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2) Université de Paris, IMJ-PRG, F-75013 Paris, France
dominique.lecomte@upmc.fr
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Abstract. We first consider the class K of graphs on a zero-dimensional metrizable compact space with
continuous chromatic number at least three. We provide a concrete basis of size continuum for K made
up of countable graphs, comparing them with the quasi-order�ic associated with injective continuous
homomorphisms. We prove that the size of such a basis is sharp, using odometers. However, using
odometers again, we prove that there is no antichain basis in K, and provide infinite descending chains
in K. Our method implies that the equivalence relation of flip conjugacy of minimal homeomorphisms
of 2ω is Borel reducible to the equivalence relation associated with �ic. We also prove that there is no
antichain basis in the class of graphs on a zero-dimensional Polish space with continuous chromatic
number at least three. We study the graphs induced by a continuous function, and show that any �ic-
basis for the class of graphs induced by a homeomorphism of a zero-dimensional metrizable compact
space with continuous chromatic number at least three must have size continuum, using odometers or
subshifts.
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1 Introduction

The present article is the continuation of the study of definable colorings initiated in [K-S-T], and
continued in [L-Z1] and [C-M-Sc-V1]. All our relations will be binary. The motivation for this work
goes back to the following so called G0-dichotomy, essentially proved in [K-S-T].

Theorem 1.1 (Kechris, Solecki, Todorčević) There is a Borel relation G0 on 2ω such that, for any
Polish space X , and for any analytic relation R on X , exactly one of the following holds:
(1) there is c :X→ω Borel such that c(x) 6=c(y) if (x, y)∈R (a countable Borel coloring of R),
(2) there is ϕ :2ω→X continuous such that G0⊆(ϕ×ϕ)−1(R).

If (1) holds, then we say that R has countable Borel chromatic number (a relation R on a set X
is a digraph if it does not meet the diagonal ∆(X) := {(x, x) | x ∈X} of X; the Borel chromatic
number χB(X,R) of a digraph (X,R) is the minimum cardinal κ ≤ ℵ0 for which there is a Borel
coloring of R taking values in κ (equipped with the discrete topology) if it exists, 2ℵ0 otherwise). If
(2) holds, then we say that ϕ is a continuous homomorphism from (2ω,G0) into (X,R), and denote
this by (2ω,G0) �c (X,R). This result had a lot of developments since. We refer to [K-Ma] for
a survey, and to [B0], [B1] and [G-J-Kr-Se] for recent work in continuous combinatorics, which is
the topic of the present work. It is natural to ask for a level by level version of Theorem 1.1, with
respect to the Borel hierarchy (see the introduction in [K]). This work was initiated in [L-Z1], where
the authors prove the following.

Theorem 1.2 (Lecomte, Zelený) Let ξ∈{1, 2, 3}. Then we can find a zero-dimensional Polish space
Xξ, and a Borel relation Rξ on Xξ such that for any (zero-dimensional if ξ=1) Polish space X , and
for any analytic relation R on X , exactly one of the following holds:
(1) there is a countable ∆0

ξ-measurable coloring of R,

(2) there is ϕ :Xξ→X continuous such that Rξ⊆(ϕ×ϕ)−1(R).

[C-M-So, Theorem 4.4] gives a version of this for analytic spaces when ξ = 2, and this is also
possible when ξ=1. More recently, the existence of versions of Theorem 1.1 for finite Borel colorings
was decided. In [T-V], the authors rule out the most straightforward analogs of the G0-dichotomy for
graphs of Borel chromatic number at least κ, where 4 ≤ κ ≤ ω (recall that a graph is a symmetric
digraph). The difficult remaining case has been solved in [C-M-Sc-V1], where the authors introduce
a Borel graph L0 on a zero-dimensional Polish space X0 satisfying the following.

Theorem 1.3 (Carroy, Miller, Schrittesser, Vidnyánszky) Let X be a Polish space, and G be an ana-
lytic graph on X . Exactly one of the following holds:
(1) G has Borel chromatic number at most two,
(2) there is ϕ :X0→X continuous such that L0⊆(ϕ×ϕ)−1(G).

All this leads to the following question.

Question 1. Fix a countable ordinal ξ≥ 1. Is there a Borel graph Gξ on a zero-dimensional analytic
space Aξ which is �c-minimum among analytic graphs on a (zero-dimensional if ξ = 1) analytic
space with ∆0

ξ chromatic number at least three? We will also consider metrizable separable, Polish,
compact, and finite spaces.
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Since the very beginning of the study of definable chromatic numbers in [K-S-T], injective defin-
able homomorphisms were considered (see also [K-Ma, Sections 4 and 8], [L, Theorem 10], [L-Za,
Theorem 1.13], and [L-Z2]). So it is natural to ask the same question with injective continuous
homomorphisms instead of continuous homomorphisms (with the notation �ic instead of �c). In
[C-M-Sc-V2], the authors announce the existence of a continuum sized family of closed graphs on a
Polish space with Borel chromatic number at least three which are pairwise �iB-incompatible in the
class of analytic graphs on a Hausdorff space with Borel chromatic number at least three.

We consider the quasi-orders �ic and �c on various classes (a quasi-order is a reflexive transitive
relation). Let Γ be a class, and ≤ be a quasi-order on Γ. A subclass B of Γ is a basis for Γ if
any element Γ is ≤-above an element of B. We are looking for basis as small as possible, for the
inclusion. In other words, we want the elements of B to be pairwise ≤-incomparable. A subclass B
satisfying this property is called an antichain. So we are looking for antichain basis, when they exist.
In the best case, the antichain basis is a singleton {b}, and we say that b is minimum among elements
of Γ. This is the case in Theorems 1.1, 1.2 and 1.3, but it is not always possible. We are interested in
the following questions, very natural when we study a quasi-order.

(1) Is there an antichain basis?
(2) If there is no antichain basis, is there a reasonably simple basis?
(3) What is the minimal size of a basis?
(4) Are there big antichains?
(5) Are there infinite descending chains?
(6) Can we find minimal elements?
(7) Can we embed a complex quasi-order?

In this article, our spaces will be metrizable separable, except in Theorem 1.7 and its two lemmas.
As above, the continuous chromatic number (CCN for short) χc(X,R) of a digraph (X,R) is the
minimum cardinal κ≤ℵ0 for which there is a continuous coloring of R taking values in κ (equipped
with the discrete topology) if it exists, 2ℵ0 otherwise. We mainly focus on continuous 2-colorings,
even if some other cardinalities will be considered. The case of continuous 2-colorings is much more
complex than in Theorem 1.2 for ξ = 1 and ω colors, the latter case corresponding directly to the
definition of the product topology. In Section 2, we will see that the odd cycles (2p+ 3, C2p+3)
are witnesses for the fact that any �ic-basis for the class of graphs on a zero-dimensional metrizable
separable (or Polish, or metrizable compact, or finite) space (0DMS, 0DP, 0DMC for short) with CCN
at least three must be infinite. In the compact case, our main results are as follows. Let K be the class
of graphs on a 0DMC space with CCN at least three.

Theorem 1.4 We can find a concrete family
(
(Kα,Gα)

)
α∈2ω

, where Kα is a compact subset of 2ω

and Gα is a countable graph on Kα, such that, for any 0DMC space X and any graph G on X ,
exactly one of the following holds:
(1) G has CCN at most two,
(2) we can find α∈2ω and ϕ :Kα→X injective continuous such that Gα⊆(ϕ×ϕ)−1(G).

In other words,
(
(Kα,Gα)

)
α∈2ω

is a �ic-basis (and thus a �c-basis) for K.

Recall that an oriented graph is an antisymmetric digraph. Theorem 1.4 and most of our results
admit versions for digraphs and oriented graphs. We will come back to this in the last section. It is
simpler to work with graphs in Theorem 1.4. Note also that in [C-M-Sc-V1], the authors prove that
there is no version of Theorem 1.3 for oriented graphs.
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Recall that D2(Π0
1) is the class of differences of two closed sets, while

Σ0
1 ⊕Π0

1 :={(O ∩ C) ∪ (F \C) | C∈∆0
1 ∧O∈Σ0

1 ∧ F ∈Π0
1}

is the self dual class just after ∆0
1 in the Wadge hierarchy of Borel sets (see [K, 22.B and 22.E]).

We provide another concrete �c-basis for K, which is not a �ic-basis, but is made up of countable
D2(Π0

1) graphs with Σ0
1 ⊕Π0

1 (and thus ∆0
2 and Borel) chromatic number two, and whose vertices

have degree at most one. We will see in Section 4 that our basis are not �c-basis for the class of
countable graphs on a 0DP space with CCN at least three.

We next prove that the size of such �ic-basis is sharp. In order to prove this, we use minimal
Cantor dynamical systems. These systems have been widely studied (see, for example, [I-Me], [Ka],
[Ku], [Lo], [Me], [P], [Sa-Tö]). A dynamical system (X, f) is given by a homeomorphism f of a
metrizable compact space X . If X is homeomorphic to 2ω, then we say that (X, f) is a Cantor
dynamical system. A dynamical system (or f ) is minimal if Orbf (x) := {f i(x) | i ∈ Z} is dense
in X for each x∈X . If (Y, g) is another dynamical system, we say that these systems (or f, g) are
orbit-equivalent if there is a homeomorphism ϕ :X→Y such that ϕ[Orbf (x)]=Orbg

(
ϕ(x)

)
for any

x∈X . It was known that there is a family of size continuum made up of minimal Cantor dynamical
systems which are pairwise not orbit equivalent (see [I-Me]). We consider a property stronger than
orbit equivalence, namely flip-conjugacy. We say that two dynamical systems (X, f), (Y, g) (or f, g)
are conjugate (resp., flip-conjugate) if there is a homeomorphism ϕ :X→ Y such that ϕ◦f = g◦ϕ
(resp., ϕ◦f = g◦ϕ or ϕ◦f = g−1◦ϕ). We provide a family of size continuum made up of minimal
Cantor dynamical systems (in fact odometers) which are pairwise not flip conjugate, and associate to
each homeomorphism of this family a graph on a 0DMC space, ensuring the following properties.

Theorem 1.5 There is a �c-antichain (and thus �ic-antichain)
(
(Kα,Gα)

)
α∈2ω

, where
(a) Kα is a 0DMC space,
(b) Gα is a countable D2(Π0

1) graph on Kα with CCN three and Σ0
1 ⊕Π0

1 chromatic number two,
and whose vertices have degree at most one,
(c) (Kα,Gα) is �ic-minimal in K.

In particular, any �ic-basis for K must have size at least continuum.

The minimal examples are particularily important, since they have to be part of any basis, up to
equivalence. Note that Theorem 1.5 shows that if (A1,G1) exists, then we must have χc(A1,G1)=3,
χB(A1,G1)=2, and (A1,G1) must be strictly �c-below (X0,L0). We will also see in Section 4 that
A1 cannot be compact. Theorem 1.5 shows that our quasi-orders have large antichains. Moreover,
they are not well-founded.

Theorem 1.6 There is a �c and �ic-descending chain
(
(K,Gp)

)
p∈ω, where

(a) K is a 0DMC space,
(b) Gp is a countable D2(Π0

1) graph on K with CCN three and Σ0
1⊕Π0

1 chromatic number two, and
whose vertices have degree at most one.

Theorems 1.5 and 1.6 contrast with [C] where it is proved that the closed subsets of a zero-
dimensional Polish space are well-quasi-ordered by bi-continuous embeddability (so this quasi-order
has finite antichains and descending chains).
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We now give a countable D2(Π0
1) graph on a 0DP space which is not compact.

Notation. Recall that if R is a relation on a set X and l∈ω, then

Rl :={(x, y)∈X2 | ∃(xi)i≤l∈X l+1 ∀i<l (xi, xi+1)∈R ∧ (x, y)=(x0, xl)},

R−1 :={(x, y)∈X2 | (y, x)∈R}, and s(R) :=R ∪ R−1 is the symmetrization of R. We now define
our graph, on the copy N :=({c, a, a} ∪ ω)ω of the Baire space ωω. We set

Om :={(ck+1aj+1a∞, k0j+1a∞) | j, k∈ω} ∪ {(kij+1a∞, k(i+1)j+1a∞) | j, k∈ω ∧ i≤2k} ∪
{(k(2k+1)j+1a∞, ck+1aj+1a∞) | j, k∈ω}.

and Gm :=s(Om). The idea of this example is to decompose the graph in levels indexed by k, and that
the level k is an approximation of the odd cycle on 2k+3 points, the approximation being improved
when k increases. Note that the vertices of Gm have degree at most one.

Theorem 1.7 Let X be a first countable topological space, and G be a graph on X . The following
are equivalent:

(1) ∆(X) ∩
⋃
p∈ω G

2p+1 is not empty,
(2) (N ,Gm) �c (X,G).

Moreover, these conditions imply that G has no continuous 2-coloring.

The countable Gδ subset P := proj[Gm]\
{
ck+1ε∞ | k∈ω ∧ ε∈{a, a}

}
of N has the properties

that (P,Gm) has CCN three and (P,Gm) ≺c (N ,Gm). The next picture describes the level of Gm

corresponding to k=0, seen in P (so that the sequences (ck+1εj+1ε∞)j∈ω become discrete).

caa∞ 02a∞ 01a∞

ca2a∞ 03a∞ 012a∞

04a∞ 013a∞

ca3a∞ 0∞ 01∞ ca3a∞

04a∞ 013a∞

03a∞ 012a∞ ca2a∞

02a∞ 01a∞ caa∞

Using subgraphs of (P,Gm), we prove the following.

Theorem 1.8 Let G be a graph on a 0DMS space Z, satisfying (Z,G) �ic (P,Gm) and having CCN
at least three. Then there is a family

(
(Pα, Gα)

)
α∈2ω

of graphs on a 0DP space with CCN three,
�ic-below (Z,G), and pairwise �ic-incompatible in the class of graphs on a 0DMS space with CCN
at least three.

In particular, there is no �ic-antichain basis in the class of graphs on a 0DMS (or 0DP) space
with CCN at least three, and any �ic-basis for one of these classes must have size at least continuum.
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Theorem 1.8 shows that (P,Gm) is not �ic-minimal among graphs on a 0DP (or 0DMS) space
with CCN at least three. One can prove that this still holds for�c, but we will not do it here. Theorem
1.8 also gives a negative answer to the version of Question 1 for �ic. One can prove that no subgraph
of one of the examples of Theorem 1.5 is �ic-minimal among graphs on a 0DP space with CCN at
least three, but we will not do it here. We also prove a version of Theorem 1.8 in the compact case.

Theorem 1.9 We can find a countable graph (3ω,G) in K such that, for each (K,G) in K satisfying
(K,G) �ic (3ω,G), there is a �ic-antichain

(
(3ω, Gα)

)
α∈2ω

of graphs with CCN three and �ic-below
(K,G). In particular, there is no �ic-antichain basis in K.

We now stated our main results concerning general graphs. The case of graphs induced by a
function has been particularily considered in [K-S-T], and also in [Co-M], [Pe] and [TV] for instance.
Also, we give at the end of this article a table summarizing the properties of our two quasi-orders for
graphs. It is remarkable that the same properties hold for graphs induced by a partial homeomorphism
with countable domain, up to, possibly, the existence of the �ic-concrete basis. If

f :Domain(f)⊆X→Range(f)⊆X

is a partial function, then the graph induced by f is Gf := s
(
Graph(f)

)
\∆(X). In [K-S-T], it is

proved that if X is a standard Borel space and f is a Borel function on X (i.e., has a Borel graph),
then the Borel chromatic number of Gf is in {0, 1, 2, 3,ℵ0}. So it is natural to ask the following.

Question 2. Let X be a 0DMS space, and f :X→X be a partial continuous function with analytic
domain. What are the possible values for χc(X,Gf )?

We prove the following.

Theorem 1.10 Let X be a 0DMC space, and f :X→X be a partial continuous injection.
(a) If the domain of f is open, then χc(X,Gf ) ∈ ω ∪ {2ℵ0}, and all these values are possible with
fixed point free partial homeomorphisms on a countable space.
(b) If the domain of f is closed, then χc(X,Gf )∈{0, 1, 2, 3, 2ℵ0}, and all these values are possible
with (total) homeomorphisms of a countable space.

Moreover, we can find a countable Polish space X and a fixed point free partial homeomorphism
f :X→X with open domain and χc(X,Gf )=ℵ0.

Our method in the proof of Theorem 1.8 shows that there is no �ic-antichain basis for the class
of graphs induced by a partial homeomorphism on a 0DP space with CCN at least three. Also, the
method used to prove Theorem 1.5 shows that any�ic-basis for the class of graphs induced by a partial
fixed point free continuous involution with countable open domain on a 0DMC space with CCN at
least three must have size continuum.

Theorem 1.10(b) leads to consider, for κ≤ 3, the class Gκ of graphs induced by a (total) home-
omorphism of a 0DMC space with CCN strictly bigger than κ. We will see that in Theorem 1.2 we
can take X1 := {0∞} ∪ {0n1∞ | n ∈ ω} and R1 := {(02n1∞, 02n+11∞) | n ∈ ω}. Note that the
graph s(R1) is Gf1 , where f1 :X1→X1 is the total homeomorphism defined by f1(0∞) := 0∞ and
f1(02n+ε1∞) :=02n+1−ε1∞. We prove the following.
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Theorem 1.11 (a) (1, ∅) is �ic-minimum in G0.
(b) (2, Gε7→1−ε) is �ic-minimum in G1.
(c) Any �ic-basis for G2 must have size continuum.
(d) (X1, Gf1) is �ic-minimum in G3.

Moreover, the (Gκ,�ic)’s and the (Gκ,�c)’s are not well-founded. They also contain antichains
of size continuum in the case of �ic or when κ 6=3.

We can also evaluate the descriptive complexity of the Gκ’s. In order to do that, we code the
class Gκ. By [K, 7.8], any 0DMC space is homeomorphic to a subspace of 2ω, so we can restrict
our attention to compact subspaces of 2ω. The Ryll-Nardzewski theorem (see [Kn-R, Corollary 2 and
Remark 3]) shows that any homeomorphism on such a subspace can be extended to a homeomorphism
of 2ω. The extension map is injective and, conversely, the restriction map is not. But the chromatic
number of the graph on the subspace does not depend on the extension, so the fact that the restriction
map is not injective creates no problem. The spaceK(X) of compact subsets of a metrizable compact
space X , equipped with the Vietoris topology, is a metrizable compact space. The set H(2ω) of
homeomorphisms of 2ω can be equipped with a topology in such a way that it is a Polish group. We set
P :={(X, f)∈K(2ω)×H(2ω) | f [X]=X} and code Gκ withOκ :={(X, f)∈P | χc(X,Gf|X )>κ}.

Theorem 1.12 P is a Polish space. O0 is a ∆0
1 subset of P , O1 is Σ0

1-complete, and O2,O3 are
Π0

2-complete. Moreover, the set Oℵ0
2 :={(X, f)∈O2 | X is countable} is Π1

1-complete.

Another motivation for studying graphs induced by a function is related to Cantor dynamical
systems. We will see that if f, g are minimal homeomorphisms of a Cantor space X,Y respectively,
then f, g are flip-conjugate exactly when (X,Gf ) �ic (Y,Gg). Similar considerations also motivate
our study of oriented graphs: in this case, Graph(f),Graph(g) are oriented graphs, and f, g are
conjugate exactly when

(
X,Graph(f)

)
�ic
(
Y,Graph(g)

)
. This also leads to study graphs induced

by a total homeomorphism. The next result is a version of Theorem 1.5 for graphs induced by a total
homeomorphism.

Theorem 1.13 There is a �c-antichain (and thus �ic-antichain)
(
(Cα, Gfα)

)
α∈2ω

, where
(a) Cα is homeomorphic to 2ω,
(b) fα is a minimal homeomorphism of Cα (in fact an odometer), and (Cα, Gfα) has CCN three,
(c) (Cα, Gfα) is �ic-minimal in G2 and in the class of closed graphs on a 0DMC space with CCN at
least three.

In particular, any �ic-basis for one of these classes must have size continuum.

We also provide a concrete �ic-basis, made up of graphs induced by an odometer, for the class
of elements of G2 induced by a minimal equicontinuous Cantor dynamical system, and, under the
axiom of choice, a�ic-antichain basis for this class. However, we will see that such a basis is far from
being a basis for G2, because of the subshifts associated with irrational rotations, proving a version
of Theorem 1.13 for them and �ic. Thanks to subshifts, we also prove a version of Theorem 1.6 for
graphs induced by a total homeomorphism.

The next result shows that the situation in the compact case is different from that in the case of
spaces which are not compact. The next picture describes a countable compact subset K0 of 2Z, a
two-sided subshift, as well as a homeomorphism h0 :=σ|K0

:K0→K0 which is not minimal.
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(01)∞ ·1(01)∞

�� ����

(01)∞ ·(01)1(01)∞ ////// (10)∞ ·11(01)∞

eeee ee

(01)∞1·(01)∞ ////// (01)∞10·(10)∞

ww wwww

(01)∞ ·(01)21(01)∞ // //// (10)∞ ·1(01)1(01)∞

bbbb bb

(01)∞1(01)·(01)∞ // //// (01)∞1(01)0·(10)∞

· · ·

(01)∞ ·(01)∞ oo //oo //oo // (10)∞ ·(10)∞

The sequence (01)∞ · (01)∞ is the element α of 2Z satisfying α(2n+ ε) := ε if n ∈ ω and
ε ∈ 2 on the positive side, and α(−2n−1−ε) := 1−ε on the negative side. Here, our space K0 is
Orbσ

(
(01)∞ ·(01)∞

)⋃
Orbσ

(
(01)∞ ·1(01)∞

)
, where σ :2Z→2Z is the shift map.

Theorem 1.14 We can find a countable (0D)MC spaceK0 and a homeomorphism h0 ofK0 such that
(a) (K0, Gh0) has CCN three, and is �ic-minimal in G2 and in the class of closed graphs on a 0DMC
space with CCN at least three,
(b) if S is a 0DMS (resp., 0DP) space, f is a homeomorphism of S with the properties that (S,Gf )
has CCN at least three and (S,Gf ) �ic (K0, Gh0), then there is a finer 0DMS (resp., 0DP) topology
τ on K0 with the properties that h0 is a homeomorphism of (K0, τ),

(
(K0, τ), Gh0

)
has CCN three,

and
(
(K0, τ), Gh0

)
is strictly �ic-below (S,Gf ).

In particular, there is no �ic-antichain basis for the class of graphs induced by a (total) homeo-
morphism of a 0DMS (or 0DP) space with CCN at least three. Also, any �ic-basis for one of these
classes must have size continuum.

We saw a number of results describing classes with complex structures. In order to get simpler
structures, we can try to study smaller classes, even if a big class may have a minimum element and
not a subclass. Using graphs in the style of (K0, Gh0), one can try to study the class of graphs induced
by a homeomorphism of a countable MC space with CCN at least three, in this direction. We provide
examples of arbitrarily high Cantor-Bendixson rank.

Theorem 1.15 (a) Let ξ ≥ 1 be a countable ordinal, finite or of the form η+ 3. Then there is a
countable two-sided subshift Σ with Cantor-Bendixson rank ξ, such that (Σ, Gσ|Σ) has CCN three,
and is�ic-minimal in G2 and in the class of closed graphs on a 0DMC space with CCN at least three.
(b) There is a family (Σα)α∈2ω of countable two-sided subshifts with Cantor-Bendixson rank three
sharing these properties, and such that the family

(
(Σα, Gσ|Σα )

)
α∈2ω

is a�ic-antichain. In particular,
any �ic-basis for G2 or the class of graphs induced by a homeomorphism of a countable (0D)MC
space with CCN at least three must have size 2ℵ0 .

At this moment, it is still possible to have a �ic-antichain basis for the class of graphs induced by
a homeomorphism of a countable MC space with CCN at least three. Note that the graphs given by
Theorem 1.15(a) form a �ic-antichain. The situation for the other values of ξ is not clear.

8



Indeed, recall that if (X, f) is a dynamical system where a compatible metric d on X is fixed,
then (X, f) is expansive if ∃ε>0 ∀x 6=y∈X ∃n∈Z d

(
fn(x), fn(y)

)
≥ε. The σΣ’s are expansive,

and there is no expansive homeomorphism of a countable MC space with Cantor-Bendixson rank λ+1
if λ is a limit ordinal (see [Ki-Kat-Pa, Theorem 3.2]). We leave this open for future work.

For Question (7), we prove the following.

Theorem 1.16 We can embed the quasi-order of inclusion on the power set of ω into
(a) the quasi-order �ic on the class of graphs induced by a (total) homeomorphism of a countable
0DMC (and thus 0DP, 0DMS) space with CCN three,
(b) the quasi-order �c on the class of countable graphs on a 0DMC (and thus 0DP, 0DMS) space
with CCN three.

We can say more about the association between homeomorphisms and graphs mentioned above.
The space M of minimal homeomorphisms of 2ω is a Polish space. The map associating (2ω, Gf ) to
f ∈M is continuous. Moreover, the graph (2ω, Gf ) has CCN two or three. The equivalence relations
of flip-conjugacy and conjugacy on M are denoted by FCO and CO respectively. The equivalence
relation �ic ∩ (�ic)−1 associated with the quasi-order �ic on the space

Sm :={(2ω,K)∈{2ω}×K(2ω×2ω) | K ∩∆(2ω)=∅ ∧ 2≤χc(2ω,K)≤3}

is denoted by ≡ic (we will check that Sm is a Polish space). The standard way to compare analytic
equivalence relations on standard Borel spaces is the Borel reducibility ≤B (see, for instance, [G]).
Recall that if X,Y are standard Borel spaces and E,F are analytic equivalence relations on X,Y
respectively, then (X,E) ≤B (Y, F )⇔ ∃ϕ :X→Y Borel with E=(ϕ×ϕ)−1(F ).

Theorem 1.17 The relations FCO, CO and ≡ic are analytic, and FCO is Borel reducible to ≡ic.

We can also use our countable graphs to prove a version of Theorem 1.17 for graphs of CCN at
least three. Using oriented graphs instead of graphs, one can prove that CO is Borel reducible to ≡ic.
Note that the relation =+ on Rω defined by x=+ y ⇔ {xi | i∈ω}= {yi | i∈ω} is Borel reducible
to CO (this is proved in [Ka]).

The present work is organized as follows. In Section 2, we briefly discuss the case of graphs on
a finite set. We then study general graphs. Section 3 is about our positive basis results: we prove
Theorems 1.4 and 1.7, give our second basis, and start to prepare the proof of Theorem 1.8. In
Section 4, we work in 0DMS spaces and prove Theorem 1.8. In Section 5, we study the relation
between graphs and dynamical systems, and prove the main part of the version of Theorem 1.17 for
graphs of CCN at least three. In Section 6, we start to use odometers and prove Theorems 1.5 and
1.6. In Section 7, we begin our study with the graphs induced by a function and prove general facts.
We then study in Section 8 the graphs induced by a partial function and prove Theorem 1.10. In
Section 9, we keep on using odometers and prove Theorems 1.13, 1.16(b) and 1.9. Section 10 is
devoted to the study of graphs induced by a subshift. In particular, we study the homeomorphisms
of a countable compact space and prove Theorem 1.15. In Section 11, we work in 0DMS spaces and
prove Theorems 1.14 and 1.16(a). In Section 12, we prove Theorems 1.11 and 1.12. In Section 13,
we study equivalence relations and prove two versions of Theorem 1.17. Section 14 is devoted to
the versions of our results for digraphs and oriented graphs. Finally, we summarize our work about
general graphs in a table in Section 15, which leaves some other open questions for the future.
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2 General graphs on a finite set

We briefly discuss the finite case, already showing that the quasi-orders �c and �ic are quite
different. In this finite case, we put the discrete topology on the space, so that continuity is automatic.
It is known that a graph has chromatic number at most two exactly when it is bipartite, and when
it has no odd cycle (see [A-D-H, 2.1]). Thus a graph G on a set X has chromatic number at least
three exactly when ∆(X) ∩ (

⋃
p∈ω G2p+3) is not empty. Recall that a walk in a relation (X,R) is a

sequence (xi)i≤n∈Xn+1 such that (xi, xi+1)∈R for each i<n. A walk (xi)i≤n is odd if n is odd,
closed if x0 =xn, and a cycle if it is closed, n≥3 and (xi)i<n is injective. We denote, for any natural
number p, the symmetric cycle on 2p+3 by C2p+3.

Theorem 2.1 Let X be a finite set, and G be a graph on X . The following are equivalent:
(1) (X,G) has chromatic number at least three,
(2) ∆(X) ∩ (

⋃
p∈ω G2p+3) 6=∅,

(3) there is p∈ω with (2p+3, C2p+3) �i (X,G).

Corollary 2.2 Let F :=
(
(2p+3, C2p+3)

)
p∈ω.

(a) F is a �i-antichain basis for the class of graphs on a finite set with chromatic number at least
three. In particular, the elements of F are �ic-minimal among graphs on a 0DMS (or 0DP, or 0DMC)
space with CCN at least three, and any �ic-basis for these classes must be infinite.
(b) F is a �-basis for the class of graphs on a finite set with chromatic number at least three, and is
strictly �-decreasing. In particular, there is neither �-antichain basis, nor finite basis for this class.
Also, no graph is �-minimal in this class.

Proof. By [He-N, Corollary 1.4], (2p+3, C2p+3) 6� (2q+3, C2q+3) if p<q.

(a) Theorem 2.1 gives the basis. This is an antichain by the argument just above and by injectivity.

(b) We apply (a), the argument above again, and [He-N, Corollary 1.4]. �

Remarks. (1) Let X be a finite set, G be a graph on X , Y be a set, H be a graph on Y with the
property that (Y,H) �i (X,G), with witness ϕ. We set V :=ϕ[Y ] and E :=(ϕ×ϕ)[H]. Note that V
is a subset of X , E is a graph on V contained in G with (V,E) �i (Y,H) with witness ϕ−1, and also
(Y,H) �i (V,E). This and the finiteness of X implies that there is no infinite �i-descending chain
in the class of graphs on a finite set.

(2) There are infinite�-antichains in the class of graphs on a finite set with chromatic number at least
three. Indeed, this comes from [He-N, Theorem 2.23 and Proposition 3.4]. Following their notation,
S(i, i) and S(j, j) are �-incomparable if i 6=j≥3 are odd, and have chromatic number at least three.

3 General graphs on a 0DMC space: the basis

3.1 A first basis

We now define the concrete family announced in Theorem 1.4.
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Notation. We denote the set of increasing unbounded sequences of natural numbers by

S :={δ∈ωω | ∀k∈ω δ(k)≤δ(k+1) ∧ ∀N ∈ω ∃k∈ω δ(k)≥N}.

- In the proof of Theorem 1.4, it will be convenient to replace the index set 2ω with the set I that we
now define. We denote a typical element of

∏
k∈ω (2ω)2k+1×(2ω)2k+1 by

γ :=

(((
γ0
k(i)

)
i≤2k

,
(
γ1
k(i)

)
i≤2k

))
k∈ω

.

We also set

I :=
{
γ∈
∏
k∈ω (2ω)2k+1×(2ω)2k+1 | γ0

k(0), γ1
k(2k)→0∞ ∧ ∀k∈ω ∀i≤2k γ0

k(i) 6=γ1
k(i) ∧

∃δ∈S ∀k∈ω ∀i<2k γ1
k(i)|δ(k)=γ0

k(i+1)|δ(k)
}

.

- We then define, for γ∈I, a countable graph Gγ on 2ω by Gγ :=s
({(

γ0
k(i), γ1

k(i)
)
| k∈ω∧i≤ 2k

})
and set Kγ := proj[Gγ ]

2ω

, so that Gγ is a graph on the compact set Kγ . The next picture represents
Gγ .

0∞

. . .

γ1
1(0) γ1

1(1) γ1
1(2)

gg

γ0
1(0)

<<

γ0
1(1) γ0

1(2)

γ1
0(0)

γ0
0(0)

We first prove the exactly part of Theorem 1.4.

Proposition 3.1.1 Let γ∈I. Then (Kγ ,Gγ) has CCN at least three.

Proof. Note that 0∞ ∈Kγ . If (C,¬C) is a coloring of Gγ into clopen subsets of Kγ with 0∞ ∈ C,
then the compactness of Kγ gives l ∈ω with α, β ∈C or α, β /∈C if α, β ∈Kγ and α|l= β|l. Note
that γ0

k(0)∈C if k≥ k0, where k0 ∈ω is also large enough with δ(k0)≥ l. Assume that k≥ k0. An
induction on i < 2k shows that γ1

k(i), γ0
k(i+1) /∈C if i is even, γ1

k(i), γ0
k(i+1)∈C if i is odd, and

γ1
k(2k) /∈C. This implies that 0∞ /∈C, which is the desired contradiction. Thus χc(Kγ ,Gγ)≥3. �

Notation. Let C :=(ω\2)ω. Fix d=(dj)j∈ω∈C.

- In the sequel, we denote, for S⊆ω finite, by πj∈S dj the natural number, and by
∏
j∈S dj the set

of finite sequences of natural numbers. In particular, we set, for l∈ω,
∏
l :=
∏
j<l dj .

- We set C :=Cd :=
∏
j∈ω dj , so that C is homeomorphic to 2ω. As usual, Ns :={α∈C | s⊆α} is a

basic clopen set if s∈
⋃
l∈ω

∏
l. We extend this notation to other sequential spaces of this kind.

- If R is a relation on C, and n∈ω, then we set Rn :={(s, t)∈
∏2
n | (Ns×Nt) ∩R 6=∅} and

nR :={(α, β)∈C2 | ∃(α′, β′)∈R α|n=α′|n ∧ β|n=β′|n}.
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Theorem 3.1.2 Let d∈C, and G be a graph on C. The following are equivalent:
(1) (C, G) has CCN at least three,
(2) ∆(C) ∩

⋂
n∈ω (

⋃
p∈ω (nG)2p+1) is not empty,

(3) the relations (
∏
n, Gn) have an odd closed walk,

(4) there is γ∈I with (Kγ ,Gγ) �ic (C, G).

Proof. (4)⇒ (1) This comes from Proposition 3.1.1.

(1) ⇒ (2) We first prove that
⋂
n∈ω

(
n
(
∆(C)

)
∪
⋃
p∈ω (nG)2p+2 ∩

⋃
p∈ω (nG)2p+1

)
is not empty.

We argue by contradiction, which by compactness of C gives n ∈ ω and a clopen relation O on C
separating

⋃
p∈ω (nG)2p+1 from n

(
∆(C)

)
∪
⋃
p∈ω (nG)2p+2. The compactness of C gives sequences

(sj)j≤m and (tj)j≤m of finite sequences with the property that O=
⋃
j≤m Nsj×Ntj , and we may

assume that all these finite sequences have the same length l, and that l≥n.

We define a subset of
∏
l by V := {sj | j ≤m} ∪ {tj | j ≤m}. Note that Gl is a graph on

∏
l

since, for each s ∈
∏
l, (Ns×Ns) ∩ G⊆ n

(
∆(C)

)
∩ O. Let (Ci)i∈I be the family of the connected

components of Gl restricted to V . Fix i∈ I . As (Ci, Gl ∩ C2
i ) is a connected graph, we can find an

acyclic connected graph Gi on Ci with Gi⊆Gl ∩ C2
i . This gives a coloring ci :Ci→2 of Gi.

We set C :=
⋃
i∈I {Ns | ci(s)=0}, so that C is a clopen subset of C. It remains to prove that

G∩ (C2∪ (¬C)2)=∅, since this contradicts (a). Towards a contradiction, suppose that there is (α, β)
inG∩C2, for example (the other case is similar). AsG⊆O, we can find j≤mwith (α, β)∈Nsj×Ntj .
In particular, (sj , tj) is in Gl ∩V 2, which gives i∈I with sj , tj∈Ci. As α, β∈C, ci(sj)=ci(tj). Let
L∈ω, (uk)k≤L be the Gi-path from sj to tj , and, for k<L, (αk, βk)∈(Nuk×Nuk+1

) ∩G. Note that
L is even since ci(sj) = ci(tj). Also, (α, β0), (β0, β1), (β1, β2), . . . , (βL−3, βL−2), (βL−2, β)∈ nG,
so that (α, β) is in n

(
∆(C)

)
∪
⋃
p∈ω (nG)2p+2⊆¬O, which is absurd.

Pick (α, β) ∈
⋂
n∈ω

(
n
(
∆(C)

)
∪
⋃
p∈ω (nG)2p+2 ∩

⋃
p∈ω (nG)2p+1

)
. If α = β, then for each

n there is p such that N2
α|n meets (nG)2p+1. Let (γi)i≤2p+1 ∈ C2p+2 such that γ0, γ2p+1 ∈ Nα|n,

and, for each i≤ 2p, (γi, γi+1) ∈ nG. Note that (α, γ1), (γ2p, α) ∈ nG, so that we may assume that
γ0 =γ2p+1 =α and (α, α)∈ (nG)2p+1. Thus (α, α)∈∆(C) ∩

⋂
n∈ω (

⋃
p∈ω (nG)2p+1). So we may

assume that α 6=β. Note that (α, β) /∈n
(
∆(C)

)
if n is large enough, and that the intersection above is

decreasing with respect to n. This implies that (α, β)∈
⋂
n∈ω

(⋃
p∈ω (nG)2p+2∩

⋃
p∈ω (nG)2p+1

)
.

So we can pick, for each n∈ω and each ε∈2, a natural number pεn, and

(α2n+1+ε, β2n+1+ε)∈(Nα|n×Nβ|n) ∩ (nG)2pεn+1+ε.

Let (γ2n+1+ε
i )i≤2pεn+1+ε ∈ C2pεn+2+ε such that γ2n+1+ε

0 = α2n+1+ε, γ2n+1+ε
2pεn+1+ε = β2n+1+ε, and, for

each i≤ 2pεn+ε, (γ2n+1+ε
i , γ2n+1+ε

i+1 )∈ nG. Fix n∈ ω. Note that (γ2n+1
0 , γ2n+2

1 ), (γ2n+2
2p1
n+1

, γ2n+1
2p0
n+1

)

are in nG. This implies that (α, α)∈(nG)2p0
n+1+2p1

n⊆
⋃
p∈ω (nG)2p+1.

(2) ⇒ (4) We choose, for each j ∈ ω, lj ≥ 1 with dj ≤ 2lj . This defines an injection ij : dj → 2lj .
We define, for x ∈ C, ψ(x) ∈ 2ω by ψ(x) := _

j∈ω ij
(
x(j)

)
. Note that ψ is a continuous injection,

and thus a homeomorphism onto its range R. We set H := (ψ×ψ)[G], so that H is a graph on 2ω.
Moreover, if n∈ω and (x, y)∈ nG, then

(
ψ(x), ψ(y)

)
∈ nH . Pick (x, x)∈

⋂
n∈ω(

⋃
p∈ω(nG)2p+1),

and set α :=ψ(x).
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Then (α, α) ∈
⋂
n∈ω(

⋃
p∈ω(nH)2p+1). This gives, for each n ∈ ω, a natural number pn with

(α, α)∈ (nH)2pn+1. Note that, extracting a subsequence if necessary, we may assume that (pn)n∈ω
is constant or strictly increasing. Let (γnj )j≤2pn+1 in (2ω)2pn+2 such that γn0 =α, γn2pn+1 =α, and,
for each i≤2pn, (γni , γ

n
i+1) in nH . This gives, when i≤2pn, (αni , β

n
i )∈(Nγni |n×Nγni+1|n) ∩H .

We now define υ ∈
∏
k∈ω (2ω)2k+1× (2ω)2k+1 as follows. If k ≤ p0 and i ≤ 2k, then we set

υ0
k(i) :=α0

i and υ1
k(i) :=β0

i .

Assume first that (pn)n∈ω is constant. If k > p0 and i ≤ 2p0, then we set υ0
k(i) := αki and

υ1
k(i) :=βki . If k>p0 and 2p0<i≤2k, then we set

υ0
k(i) :=

{
αk2p0

if i is even,
βk2p0

if i is odd,
υ1
k(i) :=

{
βk2p0

if i is even,
αk2p0

if i is odd.

Assume now that (pn)n∈ω is strictly increasing. If pj < k ≤ pj+1 and i ≤ 2pj , then we set
υ0
k(i) :=α

pj
i and υ1

k(i) :=β
pj
i . If pj<k≤pj+1 and 2pj<i≤2k, then we set

υ0
k(i) :=

{
α
pj
2pj

if i is even,
β
pj
2pj

if i is odd,
υ1
k(i) :=

{
β
pj
2pj

if i is even,
α
pj
2pj

if i is odd.

