

(
2×(Ns∩C)

))
.

Now (2ω, A�) vc (2ω, B) since B ∩
(
2×(Ns ∩ C)

)2
=A′ ∪∆

(
2×(Ns ∩ C)

)
.

Case 2 S0\S1 is not meager.

As in Case 1 we get s, C with Ns ∩ C ⊆ S0 \S1, A′, f ′. The map f ′ is also a witness for
(2ω, A@) vc

(
2× (Ns ∩ C), A′ ∪ ∆

(
{0}× (Ns ∩ C)

))
if A 6= s(R), for topological complexity

reasons. If A=s(R), then we can find t∈2<ω and e∈{@,A} such that(
2×Nt, A

e ∩ (2×Nt)
2
)
vc
(

2×(Ns ∩ C), A′ ∪∆
(
{0}×(Ns ∩ C)

))
.

Now note thatB∩
(
2×(Ns∩C)

)2
=A′∪∆

(
{0}×(Ns∩C)

)
, so that (2ω, A@) vc (2ω, B). Indeed, by

Proposition 4.11 and Theorem 4.16, R is reducible to R−1 since R is contained in a closed s-acyclic
oriented graph, which is not the case of R ∪ (R

−1 \R−1). This implies that s(R)@ is reducible to
s(R)A. It remains to note that (2ω, s(R)e) vc

(
2×Nt, s(R)e ∩ (2×Nt)

2
)
, by the claim.

Case 3 S1\S0 is not meager.

We argue as in Case 2 to see that (2ω, AA) vc (2ω, B).

Case 4 (¬S0) ∩ (¬S1) is not meager.

As in Case 1 we get s,C withNs∩C⊆(¬S0)∩(¬S1),A′. Now note thatB∩
(
2×(Ns∩C)

)2
=A′,

so that (2ω, A=) vc (2ω, B). �

Remark. This shows that, under the same assumptions,{
Ae | A∈{R,R ∪R−1} ∧ e∈{=,�,@,A}

}
∪
{
s(R)e | e∈{=,�,@}

}
is a basis for the class of non-pot(Π0

2) pot(Σ0
2) s-acyclic relations.
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Conditions implying Theorem 1.12

Lemma 4.18 Let Γ be a Borel class. Assume that

(1) O is a Γ̌ relation on 2ω,

(2) O is contained in a closed s-acyclic oriented graph H⊆N0×N1,

(3) O is minimum among non-pot(Γ) Borel subsets of a pot(Σ0
2) s-acyclic oriented graph,

(4) Nε⊆Πε[O].

Then S :={(α, β)∈2ω×2ω | (0α, 1β)∈O} satisfies the conclusion of Theorem 1.12.

Proof. We set O′ := S. As O ∈ Γ̌, S ∈ Γ̌. As O is contained in H , O′ is contained in the closed
set C := H ′. As H ⊆ N0×N1, the map εz 7→ (ε, z) is an isomorphism from H onto GH′ . Thus
s(GC) is acyclic since it is isomorphic to s(H). The shift maps sε : εz 7→ z defined on Nε satisfy
O = (s0×s1)−1(O′), which shows that O′ is not pot(Γ). This shows that (a) and (b) cannot hold
simultaneously.

Note that GB is a Borel oriented graph on the Polish space X⊕Y contained in GF , which is a
pot(Σ0

2) s-acyclic oriented graph since the map (ε, z) 7→z reduces GF to F on ({0}×X)×({1}×X).
Assume that B is not pot(Γ). Then GB is not pot(Γ) since the maps z 7→ (ε, z) reduce B to GB . As
O is minimum, we get i :2ω 7→X⊕Y injective continuous such that O=(i×i)−1(GB). It remains to
set f(α) := i1(0α) and g(β) := i1(1β). Indeed, if α∈Nε, then α is the limit of points of Πε[O], so
that i0(α)=ε. �

5 Study when the rank of Γ is at least three

Theorem 5 Let Γ be a non self-dual Borel class of rank at least three, I ⊆2ω given by Lemma 3.16,
and R :=SI .

(a) the set A defined in Theorem 4.1 is a basis for the class of non-pot(Γ) Borel subsets of a
pot(Σ0

2) s-acyclic relation.

(b) R is minimum among non-pot(Γ) Borel subsets of a pot(Σ0
2) s-acyclic oriented graph.

(c) s(R) is minimum among non-pot(Γ) Borel graphs contained in a pot(Σ0
2) acyclic graph.

(d) R ∪ ∆(2ω) is minimum among non-pot(Γ) Borel quasi-orders (or partial orders) contained
in a pot(Σ0

2) s-acyclic relation.

Proof. (a) We apply Theorem 4.17 to Γ′ :=Σ0
2. This is possible, by the remark before Theorem 4.16.

(b) Assume that B is a non-pot(Γ) Borel subset of a pot(Σ0
2) s-acyclic oriented graph. By (a), R or

R∪ (R
−1\R−1) is reducible to B since B is an oriented graph. It cannot be R∪ (R

−1\R−1), which
is not contained in a pot(Σ0

2) s-acyclic oriented graph since R is not pot(Σ0
2).

(c) We apply Lemma 4.8 and (b).
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(d) As R ⊆ N0×N1, R ∪ ∆(2ω) is a Borel quasi-order. By (a), R ∪ ∆(2ω) is not pot(Γ) and is
contained in a pot(Σ0

2) s-acyclic relation. Assume that Q is a non-pot(Γ) Borel quasi-order on a
Polish space X , contained in a pot(Σ0

2) s-acyclic relation. (a) gives A∈A with (2ω, A) vc (X,Q).
As Q is reflexive, A has to be reflexive too, so that e=�. We saw that I can be a free ideal if the rank
of Γ is infinite or if Γ∈{Π0

2,Σ
0
3,Π

0
4,Σ

0
5, ...}. Note that SI = {(α, β)∈dT e | α∆β ∈I}, R= dT e

since SI is dense in dT e.

If the rank of Γ is infinite or if Γ∈{Π0
2,Σ

0
3,Π

0
4,Σ

0
5, ...}, then (0∞, 120∞), (010∞, 120∞)∈R,

but (0∞, 010∞) /∈s(R) ∪∆(2ω), so that s(R) ∪∆(2ω) is not transitive. Pick (0α, 1β)∈S¬I , which
is dense in dT e. Then (0β, 1β), (1β, 0α)∈R ∪ (R

−1\R−1), and (0β, 0α) /∈R ∪R−1 ∪∆(2ω) since
β 6=α, so that R ∪ R−1 ∪∆(2ω) and R ∪ (R

−1\R−1) ∪∆(2ω) are not transitive. This shows that
A=R ∪∆(2ω).

If Γ∈ {Σ0
2,Π

0
3,Σ

0
4,Π

0
5, ...}, then I can be the complement of the set I previously considered.

As R is not pot(Γ), there are α, β, γ with β 6= γ and (0α, 1β), (0α, 1γ)∈R. Then (1γ, 0α)∈ s(R)
and (1γ, 1β) /∈ s(R) ∪ ∆(2ω), so that s(R) ∪ ∆(2ω) is not transitive. Pick (0α, 1β)∈ SI , which is
dense in dT e. Then (0α, 1β), (1β, 0β)∈R ∪ (R

−1\R−1), and (0α, 0β) /∈R ∪ R−1 ∪∆(2ω) since
β 6=α, so that R ∪ R−1 ∪∆(2ω) and R ∪ (R

−1\R−1) ∪∆(2ω) are not transitive. This shows that
A=R ∪∆(2ω) again. �

Proof of Theorem 4.1 when the rank is at least three. Fix I given by Lemma 3.16. We setR :=SI .

(1) We apply Theorem 3.5.

(2) We apply Theorem 3.5, Corollary 4.4, and the beginning of Section 3 (which ensures that s(dT e)
is acyclic).

(3) We apply Theorem 5. �

Proof of Theorem 1.10 when the rank is at least three. (2) We argue by contradiction, which gives
O. Lemma 3.16 gives I. By Theorem 5, O is reducible to SI , O is contained in a closed s-acyclic
oriented graph, and SI is reducible toO. By Theorem 3.5, UI :=SI∪(dT e−1\EI) is a (Γ⊕Γ̌)\pot(Γ)
s-acyclic oriented graph. Thus SI is reducible to UI , which contradicts Corollary 4.4.

(1) We argue by contradiction, which gives O′. Lemma 3.16 gives I. By Theorem 5, O′ is reducible
to SI , and O′ is contained in a closed s-acyclic oriented graph. Thus O′ is minimum among Borel
relations, contained in a pot(Γ⊕ Γ̌) s-acyclic oriented graph, which are not pot(Γ). We just saw that
this cannot happen. �

Proof of Theorem 1.12 when the rank is at least three. We apply Theorem 5 and Lemmas 3.16,
4.18. Lemma 4.18 is applied to O := SI and H := dT e. If α ∈ Nε and s is the shift map, then(
0s(α), 1s(α)

)
is in dT e and is the limit of points of O. �
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6 Study when the rank of Γ is two

We start with a consequence of Corollary 6.4 in [L-Z].

Corollary 6.1 Let Γ′ be a class of Borel sets closed under continuous pre-images. Then dT e ∩ E0

has the (Π0
2,Γ

′)-basis property.

