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Abstract. We first consider the class £ of graphs on a zero-dimensional metrizable compact space with
continuous chromatic number at least three. We provide a concrete basis of size continuum for £ made
up of countable graphs, comparing them with the quasi-order <’ associated with injective continuous
homomorphisms. We prove that the size of such a basis is sharp, using odometers. However, using
odometers again, we prove that there is no antichain basis in K, and provide infinite descending chains
in &. Our method implies that the equivalence relation of flip conjugacy of minimal homeomorphisms
of 2 is Borel reducible to the equivalence relation associated with <%. We also prove that there is no
antichain basis in the class of graphs on a zero-dimensional Polish space with continuous chromatic
number at least three. We study the graphs induced by a continuous function, and show that any <‘-
basis for the class of graphs induced by a homeomorphism of a zero-dimensional metrizable compact
space with continuous chromatic number at least three must have size continuum, using odometers or
subshifts.
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1 Introduction

The present article is the continuation of the study of definable colorings initiated in [K-S-T], and
continued in [L-Z1] and [C-M-Sc-V1]. All our relations will be binary. The motivation for this work
goes back to the following so called Gy-dichotomy, essentially proved in [K-S-T].

Theorem 1.1 (Kechris, Solecki, Todorcevic) There is a Borel relation Gy on 2“ such that, for any
Polish space X, and for any analytic relation R on X, exactly one of the following holds:

(1) there is c: X — w Borel such that c(x) # c(y) if (z,y) € R (a countable Borel coloring of R),
(2) there is p:2% — X continuous such that Go C (px @)1 (R).

If (1) holds, then we say that R has countable Borel chromatic number (a relation R on a set X
is a digraph if it does not meet the diagonal A(X) :={(z,z) | x € X} of X; the Borel chromatic
number x (X, R) of a digraph (X, R) is the minimum cardinal x < ¥, for which there is a Borel
coloring of R taking values in » (equipped with the discrete topology) if it exists, 280 otherwise). If
(2) holds, then we say that ¢ is a continuous homomorphism from (2¥, Gy) into (X, R), and denote
this by (2*,Go) <. (X, R). This result had a lot of developments since. We refer to [K-Ma] for
a survey, and to [BO], [B1] and [G-J-Kr-Se] for recent work in continuous combinatorics, which is
the topic of the present work. It is natural to ask for a level by level version of Theorem 1.1, with
respect to the Borel hierarchy (see the introduction in [K]). This work was initiated in [L-Z1], where
the authors prove the following.

Theorem 1.2 (Lecomte, Zeleny) Let £ € {1,2,3}. Then we can find a zero-dimensional Polish space
X¢, and a Borel relation R on X¢ such that for any (zero-dimensional if £ = 1) Polish space X, and
for any analytic relation R on X, exactly one of the following holds:

(1) there is a countable Ag-measurable coloring of R,

(2) there is ¢ :X¢ — X continuous such that R¢ C (¢ x ) ~H(R).

[C-M-So, Theorem 4.4] gives a version of this for analytic spaces when £ = 2, and this is also
possible when £ =1. More recently, the existence of versions of Theorem 1.1 for finite Borel colorings
was decided. In [T-V], the authors rule out the most straightforward analogs of the Gg-dichotomy for
graphs of Borel chromatic number at least x, where 4 < k < w (recall that a graph is a symmetric
digraph). The difficult remaining case has been solved in [C-M-Sc-V1], where the authors introduce
a Borel graph Ly on a zero-dimensional Polish space X satisfying the following.

Theorem 1.3 (Carroy, Miller, Schrittesser, Vidnydnszky) Let X be a Polish space, and G be an ana-
Iytic graph on X. Exactly one of the following holds:

(1) G has Borel chromatic number at most two,
(2) there is p:Xo— X continuous such that Ly C (o x )~ HG).

All this leads to the following question.

Question 1. Fix a countable ordinal { > 1. Is there a Borel graph G¢ on a zero-dimensional analytic
space A¢ which is =<.-minimum among analytic graphs on a (zero-dimensional if £ = 1) analytic
space with Ag chromatic number at least three? We will also consider metrizable separable, Polish,
compact, and finite spaces.



Since the very beginning of the study of definable chromatic numbers in [K-S-T], injective defin-
able homomorphisms were considered (see also [K-Ma, Sections 4 and 8], [L, Theorem 10], [L-Za,
Theorem 1.13], and [L-Z2]). So it is natural to ask the same question with injective continuous
homomorphisms instead of continuous homomorphisms (with the notation =<’ instead of <.). In
[C-M-Sc-V2], the authors announce the existence of a continuum sized family of closed graphs on a
Polish space with Borel chromatic number at least three which are pairwise jiB—incompatible in the
class of analytic graphs on a Hausdorff space with Borel chromatic number at least three.

We consider the quasi-orders <% and =, on various classes (a quasi-order is a reflexive transitive
relation). Let I' be a class, and < be a quasi-order on I'. A subclass 8 of I' is a basis for I if
any element I' is <-above an element of 8. We are looking for basis as small as possible, for the
inclusion. In other words, we want the elements of ®B5 to be pairwise <-incomparable. A subclass ‘B
satisfying this property is called an antichain. So we are looking for antichain basis, when they exist.
In the best case, the antichain basis is a singleton {b}, and we say that b is minimum among elements
of I'. This is the case in Theorems 1.1, 1.2 and 1.3, but it is not always possible. We are interested in
the following questions, very natural when we study a quasi-order.

(1) Is there an antichain basis?

(2) If there is no antichain basis, is there a reasonably simple basis?
(3) What is the minimal size of a basis?

(4) Are there big antichains?

(5) Are there infinite descending chains?

(6) Can we find minimal elements?

(7) Can we embed a complex quasi-order?

In this article, our spaces will be metrizable separable, except in Theorem 1.7 and its two lemmas.
As above, the continuous chromatic number (CCN for short) x.(X, R) of a digraph (X, R) is the
minimum cardinal k < Vg for which there is a continuous coloring of R taking values in x (equipped
with the discrete topology) if it exists, 280 otherwise. We mainly focus on continuous 2-colorings,
even if some other cardinalities will be considered. The case of continuous 2-colorings is much more
complex than in Theorem 1.2 for £ = 1 and w colors, the latter case corresponding directly to the
definition of the product topology. In Section 2, we will see that the odd cycles (2p+ 3, Cop43)
are witnesses for the fact that any <!-basis for the class of graphs on a zero-dimensional metrizable
separable (or Polish, or metrizable compact, or finite) space (0DMS, ODP, ODMC for short) with CCN
at least three must be infinite. In the compact case, our main results are as follows. Let £ be the class
of graphs on a 0DMC space with CCN at least three.

Theorem 1.4 We can find a concrete family ((Ka, (Ga))a cow where K, is a compact subset of 2
and G, is a countable graph on K, such that, for any ODMC space X and any graph G on X,
exactly one of the following holds:

(1) G has CCN at most two,

(2) we can find o € 2% and p: K, — X injective continuous such that G, C (px @)~ 1(G).

In other words, ((Ka, Ga))a@w is a <'-basis (and thus a <.-basis) for £.

Recall that an oriented graph is an antisymmetric digraph. Theorem 1.4 and most of our results
admit versions for digraphs and oriented graphs. We will come back to this in the last section. It is
simpler to work with graphs in Theorem 1.4. Note also that in [C-M-Sc-V1], the authors prove that
there is no version of Theorem 1.3 for oriented graphs.



Recall that Do (TI9) is the class of differences of two closed sets, while
e :={(0nC)U((F\C)|CeAIr0ex{ A FerI]}

is the self dual class just after A(l) in the Wadge hierarchy of Borel sets (see [K, 22.B and 22.E]).
We provide another concrete <.-basis for &, which is not a ji—basis, but is made up of countable
D(T1?) graphs with 39 @ I1Y (and thus A9 and Borel) chromatic number two, and whose vertices
have degree at most one. We will see in Section 4 that our basis are not =<.-basis for the class of
countable graphs on a ODP space with CCN at least three.

We next prove that the size of such <-basis is sharp. In order to prove this, we use minimal
Cantor dynamical systems. These systems have been widely studied (see, for example, [I-Me], [Ka],
[Ku], [Lo], [Me], [P], [Sa-T&]). A dynamical system (X, f) is given by a homeomorphism f of a
metrizable compact space X. If X is homeomorphic to 2¢, then we say that (X, f) is a Cantor
dynamical system. A dynamical system (or f) is minimal if Orbs(z) := {f%(z) | i € Z} is dense
in X for each z € X. If (Y, g) is another dynamical system, we say that these systems (or f, g) are
orbit-equivalent if there is a homeomorphism ¢: X —Y such that ¢[Orb(z)] =Orby (¢(z)) for any
x € X. It was known that there is a family of size continuum made up of minimal Cantor dynamical
systems which are pairwise not orbit equivalent (see [[-Me]). We consider a property stronger than
orbit equivalence, namely flip-conjugacy. We say that two dynamical systems (X, f), (Y, g) (or f,g)
are conjugate (resp., flip-conjugate) if there is a homeomorphism ¢ : X — Y such that po f = gogp
(resp., po f =gow or po f =g Loy). We provide a family of size continuum made up of minimal
Cantor dynamical systems (in fact odometers) which are pairwise not flip conjugate, and associate to
each homeomorphism of this family a graph on a 0DMC space, ensuring the following properties.

Theorem 1.5 There is a < -antichain (and thus <'-antichain) ((Ka, Ga))a@w, where

(a) K, is a ODMC space,

(b) Gy, is a countable Do(T1%) graph on K, with CCN three and X9 @ 1\ chromatic number two,
and whose vertices have degree at most one,

(c) (Ku, Gy) is <i-minimal in 8.

In particular, any <'-basis for & must have size at least continuum.

The minimal examples are particularily important, since they have to be part of any basis, up to
equivalence. Note that Theorem 1.5 shows that if (A, G1) exists, then we must have x.(A1,G1) =3,
xB(A1,G1)=2, and (A1, G1) must be strictly <.-below (Xg, Lo). We will also see in Section 4 that
A; cannot be compact. Theorem 1.5 shows that our quasi-orders have large antichains. Moreover,
they are not well-founded.

Theorem 1.6 There is a <. and =!-descending chain ((K, Gp))p o Where
(a) K is a ODMC space,

(b) Gy, is a countable Dy(I19) graph on K with CCN three and X9 & I1Y chromatic number two, and
whose vertices have degree at most one.

Theorems 1.5 and 1.6 contrast with [C] where it is proved that the closed subsets of a zero-
dimensional Polish space are well-quasi-ordered by bi-continuous embeddability (so this quasi-order
has finite antichains and descending chains).



We now give a countable Do (TI) graph on a ODP space which is not compact.

Notation. Recall that if R is a relation on a set X and [ € w, then
R={(z,y) € X?| (x:)ici € X Vi<l (i, 2i01) ER A (,9) = (z0, 1)},

R~ 1:={(z,y) € X? | (y,x) €R}, and s(R):= RU R~ ! is the symmetrization of R. We now define

our graph, on the copy N :=({¢, a,a} U w)“ of the Baire space w*. We set

Oy = {(FHaIHa> k07 HE™) | j,kcw) U {(ki T a>® k(i+1)7T1a>®) | jikcw Ni<2k} U
{(k(2k+1)7+1a> FHlgitle>) | j kecw}.

and G, :=s(0),,). The idea of this example is to decompose the graph in levels indexed by k, and that

the level £ is an approximation of the odd cycle on 2k+3 points, the approximation being improved
when k increases. Note that the vertices of G,,, have degree at most one.

Theorem 1.7 Let X be a first countable topological space, and G be a graph on X. The following
are equivalent:

(1) A(X) NUpew G is not empty,

(2) (N, Gm) = (X, G).

Moreover, these conditions imply that G has no continuous 2-coloring.

The countable G4 subset P:=proj[G,,,]\ {¢"™1e™ | kew A e € {a,a}} of N has the properties
that (P, G,,) has CCN three and (P, G,;,) <. (N, G,,). The next picture describes the level of G,
corresponding to k=0, seen in P (so that the sequences (cFT1e7+15>) jew become discrete).

caa™ 02> 01>

ca’a>® 03> 01%@>

01g> 01%@>

01 cala™®

013a>

03a> 01%a> ca’a™®

020> 0la™ o

caa

Using subgraphs of (P, G,, ), we prove the following.