Note that υ0
k(0) =αmk0 , with limk→∞ mk =∞. As αmk0 ∈Nγ

mk
0 |mk =Nα|mk ,

(
υ0
k(0)

)
k∈ω converges

to α. Similarly, if (pn)n∈ω is constant, then υ1
k(2k) = βk2p0

if k is large enough. As βk2p0
is in

Nγk2p0+1|k
=Nα|k, υ1

k(2k)|k=α|k. If the sequence (pn)n∈ω is strictly increasing, then υ1
k(2k)=β

pj
2pj

if k is large enough. As βpj2pj
∈N

γ
pj
2pj+1|pj

=Nα|pj , υ
1
k(2k)|pj =α|pj . Thus

(
υ1
k(2k)

)
k∈ω converges

to α.

Note that we chose υ in such a way that
(
υ0
k(i), υ

1
k(i)

)
is in the graph H , so that υ0

k(i) 6=υ1
k(i). If

i<2k, then we also ensured that
υ1
k(i)|0=υ0

k(i+1)|0 if k≤p0,
υ1
k(i)|k=υ0

k(i+1)|k if k>p0 ∧ i<2p0,
υ1
k(i)=υ0

k(i+1) if k>p0 ∧ i≥2p0,
υ1
k(i)|pj =υ0

k(i+1)|pj if pj<k≤pj+1 ∧ i<2pj ,
υ1
k(i)=υ0

k(i+1) if pj<k≤pj+1 ∧ i≥2pj .

This defines an element ζ of S as desired. Note that the map h :2ω→2ω defined by

h(β)(n) :=

{
β(n) if α(n)=0,
1−β(n) if α(n)=1,

is a homeomorphism sending α to 0∞. We set γεk(i) := h
(
υεk(i)

)
, which defines γ in the set∏

k∈ω (2ω)k+1× (2ω)k+1. The sequence δ := ζ is in S and is a witness for the fact that γ ∈ I.
Moreover, the map h−1 is a witness for the fact that (2ω,Gγ) �ic (2ω, H). We set K :=h[R]. As R is
compact, K is too. Note that H⊆R2, so that Gγ⊆K2. Thus proj[Gγ ]⊆K and Kγ =proj[Gγ ]⊆K.
We are done since (Kγ ,Gγ) �ic (K,Gγ) �ic (R,H) �ic (C, G).
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(2) ⇒ (3) Assume that (α, α) ∈ ∆(C) ∩
⋂
n∈ω (

⋃
p∈ω (nG)2p+1). Fix n ∈ ω. We can find p and

(γi)i≤2p+1 ∈ C2p+2 with γ0 = γ2p+1 = α and (γi, γi+1) ∈ nG if i≤ 2p. This gives, for each i≤ 2p,
(αi, βi) ∈ G with αi|n = γi|n and βi|n = γi+1|n. We set, for each i ≤ 2p+1, si := γi|n. Then
(si)i≤2p+1 is an odd closed walk in (

∏
n, Gn).

(3) ⇒ (2) Let (ski )i≤2pk+1 be an odd closed walk in (
∏
k, Gk). As (ski , s

k
i+1) ∈ Gk, we can find

(αki , β
k
i )∈ (Nski

×Nski+1
) ∩ G if i≤ 2pk. The compactness of C provides α∈C and (kn)n∈ω strictly

increasing such that αkn0 |n=α|n for each n. Note that

- (αkn0 , βkn0 )∈G, α|n=αkn0 |n and αkn1 |n=skn1 |n=βkn0 |n,

- (αkni , β
kn
i )∈G and αkni+1|n=skni+1|n=βkni |n if 1≤ i<2pkn ,

- (αkn2pkn
, βkn2pkn

)∈G and α|n=αkn0 |n=skn0 |n=skn2pkn+1|n=βkn2pkn
|n,

This implies that (α, αkn1 , . . . , αkn2pkn
, α) is in (nG)2pkn+1. �

Remark. The cycle C3 on 3 (pairwise different) points p, q, r is a graph with (continuous) chromatic
number 3, and we may assume that p = 0∞, q = 1∞, r = (01)∞. In this case, the element γ of I
given by Theorem 3.1.2(3) highly lacks of “injectivity”. For instance, we can take γ∈I given by the
equalities γ0

k(0) :=0∞=:γ1
k(2k), γ0

k(2l+1):=1∞=:γ1
k(2l), and γ0

k(2l+2):=(01)∞=:γ1
k(2l+1).

Proof of Theorem 1.4. By Proposition 3.1.1, (1) and (2) cannot hold simultaneously. By [K, 4.2], X
is Polish, and by [K, 7.8], X is homeomorphic to a subspace of 2ω, which has to be compact and
therefore closed. So we may assume that X is a closed subset of 2ω. Assume that the problem is
solved for X=2ω, and that (1) does not hold. Note that (1) does not hold in 2ω since it does not hold
inX . This gives γ∈I and ϕ :Kγ→2ω injective continuous with Gγ⊆(ϕ×ϕ)−1(G). In particular, Gγ

is contained in the closed set
(
ϕ−1(X)

)2. Thus proj[Gγ ]⊆ϕ−1(X) and Kγ =proj[Gγ ]⊆ϕ−1(X), so
that ϕ is a witness for the fact that (Kγ ,Gγ) �ic (X,G). So we may assume that X=2ω. It remains
to apply Theorem 3.1.2. �

3.2 A second basis

We now provide another �c-basis, closer to the examples used later.

Notation. It will be convenient to use the index set J that we now define. Fix d = (dj)j∈ω ∈C. We

denote a typical element of
(
(
⋃
m∈ω

∏
m+1)<ω

)ω by β :=
((
sl(i)

)
i<λl

)
l∈ω

. We then set

J :=
{
β∈
(
(
⋃
m∈ω

∏
m+1

)<ω
)ω | (λl)l∈ω∈S ∧ ∀l∈ω λl>0 is even ∧ ∀i< λl |sl(i)|= l+1

}
,

J c :=
{
β∈J | ∀i∈ω

(
sl(i)0

∞)
l∈ω,λl>i

converges to some γi∈C
}
.

Let c, a, a be pairwise different not in ω, and a :=a. We define, for β∈J , a countable digraph Oβ on
Kd :=

∏
j∈ω (dj ∪ {c, a, a}) by

Oβ :={(cl+1aa∞, sl(0)aa∞) | l∈ω} ∪ {(sl(i)ai+1a∞, sl(i+1)ai+2a∞) | l∈ω ∧ i≤λl−2} ∪
{(sl(λl−1)aλla∞, cl+1aa∞) | l∈ω}.
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This allows us to define the graph Gβ := s(Oβ). We then set Kβ := proj[Gβ]
Kd , so that Kβ is a

0DMC space and Gβ is a graph on Kβ whose vertices have degree at most one.

Lemma 3.2.1 Let d∈C, and β∈J . Then (Kβ,Gβ) has CCN at least three and Σ0
1 ⊕Π0

1 chromatic
number two. If moreover sl(2i+ε)(0)=ε for each l∈ω, each i≤ λl−2

2 and each ε∈2, then (Kβ,Gβ)
has CCN three.

Proof. If (C,¬C) is a coloring of Gβ into clopen subsets of Kβ which are not empty and satisfy
c∞∈C, thenNcj0 ⊆C. The compactness of Kβ gives l0≥j0 with x, y∈C or x, y /∈C if x, y∈Kβ and
x|l0 =y|l0. Assume that l≥ l0. An induction on i<λl shows that sl(i)ai+1a∞, sl(i)a

i+1a∞ /∈C if i is
even, sl(i)ai+1a∞, sl(i)a

i+1a∞∈C if i is odd, and cl+1aa∞ /∈C, which is the desired contradiction.
Thus χc(Kβ,Gβ)≥3.

We define an open subset of Kβ by O :=
{
x∈Kβ | ∃n∈ω x(n)=a ∧ x|n∈

∏
j<n (dj ∪ {c})

}
.

The Σ0
1 ⊕Π0

1 partition (O,¬O) of Kβ is a witness for the fact that 2≤χΣ0
1⊕Π0

1
(Kβ,Gβ)≤2.

If moreover sl(2i+ε)(0)=ε for each l∈ω, each i≤ λl−2
2 and each ε∈2, then the clopen partition

(Nc, N0, N1) of Kβ is a witness for the fact that χc(Kβ,Gβ)≤3. �

Lemma 3.2.2 Let d∈C, and β∈J . Then the graph Gβ is D2(Π0
1).

Proof. We check that Gβ = Gβ ∪
(
Gβ ∩ ({c∞} ∪ C)2

)
. For the left to right inclusion, assume that

(x, y) ∈ Gβ \Gβ . We may assume that (x, y) is the limit of a sequence
(
(xm, ym)

)
m∈ω such that

d
(
(xm, ym), ({c∞} ∪ C)2

)
≤2−m. We are done since {c∞} ∪ C is closed in Kβ . As the first union is

the disjoint union of Gβ and a closed relation on Kβ , Gβ is D2(Π0
1). �

The point c∞ will often be crucial to ensure a big CCN.

Lemma 3.2.3 Let d ∈ C, β ∈ J with sl(2i+ ε)(0) = ε for each l ∈ ω, each i ≤ λl−2
2 and each

ε ∈ 2, X be a topological space, and G be a digraph on X having CCN at least three such that
(X,G) �c (Kβ,Gβ), with witness ϕ. Then c∞∈ϕ[X].

Proof. We argue by contradiction. Let C :=ϕ−1(N0 ∪
⋃
l∈ω Ncl+1a). Then (C,¬C) is a coloring of

G into clopen sets since C=ϕ−1(N0 ∪
⋃
l∈ω Ncl+1a ∪ {c∞}), which is absurd. �

We now prove that, for d=2∞,
(
(Kβ,Gβ)

)
β∈J c is a �c-basis for K.

Theorem 3.2.4 Let X be a 0DMC space, and G be a graph on X . Then exactly one of the following
holds:
(1) (X,G) has CCN at most two,
(2) there is β∈J c (for d=2∞) such that (Kβ,Gβ) �c (X,G).

Proof. By Theorem 1.4 and Lemma 3.2.1, it is enough to prove that if γ∈I, then we can find β∈J c
(for d=2∞) such that (Kβ,Gβ) �c (Kγ ,Gγ). As limk→∞ γεk

(
ε·(2k)

)
=0∞, we can find δε∈S such

that 0δε(k)⊆γεk
(
ε·(2k)

)
for each k∈ω. We define ∆∈S by setting ∆(k) :=min

(
δ(k), δ0(k), δ1(k)

)
.

Let (kq)q∈ω ∈S such that ∆(kq)>q and kq>0. We set λ′q := 2kq, so that (λ′q)q∈ω ∈S . We then set,
for i < 2kq, s′q(i) := γ1

kq
(i)|(q+1). This allows us to set β′ :=

((
s′q(i)

)
i<2kq

)
q∈ω. Note that β′ ∈J .

This defines (Kβ′ ,Gβ′), and we will define β later.

We now check that (Kβ′ ,Gβ′) �c (Kγ ,Gγ). We have to define ϕ :Kβ′→Kγ .
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We first define a function ϕ0 :proj[Gβ′ ]→proj[Gγ ]⊆Kγ , by setting
ϕ0(cq+1aa∞) :=γ0

kq
(0),

ϕ0(cq+1aa∞) :=γ1
kq

(2kq),
ϕ0(s′q(i)a

i+1a∞) :=γ0
kq

(i+1) if i<2kq,
ϕ0(s′q(i)a

i+1a∞) :=γ1
kq

(i) if i<2kq.

Note that Gβ′ ⊆ (ϕ0×ϕ0)−1(Gγ). Let us prove that ϕ0 is uniformly continuous on the projection
proj[Gβ′ ]. We set, for x ∈ proj[Gβ′ ], δ(x) := min

{
n ∈ ω | x(n) ∈ {a, a}

}
. Note that if ε ∈ {a, a},

then ϕ0(cq+1εε∞)|(q+1)=0q+1 and ϕ0(s′q(i)ε
i+1ε∞)|(q+1)=s′q(i), by the choice of (kq)q∈ω. Let

q0 ∈ω. We want to find n∈ω such that ϕ0(x)|(q0 +1) =ϕ0(y)|(q0 +1) if x|(n+1) = y|(n+1) and
x, y ∈ proj[Gβ′ ]. If δ(x), n> q0, then δ(y)>q0 and ϕ0(x)|(q0 +1) =ϕ0(y)|(q0 +1) by the previous
facts. Note that there are finitely many z∈proj[Gβ′ ] with δ(z)≤ q0. We choose n>q0 large enough
so that z = t if z, t ∈ proj[Gβ′ ], δ(z), δ(t)≤ q0 and z|n= t|n, so that n is as desired. The theorem
of extension of uniformly continuous maps (see [Bo, chapter II, §3, Section 6, Theorem 2]) provides
ϕ :proj[Gβ′ ]

K2∞→Kγ continuous extending ϕ0. As proj[Gβ′ ]
K2∞

=Kβ′ , the map ϕ is as desired.
It remains to find β ∈J c with (Kβ,Gβ) �c (Kβ′ ,Gβ′). By compactness of {0, 1, c, a, a}ω, we

can find (γi)i<λ′0 ∈ (2ω)λ
′
0 and (q0

j )j∈ω strictly increasing such that q0
0 = 0 and, for each i < λ′

q0
0
,(

s′
q0
j
(i)0∞

)
j∈ω converges to γi. Extracting a further subsequence if necessary, we may assume that

s′
q0
j
(i)|j = γi|j if i < λ′

q0
0
. We can find (γ′i)i<λ′

q01

and (q1
j )j∈ω strictly increasing such that q1

0 =q0
1 ,

{q1
j | j ∈ ω} ⊆ {q0

m | m > 0}, and, for each i < λ′
q1
0
, (s′

q1
j
(i)0∞)j∈ω converges to γ′i. As (q1

j )j∈ω

is a subsequence of (q0
m)m∈ω, γ′i = γi if i < λ′

q0
0
. For this reason, we may set, for i < λ′

q1
0
, γi :=γ′i.

Note that, extracting a further subsequence if necessary, we may assume that s′
q1
j
(i)|j=γi|j if i<λ′

q1
0
.

Then, inductively, we can find (γi)i<2λ′
qk1

and (qk+1
j )j∈ω strictly increasing with the properties that

qk+1
0 = qk1 , {qk+1

j | j∈ω}⊆{qkm | m>0}, and, for each i < λ′
qk+1
0

,
(
s′
qk+1
j

(i)0∞
)
j∈ω converges to

γi. We can also ensure that s′
qk+1
j

(i)|j = γi|j if i < λ′
qk+1
0

. Note that qk+1
0 = qk1 > qk0 . We then set

λl :=λ′
q2l+2
0

and, for i<λl, sl(i) :=s′
q2l+2
0

(i)|(l+1). Fix i∈ω. Let l minimal such that i<λ′
ql+1
0

. Note

that q2l+2
0 = q2l+1

1 >q2l+1
0 = q2l

1 >q
2l
0 = q2l−1

1 >. . .= ql+1
1 >ql+1

0 , which shows that q2l+2
0 = ql+1

jl+1
for

some jl+1≥ l+1. This gives s′
ql+1
jl+1

(i)|jl+1 =γi|jl+1, and γi|(l+1)=s′
q2l+2
0

(i)|(l+1)=sl(i). In other

words,
(
sl(i)0

∞)
λl>i

converges to γi for each i∈ω, so that β :=
((
sl(i)

)
i<λl

)
l∈ω∈J

c.

Let us prove that (Kβ,Gβ) �ic (Kβ′ ,Gβ′). We define ψ :Kβ→Kβ′ , which will be the identity on
{c∞} ∪ (Kβ ∩ 2ω). Let ε∈{a, a}, l∈ω, and i∈ω with either i=0 if s=cl+1, or s=sl(i). We define
ψ(sεi+1ε∞) in such a way that s⊆ψ(sεi+1ε∞) and ψ(sεi+1ε∞) ends with εi+1ε∞. We set

ψ(cl+1aa∞) :=cq
2l+2
0 +1aa∞,

ψ(cl+1aa∞) :=cq
2l+2
0 +1aa∞,

ψ(sl(i)a
i+1a∞) :=s′

q2l+2
0

(i)ai+1a∞ if i<λl=λ′
q2l+2
0

,

ψ(sl(i)a
i+1a∞) :=s′

q2l+2
0

(i)ai+1a∞ if i<λ′
q2l+2
0

.

The map ψ is injective continuous as desired. �
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Remark. The Kβ’s are infinite, so that
(
(Kβ,Gβ)

)
β∈J c is not a �ic-basis, because of the (finite) odd

cycles. On the other hand, the (Kβ,Gβ)’s have Σ0
1⊕Π0

1 chromatic number two, by Lemma 3.2.1. In
particular, they have Borel chromatic number two.

The next two results will help us to compare the subgraphs of the Gβ’s.

Lemma 3.2.5 Let d∈C, β∈J , Vd⊆Kβ , Ed⊆Gβ ∩ V 2
d , d′, β′, Vd′ , Ed′ having the corresponding

properties, satisfying (Vd, Ed) �c (Vd′ , Ed′) with witness ϕ, and x∈proj[s(Ed)]
Kβ ∩ Vd ∩ Cd with

ϕ(x) /∈Cd′ . Then we can find t∈
⋃
l∈ω

∏
l such that

- either ϕ[proj[s(Ed)]
Kβ ∩ Vd ∩ Cd ∩Nt]⊆{c∞},

- or we can find ε ∈ {a, a}, l,m∈ω and s ∈ {cl+1} ∪ {sl(i) | i < λl} with the property that

ϕ[proj[s(Ed)]
Kβ ∩ Vd ∩ Cd ∩Nt]⊆{sεm+1ε∞}.

Proof. If ϕ(x) is of the form sεm+1ε∞, then there is m0 ∈ ω such that ϕ(z) ⊇ sεm+1ε if z is
in Vd ∩Nx|m0

, by continuity of ϕ. Assume that z ∈ proj[s(Ed)]
Kβ ∩ Vd ∩ Cd ∩ Nx|m0

. Then
z= limj→∞ zj , where zj is in proj[s(Ed)] ∩Nx|m0

, which gives uj∈Vd with (zj , uj)∈s(Ed)⊆V 2
d .

This implies that
(
ϕ(zj), ϕ(uj)

)
∈s(Ed′), ϕ(zj)=sεm+1ε∞ and ϕ(z)=sεm+1ε∞.

If now ϕ(x) = c∞, then there is m0 ∈ ω such that ϕ(z)(0) = c if z ∈ Vd ∩ Nx|m0
, by continuity

of ϕ. As in the previous case, we get (zj , uj). This time, ϕ(zj)(0) = c, so that ϕ(zj) is of the form
ckj+1εε∞ and ϕ(z)∈{c∞}∪

{
ck+1εε∞ | k∈ω∧ε∈{a, a}

}
. By the previous point, we may assume

that ϕ(z)=c∞. �

We get a condition sufficient to send Cd into Cd′ .

Lemma 3.2.6 Let d∈C, β∈J , Vd⊆Kβ , Ed⊆Gβ ∩ V 2
d , d′, β′, Vd′ , Ed′ having the corresponding

properties, satisfying Cd⊆Vd ∩ Cd
Cd ∩proj[s(Ed)]

Kβ , and also (Vd, Ed) �ic (Vd′ , Ed′) with witness
ϕ. Then ϕ[Vd ∩ Cd]⊆Cd′ .

Proof. Towards a contradiction, suppose that there is x ∈ Vd ∩ Cd with ϕ(x) /∈ Cd′ . Note that x is
in proj[s(Ed)]

Kβ . Lemma 3.2.5 provides t ∈
⋃
l∈ω

∏
l such that ϕ[Vd ∩ Cd ∩ Nt] has at most one

element, which contradicts the injectivity of ϕ since Cd⊆Vd ∩ Cd
Cd . �

We give a condition sufficient to send c∞ to itself.

Lemma 3.2.7 Let d ∈ C, β ∈ J with sl(2i+ ε)(0) = ε for each l ∈ ω, each i ≤ λl−2
2 and each

ε∈2, Vd⊆Kβ , Ed⊆Gβ ∩ V 2
d satisfying χc(Vd, Ed)≥3, d′, β′, Vd′ , Ed′ having the corresponding

properties, satisfying Vd \({c∞} ∪ Cd) ⊆ proj[s(Ed)], and (Vd, Ed) �c (Vd′ , Ed′) with witness ϕ
satisfying ϕ[Vd ∩ Cd]⊆Cd′ . Then ϕ[Vd\({c∞} ∪ Cd)]⊆Vd′\({c∞} ∪ Cd′) and ϕ(c∞)=c∞.

Proof. As Vd\({c∞} ∪ Cd)⊆proj[s(Ed)], ϕ[Vd\({c∞} ∪ Cd)]⊆proj[s(Ed′)]⊆Vd′ \({c∞} ∪ Cd′).
It remains to apply Lemma 3.2.3. �

3.3 Lower bounds

In this subsection, we prove Theorem 1.7, among other things. We first recover an implication in
the style of (2)⇒ (1) in Theorem 3.1.2.
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Lemma 3.3.1 LetX be a first countable topological space, andG be a graph onX with the property

that ∆(X) ∩
⋃
p∈ω G

2p+1 is not empty. Then (X,G) has no continuous 2-coloring.

Proof. Let x∈X with (x, x)∈
⋃
p∈ω G

2p+1. As X is first countable, we can find
(
(xn, yn)

)
n∈ω in

(X2)ω converging to (x, x) with (xn, yn)∈
⋃
p∈ω G

2p+1. Let (pn)n∈ω∈ωω with (xn, yn)∈G2pn+1.
Let (zni )i≤2pn+1 ∈ X2pn+2 with zn0 = xn, zn2pn+1 = yn, and (zni , z

n
i+1) ∈ G if i ≤ 2pn. This gives(

(xn,ij , yn,ij )
)
j∈ω ∈G

ω converging to (zni , z
n
i+1). If (C,X \C) is a coloring of G into clopen subsets

of X which are not empty and satisfy x∈C, then xn, yn∈C for some n large enough. In particular,
xn,0j ∈C if j is large enough. An induction on i≤ 2pn+1 shows that yn,ij /∈C if j is large enough,
zni+1 /∈ C and xn,i+1

j /∈ C if j is large enough when if i is even, and yn,ij ∈ C if j is large enough,
zni+1 ∈ C, xn,i+1

j ∈ C if j is large enough when i is odd, which is the desired contradiction. Thus
χc(X,G)≥3. �

Lemma 3.3.2 (N ,Gm) has CCN three and Σ0
1 ⊕Π0

1 chromatic number two.

Proof. Note that (c∞, c∞) ∈∆(N ) ∩
⋃
p∈ω Om

2p+1. Indeed, if k ∈ ω, then (ck+1a∞, ck+1a∞) is

in Om
2k+3, with witness

(
ck+1a∞, k0∞, k1∞, . . . , k(2k+1)∞, ck+1a∞

)
. Lemma 3.3.1 implies that

χc(N ,Gm)≥ 3. The clopen partition (Na ∪ Na ∪ Nc,
⋃
k,i∈ω Nk(2i),

⋃
k,i∈ω Nk(2i+1)) shows that

χc(N ,Gm)=3.

We define an open subset of N by O :=
{
x∈N | ∃n∈ω x(n) = a ∧ x|n∈ (ω ∪ {c})n

}
. The

Σ0
1 ⊕Π0

1 partition (O,¬O) of N is a witness for the fact that χΣ0
1⊕Π0

1
(N ,Gm)=2. �

Proposition 3.3.3 The graph Gm is D2(Π0
1).

Proof. Note that

Om=Om ∪ {(ck+1a∞, k0∞) | k∈ω} ∪ {(ki∞, k(i+1)∞) | k∈ω ∧ i≤2k} ∪
{(k(2k+1)∞, ck+1a∞) | k∈ω}.

Thus Om is the disjoint union of Om and a closed relation on N , so that Om is D2(Π0
1). The proof

for Gm is similar. �

Lemma 3.3.4 Let X be a first countable topological space, and G be a graph on X . The following
are equivalent:

(1) ∆(X) ∩
⋃
p∈ω G

2p+1 6=∅,
(2) (N ,Gm) �c (X,G).

Proof. (2) ⇒ (1) Let ϕ be a witness for the fact that (a) holds. We set x := ϕ(c∞). Let U be
an open neighborhood of x, so that ϕ−1(U)×ϕ−1(U) is an open neighborhood of (c∞, c∞) and
contains Nck×Nck for some k∈ω. As (ck+1a∞, ck+1a∞)∈Om

2k+3,
(
ϕ(ck+1a∞), ϕ(ck+1a∞)

)
is

in G2k+3 ∩ (U×U). This shows that (x, x)∈
⋃
p∈ω G

2p+1.

(1) ⇒ (2) Let (x, x) ∈ ∆(X) ∩
⋃
p∈ω G

2p+1, and (Un) be a decreasing countable basis of open

neighborhoods of x. There is, for each n∈ω, pn≥ 1 such that G2pn+1 ∩ U2
n 6= ∅. Note that we may

assume that the sequence (pn)n∈ω is constant or strictly increasing.
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Let (xn, yn)∈G2pn+1 ∩ U2
n, with witness (zni )i≤2pn+1, and

(
(xn,ij , yn,ij )

)
j∈ω∈G

ω converging to
(zni , z

n
i+1).

The map ϕ :N→X sends c∞ to x. If k<p0, then ϕ sends

- ck+1a∞ to z0
0 =x0,

⋃
q 6=a Nck+1aj+1q to x0,0

j ,

- ki∞ to z0
i+1 if i≤2k+1, Nkij+1a to y0,i

j if i≤2k+1,
⋃
m 6=i,a Nkij+1m to x0,i+1

j if i≤2k+1,
- Nki ∪Nε to x if i>2k+1 or i /∈ω, and ε∈{a, a},
-
⋃
m6=c,a {ck+1m∞} to z0

2k+3,
⋃
m6=c,a, and q 6=m Nck+1mj+1q to y0,2k+2

j .

If (pn)n∈ω is constant and k≥p0, then ϕ sends

- ck+1a∞ to zk0 =xk,
⋃
q 6=a Nck+1aj+1q to xk,0j ,

- ki∞ to zki+1 if i≤2p0−2, Nkij+1a to yk,ij if i≤2p0−2,
⋃
m 6=i,a Nkij+1m to xk,i+1

j if i≤2p0−2,

- k(2l + 1)∞ to zk2p0
if p0−1≤ l<k,

⋃
m6=2l+1 Nk(2l+1)j+1m to yk,2p0−1

j if p0−1≤ l<k,

- k(2l)∞ to zk2p0−1 if p0−1<l≤k,
⋃
m 6=2l Nk(2l)j+1m to xk,2p0−1

j if p0−1<l≤k,

- k(2k + 1)∞ to zk2p0
, Nk(2k+1)j+1a to yk,2p0−1

j ,
⋃
m 6=2k+1,a Nk(2k+1)j+1m to xk,2p0

j .
- Nki ∪Nε to x if i>2k+1 or i /∈ω, and ε∈{a, a},
-
⋃
m6=c,a {ck+1m∞} to zk2p0+1,

⋃
m 6=c,a, and q 6=m Nck+1mj+1q to yk,2p0

j .

If (pn)n∈ω is strictly increasing and pn≤k<pn+1, then ϕ sends

- ck+1a∞ to zn0 =xn,
⋃
q 6=a Nck+1aj+1q to xn,0j ,

- ki∞ to zni+1 if i≤2pn−2, Nkij+1a to yn,ij if i≤2pn−2,
⋃
m 6=i,a Nkij+1m to xn,i+1

j if i≤2pn−2,

- k(2l + 1)∞ to zn2pn if pn−1≤ l<k,
⋃
m 6=2l+1 Nk(2l+1)j+1m to yn,2pn−1

j if pn−1≤ l<k.

- k(2l)∞ to zn2pn−1 if pn−1<l≤k,
⋃
m 6=2l Nk(2l)j+1m to xn,2pn−1

j if pn−1<l≤k,

- k(2k + 1)∞ to zn2pn , Nk(2k+1)j+1a to yn,2pn−1
j ,

⋃
m 6=2k+1,a Nk(2k+1)j+1m to xn,2pnj .

- Nki ∪Nε to x if i>2k+1 or i /∈ω, and ε∈{a, a},
-
⋃
m6=c,a {ck+1m∞} to zn2pn+1,

⋃
m 6=c,a, and q 6=m Nck+1mj+1q to yn,2pnj .

Note that ϕ is a witness for (2). �

Theorem 1.7 is now a consequence of Lemmas 3.3.4 and 3.3.1.

Remark. We saw in the proof of Proposition 3.3.3 that

Om=Om ∪ {(ck+1a∞, k0∞) | k∈ω} ∪ {(ki∞, k(i+1)∞) | k∈ω ∧ i≤2k} ∪
{(k(2k+1)∞, ck+1a∞) | k∈ω}.

Moreover,

proj[Gm]=proj[Gm] ∪
{
ck+1ε∞ | k∈ω ∧ ε∈{a, a}

}
∪ {c∞} ∪ {ki∞ | k∈ω ∧ i≤2k+1}

is a closed countable subset of N . As ∆(P) ∩
⋃
p∈ω Gm

2p+1 is empty (its only possible element
could be (c∞, c∞), this is not the case since the ck+1ε∞’s are not in P), (P,Gm) ≺c (N ,Gm) by
Lemma 3.3.4, as announced in the introduction.
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We now characterize the subgraphs of Gm having a big CCN. In fact, we will need some gener-
alizations of Gm in the sequel, that we now describe.

Notation. We define a copy of (P,Gm) and subgraphs of it. We set, for δ∈2ω, Gδ :=s(Oδ), where

Oδ :={(ck+10ja∞, k0j+2a∞) | δ(k)=1 ∧ j∈ω} ∪
{(ki0j+1a∞, k(i+1)0j+1a∞) | δ(k)=1 ∧ i≤2k ∧ j∈ω} ∪

{(k(2k+1)0j+1a∞, ck+11ja∞) | δ(k)=1 ∧ j∈ω},
and Pδ=proj[Gδ] ∪ {c∞} ∪ {ki0∞ | δ(k)=1 ∧ i≤2k+1}. Note that the vertices of Gδ have degree
at most one. We also set P∞ :={α∈2ω | ∃∞n∈ω α(n)=1}.

Lemma 3.3.5 (P1∞ ,G1∞) ≡ic (P,Gm).

Proof. We define ϕ : P1∞ → P by ϕ(c∞) := c∞, ϕ(ki0∞) := ki∞, ϕ(ck+10ja∞) := ck+1aj+1a∞,
ϕ(ki0j+1ε∞) := kij+1ε∞, and ϕ(ck+11ja∞) := ck+1aj+1a∞. The map ϕ is a witness for the fact
that (P1∞ ,G1∞) �ic (P,Gm), and ϕ−1 is a witness for the fact that (P,Gm) �ic (P1∞ ,G1∞). �

Lemma 3.3.6 Let δ∈P∞. Then (Pδ,Gδ) has CCN three and Σ0
1 ⊕Π0

1 chromatic number two.

Proof. For the upper bounds, we prove that χc(P1∞ ,G1∞)≤3 and χΣ0
1⊕Π0

1
(P1∞ ,G1∞) ≤ 2 since

Pδ ⊆ P1∞ and Gδ ⊆ G1∞ . This comes from Lemmas 3.3.2 and 3.3.5. For the first lower bound,
towards a contradiction, suppose that there is a clopen subset C of Pδ with Gδ ∩ (C2 ∪ (Pδ\C)2)=∅.
We may assume that c∞ ∈ C, which gives k0 ≥ 1 such that Nck0+1 ∩ Pδ ⊆ C. Assume that k ≥ k0

and δ(k) = 1. As (ck+10ja∞, k0j+2a∞) ∈ Gδ and ck+10ja∞ ∈ C, k0j+2a∞ ∈ Pδ \C. Thus
k0∞∈Pδ\C, which gives j0∈ω such that k0j+2a∞∈Pδ\C if j≥j0. As (k0j+2a∞, k10j+1a∞)∈Gδ,
k10j+1a∞ ∈C if j ≥ j0. Thus k10∞ ∈C. An induction on i≤ 2k+1 shows that ki0∞ ∈C if i is
odd, and ki0∞∈Pδ\C if i is even. This implies that ck+11ja∞∈Pδ\C if j is large enough, which is
absurd. �

Proposition 3.3.7 Let δ∈2ω. Then Gδ is a D2(Π0
1) graph on the 0DP space Pδ.

Proof. As Pδ is a closed subset of N , it is a 0DP space. Note that

Oδ=Oδ ∪
{(
ki0∞, k(i+1)0∞

)
| δ(k)=1 ∧ i≤2k

}
.

Thus Oδ is the disjoint union of Oδ and a closed relation on N , so that Oδ is D2(Π0
1). The proof for

Gδ is similar. �

We now characterize the subgraphs of Gδ having a big CCN.

Lemma 3.3.8 Let V ⊆Pδ, and E⊆Gδ ∩ V 2. The following are equivalent:
(1) the digraph (V,E) has CCN at least three,
(2) c∞∈V and there is I⊆{k∈ω | δ(k)=1} infinite such that, for each k∈I ,

(a) ∀i≤2k+1 ki0∞∈V ,
(b) ∃∞j∈ω (ck+10ja∞, k0j+2a∞)∈s(E),
(c) ∀i≤2k ∃∞j∈ω (ki0j+1a∞, k(i+1)0j+1a∞)∈s(E),
(d) ∃∞j∈ω (k(2k+1)0j+1a∞, ck+11ja∞)∈s(E).
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Proof. Note first that χc(V,E)≤χc
(
V, s(E)

)
≤χc(Pδ,Gδ) = 3, by Lemma 3.3.6. We may and will

assume that E=s(E) is a graph.

(2)⇒ (1) Towards a contradiction, suppose that there is a clopen subset C of V with the property that
E ∩ (C2 ∪ (V \C)2)=∅. We may assume that c∞∈C, which gives k0∈ω such that Nck0+1 ∩ V ⊆C.
Assume that k≥k0 is in I . By (b), there are infinitely many j’s with (ck+10ja∞, k0j+2a∞)∈E⊆V 2,
which implies that ck+10ja∞∈C and k0j+2a∞ /∈C. By (a), k0∞∈V , so that k0∞∈V \C. By (c),
there are infinitely many j’s with the property that (k0j+2a∞, k10j+1a∞)∈E⊆V 2, so that we may
assume that k0j+2a∞ ∈V \C and thus k10j+1a∞ ∈C. By (a) again, k10∞ ∈V , so that k10∞ ∈C.
An induction on i≤2k+1 shows that ki0∞∈V \C if i is even, and ki0∞∈C if i is odd. By (d), this
gives infinitely many j’s such that ck+11ja∞∈V \C, which is the desired contradiction.

(1)⇒ (2) If c∞ /∈V , then we set C :=
(⋃

k∈ω (
⋃
i≤2k+1 even Nki ∪Nck+11)

)
∩ V . Then (C, V \C) is

a coloring of E into clopen sets, which is absurd. If (2) does not hold, then there is k0 ∈ω such that
one of the properties (a)-(d) does not hold if k≥k0. We will use the following notation.

- If (a) does not hold, then ik≤2k+1 will be minimal with kik0∞ /∈V ,
- If (b) does not hold, then jk∈ω will be minimal such that (ck+10ja∞, k0j+2a∞) /∈E if j≥jk,
- If (c) does not hold, then ik≤2k and jk∈ω will be minimal such that (kik0

j+1a∞, k(ik+1)0j+1a∞)
is not in E if j≥jk,
- If (d) does not hold, then jk ∈ ω will be minimal such that (k(2k+1)0j+1a∞, ck+11ja∞) /∈ E if
j≥jk.

We then set

C ′ :=
(⋃

k<k0
(
⋃
i≤2k+1 even Nki ∪Nck+11) ∪⋃

k≥k0,¬(a),ik even (
⋃
i<ik even Nki ∪

⋃
j∈ω Nkik0j+1a ∪

⋃
ik<i≤2k+1 odd Nki) ∪⋃

k≥k0,¬(a),ik odd (
⋃
i<ik even Nki ∪

⋃
j∈ω Nkik0j+1a ∪

⋃
ik<i≤2k+1 odd Nki) ∪⋃

k≥k0,(a),¬(b) (
⋃
j<jk

Nk0j+2a ∪
⋃
i≤2k+1 odd Nki) ∪⋃

k≥k0,(a),(b),¬(c),ik even

(⋃
i<ik even Nki ∪

(
Nkik \(

⋃
j<jk

Nkik0j+1a)
)
∪
⋃
ik<i≤2k+1 odd Nki

)
∪⋃

k≥k0,(a),(b),¬(c),ik odd

(⋃
i<ik even Nki ∪

⋃
j<jk

Nkik0j+1a ∪
⋃
ik<i≤2k+1 odd Nki

)
∪⋃

k≥k0,(a),(b),(c),¬(d) (
⋃
i≤2k+1 even Nki ∪

⋃
j<jk

Nk(2k+1)0j+1a)
)
∩ V.

Then (C ′, V \C ′) is a coloring of E into clopen sets, which is absurd. �

4 General graphs on a 0DMS space

Remark. We study the limits of Theorem 3.1.2. In its proof, we used the compactness of Cd. This
is essential. Indeed, if we replace Cd with ωω or N , then the notation nG still makes sense and the
following hold. The implications (4) ⇒ (1) and (2) ⇒ (3) still hold, with the same proof. Also,
the implication (4) ⇒ (2) still holds, using uniform continuity.

(a) The implication (1)⇒ (4) does not hold. Indeed, if X is a 0DMC space and G is a graph on X
with CCN at least three, then (X,G) is not �c-below (N ,Gm). Indeed, we argue by contradiction to
see that, which gives a continuous map ϕ :X→N . We set V :=ϕ[X] and E := (ϕ×ϕ)[G], so that
the graph (V,E) has CCN three.
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The compactness of X implies that the first coordinate of the elements of V \(Nc ∪Na ∪Na) is
bounded by some natural number k0. We set C :=

(⋃
k≤k0

(
⋃
i≤2k+1 even Nki ∪ Nck+1a)

)
∩ V , so

that C is a clopen subset of V and E ∩ (C2 ∪ (V \C)2) = ∅, which is the desired contradiction. In
particular, if (A1,G1) exists, then A1 cannot be compact, and

(
(Kα,Gα)

)
α∈2ω

given by Theorem 1.4
is not a �c-basis for the class of countable graphs on a 0DP space with CCN at least three.

(b) The implication (2)⇒ (4) does not hold. Indeed, note that (c∞, c∞)∈
⋂
n∈ω (

⋃
p∈ω (nGm)2p+1).

(c) The implication (2)⇒ (1) does not hold. Indeed, consider the following countable graph on ωω:

T :=s
(
{(02k+11∞, (2k+2)0∞) | k∈ω} ∪

{(
(2k+2)i0k1∞, (2k+2)(i+1)0∞

)
| k∈ω ∧ i≤2k

}
∪{(

(2k+2)(2k+1)0k1∞, 02k+21∞
)
| k∈ω

})
.

Then (0∞, 0∞)∈∆(ωω) ∩
⋂
n∈ω (nT)2n+1. We set C :=N0 ∪

⋃
k∈ω,j≤2k N(2k+2)(j+1)0k+1 . Then

T ∩ (C2 ∪ (¬C)2)=∅ and C is a clopen subset of ωω, so that χc(ωω,T)=2.

We now turn to the proof of Theorem 1.8.

Lemma 4.1 Let (Q,≤) be quasi-order for which there is q0 ∈Q such that, for any q≤ q0, there are
≤-incomparable p0, p1≤q. Then (Q,≤) has no antichain basis.

Proof. Towards a contradiction, suppose that there is an antichain basis B for (Q,≤). As B is a basis,
there is q∈B with q≤q0. Our assumption gives p0, p1≤q with p0⊥p1. As B is a basis, there is, for
each ε∈ 2, qε ∈B with qε≤ pε. As qε≤ q are in the antichain B, q0 = q= q1. Thus p0≤ q= q1≤ p1

and p0≤p1, which contradicts the ≤-incomparability of p0, p1. �

Recall the graph (Pδ,Gδ) defined before Lemma 3.3.5.

Lemma 4.2 Let δ∈2ω, andG be a graph on a 0DMS space Z, with CCN at least three and satisfying
(Z,G) �ic (Pδ,Gδ). Then there is δ′ ∈ P∞ such that {k ∈ω | δ′(k) = 1}⊆ {k ∈ω | δ(k) = 1} and
(Pδ′ ,Gδ′) �ic (Z,G).