Proof. By Theorem 3.5, dT e ∩ E0 is not pot(Π0
2), so that (a) and (b) cannot hold simultaneously. It

remains to apply Corollary 6.4 in [L-Z]. �

Theorem 6.2 Let R :=dT e ∩ E0.
(a) the set A defined in Theorem 4.1 is a basis for the class of non-pot(Π0

2) Borel subsets of a
pot(Σ0

2) s-acyclic relation.
(b) R is minimum among non-pot(Π0

2) Borel subsets of a pot(Σ0
2) s-acyclic oriented graph.

(c) s(R) is minimum among non-pot(Π0
2) Borel graphs contained in a pot(Σ0

2) acyclic graph.
(d) R ∪∆(2ω) is minimum among non-pot(Π0

2) Borel quasi-orders (or partial orders) contained
in a pot(Σ0

2) s-acyclic relation.

Proof. (a) We apply Theorem 4.17 to Γ′ :=Σ0
2. This is possible, by Corollary 6.1.

(b) Assume that B is a non-pot(Π0
2) Borel subset of a pot(Σ0

2) s-acyclic oriented graph. By (a), R or
R∪ (R

−1\R−1) is reducible to B since B is an oriented graph. It cannot be R∪ (R
−1\R−1), which

is not contained in a pot(Σ0
2) s-acyclic oriented graph since R is not pot(∆0

2).

(c) We apply Lemma 4.8 and (b).

(d) We argue as in the proof of Theorem 5. �

Proof of Theorem 4.1.(1)-(3) when Γ=Π0
2. We set R :=dT e ∩E0, and argue as when the rank of Γ

is at least three (we just have to replace Theorem 5 with Theorem 6.2). �

Proof of Theorems 1.10 and 1.12 when Γ = Π0
2. We argue as when the rank of Γ is at least three

(we just have to replace Theorem 5 with Theorem 6.2). �

Theorem 6.3 Let R :=dT e\E0.
(a) the set A defined in Theorem 4.1 is a basis for the class of non-pot(Σ0

2) Borel subsets of a
pot(Σ0

2) s-acyclic relation.
(b) R is minimum among non-pot(Σ0

2) Borel subsets of a pot(Σ0
2) s-acyclic oriented graph.

(c) s(R) is minimum among non-pot(Σ0
2) Borel graphs contained in a pot(Σ0

2) acyclic graph.
(d) R ∪∆(2ω) is minimum among non-pot(Σ0

2) Borel quasi-orders (or partial orders) contained
in a pot(Σ0

2) s-acyclic relation.

Proof. (a) Let us check that R has the (Σ0
2,Σ

0
2)-basis property. Let X be a Polish space, and A,B

be disjoint analytic relations on X such that A is contained in a pot(Σ0
2) symmetric acyclic relation

F . Note first that R is not separable from R\R by a pot(Σ0
2) set, by Theorem 3.5. So assume that

A is not separable from B by a pot(Σ0
2) set. Note that A is not separable from B ∩ F by a pot(Σ0

2)
set. Corollary 6.1 gives g : 2ω→X injective continuous such that dT e ∩ E0⊆ (g×g)−1(B ∩ F ) and
dT e\E0⊆(g×g)−1(A), and we are done.
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We can now apply Theorem 4.17 to Γ′ :=Σ0
2.

(b) Assume that B is a non-pot(Σ0
2) Borel subset of a pot(Σ0

2) s-acyclic oriented graph. By (a), R or
R∪ (R

−1\R−1) is reducible to B since B is an oriented graph. It cannot be R∪ (R
−1\R−1), which

is not contained in a pot(Σ0
2) s-acyclic oriented graph since R is not pot(Σ0

2).

(c) We apply Lemma 4.8 and (b).

(d) We argue as in the proof of Theorem 5. �

Proof of Theorem 4.1.(1)-(3) when Γ=Σ0
2. We set R := dT e\E0, and argue as when the rank of Γ

is at least 3 (we just have to replace Theorem 5 with Theorem 6.3). �

Proof of Theorems 1.10 and 1.12 when Γ = Σ0
2. We argue as when the rank of Γ is at least three

(we just have to replace Theorem 5 with Theorem 6.3). �

If we add an acyclicity assumption to Corollary 6.5 in [L-Z], then we get a reduction on the whole
product, namely Theorem 4.1.(4). We can prove it using Corollary 6.5 in [L-Z], but in fact it is just a
corollary of Theorem 4.1.(3).

Proof of Theorem 4.1.(4). We apply the fact, noted in the introduction, that a Borel locally countable
relation is pot(Σ0

2), and Theorem 4.1.(3). We use the fact that R ∪R−1 and R ∪ (R
−1\R−1) are not

localy countable. �

7 Study when the rank of Γ is one

We first study the case Γ=Σ0
1.

Proof of Theorem 4.1.(6). As the pot(Σ0
1) sets are exactly the countable unions of Borel rectangles,

∆(2ω),Gr(h0|N0
),Gr(h0) are not pot(Σ0

1). Note that these relations are closed and s-acyclic since
Gr(h0) is acyclic. Considerations about reflexivity and Proposition 4.6 show that these relations
form a vc-antichain. So assume that B is a non-pot(Σ0

1) Borel s-acyclic relation, so that B is not a
countable union of Borel rectangles.

If {x ∈ X | (x, x) ∈ B} is uncountable, then it contains a Cantor set C. Lemmas 2.3 and 2.4
show that B ∩ C2 is meager in C2. Mycielski’s theorem gives a Cantor subset K of C such that
K2 ∩B=∆(K) (see 19.1 in [K]). This implies that

(
2ω,∆(2ω)

)
vc (X,B).

So we may assume that {x ∈ X | (x, x) ∈ B} is countable, and in fact that B is irreflexive.
As B is not a countable union of Borel rectangles, we can find Cantor subsets C, D of X and a
homeomorphism ϕ :C→D whose graph is contained in B (see [P]). As B is irreflexive, ϕ is fixed
point free and we may assume that C and D are disjoint. Let Ψ0 :N0→C be a homeomorphism, and
Ψ1 :=ϕ ◦Ψ0 ◦h0|N1

, so that Ψ1 :N1→D is a homeomorphism too. We set Ψ(α) :=Ψε(α) if α∈Nε,
so that Ψ:2ω→X is a continuous injection.
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We also setB′ :=(Ψ×Ψ)−1(B), so thatB′ is a relation on 2ω containing Gr(h0|N0
) and satisfying

the same properties as B. By Lemmas 2.3 and 2.4, B′ is meager. Let ϕε :2ω→Nε be the homeomor-
phism defined by ϕε(α) :=εα, and B′′ :=

⋃
ε,ε′∈2 (ϕε×ϕε′)−1(B′), so that B′′ is a reflexive meager

relation on 2ω. Mycielski’s theorem gives a Cantor subset K of 2ω such that K2 ∩ B′′= ∆(K). Let
h : 2ω→K be a homeomorphism, and g(εα) := ϕε

(
h(α)

)
. Then g is injective continuous. We set

B′′′ :=(g×g)−1(B′), so that Gr(h0|N0
)⊆B′′′⊆Gr(h0). We then set S :={α∈2ω | (1α, 0α)∈B′′′}.

If S is meager, then let P be a Cantor subset disjoint from S. Then

B′′′ ∩ (2×P )2 =Gr(h0|N0
) ∩ (2×P )2

is a non-pot(Σ0
1) s-acyclic oriented graph on 2×P , and, repeating the previous discussion, we see

that (
2ω,Gr(h0|N0

)
)
vc
(
2×P 2, B′′′ ∩ (2×P )2

)
vc (2ω, B′′′) vc (X,B).

Similarly, if S is not meager, then let Q be a Cantor subset of S. Then

B′′′ ∩ (2×Q)2 =Gr(h0) ∩ (2×Q)2

is a non-pot(Σ0
1) acyclic graph on 2×Q, and, repeating the previous discussion, we see that(

2ω,Gr(h0)
)
vc
(
2×Q2, B′′′ ∩ (2×Q)2

)
vc (2ω, B′′′) vc (X,B).

For the last assertion, letQ be a non-pot(Γ) Borel s-acyclic quasi-order on a Polish spaceX . Theorem
4.1 gives A∈{∆(2ω), R, s(R)} with (2ω, A) vc (X,Q). As R and s(R) are not reflexive, A has to
be ∆(2ω). �

If we apply Theorem 4.1.(6) and Lemma 4.18, then we get a version of Theorem 1.12 for Γ=Σ0
1.

Let us mention a corollary in the style of Corollary 6.4 in [L-Z].

Corollary 7.1 Let X be a Polish space, and B be a Borel s-acyclic relation on X . Then exactly one
of the following holds:

(a) the set B is pot(Σ0
1),

(b) there are f, g :2ω→X injective continuous with ∆(2ω)=(f×g)−1(B).

We now study the case Γ=Π0
1. We will apply several times Corollary 3.10 in [L-Z] and use the

following lemma.

Lemma 7.2 Let X be a Polish space, B be a relation on X , C,D be closed subsets of X , and
f, g : 2ω→X be continuous maps such that G0⊆ (f×g)−1

(
B ∩ (C×D)

)
. Then f (resp., g) takes

values in C (resp., D).

Proof. The first projection of G0 is comeager, so that f(α) ∈ C for almost all α, and all α by
continuity. Similarly, g(β)∈D for all β. �

In our results about potentially closed sets, the assumption of being pot
(
Ď2(Σ0

1)
)

is equivalent to
being pot(Π0

1), in the acyclic context. We indicate the class Ď2(Σ0
1) for optimality reasons.
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Proposition 7.3 Any pot
(
Ď2(Σ0

1)
)

s-acyclic relation is pot(Π0
1).