Theorem 1.8 Let G be a graph on a O0DMS space Z, satisfying (Z,G) <% (P, G,,) and having CCN
at least three. Then there is a family ((Pa, Ga))aezw of graphs on a ODP space with CCN three,
=<i-below (Z,@), and pairwise <'-incompatible in the class of graphs on a 0DMS space with CCN
at least three.

In particular, there is no ji-antichain basis in the class of graphs on a ODMS (or ODP) space
with CCN at least three, and any <!-basis for one of these classes must have size at least continuum.



Theorem 1.8 shows that (P, G,,) is not <‘-minimal among graphs on a ODP (or 0DMS) space
with CCN at least three. One can prove that this still holds for <., but we will not do it here. Theorem
1.8 also gives a negative answer to the version of Question 1 for <%. One can prove that no subgraph
of one of the examples of Theorem 1.5 is <%-minimal among graphs on a ODP space with CCN at
least three, but we will not do it here. We also prove a version of Theorem 1.8 in the compact case.

Theorem 1.9 We can find a countable graph (3*,G) in 8 such that, for each (K, G) in & satisfying
(K,G) =L (3“,G), there is a <\-antichain ((3%, Ga))aezw of graphs with CCN three and <'-below
(K, G). In particular, there is no ='-antichain basis in .

We now stated our main results concerning general graphs. The case of graphs induced by a
function has been particularily considered in [K-S-T], and also in [Co-M], [Pe] and [TV] for instance.
Also, we give at the end of this article a table summarizing the properties of our two quasi-orders for
graphs. It is remarkable that the same properties hold for graphs induced by a partial homeomorphism
with countable domain, up to, possibly, the existence of the <%-concrete basis. If

f:Domain(f)C X —Range(f)CX

is a partial function, then the graph induced by f is Gy := s(Graph(f))\ A(X). In [K-S-T], it is
proved that if X is a standard Borel space and f is a Borel function on X (i.e., has a Borel graph),
then the Borel chromatic number of G5 is in {0, 1,2, 3, Xo}. So it is natural to ask the following.

Question 2. Let X be a 0DMS space, and f: X — X be a partial continuous function with analytic
domain. What are the possible values for x.(X, G ¢)?

We prove the following.

Theorem 1.10 Ler X be a ODMC space, and f: X — X be a partial continuous injection.

(a) If the domain of f is open, then x.(X,G¢) € w U {280}, and all these values are possible with
fixed point free partial homeomorphisms on a countable space.

(b) If the domain of f is closed, then x.(X,Gyf) €{0,1,2,3, P }, and all these values are possible
with (total) homeomorphisms of a countable space.

Moreover, we can find a countable Polish space X and a fixed point free partial homeomorphism
[: X — X with open domain and x.(X,Gy)=Ro.

Our method in the proof of Theorem 1.8 shows that there is no j’;—antichain basis for the class
of graphs induced by a partial homeomorphism on a ODP space with CCN at least three. Also, the
method used to prove Theorem 1.5 shows that any <’-basis for the class of graphs induced by a partial
fixed point free continuous involution with countable open domain on a ODMC space with CCN at
least three must have size continuum.

Theorem 1.10(b) leads to consider, for x < 3, the class &, of graphs induced by a (total) home-
omorphism of a 0DMC space with CCN strictly bigger than x. We will see that in Theorem 1.2 we
can take X; := {0} U {0"1*® | n € w} and Ry := {(0?"1°°,0*"*11>°) | n € w}. Note that the
graph s(Ry) is G'y,, where f : X — X is the total homeomorphism defined by f1(0°°) := 0> and
f1(02nHe1°9):=02"+1=21°_ We prove the following.



Theorem 1.11 (a) (1,0) is <%-minimum in &.
(b) (2,Gers1_c) is <L -minimum in &.
(c) Any <!-basis for &5 must have size continuum.
(d) (X1,Gy,) is <L-minimum in ®3.
Moreover, the (6, <%)’s and the (8, =.)’s are not well-founded. They also contain antichains
of size continuum in the case of <!, or when k # 3.

We can also evaluate the descriptive complexity of the &,’s. In order to do that, we code the
class &,. By [K, 7.8], any ODMC space is homeomorphic to a subspace of 2“, so we can restrict
our attention to compact subspaces of 2*. The Ryll-Nardzewski theorem (see [Kn-R, Corollary 2 and
Remark 3]) shows that any homeomorphism on such a subspace can be extended to a homeomorphism
of 2“. The extension map is injective and, conversely, the restriction map is not. But the chromatic
number of the graph on the subspace does not depend on the extension, so the fact that the restriction
map is not injective creates no problem. The space /C(X') of compact subsets of a metrizable compact
space X, equipped with the Vietoris topology, is a metrizable compact space. The set H(2*) of
homeomorphisms of 2“ can be equipped with a topology in such a way that it is a Polish group. We set
P:={(X, f)eK(2*)xH(2¥) | f[X]=X}and code &, with O,:={(X, [) €P | xc(X, Gy, ) > K}

Theorem 1.12 P is a Polish space. Oq is a AY subset of P, Oy is XV-complete, and O3, O3 are
TI3-complete. Moreover, the set O5° :={(X, f) € Oy | X is countable} is T1}-complete.

Another motivation for studying graphs induced by a function is related to Cantor dynamical
systems. We will see that if f, g are minimal homeomorphisms of a Cantor space X, Y respectively,
then f, g are flip-conjugate exactly when (X, Gy) <% (Y, G,). Similar considerations also motivate
our study of oriented graphs: in this case, Graph(f),Graph(g) are oriented graphs, and f, g are
conjugate exactly when (X, Graph(f)) =% (Y, Graph(g)). This also leads to study graphs induced
by a total homeomorphism. The next result is a version of Theorem 1.5 for graphs induced by a total
homeomorphism.

Theorem 1.13 There is a < -antichain (and thus <%-antichain) ((Ca,Gy,)) where

(a) Cq is homeomorphic to 2%,

ae2w’

(b) fo is a minimal homeomorphism of C, (in fact an odometer), and (C,, Gy, ) has CCN three,

(c) (Ca,Gy,) is <! -minimal in & and in the class of closed graphs on a 0DMC space with CCN at
least three.

In particular, any <!-basis for one of these classes must have size continuum.

We also provide a concrete <-basis, made up of graphs induced by an odometer, for the class
of elements of &, induced by a minimal equicontinuous Cantor dynamical system, and, under the
axiom of choice, a <-antichain basis for this class. However, we will see that such a basis is far from
being a basis for &9, because of the subshifts associated with irrational rotations, proving a version
of Theorem 1.13 for them and ji. Thanks to subshifts, we also prove a version of Theorem 1.6 for
graphs induced by a total homeomorphism.

The next result shows that the situation in the compact case is different from that in the case of
spaces which are not compact. The next picture describes a countable compact subset K of 2%, a
two-sided subshift, as well as a homeomorphism hg:= O Ko : Ko — K which is not minimal.



(01)-1(01)®

(01)>°-(01)1(01)> (10)>°-11(01)>

(01)°1-(01)> (01)>°10-(10)>

(01 (01)21(01) (10)-1(01)1(01)

(01)°1(01)-(01)*° —————————— = (01)°1(01)0-(10)™

(01)®°-(01)®° a—— > (10)-(10)®

The sequence (01)>-(01)> is the element  of 27 satisfying a(2n+¢) := ¢ if n € w and
e € 2 on the positive side, and a(—2n—1—¢) := 1 —¢ on the negative side. Here, our space K is
Orb, ((01)>-(01)>) |J Orb, ((01)°°-1(01)>°), where o : 2% — 27 is the shift map.

Theorem 1.14 We can find a countable (OD)MC space Kq and a homeomorphism hg of Ko such that

(a) (Ko, G, ) has CCN three, and is <'-minimal in &5 and in the class of closed graphs on a 0DMC
space with CCN at least three,
(b) if S is a ODMS (resp., ODP) space, [ is a homeomorphism of S with the properties that (S, Gy)
has CCN at least three and (S, Gy) <. (Ko, Ghn,), then there is a finer ODMS (resp., ODP) topology
T on K with the properties that hy is a homeomorphism of (Ko, T), ((Ko, 7), Gho) has CCN three,
and ((Ko, ), Ghy) is strictly <%-below (S, Gy).

In particular; there is no <'-antichain basis for the class of graphs induced by a (total) homeo-
morphism of a 0ODMS (or ODP) space with CCN at least three. Also, any <'-basis for one of these
classes must have size continuum.

We saw a number of results describing classes with complex structures. In order to get simpler
structures, we can try to study smaller classes, even if a big class may have a minimum element and
not a subclass. Using graphs in the style of (Ko, G}, ), one can try to study the class of graphs induced
by a homeomorphism of a countable MC space with CCN at least three, in this direction. We provide
examples of arbitrarily high Cantor-Bendixson rank.

Theorem 1.15 (a) Let £ > 1 be a countable ordinal, finite or of the form n+ 3. Then there is a
countable two-sided subshift 3> with Cantor-Bendixson rank &, such that (%, GU‘E) has CCN three,

and is <'-minimal in B2 and in the class of closed graphs on a 0DMC space with CCN at least three.

(b) There is a family (Xq)acow of countable two-sided subshifts with Cantor-Bendixson rank three
sharing these properties, and such that the family ((Za, GU\za ))a cow IS @ <!-antichain. In particular,
any =<'-basis for &5 or the class of graphs induced by a homeomorphism of a countable (0D)MC

space with CCN at least three must have size 2.

At this moment, it is still possible to have a <’-antichain basis for the class of graphs induced by
a homeomorphism of a countable MC space with CCN at least three. Note that the graphs given by
Theorem 1.15(a) form a <’ -antichain. The situation for the other values of ¢ is not clear.



Indeed, recall that if (X, f) is a dynamical system where a compatible metric d on X is fixed,
then (X, f) is expansive if 3 >0 Vx#ye X IneZ d(f"(x), fr (y)) >e¢. The ox’s are expansive,
and there is no expansive homeomorphism of a countable MC space with Cantor-Bendixson rank A1
if A is a limit ordinal (see [Ki-Kat-Pa, Theorem 3.2]). We leave this open for future work.

For Question (7), we prove the following.

Theorem 1.16 We can embed the quasi-order of inclusion on the power set of w into

(a) the quasi-order =<' on the class of graphs induced by a (total) homeomorphism of a countable
ODMC (and thus ODP, 0DMS) space with CCN three,

(b) the quasi-order <. on the class of countable graphs on a ODMC (and thus ODP, 0ODMS) space
with CCN three.

We can say more about the association between homeomorphisms and graphs mentioned above.
The space M of minimal homeomorphisms of 2* is a Polish space. The map associating (2, G ¢) to
f €M is continuous. Moreover, the graph (2*, G¢) has CCN two or three. The equivalence relations
of flip-conjugacy and conjugacy on M are denoted by F'C'O and C'O respectively. The equivalence
relation <% N (=%)~! associated with the quasi-order <’ on the space

Smi={(24, K) {2} x (2 x2) | K N AR2Y) =0 A 252, K) <3}

is denoted by =, (we will check that S, is a Polish space). The standard way to compare analytic
equivalence relations on standard Borel spaces is the Borel reducibility <pg (see, for instance, [G]).
Recall that if X, Y are standard Borel spaces and E, F' are analytic equivalence relations on X, Y
respectively, then (X, E) <p (Y, F) < Jp: X —Y Borel with E=(px @) 1(F).

Theorem 1.17 The relations FCO, CO and Eé are analytic, and F'CO is Borel reducible to Eg.

We can also use our countable graphs to prove a version of Theorem 1.17 for graphs of CCN at
least three. Using oriented graphs instead of graphs, one can prove that CO is Borel reducible to =".
Note that the relation =1 on R defined by 2 ="y < {x; | i ew}={y; | i Ew} is Borel reducible
to C'O (this is proved in [Ka]).

The present work is organized as follows. In Section 2, we briefly discuss the case of graphs on
a finite set. We then study general graphs. Section 3 is about our positive basis results: we prove
Theorems 1.4 and 1.7, give our second basis, and start to prepare the proof of Theorem 1.8. In
Section 4, we work in ODMS spaces and prove Theorem 1.8. In Section 5, we study the relation
between graphs and dynamical systems, and prove the main part of the version of Theorem 1.17 for
graphs of CCN at least three. In Section 6, we start to use odometers and prove Theorems 1.5 and
1.6. In Section 7, we begin our study with the graphs induced by a function and prove general facts.
We then study in Section 8 the graphs induced by a partial function and prove Theorem 1.10. In
Section 9, we keep on using odometers and prove Theorems 1.13, 1.16(b) and 1.9. Section 10 is
devoted to the study of graphs induced by a subshift. In particular, we study the homeomorphisms
of a countable compact space and prove Theorem 1.15. In Section 11, we work in ODMS spaces and
prove Theorems 1.14 and 1.16(a). In Section 12, we prove Theorems 1.11 and 1.12. In Section 13,
we study equivalence relations and prove two versions of Theorem 1.17. Section 14 is devoted to
the versions of our results for digraphs and oriented graphs. Finally, we summarize our work about
general graphs in a table in Section 15, which leaves some other open questions for the future.