Proof. Assume that (Z,G) �ic (Pδ,Gδ), with witness ϕ. We set V :=ϕ[Z] and E := (ϕ×ϕ)[G], so
that, by Lemma 3.3.8, c∞ ∈V and the set I ⊆{k∈ω | δ(k) = 1} of k’s satisfying (a)-(d) is infinite.
We set (ηa, ηa) :=(0, 1), and define

- a singleton {ν} :=ϕ−1({c∞}),
- singletons Nk,i :={nk,i} :=ϕ−1({ki0∞}) (for k∈I and i≤2k+1),
- infinite sets Jak :=Jak,0 :={j∈ω | (ck+10ja∞, k0j+2a∞)∈E} and

Jak :=Jak,2k+1 :={j∈ω | (k(2k+1)0j+1a∞, ck+11ja∞)∈E}

(for k∈I),
- infinite sets Jak,i :=Jak,i+1 :={j∈ω | (ki0j+1a∞, k(i+1)0j+1a∞)∈E} (for k∈I and i≤2k),

- singletons Zk,ε,j :={zk,ε,j} :=ϕ−1({ck+1ηεjε
∞}) (for k∈I , ε∈{a, a} and j∈Jεk),

- singletons Zk,i,j,ε :={zk,i,j,ε} :=ϕ−1({ki0j+1ε∞}) (for k∈I , i≤2k+1, j∈Jεk,i, and ε∈{a, a}).
By [K, 7.8], we may assume that Z⊆ωω. We set

I ′ :=
{
k∈I | ∀i≤2k (nk,i, nk,i+1)∈{(zk,i,j,a, zk,i+1,j,a) | j∈Jak,i}

}
.
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If k∈I\I ′, then ik≤2k will be minimal with (nk,ik , nk,ik+1) /∈{(zk,ik,j,a, zk,ik+1,j,a) | j∈Jak,ik}.
This gives lk ∈ ω with (Nnk,ik |lk×Nnk,ik+1|lk) ∩ {(zk,ik,j,a, zk,ik+1,j,a) | j ∈ Jak,ik} = ∅. If we set

Ja,−k,ik := {j ∈ Jak,ik | z
k,ik,j,a /∈ Nnk,ik |lk} and Ja,+k,ik

:= {j ∈ Jak,ik | z
k,ik+1,j,a /∈ Nnk,ik+1|lk}, then

Jak,ik =Ja,−k,ik ∪ J
a,+
k,ik

.

Let us prove that

∀l∈ω ∃∞k∈I ′ ∀p∈ω ∃j∈Jak Zk,a,j ∩Nν|l, Z
k,0,j,a ∩Nnk,0|p 6=∅ ∧

∀p∈ω ∃j∈Jak Zk,2k+1,j,a ∩Nnk,2k+1|p, Z
k,a,j ∩Nν|l 6=∅.

Towards a contradiction, suppose that we can find l0, k0 ∈ ω such that, for each k ≥ k0 in I ′, either
there is pak∈ω such that, for j∈Jak , Zk,a,j∩Nν|l0 =∅ or Zk,0,j,a∩Nnk,0|pak

=∅, or there is pak∈ω such
that, for j ∈ Jak , Zk,2k+1,j,a ∩ Nnk,2k+1|pak

= ∅ or Zk,a,j ∩ Nν|l0 = ∅. If k≥ k0 and (b) from Lemma
3.3.8 does not hold, then jk will be minimal such that (ck+10ja∞, k0j+2a∞) /∈s(E) if j≥jk.

We set, for ε∈{a, a}, Sε :={k∈I ′ | k≥k0 ∧ pεk exists}. We also set, for k∈Sa,

Sk,a :={j∈Jak | Zk,0,j,a ∩Nnk,0|pak
=∅}

and, for k∈Sa, Sk,a :={j∈Jak | Zk,2k+1,j,a ∩Nnk,2k+1|pak
=∅}. We then set

C :=
⋃
k<k0

ϕ−1(
⋃
i≤2k+1 even Nki ∪Nck+11) ∪⋃
k≥k0,¬(a),ik even ϕ

−1(
⋃
i<ik even Nki ∪

⋃
j∈ω Nkik0j+1a ∪

⋃
ik<i≤2k+1 odd Nki) ∪⋃

k≥k0,¬(a),ik odd ϕ
−1(
⋃
i<ik even Nki ∪

⋃
j∈ω Nkik0j+1a ∪

⋃
ik<i≤2k+1 odd Nki) ∪⋃

k≥k0,(a),¬(b) ϕ
−1(
⋃
j<jk

Nk0j+2a ∪
⋃
i≤2k+1 odd Nki) ∪⋃

k≥k0,(a),(b),¬(c),ik even ϕ
−1
(⋃

i<ik even Nki ∪
(
Nkik \(

⋃
j<jk

Nkik0j+1a)
)
∪
⋃
ik<i≤2k+1 odd Nki

)
∪⋃

k≥k0,(a),(b),¬(c),ik odd ϕ
−1
(⋃

i<ik even Nki ∪
⋃
j<jk

Nkik0j+1a ∪
⋃
ik<i≤2k+1 odd Nki

)
∪⋃

k≥k0,(a),(b),(c),¬(d) ϕ
−1(
⋃
i≤2k+1 even Nki ∪

⋃
j<jk

Nk(2k+1)0j+1a) ∪⋃
k≥k0,k∈I\I′,ik even

(
ϕ−1(

⋃
i<ik even Nki ∪

⋃
j∈ω Nkik0j+1a ∪

⋃
j /∈Ja,−k,ik

Nkik0j+1a ∪⋃
j∈ω Nk(ik+1)0j+1a ∪

⋃
j /∈Ja,+k,ik

Nk(ik+1)0j+1a ∪
⋃
ik+1<i≤2k+1 odd Nki) ∪Nnk,ik |lk ∪Nnk,ik+1|lk

)
∪⋃

k≥k0,k∈I\I′,ik odd

(
ϕ−1(

⋃
i<ik even Nki ∪

⋃
j /∈Ja,−k,ik

Nkik0j+1a ∪⋃
j /∈Ja,+k,ik

Nk(ik+1)0j+1a ∪
⋃
ik+1<i≤2k+1 odd Nki) ∪Nnk,ik |lk ∪Nnk,ik+1|lk

)
∪⋃

k∈Sa ϕ
−1(
⋃
i≤2k+1 even Nki ∪

⋃
j∈Sk,a Nk(2k+1)0j+1a ∪

⋃
j∈Jak \Sk,a

Nck+11ja) ∪⋃
k∈Sa\Sa ϕ

−1(
⋃
j∈Jak \Sk,a

Nck+10ja ∪
⋃
j∈Sk,a Nk0j+2a ∪

⋃
i≤2k+1 odd Nki).

As ϕ−1(Nk ∩ Pδ) is a clopen subset of Z, the only possible limit point of (zk,i,j,ε)j∈ω is nk,i. Also,
the only possible limit point of (zk,ε,j)j,k∈ω is ν. This implies that (C,Z\C) is a coloring of G into
clopen sets, which is absurd.

We then set, for l∈ω,

Sl :={k∈I ′ | ∀p∈ω ∃j∈Jak Zk,a,j ∩Nν|l, Z
k,0,j,a ∩Nnk,0|p 6=∅ ∧

∀p∈ω ∃j∈Jak Zk,2k+1,j,a ∩Nnk,2k+1|p, Z
k,a,j ∩Nν|l 6=∅},

so that (Sl)l∈ω is decreasing.
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We inductively define k0 := min S0, and kl+1 := min Sl+1 ∩ (kl,∞), so that (kl)l∈ω is stricly
increasing. We define δ′∈2ω by δ′(k)=1⇔ ∃l∈ω k=kl, so that δ′∈P∞. We pick, for l, p∈ω and
i≤2kl,
- jl,p,0∈Jakl , zkl,a,jl,p,0 ∈Nν|l and zkl,0,jl,p,0,a∈Nnkl,0|p, ensuring the injectivity of (jl,p,0)p∈ω,
- jl,p,i+1 ∈ Jakl,i, zkl,i,jl,p,i+1,a ∈ Nnkl,i|p, zkl,i+1,jl,p,i+1,a ∈ Nnkl,i+1|p, ensuring the injectivity of
(jl,p,i+1)p∈ω,
- jl,p,2kl+2∈Jakl , zkl,2kl+1,jl,p,2kl+2,a∈Nnkl,2kl+1|p and zkl,a,jl,p,2kl+2

∈Nν|l, ensuring the injectivity of
(jl,p,2kl+2)p∈ω.

We are now ready to construct ψ :Pδ′→Z. Note that

Pδ′=
{
ckl+1ηεjε

∞ | j, l∈ω ∧ ε∈{a, a}
}
∪
{
kli0

j+1ε∞ | j, l∈ω ∧ i≤2kl+1 ∧ ε∈{a, a}
}
∪

{c∞} ∪ {kli0∞ | l∈ω ∧ i≤2kl+1}.
We first set ψ(c∞) := ν. If l∈ω, then ψ sends ckl+10pa∞ to zkl,a,jl,p,0 , kli0∞ to nkl,i if i≤ 2kl+1,
kli0

p+1a∞ to zkl,i,jl,p,i+1,a and kli0p+1a∞ to zkl,i,jl,p,i,a if i≤2kl+1, and ckl+11pa∞ to zkl,a,jl,p,2kl+2
.

Note that ψ is as desired. �

Lemma 4.3 Let δ, δ′ ∈P∞ with (Pδ,Gδ) �ic (Pδ′ ,Gδ′). Then there is k0 ∈ω with the property that
{k≥k0 | δ(k)=1}⊆{k∈ω | δ′(k)=1}.

Proof. Let ϕ :Pδ→Pδ′ be a witness for the fact that (Pδ,Gδ) �ic (Pδ′ ,Gδ′). We set V :=ϕ[Pδ] and
E :=(ϕ×ϕ)[Gδ], so that χc(V,E)=3. By Lemma 3.3.8, c∞∈V . Moreover, ϕ

[
proj[Gδ]

]
⊆proj[Gδ′ ].

Let us prove that ϕ[Pδ\(proj[Gδ] ∪ {c∞})]⊆Pδ′ \(proj[Gδ′ ] ∪ {c∞}). Towards a contradiction,
suppose that we can find k1 such that δ(k1)=1 and i≤2k1+1 with ϕ(k1i0

∞)∈proj[Gδ′ ]∪{c∞}. We
set (ηa, ηa) := (0, 1). If ϕ(k1i0

∞)∈proj[Gδ′ ], then there are i′, j′, k′, ε with the property that either
ϕ(k1i0

∞)=ck
′+1ηεj

′ε∞, or ϕ(k1i0
∞)=k′i′0j

′+1ε∞. The continuity of ϕ provides a natural number
j0 with ϕ[Nk1i0j0+1 ] ⊆ Nck′+1ηεj′ε

or ϕ[Nk1i0j0+1 ] ⊆ Nk′i′0j′+1ε. This implies that the sequence(
ϕ(k1i0

j+1a∞)
)
j≥j0 is constant, which contradicts the injectivity of ϕ. If ϕ(k1i0

∞) = c∞, then
δ′′ ∈ 2ω defined by δ′′(k) = 1 ⇔ δ(k) = 1 ∧ k 6= k1 is in P∞ and ϕ|Pδ′′ is a witness for the fact
that (Pδ′′ ,Gδ′′) �ic (Pδ′ ,Gδ′). But the injectivity of ϕ implies that c∞ /∈ϕ[Pδ′′ ], which implies that
χc(Pδ′′ ,Gδ′′)≤2 by Lemma 3.3.8, and contradicts Lemma 3.3.6.

This implies that ϕ(c∞) = c∞, and gives k0 with ϕ[Nck0+1 ]⊆Nc. Pick k ≥ k0 with δ(k) = 1.
This gives, for each p∈ω, jp, kp, εp with δ′(kp)=1 and ϕ(ck+10pa∞)=ckp+1ηεpjpε

∞
p . Extracting a

subsequence if necessary, we may assume that the εp’s are equal to ε. Thus

ϕ(k0p+2a∞)=

{
kp0

jp+2a∞ if ε=a,
kp(2kp+1)0jp+1a∞ if ε=a.

The continuity of ϕ implies that
(
ϕ(k0p+2a∞)

)
p∈ω converges to ϕ(k0∞). Extracting a subsequence

if necessary, we may assume that the kp’s are equal to k′ and (jp)p∈ω is injective. Thus ϕ(k0∞) is
k′0∞ or k′(2k′+1)0∞. Now note that the sequence

(
ϕ(k0p+2a∞)

)
p∈ω also converges to ϕ(k0∞).

This gives, for each p∈ω, j′p, ε
′
p with (j′p)p∈ω is injective (up to an extraction) and

ϕ(k0p+2a∞)=

{
k′0j

′
p+2ε′p

∞ if ε=a,
k′(2k′+1)0j

′
p+1ε′p

∞ if ε=a.
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Extracting a subsequence if necessary, we may assume that the ε′p’s are equal to ε′. Thus

ϕ(k10p+1a∞)=



{
k′10j

′
p+1a∞ if ε′=a,

ck
′+10(j′p+1)a∞ if ε′=a,

if ε=a,

{
ck
′+11(j′p+1)a∞ if ε′=a,

k′(2k′)0j
′
p+1a∞ if ε′=a,

if ε=a.

As
(
ϕ(k10p+1a∞)

)
p∈ω converges to ϕ(k10∞)∈Pδ′ \(proj[Gδ′ ] ∪ {c∞}), ϕ(k10p+1a∞) /∈Nc, and

the second and third cases are not possible if p is large enough. Thus ε′=ε, and ϕ(k10∞) is k′10∞ or
k′(2k′)0∞. Now note that the sequence

(
ϕ(k10p+1a∞)

)
p∈ω also converges to ϕ(k10∞). This gives,

for each p∈ω, j′′p , ε
′′
p with (j′′p )p∈ω is injective (up to an extraction) and

ϕ(k10p+1a∞)=

{
k′10j

′′
p+1ε′′p

∞ if ε=a,
k′(2k′)0j

′′
p+1ε′′p

∞ if ε=a.

Extracting a subsequence if necessary, we may assume that the ε′′p’s are equal to ε′′. If k>0, then the
continuity of ϕ implies that

(
ϕ(k20p+1a∞)

)
p∈ω converges to ϕ(k20∞) ∈ Pδ′ \(proj[Gδ′ ] ∪ {c∞}).

This implies that ϕ(k20∞) /∈Nc, and ϕ(k20p+1a∞) /∈Nc if p is large enough. So we may assume
that

ϕ(k20p+1a∞)=



{
k′20j

′′
p+1a∞ if ε′′=a,

k′0j
′′
p+2a∞ if ε′′=a,

if ε=a,

{
k′(2k′+1)0j

′′
p+1a∞ if ε′′=a,

k′(2k′−1)0j
′′
p+1a∞ if ε′′=a,

if ε=a.

The injectivity of ϕ and the value of ϕ(k0∞) imply that second and third cases are not possible if p is
large enough. Thus ε′′=ε, and ϕ(k20∞) is k′20∞ or k′(2k′−1)0∞. This implies that k′>0. If now
k=0, then

ϕ(ck+11pa∞)=

{
ck
′+11j′′pa

∞ if ε=a,
ck
′+10(j′′p+1)a∞ if ε=a.

since ϕ(ck+11pa∞) ∈Nc. This implies that k′ = 0. Iterating this argument, we see that k′ = k and
δ′(k)=1. Thus δ′(k)=1 if δ(k)=1 and k≥k0. �

Proof of Theorem 1.8. Lemmas 3.3.5 and 4.2 provide δ ∈ P∞ such that (Pδ,Gδ) �ic
(
Z,G

)
. We

enumerate injectively {n ∈ ω | δ(n) = 1}=: {np | p ∈ ω}. Let (pn)n∈ω be the sequence of prime
numbers. We define, for each α∈ 2ω, Sα⊆ω by Sα := {pα(0)+1

0 . . . p
α(n)+1
n | n∈ω}. Note that Sα

is infinite, and Sα ∩ Sβ is finite if α 6=β. We define δα∈ 2ω by δα(n) = 1 ⇔ ∃p∈Sα n=np. Note
that δα∈P∞ and δα(n)≤δ(n) for each n. We set (Pα, Gα) :=(Pδα ,Gδα), so that Pα⊆Pδ, Gα⊆Gδ,
(Pα, Gα) �ic (Z,G), and χc(Pα, Gα)=3 by Lemma 3.3.6.

Let us prove that (Pα, Gα), (Pα′ , Gα′) are�ic-incompatible among graphs on a 0DMS space with
CCN at least three if α 6=α′. We argue by contradiction, which provides a 0DMS space Z and a graph
G on Z with CCN at least three and (Z,G) �ic (Pα, Gα), (Pα′ , Gα′). Lemma 4.2 gives δ′∈P∞ such
that {k ∈ ω | δ′(k) = 1}⊆ {k ∈ ω | δα(k) = 1} and (Pδ′ ,Gδ′) �ic (Z,G). Lemma 4.3 gives k0 ∈ ω
such that {k≥k0 | δ′(k) = 1}⊆{k∈ω | δα′(k) = 1}. This implies that {k∈ω | δ′(k) = 1} is finite,
contradicting δ′∈P∞.
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Lemma 4.1 then implies that there is no �ic-antichain basis in the class of graphs on a 0DMS (or
0DP) space with CCN at least three. If B is a basis for the class of graphs on a 0DP space with CCN
at least three and α∈ 2ω, then there is bα ∈B with bα �ic (Pα, Gα). The previous point shows that
the sequence (bα)α∈2ω is injective, so that B has size at least continuum. �

5 General graphs and dynamical systems

We now prepare the proof of Theorem 1.17. We establish preliminary results holding not only for
our examples, and clarify the relation between Cantor dynamical systems and our graphs. We first
introduce examples in the style of the Gγ’s defined at the beginning of Section 3.

Notation. Fix d∈C (defined before Theorem 3.1.2). We associate to d the following objects:

- an increasing unbounded sequence (nl)l∈ω of natural numbers, sometimes denoted by (nd
l )l∈ω,

- sequences (Ll)l∈ω, (Rl)l∈ω of integers with Rl−Ll=2nl+1.

Let f : C → C be a homeomorphism, so that (C, f) is a Cantor dynamical system. We will
associate a graph to (C, f), as follows. Recall the definition of J at the beginning of Subsection 3.2.
We define, for l ∈ ω and Ll ≤ i≤Rl, fl,i := fd

l,i := f i(0∞)|(l+1) in
∏
l+1. This defines β ∈ J by

setting λl := 2nl+2, and sl(i) := fl,Ll+i. We set C+ := Kβ , Of := Oβ , and Gf := s(Of ), so that
Gf =Gβ .

Lemma 5.1 (C+,Gf ) has CCN at least three and Σ0
1 ⊕ Π0

1 chromatic number two. If moreover
d0 =2 and f(x)(0) 6=x(0) for each x∈C, then (C+,Gf ) has CCN three.

Proof. We first apply Lemma 3.2.1. For the end, we argue as in the proof of Lemma 3.2.1. �

We now want to compare the subgraphs of the Gf ’s.

Lemma 5.2 Let X be a topological space, f :X→X be a homeomorphism, Y, g having the corre-
sponding properties, x∈X , and ϕ :Orbf (x)→Y such that ϕ

(
f(z)

)
=g
(
ϕ(z)

)
for each z∈Orbf (x).

Then ϕ
(
f i(x)

)
=gi

(
ϕ(x)

)
for each i∈Z. Similarly, if ϕ

(
f(z)

)
=g−1

(
ϕ(z)

)
for each z ∈Orbf (x),

then ϕ
(
f i(x)

)
=g−i

(
ϕ(x)

)
for each i∈Z. In particular, ϕ[Orbf (x)]=Orbg

(
ϕ(x)

)
in both cases.

Proof. Inductively, we see that ϕ
(
f i(z)

)
= gi

(
ϕ(z)

)
for each i ∈ ω and each z ∈ Orbf (x). In

particular, ϕ(x) =ϕ
(
f i
(
f−i(x)

))
=gi

(
ϕ
(
f−i(x)

))
, so that ϕ

(
f−i(x)

)
=g−i

(
ϕ(x)

)
. This implies

that ϕ
(
f i(x)

)
=gi

(
ϕ(x)

)
if i∈Z. The other case is similar. �

Definition 5.3 We say that the tuple (d,d′, fd, fd′ , Vd, Vd′ , Ed, Ed′ , ϕ) is a continuous tuple if d∈C,
fd :Cd→Cd is a homeomorphism, Vd⊆C+

d , Ed⊆Gfd ∩ V 2
d is a graph, χc(Vd, Ed)≥3, d′, fd′ , Vd′ ,

Ed′ have the corresponding properties, and (Vd, Ed) �c (Vd′ , Ed′) with witness ϕ.

The next results are steps towards flip-conjugacy.

Lemma 5.4 Let (d,d′, fd, fd′ , Vd, Vd′ , Ed, Ed′ , ϕ) be a continuous tuple, and(
x, fd(x)

)
∈Ed

(C+
d )2

∩ V 2
d

with ϕ(x), ϕ
(
fd(x)

)
∈Cd′ . Then ϕ

(
fd(x)

)
=fd′

(
ϕ(x)

)
or ϕ

(
fd(x)

)
=f−1

d′
(
ϕ(x)

)
.
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Proof. Note that
(
x, fd(x)

)
= liml→∞ (xl, ul), where (xl, ul)∈Ed. This successively implies that(

ϕ(xl), ϕ(ul)
)
∈Ed′ ⊆Gfd′ and

(
ϕ(x), ϕ

(
fd(x)

))
== liml→∞

(
ϕ(xl), ϕ(ul)

)
. As ϕ(x), ϕ

(
fd(x)

)
are in Cd′ , the first coordinate of ϕ(xl), ϕ(ul) is in d0 if l is large enough. The definition of Gfd′

provides kl∈ω, il∈Z, and (ρl, εl) 6=(θl, ηl) in {(0, a), (1, a)} with the properties that il≤2nkl ,(
ϕ(xl), ϕ(ul)

)
=(f

Lkl+il+ρl
d′ (0∞)|(kl+1)εil+ρl+1

l εl
∞, f

Lkl+il+θl
d′ (0∞)|(kl+1)ηil+θl+1

l ηl
∞)

for such a l. Extracting a subsequence if necessary, we may assume that the sequence (ρl) is con-
stant. Moreover, the fact that ϕ(x) ∈ Cd′ implies that we may also assume that the sequence (kl)

is strictly increasing. This implies that
(
ϕ(x), ϕ

(
fd(x)

))
is at distance zero from the closed set

Graph(fd′)
1−2ρ0 ∩ V 2

d′ . Thus ϕ
(
fd(x)

)
=fd′

(
ϕ(x)

)
or ϕ

(
fd(x)

)
=f−1

d′
(
ϕ(x)

)
. �

Corollary 5.5 Let (d,d′, fd, fd′ , Vd, Vd′ , Ed, Ed′ , ϕ) be a continuous tuple such that ϕ is injective,

Cd ⊆ Vd ∩ Cd
Cd and Graph(fd) ⊆ Ed

(C+
d )2

, and assume that x, fd(x) ∈ Vd ∩ Cd. Then either
ϕ
(
fd(x)

)
=fd′

(
ϕ(x)

)
, or ϕ

(
fd(x)

)
=f−1

d′
(
ϕ(x)

)
.

Proof. By Lemma 3.2.6, ϕ(x), ϕ
(
fd(x)

)
∈Cd′ . It remains to apply Lemma 5.4. �

Lemma 5.6 Let X be a 0DMS space, f :X→X be a homeomorphism, V ⊆ X , I be a subset of
{x∈ V | f(x)∈ V }, Y, g,W having the corresponding properties, and ϕ : V →W be a continuous
injection. We assume that ϕ

(
f(x)

)
=g
(
ϕ(x)

)
or ϕ

(
f(x)

)
=g−1

(
ϕ(x)

)
if x∈I .

(a) Assume that g2 is fixed point free, x, f(x) ∈ I , and f2(x) 6= x. Then ϕ
(
f(x)

)
= g
(
ϕ(x)

)
and

ϕ
(
f2(x)

)
=g2

(
ϕ(x)

)
, or ϕ

(
f(x)

)
=g−1

(
ϕ(x)

)
and ϕ

(
f2(x)

)
=g−2

(
ϕ(x)

)
.

(b) Assume that g2 is fixed point free, Orbf (x) is a dense subset of I , and f2(x) 6= x. Then either
ϕ
(
f(z)

)
=g
(
ϕ(z)

)
for each z∈I , or ϕ

(
f(z)

)
=g−1

(
ϕ(z)

)
for each z∈I .

(c) Assume that g2 is fixed point free, Orbf (x)⊆I , and f2(x) 6=x. Then ϕ[Orbf (x)]=Orbg
(
ϕ(x)

)
.

Proof. (a) We set P := {z ∈ I | ϕ
(
f(z)

)
= g
(
ϕ(z)

)
} and M := {z ∈ I | ϕ

(
f(z)

)
= g−1

(
ϕ(z)

)
}, so

that (P,M) is a covering of I into closed sets. As g2 is fixed point free, P,M are disjoint. Thus P is
clopen in I . If x∈P and f(x)∈M , then ϕ

(
f2(x)

)
= g−1

(
ϕ
(
f(x)

))
=ϕ(x), which contradicts the

fact that f2(x) 6=x since ϕ is injective. The argument is similar if we exchange P and M .

(b) By (a), either Orbf (x)⊆P , or Orbf (x)⊆M . By density, P ∈{I, ∅}.
(c) If Orbf (x)⊆P , then, by Lemma 5.2, ϕ

(
f i(x)

)
= gi

(
ϕ(x)

)
if i∈Z and we are done. Otherwise,

by (a), we are in the similar case Orbf (x)⊆M , so that ϕ[Orbf (x)]=Orbg
(
ϕ(x)

)
in both cases. �

Lemma 5.7 Let (d,d′, fd, fd′ , Vd, Vd′ , Ed, Ed′ , ϕ) be a continuous tuple such that f2
d, f

2
d′ are fixed

point free, ϕ is injective, Cd⊆Vd ∩ Cd
Cd and Graph(fd)⊆Ed

(C+
d )2

.
(a) Assume that x, fd(x), f2

d(x)∈Vd ∩ Cd. Then ϕ
(
fd(x)

)
=fd′

(
ϕ(x)

)
and ϕ

(
f2
d(x)

)
=f2

d′
(
ϕ(x)

)
,

or ϕ
(
fd(x)

)
=f−1

d′
(
ϕ(x)

)
and ϕ

(
f2
d(x)

)
=f−2

d′
(
ϕ(x)

)
.

(b) If Orbfd(x) is a dense subset of I := {z ∈ Vd ∩ Cd | fd(z) ∈ Vd} for some x, then either
ϕ
(
fd(z)

)
=fd′

(
ϕ(z)

)
for each z∈I , or ϕ

(
fd(z)

)
=f−1

d′
(
ϕ(z)

)
for each z∈I .

(c) Assume that Orbfd(x)⊆Vd ∩ Cd. Then ϕ[Orbfd(x)]=Orbfd′
(
ϕ(x)

)
.
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Proof. We apply Lemma 5.6 to X :=Cd, f := fd, V :=Vd ∩ Cd, I defined in (b), Y :=Cd′ , g := fd′ ,
W :=Vd′ ∩ Cd′ , and ϕ :=ϕ|V , which is possible by Lemma 3.2.6 and Corollary 5.5. �

Lemma 5.8 Let d,d′ ∈C, and fd : Cd→Cd, fd′ : Cd′→Cd′ be minimal homeomorphisms such that

Graph(fd)⊆Gfd
(C+

d )2

. If (C+
d ,Gfd) �ic (C+

d′ ,Gfd′ ), then fd, fd′ are flip-conjugate.

Proof. Let ϕ : C+
d → C

+
d′ be a witness for the fact that (C+

d ,Gfd) �ic (C+
d′ ,Gfd′ ). By Lemma 5.1,

(d,d′, fd, fd′ , C+
d , C

+
d′ ,Gfd ,Gfd′ , ϕ) is a continuous tuple satisfying the assumptions of Lemmas

3.2.6 and 5.7. In particular, ϕ[Cd] ⊆ Cd′ and the map ψ := ϕ|Cd : Cd → Cd′ is a witness for the
fact that fd, fd′ are flip-conjugate. Indeed, Lemma 5.7 implies that ϕ[Orbfd(x)] = Orbfd′

(
ϕ(x)

)
if

x∈Cd. As fd′ is minimal, the compact set ψ[Cd] is dense in Cd′ , showing that ψ is onto, and thus a
homeomorphism by compactness of Cd. �

Notation. For the converse, we give a definition of the sequences (nl)l∈ω, (Ll)l∈ω and (Rl)l∈ω. We
define (nl)l∈ω by nl := l, so that (nl)l∈ω is increasing unbounded.

- We define a map ζ :ω→Z having the property that each integer appears infinitely many times in the
range of ζ.

- We define sequences (Ll)l∈ω, (Rl)l∈ω of integers by L2m :=R2m+1 := ζ(m) and Rl−Ll := 2l+1,
so that the sequences

(
fLl(0∞)

)
l∈ω,

(
fRl(0∞)

)
l∈ω are dense if f is minimal.

Note also that {f i(0∞) | ∃∞l∈ω Ll≤ i<Rl} is dense in C if f is minimal, which implies that

Graph(fd)⊆Gfd
(C+

d )2

.

Lemma 5.9 Let d,d′ ∈ C, fd : Cd → Cd, fd′ : Cd′ → Cd′ be minimal homeomorphisms, and
(nl)l∈ω, (Ll)l∈ω, (Rl)l∈ω just defined. If fd, fd′ are flip-conjugate, then (C+

d ,Gfd) �ic (C+
d′ ,Gfd′ ).

Proof. As fd, fd′ are flip-conjugate, we get a homeomorphism ψ : Cd → Cd′ . We have to define a
function ϕ : C+

d →C
+
d′ . We first set ϕ(c∞) := c∞, and ϕ(x) := ψ(x) if x ∈ Cd. As fd′ is uniformly

continuous, for any l∈ω, there is U ≥ l such that, for any y, z∈Cd′ , fd′(y)|(l+1) =fd′(z)|(l+1) if
y|(U+1)=z|(U+1), which defines U :ω→ω.

Assume first that ψ◦fd =fd′ ◦ψ. By Lemma 5.2, ψ
(
f id(0∞)

)
=f id′

(
ψ(0∞)

)
for each i∈Z. We

define
(
ϕ(fd

l,Ll+i
εi+1ε∞)

)
i≤2l+1

by induction on l, ensuring that ϕ(fd
l,Ll+i

εi+1ε∞) is of the form

fd′

l′(l,i,ε),Ll′(l,i,ε)+i
′(l,i,ε)ε

i′(l,i,ε)+1ε∞ with l′(l, i+1, a)= l′(l, i, a) and i′(l, i+1, a)= i′(l, i, a) if i≤2l.

Fix l∈ω. Let M :=sup
{
l′(k, j, η) | k<l ∧ j≤2k+1 ∧ η∈{a, a}

}
.

- We choose m := l′(l, 0, a) > max(l,M) such that fLmd′ (0∞)|(l+1)=fLld′
(
ψ(0∞)

)
|(l+1), which

is possible since the sequence
(
fLmd′ (0∞)

)
m∈ω is dense. We set ϕ(cl+1aa∞) := cm+1aa∞ and

ϕ(fd
l,Ll
aa∞) :=fd′

m,Lm
aa∞. Note that

(
ϕ(cl+1aa∞), ϕ(fd

l,Ll
aa∞)

)
∈Gfd′ , as desired.

- Now fix i≤2nl. As fd′ is minimal, we can find ki∈Z with

fkid′ (0
∞)|
(
U(l)+1

)
=fLl+id′

(
ψ(0∞)

)
|
(
U(l)+1

)
.

Note that fki+1
d′ (0∞)|(l+1) = fLl+i+1

d′
(
ψ(0∞)

)
|(l+1). We choose m′ := l′(l, i, a)> l′(l, i, a) with

the property that Lm′ ≤ ki = Lm′ + i′i < Rm′ . We set ϕ(fd
l,Ll+i

ai+1a∞) := fd′
m′,ki

ai
′
i+1a∞ and

ϕ(fd
l,Ll+i+1a

i+2a∞) := fd′
m′,ki+1a

i′i+2a∞. Note that
(
ϕ(fd

l,Ll+i
ai+1a∞), ϕ(fd

l,Ll+i+1a
i+2a∞)

)
is in

Gfd′ , as desired.
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- We then choose m′′ := l′(l, 2l+1, a)>l′(l, 2l+1, a) with fRm′′d′ (0∞)|(l+1)=fRld′
(
ψ(0∞)

)
|(l+1),

which is possible since
(
fRmd′ (0∞)

)
m∈ω is dense. We set ϕ(fd

l,Rl
a2l+2a∞) := fd′

m′′,Rm′′
a2m′′+2a∞

and ϕ(cl+1aa∞) :=cm
′′+1aa∞. Note that

(
ϕ(fd

l,Rl
a2l+2a∞), ϕ(cl+1aa∞)

)
∈Gfd′ , as desired.

This completes the definition of ϕ. Our construction implies that ϕ is a homomorphism from
(C+

d ,Gfd) into (C+
d′ ,Gfd′ ). Our choice of the l′(l, i, ε)’s implies the injectivity of ϕ. For the con-

tinuity, note first that the sequence
(
ϕ(cl+1εε∞)

)
l∈ω converges to c∞ since m,m′′ ≥ l. If now

(fd
lk,Llk+ik

εik+1
k εk

∞)k∈ω converges to x ∈ C+
d , then we may assume that x ∈ Cd. Note that the se-

quence
(
f
Llk+ik
d (0∞)

)
k∈ω converges to x, and

(
f
Llk+ik
d′

(
ψ(0∞)

))
k∈ω

converges to ψ(x) = ϕ(x).

Our construction ensures that f
Ll′(l,i,ε)+i

′(l,i,ε)

d′ (0∞)|(l+1)=fLl+id′
(
ψ(0∞)

)
|(l+1), and

ϕ(fd
lk,Llk+ik

εik+1
k εk

∞)=fd′

l′(lk,ik,εk),Ll′(lk,ik,εk)+i
′(lk,ik,εk)ε

i′(lk,ik,εk)+1
k εk

∞

=f
Ll′(lk,ik,εk)+i

′(lk,ik,εk)

d′ (0∞)|
(
l′(lk, ik, εk)+1

)
ε
i′(lk,ik,εk)+1
k εk

∞.

As l′(l, i, ε)≥ l, we get

ϕ(fd
lk,Llk+ik

εik+1
k εk

∞)|(lk+1)=f
Ll′(lk,ik,εk)+i

′(lk,ik,εk)

d′ (0∞)|(lk+1)=f
Llk+ik
d′

(
ψ(0∞)

)
|(lk+1).

Thus
(
ϕ(fd

lk,Llk+ik
εik+1
k εk

∞)
)
k∈ω converges to ϕ(x), proving the continuity of ϕ.

The case where ψ◦fd =f−1
d′ ◦ψ is similar. �

Notation. We set (X,R) ≡ic (Y, S) ⇔ (X,R) �ic (Y, S) ∧ (Y, S) �ic (X,R), so that ≡ic is the
equivalence relation associated with the quasi-order �ic.

Corollary 5.10 Let d,d′ ∈ C, fd : Cd → Cd, fd′ : Cd′ → Cd′ be minimal homeomorphisms, and
(nl)l∈ω, (Ll)l∈ω, (Rl)l∈ω just defined. Then (C+

d ,Gfd) ≡ic (C+
d′ ,Gfd′ ) if and only if fd, fd′ are flip-

conjugate.

6 General graphs and odometers

We now provide a countable graph on a(n infinite) 0DMC space with CCN three which is strictly
�c-below the odd cycles. Our example is based on odometers. We give some notation useful for the
sequel.

Notation. Fix d∈C (defined before Theorem 3.1.2). The odometer o :=od :C→C is defined by

o(α) :=

{
0∞ if ∀j∈ω α(j)=dj−1,
0n
(
α(n)+1

)
α(n+1)α(n+2) . . . if α(n)<dn−1 ∧ ∀j<n α(j)=dj−1.

As Orb+
o (α) :={oi(α) | i>0} sees all the words of length n in the first n coordinates for any x, o is

a minimal homeomorphism. We sometimes extend the definition of o to finite sequences.
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We set D :={d∈C | d0 =2 ∧ ∀j≥1 dj is odd}.

- We define, for d∈D, (nl)l∈ω∈S by n0 :=0 and nl+1 :=
(π1≤j≤l+1 dj)−1

2 . Note that

o2nl+1(0∞)=1_1≤j≤l
dj − 1

2
0∞

converges to µ :=1_j≥1
dj−1

2 as l goes to infinity, and o4nl+1(0∞)=_
j≤l (dj−1)0∞.

- We define, for l ∈ ω and i≤ 2nl+1, ol,i := od
l,i := oi(0∞)|(l+1)∈

∏
l+1. This defines β ∈J c, by

setting λl :=2nl+2 and sl(i) :=ol,i. We set C+ :=Kβ , Oo :=Oβ , and Go :=s(Oo), so that Go=Gβ .

Proposition 6.1 Let d∈D. Then (C+,Go) has CCN three, Σ0
1 ⊕Π0

1 chromatic number two, and is
strictly �c-below the examples of Corollary 2.2.

Proof. Lemma 3.2.1 proves the assertions about chromatic numbers. Let p∈ω. We define a function
ϕ : C+→ 2p+3 as follows. Fix l0 ∈ ω minimal such that nl0 ≥ p. We set ϕ(x) := 0 if x(0) = c. If
i≤4nl0 +1 and oi(0l0+1)⊆x (recall that o can be extended to finite sequences), then we set

ϕ(x) :=



i+1 if i≤2p+1,
2p+2 if 2p+1<i≤2nl0 +1 ∧ i is odd,
2p+1 if 2p+1<i≤2nl0 +1 ∧ i is even,
2p+2nl0 +3−i if 2nl0 +1<i≤2p+2nl0 +1,
2 if 2p+2nl0 +1<i≤4nl0 +1 ∧ i is odd,
1 if 2p+2nl0 +1<i≤4nl0 +1 ∧ i is even.

It remains to define ϕ(ol,iε
i+1ε∞) if ε∈{a, a}, l< l0 and i≤2nl+1. We set ϕ(ol,iε

i+1ε∞) := i+1.
This defines a continuous homomorphism ϕ from (C+,Go) into (2p+ 3, C2p+3). The inequality
(C+,Go) ≺c (2p+3, C2p+3) is strict because of Corollary 2.2(b). �

Remark. We clarify the limits of Theorem 2.1. In its proof, we used the finiteness of X . This is
essential. Indeed, if we replace χ with χc, �i with �ic and X with C+, then the following hold. The
implications (2) ⇒ (1), (3) ⇒ (1) and (3) ⇔ (2) still hold. The implications (1) ⇒ (2) and
(1) ⇒ (3) do not hold, because of Proposition 6.1.

We now characterize the subgraphs of Go having a big CCN.

Lemma 6.2 Let d∈D, V ⊆C+, and E⊆Go ∩ V 2. The following are equivalent:
(1) the digraph (V,E) has CCN at least three,
(2) the following hold:

(a) 0∞, µ, c∞∈V and C⊆V ∩ CC ,

(b) {(c∞, 0∞), (µ, c∞)} ∪ Graph(o)⊆s(E)
(C+)2

.

Proof. Note first that χc(V,E)≤χc
(
V, s(E)

)
≤χc(C+,Go) = 3, by Lemma 3.2.1. We may and will

assume that E=s(E) is a graph.

(1)⇒ (2).(a) For 0∞, we argue by contradiction. Let C :=(N1 ∪
⋃
l∈ω N0l+1a)∩V . Then (C, V \C)

is a coloring of E into clopen sets since C=(N1 ∪
⋃
l∈ω N0l+1a ∪ {0∞}) ∩ V , which is absurd. For

µ, we argue similarly, with (N0 ∪
⋃
l∈ω Nµ|(l+1)a) ∩ V . For c∞, we apply Lemma 3.2.3.

Claim. Let l ∈ ω. Then either for each 0< i < 2nl+1 there is x ∈ V ∩ C with ol,i ⊆ x, or for each
2nl+1<j<4nl+2 there is y∈V ∩ C with ol,j⊆y.
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Indeed, towards a contradiction, suppose that l0, i, j exist. Assume, for example, that i, j are even,
the other cases being similar. We extend the notation ol,i for i≤4nl+1 (not only i≤2nl+1), and set

C ′ :=
(⋃

1≤l≤l0 (Ncla ∪
⋃
s∈

∏
l
Nsa) ∪

⋃
k<i,k even Nol0,k

∪
⋃
l≥l0,s∈

∏
l0<j≤l

dj
Nol0,isa

∪⋃
i<k<j,k odd Nol0,k

∪
⋃
l≥l0,t∈

∏
l0<j≤l

dj
Nol0,jta

∪
⋃
j<k<4nl0+2,k even Nol0,k

)
∩ V .