Proof. Let G be a pot
(
Ď2(Σ0

1)
)

s-acyclic relation. We can write G = O ∪ C, with O ∈ pot(Σ0
1)

and C ∈ pot(Π0
1). As O \∆(X) is pot(Σ0

1), irreflexive and s-acyclic,
(
O \∆(X)

)
∩ (C×D) is

meager in C×D if C,D are Cantor subsets of X by Lemmas 2.3 and 2.4, so that we can write
O\∆(X)=

⋃
n∈ω An×Bn, with An or Bn countable for each n. In particular, O\∆(X) is pot(∆0

1)
by Remark 2.1 in [L1]. Note thatO∩∆(X) is a Borel set with closed vertical sections and is therefore
pot(Π0

1) (see [Lo1]). Thus O=
(
O\∆(X)

)
∪
(
O ∩∆(X)

)
and G are pot(Π0

1). �

Proof of Theorem 4.1.(1)-(2) and (5).(i) when Γ = Π0
1. (1) By Lemma 4.14, R is D2(Σ0

1), not
pot(Π0

1), and is s-acyclic. By Proposition 7.3, R is not pot
(
Ď2(Σ0

1)
)
.

(5).(i) Note first that Lemma 2.3 implies that B0 is in the context of Theorem 4.1.(5).(i), in the sense
that it is a Borel subset of the closed s-acyclic oriented graph B0 =B0 ∪{(0α, 1α) | α∈2ω}. Assume
thatB is a non-pot(Π0

1) Borel subset of a pot(Π0
1) s-acyclic oriented graph. Note that there is a Borel

countable coloring of (X,B). Indeed, we argue by contradiction. Theorem 1.8 gives f : 2ω → X
injective continuous such that G0 = (f×f)−1(B). This shows the existence of a pot(Π0

1) oriented
graph separating G0 from ∆(2ω). This gives a Borel countable coloring of (2ω,G0), which is absurd.

This shows the existence of a Borel partition (Bn)n∈ω of X into B-discrete sets. This gives
m 6=n such that B ∩ (Bm×Bn) is not pot(Π0

1). We can change the Polish topology, so that we can
assume that the Bn’s are clopen and B is contained in a closed s-acyclic oriented graph F . Note that(
Bm ∪Bn,

(
B ∩ (Bm×Bn)

)
∪
(
B ∩ (Bn×Bm)

))
vc (X,B), and that

F ′ :=
(
F ∩ (Bm×Bn)

)
∪
(
F ∩ (Bn×Bm)

)
is a closed s-acyclic oriented graph on Bm ∪ Bn containing

(
B ∩ (Bm×Bn)

)
∪
(
B ∩ (Bn×Bm)

)
.

Corollary 3.10 in [L-Z] gives f ′, g′ :2ω→Bm ∪Bn injective continuous with

G0⊆(f ′×g′)−1
(
B ∩ (Bm×Bn)

)
and ∆(2ω)⊆¬(f ′×g′)−1

(
B ∩ (Bm×Bn)

)
. By Lemma 7.2, f ′(α)∈Bm for all α, and g′(β)∈Bn for

all β. Thus ∆(2ω)⊆(f ′×g′)−1(¬B). The shift maps sε :Nε→2ω, for ε∈2, are continuous injections
and B0 =B0 ∩ (s0×s1)−1(G0). The map f ′′ :N0→Bm (resp., g′′ :N1→Bn) defined by f ′′ :=f ′ ◦ s0

(resp., g′′ := g′ ◦ s1) is injective continuous, B0⊆(f ′′×g′′)−1(B) and B0\B0⊆(f ′′×g′′)−1(¬B).
We set h(α) :=f ′′(α) if α(0) = 0, h(α) :=g′′(α) otherwise. Note that h :2ω→Bm ∪Bn is injective
continuous, B0 ⊆ (h×h)−1(B) and B0\B0 ⊆ (h×h)−1(¬B). Moreover, F ′′ := (h×h)−1(F ′) is a
closed s-acyclic oriented graph on 2ω containing B0, and contained in (N0×N1)∪(N1×N0). Theorem
4.13 gives i : 2ω→2ω injective continuous with B0⊆ (i×i)−1(B0), B0\B0⊆ (i×i)−1(B0\B0), and
¬B0⊆(i×i)−1(¬F ′′). Then f :=h ◦ i is an injective continuous reduction of B0 to B.

For s(B0), we apply the proof of Lemma 4.8 and the previous argument. For the last assertion,
we argue as in the proof of Theorem 5 (assuming that Theorem 4.1.(5).(ii) is proved, which will be
done later).

(2) We apply Proposition 4.5 and Lemma 4.14. �

The proof of Lemma 4.18 and Theorem 4.1 give the version of Theorem 1.12 for Γ = Π0
1 an-

nounced in the introduction.
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Proposition 7.4 B0 6vc Gs(G0).

Proof. Assume that f : 2ω→2ω is injective continuous and B0 =(f×f)−1(Gs(G0)). Let S : 2ω→2ω

be the shift map defined by S(εα) := α. Then the maps α 7→ S
(
f(0α)

)
and β 7→ S

(
f(1β)

)
define

a rectangular continuous reduction of G0 to s(G0). Indeed, it is clearly a homomorphism. The first
projection of G0 is comeager, so that 0⊆ f(0α) for almost all α, and all α by continuity. Similarly,
1⊆f(1β) for all β, which gives a rectangular reduction. As G0\G0 =∆(2ω)=s(G0)\s(G0), we have
in fact a square rectangular continuous reduction, which is not possible since G0 is antisymmetric and
s(G0) is symmetric. �

Remarks. (a) The assumptions “F is closed” and “F is s-acyclic” in Theorem 4.13 are useful. Indeed,
for the first one, assume that F is Gs(G0). Then F satisfies the assumptions of Theorem 4.13, except
that it is not Π0

1. If the conclusion was true, then we would have B0 vc Gs(G0), which is absurd by
Proposition 7.4.

For the second one, assume that F is Gs(G0). Then F satisfies the assumptions of Theorem
4.13, except that it is not s-acyclic. If the conclusion was true, then we would have B0 vc Gs(G0).
As in the proof of Proposition 7.4, this would give a rectangular continuous reduction of G0 to
s(G0), with witnesses f ′, g′. As in the proof of Proposition 7.4, we cannot have f ′ = g′. The
proof of Proposition 7.4 shows that f ′, g′ are injective. Let α ∈ 2ω with f ′(α) 6= g′(α). Then
for example there is n ∈ ω such that g′(α) = ϕn

(
f ′(α)

)
(we use the notation in the proof of

Theorem 2.5). In particular, there are clopen sets U, V such that
(
f ′(α), g′(α)

)
∈ U × V and

s(G0) ∩ (U×V )=Gr(ϕn) ∩ (U×V ). We set W :=f ′−1(U) ∩ g′−1(V ), which is a clopen neigh-
borhood of α such that G0 ∩W 2 =(f ′×g′)−1

(
Gr(ϕn)

)
∩W 2. Pick p∈ω, β ∈W with ϕp(β)∈W .

Then g′(β)=ϕn
(
f ′(β)

)
=g′

(
ϕp(β)

)
, which contradicts the injectivity of g′.

(b) We cannot replace the class Ď2(Σ0
1) with D2(Π0

1) in the version of Theorem 1.12 for Γ = Π0
1.

Indeed, take B :=s(G0). Note that B=B\∆(2ω)∈D2(Π0
1). Moreover, B is irreflexive, symmetric

and acyclic (see Proposition 2.2). Thus s(GB) is acyclic by Lemma 2.3. Theorem 1.5 shows that
B /∈ pot(Π0

1). The proof of Proposition 7.4 shows that we cannot find f, g : 2ω → 2ω injective
continuous with G0 =(f×g)−1(B).

Proof of Theorem 1.10.(1) and (3) when Γ=Π0
1. (3) We argue by contradiction, which gives O. As

B0 is a locally countable s-acyclic oriented graph, O is reductible to B0, O is contained in a closed
s-acyclic oriented graph, and B0 is reducible to O. Note that Gs(G0) is a locally countable D2(Σ0

1)
non-pot(Π0

1) s-acyclic oriented graph. Indeed, by Lemma 2.3 and the remark after it, s(T0) is acyclic.
Thus B0 is reducible to Gs(G0), which contradicts Proposition 7.4.

(1) We argue as when the rank of Γ is at least three. �

An antichain made non-pot(Π0
1) relations

Proposition 7.5 {G0,B0,N0,M0, Gs(G0),T0,U0, s(G0), s(B0), s(T0)} is a vc-antichain made of
D2(Σ0

1) s-acyclic digraphs, with locally countable closure, which are not pot(Π0
1).
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Proof. By Theorem 1.5, G0 and s(G0) are not pot(Π0
1). As there is a rectangular continuous reduction

of G0 or s(G0) to the intersection of any of the other examples with N0×N1, they are not pot(Π0
1).

All the examples are D2(Σ0
1). They are clearly irreflexive, and have locally countable closure, like

G0. We saw the acyclicity of s(G0) in Proposition 2.2, that of s(B0) in Lemma 4.14, and that of
s(T0) in the proof of Theorem 1.10. The symmetrization of any of the ten sets is a subset of one of
these three symmetrizations, and thus is acyclic.

By Proposition 4.5, {B0,N0,M0, s(B0)} is an antichain.

As U0 is neither an oriented graph, nor a graph, it is not reducible to the other examples, except
maybe N0. The set U0 is not reducible to N0 since s(N0) is closed and s(U0) is not.