2 General graphs on a finite set

We briefly discuss the finite case, already showing that the quasi-orders <. and <! are quite
different. In this finite case, we put the discrete topology on the space, so that continuity is automatic.
It is known that a graph has chromatic number at most two exactly when it is bipartite, and when
it has no odd cycle (see [A-D-H, 2.1]). Thus a graph G on a set X has chromatic number at least
three exactly when A(X) N (U,ye, G?P+3) is not empty. Recall that a walk in a relation (X, R) is a
sequence (z;)i<n € X" such that (x;, z;11) € R for each i <n. A walk (z;);<p, is odd if n is odd,
closed if xo=1,, and a cycle if it is closed, n >3 and (x;);<, is injective. We denote, for any natural
number p, the symmetric cycle on 2p+3 by C;,43.

Theorem 2.1 Let X be a finite set, and G be a graph on X. The following are equivalent:
(1) (X, G) has chromatic number at least three,

(2) A(X) m (Up@w G2p+3) #Q’

(3) there is p € w with (2p+3, Copi3) <* (X, G).

Corollary 2.2 Let §:=((2p+3, Cgp+3))p€w.

(a) § is a ='-antichain basis for the class of graphs on a finite set with chromatic number at least
three. In particular, the elements of § are <%.-minimal among graphs on a 0DMS (or ODP, or ODMC)
space with CCN at least three, and any =<'-basis for these classes must be infinite.

(b) § is a <-basis for the class of graphs on a finite set with chromatic number at least three, and is
strictly <-decreasing. In particular, there is neither <-antichain basis, nor finite basis for this class.
Also, no graph is <-minimal in this class.

Proof. By [He-N, Corollary 1.4], (2p+3, Cop43) A (2¢+3, Cogy3) if p<gq.

(a) Theorem 2.1 gives the basis. This is an antichain by the argument just above and by injectivity.
(b) We apply (a), the argument above again, and [He-N, Corollary 1.4]. U

Remarks. (1) Let X be a finite set, G be a graph on X, Y be a set, H be a graph on Y with the
property that (Y, H) < (X, G), with witness . We set V:=¢[Y] and E:= (¢ x)[H]. Note that V/
is a subset of X, F is a graph on V' contained in G with (V, E) <* (Y, H) with witness ¢!, and also
(Y, H) =<' (V, E). This and the finiteness of X implies that there is no infinite <-descending chain
in the class of graphs on a finite set.

(2) There are infinite <-antichains in the class of graphs on a finite set with chromatic number at least
three. Indeed, this comes from [He-N, Theorem 2.23 and Proposition 3.4]. Following their notation,
S(i,4) and S(j, j) are <-incomparable if i # j > 3 are odd, and have chromatic number at least three.

3 General graphs on a 0DMC space: the basis

3.1 A first basis

We now define the concrete family announced in Theorem 1.4.

10



Notation. We denote the set of increasing unbounded sequences of natural numbers by
S:={0cw” | Vkew d(k)<d(k+1) AVNew Fkecw §(k)>N}.

- In the proof of Theorem 1.4, it will be convenient to replace the index set 2* with the set Z that we
now define. We denote a typical element of [, (2¢)%+1x (2v)%+1 by

i <<(72(i))i§2k, (vi@)ig%))

hew

We also set

T:={v€llre, (29)%FIx (29)%+L | 49(0),7}(2k) =0 AVEEw Vi<2k 4D (i) #7(1) A
€S Vhew Vi<2k 7h(0)|6(k) =~2(i+1)|6(k)}.

- We then define, for'yewl, a countable graph G on 2“ by G :=s({ (v2(7), 7 (1)) | kewAi< 2k})

and set K := proj [GV]Z , so that G is a graph on the compact set K,. The next picture represents
G,.

%(0)
0) /

We first prove the exactly part of Theorem 1.4.

200

Proposition 3.1.1 Let yeZ. Then (K., G,) has CCN at least three.

Proof. Note that 0 € K,,. If (C,—~C) is a coloring of G, into clopen subsets of K., with 0> € C,
then the compactness of K, gives | € w with a, 5 € C or o, ¢ C if o, f € K, and |l = 3]I. Note
that v(0) € C'if k > ko, where ko € w is also large enough with §(kg) > [. Assume that k > ko. An
induction on i < 2k shows that 7} (i), vo(i+1) & C if i is even, 7} (i), v2(i+1) € C if i is odd, and
v}(2k) ¢ C. This implies that 0°° ¢ C, which is the desired contradiction. Thus x.(K,,G,)>3. O

Notation. Let €:=(w\2)“. Fix d=(d;)jew € €.

- In the sequel, we denote, for S C w finite, by 7;cs d; the natural number, and by I jes d; the set
of finite sequences of natural numbers. In particular, we set, for [ €w, [[,;:=][];, d;.

-Weset C:=Cq:=]],c,, dj,so that C is homeomorphic to 2¥. As usual, N,:={a€C | sCa}isa
basic clopen set if s€ | J;c,, ]];- We extend this notation to other sequential spaces of this kind.

-If R is a relation on C, and n € w, then we set Ry, :={(s,t) €[> | (NsxN;) N R#(} and

"R:={(a,8)€C? | 3(/, B)€R aln=0'|n A Bln=p'|n}.
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Theorem 3.1.2 Let d€ €, and G be a graph on C. The following are equivalent:
(1) (C,G) has CCN at least three,

(2) AC) N Mnew Upew ("GP is not empry,

(3) the relations ([ ],,, Grn) have an odd closed walk,

(4) there is y€ L with (K, G.,) <% (C, G).

Proof. (4) = (1) This comes from Proposition 3.1.1.

(1) = (2) We first prove that (., ("(A(C)) UU,e,, ("G)*+2N U, ("G)?PF1) is not empty.
We argue by contradiction, which by compactness of C gives n € w and a clopen relation O on C
separating | J,,c,, ("G)**! from ™ (A(C)) U Upew ("G)?P+2. The compactness of C gives sequences
(8j)j<m and (¢;)j<m of finite sequences with the property that O =J;.,,, Ns; x Ny;, and we may
assume that all these finite sequences have the same length /, and that [ > n.

We define a subset of [[, by V :={s; | j <m} U {t; | j <m}. Note that G; is a graph on [ [,
since, for each s € [];, (Nsx Ny) N G C™(A(C)) N O. Let (C;)ier be the family of the connected
components of G| restricted to V. Fix i € I. As (C;, G; N C?) is a connected graph, we can find an
acyclic connected graph G; on C; with G; C G N Ci2. This gives a coloring ¢;:C; — 2 of G;.

We set C:=J,c; {Ns | ci(s) =0}, so that C'is a clopen subset of C. It remains to prove that
G N (C?U(~C)?)=0, since this contradicts (a). Towards a contradiction, suppose that there is (c, 3)
in GNC?, for example (the other case is similar). As G C O, we can find j <m with (a, ) € Ns XNy,
In particular, (s;,t;) is in G; N V2, which gives i € I with s;,t; €C;. As o, B€C, ¢i(sj) =ci(t; ) Let
L ew, (uk)k< be the G;-path from s; to t;, and, for k < L, (ak, Br) € (Nuy X Ny, ,,) NG Note that

L is even since C’L(Sj) - C’L( ) AISO ( aﬂO)? (607/81)7 <ﬁ1)52)7 . (6[1 3 BL 2) (/BL—Qaﬂ) € nG’
so that (a, 8) is in " (A(C)) UU,e, ("G)*C =0, which is absurd.

Pick (@, ) € Npew ("(AC)) UU,pen, ("G)PH2 N0 U, e, ("G)?PHY). If a = 3, then for each
n there is p such that Nz‘n meets ("G)?P Let (v;)i<opr1 € C*P2 such that 5o, y2p+1 € Najn.

and, for each i < 2p, (v;,vi+1) € "G. Note that (o, 1), (72p, @) € "G, so that we may assume that
Yo ="2p+1 =0 and (a, @) € ("G)**1. Thus (o, @) € A(C) N Nen (Upew ("G)?P*1). So we may

assume that a# 3. Note that (a, 3) ¢ " (A(C)) if n is large enough, and that the intersection above is

decreasing with respect to n. This implies that (cv, ) €(,,c,, (Upew ("GP 20U, e, (”G)2P+1) .
So we can pick, for each n € w and each ¢ € 2, a natural number p?,, and

(a2n+l+aa B2n+l+a) € (Na|n X Nﬁ\n) N (nG)ZpZ—H—FE-

Let (722”+1+6)z<2p%+1+5 € C2Pnt2+e guch that ,72n+1+5 = on+1+es ’)/%;Lg _&fr_fe 62n+1+5, and, for
each i < 2pf +e, (v 1T, fyfff 1+€) €"G. Fix n € w. Note that (12", 47" +2), (yggfr fl, yggotil)
are in "G. This implies that (o, @) € ("G)2PrT1+2Pn C Upew ("G)?PHL

(2) = (4) We choose, for each j € w, [; > 1 with d; < 2li . This defines an injection i; : d; — 2l
We define, for z € C, 9(x) € 2% by ¥(x) := ~jew i;(2(j)). Note that ¢ is a continuous injection,
and thus a homeomorphism onto its range R. We set H := (1) x ¢)[G], so that H is a graph on 2.
Moreover, if n € w and (z,y) € "G, then (¢ (z),v(y)) € "H. Pick (z,z) € ﬂnEw(UpEw("G)2p+1),
and set a:=1(x).
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Then (o, @) € e, (Upe, ("H)?*1). This gives, for each n € w, a natural number p,, with
(a,a) € ("H)?+1, Note that, extracting a subsequence if necessary, we may assume that (py, )ne
is constant or strictly increa§ing. Let (7;1) j<2pn+1 in (29)2PnF2 such that 1§ = a, Vg, 41 = and,
for each i <2pn, (77", 7i41) in "H. This gives, when i <2pn, (o', B}") € (Nypn X Nyp 1) N H.

We now define v € [], ., (2¢)%F1x (2¢)2*1 as follows. If k < py and i < 2k, then we set
v9(i):=af and v} (i):= 3.

Assume first that (p,)new is constant. If k& > pp and i < 2pg, then we set vg(i) = af and
v (i):=BE. If k> po and 2pg <i < 2k, then we set

ko oiposs b e
W0(i) 1= al%po 1fz iseven, 1y [3%,,0 l.f iis even,
Bap, 1f i 1s odd, s, if ¢ is odd.

Assume now that (py,)ne. is strictly increasing. If pj < k < pjy1 and ¢ < 2pj, then we set
V(i) :=a}” and vi(i):=B}". If p; <k <p;;+1 and 2p; <i < 2k, then we set

Orn . J _if i is even, Lin ” 1f21seven

ve(i) = p] , if i s odd, ve(i) = a2 " if i is odd.
Note that v (0) = ag™*, with limg_,eo My, =00. As ag* € N Ty = Najmys (vg(O))kEw converges
to . Similarly, if (pp)new is constant, then vj(2k) = B2p0 if k is large enough. As Bé’“m is in
Nk e =Najk v}(2k) |k = k. If the sequence (pn)ne is strictly increasing, then v} (2k) zﬁg;]

Y2pg+1

if k is large enough. As 527 €N »;

Vap; +1lPj

Nojp;» v}(2k)|p; = a|p;. Thus (U%(Qk‘))kew converges
to a.

Note that we chose v in such a way that (v} (i), v} (7)) is in the graph H, so that v{(¢) # v} (i). If
1< 2k, then we also ensured that

Vi ()|0=v2(i+1)|0 if & <p,

vp (i) k=vR(i+1)|k if k>po A i <2po,

vi (i) =vR(i+1) if k>po A i>2po,
v,}:(z)|p]—vk(i+l)\p] if pj <k <pji1 Ni<2pj,
vi(i)=v0(i+1) if pj <k <pji1 Ai>2p;.