Then (C ′, V \C ′) is a coloring of E into clopen sets, which is absurd. �
Now let l∈ω, t∈

∏
l, i<2nl+1 with t0=ol,i, and 2nl+1≤ j <4nl+2 with t(dl−1)=ol,j . We

may assume that i 6= 0 and j 6= 2nl+1 since 0∞, µ∈ V . Then there is x∈ V ∩ C with t⊆ x by the
claim, so that x∈V ∩ C ∩Nt.

(b) For (c∞, 0∞), we argue by contradiction. If l≥ l0 is large enough, then (cl+1aa∞, 0l+1aa∞) is
not in E. Let C ′′ := (

⋃
1≤l≤l0 (Ncla ∪

⋃
s∈

∏
l
Nsa) ∪

⋃
1s∈

∏
j≤l0

dj
N1s) ∩ V . Then (C ′′, V \C ′′)

is a coloring of E into clopen sets, which is absurd. For (µ, c∞), we argue similarly, with the clopen
set (

⋃
1≤l≤l0 (Ncla ∪

⋃
s∈

∏
l
Nsa) ∪

⋃
0s∈

∏
j≤l0

dj
N0s) ∩ V .

In order to prove that Graph(o)⊆ E(C+)2

, towards a contradiction, suppose that there is i0 ∈ ω
such that

(
oi0(0∞), oi0+1(0∞)

)
/∈E(C+)2

. If l≥ l0 is large enough, then i0≤2nl and

(ol,i0a
i0+1a∞, ol,i0+1a

i0+2a∞) /∈E.

We set P− := {oi(0l0+1) | i < i0}, P+ := {oi(0l0+1) | i0 < i< πj≤l0 dj}, which defines a partition
(P−, {ol0,i0}, P+) of

∏
l0+1. Assume first that i0 is even. Let

C ′′′ :=(
⋃

1≤l≤l0

(Ncla ∪
⋃
s∈

∏
l

Nsa) ∪
⋃

s∈P−∪{ol0,i0},s(0)=0

Ns ∪
⋃

s∈P+,s(0)=1

Ns) ∩ V.

Then (C ′′′, V \C ′′′) is a coloring of E into clopen sets, which is absurd. If i0 is odd, then we consider

C ′′′ :=(
⋃

1≤l≤l0

(Ncla ∪
⋃
s∈

∏
l

Nsa) ∪Nc ∪
⋃

s∈P−∪{ol0,i0},s(0)=1

Ns ∪
⋃

s∈P+,s(0)=0

Ns) ∩ V

(for instance cl+1aa∞∈C ′′′ and ol,0aa∞ /∈C ′′′).
(2)⇒ (1) Towards a contradiction, suppose that there is a clopen subset C of V with the property that
E ∩

(
C2 ∪ (V \C)2

)
=∅, and by (a) we may assume that c∞∈C. (b) gives infinitely many l’s such

that (cl+1aa∞, 0l+1aa∞) is inE, and infinitely many l’s with (µ|(l+1)a2nl+2a∞, cl+1aa∞)∈E. For
these large enough l’s, 0l+1aa∞ /∈C and µ|(l+1)a2nl+2a∞ /∈C. By (a), 0∞, µ∈V \C. This gives
l0∈ω such that V ∩ (N0l0+1 ∪Nµ|(l0+1))⊆V \C.

(a) provides x1 ∈ V ∩ C with ol0,1 ⊆ x1, which gives l1 > l0 such that V ∩ Nx1|l1 ⊆ C or
V ∩Nx1|l1 ⊆V \C. Let i1≤ 2nl1 with ol1,i1 = (x1|l1)0. (a) provides x2 ∈V ∩ C with ol1,i1+1⊆x2,
which gives l2 > l1 such that V ∩ Nx2|l2 ⊆ C or V ∩ Nx2|l2 ⊆ V \C. Continuing like this we get,
for each j≤ 2nl0 , xj+1 ∈V ∩ C with olj ,ij+1⊆xj+1, and lj+1> lj such that V ∩ Nxj+1|lj+1

⊆C or
V ∩Nxj+1|lj+1

⊆V \C, with i0 :=0.

By (b),
(
oi1−1(0∞), oi1(0∞)

)
∈ E(C+)2

, so that E meets N0l0+1×Nol1,i1
. As V ∩ N0l0+1 is

contained in V \C, this implies that V ∩Nol1,i1
⊆C. By (b),

(
oi2−1(0∞), oi2(0∞)

)
∈E(C+)2

, so that
E meets Nol1,i1

×Nol2,i2
. As V ∩Nol1,i1

⊆C, this implies that V ∩Nol2,i2
⊆V \C.
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More generally, if 1≤ j≤2nl0 +1, then V ∩Nolj ,ij
⊆C when j is odd, and V ∩Nolj ,ij

⊆V \C
when j is even. As µ|(l0+1) is an initial segment of ol2nl0+1,i2nl0+1 ,

V ∩Nol2nl0+1,i2nl0
+1
⊆C ∩Nµ|(l0+1)⊆C\C,

which is the desired contradiction. �

The compactness ensures some surjectivity.

Lemma 6.3 Let d∈D, V ⊆C+, X be a 0DMC space, andG be a digraph onX having CCN at least
three such that (X,G) �c (V,Go), with witness ϕ. Then ϕ is onto C⊆V .

Proof. Note that (ϕ[X], (ϕ×ϕ)[G]) has CCN three. By Lemma 6.2, C is contained in ϕ[X] ∩ CC . As
ϕ[X] is compact, ϕ[X] ∩ CC=ϕ[X] ∩ C, and thus C⊆ϕ[X]. �

We now prove some minimality of the Go’s.

Theorem 6.4 Let d∈D, V be a compact subspace of C+, and E⊆Go ∩ V 2 be a graph with CCN at
least three. Then (C+,Go) �ic (V,E).

Proof. Note that C+ = proj[Go] ∪ {c∞} ∪ C. By Lemma 6.2 and compactness of V , {c∞} ∪ C ⊆V .
We have to define ϕ : C+→ V . The map ϕ will be the identity on {c∞} ∪ C. Let ε∈ {a, a}, l ∈ ω,
and either s=cl+1 and i=0, or s=ol,i. We define ϕ(sεi+1ε∞) by induction on l, in such a way that

s⊆ϕ(sεi+1ε∞) and ϕ(sεi+1ε∞) finishes with some εj+1ε∞. As (c∞, 0∞)∈E :=E
(C+)2

, we can
find

(
ϕ(caa∞), ϕ(0aa∞)

)
in E as desired. As (0∞, 10∞)∈E, we can find

(
ϕ(0aa∞), ϕ(1a2a∞)

)
in E as desired. As (µ, c∞) ∈E, we can find

(
ϕ(1a2a∞), ϕ(caa∞)

)
∈E as desired. Note that we

are done for l= 0. The general case is similar, we ensure the injectivity of ϕ by avoiding the finitely
many previously chosen sequences. �

The next lemma will provide several �c-antichains.

Lemma 6.5 Let d,d′ ∈C such that the dj , d′l’s are prime, d′l is not in {dj | j ∈ω} if d′l 6= 3 and l is
large enough, d′ is unbounded, and (Cd, God) �c (Cd′ , God′ ) with witness ϕ. Then ϕ is not onto.

Proof. We argue by contradiction. As ϕ is uniformly continuous, there is, for each l∈ω, L :=L(l)≥ l
with the property that ϕ(x)|(l+1) =ϕ(y)|(l+1) if x, y ∈ Cd and x|(L+1) = y|(L+1). We choose
l ≥ 2 with the property that d′l+1 /∈ {dj | j ∈ ω}, which is possible for infinitely many l’s. As ϕ is
onto, we can find a surjection Γl :

∏
L+1→

∏
j≤l d

′
j such that ϕ[Cd ∩ Ns]⊆NΓl(s). We enumerate∏

L+1 :={sLi | i<πj≤L dj} in the order defined by od, starting with 0L+1. Note that, respecting this

order, {sL(l+1)
i | i<πj≤L(l+1) dj} is

{sLi 0L(l+1)−L | i<πj≤L dj} ∪ . . . ∪ {sLi _L<j≤L(l+1) (dj−1) | i<πj≤L dj}.

This implies that {Γl+1(s
L(l+1)
i ) | i<πj≤L(l+1) dj} is

{Γl(sLi )ε0
i | i<πj≤L dj} ∪ . . . ∪ {Γl(sLi )ε

(πL<j≤L(l+1) dj)−1

i | i<πj≤L dj}.
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As od′(x)|2 6= o−1
d′ (x)|2 for each x ∈ Cd′ , od′

(
Γl(s

L
i )
)
6= o−1

d′
(
Γl(s

L
i )
)

if i < πj≤L dj . As ϕ is
a homomorphism, Γl(s

L
i+1) can only be the image or the inverse image of Γl(s

L
i ) by the map od′ if

i+1<πj≤L dj . Similarly, Γl+1(s
L(l+1)
k+1 ) can only be the image or the inverse image of Γl+1(s

L(l+1)
k )

by the map od′ if k+1 < πj≤L(l+1) dj . If sL(l+1)
k extends sLi , then Γl+1(s

L(l+1)
k ) extends Γl(s

L
i ),

and Γl(s
L
i+1) is the image of Γl(s

L
i ) if and only if Γl+1(s

L(l+1)
k+1 ) is the image of Γl+1(s

L(l+1)
k ) since

od′
(
Γl(s

L
i )
)
6= o−1

d′
(
Γl(s

L
i )
)

if i < πj≤L dj . This implies that m :=εkπj≤L dj−1−εk0 (mod d′l+1) does

not depend on k. Similarly, either εk+1
0 =εkπj≤L dj−1 for each k, or εk+1

0 ≡εkπj≤L dj−1+1 (mod d′l+1)

for each k, or εk+1
0 ≡εkπj≤L dj−1−1 (mod d′l+1) for each k.

Assume first that εk+1
0 =εkπj≤L dj−1 for each k. An induction shows that

εkπj≤L dj−1≡ε0
0+(k+1)m (mod d′l+1).

Thus ε0
0≡ε0

0+(πL<j≤L(l+1) dj)m (mod d′l+1) and d′l+1 divides m since d′l+1 is not in {dj | j∈ω}.

Assume now that εk+1
0 ≡εkπj≤L dj−1+1 (mod d′l+1) for each k. An induction shows that

εkπj≤L dj−1≡ε0
0+(k+1)(m+1)−1 (mod d′l+1).

Thus ε0
0≡ε0

0+(πL<j≤L(l+1) dj)(m+1) (mod d′l+1) and d′l+1 divides m+1.

Assume now that εk+1
0 ≡εkπj≤L dj−1−1 (mod d′l+1) for each k. An induction shows that

εkπj≤L dj−1≡ε0
0+(k+1)(m−1)+1 (mod d′l+1).

Thus ε0
0≡ε0

0+(πL<j≤L(l+1) dj)(m−1) (mod d′l+1) and d′l+1 divides m−1.

In all cases, this shows that εki does not depend on k. This argument can be extended to any length
strictly greater than l. This cannot always hold since the sequence d′ is unbounded. �

In our applications of Lemma 6.5, dl, d′l can be 3 for infinitely many l’s.

Theorem 6.6 There is a map Φ:2ω→D such that (C+
Φ(α),GoΦ(α)

) 6�c (C+
Φ(β),GoΦ(β)

) if α 6=β.

Proof. Let (pn)n∈ω be the sequence of prime numbers. We define, for each α ∈ 2ω, Sα ⊆ ω by
Sα :={0} ∪ {pα(0)+1

0 . . . p
α(n)+1
n | n∈ω}. Note that Sα is infinite, contains 0, and Sα ∩ Sβ is finite

if α 6= β. In this proof, we consider (dα)0 = 2, (dα)j = 3 if j /∈ Sα, (dα)j = pj+1 if 0< j ∈ Sα, so
that Φ(α) := dα ∈D is unbounded, the (dα)j’s are prime, (dβ)l is not in {(dα)j | j ∈ ω} if α 6= β,
(dβ)l 6=3 and l is large enough.

So assume that d,d′ ∈ D, the dj , d′l’s are prime, d′l is not in {dj | j ∈ ω} if d′l 6= 3 and l is
large enough, d′ is unbounded, and (C+

d ,God) �c (C+
d′ ,God′ ) with witness ϕ. By Lemmas 3.2.3, 6.3

and Proposition 6.1, ϕ is onto {c∞} ∪ Cd′ . As ϕ is uniformly continuous, there is, for each l ∈ ω,
L :=L(l)≥ l with the property that ϕ(x)|(l+1)=ϕ(y)|(l+1) if x, y∈C+

d and x|(L+1)=y|(L+1).

Claim 1. If l ∈ ω, then there is L′0 ≥ L(l) such that, for each L′ ≥ L′0, each i ≤ 2nL′+1 and each
ε∈{a, a}, ϕ(od

L′,iε
i+1ε∞)|(l+1)∈

∏
j≤l (d′j ∪ {c}).
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Indeed, towards a contradiction, suppose that there is l0 such that, for each k≥L(l0), we can find
L′k≥k, ik, εk and mk≤ l0 such that ϕ(od

L′k,ik
εik+1
k εk

∞)(mk)∈{a, a}. As ϕ is a homomorphism, the

uniform continuity of ϕ and an induction on i−ik show that ϕ(od
L′k,i

εi+1ε∞)(mk), ϕ(cL
′
k+1εε∞)(mk)

are in {a, a} if i≤ 2nL′k +1 and ε ∈ {a, a}. If now i ∈ ω, then
(
oid(0∞), oi+1

d (0∞)
)

is the limit of
couples of the form (od

L′k,i
ai+1a∞, od

L′k,i+1a
i+2a∞), where we may assume that (mk)k is constant.

The continuity of ϕ implies that ϕ
(
oid(0∞)

)
(m0) is in {a, a}. This shows that C+

d ⊆ϕ
−1(proj[God′ ])

and c∞ /∈ϕ[C+
d ], which is absurd. �

Claim 2. ϕ[Cd]=Cd′ and ϕ(c∞)=c∞.

Indeed, by Lemma 3.2.7 and Proposition 6.1, it is enough to see that ϕ[Cd] ⊆ Cd′ . By Lemma
3.2.5 and Proposition 6.1, it is enough to see that ϕ[Cd ∩Nt] 6⊆ {c∞} and ϕ[Cd ∩Nt] 6⊆ {sεm+1ε∞}
if t∈

⋃
l∈ω

∏
l. We argue by contradiction.

If the singleton is of the form {sεm+1ε∞} with s= ck+1 or s∈
∏
j≤k d

′
j , then we choose i∈ω

with t⊆oi(0∞), so that ϕ
(
oi(0∞)

)
=sεm+1ε∞. We may assume that sεm+1ε⊆ϕ(z) if z∈C+

d ∩Nt.
We apply Claim 1 to l := |s|, which gives L′0. We choose L′ ≥max(|t|, L′0) with the property that
i≤2nL′+1. Then ϕ(od

L′,ia
i+1a∞)|(l+1)=sε∈

∏
j≤l (d′j ∪ {c}), which is the desired contradiction.

If the singleton is {c∞}, then we may assume that ϕ(z)(0) = c if z ∈ C+
d ∩ Nt. We fix l > |t|

with nd′
l > 2nd

|t|+1 + 2. Let w ∈ Cd′ \{ϕ(c∞)}, and u ∈ Cd with ϕ(u) = w. Note that there is
i≤ 2nd

L+1 +1 with od
L+1,i = u|(L+1)0, and ϕ(u|(L+1)0ai+1a∞)|(l+1) = w|(l+1). Also, there

is k≤ 2nd
L+1 +1 such that t⊆ od

L+1,k and |k−i| ≤ 2nd
|t|+1 +1. Note that ϕ(od

L+1,ka
k+1a∞)(0) = c,

and ϕ(od
L+1,ka

k+1a∞)|(l+1)=cl+1 since ϕ is uniformly continuous. Also, there is i′<πj≤l d′j with
w|(l+1)=od′

l,i′ . Note that i′≤2nd
|t|+1+1 or |2nd′

l +1−i′|≤2nd
|t|+1+1 since ϕ is a homomorphism.

Thus {y|(l+1) | y∈Cd′} cannot be
∏
j≤l d

′
j , which contradicts the fact that ϕ is onto Cd′ . �

We set ψ :=ϕ|Cd . By Claim 2, ψ takes values in Cd′ and is onto Cd′ . By Lemma 6.5, it remains
to see that ϕ×ϕ sends God into God′ . As od is a minimal homeomorphism, it is fixed point free and
thus God = s

(
Graph(od)

)
, and similarly with d′. By Proposition 6.1 and Lemma 6.2, Graph(od) is

contained in God
(C+

d )2

, so that ϕ×ϕ sends God into God′
(C+

d′ )
2

∩ C2
d′ by Claim 2. It remains to note

that God′
(C+

d′ )
2

is contained in God′ ∪ s
(
{(c∞, 0∞), (µ, c∞)} ∪ Graph(od′)

)
to conclude. �

In the compact case, the �ic-minimality can be seen on subgraphs.

Lemma 6.7 Let (X,G) in K. The following are equivalent:
(1) (X,G) is �ic-minimal in K,
(2) (X,G) �ic (V,E) if V is a compact subset of X and E⊆G is a graph on V with χc(V,E)≥3.

Proof. It is enough to see that (2) implies (1). So let X ′ be a 0DMC space, and G′ be a graph on
X ′ with χc(X

′, G′) ≥ 3 and (X ′, G′) �ic (X,G) with witness ϕ. We set V := ϕ[X ′] and also
E :=(ϕ×ϕ)[G′]. As X ′ is compact, so is V , and E⊆G is a graph on V . Note that ϕ is a witness for
the fact that (X ′, G′) �ic (V,E), so that χc(V,E)≥ 3. By (2), (X,G) �ic (V,E). By compactness
of X ′ again, ϕ−1 is a witness for the fact that (V,E) �ic (X ′, G′), which as desired implies that
(X,G) �ic (X ′, G′). �

34



Proof of Theorem 1.5. Fix d∈D. Note that (C+,Go) satisfies the properties (a) and (b), by Lemma
3.2.2 and Proposition 6.1. For (c), i.e., the minimality of (C+,Go), we apply Proposition 6.1, Theorem
6.4 and Lemma 6.7. It remains to apply Theorem 6.6. �

Remark. [P, Theorem 11.38] shows that the oΦ(α)’s involved in Theorem 1.5 are pairwise not flip-
conjugate, as announced in the introduction just before Theorem 1.5.

Proof of Theorem 1.6. Fix d∈D. The idea is to modify Go. Let d be a letter not in ω ∪ {c, a, a}. We
set, for l∈ω,

Hl :={(cl+1dj+1aa∞, ol,0d
j+1aa∞) | j∈ω} ∪

{(ol,idj+1ai+1a∞, ol,i+1d
j+1ai+2a∞) | j∈ω ∧ i≤2nl} ∪

{(ol,2nl+1d
j+1a2nl+2a∞, cl+1dj+1aa∞) | j∈ω}.

We then set Op :=
⋃
l≥p Hl and Gp := s(Op), so that Gp is a countable graph on the compact space

K :=
∏
j∈ω (dj ∪ {c, a, a, d}). We set K :=proj[G0]

K
, so that K is a 0DMC space and Gp is a graph

on K, (Gp)p∈ω is ⊆-decreasing and thus
(
(K,Gp)

)
p∈ω is �c and �ic-decreasing. As in the proofs

of Lemmas 3.2.1 and 3.2.2, we see that Gp has CCN three, Σ0
1 ⊕Π0

1 chromatic number two, and is
D2(Π0

1).

It remains to see that (K,Gp) is not �c-below (K,Gp+1). Towards a contradiction, suppose that
there is ϕ :K→K. The continuity of ϕ implies that Gp⊆(ϕ×ϕ)−1(Gp+1). Note that

(cp+1d∞, op,0d
∞, . . . , op,2np+1d

∞)

is a Gp-cycle of length 2np+3, and therefore has to be sent in a Gp+1-cycle of length at most 2np+3.
But such a Gp+1-cycle does not exist since

Gp :=Gp ∪ s
(
{(cl+1d∞, ol,0d

∞) | l≥p} ∪ {(ol,id∞, ol,i+1d
∞) | l≥p ∧ i≤2nl} ∪

{(ol,2nl+1d
∞, cl+1d∞) | l≥p} ∪ {(c∞, 0∞), (µ, c∞)} ∪ Graph(o)

)
.

This finishes the proof. �

7 Graphs induced by a function: general facts

Remarks. (1) In the case of finite spaces, the quasi-order � on the class of graphs induced by a partial
bijection with chromatic number at least three is linear. Indeed, such a space can be decomposed in
pairwise f -unrelated injective walks of the form {x, f(x), . . . , f l(x)}. As the chromatic number is at
least three, one of these walks gives an odd cycle. The graph induced by the bijection is �-equivalent
to its odd cycle of minimal length. As the odd cycles are �-comparable, so too are all these graphs.

(2) Note that the map A 7→⊕p∈A (2p+3, C2p+3) is an embedding of the quasi-order of inclusion on
the set of finite subsets of ω into the quasi-order �i on the class of graphs induced by a bijection on a
finite set with chromatic number at least three.

Under some relatively weak assumptions, we can characterize when the CCN of Gf is big. Note
that we extend Theorem 1.7 under these assumptions.
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Theorem 7.1 Let X be a 0DMS space of cardinality at least two, f :X→X be a homeomorphism,
and x∈X with Orbf (x)=X . The following are equivalent:
(1) (X,Gf ) has CCN at least three,

(2) {f2n(x) | n∈Z} ∩ {f2p+1(x) | p∈Z} is not empty,

(3) ∆(X) ∩
⋃
p∈ω G2p+1

f is not empty,

(4) ∆(X) ∩
⋃
p∈ω Gf

2p+1 is not empty,
(5) (N ,Gm) �c (X,Gf ).

Proof. (1)⇒ (2) Note that f sends {f2n(x) | n∈Z} onto {f2n+1(x) | n∈Z}. As f is a homeomor-
phism, f sends Ce :={f2n(x) | n∈Z} onto Co :={f2p+1(x) | p∈Z}. Note that

X=Orbf (x)=Ce ∪ Co.

If Ce is disjoint from Co, then (Ce, Co) defines a continuous coloring of (X,Gf ), contradicting (1).

(2) ⇒ (3) By (2), there is y in the intersection. Let O be an open neighborhood of y, and m,n be
integers with f2n(x), f2m+1(x)∈O. As X has cardinality at least two, f|Orbf (x) is fixed point free.
We put p := |m|+ |n|, so that f2n(x), . . . , x, . . . , f2m+1(x) is a witness for the fact that O2 meets
G2p+1
f .

(3)⇒ (4) Note that Gf ⊆Gf .

(4)⇒ (1) We apply Lemma 3.3.1.

(4)⇔ (5) We apply Lemma 3.3.4. �

Notation. The set of fixed points of a map f is very much related to the CCN of Gf . Let X be a set,
and f :X→X be a partial map. The set F1 := {x∈Domain(f) | f(x) = x} of fixed points of f is
sometimes also denoted by F f1 .

Proposition 7.2 Let X be a 0DMS space, and f :X→X be a partial continuous function. If F1 is
not an open subset of Domain(f), then χc(X,Gf )=2ℵ0 .

Proof. Let (Ci)i∈ω be a partition of X into clopen sets. As F1 is not open in Domain(f), we can find
x∈F1 and (xn)n∈ω ∈ (Domain(f)\F1)ω converging to x. Note that f(xn) is different from xn, and(
f(xn)

)
n∈ω converges to f(x) = x. Let i with x ∈ Ci. Then we may assume that xn, f(xn) ∈ Ci.

This implies that
(
xn, f(xn)

)
∈Gf ∩ C2

i . �

Corollary 7.3 Let X be a 0DMS space, and f :X→X be a partial continuous function with closed
domain.
(a) Exactly one of the following holds:

(1) F1 is an open subset of Domain(f),
(2) χc(X,Gf )=2ℵ0 .

(b) If F1 is an open subset of Domain(f)∈∆0
1(X) and f is injective, then χc(X,Gf )=0 if X=∅, 1

if F1 =Domain(f) and X 6=∅, χc(X\F1, Gf ∩ (X\F1)2) if F1 6=Domain(f).
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Proof. (a) Assume that (1) holds. Note that s
(
Graph(f|Domain(f)\F1

)
)

and ∆(X) are disjoint closed
relations on the metrizable spaceX . By [K, 22.16], there is a clopen relationC onX separating ∆(X)
from s

(
Graph(f|Domain(f)\F1

)
)
. This relation gives a countable continuous coloring of (X,Gf ) since

X is zero-dimensional and second countable. So (2) does not hold.

If F1 is not an open subset of Domain(f), then we apply Proposition 7.2.

(b) If F1 6= Domain(f), then we can find 2 ≤ n ≤ ω and a continuous coloring c : X \F1 → n of
(X\F1, Gf ∩ (X\F1)2), by (a). As f is injective, f [Domain(f)\F1] ∩ F1 =∅, so that F1 and X\F1

are f -invariant. The extension of c by 0 on F1 is a continuous coloring of (X,Gf ). Conversely, any
continuous coloring of (X,Gf ) gives a coloring of (X\F1, Gf ∩ (X\F1)2), by restriction. �

In the introduction, we announced a version of Theorem 1.2 for analytic spaces when ξ=1. Here
are the argument and some precisions. Recall that X1 := {0∞} ∪ {0n1∞ | n∈ ω}, f1 : X1→X1 is
defined by f1(0∞) := 0∞ and f1(02n+ε1∞) :=02n+1−ε1∞, and R1 :={(02n1∞, 02n+11∞) | n∈ω}.
We also define f0 :X1→X1 by f0(α) :=0∞.

Proposition 7.4 (a) (Lecomte-Zelený) Let X be a zero-dimensional Lindelöf first countable space,
and R be a relation on X . Then exactly one of the following holds:
(1) there is a countable continuous coloring of R,
(2) there is f :X1→X continuous such that R1⊆(f×f)−1(R).
In particular, (X1, Gf1) is �c-minimum in the class of graphs on a 0DMS space with uncountable
CCN.
(b) {(X1, Gf0), (X1, Gf1)} is a �ic-antichain basis for the class of graphs on a 0DMS space with
uncountable CCN.

Proof. (a) If ∆(X) ∩ R = ∅, then for each x ∈ X there is a clopen neighborhood Cx of x with
R∩C2

x=∅. As X is Lindelöf, the covering (Cx)x∈X of X can be replaced with a covering (Cn)n∈ω.
Replacing Cn with Cn\(

⋃
m<n Cm) if necessary, we may assume that the Cn’s are pairwise disjoint,

which gives a countable continuous coloring of R. If there is (x, x) ∈ R, then the fact that X is
first countable provides a sequence (xn) converging to x with (x2n, x2n+1) ∈ R. It remains to set
ϕ(0∞) := x and ϕ(0n1∞) := xn to see that (2) holds. If C is a clopen subset of X1 containing
0∞, then we can find n with 02n1∞, 02n+11∞ ∈ C, so that (02n1∞, 02n+11∞) ∈ Gf1 ∩ C2 and
(02n1∞, 0∞)∈Gf0 ∩C2. This implies that the (X1, Gfε)’s have uncountable CCN. It remains to note
that s(R1)=Gf1 to see that (1) and (2) cannot hold simultaneously.

(b) Let X be a 0DMS space, and R be a graph on X with uncountable CCN. We use the proof of
(a), which gives (xn). As x2n 6= x2n+1, we may assume, extracting a subsequence if necessary, that
the sequence

(
(x2n, x2n+1)

)
n∈ω is injective, and that (x2n)n∈ω or (x2n+1)n∈ω is injective too. By

symmetry, we may assume that (x2n)n∈ω is injective and does not take the value x. We may also
assume that (x2n+1)n∈ω is either injective and does not take the value x, or is constant with value x.
If (x2n+1)n∈ω is injective, then we may assume that {x2n | n∈ω} and {x2n+1 | n∈ω} are disjoint.
In this case, we define ϕ : X1→X by ϕ(0∞) := x, ϕ(02n1∞) :=x2n, and ϕ(02n+11∞) := x2n+1,
so that ϕ is an injective continuous homomorphism from (X1, Gf1) into (X,R). If (x2n+1)n∈ω is
constant with value x, then we define a function ψ :X1→X by ψ(0∞) :=x, and ψ(0n1∞) := x2n,
so that ψ is an injective continuous homomorphism from (X1, Gf0) into (X,R). This shows that
{(X1, Gf0), (X1, Gf1)} is a �ic-basis.
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If f : X1→ X1 is a witness for (X1, Gf1) �ic (X1, Gf0), then f sends {02n1∞, 02n+11∞} onto
some {0pn1∞, 0∞}, which contradicts the injectivity of f . If g : X1 → X1 is a witness for the
inequality (X1, Gf0) �ic (X1, Gf1), then g sends (0p1∞, 0∞) to some (02np+εp1∞, 02np+1−εp1∞),
and (np)p∈ω, (εp)p∈ω have to be constant, which contradicts the injectivity of g. This implies that
{(X1, Gf0), (X1, Gf1)} is a �ic-antichain. Note then that (X1, Gf0), (X1, Gf1) are in our class. �

Example. Recall (X1, f1) defined before Proposition 7.4. Then X1 6= ∅ is a 0DMC space, and f1

is a homeomorphism whose only fixed point is 0∞. By Proposition 7.2, χc(X1, Gf1) = 2ℵ0 . If we
restrict f1 to the open set X1 \{0∞}, then F1 becomes open in the domain of the restriction, and
χc(X1, Gf1|X1\{0∞}

) = 2ℵ0 . Indeed, if (Ci)i∈ω be a partition of X1 into clopen sets, then there is i
with 0∞∈Ci. We may assume that 02n1∞, 02n+11∞∈Ci. This implies that (02n1∞, 02n+11∞) is in
Gf1|X1\{0∞}

∩ C2
i . This shows that we cannot extend Corollary 7.3(a) when the domain of f is open.

We now turn to the study of involutions.

Proposition 7.5 Let X 6=∅ be a 0DMS space, and f:X→X be a fixed point free continuous involu-
tion. Then χc(X,Gf )=2.

Proof. Note that f is a continuous bijection with inverse f , so that it is a homeomorphism. If x∈X ,
then f(x) 6=x since f is fixed point free, which gives a clopen neighborhood N of x with f(x) /∈N .
As f is a homeomorphism, C0 :=N ∩ f−1(X \N) and C1 := f [C0] = f [N ]\N are disjoint clopen
subsets of X . In particular, C0 = f [C1] and C :=C0 ∪ C1 is a f -invariant clopen neighborhood of
x. As X has the Lindelöf property, we can cover X with countably many such f -invariant clopen
sets, say (Cn)n∈ω. In particular, ∪p<n Cn, X\(∪p<n Cn) and On :=Cn\(∪p<n Cn) are f -invariant
clopen sets with union X . If U ⊆C is a f -invariant clopen set, then we set U ε :=U ∩ Cε, so that U
is the disjoint union of U0 and U1, and U1−ε=f [U ε] for each ε∈2. We can apply this to On⊆Cn,
so that X is the disjoint union of the family of clopen sets (Oεn)n∈ω,ε∈2, and O1−ε

n = f [Oεn] for each
(n, ε) ∈ ω×2. We then define c :X → 2 by c(x) := ε if x ∈Oεn for some n, and c is a continuous
coloring of (X,Gf ). �

Proposition 7.5 implies some minimality of Gf1 .

Proposition 7.6 (X1, Gf1) is �ic-minimal, but not �c-minimal, in K.

Proof. Let V be compact subset of X1, and E⊆Gf1 be a graph on V with χc(V,E)≥3. By Lemma
6.7, it is enough to see that (X1, Gf1) �ic (V,E). As P :=proj[E]⊆V ∩ X1\{0∞}, we can find, for
each ε∈2, Sε⊆ω with P ={02n+ε1∞ | ε∈2 ∧ n∈Sε}. As E is a graph,

n∈S0 ⇔ 02n1∞∈P ⇔ 02n+11∞∈P ⇔ n∈S1,

so that S0 =S1. Thus E=Gf1|P is the graph induced by the fixed point free involution f1|P :P→P ,
which is continuous since P is discrete. As P ⊆X1 is not empty, χc(P,E) = 2 by Proposition 7.5.
This givesC∈∆0

1(P ) withE∩
(
C2∪(P\C)2

)
=∅. If 0∞ /∈V , thenC is a clopen subset of the discrete

space V , E ∩
(
C2 ∪ (V \C)2

)
=∅ and χc(V,E)≤2, which cannot be. Thus 0∞∈V . Note also that

there are infinitely many p’s with (02p1∞, 02p+11∞)∈E, otherwise (02p1∞, 02p+11∞) /∈E if p≥p0.
We then set C ′ :=(

⋃
p<p0

N02p1)∩V , so that C ′ is a clopen subset of V , E ∩
(
(C ′)2∪ (V \C ′)2)=∅,

and χc(V,E)≤ 2. This implies that (0∞, 0∞)∈EV
2

, and gives an injective sequence (pn)n∈ω with
(02pn1∞, 02pn+11∞)∈E. We then define g :X1→V by g(0∞) :=0∞ and g(02n+ε1∞) :=02pn+ε1∞,
so that g is a witness for (X1, Gf1) �ic (V,E), as desired.
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We now set (0+, 1+, 2+) = (1, 2, 0), X := {ε∞ | ε ∈ 3} ∪ {εn+1(ε+)∞ | ε ∈ 3 ∧ n ∈ ω},
and G := s({(ε2p+1(ε+)∞, (ε+)2p+2

(
(ε+)+

)∞
) | ε ∈ 3 ∧ p ∈ ω}). Note that X is a 0DMC space,

and G is a graph on X . As (ε∞, (ε+)∞) ∈ G, (0∞, 0∞) ∈ ∆(X) ∩ G3, and thus χc(X,G) ≥ 3
by Theorem 1.7. In particular, (X,G) ∈ K. The map α 7→ α(0) is a 3-continuous coloring of
(X,G), so that χc(X,G)=3. As (X1, Gf1) has uncountable CCN, (X1, Gf1) 6�c (X,G). However,
(X,G) �c (X1, Gf1), with witness ε∞ 7→0∞ and εn+1(ε+)∞ 7→0n+11∞. �

The proof of of Theorem 1.8 implies, as announced in the introduction, the following.

Theorem 7.7 There is no �ic-antichain basis for the class of graphs induced by a partial homeomor-
phism on a 0DMS (or 0DP) space with CCN at least three. In fact, we can even restrict this class to
the case where the spaces are countable Polish and the functions are fixed point free involutions with
open domain.

Proof. By Proposition 3.3.7, Pδ is countable Polish. Note that

proj[Gδ]=Pδ\({c∞} ∪ {ki0∞ | δ(k)=1 ∧ i≤2k+1})

is an open subset of Pδ. We define fδ : proj[Gδ]→proj[Gδ] by fδ(α) := the unique β∈proj[Gδ] with
(α, β) ∈Gδ, so that fδ is a fixed point free involution, and Gδ = Graph(fδ) = Gfδ . As proj[Gδ] is
discrete, fδ is continuous, and thus a homeomorphism. By Lemma 3.3.6, χc(Pδ, Gfδ) = 3 if δ has
infinitely many ones. Let (X,Gf ) in our class with (X,Gf ) �ic (P1∞ , Gf1∞ ). Theorem 1.8 provides
a family (δγ)γ∈2ω in P∞ such that (Pδγ , Gfδγ ) �ic (X,Gf ) and the (Pδγ , Gfδγ )’s are pairwise �ic-
incompatible in our class. We then apply Lemma 4.1. �

The next results will help us to prove a condition sufficient to get the minimality of some Gf ’s.

Lemma 7.8 Let X be a 0DMC space, f : X → X be a minimal homeomorphism, and C 6= ∅ be
a clopen subset of X . Then there is L > 0 such that, for each x ∈ X , we can find 0 < l < L with
f l(x)∈C, and 0<l′<L with f−l

′
(x)∈C.

Proof. This is standard. By minimality, X ⊆
⋃
m∈Z {x∈X | fm(x)∈C}. The compactness of X

gives M>0 with X⊆
⋃
−M<m<M {x∈X | fm(x)∈C}. We put L := 2M . If x∈X , then there is

−M<m<M with fm+M (x)∈C, and 0<l :=m+M<L. This is similar for l′. �

Lemma 7.8 allows us to define rC : X → L by rC(x) := min{l < L | f l(x) ∈ C}, and rC is
continuous. Similarly, we can define r′C :X→L continuous by r′C(x) :=min{l′<L | f−l′(x)∈C}.

Lemma 7.9 Let X be a 0DMC space, f :X→X be a minimal homeomorphism with the property
that χc(X,Gf )≥3, and E⊆Gf be a graph. The following are equivalent:
(1) χc(X,E)≥3,
(2) E is dense in Gf .

Proof. (1) ⇒ (2) Towards a contradiction, suppose that we can find open subsets U, V of X with
Gf ∩ (U×V ) 6=∅ and E ∩ (U×V )=∅. Pick (x, y)∈Gf ∩ (U×V ). If y=f(x), then x∈U ∩f−1(V ),
and there is a clopen neighborhood C ⊆U ∩ f−1(V ) of x with C ∩ f [C] = ∅ since f is fixed point
free. By symmetry of E, (C×f [C]) ∩ E = (f [C]×C) ∩ E = ∅. We first define s : X → ω by
s(x) :=rC(x)+r′f [C](x), so that s is continuous.
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We then define c : X → 2 by c(x) := parity
(
rC(x)

)
if x /∈ f [C], and c(x) := parity

(
s(x)

)
if

x ∈ f [C]. Note that c is continuous. It is enough to see that c is a coloring of (X,E). It is enough
to see that c

(
f(x)

)
6= c(x) if

(
x, f(x)

)
∈ E. Note that x /∈ C. If x /∈ f [C], then f(x) /∈ f [C] and

rC(x)=rC
(
f(x)

)
+1. If x∈f [C], then f(x) /∈f [C] and s(x)=rC(x), and we conclude similarly.

(2) ⇒ (1) Towards a contradiction, suppose that there is a clopen subset C of X with the property
that E ∩

(
C2 ∪ (X\C)2

)
=∅. As C is clopen and E is dense in Gf ,

Gf ∩
(
C2 ∪ (X\C)2

)
⊆E ∩

(
C2 ∪ (X\C)2

)
=∅,

which is the desired contradiction. �

Lemma 7.9 essentially implies that Gf is minimal if f is.

Lemma 7.10 Let X be a 0DMC space, f :X→X be a minimal homeomorphism such that (X,Gf )
has CCN at least three,K be a 0DMC space,G be a closed graph onK such that (K,G) �ic (X,Gf ).
Then exactly one of the following holds:
(1) (K,G) has CCN at most two,
(2) (X,Gf ) �ic (K,G).

In other words, (X,Gf ) is �ic-minimal in G2 and in the class of closed graphs on a 0DMC space
with CCN at least three.

Proof. Let V be compact subset ofX , andE⊆Gf be a compact graph on V with χc(V,E)≥3 (which
implies that χc(X,E)≥3). As in the proof of Lemma 6.7, it is enough to see that (X,Gf ) �ic (V,E)
to see that (1) or (2) holds. Let P :=proj[E], which is compact like E. The next two claims give our
result.

Claim 1. P =V =X .

Indeed, by compactness it is enough to see that P is dense inX . Towards a contradiction, suppose
that there is a clopen subset C 6= ∅ of X disjoint from P , so that rC is defined. We define c :P → 2
by c(x) :=parity

(
rC(x)

)
. Note that c is continuous. It is enough to see that c is a coloring of (P,E),

since this implies that χc(V,E)≤2 by [E, Theorem 2.1(1)]. It is enough to see that c
(
f(x)

)
6=c(x) if(

x, f(x)
)
∈E since f is fixed point free and by symmetry. The equality rC(x)=rC

(
f(x)

)
+1 gives

the result. �
Claim 2. E=Gf .

Indeed, Lemma 7.9 implies that E is dense in Gf . It remains to note that E is compact. �
Claims 1 and 2 imply that (V,E)=(X,Gf ).

For G2, assume that K is a 0DMC space, h is a homeomorphism of K, χc(K,Gh) ≥ 3, and
(K,Gh) �ic (X,Gf ). Then χc(K,Gh) ≤ χc(X,Gf ) < 2ℵ0 by Corollary 7.3. Corollary 7.3 then
implies that F h1 is an open subset of K, F h1 6=K and χc(K,Gh)=χc(K\F h1 , Gh ∩ (K\F h1 )2). Note
that K \F h1 is a 0DMC space, h|K\Fh1 is a homeomorphism of K \F h1 , Gh|K\Fh1

=Gh ∩ (K \F h1 )2,

χc(K\F h1 , Gh|K\Fh1
)≥3 and (K\F h1 , Gh|K\Fh1

) �ic (X,Gf ). Moreover, h|K\Fh1 is fixed point free,

so that Gh|K\Fh1
is closed. Note that (X,Gf ) �ic (K\F h1 , Gh|K\Fh1

) �ic (K,Gh), by the first part of

the present theorem. In other words, (X,Gf ) is �ic-minimal in G2. �

Remark. Proposition 7.6 shows that the converse of Lemma 7.10 does not hold, since 0∞ is a fixed
point of f1.
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The next result is in the style of Corollary 5.10.