As N0 is neither an oriented graph, nor a graph, it is not reducible to any of the other examples,
except maybe U0. As its symmetrization is closed, the other examples different from M0 are not
reducible to it.

Assume, towards a contradiction, that N0 is reducible to U0, with witness f . Then(
f(0∞), f(10∞)

)
∈(f×f)[N0\N0]⊆U0\U0,

which gives ε∈2 and β∈2ω such that
(
f(0∞), f(10∞)

)
=(εβ, (1−ε)β). Thus

(
(1−ε)β, εβ)∈U0,

which is absurd. Note that this argument also shows that M0 is not reducible to B0 and U0.

As G0,B0,M0, Gs(G0),T0 are oriented graphs and s(G0), s(B0), s(T0) are graphs, the elements
of the first set are incomparable with the elements of the second one. So we can consider these two
sets separately.

Let us consider the first one. Note that G0 6vc B0 and B0 6vc G0. Indeed, for the first claim, there
is a Borel countable coloring of B0. For the second one, we argue by contradiction, which gives f
continuous. As (0∞, 10∞)∈B0\B0,

(
f(0∞), f(10∞)

)
∈G0\G0 =∆(2ω), so that f is not injective.

Moreover, B0 6vc Gs(G0), by Proposition 7.4.

Using the same arguments as in these proofs, we see that {G0,B0, Gs(G0)} is an antichain, that
G0 is incomparable with the other examples, and that T0,M0 are not reducible to Gs(G0). The sym-
metrization of M0 is closed, which is not the case of the other symmetrizations, so that M0 cannot
vc-reduce another one. Thus {G0,B0,M0, Gs(G0)} is an antichain.

The set T0 is not reducible to B0. Indeed, we argue by contradiction, so that T0 is a subset of a
pot(Π0

1) s-acyclic oriented graph, by Theorem 4.1. Thus s(T0) is a subset of a pot(Π0
1) acyclic graph

G, and Gs(G0) “is” a subset of the pot(Π0
1) s-acyclic oriented graph G ∩ (N0×N1). By Theorem 4.1

again, B0 is reducible to Gs(G0), which is absurd.

It remains to see that B0,M0, Gs(G0) are not reducible to T0. If B0 is reductible to T0 with witness
f , then f is also a reduction of s(B0) to s(T0). As (0∞, 10∞)∈B0\B0,(

f(0∞), f(10∞)
)
∈T0\T0 ={(εγ, (1−ε)γ) | ε∈2 ∧ γ∈2ω}.
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This gives ε ∈ 2, N ∈ ω such that f [N0N+1 ] ⊆ Nε and f [N10N ] ⊆ N1−ε. Therefore the maps
α 7→S

(
f(0α)

)
and α 7→S

(
f(1α)

)
define a rectangular continuous reduction of G0 ∩N2

0N
to s(G0).

By Theorem 1.8, G0 vc G0 ∩ N2
0N

. This gives a rectangular continuous reduction of G0 to s(G0),
which is absurd.

Similarly, Gs(G0) is not reductible to T0. If M0 is reductible to T0 with witness f , then(
f(0∞), f(10∞)

)
∈(f×f)[M0\M0]⊆T0\T0,

which gives ε∈2 and β∈2ω such that
(
f(0∞), f(10∞)

)
=
(
εβ, (1−ε)β

)
. Thus

(
(1−ε)β, εβ

)
∈T0,

which is absurd.

As s(B0) is not reducible to s(T0), B0 and s(B0) are not reducible to U0. Let us prove that
Gs(G0),T0, s(T0) are not reducible to U0. Let us do it for T0, the other cases being similar.

We argue by contradiction, which gives f . Note that
(
f(0∞), f(10∞)

)
∈ U0 \U0, which gives

ε∈ 2 and N ∈ ω such that f [N0N+1 ]⊆Nε and f [N10N ]⊆N1−ε. We can write f(0N+1α) = εg(α),
where g is injective continuous. Similarly, f(10Nβ) = (1−ε)h(β), where h is injective continuous.
As
(
f(0N+1α), f(10Nα)

)
∈U0\U0, h=g. Now (0N+1α, 10Nβ)∈T0 ⇔

(
εg(α), (1−ε)g(β)

)
∈U0.

Moreover, this implies that (0N+1β, 10Nα) /∈T0 and
(
εg(β), (1−ε)g(α)

)
/∈U0, so that ε=1. Now

(10Nα, 0N+1β)∈T0 is equivalent to
(
0g(α), 1g(β)

)
∈U0,

(
0g(β), 1g(α)

)
∈U0, and

(10Nβ, 0N+1α)∈T0,

which is absurd.

Let us consider the second one. As in the previous point, s(G0) is not comparable with s(B0) and
s(T0). We saw that s(B0) is not reducible to s(T0). If s(T0) is reducible to s(B0), then it is a subset
of a pot(Π0

1) acyclic graph, which is absurd as before. �

A basis result

We will see that the elements of this antichain are minimal. In fact, we prove more.

Proof of Theorem 4.1.(5).(ii). We set A′′ :={B0,N0,M0} and B′′ :={s(B0)}. By Lemma 4.14 and
Proposition 7.5, A′′ ∪ B′′ is a vc-antichain made of D2(Σ0

1) relations, whose closure is s-acyclic
and is contained in (N0×N1) ∪ (N0×N1), which are not pot(Π0

1). By Lemma 4.3, A is also a
vc-antichain. The proof of Proposition 7.5 shows that A ∪ {G0, s(G0)} is a vc-antichain, which is
made of relations in the context of the theorem.

We first consider the case of digraphs. So assume thatB is a non-pot(Π0
1) Borel digraph contained

in a pot(Π0
1) symmetric acyclic relation F . By Theorem 1.8, we may assume that there is a Borel

countable coloring (Bn)n∈ω of B. We can change the Polish topology, so that we may assume that
the Bn’s are clopen and F is closed. Let m 6=n such that B ∩ (Bm×Bn) is not pot(Π0

1). Note that
F ′ :=F ∩

(
(Bm×Bn) ∪ (Bn×Bm)

)
is a closed acyclic graph.
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Corollary 3.10 in [L-Z] gives f ′, g′ injective continuous with G0 =G0∩(f ′×g′)−1
(
B∩(Bm×Bn)

)
.

Lemma 7.2 shows that f ′ takes values in Bm and g′ takes values in Bn, so that

G0 =G0 ∩ (f ′×g′)−1(B).

The proof of Theorem 4.1.(5).(i) gives h :2ω→Bm ∪Bn injective continuous such that

B0 =B0 ∩ (h×h)−1(B),

and F ′′ := (h×h)−1(F ′) is a closed acyclic graph on 2ω contained in (N0×N1) ∪ (N1×N0) and
containing B0. Theorem 4.13 gives i : 2ω → 2ω injective continuous such that B0 ⊆ (i× i)−1(B0),
B0\B0 ⊆ (i×i)−1(B0\B0) and ¬s(B0)⊆ (i×i)−1(¬F ′′). We set f̃ := h ◦ i, so that f̃ is injective
continuous, B0⊆B′ :=(f̃×f̃)−1(B), B0\B0⊆¬B′, ¬s(B0)⊆(f̃×f̃)−1(¬F ′), and thus¬s(B0)⊆¬B′.
We proved that B0⊆B′⊆N0.

Case 1 S :={α∈2ω | (1α, 0α)∈B′} is meager.

Then (2ω, A) vc (X,B) for some A ∈ {B0, s(B0)}. Indeed, let G̃ be a dense Gδ subset of 2ω

disjoint from S, and G :=2×G̃. Then

B0 ∩G2⊆B′ ∩G2⊆s(B0) ∩G2.

We set B′′ :={(α, β)∈ G̃2 | (1α, 0β)∈B′}. Note that B′′ is a Borel oriented graph on G̃ contained
in the Σ0

2 acyclic graph s(G0) ∩ G̃2. By Theorem 1.8, either B′′ has a Borel countable coloring, or
(2ω,G−1

0 ) vc (G̃, B′′) with witness g.

- In the first case, we find a non meager Gδ subset G′ of 2ω contained in G̃ which is B′′-discrete.
Note that B′ ∩ (2×G′)2 =B0 ∩ (2×G′)2 and (2ω,B0) vc

(
2×G′,B0 ∩ (2×G′)2

)
vc (X,B), by

Theorem 4.1 and Lemma 4.14.

- In the second case, note that G0⊆(g×g)−1(B′′−1)⊆(g×g)−1(G0). Theorem 2.5 gives g′′ :2ω→2ω

injective continuous such that

G0⊆(g′′×g′′)−1(G0)⊆(g′′×g′′)−1
(
(g×g)−1(G0)

)
⊆s(G0).