This defines an element ¢ of S as desired. Note that the map h: 2 — 2% defined by
B(n) if a(n)=0,
r@)m={ P

is a homeomorphism sending o to 0°. We set 75 (i) := h(v{(i)), which defines ~ in the set
[Trew (29)FF1x (2#)5+1. The sequence § := ¢ is in S and is a witness for the fact that v € Z.
Moreover, the map A~ is a witness for the fact that (2*, G,) <% (2¥, H). We set K :=h|[R]. As R is
compact, K is too. Note that H C R?, so that G-, C K2. Thus proj[G,] C K and K, =proj[G,] C K.
We are done since (K, G,) =i (K,G,) <! (R, H) =<;, (C,G).
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(2) = (3) Assume that (o, ) € A(C) N, (Upew ("G)?PH). Fix n € w. We can find p and
(i)i<2p+1 € C2r*2 with Yo ="Yop+1 = a and (y;,vi4+1) € "G if i < 2p. This gives, for each i < 2p,
(i, Bi) € G with aii|n = ~;|n and B;|n = v;41|n. We set, for each i < 2p+1, s; := ;|n. Then
(8i)i<2p+1 is an odd closed walk in ([],,, G»n).

(3) = (2) Let (s] )Z<2pk+1 be an odd closed walk in ([],,Gj). As (s, ZJrl) € Gy, we can find
(aF, BE) € (N x Nsk+1) N G if i < 2py. The compactness of C provides o € C and (ky, )ne,, strictly

increasing such that ak" |n=a|n for each n. Note that
(ao By e G, aln=af"|n and o [n=si"|n= 5" |n,
- (aF i " pFyea andaHl\n:sHl\n:ﬂk"\nﬁ1<z<2pk ,
kn n kn kn
- (o gy, ’621% )€G and ajn=al" |n=sk In=s5,, 41ln=>sp, In.
This implies that (v, o/f”, .. ozg;k ,a) isin ("G)2Pra Tl 0

Remark. The cycle C'3 on 3 (pairwise different) points p, ¢, r is a graph with (continuous) chromatic
number 3, and we may assume that p = 0°°, ¢ = 1°°, » = (01)*°. In this case, the element v of Z
given by Theorem 3.1.2(3) highly lacks of “injectivity”. For instance, we can take v €Z given by the
equalities 72 (0): =0 =:v1(2k), 72 (20+1) : =1 =:~}(21), and 72 (20 +2) := (01)°° =:7} (21 +1).

Proof of Theorem 1.4. By Proposition 3.1.1, (1) and (2) cannot hold simultaneously. By [K, 4.2], X
is Polish, and by [K, 7.8], X is homeomorphic to a subspace of 2“, which has to be compact and
therefore closed. So we may assume that X is a closed subset of 2*. Assume that the problem is
solved for X =2%, and that (1) does not hold. Note that (1) does not hold in 2“ since it does not hold
in X. This gives y€Z and ¢ : K, — 2 injective continuous with G, C (¢x¢p) -1 (G). In particular, G,
is contained in the closed set (go_l(X))z. Thus proj[G,] C ¢! (X) and K, =proj[G,] C ' (X), so
that ¢ is a witness for the fact that (K., Gy) < (X, G). So we may assume that X =2%. It remains
to apply Theorem 3.1.2. g

3.2 A second basis

We now provide another =< -basis, closer to the examples used later.

Notation. It will be convenient to use the index set 7 that we now define. Fix d = (d;) e, € €. We
denote a typical element of ((U,y,c,, Hm+1)<”)w by B:= ((Sl(i))i<>\z)l . We then set
€w

T={8c((lJ JD™)" | M)icweSAVI€w N\>0iseven AVi< N [si(i)|=1+1},

mew m-+1
JC:= {ﬂ eJ |View (Sl(i)ooo)lew,Ami converges to some -y; GC}.

Let ¢, a, @ be pairwise different not in w, and a:=a. We define, for 5 € 7, a countable digraph Qg on

Ka ::Hjew (dj U {C7 a7a}) by

Op:={(c"*1aa>, 5,(0)aa>) | lew} U {(s;(i)a"1a>®, s;(i+1)a 2a>®) | lew Ni< N\ —2} U
{(si(\—1)aNa>®, d1aa™) | lew).
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——K
This allows us to define the graph G := s(Qp). We then set K := proj[Gg| °, so that Kz is a
ODMC space and Gg is a graph on Kz whose vertices have degree at most one.

Lemma 3.2.1 Letd €€, and B€J. Then (Kg,Gg) has CCN at least three and 9 & I19 chromatic

number two. If moreover s;(2i+¢)(0)=¢ for each l € w, each i < % and each € €2, then (Kg, Gg)
has CCN three.

Proof. If (C,—~C) is a coloring of Gz into clopen subsets of Kg which are not empty and satisfy
> e, then N_j, CC. The compactness of Kg gives lo > jo withz,ye C orz,y ¢ C'if z,y € Kz and
z|lo=1yllo. Assume that [ >ly. An induction on i < )\; shows that s;(i)a’T1a®, s;(i)a’t'a> ¢ Cif i is
even, s;(i)a1a™, s;(i)a" @€ C if i is odd, and c/*1@a> ¢ C, which is the desired contradiction.
Thus x.(Kg, Gg) >3.

We define an open subset of K by O:={z€Ks | Incw z(n)=aAzlnel],., (d;U{c})}
The X9 @ II{ partition (O, ~O) of Kp is a witness for the fact that 2 < xyo 50 (Kg, Gg) <2.

If moreover s;(2i+¢)(0) =¢ for each [ €w, each i < % and each € € 2, then the clopen partition
(Ne, No, N1) of Kg is a witness for the fact that x.(Kz, Gg) <3. O

Lemma 3.2.2 Letd e, and B € J. Then the graph Gg is Do (T19).

Proof. We check that Gg = Gg U (Gg N ({¢>®} U C)?). For the left to right inclusion, assume that
(z,y) € G\ Ga. We may assume that (z,y) is the limit of a sequence ((zm, ym))mew such that
d((Zm,ym), ({c*}UC)?) <27™. We are done since {¢>} U C is closed in Kg. As the first union is
the disjoint union of G and a closed relation on Kg, Gg is Do(IT9). O

The point ¢* will often be crucial to ensure a big CCN.

Lemma 3.2.3 Letrd € €, 3 € J with 5;(2i+¢)(0) = € for each | € w, each i < % and each
€ € 2, X be a topological space, and G be a digraph on X having CCN at least three such that
(X, G) 2 (Kg,Gp), with witness . Then c™ € p[X].

Proof. We argue by contradiction. Let C:=¢ ! (Ng U J,c,, Nu+15)- Then (C,—C) is a coloring of
G into clopen sets since C'=¢ ! (No U J;e,, Nu+15 U {¢®}), which is absurd. O

We now prove that, for d=2, ((Kg, Gg)) is a <.-basis for &.

pege
Theorem 3.2.4 Let X be a 0ODMC space, and G be a graph on X. Then exactly one of the following
holds:
(1) (X, G) has CCN at most two,
(2) there is € T (for d=2°) such that (Kg,Gg) <. (X, G).
Proof. By Theorem 1.4 and Lemma 3.2.1, it is enough to prove that if v € Z, then we can find g€ J¢
(for d=2°°) such that (K3, Gg) =. (K, G,). Aslimj_.s 7; (e-(2k)) =0, we can find 6. €S such
that 0% (%) C 2 (-(2k)) for each k € w. We define A € S by setting A(k):=min(5(k), do(k), 61(k)).
Let (kg)qew €S such that A(k,) >¢q and kg > 0. We set \[ := 2k, so that (A )4 €S. We then set,
for i < 2k, sy (i) ::'y,iq (i)|(g+1). This allows us to set 3’ := ((sg(i))iqu)qew. Note that 5’ € 7.
This defines (Kg/, Gg), and we will define (3 later.

We now check that (Kg/, Gg) <. (K,,G,). We have to define p: Kz —K,.
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We first define a function ¢y : proj[Gg/] — proj[G,] CK,, by setting

G
o(c?aa™) 1—72 (0
(2

);
wo(ci™taa>) = kq),
¢0(s;(') i+1*°°) T, (i+1) if i < 2kq,
po(sq(i)ata) =y (i) if i <2k,

q

Note that Gg C (0o X p0) (G ). Let us prove that ¢ is uniformly continuous on the projection
proj[Ga]. We set, for z € proj[Gg/], 6(x) :=min{n € w | z(n) € {a,a}}. Note that if ¢ € {a,a},
then o (c?T1e2%)|(g+1) =09 and (s} (i)e"t'2>°)|(g+1) =/, (i). by the choice of (kq)ge.. Let
go € w. We want to find n € w such that po(z)[(q0+1) = wo(y)[(go+1) if z|(n+1) =y|(n+1) and
x,y € proj|Gga]. If §(x), n > qo, then §(y) > qo and o(z)|(go+1) = o(y)|(go+1) by the previous
facts. Note that there are finitely many z € proj[Gg/] with 6(2) < go. We choose n > go large enough
so that z =t if z,t € proj(Ga], §(2),6(t) < go and z|n = t|n, so that n is as desired. The theorem
of extension of uniformly continuous maps (see [Bo, chapter I, §3, Section 6, Theorem 2]) provides

@‘m’cm — K continuous extending ¢p. As m@w =g, the map ¢ is as desired.

It remains to find 5 € J¢ with (Kg, Gg) =, (Kg,Gg ). By compactness of {0,1,c,a,a}*, we
can find (v;)i<x, € e (2¥)% and (qj )jcw strlctly increasing such that ¢) = 0 and, for each i < )\’q 0
(s; 0 (i)OOO)j ¢, converges to ;. Extracting a further subsequence if necessary, we may assume that
5;;_) (i)]j = vilj if i < )\;8. We can find (%{)KA;? and (g )jew strictly increasing such that g5 =gy,
{qj | j ew} C{gy, | m> 0}, and, for each i < /\;é’ (Slqjl. (1)0™)jew converges to ;. As (gf)jew
is a subsequence of (¢2,)mew, V) =1 if i < )\;8. For this reason, we may set, for i < )\:15’ ¥i i =",
Note that, extracting a further subsequence if necessary, we may assume that s; 1 ())j=rljifi< )\; 1
Then, inductively, we can find (7;); <2 v, and (qf“) jew strictly increasing with the properties that

a7

k1 — | jew} C{qk, | m>0}, and, for each i < /\’kH, (s’qkﬂ(i)ow)

@ = b {d

jew Converges to
k+1

~;. We can also ensure that s;kﬂ( Dj=ylgifi< N L Note that ¢! = gf > gk. We then set

J
Api=N 202 and, for i <\, s;(7): —quHQ( i)|(141). lezEw Let [ minimal such that i <\ e Note
0

that quJr2 qzl+1 > qng =@l > = q%l_l >...= ql1+1 > qé“ which shows that q2l+2 = q;fll for
some ji41 > [+1. This gives S;Z_H (0)|J1+1 :%|]l+1, and ;| ({+1) —sngQ( i)|(I+1)=s;(7). In other

Ji41
words, (sl(i)Ooo))\lM. converges to 7; for each ¢ €w, so that 3:= ((sl(z’))K/\l)le eJe.

Let us prove that (Kg, Gg) <% (Kg, Ggr). We define ¢ : K5 — K, which will be the identity on
{c*}U(KgNn2vY). Letee{a, a} | €w, and i €w with either i =0 if s=c/*, or s=s5;(7). We define
1 (se12%°) in such a way that s C 1) (se12°°) and 1 (se*T12°°) ends with ' 712>, We set

P aa®)i=ch T H g,
b(d+aa): =l Hlgg™,

Y(si(i)a z+1 a>): _3q2z+2() z+laoo ifi<>\l:>\;gz+2a
(

0 A
Y(si(i)atta>): —5q21+2( i)atta> ifi<>\’q2l+2.
0

The map 1 is injective continuous as desired. U
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Remark. The Kg’s are infinite, so that ((Kg, Gp)) g 7. is not a <{-basis, because of the (finite) odd

cycles. On the other hand, the (K, G3)’s have 9 & IT9 chromatic number two, by Lemma 3.2.1. In
particular, they have Borel chromatic number two.

The next two results will help us to compare the subgraphs of the G’s.