Lemma 7.11 Let X,Y be 0DMC spaces of cardinality at least three, and f :X→X , g :Y →Y be
minimal homeomorphisms. Then f, g are flip-conjugate if and only if (X,Gf ) �ic (Y,Gg), with the
same witness. In particular, (X,Gf ) �ic (Y,Gg) implies that (Y,Gg) �ic (X,Gf ).

Proof. Let ϕ be a witness for the fact that (X,Gf ) �ic (Y,Gg). If x∈X , then
(
x, f(x)

)
∈Gf since

f is fixed point free, so that
(
ϕ(x), ϕ

(
f(x)

))
∈Gg. So ϕ

(
f(x)

)
=g
(
ϕ(x)

)
or ϕ(x)=g

(
ϕ
(
f(x)

))
.

We apply Lemma 5.6 to f , V :=I :=X , g, W :=Y , and ϕ. In particular, ϕ[Orbf (x)]=Orbg
(
ϕ(x)

)
.

As g is minimal, the compact set ϕ[X] is dense in Y , showing that ϕ is onto, and thus a homeomor-
phism by compactness of X .

Conversely, assume that f, g are flip-conjugate, which gives a homeomorphism ϕ :X→ Y with
ϕ◦f = g◦ϕ or ϕ◦f = g−1◦ϕ. If x∈X , then g

(
ϕ(x)

)
=ϕ

(
f(x)

)
or ϕ(x) = g

(
ϕ
(
f(x)

))
, so that(

ϕ(x), ϕ
(
f(x)

))
∈Gg. Thus ϕ is a witness for the fact that (X,Gf ) �ic (Y,Gg). �

8 Possible chromatic numbers

The main goal of this section is to prove Theorem 1.10. The next result is essentially [Kra-St,
Corollary 2.3].

Theorem 8.1 (Krawczyk-Steprans) Let X 6=∅ be a 0DMC space, and f :X→X be a fixed point free
continuous map. Then χc(X,Gf )∈{2, 3}.

Proof. [Kra-St, Corollary 2.3] shows that χc(X,Gf )≤3. As X is not empty, χc(X,Gf ) 6=0. As f is
fixed point free, χc(X,Gf ) 6=1. �

Corollary 8.2 LetX be a 0DMC space, and f :X→X be a continuous injection. Then χc(X,Gf ) is
in {0, 1, 2, 3, 2ℵ0}, and all these values are possible with homeomorphisms of a countable metrizable
compact space.

Proof. If F1 is not an open subset of X , then χc(X,Gf ) = 2ℵ0 by Proposition 7.2. If F1 is an open
subset of X , then we may assume that χc(X,Gf ) = χc(X \F1, Gf ∩ (X \F1)2) by Corollary 7.3.
In other words, we may assume that X is not empty and f is fixed point free. It remains to apply
Theorem 8.1 for the possible values.

IfX=∅, then χc(X,Gf )=0. IfX=1 and f= Id, then χc(X,Gf )=1. IfX=2 and f(ε) :=1−ε,
then c : 2→ 2 defined by c(ε) := ε is a continuous coloring of (X,Gf ), so that χc(X,Gf ) = 2. If
X=3 and f(ε) :=ε+ where (0+, 1+, 2+)=(1, 2, 0), then c :3→3 defined by c(ε) :=ε is a continuous
coloring of (X,Gf ), so that χc(X,Gf ) = 3 since (0, 1), (1, 2) and (2, 0) are in Gf . We conclude
with the example just after Corollary 7.3. �

We will now extend Theorem 8.1 to some partial injections. In order to do that, we prove a fixed
point free version of the Ryll-Nardzewski theorem (see [Kn-R]). We need to emphasize one point in
the [Kn-R] proof, and give the full proof for completeness.

41



Theorem 8.3 Let X be a Cantor space, P,Q be closed nowhere dense subsets of X , and h :P→Q
be a fixed point free homeomorphism. Then there is a fixed point free homeomorphism h∗ :X→X
extending h.

Proof. We may assume that X = 2ω and, considering εα 7→ (1−ε)α, that P,Q are not empty. Let
S := {s ∈ 2<ω | Ns ∩ P = ∅}, so that 2ω \P =

⋃
s∈S Ns since P is closed. As P is not empty

and nowhere dense, P is not clopen and S is infinite. We enumerate S in the increasing order of the
lengths of the finite binary sequences, which gives {si | i ∈ ω}. Note that we may assume that the
Nsi’s are pairwise disjoint, so that the length of si goes to infinity.

Claim 1. (a) The sequence
(
d(Nsi , P )

)
i∈ω converges to zero.

(b) Let p∈P and l∈ω. Then there is one (and thus infinitely many) i∈ω with 2−l≥d(Nsi , p).

Indeed, we argue by contradiction for (a), which gives l∈ω such that, for each j∈ω, there is i≥j
such that, for each α ∈ 2ω and each γ ∈ P , γ|l 6⊆ siα. This provides a strictly increasing sequence
(ik)k∈ω such that, for each k ∈ ω and each γ ∈ P , γ|l 6⊆ sik0∞. Extracting a further subsequence if
necessary, we may assume that (sik0∞)k∈ω converges to some δ∈2ω, by compactness. As the length
of si goes to infinity, δ /∈P . This gives j with δ∈Nsj . Thus Nsj meets infinitely many Nsik

’s, which
is the desired contradiction.

For (b), towards a contradiction, suppose that we can find p∈P and l∈ω. As 2ω\P =
⋃
i∈ω Nsi

and P is nowhere dense, we can find i with si0∞∈Np|l. �

Similarly, we can find {tj | j ∈ω}⊆ 2<ω such that 2ω \Q is the disjoint union of the Ntj ’s, the
length of tj goes to infinity, the sequence

(
d(Ntj , Q)

)
j∈ω converges to zero, and, for each q∈Q and

each l∈ω, there is j∈ω with 2−l≥d(Ntj , q). We fix, for each i, pi∈P with d(Nsi , pi)=d(Nsi , P ),
as well as, for each j, qj∈Q with d(Ntj , qj)=d(Ntj , Q). Note that, by Claim 1,

(I) there is f :ω→ω injective such that d(Nsi , pi)≥d
(
Ntf(i)

, h(pi)
)
,

(II) there is g :ω→ω injective such that d(Ntj , qj)≥d
(
Nsg(j) , h

−1(qj)
)
.

[Ba, Theorem 1] provides partitions (I ′, I ′′), (J ′, J ′′) of ω with f [I ′]=J ′ and g[J ′′]=I ′′.

Claim 2. Let s, t∈2<ω. Then there is a fixed point free homeomorphism φ :Ns→Nt.

Indeed, if s, t are incompatible, we just set φ(sα) := tα. If s⊆ t, then we set

φ(sα) := t
(
1−α(|t|−|s|)

)
α(0) . . . α(|t|−|s|−1)α(|t|−|s|+1)α(|t|−|s|+2) . . .

If t$s, then we set φ(sα) := tα(1) . . . α(|s|−|t|)
(
1−α(0)

)
α(|s|−|t|+1)α(|s|−|t|+2) . . . �

If i′ ∈ I ′, Claim 2 provides a fixed point free homeomorphism ϕi′ :Nsi′ →Ntf(i′) . The sum of
these maps provides a fixed point free homeomorphism ϕ :U ′ :=

⋃
i′∈I′ Nsi′ → V ′ :=

⋃
j′∈J ′ Ntj′ ,

since f is injective. Similarly, if j′′ ∈ J ′′, Claim 2 provides a fixed point free homeomorphism
ψj′′ :Ntj′′→Nsg(j′′) . This gives a fixed point free homeomorphism

ψ :V ′′ :=
⋃

j′′∈J ′′
Ntj′′→U ′′ :=

⋃
i′′∈I′′

Nsi′′ ,

by injectivity of g.
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As 2ω \P is the sum of U ′, U ′′ and 2ω \Q is the sum of V ′, V ′′, the function k : 2ω \P → 2ω \Q
defined by

k(α) :=

{
ϕ(α) if α∈U ′
ψ−1(α) if α∈U ′′

is a fixed point free homeomorphism. It remains to prove that the bijection h∗ :2ω→2ω defined by

h∗(α) :=

{
h(α) if α∈P
k(α) if α /∈P

is continuous at each point of P . So let p ∈ P , and (pn)n∈ω ∈ (2ω \P )ω converging to p. There
is in with pn ∈ Nsin , and the set {in | n ∈ ω} is infinite. Note that d(Nsin , pin) tends to 0. As
the length of si goes to infinity,

(
d(pn, pin)

)
n∈ω converges to zero, as well as

(
d(p, pin)

)
n∈ω. Thus

(pin)n∈ω converges to p, and
(
h(pin)

)
n∈ω converges to h(p). Let (i′n) be the sequence of in’s in I ′.

As d(Nsi′n
, pi′n)≥ d

(
Ntf(i′n)

, h(pi′n)
)
,
(
d
(
Ntf(i′n)

, h(pi′n)
))
n

tends to zero. Call p′n the fixed element

of Nsi′n
, as in the notation pn∈Nsin . Note that the point ϕ(p′n)=ϕi′n(p′n) is in Ntf(i′n)

. As the length

of tj goes to infinity,
(
d
(
ϕ(p′n), h(pi′n)

))
n

converges to zero, as well as
(
d
(
ϕ(p′n), h(p)

))
n

. So we

proved that
(
d
(
ϕ(p′n), h(p)

))
n

converges to zero if p′n∈Nsi′n
and

(
d(p′n, p)

)
n∈ω converges to zero,

i.e.,
(
d
(
h∗(p′n), h∗(p)

))
n

converges to zero if
(
d(p′n, p)

)
n∈ω does. Similarly,

(
d
(
ψ(q′′n), h−1(q)

))
n

converges to zero if q∈Q, q′′n∈Ntj′′n
and

(
d(q′′n, q)

)
n∈ω converges to zero. Consider now the sequence

(i′′n) be the sequence of in’s in I ′′. Let j′′n ∈ J ′′ with g(j′′n) = i′′n. Note that there is q′′n ∈Ntj′′n
with

p′′n =ψ(q′′n) =ψj′′n(q′′n). Let F := {qj′′n | n}. We will check that F \F ⊆{h(p)}. Let q ∈F \F . As-
sume, for the simplicity of the notation, that (qj′′n)n converges to q. As

(
d(Ntj , Q)

)
j∈ω converges to

zero,
(
d(Ntj′′n

, qj′′n)
)
n

converges to zero. As the length of tj goes to infinity,
(
d(q′′n, qj′′n)

)
n

converges

to zero, as well as
(
d(q′′n, q)

)
n

,
(
d
(
ψ(q′′n), h−1(q)

))
n

and
(
d
(
p′′n, h

−1(q)
))

n
. Thus p=h−1(q),

as desired. Thus
(
d(q′′n, h(p)

)
n

converges to zero. So
(
d
(
ψ−1(p′′n), h(p)

))
n

converges to zero if(
d(p′′n, p)

)
n

does, and
(
d
(
h∗(p′′n), h∗(p)

))
n

converges to zero if
(
d(p′′n, p)

)
n

does. �

Corollary 8.4 Let X be a 0DMC space, and f : X → X be a fixed point free partial continuous
injection whose domain is not empty and closed. Then χc(X,Gf )∈{2, 3}.

Proof. By [K, 7.8], we may assume that X ⊆ 2ω. Note that the map I : 2ω → 2ω defined by
I(α) :=(0, α(0), 0, α(1), . . .) is a homeomorphism onto its nowhere dense range. If moreover we
define g : I[Domain(f)]→ I[Range(f)] by g(y) := I

(
f
(
I−1(y)

))
, then g is a fixed point free partial

continuous injection whose domain is not empty and closed, (X,Gf ) �c
(
I[X], Gg

)
with witness I ,

and thus 2≤χc(X,Gf )≤χc
(
I[X], Gg

)
. So we may assume that X is closed nowhere dense in 2ω,

as well as Domain(f) and Range(f). By compactness, f is a fixed point free homeomorphism from
Domain(f) onto Range(f). Theorem 8.3 provides a fixed point free homeomorphism f∗ : 2ω→ 2ω

extending f . By Theorem 8.1, χc(2ω, Gf∗)∈{2, 3}. Thus χc(X,Gf )∈{2, 3}. �

Remark. The conclusion of this corollary does not hold if the domain of f is open, by the example
after Corollary 7.3.
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Corollary 8.5 Let X be a 0DMC space, and f :X→X be a partial continuous injection with closed
domain. Then χc(X,Gf )∈{0, 1, 2, 3, 2ℵ0}, and all these values are possible with homeomorphisms
of a countable metrizable compact space.

Proof. If F1 is not an open subset of Domain(f), then χc(X,Gf ) = 2ℵ0 by Proposition 7.2. If F1 is
an open subset of Domain(f), then it is a clopen subset of Domain(f). This gives an open subset
O of X with F1 = O ∩ Domain(f). Note that F1 and X \O are disjoint closed subsets of the
zero-dimensional metrizable space X , which gives a clopen subset C ′ of X with F1 ⊆ C ′ ⊆ O, so
that F1 =C ′ ∩ Domain(f). Note then that f [F1] = F1 and f [Domain(f)\F1] are disjoint compact
subsets of X , which gives a clopen subset C ′′ of X with F1 ⊆ C ′′ ⊆ X \f [Domain(f)\F1]. We
set C := C ′ ∩ C ′′, so that C is also a clopen subset of X with F1 = C ∩ Domain(f). Note that
F :=(X\C)∩f−1(X\C) is a clopen subset of Domain(f), and thus a closed subset ofX . Moreover,
Gf|F =Gf ∩ (X \C)2. Note that X \C is a 0DMC space, and f|F :X \C→X \C is a fixed point
free partial continuous injection with closed domain. Corollary 8.4 provides a continuous coloring
c′ :X\C→3 of (X\C,Gf ∩ (X\C)2). We extend c′ by 0 on C, which defines c :X→3 continuous.
If f(x) 6=x is defined, then x∈Domain(f)\F1⊆X\C. If f(x)∈F1, then f2(x)=f(x), and f(x)=x
by injectivity of f , which is absurd, proving that f(x) /∈F1. If f(x)∈Domain(f), then f(x)∈X\C
and c(x) 6=c

(
f(x)

)
since c′ :X\C→3 is a coloring of (X\C,Gf ∩ (X\C)2). If f(x) /∈Domain(f),

then either f(x)∈X\C and c(x) 6=c
(
f(x)

)
again, or f(x)∈C⊆C ′′⊆X\f [Domain(f)\F1], which

is absurd. So c is a coloring of (X,Gf ).

We then apply Corollary 8.2. �

Proof of Theorem 1.10. The case (b) of a closed domain comes from Corollary 8.5. In fact, if G is
an arbitrary graph on X , two cases can happen. Either ∆(X) meets G in (x, x), in which case, for
any countable partition (Ci)i∈ω of X into clopen sets, there is i with x∈Ci, and G meets C2

i , so that
χc(X,G) = 2ℵ0 . Or ∆(X) does not meet G, in which case the compactness of X provides a finite
continuous coloring of G. So χc(X,G) cannot be ℵ0. For the values 0, 1, 2ℵ0 in the open case (a),
we use the proof of Corollary 8.2.

So let 1 ≤ n < ω. We set Kn := {p∞ | p ≤ n} ∪ {pj+1m∞ | p 6= m ≤ n ∧ j ∈ ω} and
Domain(fn) :=Kn\{p∞ | p≤n}, so that Domain(fn) is an open subset of the countable metrizable
compact space Kn. We set (0+, 1+, . . . , n+) :=(1, 2, . . . , n, 0) and, for p≤n and r<n, p+r+1

:=p+

if r = 0, p+r+1
:= (p+r)+ if r > 0. If α ∈ Domain(fn), then we can find p 6= m ≤ n, q ∈ ω, and

r < n with α = pnq+r+1m∞. We then set fn(α) := (p+r+1
)nq+r+1(m+r+1

)∞. Note that fn takes
values in Domain(fn), is continuous, and fn+1

n = Id. In particular, fn is a bijection and f−1
n = fnn is

continuous, so that fn is a homeomorphism. The map α 7→α(0) is a continuous (n+1)-coloring of
(Kn, Gfn) (in fact, fn is fixed point free). If c :Kn→n is continuous, then we can find p<l≤n with
c(p∞) = c(l∞) =: i. This gives q ∈ ω with Npq ∪ Nlq ⊆ c−1({i}). Let r < n with p+r+1

= l. Then(
pnq+r+1(p+1)∞, (p+r+1

)nq+r+1
(
(p+1)+r+1)∞)∈Gfn ∩ (c−1({i})

)2, so that the function c is not
a coloring of (Kn, Gfn). Thus χc(Kn, Gfn)=n+1.

We then set X :=⊕n≥1 Kn, Domain(f) :=⊕n≥1 Domain(fn), and f(n, α) :=
(
n, fn(α)

)
. Then

X is a countable Polish space X , Domain(f) is an open subset of X , and f is a fixed point free
partial homeomorphism from Domain(f) onto it. As (Kn, Gfn) �c (X,Gf ), χc(X,Gf )≥ℵ0. The
map (n, α) 7→α(0) is an ℵ0-coloring of (X,Gf ), so that χc(X,Gf )=ℵ0. �
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In the case of spaces which are not compact, the first space to look at is ω.

Corollary 8.6 Let f :ω→ω be a partial (continuous) injection. Then χc(ω,Gf )∈{1, 2, 3}, and all
these values are possible.

Proof. Let n∈ ω. If there is p∈ ω with fp(n) = n, we take it minimal, in which case the orbit of n
is {f i(n) | 0≤ i < p}. If p is odd, then we set c

(
f i(n)

)
:= 0 if i < p−1 is even, c

(
f i(n)

)
:= 1 if

i < p is odd, c
(
fp−1(n)

)
:= 2, so that c is a coloring of Gf on the orbit. If p is even, then we set

c
(
f i(n)

)
:= 0 if i<p is even, c

(
f i(n)

)
:= 1 if i<p is odd, so that c is a coloring of Gf on the orbit.

If there is no p ∈ ω with fp(n) = n, then we can find ordinals ξ, η ≤ ω such that the orbit of n is
{f i(n) | −ξ<i<η}. We set c

(
f i(n)

)
:=0 if i is even, c

(
f i(n)

)
:=1 if i is odd, so that c is a coloring

of Gf on the orbit. We defined a continuous coloring c : ω→ 3 of (ω,Gf ) since ω is discrete. So
χc(X,Gf )≤3, and χc(X,Gf ) 6=0 since ω is not empty.

If f= Id, then χc(X,Gf )=1. If f(2n+ε) :=2n+(1−ε), then χc(X,Gf )=2 by Proposition 7.5.
If f(3n+ε) := 3n+ε+, where (0+, 1+, 2+) = (1, 2, 0), then c :ω→ 3 defined by c(3n+ε) := ε is a
continuous coloring of (X,Gf ), so that χc(X,Gf )=3 since (0, 1), (1, 2), (2, 0)∈Gf . �

The next natural space to look at is the Baire space ωω.

9 Graphs induced by a function and odometers

We now study graphs induced by a homeomorphism of an uncountable 0DMC space.

Remark. We set, for d ∈ D, Xo := proj[Go]
Kd , so that Xo is a 0DMC space. This space is

Xo=proj[Go] ∪ {c∞} ∪ C, so that proj[Go] = Xo \ ({c∞} ∪ C) is a countable open subset of Xo.
We define fo : proj[Go]→ proj[Go] by fo(α) := the unique β ∈ proj[Go] with (α, β)∈Go, so that fo
is a fixed point free involution, and Go= Graph(fo)=Gfo . As proj[Go] is discrete, fo is continuous,
and thus a homeomorphism. By Proposition 6.1, χc(Xo, Gfo)=3.

The proof of Theorem 1.5 provides a �c-antichain made up of �ic-minimal graphs in the class
of graphs induced by a partial fixed point free continuous involution with countable open domain
on a 0DMC space with CCN at least three. In particular, any �ic-basis for this class must have size
continuum, as announced in the introduction.

We now turn to the proof of Theorem 1.13, i.e., we study the Go’s instead of the Go’s.

Notation. We set O :={d∈C | ∀j∈ω dj is odd}.

Proposition 9.1 Let d=(dj)j∈ω∈C. Then χc(C, Go)=3 if d∈O, χc(C, Go)=2 otherwise.

Proof. The key remark is that oπj<l dj (0∞)∈N0l for each l∈ω. Assume that there is j0∈ω such that
dj0 is even. We define c : C → 2 by c(α) := parity(i) if i < πj≤j0 dj and oi(0j0+1)⊆ α. Then c is
continuous, and a coloring of (C, Go) by the key remark and the fact that πj≤j0 dj is even. Conversely,
assume that there is a coloring c′ :C→2 of (C, Go). Let ε :=c′(0∞), and also C :=(c′)−1({ε}). As C
is a clopen subset of C, there is l0∈ω with N0l0 ⊆C. An induction shows that oi(0∞)∈C if i is even,
oi(0∞) /∈C if i is odd since c′ is a coloring of (C, Go). The key remark shows that πj<l dj is even if
l≥ l0. This gives j ∈ω such that dj is even. This shows that χc(C, Go)≥3 if d∈O. Let d∈O. We
define c′′ :C→3 by c′′(α) :=parity

(
α(0)

)
if α(0)<d0−1 and c′′(α) :=2 if α(0)=d0−1. Then c′′ is

continuous, and a coloring of (C, Go). �
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Proposition 9.1 implies that we can apply Lemma 7.10 to (X,Gf ) = (C, Go) if d= (dj)j∈ω ∈O.
It is also important to assume that (X,Gf ) has CCN at least three in Lemma 7.10. Indeed, if d∈C\O,
then Cd is a 0DMC space, od is a minimal homeomorphism with χc(Cd, God)≥2 by Proposition 9.1,
and the strict inequality (2, Gε 7→1−ε) ≺ic (Cd, God) holds.

A consequence of Lemma 7.11 is the existence, announced in the introduction, of �ic-basis in the
case of equicontinuity.

Definition 9.2 We say that a dynamical system (X, f), where a compatible metric d on X is fixed, is
equicontinuous if ∀x∈X ∀ε>0 ∃δ>0 ∀y∈Bd(x, δ) ∀n∈ω d

(
fn(x), fn(y)

)
<ε.

This means that the family (fn)n∈ω is equicontinuous. For instance, if d∈(ω\2)ω, then (C, o) is
equicontinuous (see [Ku, 4.1.2]). We set

Ge
2 :={(X,Gf )∈G2 | (X, f) is equicontinuous ∧ ∃x∈X Orb+

f (x) is dense infinite}.

Proposition 9.3 (a) {(C, Go) | d∈(ω\2)ω ∩ O} is a �ic-basis for Ge
2.

(b) Under the axiom of choice, there is a �ic-antichain basis for Ge
2.

Proof. (a) Let (X,Gf )∈Ge
2. [Ku, Theorem 2.9, Corollary 2.34, and Section 4.1 (in particular The-

orem 4.4)] provide d ∈ C such that (C, o) is conjugate to (X, f). This gives a homeomorphism
ϕ :C→X with ϕ◦o=f◦ϕ. If β=o(α), then ϕ(β)=f

(
ϕ(α)

)
, so that (C, Go) �ic (X,Gf ). Similarly,

(X,Gf ) �ic (C, Go), so that χc(C, Go)≥ χc(X,Gf )≥ 3 since (X,Gf ) ∈G2. Proposition 9.1 then
implies that d∈O.

(b) Lemma 7.11 implies that �ic is an equivalence relation on {(C, Go) | d ∈ (ω\2)ω ∩ O}. Using
the axiom of choice, we can pick an element in each equivalence class, which provides the desired
�ic-antichain basis. �

We now get a �c-antichain in the style of Theorem 6.6.

Theorem 9.4 There is a map Φ:2ω→O such that (CΦ(α), GoΦ(α)
) 6�c (CΦ(β), GoΦ(β)

) if α 6=β.

Proof. Let (pn)n∈ω be the sequence of prime numbers. We define, for each α ∈ 2ω, Sα ⊆ ω by
Sα := {pα(0)+1

0 . . . p
α(n)+1
n | n∈ω}. Note that Sα is infinite, and Sα ∩ Sβ is finite if α 6= β. In this

proof, we consider (dα)j =3 if j /∈Sα, (dα)j =pj+1 if j∈Sα, so that Φ(α) :=dα∈O is unbounded,
the (dα)j’s are prime, and (dβ)l is not in {(dα)j | j∈ω} if α 6=β, (dβ)l 6=3 and l is large enough.

If (CΦ(α), GoΦ(α)
) �c (CΦ(β), GoΦ(β)

) with witness ϕ, then we set V :=ϕ[CΦ(α)] and

E :=(ϕ×ϕ)[GoΦ(α)
],

so that V is a compact subset of CΦ(β) and E⊆GoΦ(β)
is a compact graph on V with χc(V,E)≥3, by

Proposition 9.1. Claim 1 in the proof of Lemma 7.10 shows that V =CΦ(β), so that ϕ is onto, which
contradicts Lemma 6.5. �

Remark. By Lemma 7.11, the oΦ(α)’s involved in Theorem 9.4 are pairwise not flip-conjugate.

Proof of Theorem 1.13. Theorem 9.4 provides a map Φ : 2ω→O. We now can set Cα := CΦ(α) and
fα :=oΦ(α), and we are done by Proposition 9.1 and Lemma 7.10. �
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We now turn to the version of Theorem 1.16(b). In fact, we prove something stronger since it is
possible to consider always the same space, with restrictions of the graph induced by a fixed odometer
to different countable dense subsets.

Notation. Fix d := 3∞, so that d ∈ O and χc(3ω, Go) = 3, by Proposition 9.1. We set, for l ∈ ω,
il := 3l+2, so that 0l+2⊆oil(0∞). We set, for A⊆ω infinite, SA :={0} ∪ {il+i | l∈A ∧ i<3l}, so
that SA⊆ω is infinite and contains arbitrarily large intervals appearing in the definition of Go.

Lemma 9.5 The map A 7→SA is injective. Moreover, A⊆B is equivalent to SA⊆SB .

Proof. This comes from the fact that il+3l−1<il+1 for each l∈ω. �

We also set, for S⊆ω, DS :={oi(0∞) | i∈S}.

Lemma 9.6 The graphs (3ω, Go|DSA
) are countable and have CCN three, for each A⊆ω infinite.

Proof. Fix A ⊆ ω infinite. Let us prove that DSA is dense in 3ω. Let t ∈ 3<ω, and i < 3|t| with
t⊆ oi(0∞). We choose l′ > |t| with l′ ∈A. Then il′+i∈ SA and t⊆ oil′+i(0∞)∈DSA . It remains
to prove that χc(3ω, Go|D)≥ 3 if D is dense in 3ω. Towards a contradiction, suppose that there is a
clopen subset C of 3ω with Go|D ∩

(
C2 ∪ (3ω \C)2

)
= ∅. As χc(3ω, Go) = 3, we may assume that

Go∩C2 6=∅, which implies thatC∩o−1(C) is not empty. The density ofD gives α∈D∩C∩o−1(C).
Then

(
α, o(α)

)
∈Go|D ∩ C2 since o is fixed point free, which is the desired contradiction. �

One can prove that if A,B ⊆ ω are infinite, then (3ω, Go|DSA
)�ic (3ω, Go|DSB

) is equivalent to
A⊆B. But we will prove a better result.

Lemma 9.7 We can find a sequence (Sq)q∈ω of pairwise disjoint infinite subsets of ω such that, for
any l∈ω, p 6=q, 3l<r∈Sp and s∈Sq, |r−s|>l.

Proof. Fix a bijection b : ω2→ ω, for instance b(q, j) := (q+j)(q+j+1)
2 +j. We set rqj := 2b(q,j) and

Sq := {rqj | j ∈ω}. Then (Sq)q∈ω is a sequence of pairwise disjoint infinite subsets of ω. Fix l∈ω,
p 6=q, and assume that r=rpi ∈Sp and s=rqj ∈Sq. Note that

r−s=2b(p,i)−2b(q,j) =


2b(p,i)(1−2b(q,j)−b(p,i)) if b(p, i)>b(q, j),

2b(q,j)(2b(p,i)−b(q,j)−1) if b(p, i)<b(q, j).

The first term is at least 2b(p,i)−1, and is bigger than l if r> 2l. If 2b(q,j)−1>l, then the second term
is smaller than −l and we are done. If 2b(q,j)−1≤ l, then the second term is at least 2b(p,i)−2l, and is
bigger than l if r>3l. �

Proof of Theorem 1.16(b). Let ψ : ω→ 3<ω be the bijection defined by the length and o: ∅ for the
length 0, 0, 1, 2 for the length 1, 02, 10, 20, 01, 12, 21, 02, 12, 22 for the length 2, . . . Note that
|ψ(k)| ≤ k. Recall the sets Sq := {rqj | j ∈ ω} given by Lemma 9.7. If s= ψ(k) ∈ 3<ω, then there

is i′k < 3k with s⊆ oi′k(0∞), and thus s⊆ o
i
r0
k

+i′k(0∞). Recall that DS :={oi(0∞) | i∈S} if S⊆ω,
so that DS is countable, and Go|DS is a countable graph on 3ω. We proved that DS is dense in 3ω

if S contains {ir0
k

+i′k | k ∈ ω}. In this case, Go|DS is dense in Go, and thus χc(3ω, Go|DS ) = 3 by
Proposition 9.1 and Lemma 7.9. We set, for A⊆ω, SA :={ir0

k
+i′k | k∈ω}∪ {irn+1

k
| n∈A∧ k∈ω},

so that χc(3ω, Go|DSA
)=3 and (3ω, Go|DSA

) �ic (3ω, Go|DSB
) if A⊆B.
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Assume now that n ∈ A\B and, towards a contradiction, that (3ω, Go|DSA
) �c (3ω, Go|DSB

)

with witness ϕ. If α ∈ DSA , then
(
α, o(α)

)
∈ Go|DSA , so that

(
ϕ(α), ϕ

(
o(α)

))
∈ Go|DSB . Thus

ϕ
(
o(α)

)
=o±1

(
ϕ(α)

)
. As the set {α∈3ω | ϕ

(
o(α)

)
=o±1

(
ϕ(α)

)
} is closed and contains the dense

setDSA , ϕ
(
o(α)

)
=o±1

(
ϕ(α)

)
holds for each α∈3ω. In particular, ϕ[{oi(0∞) | i∈ω}]⊆Orbo(0∞).

As ϕ is uniformly continuous, there is l∈ω such that ϕ(α)|1 =ϕ(β)|1 if α|l=β|l. As we work
with the odometer on 3ω, o

(
ϕ(α)

)
|1 6= o−1

(
ϕ(α)

)
|1, and thus ϕ

(
o(α)

)
= o
(
ϕ(α)

)
is equivalent to

ϕ
(
o(α)

)
|1=o

(
ϕ(α)

)
|1. The previous discussion allows us to define, for each natural number r≤3l,

f(r)∈Z with ϕ
(
or(0∞)

)
=of(r)(0∞). Note that f(r+1)=f(r)±1 if r<3l, so that

f(0)−3l<f(r)<f(0)+3l.

We set d :=Card({r<3l | f(r+1)=f(r)+1})−Card({r<3l | f(r+1)=f(r)−1}), so that d∈Z\{0}
and −3l≤d≤3l. Note that any natural number i has a unique decomposition 3lq+r, where q∈ω and
r<3l. The previous discussion shows that ϕ

(
oi(0∞)

)
= odq+f(r)(0∞). We apply this to irn+1

k
∈SA,

where k is large enough to ensure that rn+1
k +2≥ l, so that ϕ

(
o
i
rn+1
k (0∞)

)
=od3

rn+1
k

+2−l
+f(0)(0∞).

The previous discussion shows the existence of i∈SB , say irnkjk
+i′jk , and ε∈2 with the property that

d3r
n+1
k +2−l+f(0)= i+ε. In particular, taking k large enough, we see that d≥1. Moreover,

d

3l
+

f(0)

3r
n+1
k +2

=3
r
nk
jk
−rn+1

k +
i′jk + ε

3r
n+1
k +2

,

showing that rnkjk ≤r
n+1
k if k is large enough. Similarly, d3

rn+1
k −rnkjk −l+ f(0)

3
r
nk
jk

+2
=1+

i′jk
+ε

3
r
nk
jk

+2
, showing

that rn+1
k ≤ rnkjk + l if k is large enough. This shows that 0≤ rn+1

k −rnkjk ≤ l. As i ∈ SB , nk = 0 or
nk−1∈B, showing that n+1 6=nk since n /∈B. It remains to apply Lemma 9.7 to p :=n+1, q :=nk,
r :=rn+1

k with k large enough so that rn+1
k >3l, and s :=rnkjk to get the desired contradiction. So we

proved that (3ω, Go|DSA
) 6�c (3ω, Go|DSB

) if A 6⊆B.

It remains to check that the map A 7→Go|DSA
is injective. First, the map A 7→SA is injective by

Lemma 9.5. Then the map S 7→ DS from P(ω) ≡ 2ω into 2Orbo(0∞) is injective. Finally, the map
D 7→Go|D from 2Orbo(0∞) into 2Orbo(0∞)2

is injective by minimality of o. �

Proof of Theorem 1.9. Let o be the odometer on 3ω, and recall Sω defined before Lemma 9.5. We set
G :=Go|DSω

. By Lemma 9.6, the graph (3ω,G) is countable and has CCN three, and is therefore in K.

Let (K,G) in K satisfying (K,G) �ic (3ω,G), with witness ϕ. We set V :=ϕ[K] andE :=(ϕ×ϕ)[G],
so that V is a compact subset of 3ω and E ⊆ G is a graph on V . Also (K,G) �ic (V,E) with
witness ϕ, so that χc(V,E) = 3. Claim 1 in the proof of Lemma 7.10 shows that V = 3ω. Note
that (3ω, E) �ic (K,G) with witness ϕ−1. So it is enough to find a �ic-antichain

(
(3ω, Gα)

)
α∈2ω

of graphs with CCN three and �ic-below (3ω, E), by Lemma 4.1. We first inductively construct a
sequence (αn)n∈ω of points of DSω satisfying the following:

(1) ∀ε∈2, Eε :=
⊔
p∈ω

{(
α2p+ε, o(α2p+ε)

)
,
(
o(α2p+ε), α2p+ε

)}
is dense in E,

(2) E0 ∩ E1 =∅,
(3) αn=oiln+i′n(0∞),
(4) (ln)n∈ω is injective.
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Lemma 7.9 implies that E is dense in Go. As o is a homeomorphism of the perfect (= without
isolated point) space 3ω 6= ∅, Go, E 6= ∅ are also perfect. Let (Bq)q∈ω be a basis for the topol-
ogy of E made up of sets which are not empty. We first choose (β0, γ0) ∈ B0. As E ⊆ Go,
either γ0 = o(β0), or β0 = o(γ0). The point α0 is β0 in the first case, γ0 in the second one, so
that

{(
α0, o(α0)

)
,
(
o(α0), α0

)}
⊆ E since E is symmetric, and α0 ∈ DSω since o is minimal. As

B0 6=∅ is perfect, we can then choose (β1, γ1)∈B0\
{(
α0, o(α0)

)
,
(
o(α0), α0

)}
. Here again, either

γ1 =o(β1), or β1 =o(γ1). The point α1 is β1 in the first case, γ1 in the second one, so that{(
α1, o(α1)

)
,
(
o(α1), α1

)}
⊆E\

{(
α0, o(α0)

)
,
(
o(α0), α0

)}
and α1∈DSω . It remains to iterate this construction in the other Bq’s. At this point, we only ensured
(1) and (2). As i<3l in the definition of Sω, we can also ensure (3) and (4).

We ensured that the graph E0 is dense in Go, as well as any E0 ∪D if D⊆E1 is a graph. Lemma
7.9 implies that χc(3ω, E0 ∪D)=3. Let (pn)n∈ω be the sequence of prime numbers. We define, for
each α∈2ω, Sα⊆ω by Sα :={pα(0)+1

0 . . . p
α(n)+1
n | n∈ω}. Note that Sα is infinite, and Sα ∩ Sβ is

finite if α 6=β. We then set Dα :=
⋃
p∈Sα

{(
α2p+1, o(α2p+1)

)
,
(
o(α2p+1), α2p+1

)}
, so that Dα⊆E1

is a graph. We put Gα :=E0 ∪Dα, so that Gα is a graph with CCN three and �ic-below (3ω, E).

It remains to see that
(
(3ω, Gα)

)
α∈2ω

is a �ic-antichain. So let α 6=β∈2ω, and assume, towards a
contradiction, that (3ω, Gα) �ic (3ω, Gβ) with witness ψ. We set

D0 :={α2k | k∈ω} ∪ {α2k+1 | k∈Sα}.

Claim. D0 is dense in 3ω.

Indeed, let ∅ 6=s∈3<ω. Note that Go meets Ns×No(s). As E0 is dense in Go,

Gα=Go|D0
=Graph(o|D0

) ∪ Graph(o|D0
)−1

also meets this clopen set. As o is the odometer on 3ω, Graph(o|D0
) meets this clopen set, and D0

meets Ns. �

If x∈D0, then
(
x, o(x)

)
∈Gα, so that

(
ψ(x), ψ

(
o(x)

))
∈Gβ , and either ψ

(
o(x)

)
=o
(
ψ(x)

)
, or

ψ
(
o(x)

)
=o−1

(
ψ(x)

)
. This leads to define P :={x∈3ω | ψ

(
o(x)

)
=o
(
ψ(x)

)
} and

M :={x∈3ω | ψ
(
o(x)

)
=o−1

(
ψ(x)

)
}.

Note that P,M are closed, and disjoint by minimality of o. Moreover,D0⊆P∪M , so that 3ω=P∪M
by the claim. If y∈P , then o(y)∈P by injectivity of ψ and minimality of o, and similarly with M .
In particular, the dense set {oi(0∞) | i∈ω} is contained in either P , or M . Thus P =3ω or M =3ω,
which means that ψ◦o=o◦ψ or ψ◦o=o−1◦ψ.

Fix p∈Sα\Sβ . If ψ◦o=o−1◦ψ, then there is n∈ω with ψ(α2p+1)=o(αn) by minimality of o.
In particular, ψ

(
o
il2p+1

+i′2p+1(0∞)
)

=oiln+i′n+1(0∞). If i∈ω, then

ψ
(
o
il2p+1

+i′2p+1+i
(0∞)

)
=oiln+i′n+1−i(0∞).

If we choose i large enough so that oil2p+1
+i′2p+1+i

(0∞) ∈ {α2k | k ∈ ω} ∪ {α2k+1 | k ∈ Sα} and
iln+i′n+1−i<0, then we get a contradiction with the minimality of o. This shows that ψ◦o=o◦ψ.
The minimality of o provides n∈ω with ψ(α2p+1)=αn, and n 6=2p+1 since p /∈Sβ .
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In particular, ψ
(
o
il2p+1

+i′2p+1(0∞)
)

=oiln+i′n(0∞). If i∈ω, then

ψ
(
o
il2p+1

+i′2p+1+i
(0∞)

)
=oiln+i′n+i(0∞).

Applying this to i= il2q+1 +i′2q+1−il2p+1−i′2p+1≥0, we get

ψ
(
o
il2q+1

+i′2q+1(0∞)
)

=o
iln+i′n+il2q+1

+i′2q+1−il2p+1
−i′2p+1(0∞),

which has to be of the form oilm+i′m(0∞) if q∈Sα. In particular,

3l2q+1+2+i′2q+1+iln+i′n−il2p+1−i′2p+1 =3lm+2+i′m

and 3l2q+1−lm+
i′2q+1+iln+i′n−il2p+1

−i′2p+1

3lm+2 =1+ i′m
3lm+2 <2, showing that l2q+1≤ lm if q is large enough.

Also, 1+
i′2q+1+iln+i′n−il2p+1

−i′2p+1

3l2q+1+2 = 3lm−l2q+1 + i′m
3l2q+1+2 < 2, showing that lm ≤ l2q+1 if q is large

enough. Thus m=2q+1 if q is large enough, by (4), and i′m= i′2q+1 if q is large enough. This implies
that n=2p+1, which is the desired contradiction finishing the proof. �

Remark. In fact, G and the Gα’s are induced by a partial homeomorphism with countable domain,
so that there is no �ic-antichain basis for the class of graphs on a 0DMC space induced by a partial
homeomorphism with countable domain with CCN at least three.