As (g×g)−1(G0) is an oriented graph, G0 =(g′′×g′′)−1
(
(g×g)−1(G0)

)
. We set

f ′′(εα) :=εg
(
g′′(α)

)
,

so that f ′′ is injective continuous. If (0α, 1β)∈s(B0), then
(
g′′(α), g′′(β)

)
∈G0,(

(gg′′)(α), (gg′′)(β)
)
∈B′′−1

and
(
1(gg′′)(β), 0(gg′′)(α)

)
∈B′ ∩G2. Thus

(
1(gg′′)(β), 0(gg′′)(α)

)
∈s(B0),(

1(gg′′)(β), 0(gg′′)(α)
)
∈B−1

0 ,(
0(gg′′)(α), 1(gg′′)(β)

)
∈B0 ∩G2 and

(
f ′′(0α), f ′′(1β)

)
∈ B′. In particular, if (1α, 0β)∈s(B0),

then
(
f ′′(1α), f ′′(0β)

)
∈B′.
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Conversely, if
(
f ′′(0α), f ′′(1β)

)
∈B′, then

(
f ′′(0α), f ′′(1β)

)
∈B0,

(
(gg′′)(α), (gg′′)(β)

)
∈G0,

(α, β) ∈ G0 and (0α, 1β) ∈ s(B0). If
(
f ′′(1α), f ′′(0β)

)
∈ B′, then

(
(gg′′)(α), (gg′′)(β)

)
∈ B′′,(

g′′(β), g′′(α)
)
∈G0, (0β, 1α)∈s(B0) and (1α, 0β)∈s(B0). Thus f ′′ is a witness for(

2ω, s(B0)
)
vc (2ω, B′) vc (X,B).

Case 2 S is not meager.

Then let us show that (2ω, A) vc (X,B) for some A∈{N0,M0}. Indeed, let H̃ be a non-meager
Gδ subset of 2ω contained in S, and H := 2×H̃ . Then M0 ∩ H2 ⊆ B′ ∩ H2 ⊆ N0 ∩ H2. We set
B′′ :={(α, β)∈H̃2 | α 6=β ∧ (1α, 0β)∈B′}. Note that B′′⊆G−1

0 is Borel. By Theorem 1.8, either
there is a Borel countable coloring of B′′, or (2ω,G−1

0 ) vc (H̃, B′′) with witness g.

- In the first case, there is a non meager Gδ subset H ′ of 2ω contained in H̃ which is B′′-discrete.
Note that B′ ∩ (2×H ′)2 =M0 ∩ (2×H ′)2 and

(
2×H ′,M0 ∩ (2×H ′)2

)
vc (2ω, B′) vc (X,B).

So we are done if we prove that (2ω,M0) vc
(
2×H ′,M0 ∩ (2×H ′)2

)
. Note that G0 ∩ H ′2 is a

Σ0
2 s-acyclic oriented graph on H ′ without Borel countable coloring. Theorem 1.8 gives g̃ : 2ω→H ′

injective continuous such that G0 = (g̃× g̃)−1(G0). It remains to consider εα 7→ εg̃(α) to get our
reduction.

- In the second case, note that

G0⊆{(α, β)∈2ω×2ω | α 6=β ∧
(
1g(β), 0g(α)

)
∈B′}⊆(g×g)−1(G0).

Theorem 2.5 gives g′′ :2ω→2ω injective continuous such that

G0⊆(g′′×g′′)−1(G0)⊆(g′′×g′′)−1
(
(g×g)−1(G0)

)
⊆s(G0),

and G0 =(g′×g′)−1
(
(g×g)−1(G0)

)
as in the previous point. We define f ′′ as in the previous point,

and here again f ′′ is a witness for (2ω,N0) vc (2ω, B′) vc (X,B).

We now consider the general case of non necessarily irreflexive relations. LetB be a non-pot(Π0
1)

Borel subset of a pot(Π0
1) symmetric acyclic relation. We may assume that B is contained in a closed

symmetric acyclic relation F .

Case 1 If C,D are disjoint Borel subsets of X , then B ∩ (C×D) is pot(Π0
1).

We set N :={x∈X | (x, x) /∈B}. Note that N is Borel, so that we may assume that N is clopen,
and B ∩ (N×¬N) and B ∩ (¬N×N) are pot(Π0

1). This is also the case of B ∩ (¬N)2, which
is a reflexive relation on ¬N . Indeed, we may assume that ¬N is uncountable, which gives a Borel
isomorphism Ψ:2ω→¬N . Note that (¬N)2\∆(¬N)=

⋃
s∈2<ω ,ε∈2 Ψ[Nsε]×Ψ[Ns(1−ε)], so that

B ∩ (¬N)2 =∆(¬N) ∪
⋃

s∈2<ω ,ε∈2

B ∩ (Ψ[Nsε]×Ψ[Ns(1−ε)])

and (Ψ×Ψ)−1
(
B∩(¬N)2

)
=∆(2ω)∪

⋃
s∈2<ω ,ε∈2 (Ψ×Ψ)−1(B)∩(Nsε×Ns(1−ε)). By our assumption,

the (Ψ×Ψ)−1(B) ∩ (Nsε×Ns(1−ε))’s are pot(Π0
1). We are done since they can accumulate only on

the diagonal. This shows that B ∩ N2 is a non-pot(Π0
1) Borel digraph on N . By our assumption, it

has no Borel countable coloring. Theorem 1.8 gives A∈{G0, s(G0)} such that

(2ω, A) vc (N,B ∩N2) vc (X,B).
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Case 2 There are disjoint Borel subsets C,D of X such that B ∩ (C×D) is not pot(Π0
1).

Note that we may assume that C,D are clopen. The case of digraphs gives

A∈{B0,N0,M0, s(B0)}

such that (2ω, A) vc
(
C ∪D,B ∩

(
(C×D)∪ (D×C)

))
with witness g, for coloring reasons. Note

that
(
g(0∞), g(10∞)

)
∈(g×g)[A], so that

(
g(0∞), g(10∞)

)
∈C×D, for example. The continuity of

g gives N ∈ω such that g[N0N+1 ]⊆C and g[N10N ]⊆D. Note that

(g×g)−1(B) ∩
(
(N0N+1×N10N ) ∪ (N10N×N0N+1)

)
=A ∩ (N0N+1 ∪N10N )2

is not pot(Π0
1). This implies that we may assume that X=N0N+1 ∪N10N and

B ∩
(
(N0N+1×N10N ) ∪ (N10N×N0N+1)

)
=A ∩ (N0N+1 ∪N10N )2.

We set F ′ := {(α, β)∈N2
0N
| ∃ε, ε′ ∈ 2 (εα, ε′β)∈F}. Note that F ′ is a closed symmetric relation

on N0N containing G0∩N2
0N

. Moreover, F ′ is acyclic. Indeed, we argue by contradiction to see this,
which gives n≥ 2 and (γi)i≤n injective with (γi, γi+1)∈ F ′ for each i < n and (γ0, γn)∈ F ′. This
provides (εj)j≤2n+1 ∈ 22n+2 such that (ε2iγi, ε2i+1γi+1)∈F if i <n and (ε2nγ0, ε2n+1γn) is in F .
If ε1 6= ε2, then (ε1γ1, ε2γ1)∈ s(B)⊆F . This gives an injective F -path with at least n+1 elements
contradicting the acyclicity of F .

Corollary 2.6 gives h :2ω→N0N injective continuous such that

G0⊆(h×h)−1
(
G0 ∩N2

0N

)
⊆(h×h)−1

(
F ′\∆(X)

)
⊆s(G0).

Symmetry considerations show that in fact

G0 =(h×h)−1
(
G0 ∩N2

0N

)
⊆(h×h)−1

(
F ′\∆(X)

)
=s(G0).

We set k(εα) :=εh(α), which defines k :2ω→N0N+1 ∪N10N injective continuous with

B0⊆(k×k)−1(B)⊆{(εα, ε′β)∈2ω×2ω | (α, β)∈s(G0)}\{(0γ, 1γ) | γ∈2ω}.

This means that we may assume that X=2ω and

B0⊆B⊆{(εα, ε′β)∈2ω×2ω | (α, β)∈s(G0)}\{(0γ, 1γ) | γ∈2ω}.

This proof also shows that we may assume that B ∩
(
(N0×N1) ∪ (N0×N1)

)
= A. It remains to

study B ∩ (N2
0 ∪ N2

1 ). Assume that (0α, 0β) ∈ B and α 6= β. Then we can find n ∈ ω, ε ∈ 2 and
γ ∈ 2ω such that (α, β) ∈ (snεγ, sn(1−ε)γ). Then (0sn1γ, 0sn0γ, 1sn1γ) is an injective F -path
contradicting the acyclicity of F since (0sn1γ, 1sn1γ)∈B0⊆F . Similarly, (1α, 1β) cannot be in B
if α 6=β. This proves that we may assume that A⊆B⊆A ∪∆(2ω). This means that we may assume
that X = 2ω and there is a Borel subset I of 2ω such that B =A ∪ ∆(I). Then we argue as in the
proof of Theorem 4.17. The (a) part of the claim comes from Lemma 4.14.(1). For the (b) part of
the claim, the minimality of B0 comes from the case of digraphs. The witness f is a homomorphism
from B0 into itself and sends Nε into itself. For Case 2, B0 is minimum among non-pot(Π0

1) subsets
of a closed s-acyclic oriented graph, by Theorem 4.1.(5).(i), so that we can apply Proposition 4.11.
We conclude as in the proof of Theorem 4.17. �
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Note that this implies that G0,B0,N0,M0, s(G0), s(B0) are vc-minimal among non-pot(Π0
1)

relations. Theorem 4.1.(5).(ii) is optimal in terms of potential complexity, because of Gs(G0), T0

and s(T0), by Proposition 7.5. We now give a consequence of our results of injective reduction on a
closed set.

Corollary 7.6 Let X be a Polish space, and B be a Borel s-acyclic digraph on X contained in a
pot
(
Ď2(Σ0

1)
)

locally countable relation. Then exactly one of the following holds:
(a) the set B is pot(Π0

1),
(b) (2ω,G0) vc (X,B) or

(
2ω, s(G0)

)
vc (X,B) or there is a Σ0

2 s-acyclic digraph B′ on
2ω with locally countable closure contained in (N0×N1) ∪ (N1×N0) such that B0 =B0 ∩ B′ and
(2ω, B′) vc (X,B).