Lemma 3.2.5 Letde€, feJ, VaCKg EqCGgN de, d’, 5, Vq, Eq having the corresponding
properties, satisfying (Vq, Eq) <. (Var, Eqr) with witness ¢, and x GMKB N Vg N Cq with
@(x) ¢Cqr. Then we can find t€|J,c,, [1; such that

- either meﬁ NVaNCq NN CT{c>},

- or we can find ¢ € {a,a}, l,m€w and s € {1} U {s,(i) | i < N} with the property that
olpro[s(E)] N Va N Cq NNy C {semH120),

Proof. 1If (x) is of the form se™ &>, then there is my € w such that p(z) D se™Tlz if 2 is
in Vg N Nyjm,, by continuity of ¢. Assume that z € proj[s(Ed)]KB N Va N Ca N Nyjp,- Then
z=1lim;_,0 zj, Where z; is in proj[s(Eq)] N Nyjm,. Which gives u; € Vg with (z;, u;) € s(Eq) CV{.
This implies that (p(z;), ¢(u;)) € s(Ear), ¢(2j) =se™ &> and p(z) = se™ 1>,

If now () = c*°, then there is mg € w such that ¢(2)(0) = cif 2 € Vq N Ny, by continuity
of . As in the previous case, we get (z;,u;). This time, ¢(z;)(0) = c, so that ¢(z;) is of the form
M t1ez> and p(z) € {¢™®}U{"1ez™ | kew Ae€{a,a}}. By the previous point, we may assume
that p(z) =c™. O

We get a condition sufficient to send Cq into Cq.

Lemma 3.2.6 LerdcC, fecJ, VaCKg, EqCGgN Vd2, d’, 5, Vq, Eq: having the corresponding

properties, satisfying Cq C Vg N Cdcd ﬂproj[s(Ed)]FB, and also (Vg, Eq) = (Var, Eq/) with witness
©. Then ¢[Vg N Cq] CCqr.

Proof. Towards a contradiction, suppose that there is = € Vg N Cq with ¢(z) ¢ Cq/. Note that = is
in proj[s(Eq)] ”. Lemma 3.2.5 provides ¢ € |J,, [[; such that ¢[Vg N Cq N Ny has at most one
element, which contradicts the injectivity of ¢ since Cq C Vq NCq °. U

We give a condition sufficient to send ¢ to itself.
Lemma 3.2.7 Let d € €, 3 € J with 5;(2i+¢)(0) = € for each | € w, each i < % and each

€2, VaCKpg, E4CGgN Vd2 satisfying x.(Va, Eq) >3, d’, 8/, Vq, Eq: having the corresponding
properties, satisfying Vq\ ({c>} U Cq) C projls(Eq)], and (Vq, Eq) 2¢ (Var, Eq:) with witness ¢

satisfying ¢[Va N Ca] CCqr. Then p[Va\ ({c>®}UCq)] CVa \({c™} UCar) and p(c>°) =c>.

Proof. As Va\ ({c>*} U Cq) Cproj[s(Eaq)], p[Va\({c>} UCq)] Cproj[s(Eq/)] C Vg \ ({c>*} UCq/).
It remains to apply Lemma 3.2.3. O

3.3 Lower bounds

In this subsection, we prove Theorem 1.7, among other things. We first recover an implication in
the style of (2) = (1) in Theorem 3.1.2.
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Lemma 3.3.1 Let X be a first countable topological space, and G be a graph on X with the property
that A(X) N U,e, G s not empty. Then (X, G) has no continuous 2-coloring.

G As X s first countable, we can find ((wn, yn)) in

new
—2p+1 . —2pn+1
hew G . Let (pn)new €Ew® with (z,,,y,) €G .

Z; )i<2pn+1 € X?P+2 with 20 = Tn, 24, 11 = Yn, and (2 2 q) € G if i < 2p,,. This gives

Proof. Let v € X with (z,2) € U, G
(X?2)¥ converging to (x, z) with (z,,, ) €
Let (2
(= ;”, yj ))]EUJ € G¥ converging to (2}, 2% ). If (C, X'\ C) is a coloring of G into clopen subsets
of X which are not empty and satisfy x € C, then z,, y,, € C for some n large enough. In particular,
Oecif j is large enough. An induction on i < 2p,,+ 1 shows that y] "¢ C if j is large enough,
Z+1 ¢ C and a:" A+l ¢ C' if j is large enough when if i is even, and y] "€ C if j is large enough,

zih €C, a:? ZH € C'if j is large enough when ¢ is odd, which is the desired contradiction. Thus

Xe(X, G)=3. O
Lemma 3.3.2 (N, G,,) has CCN three and X3 @ T19 chromatic number two.

Proof. Note that (¢, ¢) € AN) N U,e,, Om " Indeed, if k € w, then (F1a>, #+1a) is
in m2k+3, with witness (c"”rl k0 k1. k(2k+1)%°, ck“EOO). Lemma 3.3.1 implies that
Xe(N, Gy,) > 3. The clopen partition (N, U Nz U N, Ukicw Nr2is Uk,iau Ni(2i+1)) shows that
Xc(Na Gm)=3

We define an open subset of N by O:={z €N | In€w z(n)=aAzn€ (wU{c})"}. The
30 @ IIY partition (O, =O) of N is a witness for the fact that X061 (N, Gp)=2. O

Proposition 3.3.3 The graph G,, is Do(I19).

Proof. Note that
O =0y, U{(FH1a>®, k0°) | kew} U {(ki®, k(i+1)®) | k€w Ai<2k} U

{(k(2k+1)%°, F*1a>) | kcw}.
Thus Oy, is the disjoint union of Oy, and a closed relation on N, so that O, is D2(II{). The proof
for G,,, is similar. O

Lemma 3.3.4 Let X be a first countable topological space, and G be a graph on X. The following
are equivalent:

(]) A( ) N UpEw 2p+1 7é®’
(2) N, Gp) 2 (X, G).
Proof. (2) = (1) Let ¢ be a witness for the fact that (a) holds. We set z := ¢(c*™). Let U be

o0 00

an open neighborhood of z, so that ¢~ 1(U) x ¢~ }(U) is an open neighborhood of (c*,c>) and
contains N x N, for some k € w. As (cF1a>, F+15®) €D, s (p(FT1a>), (e kg a>)) is

in 023 A (UxU). This shows that (z,x) € UpEw ar.

() = @) Let (z,2) € AXX) N Uy, G

. —2pn+1
neighborhoods of z. There is, for each n € w, p, > 1 such that G Pt U2+ (). Note that we may
assume that the sequence (py, )ne. i constant or strictly increasing.

, and (Up,,) be a decreasing countable basis of open
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Let (2, Yn) eGrH!

(25 24 1)-
The map ¢: N — X sends ¢ to x. If k <py, then ¢ sends

k1 0_ 0,0
- a0 z0 =20, Uyzg Newt1aitigto z;,

- ki* to 20, 1 if i <2k+1, Nygraig to )" if i <2k+1, |
- N UN:tozxifi>2k+1ori¢w, and e€{a,a},

N U2, with witness (27);<ap,,+1, and ((x?l, y;l’i))jew € GY converging to

Ny to 27 if i <2k 41,

m#£i,a

k+1 0 _ 0,2k+2
B Umyéc,a {C moo} to Z2k+3° Umyéc,a, and g#m chJrlmJJrlq to Y; .
If (pn)new is constant and k > py, then ¢ sends
k,0

k1 k :
- a® to 25 =wg, Uysy Neptrgitig to i,

. o k7'. . k7'+1. .
- ki® to sz+1 if i <2po—2, Nyijt1g to y; Yif 1 <2pg—2, Um;éi,a Niis+1m 10 T THif < 2pg—2,

- k(20 + 1) to 25, if po—1 <1<k, Upysorpr Niaisnytim o570 if pp—1 <1<k,

- R(20) to 28,y if po—1 <1<k, Uy Nianyitim to 22 if po—1<i<k,

-Npi UN:tozif i>2k+1ori¢w,and e € {a,a},

k+1,,00 k , k,2po
- Um;éc,a {C m } 10 29pg+1> Um;éc,a, and g#m ch+1m3+1q to Y; :

If (pn)new is strictly increasing and p,, <k < p,,+1, then ¢ sends
n,0

. j ’
- ki® to 27 | if i <2pp—2, Nyi414 to yjm if i <2p,—2,

- M t0 25 =, Uysy Neptigieig to
mtia N+t o 2 if i <2p, -2,
k2L 4 1) 10 25, if po—1<I<k, Upsorpr Nyt to g5 2" if py—1<1<k.
~kQ2D)® to 25, i pr—1 <<k, Upypoy Nigayisipm to 2327 if p—1<I<F,

1 n,2pn

- k(2k + 1) t0 28, . Nyargyitia 0 47 Upiiorsra Ni(@ks1)54+1m t0 2
- N UN:toxifi>2k+1ori¢w, and e€{a,a},
~Unea 1m0 25, 1 Unisea and gem Nek+1mitiq 10 Z/?Qp"-

Note that ¢ is a witness for (2). O

Theorem 1.7 is now a consequence of Lemmas 3.3.4 and 3.3.1.
Remark. We saw in the proof of Proposition 3.3.3 that
O =0y, U{(FHa>®, k0°) | kew} U {(ki®, k(i+1)®) | k€w Ai<2k} U

{(k(2k+1)%°, F*1a>®) | kcw}.

Moreover,

proj|G,, | =proj[G,, ) U {ck+1€°° |kewneef{a,al} U{c®}U{ki® | kewNi<2k+1}
is a closed countable subset of N'. As A(P) N Upew @%—H is empty (its only possible element

could be (¢, ¢™), this is not the case since the ¢**1¢°’s are not in P), (P, G,,) <. (N,G,,) by
Lemma 3.3.4, as announced in the introduction.
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We now characterize the subgraphs of G, having a big CCN. In fact, we will need some gener-
alizations of G, in the sequel, that we now describe.

Notation. We define a copy of (P, G,,,) and subgraphs of it. We set, for j € 2%, G5:=s(Qs), where
Qs :={(cF*10ja>, k07 T2a>®) | (k) =1 A jEw} U
{(ki07 1 a> k(i+1)07T1a>®) | §(k) =1 Ai<2kAjcEw} U
{(k(2k4+1)07H1a>®, FH115a°) | §(k)=1 A jew},

and Ps =proj[Gs] U {c>*°} U {ki0> | 6(k)=1 A i<2k+1}. Note that the vertices of Gs have degree
at most one. We also set Poo :={a€2¥ | 3®necw a(n)=1}.

Lemma 3.3.5 (Pi,G1x) = (P, Gyp).

Proof. We define ¢ : Pioc — P by ¢(c®) := ¢, p(ki0>®) := ki, ¢(cF10ja>) := flalt1a>,
p(ki0TTe>) 1= kit 1e>, and (c"11ja>) := FH1aiTa>. The map ¢ is a witness for the fact
that (P10, G1=) <% (P,G,,), and ¢! is a witness for the fact that (P, G,,) <& (P1=, G1). O

Lemma 3.3.6 Let § €P.. Then (Ps,Gg) has CCN three and X & T19 chromatic number two.

Proof. For the upper bounds, we prove that x.(Pj,Gi~) <3 and X50g110 (P1oo, G1oo) < 2 since
Ps C Pi~ and Gs € Gy. This comes from Lemmas 3.3.2 and 3.3.5. For the first lower bound,
towards a contradiction, suppose that there is a clopen subset C of Ps with G5 N (C? U (Ps\C)?) =0).
We may assume that ¢> € C, which gives kg > 1 such that N_x,+1 NP5 € C. Assume that k > ko
and 0(k) = 1. As (cF10ja>, k072a>®) € G4 and f10ja>® € C, k07+2a> € Ps\ C. Thus
k0> € P;\C, which gives jo € w such that k024> € Ps\C' if j > jo. As (k0720 k107H1a>) € Gs,
k101> € C if j > jo. Thus k10> € C. An induction on i < 2k +1 shows that ki0> € C'if i is
odd, and ki0> € Ps\ C if i is even. This implies that ¢**11j@> € P5\C if j is large enough, which is
absurd. Il

Proposition 3.3.7 Let 6 €2%. Then Gy is a D2(I1{) graph on the ODP space P;.
Proof. As IPs is a closed subset of AV, it is a ODP space. Note that
05=05 U { (ki0™®, k(i4+1)0%) | 6(k)=1 AN i<2k}.
Thus Oy is the disjoint union of Qs and a closed relation on NV, so that Q is Do (H(l)). The proof for
Gy is similar. O

We now characterize the subgraphs of G; having a big CCN.

Lemma 3.3.8 Let V CPs, and EC Gy N V2. The following are equivalent:
(1) the digraph (V, E) has CCN at least three,
(2) ¢>* €V and there is I C{kecw | §(k)=1} infinite such that, for each k€ I,
(a) Vi<2k+1 ki0>* eV,
(b) I°jcw (F*10ja>, k07 +2a>) c s(E),
(c)Vi<2k I®jcw (ki H1a>® k(i+1)07T1a>) cs(E),
(d)3°jcw (k(2k+1)07T1a>® cF*11ja>) s(E).
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Proof. Note first that x.(V, E) < xc(V, s(E)) < x¢(Ps, Gs) = 3, by Lemma 3.3.6. We may and will
assume that £ =s(F) is a graph.