10 Subshifts

We now prove a version of Theorem 1.6 for graphs induced by a homeomorphism, as announced
in the introduction. The proof of Theorem 1.11 will provide descending chains of graphs of uncount-
able CCN, and here we get CCN three. We consider subshifts, which are widely studied particular
dynamical systems. We refer to the book [Ku] for basic notions and definitions.

Definition 10.1 (a) An alphabet is a finite set of cardinality at least two.
(b) Let A be an alphabet, and X ∈ {Z, ω}. The shift map σ : AX → AX is defined by the formula
σ(α)(k) :=α(k+1).

Recall that the sets of the form [w]p :={β∈2Z | ∀j < |w| w(j) =β(p+j)}, where w∈2<ω and
p∈Z, form a basis made up of clopen subsets of the space 2Z, which is therefore homeomorphic to
2ω. If X=Z, then the shift map is a homeomorphism, so that (AZ, σ) is a Cantor dynamical system.
Corollary 7.3 shows that the fixed points of a homeomorphism f are important in the computation of
the CCN of Gf .

Notation. If A is an alphabet and ∅ 6=w∈A<ω, then wZ∈AZ is defined by (wZ)(k|w|+j) =w(j) if
k∈Z and j< |w|.

Proposition 10.2 Let A be an alphabet, and i>0 be a natural number. Then σi(α)=α holds exactly
when there is w∈Ai with α=wZ (in this case, we say that α is a periodic point of σ). In particular,
the fixed points of σ are exactly the constant sequences.

Proof. If k ∈ Z, then σi(α)(k) = α(k+ i). For the left to right implication, we consider w := α|i
defined by w(j) :=α(j) if j<i. �
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Definition 10.3 Let A be an alphabet. A two-sided subshift is a closed subset Σ of AZ with the
property that σ[Σ]=Σ.

Note that a two-sided subshift defines a dynamical system, by restriction.

Notation. If A is an alphabet, α∈A≤ω ∪ AZ and w∈A≤ω, then we write wvα when w appears in
α, i.e., when there is k∈Z such that w(j) =α(k+j) for each j < |w|. In particular, if α∈AZ, then
α+ :=

(
α(0), α(1), . . .

)
vα.

Example. If A is an alphabet and F ⊆ A<ω, then ΣF := {α ∈ AZ | ∀w v α w /∈ F} is the set of
biinfinite words without subword in F . This is a two-sided subshift, and any two-sided subshift is of
this form (see [Sa-Tö, Section 2]).

The next notion will be crucial in our study of subshifts.

Definition 10.4 Let A be an alphabet. A substitution on A is a map τ : A<ω → A<ω satisfying
τ(uv)=τ(u)τ(v) for all u, v∈A<ω.

A substitution is determined by the images of the letters of the alphabet. Some authors require
that τ−1({∅}) = {∅}, which will be the case in our examples. We now provide infinite descending
chains of graphs induced by a homeomorphism of a 0DMC space with CCN exactly three.

Theorem 10.5 There is a �c and �ic-descending chain
(
(Σp, Gσ|Σp )

)
p∈ω, where Σp is a two-sided

subshift, (σ|Σp)
2 is fixed point free, and (Σp, Gσ|Σp ) has CCN three.

Proof. We consider the generalized Fibonacci sequence of natural numbers defined by f0 :=2, f1 :=3,
and fp+2 :=fp+fp+1. Note that fp>0, (fp)p∈ω is strictly increasing, and fp is even exactly when 3
divides p, by induction. Also, fp+5>8fp since

fp+5 =fp+3+fp+4 =fp+1+2fp+2+fp+3 =fp+1+2fp+2fp+1+fp+1+fp+2 =5fp+1+3fp.

In particular, 8f9p+5<f9p+14.

This leads to define a ⊆-increasing sequence (Fp)p∈ω of subsets of 2<ω by

Fp :={02, 13} ∪ {w8 | w∈2<ω ∧ 0<8|w|<f9p+5}.

This allows us to define the two-sided subshifts Σp := ΣFp . Note that (Σp)p∈ω is ⊆-decreasing, so
that

(
(Σp, Gσ|Σp )

)
p∈ω is �ic-decreasing. Also, wZ /∈ Σp if 0 < 8|w| < f9p+5, so that σi(α) 6= α if

α∈
⋃

0<8i<f9p+5
Σp. In particular, (σ|Σp)

2 is fixed point free for each p since f5 =21.

We finally define a sequence (wp)p∈ω of finite binary sequences by w0 := 01, w1 := 101 and
wp+2 :=wpwp+1. Note that |wp|=fp, inductively, so that σfp(wZ

p )=wZ
p . Here is the key fact.

Claim 1. Let p∈ω. Then wZ
9p+5∈Σp.

Indeed, we consider the subsitution τ : 2<ω→2<ω defined by τ(0) :=1 and τ(1) :=01. Note that
wp=τp+1(1). Indeed, τ2(1)=τ(01)=τ(0)τ(1)=101=w1 and

τp+3(1)=τp+2
(
τ(1)

)
=τp+2(01)=τp+2(0)τp+2(1)=τp+1

(
τ(0)

)
τp+2(1)=τp+1(1)τp+2(1)

=wpwp+1 =wp+2.
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If w =
(
w(0),. . ., w(|w|−1)

)
∈ 2<ω, then we set w−1 =

(
w(|w|−1),. . ., w(0)

)
. The sequence

(w−1
p )p∈ω of Fibonacci words is strictly ⊆-increasing, so that its elements are initial segments of

the infinite Fibonacci word Φ ∈ 2ω. By [Kar, Section 4], Φ contains no fourth power, i.e., v4 6v Φ
if ∅ 6= v ∈ 2<ω. An induction shows that wZ

q ∈ Σ{02,13}. We argue by contradiction to prove our
claim, which gives p and w with 0 < 8|w| < f9p+5 and w8 v wZ

9p+5. Note that w4 v w9p+5 since
8|w|<f9p+5 = |w9p+5|. In particular, if v :=w−1, then v4vΦ, which cannot be. �
Claim 2. Let p ∈ ω. Then we can find α ∈ Σp and k ∈ ω with 2k+3 ≤ f9p+5, σ2k+3(α) = α and
σi(α) 6=α if 0<i<2k+3.

Indeed, we choose α := wZ
9p+5. By Claim 1, α ∈ Σp. As |w9p+5|= f9p+5, σf9p+5(α) = α, and

f9p+5 is odd. Let n be odd and minimal with σn(α) = α. As σ|Σp is fixed point free, n≥ 3, which
gives k∈ω with n=2k+3, so that 2k+3≤f9p+5 and σ2k+3(α)=α. If 0<i<2k+3 and σi(α)=α,
then i has to be even by minimality of n. Note then that 0<n−i<n is odd and σn−i(α)=α, which
contradicts the minimality of n. �

Claim 2 implies that
(
σi(α)

)
i≤2k+3

is a Gσ|Σp -cycle, so that (2k+3, C2k+3) �ic (Σp, Gσ|Σp ).
In particular, χc(Σp, Gσ|Σp ) ≥ 3. By Theorem 8.1, χc(Σp, Gσ|Σp ) = 3. Assume now, towards a
contradiction, that (Σp, Gσ|Σp ) �c (Σp+1, Gσ|Σp+1

) with witness ϕ. Let α be given by Claim 2.

As
(
σi(α)

)
i≤2k+3

is a Gσ|Σp -cycle and odd cycles must map to odd cycles of at most equal length,
(Σp+1, Gσ|Σp+1

) contains a cycle of length 2l+3≤ 2k+3. This implies that σ2l+3
(
ϕ(α)

)
= ϕ(α),

which cannot be since 0<8(2l+3)≤8(2k+3)≤8f9p+5<f9p+14. �

Lemma 7.10 shows that many odometers induce minimal graphs with CCN three. We will now
see that it is also the case with subshifts.

Notation. Let r ∈ (0, 1
2)\Q. We consider the irrational rotation Rr : R/Z→R/Z (well-)defined by

Rr([x]) := [x+r]. We (well-)define φr : R/Z→ 2 by φr([x]) := 0 if x ∈ [0, r) mod 1, φr([x]) := 1

otherwise, and set Σ2
r :=

{(
φr
(
Rnr ([x])

))
n∈Z
| [x]∈R/Z

}
.

The following result is mentioned in [MB, Section 4].

Theorem 10.6 (Hedlund) Let r∈(0, 1
2)\Q. Then (Σ2

r , σ|Σ2
r
) is a minimal two-sided subshift.

Notation. If X∈{Z, ω} and Σ⊆AX, then we denote by L(Σ) :={w∈A<ω | ∃α∈Σ wvα} the set
of finite words word occurring in Σ. If moreover n∈ω, then we set Ln(Σ):=L(Σ) ∩An.

Let r∈ (0, 1
2)\Q. By Theorem 10.6, (Σ2

r , σ|Σ2
r
) is a two-sided subshift. We set Lr :=L(Σ2

r). If
moreover n∈ω, then we set Lrn :=Lr ∩ 2n, so that Lrn=Ln(Σ2

r).

Definition 10.7 A subshift Σ is uniformly recurrent if, for each w∈L(Σ), there is a natural number
l such that, for each v∈

⋃
n≥l Ln(Σ), wvv.

By [Sa-Tö, Section 2], the following result holds.

Theorem 10.8 Any minimal two-sided subshift is uniformly recurrent.

Lemma 10.9 Let r∈(0, 1
2)\Q.

(a) The map σ|Σ2
r

is fixed point free.

(b) Σ2
r is homeomorphic to 2ω.
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Proof. By Theorems 10.6 and 10.8, Σ2
r is uniformly recurrent. By [MB, Section 4], (Σ2

r , σ|Σ2
r
) has no

periodic point

(a) If σ|Σ2
r

has a fixed point α, Proposition 10.2 gives a∈2 with α=aZ. In particular, α is a periodic
point of Σ2

r , which cannot be. Thus σ|Σ2
r

is fixed point free.

(b) Let α ∈ Σ2
r . Assume now that α is isolated in Σ2

r , which gives ∅ 6= w v α and p ∈ Z with
Σ2
r ∩ [w]p = {α}. As Σ2

r is uniformly recurrent, there is l such that wvα|[p+|w|, p+|w|+l]. This
gives a natural number i with w⊆α|[p+|w|+i,∞), so that σ|w|+i(α)∈ [w]p. Thus σ|w|+i(α)=α and
α is periodic. This contradiction shows that Σ2

r is perfect, and thus homeomorphic to 2ω, by [K, 7.4],
finishing the proof. �

The following result is also mentioned in [MB, Section 4].

Theorem 10.10 Let r 6=r′∈(0, 1
2)\Q. Then the homeomorphisms σ|Σ2

r
and σ|Σ2

r′
are not conjugate.

We are now ready to prove that the Σ2
r’s induce minimal graphs with CCN exactly three.

Theorem 10.11 Let r∈(0, 1
2)\Q.

(a) The dynamical system (Σ2
r , σ|Σ2

r
) is minimal and the graph (Σ2

r , Gσ|Σ2
r
) has CCN three.

(b) The graph (Σ2
r , Gσ|Σ2

r
) is �ic-minimal in G2 and in the class of closed graphs on a 0DMC space

with CCN at least three.

Proof. (a) Note that Σ2
r is not empty. By Theorem 10.6, (Σ2

r , σ|Σ2
r
) is minimal. By Lemma 10.9,

Σ2
r has cardinality at least two and σ|Σ2

r
is fixed point free. By Theorem 8.1, (Σ2

r , Gσ|Σ2
r
) has CCN

two or three. By Theorem 7.1 and minimality, it is enough to find α∈Σ2
r such that the intersection

{σ2p(α) | p∈Z} ∩ {σ2p+1(α) | p∈Z} is not empty.

If [x]∈R/Z, then σ
((

φr
(
Rnr ([x])

))
n∈Z

)
=
(
φr
(
Rn+1
r ([x])

))
n∈Z

, so that

σ2p+ε

((
φr
(
Rnr ([x])

))
n∈Z

)
=
(
φr
(
Rn+2p+ε
r ([x])

))
n∈Z

.

Note then that φr |(R/Z)\([0]∪[r]) is continuous. So it is enough to find

[x]∈(R/Z)\
{
Rlr([y]) | l∈Z ∧ y∈{0, r}

}
such that

{(
Rn+2p+1
r ([x])

)
n∈Z | p∈Z

}
is not empty. Pick [x] in

(R/Z)\
{
Rlr([y]) | l∈Z ∧ y∈{0, r}

}
arbitrary. It is enough to check that

(
Rnr ([x])

)
n∈Z ∈

{(
Rn+2p+1
r ([x])

)
n∈Z | p∈Z

}
. Note that the

restriction b of the canonical map from π :R→R/Z to [0, 1) is a bijection. The map b is a homeo-
morphism from [0, 1) equipped with τ := {b−1(O) | O open in R/Z} onto R/Z. As usual, [0, 1) is
equipped with the τ -compatible metric defined by d(x, y) := min(|x−y|, 1−|x−y|). The previous
identification through b defines a compatible metric D on R/Z for which the Rr’s are isometries. Let
q be a natural number, and, for n∈ [−q, q] ∩ Z, 0< an < rn := b−1

(
Rnr ([x])

)
< bn < 1 mod 1. We

choose a natural number m>0 such that 1
m<minn∈[−q,q]∩Z min(rn−an, bn−rn). The next claim is

inspired by the proof of [Ku, Proposition 1.32].
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Claim. Let r ∈ (0, 1
2)\Q, x∈R, and m> 0 be a natural number. Then there is p∈Z such that, for

each n∈Z, D
(
Rn+2p+1
r ([x]), Rnr ([x])

)
< 1
m .

Indeed, as r /∈ Q, the m classes [x], R2
r([x]), . . ., R2m−2

r ([x]) are pairwise different. As b is
defined on [0, 1), we can find 0 ≤ i < j < m with the property that D

(
R2i
r ([x]), R2j

r ([x])
)
< 1

m .

As Rr is an isometry, D
(
[x], R

2(j−i)
r ([x])

)
= D

(
R2i
r ([x]), R2j

r ([x])
)
. Now R

2(j−i)
r = Rb is also a

rotation, and either 0 < b < 1
m , or 1− 1

m < b < 1. In both cases, for any y ∈ R/Z, there is k > 0

with D
(
R

2k(j−i)
r ([x]), y

)
< 1

m . Applying this to y := Rr([x]), and putting p := k(i− j), we get
D
(
R2p+1
r ([x]), [x]

)
< 1
m . It remains to apply again the fact that Rr is an isometry. �

The claim provides p∈Z such that, for each n∈Z, D
(
Rn+2p+1
r ([x]), b(rn)

)
< 1

m . In particular,
b−1
(
Rn+2p+1
r ([x])

)
∈(an, bn) mod 1 if n∈ [−q, q] ∩ Z, as desired.

(b) We apply (a) and Lemma 7.10. �

Theorem 10.11 gives a version of Theorem 1.13 for subshifts.

Corollary 10.12 There is a �ic-antichain (Σr, Gσ|Σr )r∈R, where
(a) Σr is a two-sided subshift homeomorphic to 2ω,
(b) σ|Σr is a minimal homeomorphism of Σr, and Gσ|Σr has CCN three,

(c) (Σr, Gσ|Σr )r∈R is �ic-minimal in G2 and in the class of closed graphs on a 0DMC space with
CCN at least three.

Proof. Let r∈ (0, 1
2)\Q. By Theorem 10.6 and Lemma 10.9(b), (Σ2

r , Gσ|Σ2
r
) is a minimal two-sided

subshift homeomorphic to 2ω. By Lemma 10.9(a), σ|Σ2
r

is fixed point free, so that Σ2
r is a closed

graph, with CCN three by Theorem 10.11(a). As (Σ2
r , Gσ|Σ2

r
) has cardinality at least three and is

minimal, the vertices of Σ2
r have degree two. By Theorem 10.11(b), (Σ2

r , Gσ|Σ2
r
) is�ic-minimal in G2

and in the class of closed graphs on a 0DMC space with CCN at least three.

So it is enough to find a subfamily of (Σ2
r , Gσ|Σ2

r
)r∈(0, 1

2
)\Q which is a �ic-antichain. By Lemma

7.11, it is enough to ensure that the homeomorphisms corresponding to the elements of the subfamily
are pairwise not flip conjugate. By Theorem 10.10, the σ|Σ2

r
’s are pairwise not conjugate. Thus σ|Σ2

r

is flip-conjugate to σ|Σ2
r′

exactly when σ|Σ2
r

is conjugate to σ−1
|Σ2
r′

. The key remark is that if σ|Σ2
r

is conjugate to σ−1
|Σ2
r′

and σ−1
|Σ2
r′′

, then σ|Σ2
r′

is conjugate to σ|Σ2
r′′

, which implies that r′ = r′′. We

inductively construct a injective family (rξ)ξ<2ℵ0 of elements of (0, 1
2)\Q such that the σ|Σ2

rξ
’s are

pairwise not flip-conjugate. r0 is an arbitrary element of (0, 1
2)\Q. Assume that 1 ≤ η < 2ℵ0 and

(rξ)ξ<η are constructed. The key remark shows that, for each ξ < η, there is at most one element r′ξ
of (0, 1

2)\Q such that σ|Σ2
rξ

is conjugate to σ−1
|Σ2
r′
ξ

. If r′ξ does not exist, then we set r′ξ :=rξ. We choose

rη∈(0, 1
2)\(Q ∪

⋃
ξ<η {rξ, r′ξ}), so that (rξ)ξ≤η is as desired. �

Corollary 10.12 gives a second proof of the fact, met in Theorem 1.13, that any �ic-basis for G2

must have size continuum. We now prove that the basis given by Proposition 9.3(a) is far from being
a basis for G2, as announced in the introduction.
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Proposition 10.13 Let d ∈ (ω\2)ω ∩ O and r ∈ (0, 1
2)\Q. Then (C, Go) and (Σ2

r , Gσ|Σ2
r
) are �ic-

incompatible in the class of closed graphs on a 0DMC space with CCN at least three.

Proof. Towards a contradiction, suppose that we can find a 0DMC spaceK and a closed graphG onK
which is �ic-below our two graphs. Thus (Σ2

r , Gσ|Σ2
r
) �ic (C, Go), by Corollary 10.12. Theorem 10.6

and Lemma 10.9 allow us to apply Lemma 7.11, so that σ|Σ2
r

and o are flip-conjugate, with witness
say ϕ. We already saw that (C, o) is equicontinuous, i.e., (on)n∈ω is equicontinuous. In fact, as o is an
isometry, (on)n∈Z is equicontinuous. The uniform continuity of ϕ and ϕ−1 implies that (Σ2

r , σ|Σ2
r
) is

also equicontinuous. Theorem 10.6 and [Ku, Proposition 3.68(2)] imply that (Σ2
r , σ|Σ2

r
) is expansive,

which gives ε> 0 such that, for each α 6=β ∈Σ2
r , there is n∈Z with d

(
σn(α), σn(β)

)
≥ ε. Lemma

10.9(b) gives α ∈Σ2
r . The equicontinuity of (Σ2

r , σ|Σ2
r
) gives δ > 0 such that, for each β ∈B(α, δ)

and each k ∈Z, d
(
σk(α), σk(β)

)
<ε. Lemma 10.9(b) gives β ∈B(α, δ)\{α}, which is the desired

contradiction. �

Remark. Theorem 1.13 and Corollary 10.12 provide examples �ic-minimal in G2. None of them is
�c-minimal in K. Indeed, there is a dense orbit. Let (X,Gf ) be one of them. Theorem 3.2.4 provides
β ∈ J c such that (Kβ,Gβ) �c (X,Gf ) and the vertices of Gβ have degree at most one. Assume
that (X,Gf ) �c (Kβ,Gβ), towards a contradiction. Then the dense orbit of f has to be sent to a
two-point set because of the degree. So X has to be sent to this closed set, by density. But this
contradicts the fact that (X,Gf ) has CCN at least three. The examples are not �ic-minimal in K.
Indeed, consider the dense orbit D= Orbf (x). Assume that (X,Gf ) �ic (X,Gf|D) with witness ϕ,
towards a contradiction. The proof of Lemma 7.11 shows that ϕ[D]=Orbf

(
ϕ(x)

)
=D since (f|D)2

is fixed point free. Thus ϕ2[Gf|D ]=Gf|D . By injectivity of ϕ, there is no more room for ϕ[X\D].

We now turn to the proof of Theorem 1.15. By [K, 6.C], the countable MC spaces can be ana-
lyzed through their Cantor-Bendixson rank. Recall that if X is a topological space, then the Cantor-
Bendixson derivative of X is X ′ :={x∈X | x is a limit point of X}. The iterated Cantor-Bendixson
derivatives are defined by X0 :=X , Xα+1 := (Xα)′, and Xλ :=

⋂
α<λ Xα if λ is a limit ordinal.

Note that if f is a homeomorphism of X , then all the derivatives are f -invariant, i.e., f [Xα]=Xα if
α is an ordinal. If X 6=∅ is a countable metrizable compact space, then the Cantor-Bendixson rank of
X is the minimal countable ordinal α withXα=∅, which is a successor ordinal by compactness. The
odd cycles provide examples of graphs induced by a homeomorphism of a countable (0D)MC space
with Cantor-Bendixson rank one whose CCN is three, and which are �ic-minimal in G2. We now
provide examples for higher ranks, including the example (K0, h0) mentioned in the introduction.

Proof of Theorem 1.15. (a) For ξ = 1, we can take Σ := Orbσ
(
(012)∞ · (012)∞

)
⊆ 3Z, which de-

fines a cycle on three points, and we apply Corollary 2.2. Assume now that 2 ≤ ξ = n+2 < ω.
We set, for j,m ∈ ω, w0

j := 01, wm+1
0 := 12, and wm+1

j+1 := (01)j+112_
k≤j+1 w

m
k . We then set

α0 :=(01)∞ ·(01)∞, and, for m ∈ ω, αm+1 := (01)∞ ·12_
j∈ω w

m
j and βm := (01)∞ ·1_j∈ω w

m
j .

Finally, Σ=
⋃
m≤n Orbσ(αm) ∪ Orbσ(βn), so that Σ=K0 and σ|Σ =h0 if ξ=2.

Σ is by definition countable, and σ[Σ]=Σ. We then set, for 1≤ i≤n+1,

Σ(i) =
⋃

m≤n+1−i
Orbσ(αm).
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Claim 1. (a) Let 1≤ i≤n+1. Then Σ(i) =Orbσ(αn+1−i).
(b) Σ=Orbσ(βn).

Indeed, for (a), we argue by induction on n+1−i. Note first that

Orbσ(α0)={(01)∞ ·(01)∞, (10)∞ ·(10)∞}

is closed, so that Σ(n+1) =Orbσ(α0).

Let us prove that αm∈Orbσ(αm+1) if m∈ω, which holds for m=0. Note that

αm+2 =(01)∞ ·12_
j∈ω w

m+1
j =(01)∞ ·1212_

j∈ω
(
(01)j+112_

k≤j+1 w
m
k

)
.

If α∈2Z and a≤b are integers, then we define α[a,b]∈2b−a+1 by α[a,b](l)=α(a+l) if l≤b−a. Note
that (01)j+112_

k≤j+1 w
m
k =αm+1[−2j−2,1+Σk≤j+1 |wmk |]

. An induction shows that |wmk |≥2, so that

1 + Σk≤j+1 |wmk |≥2j+5. This implies that αm+1∈Orbσ(αm+2), as desired.

From this we deduce, inductively and by continuity of σ and σ−1, that

Σ(i) =Σ(i+1) ∪ Orbσ(αn+1−i)⊆Orbσ(αn−i) ∪ Orbσ(αn+1−i)⊆Orbσ(αn+1−i).

This shows that Σ(i)⊆Orbσ(αn+1−i) if 1≤ i≤n+1.

Assume then that 1 ≤ i ≤ n, (kp)p∈ω ∈ Zω and
(
σkp(αn+1−i)

)
p∈ω converges to α ∈ 2Z. We

want to see that α ∈ Σ(i), and we may assume that i < n. If (kp)p∈ω has a constant subsequence,
then α∈Orbσ(αn+1−i) and we are done. So we may assume that (kp)p∈ω tends to ±∞. If (kp)p∈ω
tends to −∞, then α ∈ Orbσ(α0) since αn+1−i = (01)∞ ·12_

j∈ω w
n−i
j , and we are done. So we

may write kp = 2 + Σj<lp |wn−ij |+ jp, where jp < |wn−ilp
|, and (lp)p∈ω tends to ∞. As above,

αn+1−i=(01)∞ ·1212_
j∈ω

(
(01)j+112_

k≤j+1 w
n−i−1
k

)
, and

(01)j+112_
k≤j+1 w

n−i−1
k =αn−i[−2j−2,1+Σk≤j+1 |wn−i−1

k |].

If (jp)p∈ω and (|wn−ilp
|−jp)p∈ω also tend to∞, then α∈Orbσ(αn−i)⊆Σ(i+1)⊆Σ(i), by induction

assumption, as desired. Otherwise, we may assume that (jp)p∈ω or (|wn−ilp
|−jp)p∈ω is constant, so

that α∈Orbσ(α0) since wm+1
j starts and ends with (01)j , by induction.

The proof of (b) is similar. �

Claim 1 implies that Σ is a two-sided subshift.

Claim 2. Σ has Cantor-Bendixson rank ξ.

Indeed, let us show that Σ(i) is the ith iterated Cantor-Bendixson derivative of Σ if 1≤ i≤n+1.
By Claim 1(b), Σ\Orbσ(βn) ⊆ Σ′. As Σ is countable, it has an isolated point, which has there-
fore to be in Orbσ(βn). As σ is a homeomorphism, Orbσ(βn) is disjoint from Σ′, showing that
Σ′=Σ\Orbσ(βn)⊆

⋃
m≤n Orbσ(αm)=Σ(1). It remains to see that αm /∈ Orbσ(βn) if m ≤ n to

get Σ(1) = Σ′. As all the odd coordinates of the wmj ’s and the αm’s are 1, and we can find an even
coordinate of βn and an odd coordinate of βn which are 0, we are done.
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Fix now 1≤ i≤n. By Claim 1(a), Σ(i)\Orbσ(αn+1−i)⊆ (Σ(i))′. As Σ(i) is countable, it has an
isolated point, which has therefore to be in Orbσ(αn+1−i). As σ is a homeomorphism, Orbσ(αn+1−i)
is disjoint from (Σ(i))′, showing that (Σ(i))′= Σ(i)\Orbσ(αn+1−i)⊆

⋃
m≤n−i Orbσ(αm) = Σ(i+1).

It remains to see that αm /∈ Orbσ(αm+1+p) if m, p ∈ ω to get Σ(i+1) = (Σ(i))′ and, inductively,
that Σ(i+1) is the (i+ 1)th iterated Cantor-Bendixson derivative of Σ. Note that if m ∈ ω, then
wm+2

1 :=(01)1212wm+1
1 , so that (011212)m011201⊆wm+1

1 , wm+1
1 and wm+2+p

1 are incompatible if
p∈ ω. In particular, αm+2 6=αm+3+p, and, because of (01)∞, αm+2 /∈Orbσ(αm+3+p). Because of
12, α0 /∈Orbσ(α1+p), and because of 1212, α1 /∈Orbσ(α2+p).

As Σ(n+1) =Orbσ(α0) 6=∅ is finite, Σ has Cantor-Bendixson rank ξ. �

As no sequence in Σ is constant, σ|Σ is fixed point free. As moreover Σ is not empty, (Σ, Gσ|Σ)
has CCN two or three by Theorem 8.1. Note then that

(α0, α0)= limp→∞
(
σ−2p(βn), σ1+Σj<p |wnj |(βn)

)
∈
⋃
q∈ω

G2q+1
σ|Σ ,

so that χc(Σ, Gσ|Σ)=3 by Theorem 1.7. For the minimality of (Σ, Gσ|Σ), we first prove the following.

Claim 3. Let V ⊆ Σ, and E ⊆Gσ|Σ ∩ V 2 be a graph on V such that (V,E) has CCN three. Then(
α, σ(α)

)
∈E if α∈Orbσ(βn).

Indeed, we argue by contradiction. Let k ∈Z with α= σk(βn). Recall that the sets of the form
[w]q := {β ∈ 2Z | ∀j < |w| w(j) = β(q+j)}, where w ∈ 2<ω and q ∈ Z, form a basis made up of
clopen subsets of the space 2Z.

Assume first that n=0, so that Σn==Orbσ
(
(01)∞ ·(01)∞

)
∪ Orbσ

(
(01)∞ ·1(01)∞

)
, and

σ2p+ε(αn)=

{
(01)∞ ·(01)∞ if ε=0,
(10)∞ ·(10)∞ if ε=1,

σ2p+ε(βn)=


(01)∞1(01)p−10·(10)∞ if p>0 ∧ ε=0,
(01)∞1(01)p ·(01)∞ if p≥0 ∧ ε=1,
(01)∞ ·(01)p1(01)∞ if p≤0 ∧ ε=0,
(10)∞ ·(10)−p−111(01)∞ if p<0 ∧ ε=1

if p ∈ Z and ε ∈ 2. We set C := ([0]−k ∪ [120]−k−1) ∩ V , so that C is a clopen subset of V and
E ∩

(
C2 ∪ (V \C)2

)
=∅ since

. . . , σk−2(αn), σk(αn), σk+2(αn), . . .∈C,

. . . , σk−3(αn), σk−1(αn), σk+1(αn), . . . /∈C,

. . . , σk−4(βn), σk−2(βn), σk(βn), σk+1(βn), σk+3(βn), σk+5(βn), . . .∈C,

. . . , σk−5(βn), σk−3(βn), σk−1(βn), σk+2(βn), σk+4(βn), σk+6(βn), . . . /∈C,

which contradicts the fact that (V,E) has CCN three.

In this argument, the case k 6= 0 is similar to the case k = 0, we just have to translate the basic
clopen sets of the form [w]q. It will also be the case in the general case n≥ 1 that we now consider,
so that we may and will assume that k=0.
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We set C := ([0]0 ∪ [120]0 ∪ [150]−1 ∪ [0140]−2) ∩ V , so that C is a clopen subset of V . We
already noticed that the odd coordinates of the wmj ’s and the αm’s are 1, that the wmj ’s have a stricly
positive even length, and that wm+1

j starts and ends with (01)j . The definition of the wmj ’s, the αm’s
and the βn’s then imply that 0 can only be an even coordinate of αm, a negative even coordinate of
βn or a positive odd coordinate of βn. Moreover, 01l0 can be of the form αm[a,b] only if l∈{1, 3, 5}
and a is even, and of the form βn[a,b] only if l=1 and a≤−4 is even, l∈{1, 3, 5} and a≥3 is odd, or
l=4 and a=−2. This implies that E ∩

(
C2 ∪ (V \C)2

)
=∅ since

. . . , σ−2(αm), αm, σ
2(αm), . . .∈C,

. . . , σ−3(αm), σ−1(αm), σ(αm), . . . /∈C

if m≤n and

. . . , σ−4(βn), σ−2(βn), βn, σ(βn), σ3(βn), σ5(βn), . . .∈C,

. . . , σ−5(βn), σ−3(βn), σ−1(βn), σ2(βn), σ4(βn), σ6(βn), . . . /∈C,

which contradicts the fact that (V,E) has CCN three again. �

Assume now that (K,G) ∈ G2 and (K,G) �ic (Σ, Gσ|Σ) with witness ϕ, which implies that
(K,G) has CCN three. As (K,G) ∈G2, there is a homeomorphism f :K→K with G=Gf . As
χc(K,G)=3, the set F1 of fixed points of f is a clopen subset ofK, and χc(K\F1, Gf∩(K\F1)2)=3
by Corollary 7.3. This implies that we may assume that f is fixed point free, so that G is compact.
We set V :=ϕ[K] and E :=(ϕ×ϕ)[G], so that V ⊆Σ is a 0DMC space, E⊆Gσ|Σ is a compact graph
on V , (K,G) �ic (V,E) with witness ϕ, and (V,E) �ic (K,G) with witness ϕ−1 by compactness.

By Claim 3,
(
α, σ(α)

)
∈ E if α ∈ Orbσ(βn). The density of Orbσ(βn) in Σ given by Claim 1

and the compactness of E then imply that Graph(σ|Σ)⊆E. As E is a graph, we get E =Gσ|Σ and
therefore V = Σ. Thus (Σ, Gσ|Σ) �ic (K,G) and (Σ, Gσ|Σ) is �ic-minimal in G2 and in the class of
closed graphs on a 0DMC space with CCN at least three.

Assume now that ξ ≥ ω is of the form η+3. Using ideas similar to those in [Ce-Da-To-Wy],
we now provide a two-sided subshift with Cantor-Bendixson rank of the form ξ having the desired
minimality property. The first step of our construction is inspired by [Ce-Da-To-Wy, Theorem 4.6].
Fix an infinite countable ordinal η, and a closed countable subset P of 2ω with Cantor-Bendixson
rank η+1, which exists by [K, 6.13]. The following fact is known. However, we include a proof for
completeness.

Claim 4. Let P be a countable Polish space. Then P \P ′ is dense in P .

Indeed, we set, for x ∈ P ′, Ox :=X \{x}, so that Ox is a dense open subset of X . Moreover,
P \P ′=

⋂
x∈P ′ Ox is a Gδ subset of the countable space P . It remains to apply the Baire category

theorem (see [K, 8.4]). �

We enumerate P \P ′ :={γj | j∈ω} and set, for j∈ω,

wj :=12_
k<j

(
(01)γ(j)0

(k)+Σi<k (γ(j)0
(i)+1)12

)
,

and δ∞ :=(01)∞ ·1_j∈ω (wj(01)j+1). Similarly, we define Φ0 :2ω→2ω by

Φ0(γ) :=_
k∈ω

(
(01)γ(k)+Σi<k (γ(i)+1)12

)
.
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We also define Φ:2ω→2Z by Φ(γ) :=(01)∞ ·12Φ0(γ). We then set

Q :=Orbσ
(
(01)∞ ·(01)∞

)
∪ Orbσ

(
(01)∞ ·12(01)∞

)
∪
⋃
γ∈P

Orbσ
(
Φ(γ)

)
and Σ:=Q ∪ Orbσ(δ∞). Note that P , Q and Σ are countable, and σ[Q]=Q, σ[Σ]=Σ.

Claim 5. Σ is a countable two-sided subshift with Cantor-Bendixson rank ξ, and Orbσ(δ∞) is dense
in Σ.

Indeed, as in [Ce-Da-To-Wy], we check that Q is closed and has Cantor-Bendixson rank ξ. Note
first that Orbσ

(
(01)∞ ·(01)∞

)
={(01)∞ ·(01)∞, (10)∞ ·(10)∞} is closed, as well as

Orbσ
(
(01)∞ ·(01)∞

)
∪ Orbσ

(
(01)∞ ·12(01)∞

)
.

Let (δn)n∈ω be a sequence of elements of Q converging to δ ∈ 2Z. By the previous remark, we may
assume that the δn’s are in

⋃
γ∈P Orbσ

(
Φ(γ)

)
. This gives (βn)n∈ω ∈ Pω and (kn)n∈ω ∈ Zω with

δn=σkn
(
Φ(βn)

)
, and we may assume that (βn)n∈ω converges to β ∈ P . If we may assume that

(kn)n∈ω is constant, then δ=σk0
(
Φ(β)

)
∈Q by continuity of Φ0 and Φ. Otherwise, we may assume

that (kn)n∈ω is either strictly increasing, or strictly decreasing. In the latter case, δ ∈Orbσ
(
(01)∞ ·

(01)∞
)
⊆Q. So we may assume that (kn)n∈ω is strictly increasing and k0≥2. Note that

S :=
{
_
k<l

(
(01)mk12

)
(01)∞ | l∈ω ∧ ∀k<l−1 mk<mk+1

}
∪{

_
k∈ω

(
(01)mk12

)
| ∀k∈ω mk<mk+1

}
and σ[S] are closed subsets of 2ω, as well as C := S ∪ σ[S]. We define, for β ∈ 2Z, β∗ ∈ 2ω by
β∗(i) := β(i) if i ∈ ω. As Φ0 takes values in S, σ2[S] = S and kn ≥ 2, δ∗n ∈ C for each n, and
δ∗∈C. If δ∗ contains at most one 13, then δ∈Orbσ

(
(01)∞ ·(01)∞

)
∪ Orbσ

(
(01)∞ ·12(01)∞

)
⊆Q.

So we may assume that there are n0, n1 ≥ 1 with 12(01)n012(01)n112 ⊆ δ∗, (01)n012(01)n112 ⊆ δ∗
or (10)n0−1112(01)n112 ⊆ δ∗. As (δ∗n)n∈ω converges to δ∗, we may assume that is also the case
for the δ∗n’s. Note then that, just after this initial segment, δ∗n can have at most n1 + 2 blocks 01
before having a block 12, by definition of Φ0. This implies that δ∗ is of the form 12_

k∈ω
(
(01)nk12

)
,

_
k∈ω

(
(01)nk12

)
or (10)n0−1112_

k≥1

(
(01)nk12

)
, with nk+1 +1≤ nk+2 ≤ nk+1 +2. So we may

assume that either 12_
k≤n

(
(01)nk12

)
⊆ δ∗n for each n, _k≤n

(
(01)nk12

)
⊆ δ∗n for each n, or

(10)n0−1112_
1≤k≤n

(
(01)nk12

)
⊆δ∗n for each n. Note that Φ0(βn) has an initial segment of the form

either _k≤l
(
(01)mk12

)
_
k≤n

(
(01)nk12

)
, or _k≤l

(
(01)mk12

)
0(10)n0−1112_

1≤k≤n
(
(01)nk12

)
.

As m0 < m1 < · · · < ml < n0 in both cases, there are only finitely many possible values for the
block _

k≤l
(
(01)mk12

)
. So we may assume that this block does not depend on n. Note then that

δ∗n = σkn−2
(
Φ0(βn)

)
. This implies that we may assume that (kn)n∈ω is constant, which is not the

case. This shows that Q is closed.

In order to prove that Q has Cantor-Bendixson rank ξ, we introduce the notion of the rank of a
point. If X∈{ω,Z}, P is a countable compact subset of 2X and δ∈P , then the rank rkP (δ) of δ in
P is the least ordinal α such that δ /∈Pα+1. Under this definition, the Cantor-Bendixson rank of P is
sup{rkP (δ)+1 | δ∈P} (see [Ce-Da-To-Wy, Section 2]).

Note that P1 :=
{

Φ(γ) | γ ∈ P
}
⊆ Q, which implies that rkP1(δ) ≤ rkQ(δ) if δ ∈ P1. By

[Ce-Da-To-Wy, Lemma 3.3], rkQ
(
σk(δ)

)
=rkQ(δ) if k∈Z and δ∈Q.
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Thus rkQ
(
σk(δ)

)
≥ rkP1(δ) if k ∈Z and δ ∈P1. It follows that rkQ

(
(01)∞ ·12(01)∞

)
≥ η+1

and hence rkQ
(
(01)∞ ·(01)∞

)
≥η+2.

For the other direction, note that the map (k, γ) 7→ σk
(
Φ(γ)

)
is injective. We now prove by

induction on ρ := rkP1(δ) that rkQ(δ) = ρ if δ ∈ P1. If ρ = 0, then δ is isolated in P1. If δ is not
isolated in Q, then there is an injective sequence (δn)n∈ω of elements of Q converging to δ. The
discussion above provides k0 ∈ Z and (βn)n∈ω ∈ Pω converging to β ∈ P with δn = σk0

(
Φ(βn)

)
.

Thus δ = σk0
(
Φ(β)

)
. The injectivity property shows that k0 = 0, so that δn ∈ P1, contradicting the

fact that δ is isolated in P1. Suppose now that our claim holds for all ordinals strictly below ρ, and
that rkQ(δ)>ρ. Then we can find an injective sequence (δn)n∈ω of elements of Q converging to δ.
The discussion above provides k0∈Z and (βn)n∈ω∈Pω converging to β∈P with δn=σk0

(
Φ(βn)

)
.

The injectivity property shows that k0 = 0, so that δn ∈ P1. As rkP1(δ) = ρ, we may assume
that rkP1(δn) < ρ, so that rkQ(δn) < ρ by induction assumption. This contradicts the fact that
δn ∈Q. This implies that rkQ(δ) ≤ η if δ ∈

⋃
γ∈P Orbσ

(
Φ(γ)

)
. It follows that rkQ(δ) ≤ η+1 if

δ∈Orbσ
(
(01)∞ ·12(01)∞

)
, and rkQ(δ)≤ η+2 if δ∈Orbσ

(
(01)∞ ·(01)∞

)
. This proves that Q has

Cantor-Bendixson rank ξ.