Proof. Let F be a pot
(
Ď2(Σ0

1)
)

locally countable relation containing B. Then F is in fact pot(Π0
1).

Assume that (a) does not hold. By Theorem 1.8, we may assume that there is a Borel coloring
(Bn)n∈ω of B. As B is locally countable and we can change the Polish topology, we may assume
that B is Σ0

2, F is closed, and the Bn’s are clopen. Let m 6= n such that B ∩ (Bm×Bn) is not
pot(Π0

1). Corollary 3.10 in [L-Z] gives f0 : 2ω → Bm and f1 : 2ω → Bn injective continuous with
G0 =G0 ∩ (f0×f1)−1

(
B ∩ (Bm×Bn)

)
. We set h(εα) :=fε(α), so that h is injective continuous and

B0 =B0 ∩ (h×h)−1(B). It remains to set B′ :=(h×h)−1(B). �

Minimality

Theorem 7.7 The sets Gs(G0), s(T0) are vc-minimal among non-pot(Π0
1) relations.

Proof. By Lemma 4.7, it is enough to prove that Gs(G0) isvc-minimal among non-pot(Π0
1) relations.

So assume that A ⊆ X2 is not pot(Π0
1) and (X,A) vc (2ω, Gs(G0)) with witness g. Then A is a

D2(Σ0
1) s-acyclic oriented graph with locally countable closure. By Corollary 7.6,

(2ω,G0) vc (X,A)

or there is a D2(Σ0
1) s-acyclic oriented graph B on 2ω with locally countable closure contained in

(N0×N1) ∪ (N1×N0) such that B0 =B0 ∩B and (2ω, B) vc (X,A). So we may assume that X is
compact and A∈Kσ. We set R :=(g×g)[A], so that R⊆Gs(G0)∩g[X]2 is Kσ, (X,A) vc (g[X], R)
and (g[X], R) vc (X,A). In particular, R is not pot(Π0

1). We set

B :={(α, β)∈2ω×2ω | (0α, 1β)∈R}.

Note that B ⊆ s(G0) and the shift map is a rectangular reduction of R⊆N0×N1 to B. Thus B is
a non-pot(Π0

1) subset of s(G0). This implies that B has no Borel countable coloring. Theorem 1.8
implies that G0 vc B or s(G0) vc B, with witness h. We set f(εα) := εh(α), so that f is injective
continuous. As R⊆N0×N1, we get (2ω,B0) vc (g[X], R) or (2ω, Gs(G0)) vc (g[X], R). The first
possibility cannot occur by Proposition 7.5 and we are done. �

We need several results to prepare the proof of the minimality of T0 and U0.

Theorem 7.8 Let B⊆ (N0×N1) ∪ (N1×N0) be a Σ0
2 acyclic graph on 2ω such that B0 =B0 ∩ B.

We assume that (0α, 1β)∈B ⇔ (0β, 1α)∈B. Then there is f : 2ω→ 2ω injective continuous such
that s(T0)=(f×f)−1(B) and B0⊆(f×f)−1(B0).
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Proof. We set B′ :={(α, β)∈2ω×2ω | (0α, 1β)∈B}. Note that B′ is a Σ0
2 acyclic graph on 2ω.

Indeed, assume that n≥2 and (xi)i≤n is an injective B′-path with (x0, xn)∈B′. If n is odd, then
(0x0, 1x1, 0x2, 1x3, ..., 1xn) is an injectiveB-path contradicting the acyclicity ofB. If n is even, then
(0x0, 1x1, 0x2, 1x3, ..., 0xn, 1x0, 0x1, 1x2, 0x3, ..., 1xn) is also an injective B-path contradicting the
acyclicity of B.

Theorem 2.5 gives g :2ω→2ω injective continuous satisfying the inclusions s(G0)=(g×g)−1(B′)
and G0 ⊆ (g×g)−1(G0) since G0 ⊆ B′. We set f(εα) := εg(α), so that f is injective continuous.
Note that B0⊆(f×f)−1(B0) and

(0α, 1β)∈Gs(G0)⇔(α, β)∈s(G0)⇔
(
g(α), g(β)

)
∈B′⇔

(
f(0α), f(1β)

)
=
(
0g(α), 1g(β)

)
∈B

and we are done since B⊆(N0×N1) ∪ (N1×N0) is symmetric. �

Theorem 7.9 Let B ⊆ (N0×N1) ∪ (N1×N0) be a Σ0
2 s-acyclic oriented graph on 2ω such that

B0 =B0∩B. We assume that
(
εα, (1−ε)β

)
∈B ⇔

(
εβ, (1−ε)α

)
∈B. Then (2ω, Gs(G0)) vc (2ω, B).

Proof. We set B′ := {(α, β) ∈ 2ω×2ω | (0α, 1β) ∈B}. Note that B′ is a Σ0
2 acyclic graph on 2ω,

as in the proof of Theorem 7.8. We set M := {α ∈ 2ω | (1α, 0α) ∈ B}. Note that M is meager.
Indeed, we argue by contradiction. As M is Σ0

2, this gives (α, β)∈G0 ∩M2. Then by assumption
(0α, 1β, 0β, 1α) is an injective s(B)-path contradicting the s-acyclicity of B. So let G be a dense
Gδ subset of 2ω disjoint from M . Note that G0⊆B′, so that there is no Borel countable coloring of
B′ ∩G2. Theorem 1.8 gives g :2ω→G injective continuous such that s(G0)=(g×g)−1(B′). We set
f(εα) :=εg(α), so that f is injective continuous. Note that (0α, 1β)∈Gs(G0)⇔

(
f(0α), f(1β)

)
∈B,

as in the proof of Theorem 7.8. We set B′′ :=(f×f)−1(B). Then B′′ satisfies the same assumptions
as B, B′′ vc B and (1α, 0α) /∈B′′ for each α∈2ω.

We now set B′′′ :={(α, β)∈2ω×2ω | (0α, 1β)∈B′′ ∨ (1α, 0β)∈B′′}. As for B′, Theorem 1.8
gives h : 2ω→ 2ω injective continuous such that s(G0) = (h×h)−1(B′′′). We set l(εα) := εh(α), so
that l is injective continuous. As in the previous paragraph, (0α, 1β)∈Gs(G0)⇔

(
l(0α), l(1β)

)
∈B′′.

It remains to see that
(
l(1α), l(0β)

)
/∈B′′. We argue by contradiction, so that

(
1h(α), 0h(β)

)
∈B′′,(

h(α), h(β)
)
∈B′′′, (α, β)∈ s(G0), (β, α)∈ s(G0), (0β, 1α)∈Gs(G0) and

(
l(0β), l(1α)

)
∈B′′. As

B′′ is antisymmetric, we get l(0β)= l(1α), which is absurd. �

Theorem 7.10 Let B be a Borel relation on 2ω such that s(B) = s(T0). Then (2ω, A) vc (2ω, B)
for some A in {Gs(G0),T0,U0, s(T0)}.

Proof. We set B′ :={(α, β)∈2ω×2ω | (0α, 1β)∈B}. Note that B′⊆s(G0).

Let us prove that we may assume that B′ is not pot(Π0
1). We argue by contradiction, which gives

a non-meagerGδ subsetG of 2ω which isB′-discrete. Note thatB∩(2×G)2 =G−1
s(G0)∩(2×G)2 since

B ⊆ s(B) = s(T0). As G is not meager, there is no Borel countable coloring of
(
G, s(G0) ∩ G2

)
.

Theorem 1.8 shows that
(
2ω, s(G0)

)
vc
(
G, s(G0) ∩G2

)
with witness g. The map εα 7→εg(α) is a

witness for (2ω, G−1
s(G0)) vc

(
2×G,G−1

s(G0)∩(2×G)2
)
. As (2ω, Gs(G0)) vc (2ω, G−1

s(G0)) with witness
εα 7→(1−ε)α, (2ω, Gs(G0)) vc (2ω, B).
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Theorem 1.8 implies that (2ω,G0) vc (2ω, B′) or
(
2ω, s(G0)

)
vc (2ω, B′) with witness h.

Case 1.1 (2ω,G0) vc (2ω, B′)

In this case, (0α, 1β)∈T0 ⇔
(
0h(α), 1h(β)

)
∈B. As B⊆s(B)=s(T0),(

0h(α), 1h(β)
)
∈B ⇒

(
0h(β), 1h(α)

)
∈s(B)\B=B−1 ⇒

(
1h(α), 0h(β)

)
∈B.

Case 1.2
(
2ω, s(G0)

)
vc (2ω, B′)

In this case, (0α, 1β)∈Gs(G0) ⇔
(
0h(α), 1h(β)

)
∈B, which implies that(

0h(α), 1h(β)
)
∈B ⇔

(
0h(β), 1h(α)

)
∈B.

In both cases, B ∩ {
(
0h(α), 1h(β)

)
| α, β∈2ω} is D2(Σ0

1)⊆Σ0
2.

We set B′′ :={(α, β)∈h[2ω]×h[2ω] | (1α, 0β)∈B}. Here again, B′′⊆s(G0).

Let us prove that we may assume that B′′ is not pot(Π0
1). We argue by contradiction, which gives

a non-meager Gδ subset G′ of 2ω such that h[G′] is B′′-discrete. Note that

B ∩ (2×h[G′])2 =Gs(G0) ∩ (2×h[G′])2.