(2) = (1) Towards a contradiction, suppose that there is a clopen subset C' of V' with the property that
EN(C?U(V\C)?)=0. We may assume that ¢ € C, which gives ko € w such that N 41 NV CC.
Assume that k£ > kg isin I. By (b), there are infinitely many j’s with (ck+10 7a>°, k07 +26°°) ceECV?,
which implies that ¢**105a> € C and k07T2a> ¢ C. By (a), k0> € V, so that k0= € V'\ C. By (c),
there are infinitely many ;j’s with the property that (k072> k10711a@>) € E C V2, so that we may
assume that k0772a> € V'\ C and thus k10’ 71> € C. By (a) again, k10> €V, so that k10* € C.
An induction on i < 2k-+1 shows that £i0>° € V' \ C'if i is even, and ki0°° € C if i is odd. By (d), this
gives infinitely many j’s such that ¢**11;ja@> € V'\ C, which is the desired contradiction.

()= @) If ¢V, then we set C:= (Ure,, (Ui<arit even Nii UNgs17)) NV Then (C, V\C) is
a coloring of F into clopen sets, which is absurd. If (2) does not hold, then there is kg € w such that
one of the properties (a)-(d) does not hold if k> ky. We will use the following notation.
- If (a) does not hold, then i;, <2k+1 will be minimal with ki;0° ¢V,
- If (b) does not hold, then jj, € w will be minimal such that (c*T105a>°, k07 T2a>) ¢ E if j > ji,
- If (c) does not hold, then iz, <2k and jj, € w will be minimal such that (ki 07 t1a°, k(iz+1)07T1a>)
isnotin F if j > ji,
- If (d) does not hold, then j;, € w will be minimal such that (k(2k+1)0/+1a>, cF*11ja>) ¢ E if
72 Jk-
We then set
C'= (Uk<k0 (Ui§2k+1 even Nii U ch+11) U
Ukao,ﬂ(a),ik even (U2<zk even Ni; U Ujew Nkikoj‘HE U Uik<i§2k+1 odd Nkl)
Ukzko,ﬁ(a),ik odd (Ui<ik even Ni; U Ujew Nkikoﬁla U Uik<i§2k+1 odd Nii

C C C C

)
Ussko,(@)~0) Uj<se Nroi+2a U Ui<ori1 0aa Vki)
Ukzko,(a),(b),ﬁ(c),ik even (Ui<ik even Nii U (Nkik\(Uj<jk Nkz’koﬁla)) U Uik<i§2k+1 odd Nki)
Ukao,(a),(b),ﬂ(c),ik odd (Uz<1k even Np; U Uj<jk Nkikoj"’la U Uik<i§2k+1 odd Nkz) U
Ukao,(a),(b),(c),—'(d) (Ui§2k+1 even Ni; U Uj<jk Nk(2k+1)07+1a)) nv.

Then (C’, V'\ (") is a coloring of E into clopen sets, which is absurd. O

4 General graphs on a 0DMS space

Remark. We study the limits of Theorem 3.1.2. In its proof, we used the compactness of Cq. This
is essential. Indeed, if we replace Cq with w* or N, then the notation "G still makes sense and the
following hold. The implications (4) = (1) and (2) = (3) still hold, with the same proof. Also,
the implication (4) = (2) still holds, using uniform continuity.

(a) The implication (1) = (4) does not hold. Indeed, if X is a ODMC space and G is a graph on X
with CCN at least three, then (X, G) is not <.-below (N, G,,). Indeed, we argue by contradiction to
see that, which gives a continuous map ¢ : X —N. We set V :=¢[X] and E := (¢ x ¢)[G], so that
the graph (V, E) has CCN three.
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The compactness of X implies that the first coordinate of the elements of V'\ (N. U N, U Ng) is
bounded by some natural number k. We set C := (Ukﬁko (Ui<orr1 even NVEi U Nart1g)) NV, s0

that C'is a clopen subset of V and E N (C? U (V'\ C)?) = (), which is the desired contradiction. In
particular, if (A1, Gy) exists, then A; cannot be compact, and ((Ka, Ga))a cow given by Theorem 1.4
is not a <.-basis for the class of countable graphs on a ODP space with CCN at least three.

(b) The implication (2) = (4) does not hold. Indeed, note that (¢>, ¢>) €(),,c,, (U ("G )?PHY).

(c) The implication (2) = (1) does not hold. Indeed, consider the following countable graph on w*:

T:=s({(0%**11°, (2k+2)0>) | kew} U {((2k+2)i0F1°°, (2k+2)(i+1)0®°) | kEw Ai<2k} U
{((2k+2)(2k+1)0F1%°,0%k+21) | kew}).

Then (0°°,0%) € A(w®”) NN, ("T)***1. We set C:= Ny U Ukew,j<ar N2k+2)(j+1)0x+1- Then
T N (C?U (=C)?)=0 and C is a clopen subset of w*, so that x.(w*, T)=2.

pPEW

We now turn to the proof of Theorem 1.8.

Lemma 4.1 Let (Q), <) be quasi-order for which there is qo € Q) such that, for any q < qo, there are
<-incomparable py, p1 < q. Then (Q, <) has no antichain basis.

Proof. Towards a contradiction, suppose that there is an antichain basis B for (@), <). As B is a basis,
there is g € B with g < ¢qg. Our assumption gives pg, p1 < ¢ with pg L p1. As B is a basis, there is, for
each € €2, q. € B with ¢. <p.. As g. <q are in the antichain B, gg=q¢=¢q1. Thus pg <g=q1 <p1
and pg < p1, which contradicts the <-incomparability of pg, p;. O

Recall the graph (Ps, G4) defined before Lemma 3.3.5.
Lemma 4.2 Let § € 2%, and G be a graph on a 0DMS space Z, with CCN at least three and satisfying

(Z,G) =i (Ps,G;). Then there is &' € Pog such that {k €w | §'(k) =1} C{k cw | 6(k) =1} and
(Psr, Ggr) <L (Z,G).

Proof. Assume that (Z,G) =& (Ps, Gs), with witness . We set V := p[Z] and E := (¢ x )[G], so
that, by Lemma 3.3.8, ¢> €V and the set I C{kcw | 6(k) =1} of k’s satisfying (a)-(d) is infinite.
We set (14, 77z) := (0, 1), and define
- asingleton {v}:=p 1 ({c*}),
- singletons N%i:={n*}:= ¢~ 1 ({ki0>®}) (for k€I and i < 2k+1),
- infinite sets Ji:=J{ g :={j €w | (F10ja>, k07+?a>) € E} and
JEi= T =i €w | (REE+1)07a>, 11ja>) € B}
(for ke 1),
- infinite sets Ji! ;== Jf ; :={j€w | (ki0"1a>, k(i+1)07+1a>) € E} (for ke and i <2k),
- singletons Z%€3 = {287} := = ({cF . je>}) (for keI, e € {a,a} and j € JF),
- singletons ZK43€ .= { Zk80:2} = o= ({ki0THe>®)) (for k€1, i <2k+1, j € Ji.;» and e € {a, a}).
By [K, 7.8], we may assume that Z Cw*. We set

I''={kel|Vi<2k (n* nPT)e{(zhiia, kitlia) | je e 1}
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If k€ I\I', then i), < 2k will be minimal with (n*, n* 1) ¢ {(okikda ckitlia) | je g, }.
This gives lj; € w with (N, k.iy, g, X Nypesigt1p, ) 0 {(himda hinthia) | je Ji, b =10. If we set

a— ,__ [ a kyik,j,a ) a,+ . g a kjir+1,5,a )
a _ 74— (l,+
Jk,’ik - Jk,’ik U Jk,ik'

Let us prove that
View I®kel’ Vpew FjeJi Z8I NNy, Z8095 N N ko), #0 A
Vpew JjeJi ZRHFLi0 N N, ot )y, Z8%T 0 N, #0.

Towards a contradiction, suppose that we can find Iy, kg € w such that, for each k& > kg in I, either
there is pf € w such that, for j € J}, Zkain Ny = () or Zk0.3.a ﬂNnk,O|pz =), or there is p{ €w such

that, for j € Jg, Zk2k+1lian Nnk,2k+1‘pg ={ or Z¥%i N Nyjio = 0. If k > ko and (b) from Lemma
3.3.8 does not hold, then jj, will be minimal such that (c*+10ja>, k0'T2a>°) ¢ s(E) if j > ji.
We set, for e € {a,a}, S*:={kel | k>ko A pj exists}. We also set, for k€ S?,
Ghkha.— {jeJi| AR Nnk»o\p‘g :@}
and, for k€ %, Sk@:={je JI | Zk2k+Llian Nk 2 pr = (}. We then set
C=Urcry ¢~ (Uizztr1 even Nei U Nows11) U
Ukao,ﬂ(a),ik even QP_l(Ui<ik even N U UjEw Nkik0j+15 U Uik<i§2k+1 odd

=

ki

=

-1 . . .
Ukao,—'(a),ik odd ¥ (Uz<zk even Nkl U UjEw NkikOJ‘Ha U Uik<i§2k+1 odd *Vki

=

YU
)u
1
Ussko@)-0) ¢ (Uj<jp Nrorr2a UUi<on41 0aa Nii) U
Ukao,(a),(b),ﬂ(c),ik even ¥ (L.Jz<uC even Nii U (Nkik\(Uj<jk Nkik0J+1a)) U Uik<i§2k+1 odd N’“) U
Uk>ko,(0),(8) ()i, odd # (Uiciy even Vbi UUj<je Niioitta YU, <icont1 0aa Vi) U
1
UkaO,(a),(b),(c),ﬂ(d) ¥ (Ui§2k+1 even Vi U Uj<jk Nk(2k+1)0ﬂ'+1a) U
1

Ukao,kGI\I’,ik even ((70 (Uz<zk even Nii U UjEw NkikOjJrlE U Uj%‘]l(:’i; Nkikonrlfl U
Uje«.u Ni(ir+1)0i+1a U Uj¢J,‘C";rk Ni(i+1)05+1g U Uik+1<i§2k+1 odd NVki) U Nppwiy i, Y Nn’fvikﬂ\zk) U

1 )
Ukskoken ig oaa (97 (Uiciy even Nei U Uigz Nriortia U
Uj¢J,;‘:;; NiGip+1)00+13 Y Uiy 1<i<ort1 odd Nii) U Ny, U Npoigery, ) U

UkeSE ‘P—l(UngkH even Vi U Ujeskﬁ Nk(2k+1)oj+1a U Ujng\skﬁ ch“ljﬁ) U

Ukesa\sﬁ 12 (Uje]g\skvﬂ ch+10ja U UjeSkva Nigit2q U Ui§2k+1 odd Nki)-

As ! (N), N P;) is a clopen subset of Z, the only possible limit point of (2*7<)je,, is n*". Also,
the only possible limit point of (2¥:7); 1., is v. This implies that (C, Z\ C) is a coloring of G into
clopen sets, which is absurd.

We then set, for [ € w,
Sp={kel' |Vpew FjeJ? ZF4I N Ny, ZM07% O Nyrop, 20 A
Vpew JjeJi ZFHHLi0 N N, oy, Z8%9 0 N, #03,

so that (.5]);e., is decreasing.
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We inductively define kg := min Sy, and k;;1 := min S;11 N (k;, 00), so that (k;);e,, is stricly
increasing. We define ¢’ €2% by §'(k)=1 < Jlew k=k;, so that 6’ € Po,. We pick, for [, p€w and
1 <2k,

- Jip0 € J,‘jl, Zhpagipo € N, and 2k1,0,1.p.0. € Nnkl,olp, ensuring the injectivity of (j .0)pew-

- Jipit1 € J,?M-, Zhy it pis1,a € Nnkl,i‘p, Zhy ity pig1,@ € Nnkl,i+1|p, ensuring the injectivity of
(Jl,p,iJrl)pEwa

- Jip2k+2€ 5 2y, 2k 41,1 p 21y 4250 € Nnkl,le+1|p and zy, @itp2ig e € N, i, ensuring the injectivity of
(jl,p,2k1+2)p€w-

We are now ready to construct ¢ : Ps — Z. Note that

Py ={ckitin.je> | jlewAeefa,a}} U {ki0iTe> | jlewAi<2k+1Aeef{a,a}} U

{c®} U{kji0>® | lew Ni<2k+1}.
We first set ¢(¢™) :=v. If | €w, then 1 sends F+10pa™ to zp, 4, , o» k1i0% to nF? if i < 2k +1,
kyi0PT1a™ to z, divjipisr,a and ki0P 1@ to Zhysiip.a if 1 < 2k+-1, and it 1pa™ to 2h1,, 1, p ok 42
Note that 1) is as desired.