Let us prove that Σ is closed. Assume that (δn)n∈ω is a sequence of elements of Σ converging
to δ ∈ 2Z. We may assume that the δn’s are in Orbσ(δ∞) since Q is closed. This gives kn ∈ Z
with the property that δn = σkn(δ∞). If (kn)n∈ω has a constant subsequence, then δ ∈ Orbσ(δ∞)
and we are done. So we may assume that (kn)n∈ω tends to ±∞. If (kn)n∈ω tends to −∞, then
δ ∈ Orbσ

(
(01)∞ · (01)∞

)
, and we are done. So we may write kn=1+Σj<ln (|wj |+2j+2)+jn,

where jn < |wln |+ 2ln + 2, and (ln)n∈ω tends to ∞. In particular, the distance between δn and
C := {β ∈ 2Z | ∃ε∈ 2 ∀i∈Z β(2i+ε) = 1} tends to zero as n tends to infinity, so that δ is in the
closed set C. As above we may assume that δ is not in Orbσ

(
(01)∞·(01)∞

)
∪Orbσ

(
(01)∞·12(01)∞

)
,

which gives m minimal such that 12(01)m12 is a finite subword of δ, and we may also assume that
12(01)m12 =δ[0,2m+3] =δn[0,2m+3]. This implies that we may assume that jn=0. Note then that

δ∗n =_
j≥ln (wj(01)j+1)

=_
j≥ln

(
12
(
_
k<j

(
(01)γ(j)0

(k)+Σi<k (γ(j)0
(i)+1)12

))
(01)j+1

)
⊇12

(
_
k<ln

(
(01)γ(ln)0

(k)+Σi<k (γ(ln)0
(i)+1)12

))
(01)ln+1

converges to δ∗. This implies that (γ(ln)0
)n∈ω converges to some γ ∈ P , and that δ = Φ(γ) ∈ Q,

showing that Σ is closed.

This discussion above shows that if δ∈Q, then rkQ(δ) = 0 if and only if there is γ∈P \P ′ with
δ ∈ Orbσ

(
Φ(γ)

)
. In particular, rkσ(δ) ≥ 1 if δ is not of this form. If now j ∈ ω, then Φ(γj) is in

Orb(δ∞), showing that Q is a subset of the Cantor-Bendixson derivative Σ′ of Σ. As Σ is countable,
it has an isolated point which has to be in Orbσ(δ∞), and Σ′ = Q since σ is a homeomorphism.
This implies that Σk+1 =Qk for each natural number k, and Σθ =Qθ if θ is infinite, so that Σ has
Cantor-Bendixson rank ξ since η is infinite.

The density assertion comes from the previous discussion and Claim 4. �
We then partially argue as in the finite case. Note that(

(01)∞ ·(01)∞, (01)∞ ·(01)∞
)

= limp→∞
(
σ−2p(δ∞), σ1+Σj<2p (|wj |+2j+2)+|w2p|+2p(δ∞)

)
is in

⋃
q∈ω G2q+1

σ|Σ , so that χc(Σ, Gσ|Σ)=3.
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Claim 6. Let V ⊆ Σ, and E ⊆Gσ|Σ ∩ V 2 be a graph on V such that (V,E) has CCN three. Then(
α, σ(α)

)
∈E if α∈Orbσ(δ∞).

Indeed, we argue by contradiction. Let k ∈Z with α= σk(δ∞). As in the proof of Claim 3, we
may assume that k=0. We set

C :=([0]0 ∪ [120]0 ∪ [0140]−2) ∩ V ,

so that C is a clopen subset of V . Noted that the odd coordinates of the wj’s are 1, and that the wj’s
have a stricly positive even length. The definition of the wj’s and δ∞ then imply that 0 can only be
an even coordinate of the elements appearing in the definition of Q (which is the union of the orbits
of these elements), a negative even coordinate of δ∞ or a positive odd coordinate of δ∞. Moreover,
01k0 can be of the form α[a,b] with α appearing in the definition of Q only if k∈{1, 3} and a is even,
and of the form δ∞[a,b] only if k= 1 and a≤−4 is even, k ∈ {1, 3} and a≥ 3 is odd, or k= 4 and
a=−2. In particular,

. . . , σ−2(α), α, σ2(α), . . .∈C,

. . . , σ−3(α), σ−1(α), σ(α), . . . /∈C
if α appears in the definition of Q, and

. . . , σ−4(δ∞), σ−2(δ∞), δ∞, σ(δ∞), σ3(δ∞), σ5(δ∞), . . .∈C,

. . . , σ−5(δ∞), σ−3(δ∞), σ−1(δ∞), σ2(δ∞), σ4(δ∞), σ6(δ∞), . . . /∈C.

This implies that E ∩
(
C2 ∪ (V \C)2

)
=∅, which contradicts the fact that (V,E) has CCN three. �

We now conclude as in the finite case.

(b) Let Q := (qj)j∈ω ∈ωω converging to infinity. We set α0 := (01)∞ ·(01)∞, α1 := (01)∞ ·12(01)∞

and βQ :=(01)∞ ·1_j∈ω
(
(01)qj12

)
. This defines ΣQ=

⋃
m≤1 Orbσ(αm) ∪ Orbσ(βQ).

We first essentially argue as in the finite case when n=1 to check the individual properties of ΣQ.

Claim 7. (a) Let 1≤ i≤2. Then Σ
(i)
Q =Orbσ(α2−i).

(b) ΣQ=Orbσ(βQ).

Indeed, let us prove that α1 ∈ Orbσ(βQ). Fix a natural number N . If j is large enough, then
qj ≥ N , so that (01)N12(01)N = α1[−2N,2N+1] = βQ[1+(Σn<j (2qn+2))+2(qj−N),(Σn≤j (2qn+2))+2N ].

This implies that α1∈Orbσ(βQ), as desired.

Assume then that (kp)p∈ω ∈ Zω and
(
σkp(βQ)

)
p∈ω converges to α ∈ 2Z. We want to see that

α∈ΣQ. If (kp)p∈ω tends to∞, then we may write kp=1+
(
Σj<lp (2qj+2)

)
+jp, where jp<2qlp+2,

and (lp)p∈ω tends to∞. If (jp)p∈ω and (2qlp+2−jp)p∈ω also tend to∞, then α∈Orbσ(α0)⊆ΣQ,
as desired. Otherwise, we may assume that (jp)p∈ω or (2qlp+2−jp)p∈ω is constant, so that α is in
Orbσ(α1)⊆ΣQ. �
Claim 8. ΣQ has Cantor-Bendixson rank 3.

Indeed, as all the odd coordinates of the αm’s are 1, and we can find an even coordinate of βQ
and an odd coordinate of βQ which are 0, so that αm /∈Orbσ(βQ) if m≤ 1. It remains to note that
α0 /∈Orbσ(α1) to get Σ

(2)
Q = (Σ

(1)
Q )′ and, inductively, that Σ

(2)
Q is the 2nd iterated Cantor-Bendixson

derivative of ΣQ. �
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Note then that

(α0, α0)= limp→∞
(
σ−2p(βQ), σ1+(Σj<p (2qj+2))+2d qp

2
e(βQ)

)
∈
⋃
q∈ω

G2q+1
σ|ΣQ

,

so that χc(ΣQ, Gσ|ΣQ )=3.

Claim 9. Let V ⊆ΣQ, and E⊆Gσ|ΣQ ∩ V
2 be a graph on V such that (V,E) has CCN three. Then(

α, σ(α)
)
∈E if α∈Orbσ(βQ).

Indeed, let k ∈Z with α= σk(βQ). As in the proof of Claim 3, we may assume that k= 0. Fix
j0∈ω such that qj≥1 if j≥j0. We set

C :=([0]0 ∪
⋃
j≤qj0

[012j+10]−2 ∪
⋃
j≤qj0

[012j+20]−2) ∩ V ,

so that C is a clopen subset of V . We already noticed that the odd coordinates of the αm’s are 1. The
definition of the αm’s and βQ then imply that 0 can only be an even coordinate of αm, a negative even
coordinate of βQ or a positive odd coordinate of βQ. Moreover, 01k0 can be of the form αm[a,b] only
if k ∈ {1, 3} and a is even, and of the form βQ[a,b] only if k= 1 and a≤−4 is even, k ∈ {1, 3} and
a≥1 is odd, or 2≤k≤2j0+2 is even and a=−2. This implies that E ∩

(
C2 ∪ (V \C)2

)
=∅ since

. . . , σ−2(αm), αm, σ
2(αm), . . .∈C,

. . . , σ−3(αm), σ−1(αm), σ(αm), . . . /∈C

if m≤1 and

. . . , σ−4(βQ), σ−2(βQ), βQ, σ(βQ), σ3(βQ), σ5(βQ), . . .∈C,

. . . , σ−5(βQ), σ−3(βQ), σ−1(βQ), σ2(βQ), σ4(βQ), σ6(βQ), . . . /∈C,

which contradicts the fact that (V,E) has CCN three again. �
We conclude as in the finite case to get the individual properties of ΣQ. We now provide a family

of size continuum of countable subshifts (ΣQν )ν∈2ω . Let (pn)n∈ω be the sequence of prime numbers.
We set, for ν ∈ 2ω and n ∈ ω, qν0 := 0 and qνn+1 := p

ν(0)+2
0 · · ·pν(n)+2

n −1, which defines Qν ∈ ωω
converging to infinity.

Let us check that the family
(
(ΣQν , Gσ|ΣQν

)
)
ν∈2ω

is a �ic-antichain. Assume, towards a con-

tradiction, that ν 6= ν ′ and (ΣQν , Gσ|ΣQν
) �ic (ΣQν′ , Gσ|Σ

Qν
′
) with witness ϕ. Let m0 be minimal

with ν(m0) 6= ν ′(m0). By minimality of (ΣQν′ , Gσ|Σ
Qν
′
), we may assume that ν(m0)<ν′(m0). If

x∈ΣQν , then
(
x, σ(x)

)
∈Gσ|ΣQν since σ|ΣQν is fixed point free. Thus

(
ϕ(x), ϕ

(
σ(x)

))
∈Gσ|Σ

Qν
′

and ϕ
(
σ(x)

)
= σ±1

(
ϕ(x)

)
. We choose x ∈ ΣQν \Orbσ(α0), so that Orbσ(x) is infinite, as well as

Orbσ
(
ϕ(x)

)
⊇ϕ[Orbσ(x)], and σ2(x) 6= x. In particular, σ2

|Orbσ(ϕ(x))
is fixed point free. We apply

Lemma 5.6 and its proof to V =X = ΣQν , f =σ|ΣQν , I = Orbσ(x), W =Y = ΣQν′ , g=σ|Σ
Qν
′ and

ϕ. The proof of Lemma 5.6 shows that P ∩M =∅, either ϕ
(
σ(z)

)
=σ
(
ϕ(z)

)
for each z∈Orbσ(x)

or ϕ
(
σ(z)

)
= σ−1

(
ϕ(z)

)
for each z ∈ Orbσ(x), and ϕ[Orbσ(x)] = Orbσ

(
ϕ(x)

)
. In particular,

ϕ[Orbσ(α1)], ϕ[Orbσ(βQν )] are disjoint infinite orbits in ΣQν′ , so they are Orbσ(α1),Orbσ(βQν′ ).
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As Orbσ(βQν′ ) is dense in ΣQν′ , the compact set ϕ[ΣQν ] is ΣQν′ , so that ϕ is a homeomor-
phism from ΣQν onto ΣQν′ . Moreover, ϕ is a witness for the fact that σ|ΣQν and σ|Σ

Qν
′ are flip-

conjugate, by density of Orbσ(βQν ) in ΣQν . In particular, ϕ[Σ′Qν ] = Σ′
Qν′

and ϕ[Σ′′Qν ] = Σ′′
Qν′

, so
that ϕ[Orbσ(α0)]=Orbσ(α0), ϕ[Orbσ(α1)]=Orbσ(α1) and ϕ[Orbσ(βQν )]=Orbσ(βQν′ ). This gives
n0, n1∈Z with ϕ(α1)=σn1(α1) and ϕ(βQν )=σn0(βQν′ ). We then set, for r∈ω,

Kν
r :=1+(Σj<r (2qj+2))+2qr.

Note that the sequence
(
σK

ν
r (βQν )

)
r∈ω converges to α1, so that

(
ϕ
(
σK

ν
r (βQν )

))
r∈ω

converges to

ϕ(α1) = σn1(α1). As ϕ
(
σK

ν
r (βQν )

)
= σn0±Kν

r (βQν′ ), this implies that
(
σn0−n1±Kν

r (βQν′ )
)
r∈ω

converges to α1. As (Kν
r )r∈ω is strictly increasing, this implies that σ|ΣQν and σ|Σ

Qν
′ are conjugate

and
(
σn0−n1+Kν

r (βQν′ )
)
r∈ω converges to α1. In particular,

σn0−n1+Kν
r (βQν′ )[−2,2]

=
(
βQν′ (n0−n1+Kν

r −2), · · · , βQν′ (n0−n1+Kν
r +2)

)
=α1[−2,2] =0130

if r is large enough. Using similar notation, this implies that n0−n1 +Kν
r ∈ {Kν′

m | m∈ ω} if r is
large enough. In particular, this gives, for r large enough, m<M ∈ω with n0−n1+Kν

r =Kν′
m and

n0−n1+Kν
r+1 =Kν′

M . Thus Kν
r+1−Kν

r =2qνr+1+2=Σm<j≤M (2qν
′
j +2) and

p
ν(0)+2
0 · · ·pν(r)+2

r =qνr+1+1=Σm≤n<M (qν
′
n+1+1)=Σm≤n<M (p

ν′(0)+2
0 · · ·pν′(n)+2

n ).

We may assume that r is large enough to ensure that r,m≥m0, which implies that pν
′(m0)+2
m0 divides

p
ν(0)+2
0 · · ·pν(r)+2

r , which cannot be since ν(m0)<ν ′(m0). �

Note that Theorem 1.15(b) provides a version of Corollary 10.12 (and thus Theorem 1.13) for
countable subshifts (which are not necessary minimal). By minimality and for cardinality reasons,
the examples provided by Theorem 1.15(b) are �ic-incompatible in the class of closed graphs on a
0DMC space with CCN at least three with the examples given by Proposition 10.13.

11 Homeomorphisms of a 0DMS space

In this section, we prove Theorem 1.14, among other things.

Remarks. (a) Let X be a 0DMC space, and f :X→X be a homeomorphism such that (X,Gf ) has
CCN at least three. Lemma 7.10 says that if f is minimal, then (X,Gf ) is �ic-minimal in the class
of closed graphs on a 0DMC space with CCN at least three. Theorem 1.15 shows that the converse is
not true since the finite orbit Orbσ(α0) is not dense in the infinite countable space K0.

(b) Theorem 1.15 also provides (K0, Gh0)∈G2 for which it is not possible to find (K,Gf )∈G2 with
f minimal and (K,Gf ) �ic (K0, Gh0). In particular, K0 contains no subshift Σ such that (Σ, σ|Σ)
is minimal and has CCN at least three, even if it contains Orbσ(α0) and (Orbσ(α0), σ|Orbσ(α0)) is
minimal.

We will see that (K0, Gh0) is no more minimal in 0DMS (or 0DP) spaces. Let T be the set
of finer 0DMS topologies τ on K0 such that

(
(K0, τ), Gh0

)
has CCN at least three and h0 is a

homeomorphism of (K0, τ).
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Lemma 11.1 Let S be a 0DMS (resp., 0DP) space, f be a homeomorphism of S with the properties
that χc(S,Gf )≥ 3 and (S,Gf ) �ic (K0, Gh0). Then there is a finer 0DMS (resp., 0DP) topology τ
in T with the property that

(
(K0, τ), Gh0

)
�ic (S,Gf ).

Proof. By Theorem 1.15, (K0, Gh0) has CCN three, and thus (S,Gf ) has CCN three too. Therefore
the set F1 of fixed points of f is a clopen subset of S, and χc(S \F1, Gf ∩ (S \F1)2) = 3 by
Corollary 7.3. So we may assume that f is fixed point free. Let ϕ be a witness for the fact that
(S,Gf ) �ic (K0, Gh0). We define V :=ϕ[S] and E :=(ϕ×ϕ)[Gf ]. The finer topology is

τ :={O⊆K0 | ϕ−1(O)∈Σ0
1(S)}.

Note that ϕ :S→ (V, τ) is a homeomorphism, so that (V, τ) is a 0DMS (resp., 0DP) space. As ϕ is
a witness for the fact that (S,Gf ) �ic

(
(K0, τ), Gh0

)
, χc
(
(K0, τ), Gh0

)
≥ 3. Also, ϕ−1 is a witness

for the fact that
(
(V, τ), E

)
�ic (S,Gf ).

Let us prove that V =K0 and E =Gh0 . As ϕ is a witness for the fact that (S,Gf ) �ic (V,E),
χc(V,E) ≥ 3. As Orbh0(β0) is discrete, there is ε ∈ 2 with σε(α0) ∈ V , which gives x ∈ S
with ϕ(x)=σε(α0). As f is fixed point free, f(x) 6= x, which implies that

(
x, f(x)

)
∈ Gf ,(

ϕ(x), ϕ
(
f(x)

))
∈ Gh0 , and σ1−ε(α0) = ϕ

(
f(x)

)
∈ V . This implies that Orbσ(α0) ⊆ V and{(

α0, σ(α0)
)
,
(
σ(α0), α0

)}
⊆E. As χc(V,E)≥ 3 again, there is α∈Orbh0(β0) ∩ V , which gives

y∈S with ϕ(y)=α.

Let us check that f2(y) 6= y. We argue by contradiction. As just above, ϕ
(
f(y)

)
= h0

(
ϕ(y)

)
or ϕ

(
f(y)

)
= h−1

0

(
ϕ(y)

)
. Assume that ϕ

(
f(y)

)
= h−1

0

(
ϕ(y)

)
, the other case being similar. Then(

α, h0(α)
)
/∈E since f(y) =f−1(y) is sent to h−1

0 (α) by ϕ and h2
0 is fixed point free on Orbh0(β0).

This contradicts Claim 3 in the proof of Theorem 1.15.

As f2(y) 6= y, either ϕ
(
f(z)

)
= h0

(
ϕ(z)

)
for each z ∈ Orbf (y), or ϕ

(
f(z)

)
= h−1

0

(
ϕ(z)

)
for

each z∈Orbf (y), by Lemma 5.6. Lemma 5.2 then implies that ϕ[Orbf (y)]=Orbh0(α)=Orbh0(β0).
Thus V =K0 and E=Gh0 . In particular,

(
(K0, τ), Gh0

)
�ic (S,Gf ) and τ is a finer 0DMS (resp.,

0DP) topology on K0.

The previous discussion shows that S=Orbf (x)∪Orbf (y) by injectivity of ϕ, and ϕ◦f=h±1
0 ◦ϕ.

Thus h0 =ϕ◦f±1◦ϕ−1 is a homeomorphism of (K0, τ). �

Notation. Lemma 9.7 provides a sequence (Sq)q∈ω of pairwise disjoint infinite subsets of ω such that,
for any l ∈ ω, p 6= q, 3 ·2l+1 < r ∈ Sp and s ∈ Sq, |r−s|> 2l+1. We enumerate, here again, Sq in a
strictly increasing way by {rqj | j∈ω}. We set, for l∈ω, jl :=3·2l+1+1 and, for A⊆ω,

NA :={rqjl+r | (q>0⇒q−1∈A) ∧ l∈ω ∧ −l≤r≤ l}.

Note that NA⊆ω. Let τ be a finer 0DMS topology on K0, and Bτ be a countable basis, made up of
clopen sets and closed under finite intersections, for τ . We set, for A⊆ω,

BτA :=Bτ ∪
{
C ∩ ({(01)∞ ·(01)∞} ∪

⋃
n∈

⋂
−p0≤r≤q0

(NA+r)∩ω {(01)∞1(01)n ·(01)∞} ∪⋃
n∈

⋂
−p1≤r≤q1

(NA+r)∩ω {(01)∞ ·(01)n+11(01)∞}) | C∈Bτ ∧ p0, q0, p1, q1∈ω
}
∪{

C ∩ ({(10)∞ ·(10)∞} ∪
⋃
n∈

⋂
−p0≤r≤q0

(NA+r)∩ω {(01)∞1(01)n0·(10)∞} ∪⋃
n∈

⋂
−p1≤r≤q1

(NA+r)∩ω {(10)∞ ·1(01)n1(01)∞}) | C∈Bτ ∧ p0, q0, p1, q1∈ω
}
.
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Lemma 11.2 Let A⊆ω and τ be in T . Then
(a) BτA is the basis for a 0DMS (0DP if τ is) topology tτA in T finer than τ ,

(b) the sequences
(
(01)∞1(01)

r0
jl ·(01)∞

)
l∈ω and

(
(01)∞·(01)

r0
jl

+1
1(01)∞

)
l∈ω are tτA-converging to

(01)∞ ·(01)∞, as well as
(
(01)∞1(01)

rq+1
jl ·(01)∞

)
l∈ω and

(
(01)∞ ·(01)

rq+1
jl

+1
1(01)∞

)
l∈ω if q∈A.

Proof. Note that BτA contains Bτ , is countable, and closed under finite intersections. Thus BτA is the
basis for a second countable topology tτA finer than τ . Moreover, BτA is made up of closed subsets of
K0, so that tτA is zero-dimensional. This shows that (K0, t

τ
A) is a 0DP space (see [K, 13.2 and 13.3])

if (K0, τ) is.

We apply the definitions of NA and BτA to see that (b) holds. Note then that(
(01)∞ ·(01)

r0
jl

+1
1(01)∞, (01)∞1(01)

r0
jl ·(01)∞

)
=
(
h
−2r0

jl
−2

0 (β0
0),h

2r0
jl

+1

0 (β0
0)
)
∈G

4r0
jl

+3

h0
.

Thus
(
(K0, t

τ
A), Gh0

)
has CCN at least three by (b) and Lemma 3.3.1. It remains to note that(

(K0, t
τ
A), Gh0

)
�c (K0, Gh0) to see that the CCN is three. Note that

h0[{(10)∞ ·(10)∞} ∪
⋃
n∈

⋂
−p0≤r≤q0

(NA+r)∩ω {(01)∞1(01)n0·(10)∞} ∪⋃
n∈

⋂
−p1≤r≤q1

(NA+r)∩ω {(10)∞ ·1(01)n1(01)∞}] =

{(01)∞ ·(01)∞} ∪
⋃
n∈

⋂
−p0≤r≤q0

(NA+r)∩ω {(01)∞1(01)n+1 ·(01)∞} ∪⋃
n∈

⋂
−p1≤r≤q1

(NA+r)∩ω {(01)∞ ·(01)n1(01)∞}

is equal, up to a finite open discrete set, to

{(01)∞ ·(01)∞} ∪
⋃
n∈

⋂
−p0+1≤r≤q0+1 (NA+r)∩ω {(01)∞1(01)n ·(01)∞} ∪⋃

n∈
⋂
−p1−1≤r≤q1−1 (NA+r)∩ω {(01)∞ ·(01)n+11(01)∞},

and thus tτA-open. We argue similarly with h−1
0 instead of h0, or with (01)∞ · (01)∞ instead of

(10)∞ ·(10)∞, to see that h0 is a homeomorphism as desired. �

Lemma 11.3 Let A,B⊆ω with A 6⊆B, τ be in T , and τ ′ be in T finer than τ . Then(
(K0, t

τ ′
A ), Gh0

)
6�ic
(
(K0, t

τ
B), Gh0

)
.

Proof. Towards a contradiction, suppose that there is ϕ : (K0, t
τ ′
A )→ (K0, t

τ
B). We define V :=ϕ[K0]

and E :=(ϕ×ϕ)[Gh0 ]. If z ∈Orbh0(β0), then
(
z, h0(z)

)
∈Gh0 since h0 is fixed point free, so that

ϕ
(
h0(z)

)
=h±1

0

(
ϕ(z)

)
. Thus ϕ[Orbh0(β0)]⊆Orbh0(β0) or ϕ[Orbh0(β0)]⊆Orbh0(α0). By injectiv-

ity of ϕ, the first case holds. As h2
0 is fixed point free on Orbh0(β0), either ϕ

(
h0(z)

)
=h0

(
ϕ(z)

)
for

each z ∈Orbh0(β0), or ϕ
(
h0(z)

)
=h−1

0

(
ϕ(z)

)
for each z ∈Orbh0(β0), by Lemma 5.6. Lemma 5.2

then implies that ϕ[Orbh0(β0)]=Orbh0

(
ϕ(β0)

)
. This provides n∈Z with ϕ(β0)=hn0 (β0). So either

ϕ
(
hi0(β0)

)
=hn+i

0 (β0) for each i∈Z, or ϕ
(
hi0(β0)

)
=hn−i0 (β0) for each i∈Z, by Lemma 5.2 again.

In particular, if q∈A\B and l∈ω, then

ϕ
(
(01)∞1(01)

rq+1
jl ·(01)∞

)
=ϕ
(
h

2rq+1
jl

+1

0 (β0)
)
∈{h

n+2rq+1
jl

+1

0 (β0), h
n−2rq+1

jl
−1

0 (β0)}

is tτB-converging to ϕ
(
(01)∞ ·(01)∞

)
, in {(01)∞ ·(01)∞, (10)∞ ·(10)∞} by injectivity of ϕ since

ϕ[Orbh0(β0)]=Orbh0(β0).
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Assume, for example, that ϕ
(
(01)∞ ·(01)∞)=(10)∞ ·(10)∞, the other case being similar. Then

{(10)∞ ·(10)∞} ∪
⋃
n∈NB {(01)∞1(01)n0·(10)∞} ∪

⋃
n∈NB {(10)∞ ·1(01)n1(01)∞}=

{(10)∞ ·(10)∞} ∪
⋃
n∈NB {h

2n+2
0 (β0

0), h−2n−1
0 (β0

0)}

is a tτB-neighborhood of ϕ
(
(01)∞ ·(01)∞

)
, and thus contains ϕ

(
(01)∞1(01)

rq+1
jl ·(01)∞

)
if l is large

enough.

The injectivity of h0 provides, for example, p∈B, k ∈ω and −k≤ r≤ k with the property that
n−2rq+1

jl
−1 = −2(rp+1

jk
+r)−1 if l is large enough (the other case is similar). This implies that

2|rq+1
jl
−rp+1

jk
|= |n+2r| ≤ |n|+2k, k goes to∞ as l goes to∞, and |rq+1

jl
−rp+1

jk
| ≤ 2k if l is large

enough. As q+1 6=p+1, this contradicts our choice of jk since |rq+1
jl
−rp+1

jk
|>2k+1>2k. �

Proof of Theorem 1.14. (a) We apply Theorem 1.15.

(b) Lemma 11.1 provides a finer 0DMS (resp., 0DP) topology τ on K0 such that h0 is a homeo-
morphism of (K0, τ), χc

(
(K0, τ), Gh0

)
≥ 3 and

(
(K0, τ), Gh0

)
�ic (S,Gf ). We apply Lemmas

11.2 and 11.3 to A := {2q | q ∈ ω}, B :={2q+1 | q∈ω}, and τ . As tτA, t
τ
B are finer than τ ,(

(K0, t
τ
A), Gh0

)
,
(
(K0, t

τ
B), Gh0

)
�ic
(
(K0, τ), Gh0

)
. As A 6⊆B,(

(K0, t
τ
A), Gh0

)
6�ic
(
(K0, t

τ
B), Gh0

)
and thus

(
(K0, τ), Gh0

)
6�ic
(
(K0, t

τ
B), Gh0

)
. This proves that

(
(K0, t

τ
B), Gh0

)
is strictly �ic-below(

(K0, τ), Gh0

)
, and also (S,Gf ).

Assume now, towards a contradiction, that there is a �ic-antichain basis B for a class in the state-
ment. By Theorem 1.15, (K0, Gh0) is in this class, which gives (S,Gf )∈B with the property that
(S,Gf ) �ic (K0, Gh0). The first part of this theorem provides a finer 0DMS (resp., 0DP) topology τ ′

on K0 with the properties that h0 is a homeomorphism of (K0, τ
′),
(
(K0, τ

′), Gh0

)
has CCN at least

three, and
(
(K0, τ

′), Gh0

)
is strictly �ic-below (S,Gf ), which is the desired contradiction.

For the size of the basis, towards a contradiction, suppose we can find κ<2ℵ0 and a basis (Bγ)γ<κ
for our class. Let (pn)n∈ω be the sequence of prime numbers. We define, for each α∈2ω, Sα⊆ω by

Sα :={pα(0)+1
0 . . . pα(n)+1

n | n∈ω}.

Note that Sα⊆ω is infinite, and Sα ∩ Sβ is finite if α 6=β. By Theorem 1.15, we can apply Lemma
11.2 to any Sα and the topology τ0 on K0, so that tτ0Sα is a 0DP topology in T . As κ< 2ℵ0 , we can
find γ < κ and α 6= β with Bγ �ic

(
(K0, t

τ0
Sα

), Gh0

)
,
(
(K0, t

τ0
Sβ

), Gh0

)
�ic (K0, Gh0). Lemma 11.1

provides a finer 0DMS (resp., 0DP) topology τ in T with
(
(K0, τ), Gh0

)
�ic Bγ . We can apply again

Lemma 11.2, to A :=ω and τ , so that tτω is a 0DMS (resp., 0DP) topology in T finer than τ , so that(
(K0, t

τ
ω), Gh0

)
�ic
(
(K0, τ), Gh0

)
�ic
(
(K0, t

τ0
Sα

), Gh0

)
. As Sβ is infinite, ω 6⊆ Sα. Lemma 11.3

then implies that
(
(K0, t

τ
ω), Gh0

)
6�ic
(
(K0, t

τ0
Sα

), Gh0

)
, which is the desired contradiction. �

We turn to the proof of Theorem 1.16(a). In fact, we prove something stronger since it is possible
to consider always the same graph, with different underlying 0DP spaces.

Proof of Theorem 1.16(a). We define, for A⊆ω,

KA :={εn+1(ε+1 mod 4)1∞ | ε∈4 ∧ n∈ω} ∪ {εn+1(ε−1 mod 4)0∞ | ε∈4 ∧ n∈ω} ∪
{ε∞ | ε∈5} ∪

⋃
n∈A {εn+2(ε+1 mod 4)s2∞ | ε∈4 ∧ s∈2n+1}.
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We then enumerate 2n+1 := {sn+1
i | i < 2n+1} ⊆ 2<ω and define a function hA :KA→KA by

hA(ε∞) :=(ε+1 mod 4)∞ if ε∈4, hA(4∞) :=01∞, hA(320∞) :=4∞,

hA(εn+1(ε+1 mod 4)1∞) :=(ε+1 mod 4)n+1(ε+2 mod 4)1∞

if ε 6= 3, hA(3n+101∞) := 0n+21∞, hA(εn+1(ε−1 mod 4)0∞) := (ε+1 mod 4)n+1ε0∞ if ε 6= 3, as
well as hA(3n+220∞) :=0n+130∞ on the one hand,

hA(εn+2(ε+1 mod 4)sn+1
i 2∞) :=(ε+1 mod 4)n+2(ε+2 mod 4)sn+1

i 2∞

if ε 6= 3, hA(3n+20sn+1
i 2∞) := 0n+21sn+1

i+1 mod 2n+12∞ on the other hand. In other words, KA is the
union of the hA-orbit {0∞, 1∞, 2∞, 3∞}, the orbit {4∞} ∪ {εn+1(ε±1 mod 4)η∞ | ε ∈ 2 ∧ n ∈
ω ∧ η ∈ 2} in the style of the infinite h0

0-orbit of K0
0 , and even cycles given by the elements of A.

The beginning of the proof of Theorem 1.15 shows that KA is a countable 0DMC space, hA is a
homeomorphism of KA, and (KA, GhA) has CCN three. If A ⊆ B, then KA ⊆KB , GhA ⊆ GhB ,
which implies that (KA, GhA) �ic (KB, GhB ). If A 6⊆B, then let n∈A\B. Note that (KA, GhA) 6�ic
(KB, GhB ) because (KA, GhA) has a cycle of length 4·2n+1 and (KB, GhB ) does not. �

As announced in the introduction, one can check that the σ|Σ’s appearing in the statement of
Theorem 1.15 are expansive, which leaves the question of infinite Cantor Bendixson ranks uncertain.

Remark. By [K, 33.B], the set Kℵ0(2ω) of countable compact subsets of 2ω is Π1
1-complete. By

[K, 34.18(3)], the Cantor-Bendixson rank | · |CB is a co-analytic rank on Kℵ0(2ω). Thus the map
r : (X, f) 7→ |X|CB defines a co-analytic rank on P ∩

(
Kℵ0(2ω)×H(2ω)

)
(P was defined before

Theorem 1.12). By [K, 35.23], | · |CB has to be unbounded. Thus r is unbounded, which implies
that the co-analytic set P ∩

(
Kℵ0(2ω)×H(2ω)

)
is not Borel, by [K, 35.23] again. By [K, 34.2],

(X, f) 7→ |X|CB also defines a co-analytic rank on Oℵ0
2 :=O2 ∩

(
Kℵ0(2ω)×H(2ω)

)
. Theorem 1.15

implies that the co-analytic subset Oℵ0
2 of P is not Borel. This set is in fact Π1

1-complete. Indeed,
define {si | i∈3} :={02, 10, 12}, f0∈H(2ω) by f0(0α) :=0α, f0(1sα) :=1sα if s∈22\{si | i∈3},
and f0(1siα) := 1si+1 mod 3α. The map X 7→ ({0α | α∈X} ∪ {1si0∞ | i∈ 3}, f0) is a continuous
reduction of Kℵ0(2ω) to Oℵ0

2 , by [K, 4.29] and since Gf0 contains the 3-cycle {1si0∞ | i∈3}.

12 The classes Gκ

We consider, for κ≤3,

- the class Gκ of graphs induced by a homeomorphism of a 0DMC space with CCN strictly bigger
than κ,

- the class Hκ of homeomorphisms of 2ω whose induced graph has CCN strictly bigger than κ.

Proof of Theorem 1.11. (a) The CCN is strictly bigger than 0 if and only if the space is not empty.

(b) The CCN is strictly bigger than 1 if and only if the graph is not empty.

(c) By Theorem 1.13, any �ic-basis for G2 must have size continuum.

(d) We apply Proposition 7.4(b).

For the well-foundedness, fix n ∈ ω. We enumerate the set of finite binary sequences 2n+1 by
{si | i<2n+1}, so that N0n1 =N0n10 ∪

⋃
i<2n+1 N0n12si .

67



We consider the map cn onN0n1 defined by cn(0n10α) :=0n12s0α, cn(0n12siα) :=0n12si+1α if
i<2n+1−1, and cn(0n12s2n+1−1α) :=0n10α. Note that cn is a homeomorphism, c2n+1+1

n = IdN0n1
,

and cin(β) 6= β if i ≤ 2n+1. Moreover, the function hp : 2ω → 2ω, defined by hp(β) := β if β is
in {0∞} ∪

⋃
n<p N0n1 and hp(β) := cn(β) if n ≥ p and β ∈ N0n1, is a homeomorphism whose

set {0∞} ∪
⋃
n<p N0n1 of fixed points is not open. By Proposition 7.2, χc(2ω, Ghp) = 2ℵ0 , so that

(2ω, Ghp) is in all the Gκ’s. As Ghp+1⊆Ghp , (2ω, Ghp+1) �ic (2ω, Ghp). As Ghp contains a cycle of
length 2p+1 + 1 and all the cycles in Ghp+1 have length at least 2p+2 + 1, (2ω, Ghp) 6�c (2ω, Ghp+1).

Theorem 1.13 provides �c-antichains of size continuum in Gκ if κ≤2. For G3, we use again the
cn’s. Let (Sα)α∈2ω be as in the proof of Theorem 9.4. The map hα : 2ω→2ω, defined by hα(β) :=β
if β∈{0∞} ∪

⋃
n/∈Sα N0n1 and hα(β) :=cn(β) if n∈Sα and β∈N0n1, is a homeomorphism whose

set of fixed points {0∞} ∪
⋃
n/∈Sα N0n1 is not open. By Proposition 7.2, χc(2ω, Ghα) =2ℵ0 , so that

(2ω, Ghα) is in all the Gκ’s. If α 6=β, then there is n∈Sα\Sβ , so that Ghα contains a cycle of length
2n+1 + 1, which is not the case of Ghβ . Thus (2ω, Ghα) 6�ic (2ω, Ghβ ). �

We can also evaluate the descriptive complexity of Gκ and Hκ. Let H(2ω) be the set of homeo-
morphisms of 2ω. We equipH(2ω) with the topology whose basic open sets are of the form

OU1,...,Un,V1,...,Vn :={f ∈H(2ω) | ∀1≤ i≤n f [Ui]=Vi},

where n is a natural number and Ui, Vi are clopen subsets of 2ω. By [I-Me, Section 2], this defines a
structure of Polish group onH(2ω). A compatible complete distance is given by

d(f, g) :=supα∈2ω d2ω
(
f(α), g(α)

)
+supα∈2ω d2ω

(
f−1(α), g−1(α)

)
.

Lemma 12.1 The map f 7→Graph(f) fromH(2ω) into K(2ω×2ω) is continuous.

Proof. If O 6= ∅ is an open subset of 2ω×2ω, and (sn)n∈ω, (tn)n∈ω are sequences of finite binary
sequences with O=

⋃
n∈ω (Nsn×Ntn), then

Graph(f)⊆O ⇔ ∃F ⊆ω finite with Graph(f)⊆UF :=
⋃
n∈F

(Nsn×Ntn).

If Graph(f)⊆UF , l := maxn∈F |tn| and d(f, g)< 2−l, then Graph(g)⊆UF , which proves that
{f ∈H(2ω) | Graph(f)⊆O} is open. Now

Graph(f) ∩O 6=∅ ⇔ ∃n∈ω Graph(f) ∩ (Nsn×Ntn) 6=∅ ⇔ ∃n∈ω ∃α∈Nsn f(α)∈Ntn ,

so that {f ∈H(2ω) | Graph(f) ∩O 6=∅} is open. �

Lemma 12.2 The map f 7→ F f1 from H(2ω) into K(2ω) is Baire class one and not continuous. In
fact, {f ∈H(2ω) | F f1 ⊆U} is open for each open subset U of 2ω.

Proof. If U is an open subset of 2ω, then F f1 ⊆ U ⇔ Graph(f) ⊆ ¬∆(2ω \U). This implies that
{f ∈ H(2ω) | F f1 ⊆ U} is open by Lemma 12.1. If now U =

⋃
n∈ω Nsn is not empty, then

F f1 ∩ U 6=∅ ⇔ ∃n∈ω Graph(f) 6⊆¬∆(Nsn), so that {f ∈H(2ω) | F f1 ∩ U 6=∅} is Σ0
2. This last set

is not open ifU=2ω since it contains Id, which is the limit of gn defined by gn(α)(p)=α(p)⇔ p≤n.
This finishes the proof. �
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Notation. We define a family (hs)s∈ω<ω of functions from 2ω into itself as follows. If s∈ω<ω, then
we set s(−1) :=0.

- If |s| is even, then we set hs(0∞) :=0∞,

hs(0
(Σi<j (s(2i)+1))+p1tεα) :=0(Σi<j (s(2i)+1))+p1t(1−ε)α

if j< |s|2 , p≤s(2j), t∈2s(2j−1), ε∈2 and α∈2ω, and

hs(0
(Σ
i<
|s|
2

(s(2i)+1))+p
1tεα) :=0

(Σ
i<
|s|
2

(s(2i)+1))+p
1t(1−ε)α

if p∈ω, t∈2s(|s|−1), ε∈2 and α∈2ω.

- If |s| is odd, then we set

hs(0
(Σi<j (s(2i)+1))+p1tεα) :=0(Σi<j (s(2i)+1))+p1t(1−ε)α

if j≤ |s|−1
2 , p≤s(2j), t∈2s(2j−1), ε∈2 and α∈2ω, and

hs(0
Σ
i≤|s|−1

2

(s(2i)+1)
α) :=0

Σ
i≤|s|−1

2

(s(2i)+1)
α

if α∈2ω.

Lemma 12.3 The hs’s are continuous involutions, χc(2ω, Ghs) = 2ℵ0 if |s| is even, χc(2ω, Ghs) = 2
if |s| is odd, and (hsn)n∈ω converges to hs inH(2ω).

Proof. Note that hs is a continuous involution, and thus a homeomorphism. If |s| is even, then
0∞ is the only fixed point of the map hs, so that χc(2ω, Ghs) = 2ℵ0 by Proposition 7.2. If |s|
is odd, then F hs1 = N

0
Σ
i≤|s|−1

2

(s(2i)+1) is a clopen subset of 2ω. By Corollaries 7.3(a) and 8.2,

χc(2
ω, Ghs) ∈ {2, 3}. By Corollary 7.3(b) and Proposition 7.5, χc(2ω, Ghs) = 2. Note that the

inequality supα∈2ω d2ω
(
hsn(α), hs(α)

)
<2−n holds. We are done since the hs’s are involutions. �

Lemma 12.4 The map (K, f) 7→ f [K] from K(2ω)×C(2ω, 2ω) into K(2ω) is continuous. This is
also the case if we replace C(2ω, 2ω) with H(2ω), 2ω with K2∞ . The map (K, f) 7→ (f×f)[K] from
K(2ω×2ω)×C(2ω, 2ω) into K(2ω×2ω) is also continuous.