As G′ is not meager, there is no Borel countable coloring of (G′,G0 ∩ G′2). Theorem 1.2 gives
f : 2ω→G′ injective continuous such that G0 ⊆ (f×f)−1(G0 ∩ G′2). The map h ◦ f is a witness
for the fact that there is no Borel countable coloring of

(
h[G′], s(G0) ∩ h[G′]2

)
. Theorem 1.8 shows

that
(
2ω, s(G0)

)
vc
(
h[G′], s(G0) ∩ h[G′]2

)
with witness g′. The map εα 7→εg′(α) is a witness for

(2ω, Gs(G0)) vc
(
2×h[G′], Gs(G0) ∩ (2×h[G′])2

)
. Thus (2ω, Gs(G0)) vc (2ω, B).

By Theorem 1.8 again, (2ω,G0) vc (h[2ω], B′′) or
(
2ω, s(G0)

)
vc (h[2ω], B′′) with witness h′.

Case 2.1 (2ω,G0) vc (h[2ω], B′′)

In this case, (1α, 0β)∈T0 ⇔
(
1h′(α), 0h′(β)

)
∈B, and(

1h′(α), 0h′(β)
)
∈B ⇒

(
1h′(β), 0h′(α)

)
∈s(B)\B=B−1 ⇒

(
0h′(α), 1h′(β)

)
∈B.

Case 2.2
(
2ω, s(G0)

)
vc (h[2ω], B′′)

In this case, (1α, 0β)∈G−1
s(G0) ⇔

(
1h′(α), 0h′(β)

)
∈B, which implies that(

1h′(α), 0h′(β)
)
∈B ⇔

(
1h′(β), 0h′(α)

)
∈B.

In both cases, B ∩ {
(
1h′(α), 0h′(β)

)
| α, β ∈ 2ω} is D2(Σ0

1) ⊆ Σ0
2. As h′[2ω] ⊆ h[2ω], the set

B ∩ (2×h′[2ω])2 is Σ0
2.

Now four new cases are possible.
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Cases 1.1 and 2.1 hold

As h′[2ω]⊆h[2ω],
(
0h′(α), 1h′(β)

)
∈B ⇒

(
1h′(α), 0h′(β)

)
∈B, so that(

0h′(α), 1h′(β)
)
∈B ⇔

(
1h′(α), 0h′(β)

)
∈B.

Moreover, this is equivalent to (1α, 0β)∈T0, so that (2ω,T0) vc (X,B) with witness εα 7→εh′(α).

Cases 1.1 and 2.2 hold

Here again,
(
0h′(α), 1h′(β)

)
∈B ⇒

(
1h′(α), 0h′(β)

)
∈B, and (1α, 0β)∈G−1

s(G0) is equivalent
to
(
1h′(α), 0h′(β)

)
∈B ⇔

(
1h′(β), 0h′(α)

)
∈B. We set f ′(εα) :=εh′(α) and B0 :=(f ′×f ′)−1(B).

Note that (2ω, B0) vc (2ω, B), B0 ⊆ (N0×N1) ∪ (N1×N0) is a Σ0
2 relation on 2ω, contained in

the Σ0
2 acyclic graph (f ′×f ′)−1

(
s(T0)

)
, B0 ∩ (N1×N0) =G−1

s(G0), and (0α, 1β)∈B0 implies that
(1α, 0β)∈B0.

We set B′0 := {(α, β) ∈ 2ω×2ω | (0α, 1β) ∈B0}. Note that B′0 is Σ0
2 and contained in the set

(h′×h′)−1
(
s(G0)

)
. By Theorem 1.1, there is a Borel countable coloring of B′0, or

(2ω,G0) vc (2ω, B′0),

or
(
2ω, s(G0)

)
vc (2ω, B′0) with witness h0.

- In the first case, we get a non-meager B′0-discrete Gδ subset G0 of 2ω. Note that

B0 ∩ (2×G0)2 =G−1
s(G0) ∩ (2×G0)2.

As (2ω, G−1
s(G0)) vc

(
2×G0, G

−1
s(G0) ∩ (2×G0)2

)
, (2ω, Gs(G0)) vc (2ω, B0) vc (2ω, B).

- In the second case, we set f0(εα) :=εh0(α) and B1 :=(f0×f0)−1(B0). Note that

(2ω, B1) vc (2ω, B0),

B1⊆ (N0×N1) ∪ (N1×N0) is a Σ0
2 relation on 2ω, B1 ∩ (N0×N1) =GG0 , (0α, 1β)∈B1 implies

that (1α, 0β)∈B1, and (1α, 0β)∈B1 ⇔ (1β, 0α)∈B1.

Note that

G0 ={(α, β)∈2ω×2ω | (0α, 1β)∈B1}⊆B′1 :={(α, β) | (1α, 0β)∈B1}⊆(h0×h0)−1
(
s(G0)

)
.

Corollary 2.6 gives h1 :2ω→2ω injective continuous such that

G0⊆(h1×h1)−1(G0)⊆(h1×h1)−1(B′1)⊆s(G0).

By symmetry considerations, we see that G0 =(h1×h1)−1(G0) and (h1×h1)−1(B′1)=s(G0). This
shows that the map εα 7→ εh1(α) is a witness for (2ω,T0 ∪ G−1

s(G0)) vc (2ω, B1). Now the map

εα 7→(1−ε)α is a witness for the fact that (2ω,U0) vc (2ω,T0 ∪G−1
s(G0)).

- The third case is similar to and simpler than the second one. We get
(
2ω, s(T0)

)
vc (2ω, B1).
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Cases 1.2 and 2.1 hold

Here,
(
0h′(α), 1h′(β)

)
∈ B ⇔

(
0h′(β), 1h′(α)

)
∈ B and (1α, 0β) ∈ T0 is equivalent to(

1h′(α), 0h′(β)
)
∈ B, which implies that

(
0h′(α), 1h′(β)

)
∈ B. We set f ′(εα) := εh′(α) and

B0 := (f ′×f ′)−1(B). Note that (2ω, B0) vc (2ω, B), B0⊆ (N0×N1) ∪ (N1×N0) is a Σ0
2 relation

on 2ω, contained in the Σ0
2 acyclic graph (f ′×f ′)−1

(
s(T0)

)
, B0 ∩ (N1×N0) = U0 ∩ (N1×N0),

(0α, 1β)∈B0 ⇔ (0β, 1α)∈B0, and (1α, 0β)∈B0 ⇒ (0α, 1β)∈B0. Note that

G0 ={(α, β)∈2ω×2ω | (1α, 0β)∈B0}⊆B′0 :={(α, β) | (0α, 1β)∈B0}⊆(h′×h′)−1
(
s(G0)

)
.

Corollary 2.6 gives h0 :2ω→2ω injective continuous such that

G0⊆(h0×h0)−1(G0)⊆(h0×h0)−1(B′0)⊆s(G0).

By symmetry considerations, we see that G0 =(h0×h0)−1(G0) and (h0×h0)−1(B′0)=s(G0). This
shows that the map εα 7→εh0(α) is a witness for (2ω,U0) vc (2ω, B0).

Cases 1.2 and 2.2 hold

Here again,
(
0h′(α), 1h′(β)

)
∈B ⇔

(
0h′(β), 1h′(α)

)
∈B and (1α, 0β)∈G−1

s(G0) is equivalent to(
1h′(α), 0h′(β)

)
∈B ⇔

(
1h′(β), 0h′(α)

)
∈B. We set f ′(εα) := εh′(α) and B0 := (f ′×f ′)−1(B).

Note that (2ω, B0) vc (2ω, B), B0⊆ (N0×N1) ∪ (N1×N0) is a Σ0
2 relation on 2ω, contained in the

Σ0
2 acyclic graph (f ′×f ′)−1

(
s(T0)

)
, B0 ∩ (N1×N0)=G−1

s(G0), and (0α, 1β)∈B0 ⇔ (0β, 1α)∈B0.
We set B′0 :={(α, β)∈2ω×2ω | (0α, 1β)∈B0}. Note that B′0 is a Σ0

2 graph on 2ω contained in the
acyclic graph (h′×h′)−1

(
s(G0)

)
. By Theorem 1.8, either there is a Borel countable coloring of B′0,

or
(
2ω, s(G0)

)
vc (2ω, B′0) with witness h0.

In the first case, (2ω, Gs(G0)) vc (2ω, B0), as when 1.1 and 2.2 hold. In the second case, we set
f0(εα) :=εh0(α) and B1 :=(f0×f0)−1(B0). Note that (2ω, B1) vc (2ω, B0),

B1⊆(N0×N1) ∪ (N1×N0)

is a Σ0
2 relation on 2ω, B1 ∩ (N0×N1)=Gs(G0), and (1α, 0β)∈B1 is equivalent to (1β, 0α)∈B1.

We set S :=
{

(α, β)∈2ω×2ω |
(
0h0(α), 1h0(β)

)
∈B0 ∧

(
1h0(α), 0h0(β)

)
∈B0

}
. Note that S is

a graph on 2ω contained in s(G0). By Corollary 2.6, either there is a Borel countable coloring of S, or
there is g0 :2ω→2ω injective continuous such that G0⊆(g0×g0)−1(S)⊆(g0×g0)−1

(
s(G0)

)
⊆s(G0).

- In the first subcase, we get a non-meager S-discrete Gδ subset G1 of 2ω. Note that B1∩ (2×G1)2 is
a Σ0

2 s-acyclic oriented graph on 2×G1. Theorem 1.8 shows that
(
2ω, s(G0)

)
vc
(
G1, s(G0) ∩G2

1

)
with witness g1. The map f1 :εα 7→εg1(α) is a witness for

(2ω, Gs(G0)) vc
(
2×G1, Gs(G0) ∩ (2×G1)2

)
.