Lemma 4.3 Let 6,8 € Py, with (Ps, Gs) < (Ps:/, Gs'). Then there is ko € w with the property that
{k>ko | 6(k)=1}C{kew | d(k)=1}.

Proof. Let o :IP5 — Ps be a witness for the fact that (Ps, Gs) <. (Ps/, Gs). We set V := ¢[Ps] and
E:=(px¢)[Gg], so that x.(V, E) =3. By Lemma 3.3.8, ¢> € V. Moreover, ¢ [proj[G;]| C proj[Gy].

Let us prove that ¢[Ps\ (proj[Gs] U {¢>*})] C Ps \ (proj[Gs/] U {c>°}). Towards a contradiction,
suppose that we can find k; such that (k1) =1 and i <2k;+1 with ¢(k170°°) € proj[Gs | U {c>}. We
set (14, nz) := (0,1). If p(k1i0°°) € proj[Gg/], then there are i’, j/, k', ¢ with the property that either
@(k110°°) = +1n_5'e>, or @(k1i0°°) = k'i’09'+1£°°. The continuity of ¢ provides a natural number
jo with @[Nkliojoﬂ] - Nc’“’“%j’e or @[Nk1i0j0+1] C Nysigi'+1.- This implies that the sequence
(gp(klioj“aoo))PjO is constant, which contradicts the injectivity of ¢. If p(k170%°) = ¢, then
6" € 2 defined by 0" (k) =1 < §(k) =1 A k # ky is in Py, and P|p,, is a witness for the fact
that (Ps», Ggr) <% (Ps,Gg). But the injectivity of ¢ implies that ¢> ¢ ([Ps~], which implies that
Xc(Psr, Gs) <2 by Lemma 3.3.8, and contradicts Lemma 3.3.6.

This implies that ¢(c>°) = ¢*°, and gives ko with [N _kg+1] C N,. Pick k > ko with 6(k) = 1.
This gives, for each p € w, jp, kp, €, with §(k,) =1 and ¢ (cF10pa™) :ckp+1n€pjpsg°. Extracting a
subsequence if necessary, we may assume that the €,’s are equal to €. Thus

k,0rt2q® if e=a
D+2-00\ _ P - >
p(RO™T) = { kp(2k,+1)0% 10> if e =a.
The continuity of ¢ implies that ((p(k:()pﬂﬁoo))p .

if necessary, we may assume that the k,’s are equal to k" and (j,)pew is injective. Thus ¢ (k0>) is
k'0° or k'(2k"+1)0°°. Now note that the sequence (go(kOp“aoo))pEw also converges to ¢(k0>°).

This gives, for each p €w, j,, &), with (jj,)pew is injective (up to an extraction) and

., converges to (k0>°). Extracting a subsequence

, _
I{:’()JP*'Qel’DC>o ife=aq,

kOPT20>) = ’
P(RO7a™) {k’(Qk’—H)OJp“e;oo ife=a.
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Extracting a subsequence if necessary, we may assume that the 5;’3 are equal to €’. Thus

K107t if ¢ =a, feea

KO +1)a> if &' =a, v
p(k10PH1a>) =

ck’+11(j;?/+1)a°° if ' =a, fe—a

K (2K 07> if &' =7, '

As (<p(k10p+1a°°))p€w converges to p(k10°) € Py \ (proj[Gs/] U {c>}), p(k10PH1a>) ¢ N, and
the second and third cases are not possible if p is large enough. Thus ¢’ =¢, and p(k10°°) is k'10°° or
k'(2k")0%°. Now note that the sequence (cp(klOp“aoo))pEw also converges to (k10>). This gives,
for each pew, jj, e with (j,,)pew is injective (up to an extraction) and

K107 e/ if e =q
k1071 a™) = . ’
# a*) { K (2K')0% 1l if e =7,
Extracting a subsequence if necessary, we may assume that the 5;;’5 are equal to €”. If k>0, then the
continuity of ¢ implies that (go(k20p+16"°))pew converges to ¢(k20°) € Py \ (proj[Gg] U {c>*}).
This implies that p(k20°°) ¢ N,, and p(k20PT1a>) ¢ N, if p is large enough. So we may assume
that .,
K200 t1a> if e’ =a, .
k07 t2q2° if & =a, ife=a,
(k20PT1g>) =
K (2K +1)077 g% if ¢ =aq, ez
K (2K —1)0% T1a> if ¢” =a, o
The injectivity of ¢ and the value of p(k0°°) imply that second and third cases are not possible if p is
large enough. Thus ¢” =¢, and ¢(k20°°) is £'20°° or k'(2k"—1)0°°. This implies that &’ > 0. If now
k=0, then
k’+11 1G> if & =
kg =4 € 1 lpaTite=a,
SO(C pa ) { Ck +10(j;)/+1)a00 ife=a.
since p(cFT11pa>) € N,. This implies that &’ = 0. Iterating this argument, we see that &’ = k and
0'(k)=1. Thus ¢’(k)=1if (k) =1 and k > ky. O

Proof of Theorem 1.8. Lemmas 3.3.5 and 4.2 provide § € P, such that (P5, Gs) < (Z, G). We
enumerate injectively {n € w | 6(n) =1} =: {n, | p € w}. Let (pp)necw be the sequence of prime

numbers. We define, for each o € 2%, S, Cw by S, := {pg(0)+1 . .pﬁ(n)ﬂ | n €w}. Note that S,
is infinite, and S, N Sp is finite if a # 5. We define J, € 2 by §,(n) =1 < Ipe S, n=mn,. Note
that §,, € Pog and 94 (n) <d(n) for each n. We set (Py, Go):=(Ps,, Gs,, ), so that P, CPs, G, C Gy,

(P, Go) =% (Z,@), and x¢(Py, Go) =3 by Lemma 3.3.6.

Let us prove that (P,, Gy), (Pa, Go) are <%-incompatible among graphs on a 0DMS space with
CCN at least three if v a’. We argue by contradiction, which provides a 0DMS space Z and a graph
G on Z with CCN at least three and (Z, G) =& (P,, Go), (Pa/, Go). Lemma 4.2 gives &' € P, such
that {kcw | 0'(k) =1} C{k€w | 6a(k) =1} and (Ps,Gy) =% (Z,G). Lemma 4.3 gives ko € w
such that {k >k | '(k)=1} C{k€w | do (k) =1}. This implies that {k € w | '(k) =1} is finite,
contradicting &’ € P.
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Lemma 4.1 then implies that there is no <’-antichain basis in the class of graphs on a 0DMS (or
0DP) space with CCN at least three. If B is a basis for the class of graphs on a 0DP space with CCN
at least three and « € 2%, then there is b, € B with b, jg (P,, Gy). The previous point shows that
the sequence (b, )ae2w is injective, so that B has size at least continuum. O

S General graphs and dynamical systems

We now prepare the proof of Theorem 1.17. We establish preliminary results holding not only for
our examples, and clarify the relation between Cantor dynamical systems and our graphs. We first
introduce examples in the style of the G, ’s defined at the beginning of Section 3.

Notation. Fix d € € (defined before Theorem 3.1.2). We associate to d the following objects:

- an increasing unbounded sequence (n;);e., of natural numbers, sometimes denoted by (nld)lew,
- sequences (L;)jecw, (Ry)ie. of integers with Ry — L;=2n;+1.

Let f : C — C be a homeomorphism, so that (C, f) is a Cantor dynamical system. We will
associate a graph to (C, f), as follows. Recall the definition of 7 at the beginning of Subsection 3.2.
We define, forl € w and L; <i < Ry, fi;:= fl‘fi := f1(0°°)|(I41) in [], ;. This defines 3 € J by
setting A; := 2n;+2, and s(2) := f,1,+4. We set CT :=Kg, Oy := Op, and G := s(0y), so that
Gr=Gg.

Lemma 5.1 (C*,Gy) has CCN at least three and X9 @ I1Y chromatic number two. If moreover
do=2and f(x)(0)#xz(0) for each x €C, then (C*,Gy) has CCN three.

Proof. We first apply Lemma 3.2.1. For the end, we argue as in the proof of Lemma 3.2.1. O

We now want to compare the subgraphs of the G f’s.

Lemma 5.2 Let X be a topological space, f: X — X be a homeomorphism, Y, g having the corre-
sponding properties, x € X, and p:Orbg(x) —Y such that o(f(2))=g(¢(2)) for each z € Orby(x).

Then o(f'(z)) =g"(¢(z)) for each i € Z. Similarly, if (f(z)) =g *(¢(2)) for each z € Orbs(x),
then o(f*(z)) =g " (p(x)) for each i € Z. In particular, p[Orby(z)]=Orby(p(z)) in both cases.

Proof. Inductively, we see that (f*(z)) = g'(¢(z)) for each i € w and each z € Orby(z). In

particular, p(z) = (fl (f*’(a:))) =4 (4,0 (ffz(a;))> , so that gp(f*’(a;)) =g! ((p(l‘)) This implies
that o (f*(x)) =g' (¢(x)) if i € Z. The other case is similar. O

Definition 5.3 We say that the tuple (d,d’, fa, fa', Va, Var, Ea, Eq’, ©) is a continuous tuple if d € €,
fa:Cq—Cq is a homeomorphism, Vq C Cc'f, EqCGyp N de is a graph, x.(Va, Eq) >3, d’, far, Va,
Eg' have the corresponding properties, and (Vq, Eq) <. (Var, Eq’) with witness .

The next results are steps towards flip-conjugacy.
Lemma 5.4 Let (d,d’, fq, fa', Va, Var, Ea, Ear, @) be a continuous tuple, and
(T2
(v, fa(@) €Ba ™ 0 V3

with o(x), ¢(fa(x)) €Car. Then o(fa(x)) = fa (¢(x)) or o(fa(x)) = f3' (o (x)).
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Proof. Note that (z, fa(z)) =limj_s (27, w), where (27, ;) € Eq. This successively implies that

(¢(x1), o(w)) € Ea CGy,, and (¢($)790(fd(33))> = limy_,00 (0(x1), 0(w)). As (), p(fa(z))
are in Cq, the first coordinate of ¢ (z;), p(u;) is in do if I is large enough. The definition of Gy,
provides k; €w, i €Z, and (py, €1) # (6, m) in {(0, a), (1,@)} with the properties that i; <2ny,,

Lyt i — Ly, +i;+0 i o
(plan), (u) = (fgt (0% (1) TP, £ (0%0) [+ Lm0 ™)

for such a [. Extracting a subsequence if necessary, we may assume that the sequence (p;) is con-
stant. Moreover, the fact that ¢(x) € Cq implies that we may also assume that the sequence (k;)

is strictly increasing. This implies that (cp(:r), o(fa (:r))) is at distance zero from the closed set
Graph(fd/)l_Q”0 N de,. Thus gp(fd(x)) = fa (gp(:v)) or go(fd(x)) = f(;,l (cp(a:)) O

Corollary 5.5 Ler (d,d’, fq, far, Va, Var, Ed, Eqg/, ) be a continuous tuple such that ¢ is injective,
Cq C V4 ﬂCd and Graph(fq) C Ed( a) , and assume that x, fq(x) € Vq N Cq. Then either

o (fa(x)) = far (p(2)), or p(fa(x)) = fo' (p(x)).
Proof. By Lemma 3.2.6, ¢(z), ¢( fa(z)) €Cqr. It remains to apply Lemma 5.4. O

Lemma 5.6 Let X be a ODMS space, f:X — X be a homeomorphism, V. C X, I be a subset of

{zeV | f(x) eV}, Y, g, W having the corresponding properties, and ¢ : V — W be a continuous

injection. We assume that o(f(z)) =g(p(z)) or o(f(z)) =g (p(z)) ifz €.

(a) Assume that g* is fixed point free, x, f(x) € I, and f*(x) # x. Then ¢(f(z)) = g(¢(z)) and
p(f2(x)= 2(90( ), or o(f(x)) =g (p(x)) and o(f*(x)) =g~ (p(2)).

(b) Assume that g° is fixed point free Orby(x) is a dense subset of I, and f?(x) # x. Then either

o(f(2)) :g(cp(z))foreach zel,oro(f(2)) =g (¢(2)) for each z€ 1.