Proof. Let O 6=∅ be an open subset of 2ω, and (sn)n∈ω be a sequence of finite binary sequences with
O=

⋃
n∈ω Nsn . Note that

f [K]⊆O⇔ ∃F ⊆ω finite with f [K]⊆
⋃
n∈F Nsn

⇔ ∃F ⊆ω finite ∃C∈∆0
1(2ω) K⊆C ∧ C⊆f−1(

⋃
n∈F Nsn).

Let lF :=maxn∈F |sn|. If supα∈2ω d2ω
(
f(α), g(α)

)
<2−lF and C⊆f−1(

⋃
n∈F Nsn), then

C⊆g−1(
⋃
n∈F

Nsn),

so that {(K, f) ∈ K(2ω)×C(2ω, 2ω) | K ⊆ C ∧ C ⊆ f−1(
⋃
n∈F Nsn)} is open. This shows that

{(K, f)∈K(2ω)×C(2ω, 2ω) | f [K]⊆O} is open (even if O is empty).
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Now
f [K] ∩O 6=∅ ⇔ ∃n∈ω f [K] ∩Nsn 6=∅

⇔ ∃n∈ω ∃C∈∆0
1(2ω) K ∩ C 6=∅ ∧ C⊆f−1(Nsn),

so that {(K, f)∈K(2ω)×C(2ω, 2ω) | f [K] ∩O 6=∅} is open. �

Theorem 12.5 H0 =H(2ω), H1 is a Σ0
1\Π0

1 subset of H(2ω), while H2,H3 are Π0
2\Σ0

2 subsets of
H(2ω).

Proof. We may restrict our attention to H2,H3 since H1 =H(2ω)\{Id}. Fix now κ < ω. Note that
χc(2

ω, Gf )≤κ holds if and only if

∃(Ci)i<κ∈∆0
1(2ω)κ (∀i 6=j<κ Ci ∩ Cj =∅) ∧ (2ω⊆

⋃
i<κ

Ci) ∧ (∀i<κ Gf ∩ C2
i =∅).

As κ is finite and ∆0
1(2ω) is countable, ∆0

1(2ω)κ is countable. So we can restrict our attention to

Gf ∩ C2
i =∅ ⇔ 2ω⊆(2ω\Ci) ∪ f−1(2ω\Ci) ∪ F f1

⇔ ¬(∃C∈∆0
1(2ω)\{∅} (2ω\Ci) ∪ f−1(2ω\Ci) ∪ F f1 ⊆2ω\C).

By Lemmas 12.4 and 12.2, H(2ω)\Hκ is a Σ0
2 subset of H(2ω). In particular, H2,H3 are Π0

2. It
remains to see that H2,H3 are not Σ0

2. We will use the family (hs)s∈ω<ω defined before Lemma 12.3.
We set P := {hs | s ∈ ω<ω}, so that P is a Polish space. Note that H3 ∩ P ⊆H2 ∩ P are dense and
co-dense Π0

2 subsets of P , by Lemma 12.3. By Baire’s theorem, H2,H3 are not Σ0
2. �

We next turn to the Gκ’s.

Proof of Theorem 1.12. Note that f [X] =X ⇔ f [X]⊆X ∧ f−1[X]⊆X . By Lemma 12.4 and [K,
4.29], P is a closed subset of the Polish space K(2ω)×H(2ω), and thus a Polish space. Note also that
O0 =P\

(
{∅}×H(2ω)

)
is a clopen subset of P since ∅ is an isolated point in K(2ω).

Note that χc(X,Gf|X ) ≤ 1 ⇔ X ⊆ F f1 , i.e., f|X = Id|X . Let
(
(Xn, hn)

)
n∈ω be a sequence of

elements of P\O1 converging to a point (X,h) of P . As χc(Xn, G(hn)|Xn
)≤ 1, (hn)|Xn = Id|Xn .

Assume, towards a contradiction, that h|X 6= Id|X . This gives α ∈ X with h(α) 6= α, l ∈ ω such
that h(α)|l 6= α|l, and L ≥ l such that g(β)|l = h(α)|l 6= α|l = β|l if β ∈Nα|L and d(g, h) < 2−L.
As α ∈ X ∩ Nα|L, Xn ∩ Nα|L 6= ∅ and d(hn, h) < 2−L if n is large enough. We pick, for such
a n, β ∈ Xn ∩ Nα|L, so that hn(β)|l 6= β|l, contradicting (hn)|Xn = Id|Xn . This shows that O1 is
open. We define, for n ∈ ω, a map gn : 2ω → 2ω by gn(0∞) := 0∞, gn(0p1α) := 0p1α if p < 2n,
and gn(02p+ε1α) := 02p+(1−ε)1α if p≥ n and ε∈ 2, so that gn is a continuous involution whose set
of fixed points {0∞} ∪

⋃
p<2n N0p1 is not open. By Proposition 7.2, χc(2ω, Ggn) = 2ℵ0 . As the

sequence (gn) converges inH(2ω) to Id, O1 is not closed. Thus O1 is Σ0
1-complete, by [K, 22.11].

Fix now κ<ω. Note that, by [E, Theorem 2.1(1)],

χc(X,Gf|X )≤κ⇔ ∃(Ci)i<κ∈∆0
1(X)κ (∀i 6=j<κ Ci ∩ Cj =∅) ∧ (X⊆

⋃
i<κ Ci)∧

(∀i<κ Gf ∩ C2
i =∅)

⇔ ∃(Ci)i<κ∈∆0
1(2ω)κ (∀i 6=j<κ Ci ∩ Cj =∅) ∧ (2ω⊆

⋃
i<κ Ci)∧

(∀i<κ Gf ∩ (X ∩ Ci)2 =∅).
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As κ is finite and ∆0
1(2ω) is countable, ∆0

1(2ω)κ is countable. So we can restrict our attention to

Gf ∩ (X ∩ Ci)2 =∅ ⇔ X⊆(2ω\Ci) ∪ f−1(2ω\Ci) ∪ F f1
⇔ ¬(∃C∈∆0

1(2ω) X ∩ C 6=∅ ∧ (2ω\Ci) ∪ f−1(2ω\Ci) ∪ F f1 ⊆2ω\C).

By Lemmas 12.4 and 12.2, P \Oκ is a Σ0
2 subset of P . In particular, the sets O2,O3 are Π0

2. As
(Oκ)2ω = Hκ, O2,O3 are not Σ0

2 by Theorem 12.5. Thus O2,O3 are Π0
2-complete, by [K, 22.11].

The Π1
1-completeness of Oℵ0

2 was proved at the very end of Section 11. �

13 Equivalence relations

Lemma 7.11 and Corollary 5.10 imply that FCO is Borel reducible to different versions of ≡ic.
Notation. We set M := {f ∈H(2ω) | f is minimal}. By [Me, Lemma 4.1], the set M is a Gδ subset
of H(2ω), and thus a Polish space. If f, g ∈M, then f, g are flip-conjugate if and only if there is
ϕ∈H(2ω) with ϕ◦f=g◦ϕ or ϕ◦f=g−1◦ϕ, proving that FCO is analytic. Similarly, CO is analytic.

We first consider the case of graphs induced by a function. As in the introduction, we consider
the equivalence relation ≡ic := �ic ∩ (�ic)−1 on Sm associated with

(2ω,K) �ic (2ω,K ′)⇔ ∃ϕ :2ω→2ω injective continuous with K⊆(ϕ×ϕ)−1(K ′).

We define a map g :M→Sm by g(f) :=(2ω, Gf ) (see Theorem 8.1).

Theorem 13.1 The equivalence relation ≡ic on the Polish space Sm is analytic, and g reduces con-
tinuously FCO to ≡ic. Moreover, the vertices of the graph g(f) have degree two, for each f ∈M.

Proof. By Lemma 7.11, g reduces FCO to ≡ic. Let O be an open subset of 2ω×2ω, and (C0
n)n∈ω,

(C1
n)n∈ω be sequences of clopen subsets of 2ω with O =

⋃
n∈ω (C0

n×C1
n). If f ∈M and Gf ⊆O,

then there is a finite subset F of ω with Gf = s
(
Graph(f)

)
⊆
⋃
n∈F (C0

n×C1
n). Note then that⋃

n∈F (C0
n×C1

n)=
⋃
S⊆F

(
(
⋂
n∈S C0

n ∩
⋂
n∈F\S 2ω\C0

n)×(
⋃
n∈S C1

n)
)
. Thus

Graph(f)⊆
⋃
n∈F (C0

n×C1
n)⇔ ∀S⊆F f [

⋂
n∈S C0

n ∩
⋂
n∈F\S 2ω\C0

n]⊆
⋃
n∈S C1

n

⇔ ∀S⊆F ∃Rn∈∆0
1(2ω)

f [
⋂
n∈S C0

n ∩
⋂
n∈F\S 2ω\C0

n]=Rn⊆
⋃
n∈S C1

n.

This implies that {f ∈M | Gf ⊆O} is an open subset of M since

Gf ⊆O ⇔ ∃F ⊆ω finite with Graph(f)⊆
⋂
ε∈2

( ⋃
n∈F

(Cεn×C1−ε
n )

)
.

Now Gf ∩ O 6=∅ ⇔ ∃n∈ω ∃ε∈2 Cεn ∩ f−1(C1−ε
n ) 6=∅ ⇔ ∃n∈ω ∃ε∈2 ∃α∈Cεn f(α)∈C1−ε

n ,
so that {f ∈M | Gf ∩O 6=∅} is an open subset of M. Thus g is continuous.

Note that (2ω,K)∈Sm if and only if

K ∩∆(2ω)=∅ ∧K 6=∅ ∧ ∃(Ci)i<3∈
(
∆0

1(2ω)
)3

2ω⊆
⋃
i<3 Ci ∧ ∀i 6=j<3 Ci ∩ Cj =∅ ∧

K ∩ (
⋃
i<3 C

2
i )=∅,

so that Sm is an open subset of {2ω}×K(2ω×2ω) and thus a Polish space.
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Note then that ϕ : 2ω→2ω is injective if and only if ϕ[O ∩ U ]=ϕ[O] ∩ ϕ[U ] whenever O,U are
clopen subsets of 2ω. By Lemma 12.4, and [K, 4.19, 4.29, 27.7], �ic and thus ≡ic are analytic. �

Notation. We now consider the case of general graphs, and we can ensure that the reduction map
associates graphs of continuous chromatic number at least three instead of two or three. Recall that
K2∞ := (2 ∪ {c, a, a})ω. As K2∞ 6= ∅ is a perfect 0DMC space, it is homeomorphic to 2ω via a map
i, by [K, 7.4]. We equip K(K2∞) with the Vietoris topology, so that K(K2∞) is a metrizable compact
space, by [K, 4.26]. By [K, 4.29], the map K 7→ i[K] defines a homeomorphism from K(K2∞) onto
K(2ω). We set Q :=

{
x∈K2∞ | ∃l∈ω ∃ε∈{a, a} ∀k≥ l x(k) = ε

}
. Note that Q is countable, as

well as Q := i[Q]. We set Sg :={(K,R)∈K(2ω)×2Q
2 | R⊆K2\∆(K) ∧ χc(K,R)≥3} and equip

2Q
2

with the product topology of the discrete topology on 2, so that

{(K,R)∈K(2ω)×2Q
2 | R⊆K2\∆(K)}

is a metrizable compact space.

We consider the equivalence relation ≡ic on Sg associated with

(K,R) �ic (K ′, R′)⇔ ∃ϕ :K→K ′ injective continuous with R⊆(ϕ×ϕ)−1(R′).

We equip 2Q
2

with the product topology of the discrete topology on 2, so that 2Q
2

is homeomorphic
to 2ω. The map R 7→ (i× i)[R] defines a homeomorphism from 2Q

2
onto 2Q

2
, and the equality

i[K]=proj
[
(i×i)[s(R)]

]
holds ifK=proj[s(R)]. Moreover, (K,R) ≡ic (i[K], (i×i)[R]). We define

a map G :M→Sg by G(f) :=
(
proj

[
(i×i)[Gf ]

]
, (i×i)[Gf ]

)
(see Lemma 5.1).

Theorem 13.2 The equivalence relation ≡ic on the Polish space Sg is analytic, and G Borel reduces
FCO to ≡ic. Moreover, the vertices of the graph G(f) have degree at most one, for each f ∈M.

Proof. As (K,R) ≡ic (i[K], (i×i)[R]), we may replace 2ω and Q with K2∞ and Q respectively. By
Corollary 5.10, G reduces FCO to ≡ic since C+ =proj[Gf ]. Note that, for each i∈Z, the map f 7→f i

defined onH(2ω) is continuous sinceH(2ω) is a topological group. Note also that the evaluation map
(f, α) 7→ f(α) is continuous since d2ω

(
f(α), f0(α0)

)
≤d(f, f0)+d2ω

(
f0(α), f0(α0)

)
. This implies

that the map from M into (2ω)Z defined by f 7→
(
f i(0∞)

)
i∈Z is continuous. Here we only consider

d := 2∞. Recall from the notation before Lemma 5.9 that L2m :=R2m+1 := ζ(m). The map from
(2ω)Z into 2Q

2
associating

s
(
{(cl+1aa∞, γLl |(l+1)aa∞) | l∈ω} ∪

{(γLl+i|(l+1)ai+1a∞, γLl+i+1|(l+1)ai+2a∞) | l∈ω ∧ i≤2l} ∪
{(γRl |(l+1)a2l+2a∞, cl+1aa∞) | l∈ω}

)
to (γi)i∈Z is continuous, as well as f 7→Gf . The map from 2Q

2
into 2Q defined by R 7→proj[s(R)] is

Baire class one. The map from 2Q into K(K2∞) defined by S 7→S is Borel, by [K, 12.11]. Thus G is
Borel.

Note that, by [E, Theorem 2.1(1)],

χc(K,R)≤2⇔ ∃C∈∆0
1(K) R ∩ C2 =R ∩ (K\C)2 =∅

⇔ ∃C∈∆0
1(2ω) R ∩ C2 =R ∩ (2ω\C)2 =∅

if R⊆K2, so that Sg is a Gδ subset of {(K,R)∈K(2ω)×2Q
2 | R⊆K2\∆(K)} and thus a Polish

space.
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If (K,G), (L,H)∈Sg, then (K,G) �ic (L,H) holds if and only if there is ϕ :K→L injective
continuous such that

(
ϕ(x), ϕ(y)

)
∈H if (x, y) ∈G. By [K, 2.8], this holds if and only if there is

ψ :K2∞→K2∞ continuous such that ψ[K]⊆L, ψ|K is injective, and
(
ψ(x), ψ(y)

)
∈H if (x, y)∈G.

Note that ψ|K is injective if and only if ψ[O ∩ U ∩K] =ψ[O ∩K] ∩ ψ[U ∩K] whenever O,U are
clopen subsets of K2∞ . We conclude as in the proof of Theorem 13.1 to see that ≡ic is analytic. �

Remark. As mentioned in the introduction, using oriented graphs instead of graphs, one can prove
that CO is Borel reducible to ≡ic. In that case, the proof also works in the case of dynamical systems
involving continuous maps instead of homeomorphisms, considering forward orbits instead of orbits.

14 Digraphs and oriented graphs

14.1 General digraphs

We start with a version of Theorem 1.4 for digraphs.

Theorem 14.1.1 We can find a concrete family
(
(Kα,Dα)

)
α∈2ω

, where Kα is a compact subset of
2ω and Dα is a countable digraph on Kα, such that, for any 0DMC space X and any digraph D on
X , exactly one of the following holds:
(1) D has CCN at most two,
(2) we can find α∈2ω and ϕ :Kα→X injective continuous such that Dα⊆(ϕ×ϕ)−1(D).

In other words,
(
(Kα,Dα)

)
α∈2ω

is a �ic-basis (and thus a �c-basis) for the class of digraphs on
a 0DMC space with CCN at least three.

Proof. We define, for (γ, δ)∈I×2{(k,i)∈ω
2|i≤2k}, a countable relation Dγ,δ on 2ω by

Dγ,δ :=
{(
γ
δ(k,i)
k (i), γ

1−δ(k,i)
k (i)

)
| k∈ω ∧ i≤ 2k

}
,

so that s(Dγ,δ)=Gγ and Dγ,δ is a digraph on Kγ,δ :=Kγ . By Proposition 3.1.1, χc(Kγ ,Gγ)≥3. As
s(Dγ,δ)=Gγ , χc(Kγ ,Dγ,δ)≥3 as well. It will be convenient to replace 2ω with I×2{(k,i)∈ω

2|i≤2k}.
We just proved that (1) and (2) cannot hold simultaneously.

Assume that (1) does not hold. Then χc
(
X, s(D)

)
≥ 3. Theorem 1.4 provides γ ∈ I with

(Kγ ,Gγ) �ic
(
X, s(D)

)
, with witness say ϕ. Let D := Gγ ∩ (ϕ×ϕ)−1(D). Note that s(D) = Gγ ,

which gives δ∈2{(k,i)∈ω
2|i≤2k} with Dγ,δ⊆D. �

Considering the Dα’s which are oriented graphs, and using the fact that a digraph �ic-below an
oriented graph is also an oriented graph, we get a (less concrete) basis for oriented graphs.

Corollary 14.1.2 We can find a �ic-basis (and thus a �c-basis) of size at most continuum, made up
of countable oriented graphs, for the class of oriented graphs on a 0DMC space with CCN at least
three.

By Theorem 1.5, any �ic-basis for the class of digraphs on a 0DMC space with CCN at least
three must have size at least continuum. We will see that the�ic-basis given by Corollary 14.1.2 must
also have size exactly the continuum later. The second basis given by Theorem 3.2.4 also provides a
second basis for digraphs, which is also a basis for oriented graphs, more concrete than the first one
we just met.
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Theorem 14.1.3 We can find a concrete �c-basis of size continuum, made up of countable oriented
graphs, for the class of digraphs on a 0DMC space with CCN at least three.

Proof. We adapt the proof of Theorem 3.2.4. We set

Jo :={(β, α)∈J ×(2<ω)ω | ∀l∈ω |α(l)|=λl+1}.

and J co :=Jo ∩
(
J c×(2<ω)ω

)
. We also set, for x, y∈Kd and ε∈2,

(x, y)ε :=

{
(x, y) if ε=0,
(y, x) if ε=1.

We then define, for (β, α)∈Jo, a countable digraph Dβ,α on Kd by

Dβ,α :={(cl+1aa∞, sl(0)aa∞)α(l)(0) | l∈ω} ∪
{(sl(i)ai+1a∞, sl(i+1)ai+2a∞)α(l)(i+1) | l∈ω ∧ i≤λl−2} ∪

{(sl(λl−1)aλla∞, cl+1aa∞)α(l)(λl) | l∈ω},

so that s(Dβ,α) = Gβ and Dβ,α is an oriented graph on Kβ . By Lemma 3.2.1, χc(Kβ,Gβ)≥ 3. As
s(Dβ,α)=Gβ , χc(Kβ,Dβ,α)≥3 as well. By Theorem 14.1.1, it is enough to prove that if (γ, δ) is in
I×2{(k,i)∈ω

2|i≤2k}, then we can find (β, α)∈J co (for d = 2∞) such that (Kβ,Dβ,α) �c (Kγ ,Dγ,δ).
We first define β′ as in the proof of Theorem 3.2.4, and define α′ ∈ (2<ω)ω by α′(q)(i) :=δ(kq, i)
if q ∈ ω and i≤ λ′q. Then (β′, α′) ∈ Jo, and (Kβ′ ,Dβ′,α′) �c (Kγ ,Dγ,δ), by the proof of Theorem
3.2.4. We then define β as in the proof of Theorem 3.2.4, and define α ∈ (2<ω)ω by the formula
α(l)(i) :=α′(q2l+2

0 )(i) if l∈ω and i≤ λl. Then (β, α)∈J co and the proof of Theorem 3.2.4 shows
that (Kβ,Dβ,α) �ic (K′β,Dβ′,α′). �

In order to prove that the basis given by Corollary 14.1.2 has size exactly continuum, we prove
the following oriented version of Theorem 6.4.

Theorem 14.1.4 Let d∈D, V be a compact subspace of C+, and E⊆Oo ∩ V 2 having CCN three.
Then (C+,Oo) �ic (V,E).

Proof. We essentially copy the proof of Theorem 6.4, replacing E with s(E) under the closure sym-
bols, and using the fact that E⊆Oo. �

We are now ready to prove a version of Theorem 1.5 for oriented graphs.

Theorem 14.1.5 There is a �c-antichain (and thus �ic-antichain)
(
(Kα,Oα)

)
α∈2ω

, where
(a) Kα is a 0DMC space,
(b) Oα is a countableD2(Π0

1) oriented graph on Kα with CCN three and Σ0
1⊕Π0

1 chromatic number
two, and whose vertices have degree at most one,
(c) (Kα,Oα) is �ic-minimal in the class of digraphs on a 0DMC space with CCN at least three.

In particular, any �ic-basis for the class of digraphs (or oriented graphs) on a 0DMC space with
CCN at least three. must have size at least continuum.
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Proof. Fix d ∈ D. By Proposition 6.1, (C+,Go) has CCN three and Σ0
1 ⊕ Π0

1 chromatic num-
ber two. As s(Oo) = Go, this is also the case of (C+,Oo). We check that Oα is D2(Π0

1) as in
the proof of Lemma 3.2.2, so that (a) and (b) hold. For (c), i.e., the minimality of (C+,Oo), we
first note that the proof of Lemma 6.7 works for digraphs instead of graphs. We then apply Theo-
rem 14.1.4. (C+

Φ(α),GoΦ(α)
) 6�c (C+

Φ(β),GoΦ(β)
) if α 6= β, by Theorem 6.6. As s(Oo) = Go again,

(C+
Φ(α),OoΦ(α)

) 6�c (C+
Φ(β),OoΦ(β)

). �

Replacing Gp=s(Op) with Op, we get a version of Theorem 1.6 for oriented graphs in a straight-
forward way. This kind of argument will be used several times in the sequel, and we will not always
repeat it.

Our version of Theorem 1.8 for digraphs and oriented graphs is as follows.

Theorem 14.1.6 Let D be a digraph on a 0DMS space Z, with CCN at least three and satisfying
(Z,D) �ic (P,Om). Then there is a family

(
(Pα, Oα)

)
α∈2ω

of oriented graphs on a 0DP space with
CCN three, �ic-below (Z,D), and pairwise �ic-incompatible in the class of digraphs on a 0DMS
space with CCN at least three.

In particular, there is no �ic-antichain basis in the class of digraphs (or oriented graphs) on a
0DMS (or 0DP) space with CCN at least three, and any �ic–basis for one of these classes must have
size at least continuum.

Proof. Note first that we can modify Lemma 4.2 as follows. Let δ ∈ 2ω, and D be a digraph on a
0DMS space Z, with CCN at least three and satisfying (Z,D) �ic (Pδ,Oδ). Then there is δ′ ∈ P∞
such that {k∈ω | δ′(k)=1}⊆{k∈ω | δ(k)=1} and (Pδ′ ,Oδ′) �ic (Z,D). We complete the proof
of Lemma 4.2 as follows. We set G := s(D), so that G is a graph on Z with CCN at least three and
(Z,G) �ic (Pδ,Gδ). We then set R :=(ϕ×ϕ)[D], so that s(R)=E. We can then follow the proof of
Lemma 4.2. For the conditions (b)-(d), the couples are not only in s(R), but also in R since R⊆Oδ

and thus R−1⊆O−1
δ . So we can replace E with R after the first line of the proof, which implies that

(Pδ′ ,Oδ′) �ic (Z,D).

The version of Lemma 4.3 for oriented graphs is straightforward, and we then follow the proof of
Theorem 1.8 to conclude. �

Our version of Theorem 1.9 for digraphs and oriented graphs is as follows.

Theorem 14.1.7 There is a countable oriented graph (3ω,O) in the class of digraphs on a 0DMC
space with CCN at least three such that, for each (K,G) in this class satisfying (K,D) �ic (3ω,O),
there is a �ic-antichain

(
(3ω, Oα)

)
α∈2ω

of oriented graphs with CCN three and �ic-below (K,D). In
particular, there is no�ic-antichain basis in this class (or the corresponding one for oriented graphs).

Proof. We just have to follow the proof of Theorem 1.9. The oriented graphs O :=Graph(o|DSω ) and
Oα :=Gα ∩ Graph(o) are convenient since s(O)=G and s(Oα)=Gα. �

We can prove a version of Theorem 1.16 for oriented graphs in a straightforward way. A straight-
forward modification of Section 5 gives the following version of Corollary 5.10 for oriented graphs.
In order to do that, we replace Gfd with Ofd in the definition of continuous tuples.

Theorem 14.1.8 Let d,d′ ∈ C, fd : Cd → Cd, fd′ : Cd′ → Cd′ be minimal homeomorphisms, and
(nl)l∈ω, (Ll)l∈ω, (Rl)l∈ω defined before Lemma 5.9. Then (C+

d ,Ofd) ≡ic (C+
d′ ,Ofd′ ) if and only if

fd, fd′ are conjugate.
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A straightforward modification of the proof of Proposition 7.4(b) gives the following result. We
set O1 :=Graph(f0)\{(0∞, 0∞)}.

Proposition 14.1.9 {(X1,O1), (X1,O−1
1 ), (X1,R1)} is a�ic-antichain basis for the class of digraphs

on a 0DMS space with uncountable CCN.

Our version of Proposition 7.6 for digraphs and oriented graphs is as follows.

Proposition 14.1.10 (X1,R1) is �ic-minimal, but not �c-minimal, in the class of digraphs (or ori-
ented graphs) on a 0DMC space with CCN at least three.

Proof. We follow the proof of Proposition 7.6 since s(R1)=Gf1 . For �c, we work with the oriented
graph {(ε2p+1(ε+)∞, (ε+)2p+2

(
(ε+)+

)∞
) | ε∈3 ∧ p∈ω}. �

14.2 Digraphs induced by a partial function

Notation. If f : Domain(f)⊆X→Range(f)⊆X is a partial function, then the digraph induced by
f is Df := Graph(f)\∆(X). Note that Gf = s(Df ), which gives versions of Proposition 7.2 and
Corollary 7.3 with Df instead of Gf in a straightforward way.

We also have the following versions of Theorem 7.7 for digraphs and oriented graphs.

Theorem 14.2.1 There is no �ic-antichain basis for the class of digraphs (or oriented graphs) in-
duced by a partial homeomorphism on a 0DMS (or 0DP) space with CCN at least three. In fact, we
can even restrict this class to the case where the spaces are countable Polish and the functions are
fixed point free with open domain.

Proof. We follow the proof of Theorem 7.7. We restrict fδ to

Dδ :=
{
x∈proj[Gδ] | ∃n∈ω x(n)=a ∧ x|n∈(ω ∪ {c})n

}
,

so that Oδ=Graph(fδ |Dδ) is an oriented graph. We then work with the (Pδ,Oδ)’s since Gδ :=s(Oδ),
applying Theorem 14.1.6. �

14.3 Digraphs induced by a total function

Similarly, the versions of Proposition 7.5 and Lemma 7.9 for the Df ’s are straightforward. For
Lemma 7.9, we just assume that E⊆Df . We now give a motivating result.

Lemma 14.3.1 Let X,Y be 0DMC spaces, and f :X→X , g :Y →Y be homeomorphisms, g being
minimal. Then
(a) Graph(g) is an oriented graph on Y if Y has cardinality at least three,
(b) f, g are conjugate with witness ϕ if and only if

(
X,Graph(f)

)
�ic
(
Y,Graph(g)

)
with witness ϕ.

Proof. (a) As Y has cardinality at least three and g is minimal, g and g2 are fixed point free.

(b) The proof is similar to and simpler than the proof of Lemma 7.11. �

The version of Lemma 7.10 for the Df ’s is straightforward.
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Lemma 14.3.2 Let X be a 0DMC space, and f : X → X be a minimal homeomorphism with
χc
(
X,Graph(f)

)
≥ 3. Then

(
X,Graph(f)

)
is �ic-minimal in the class of closed digraphs (or

oriented graphs) on a 0DMC space with CCN at least three. This is the case of
(
C,Graph(o)

)
if

d=(dj)j∈ω∈O.

This gives a version of Theorem 1.13 for digraphs and oriented graphs.

Theorem 14.3.3 There is a �c-antichain (and thus �ic-antichain)
((
Cα,Graph(fα)

))
α∈2ω

, where

(a) Cα is homeomorphic to 2ω,
(b) fα is a minimal homeomorphism of Cα, and Graph(fα) has CCN three,
(c)
(
Cα,Graph(fα)

)
is �ic-minimal in the class of closed digraphs (or oriented graphs) on a 0DMC

space with CCN at least three.
In particular, any �ic-basis for the class of digraphs (or oriented graphs) induced by a homeo-

morphism of a 0DMC space with CCN at least three must have size continuum.

We consider, for κ≤3, the class Go
κ of digraphs Df induced by a homeomorphism f of a 0DMC

space with CCN strictly bigger than κ. Replacing Go with Do = Graph(o), we get the version of
Proposition 9.3 for the Df ’s in a straightforward way, using Lemma 14.3.1. It is worth noting that the
version of Theorem 1.11 for the Df ’s is different from the one for the graphs.

Theorem 14.3.4 (a) (1, ∅) is �ic-minimum in Go
0.

(b) Any �ic-basis for Go
1 must have size continuum.

(c) Any �ic-basis for Go
2 must have size continuum.

Moreover, the (Go
κ,�ic)’s and the (Go

κ,�c)’s are not well-founded. They also contain antichains
of size continuum (except maybe for �c when κ=3).

Proof. (a) See the proof of Theorem 1.11(a).

(b) The situation here is very different from the one for G1. Let K be a 0DMC space of cardinality
at least two, and f be a minimal homeomorphism of K. Note that f is fixed point free, so that
Df =Graph(f) is not empty and thus has CCN strictly bigger than 1. Assume thatL is a 0DMC space,
g is a homeomorphism of L such that Dg has CCN strictly bigger than 1, and (L,Dg) �ic (K,Df ).
We will see that (K,Df ) �ic (L,Dg), which will prove the �ic-minimality of (K,Df ) in Go

1. If the
set of fixed points of g is not open, then (L,Dg) has uncountable CCN by the version of Proposition
7.2 for the Df ’s, and thus (K,Df ) and (K,Gf ) too, which contradicts Theorem 8.1. Thus the set
F1 of fixed points of g is open, which by the version of Corollary 7.3 for the Df ’s implies that
χc(L \F1, Dg ∩ (L \F1)2) = χc(L,Df ) > 1. This implies that we may assume that g is fixed
point free and thus Dg = Graph(g). Lemma 14.3.1 then implies that g, f are conjugate and thus
(K,Df ) �ic (L,Dg). Theorem 14.3.3 now provides a �ic-antichain of size continuum made up of
minimal elements in Go

1, which gives the result.

(c) By Theorem 14.3.3, any �ic-basis for Go
2 must have size continuum.

We then argue as in the proof of Theorem 1.11, using the fact that Gf =s(Df ). �
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Remark. If (K,Df ) is in Go
1 and the set of fixed points of f is open, then (K,Df ) is �ic-above a

similar element (L,Dg) with g fixed point free by the proof of Theorem 14.3.4(b). [W, Theorem
5.2] gives a compact subset M of L such that g[M ] =M 6= ∅ and the dynamical system (M, g|M ) is
minimal. As g is fixed point free, M has cardinality at least two. The proof of Theorem 14.3.4(b)
shows that (M,Dg|M ) is�ic-minimal in Go

1, and is�ic-below (K,Df ). So the elements of Go
1 induced

by a minimal homeomorphism form a �ic-basis for the subclass of Go
1 whose elements are induced

by a homeomorphism with an open set of fixed points. So in order to get an interesting basis, we
need to understand the elements (K,Df ) of Go

1 whose set of fixed points is not open. In such a
case the CCN is 2ℵ0 , by the version of Proposition 7.2 for the Df ’s. Proposition 14.1.9 implies that
(X1,R1) �ic (K,Df ). The problem is that R1 is not of the form Dg.

The versions of Theorems 1.12, 10.5, 10.11 and Proposition 10.13 for the Df ’s are direct.

Corollary 14.3.5 There is a �ic-antichain
(
Σr,Graph(σ|Σr)

)
r∈R of size continuum, where

(a) Σr is a two-sided subshift homeomorphic to 2ω,
(b) σ|Σr is a minimal homeomorphism of Σr, Graph(σ|Σr) is an oriented graph with CCN three,

(c)
(
Σr,Graph(σ|Σr)

)
r∈R is �ic-minimal in the class of closed digraphs (or oriented graphs) on a

0DMC space with CCN at least three.

The version of Theorem 1.14 for digraphs, Go
2 and the Df ’s is straightforward. For oriented

graphs, we modify K0 and h0 (note that
(
σε(α0), σ1−ε(α0)

)
∈ Dh0 for each ε ∈ 2, so that Dh0

is not an oriented graph). In order to get a version of Theorem 1.14 for oriented graphs, we set
αo0 := (0123)∞ ·(0123)∞, βo0 := (0123)∞ ·4(0123)∞, Ko

0 := Orbσ(αo0) ∪ Orbσ(βo0) and ho0 := σ|Ko
0
.

The version of Lemma 11.1 is as follows.

Lemma 14.3.6 Let S be a 0DMS (resp., 0DP) space, f be a homeomorphism of S with the properties
that χc(S,Df )≥ 3 and (S,Df ) �ic (Ko

0 , Dho0
). Then there is a finer 0DMS (resp., 0DP) topology τ

in T with the property that
(
(Ko

0 , τ), Dho0

)
�ic (S,Df ).

Proof. The argument is a slight variation of that in the proof of Lemma 11.1. For instance, as
Orbho0(βo0) is discrete, there is ε ∈ 4 with σε(αo0) ∈ V , which gives x ∈ S with ϕ(x)=σε(αo0).

As f is fixed point free, f(x) 6= x, which implies that
(
x, f(x)

)
∈ Df ,

(
ϕ(x), ϕ

(
f(x)

))
∈ Dho0

,

and σε+1 mod 4(αo0) = ϕ
(
f(x)

)
∈ V . Iterating this argument, we see that Orbσ(αo0) ⊆ V and{(

σε(αo0), σε+1 mod 4(αo0)
)
| ε∈4

}
⊆E. �

Notation. We set, for A⊆ω,

BτA :=Bτ ∪
⋃
ε∈4

{
C ∩ ({σε(α0)} ∪

⋃
n∈

⋂
−p0≤r≤q0

(NA+r)∩ω {σε+4n+1(β0)} ∪⋃
n∈

⋂
−p1≤r≤q1

(NA+r)∩ω {σε−4n−2(β0)}) | C∈Bτ ∧ p0, q0, p1, q1∈ω
}
.

The version of Lemma 11.2, that of Lemma 11.3, as well as the rest of the proof of Theorem 1.14
for oriented graphs, are then straightforward. The version of Theorem 1.15 for digraphs and Go

2 is
straightforward.
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14.4 Equivalence relations

We define a map d : M→Sm by d(f) :=
(
2ω,Graph(f)

)
. Applying Lemma 14.3.1, we get the

following result.

Theorem 14.4.1 The map d reduces continuously CO to ≡ic. Moreover, the vertices of the digraph
d(f) have degree one, for each f ∈M.

We then define a map D :M→Sg by D(f) :=
(
proj

[
(i×i)[Gf ]

]
, (i×i)[Of ]

)
. Applying Theorem

14.1.8, we get the following result.

Theorem 14.4.2 The map D Borel reduces CO to ≡ic. Moreover, the vertices of the digraph D(f)
have degree at most one, for each f ∈M.

15 A summary for future work

We summarize a number of our results in the following table, which leaves open questions about
graphs on a 0DMS space with CCN at least three.

finite metrizable compact Polish or metrizable separable

�ic

(1) concrete antichain basis of size ℵ0

(2) concrete basis of size ℵ0

(3) any basis is infinite
(4) antichain of size ℵ0 made up of minimals
(5) no infinite descending chain
(6) minimal elements
(7) embed ⊆ on P<∞(ω)

(1) no antichain basis
(2) concrete basis of size 2ℵ0

(3) any basis has size at least 2ℵ0

(4) antichain of size 2ℵ0 made up of minimals
(5) infinite descending chain
(6) minimal elements
(7) embed ⊆ on P(ω)

(1) no antichain basis
(3) any basis has size at least 2ℵ0

(4) antichain of size 2ℵ0

(5) infinite descending chain
(6) minimal elements
(7) embed ⊆ on P(ω)

�c

(1) no antichain basis
(2) concrete basis of size ℵ0

(3) any basis is infinite
(4) antichain of size ℵ0

(5) infinite descending chain
(6) no minimal element

(2) concrete basis of size 2ℵ0

(4) antichain of size 2ℵ0

(5) infinite descending chain
(7) embed ⊆ on P(ω)

(4) antichain of size 2ℵ0

(5) infinite descending chain
(7) embed ⊆ on P(ω)

It is remarkable that the properties in the last two columns are the same for graphs induced by
a partial homeomorphism with countable domain, (possibly) up to (2)-�ic in the compact case. For
graphs induced by a total homeomorphism, (4) and (5) hold, as well as (3), (6) and (7)-�ic, and (1)-�ic
in the case of spaces which are not compact. All these results admit versions for digraphs and oriented
graphs.
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[T-V] S. Todorčević and Z. Vidnyánszky, A complexity problem for Borel graphs, Invent. Math. 226
(2021), 225-249
[W] P. Walters, Ergodic theory-introductory lectures, Lecture Notes in Mathematics, Vol. 458,
Springer-Verlag, Berlin-New York, 1975, vi+198 pp

81



List of symbols
G0 2
∆(X) 2
(X,R), χB(X,R) 2
�c 2
L0 2
(Aξ,Gξ) 2
�ic, �iB 3
CCN, χc(X,R) 3
0DMS, 0DP, 0DMC 3
K 3
D2(Π0

1), Σ0
1 ⊕Π0

1 4
(X, f) 4
Orbf (x) 4
Rl, R−1, s(R) 5
N 5
Om, Gm, P 5
Gf 6
Gκ 6
X1, R1, f1 6
K(X) 7
H(2ω), P , Oκ, Oℵ0

2 7
σ, (01)∞ ·(01)∞, K0, h0 7
M, FCO, CO 9
Sm 9
≤B 9
=+ 9
(2p+3, C2p+3) 10
S, (λl)l∈ω,

(
sl(i)

)
i<λl

, I, Gγ , Kγ 11
C, d, πj∈S dj ,

∏
j∈S dj ,

∏
l, C, Cd, Ns 11

Rn, nR 11
J , J c, c, a, a, Kd, Oβ 14
Gβ , Kβ 15
Oδ, Gδ, Pδ, P∞ 20
T 22
(nl)l∈ω, (nd

l )l∈ω, (Ll)l∈ω, (Rl)l∈ω, fl,i, fd
l,i, Of , Gf , C+ 26

ζ 28
≡ic 29
o, od, Orb+

f (x) 29
D, µ, Oo, Go 30
F1, F f1 36
f0 37
rC , r′C 39
O 45
Ge

2 46

82



il, SA, DS 47
G 48
Gα 49
[w]p, w

Z 50
Σ, ΣF 51
v, α+ 51
Rr, φr, Σ2

r 52
L(Σ), Ln(Σ), Lr, Lrn 52
X ′, Xα 55
α0 55
T 63
(Sq)q∈ω, (rqj )j∈ω, jl, NA, Bτ , BτA 64
tτA 65
Hκ 67
(hs)s∈ω<ω 69
Q, Q, Sg 72
Df 76
Go
κ 77

Ko
0 , ho0 78

83



Index
alphabet 50
antichain 3
basis 3
Borel chromatic number 2
Cantor-Bendixson derivative, iterated Cantor-Bendixson derivative, Cantor-Bendixson rank 55
Cantor dynamical system 4
coloring 2
conjugate 4
continuous chromatic number 3
continuous tuple 26
diagonal 2
digraph 2
digraph induced by a function 76
dynamical system 4
equicontinuous dynamical system 46
expansive dynamical system 9
flip-conjugate 4
graph 2
graph induced by a function 6
homomorphism 2
minimal dynamical system 4
minimum element for a quasi-order 3
odometer 29
orbit-equivalent 4
oriented graph 3
periodic point 50
quasi-order 3
rank of a point 59
shift map 50
two-sided subshift 51
substitution 51
uniformly recurrent subshift 52
walk, odd walk, closed walk, cycle 10
well-quasi-order 4

84