We set B2 := (f1×f1)−1(B1). Note that (2ω, B2) vc (2ω, B1), B2 ⊆ (N0×N1) ∪ (N1×N0) is
a Σ0

2 s-acyclic oriented graph on 2ω, B2 ∩ (N0×N1) =Gs(G0), and (1α, 0β) ∈B2 is equivalent to
(1β, 0α)∈B2. By Theorem 7.9, (2ω, Gs(G0)) vc (2ω, B2) vc (2ω, B).
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- In the second subcase, (g0×g0)−1(S) = (g0×g0)−1
(
s(G0)

)
= s(G0) since S is a graph. We set

f2(εα) :=εg0(α) and B3 :=(f2×f2)−1(B1). Note that (2ω, B3) vc (2ω, B1),

B3⊆(N0×N1) ∪ (N1×N0)

is a Σ0
2 relation on 2ω, B3 ∩ (N0×N1) =Gs(G0), and (1α, 0β)∈B3 is equivalent to (1β, 0α)∈B3.

Moreover, (0α, 1β)∈B3 implies that (1α, 0β)∈B3.

We set B′3 :={(α, β)∈2ω×2ω | (1α, 0β)∈B3}. We repeat the previous argument, which gives a
relation B4 on 2ω with (2ω, B4) vc (2ω, B3), B4 ∩ (N1×N0)=G−1

s(G0), (0α, 1β)∈B4 is equivalent
to (0β, 1α)∈B4, and (1α, 0β)∈B4 is equivalent to (0α, 1β)∈B4. This means that B4 =s(T0). �

Theorem 7.11 The set T0 is vc-minimal among non-pot(Π0
1) relations.

Proof. Assume that A ⊆ X2 is not pot(Π0
1) and (X,A) vc (2ω,T0) with witness g. Then A is a

D2(Σ0
1) s-acyclic oriented graph with locally countable closure. By Corollary 7.6, (2ω,G0)vc (X,A)

or there is aD2(Σ0
1) s-acyclic oriented graphB⊆(N0×N1)∪ (N1×N0) on 2ω with locally countable

closure such that B0 = B0 ∩ B and (2ω, B) vc (X,A). In particular, (2ω, B) vc (2ω,T0) with
witness h. As (0α, 1α)∈B\B,(

h(0α), h(1α)
)
∈T0\T0 ={(εγ, (1−ε)γ) | ε∈2 ∧ γ∈2ω}.

If (1α, 0α) ∈ B, then
(
h(1α), h(0α)

)
∈ T0 ∩ {(εγ, (1−ε)γ) | ε ∈ 2 ∧ γ ∈ 2ω}, which is ab-

surd. This implies that (εγ, (1−ε)γ) /∈ B if ε ∈ 2 and γ ∈ 2ω. Thus B0 = B0 ∩ s(B) and s(B)
is not pot(Π0

1). Note that h is a witness for
(
2ω, s(B)

)
vc
(
2ω, s(T0)

)
. The minimality of s(T0)

implies that
(
2ω, s(T0)

)
vc
(
2ω, s(B)

)
. Replacing B with its pre-image if necessary, we may as-

sume that B is a D2(Σ0
1) oriented graph on 2ω such that s(B) = s(T0). Theorem 7.10 gives A′ in

{Gs(G0),T0,U0, s(T0)} such that (2ω, A′) vc (2ω, B). Proposition 7.5 shows that A′=T0, and we
are done. �

Theorem 7.12 The set U0 is vc-minimal among non-pot(Π0
1) sets.

Proof. Assume that A ⊆ X2 is not pot(Π0
1) and (X,A) vc (2ω,U0) with witness g. Then A is a

D2(Σ0
1) s-acyclic digraph with locally countable closure. By Corollary 7.6, (2ω,G0) vc (X,A) or(

2ω, s(G0)
)
vc (X,A) or there is aD2(Σ0

1) s-acyclic digraphB on 2ω with locally countable closure
contained in (N0×N1) ∪ (N1×N0) such that B0 =B0 ∩B and (2ω, B) vc (X,A). In particular,
(2ω, B) vc (2ω,U0) with witness h. As in the proof of Theorem 7.11, we may assume that B is a
D2(Σ0

1) digraph on 2ω such that s(B)=s(T0). We conclude as in the proof of Theorem 7.11. �

Proof of Theorem 4.2. We set A′′ := {B0,N0,M0, Gs(G0),U0}, B′′ := {T0, s(B0), s(T0)}. By
Proposition 7.5,A′′∪B′′ is avc-antichain made ofD2(Σ0

1) s-acyclic relations, with locally countable
closure contained in (N0×N1) ∪ (N0×N1), which are not pot(Π0

1). This implies that A′ is made of
D2(Σ0

1) s-acyclic relations, with locally countable closure, which are not pot(Π0
1). By Lemma 4.3,

A′′′ :=
{
Ae | A∈A′′ ∧ e∈{=,�,@,A}

}
∪
{
Ae | A∈B′′ ∧ e∈{=,�,@}

}
is also a vc-antichain.

The proof of Proposition 7.5 shows that {G0, s(G0)} ∪ A′′′=A′ is a vc-antichain.
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By Theorems 4.1.(5).(ii), 7.7, 7.11 and 7.12, the elements of the antichain in the statement of
Proposition 7.5 are vc-minimal (among non-pot(Π0

1) relations). By Proposition 4.9, A� is vc-
minimal if A ∈ A′′ ∪ B′′. By Theorem 4.1.(5).(ii), the elements of A are also minimal. It remains
to see that the elements of

{
Ae | A∈{Gs(G0),U0} ∧ e∈{@,A}

}
∪
{
A@ | A∈{T0, s(T0)}

}
are

minimal. Let us do it for A := T0, the other cases being similar. Assume that (X,S) vc (2ω, A@)
with witness f , where X is Polish and S is not pot(Π0

1). Then f is also a witness for(
X,S\∆(X)

)
vc (2ω, A).

Note that S is the disjoint union of S\∆(X) and ∆(J)∈ pot(Π0
1), where J is a Borel subset of X .

Thus S\∆(X) is not pot(Π0
1). By Theorem 7.11, A is minimal among non-pot(Π0

1) relations. Thus
(2ω, A) vc

(
X,S\∆(X)

)
with witness h. We set S′ := (h×h)−1(S), so that (2ω, S′) vc (X,S),

S′=A ∪∆(I) (where I is a Borel subset of 2ω). This means that we may assume that X = 2ω and
S=A∪∆(I), where I is a Borel subset of 2ω. We set, for ε∈2, Sε :={α∈2ω | εα∈I}. This defines
a partition {S0∩S1, S0\S1, S1\S0, (¬S0)∩ (¬S1)} of 2ω into Borel sets. By Baire’s theorem, one of
these sets is not meager. Let s∈2<ω and C be a dense Gδ subset of 2ω such that Ns ∩C is contained
in one of these sets.

We saw in the proof of Lemma 4.14 that G0 ∩ (Ns ∩ C)2 is not pot(Π0
1) if s∈ 2<ω and C is a

dense Gδ subset of 2ω. In particular, there is no Borel countable coloring of G0 ∩ (Ns ∩ C)2. By
Theorem 1.8, (2ω,G0) vc

(
Ns ∩ C,G0 ∩ (Ns ∩ C)2

)
with witness g. This implies that the map

g′ :εα 7→εg(α) reduces A@ to A@ ∩
(
2×(Ns ∩ C)

)2.

Case 1 S0 ∩ S1 is not meager.

The map g′ is a witness for (2ω, A�) vc
(

2×(Ns ∩ C), A� ∩
(
2×(Ns ∩ C)

)2). Now note that

S ∩
(
2×(Ns ∩ C)

)2
= A� ∩

(
2×(Ns ∩ C)

)2, so that (2ω, A�) vc (2ω, S) vc (2ω, A@), which
contradicts the fact that A′ is a vc-antichain.

Case 2 S0\S1 is not meager.

The map g′ is a witness for (2ω, A@) vc
(

2×(Ns ∩ C), A@ ∩
(
2×(Ns ∩ C)

)2). Now note that

S ∩
(
2×(Ns ∩ C)

)2
=A@ ∩

(
2×(Ns ∩ C)

)2, so that (2ω, A@) vc (2ω, S).

Case 3 S1\S0 is not meager.

The map g′ is a witness for (2ω, AA) vc
(

2×(Ns ∩ C), AA ∩
(
2×(Ns ∩ C)

)2). Now note that

S ∩
(
2×(Ns ∩ C)

)2
=AA ∩

(
2×(Ns ∩ C)

)2, so that (2ω, AA) vc (2ω, S) vc (2ω, A@). It remains
to note that (2ω, A@) vc (2ω, AA) with witness εα 7→(1−ε)α if A∈{T0, s(T0)}.

Case 4 (¬S0) ∩ (¬S1) is not meager.

The map g′ is a witness for (2ω, A=) vc
(

2×(Ns ∩ C), A= ∩
(
2×(Ns ∩ C)

)2). Now note that

S ∩
(
2×(Ns ∩ C)

)2
= A= ∩

(
2×(Ns ∩ C)

)2, so that (2ω, A=) vc (2ω, S) vc (2ω, A@), which
contradicts the fact that A′ is a vc-antichain. �
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