(c) Assume that g* is fixed point free, Orby(x) C1, and f*(x)#x. Then o|Orbs(x)]=O0rby(p(x)).

Proof. (a) Weset P:={z€1 | o(f(2)) =g(p(2))} and M:={z€1 | p(f(2)) =9 (¢(2))}, so

that (P, M) is a covering of I into closed sets. As g2 is fixed point free, P, M are disjoint. Thus P is

clopenin I. If z € P and f(z) € M, then ¢(f?(z)) =g~! (go(f(x))) = ¢(z), which contradicts the

fact that f2(x) #x since ¢ is injective. The argument is similar if we exchange P and M.

(b) By (a), either Orbs(z) C P, or Orbs(x) C M. By density, P € {1, 0}.

(¢) If Orby(z) C P, then, by Lemma 5.2, ( f*(z)) =g (¢(z)) if i € Z and we are done. Otherwise,

by (a), we are in the similar case Orb (x) C M, so that ¢[Orb s (z)] =Orb, (¢(z)) in both cases. [

Lemma 5.7 Let (d,d’, fa, far, Va, Var, Ea, Ear, ) be a continuous tuple such that f3, f3, are fixed
. . -5 Cda 7(C§)2

point free, ¢ is injective, Cq CVq NCq © and Graph(fq) C Eq .

(a) Assume that z, fq(z), f3(z) € Va N Ca. Then ¢(fa(z)) = fa (¢(z)) and o(fi(x)) =13 (o()),

or p(fa(x)) = fg' (o(x)) and o(f§(2)) = f3* (¢ ().

(b) If Orby, () is a dense subset of I := {z € Vq N Cq | fa(z) € Va} for some x, then either

o(fa(2)) = far (¢(2)) for each z€ 1, or ¢(fa(z)) :fd_,1 (¢(2)) for each z€ 1.

(¢c) Assume that Orby, (x) CVaq N Cq. Then [Orby, (x)|=0rby,, (¢(x)).
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Proof. We apply Lemma 5.6 to X :=Cq, f:= fq, V :=Vq NCq, I defined in (b), Y :=Cyq/, g:= far,
W:=Vq N Cq, and ¢ := )/, which is possible by Lemma 3.2.6 and Corollary 5.5. U

Lemma 5.8 Letd,d' €€, and fq:Cq —Cq, fa :Ca — Cq be minimal homeomorphisms such that
—_(oty2 ,
Graph(fqa) CGy, (Ca)” If(Cy,Gy,) <t (C:{,,Gfd/ ), then fqa, far are flip-conjugate.

Proof. Let ¢ : CJ — CJ, be a witness for the fact that (C3,Gy,) <. (C3,Gy, ). By Lemma 5.1,
(d,d’, fq, fd/,C;r,Cj,, Gy Gy d,,cp) is a continuous tuple satisfying the assumptions of Lemmas
3.2.6 and 5.7. In particular, p[Cq] € Cq and the map ¢ := @i, : Cq — Cq is a witness for the
fact that fq, fq- are flip-conjugate. Indeed, Lemma 5.7 implies that ¢[Orby, ()] = Orby, (¢(x)) if
x €Cq. As fq is minimal, the compact set 1)[Cq] is dense in Cq/, showing that v is onto, and thus a
homeomorphism by compactness of Cq. 0

Notation. For the converse, we give a definition of the sequences (1n;)icw, (L;)icw and (Ry)je.,. We
define (n;);e., by ni:=1, so that (n;);c,, is increasing unbounded.

- We define a map ( :w— Z having the property that each integer appears infinitely many times in the
range of (.

- We define sequences (L;);e.,, (R;)iew of integers by Loy, := Rom41:=((m) and R;— L;:=2]+1,
so that the sequences (f"(0°)),_, (f(0>)),_, are dense if f is minimal.
Note also that { f*(0°) | 3l cw L;<i< R;} is dense in C if f is minimal, which implies that
(o t\2
Graph(fa) CG, ‘)",
Lemma 5.9 Let d,d’ € €, fq : Cq — Cq, fa : Ca — Cq be minimal homeomorphisms, and
(n)iews (L1)icw, (R1)icw just defined. If fa, far are flip-conjugate, then (Cji', Gy,) =L (Cj,, (Gfd,).

Proof. As fq, fa are flip-conjugate, we get a homeomorphism 1 : Cq — Cq:. We have to define a
function ¢ : Cj — Cj,. We first set p(c™) := ¢, and ¢(z) :=9(z) if z € Cq. As fq is uniformly
continuous, for any [ € w, there is U > such that, for any y, z € Cqr, far(y)|(I+1) = far(2)|(I+1) if
y|(U+1)=2z|(U+1), which defines U : w — w.

Assume first that 1o fg = fas0tp. By Lemma 5.2, ¢ (f5(0%°)) = f4, (¥(0°°)) for each i € Z. We
define (c,o(fl‘?LlH.s'“rléolo))'igzl+1 by induction on [, ensuring that go(fle+isi+1§°°) is of the form
T80 Ly 4100 (Lie)+1zo0 with I'(1,i+1,a) =1'(,4,a) and ' (1,i+1,a) =4’ (1,4, a) if i <2l
Fix l€w. Let M :=sup{l'(k,j,n) | k<A j<2k+1Ane{a,a}}.

- We choose m := I'(1,0,@) > max(l, M) such that fim(0°)|(14+1)= j,l (¥(0°))[(1+1), which
is possible since the sequence (fg,m (O"O))mEW is dense. We set o(c1aa>) := ¢™+laa> and
@(fldLlano) = fd 1,,aa>. Note that (¢(cTaa™), go(ffiLlano)) €Gy,,, as desired.

- Now fix i <2n;. As fq is minimal, we can find k; € Z with
FEO)(U @) +1) = £ (0(0%)) (U (1) +1).
Note that fX1(0%°)](141) = flrt (¥(0°°))|(141). We choose m' :=1'(l,i,a) >U'(L,i,@) with

the property that L, < k; = Ly, +1i; < Ry,. We set go(fﬁLl+iai+16°°) = fg/7kiaiz+16‘>° and

. ’ v L . ..
go(fﬁLl+i+1a”2a°°) = f%,7ki+16%+2a°°. Note that (go(fl"iLlHa”laoo), cp(fl‘?Ll+i+ld‘+2a°°)) is in
Gy, » as desired.
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- We then choose m” :=1'(1,21+1,a) >1'(l,2l+1,a) with ff,m” (0°)](1+1) = f51 (¥(0%)) |(1+1),
which is possible since ( fd/"'(Ooo))m c., 18 dense. We set ¢ flfiRlazl*Qdoo) = ff,l;,,7 Ry a?m’+2g>
and ¢(cd*t1@a™) :=¢""*+1aa™. Note that (p(filg,a®1?a>), p(¢Haa>)) €Gy,,, as desired.

This completes the definition of . Our construction implies that ¢ is a homomorphism from
(C:{, Gy, ) into (C(;“,, Gy, ). Our choice of the I'(,i,¢)’s implies the injectivity of ¢. For the con-

tinuity, note first that the sequence (cp(cl“eéoo)) converges to ¢ since m,m” > [. If now

. lew
(fl‘; Ly, +ix 62’““@‘”);{@, converges to = € C, then we may assume that = € Cgq. Note that the se-
R
Ly, +i Ly, +i
quence (f,"* " (0°)) .., converges to , and ( L (w(()oo)))k converges to ¥(x) = o(z).
Cw

B A
Our construction ensures that fj,l (i T (1) O®)|(1+1)= j,”" (¥(0°))[(1+1), and

ikt+l—o0

d _ed ' (Lsinsen) +Hl——o0
Sp(flk,le—l-ikgk €k )_fl,(lkyik>5k)’Ll/(lk,ik’gk)‘i’i/(lkvikvgk)gk €k

L i +/l 7' , . . .
— d/l/(lk., k’sk) 7 ( kslk 6k)(000)|(l/(lk7 Zk, Ek)_'_l)g;{:(lk,lk,&k)-i-laoo‘

Asl'(l,i,e)>1, we get

il oo Ly, iy ey T (ksinsgr) oo Ly +i o
P Ly +in ot I W) = f 0% (k1) = St (9(079) | (I +1).

Thus (ga(fli Ly, +i 52’““@"0))%0) converges to (), proving the continuity of .
"l

The case where 1o fq= fdﬁl o1) is similar. U
Notation. We set (X, R) =L (V,5) & (X,R) =L (Y,9) A (Y,S) =L (X, R), so that =¢ is the

equivalence relation associated with the quasi-order <¢.

Corollary 5.10 Ler d,d' € €, fq : Cq — Ca, far : Cq — Cq' be minimal homeomorphisms, and

(n1)icw, (L1)icw, (R)icw just defined. Then (C:{, Gy,) Ei (C;,Gfd,) if and only if fq, fq are flip-
conjugate.

6 General graphs and odometers

We now provide a countable graph on a(n infinite) 0DMC space with CCN three which is strictly
=c-below the odd cycles. Our example is based on odometers. We give some notation useful for the
sequel.

Notation. Fix d € € (defined before Theorem 3.1.2). The odometer 0:=o04 :C —C is defined by

( )__{000 ifVjew a(j)=d;—1,
AT 0n(am)+1)a(n+ Da(n+2) . .. if a(n) <d,—1 AYj<n a(j)=d;—1.

As Orb (o) :={o%(a) | i >0} sees all the words of length n in the first n coordinates for any z, o is
a minimal homeomorphism. We sometimes extend the definition of o to finite sequences.
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Weset ©:={deC|dy=2AVj>1 d;isodd}.
- We define, for d €D, (n;);c, €S by ng:=0 and n;41:= (miizitr 4)=1 Nt that

2
di —1
J OOO

2
converges to j1:=1""j>1 dj—;l as [ goes to infinity, and o +1(0°°) =" (d;—1)0°.
- We define, for l € w and i <2ny+1, o7 := oﬁi :=0"(0°°)|(I+1) €],44- This defines 3 € J¢, by
setting \;:=2n;+2 and s;(i):=05;. We set CT:=Kp, 0,:=0pg, and G,:=5(0,), so that G, =Gg.

Proposition 6.1 Let d€®. Then (C*,G,) has CCN three, Z‘f e H(l) chromatic number two, and is
strictly <.-below the examples of Corollary 2.2.

oPTH0%) =17 1<

Proof. Lemma 3.2.1 proves the assertions about chromatic numbers. Let p € w. We define a function
¢ :CT — 2p+3 as follows. Fix ly € w minimal such that n;, > p. We set p(z) := 0 if 2(0) = c. If
t<4n;,+1 and 01(010+1) Cz (recall that o can be extended to finite sequences), then we set

i+1ifi<2p+1,

2p+2if 2p+1 <t <2n;,+1 Aiis odd,
2p+1if 2p+1<i<2n;,+1 Aiis even,
2p+2nyy+3—1 if 2ny, +1<i <2p+2ny,+1,
2if 2p+2ny,+1 <t <4nj,+1 A< is odd,

( 1if 2p+2n;,+1<e<4n; +1 Aiis even.

p(z):=

It remains to define (0" T12>) if £ € {a,a}, | <lp and i <2n;+1. We set (0,6 T18°) :=i+1.
This defines a continuous homomorphism ¢ from (C*,G,) into (2p+ 3, Cap43). The inequality
(CT,Go) <c (2p+3, Capts) is strict because of Corollary 2.2(b). O

Remark. We clarify the limits of Theorem 2.1. In its proof, we used the finiteness of X. This is
essential. Indeed, if we replace y with ¥, <" with jé and X with C™, then the following hold. The
implications (2) = (1), 3) = (1) and (3) < (2) still hold. The implications (1) = (2) and
(1) = (3) do not hold, because of Proposition 6.1.

We now characterize the subgraphs of G, having a big CCN.
Lemma 6.2 Letdc®, VCCt, and ECG, N V2. The following are equivalent:

(1) the digraph (V, E) has CCN at least three,
(2) the following hold:

(a) 0%, u,c>*eV andCQWc,

(b){(¢,0%), (11,¢%)} U Graph(0) C 5(E)
Proof. Note first that x.(V, E) < x¢(V, s(E)) < xc(C*,G,) =3, by Lemma 3.2.1. We may and will
assume that £ =s(F) is a graph.

(1) = (2).(a) For 0>, we argue by contradiction. Let C:= (N1 UJ;c,, Ngi+15) N V. Then (C, V\C)
is a coloring of E into clopen sets since C'= (N1 U |J;¢,, Not+15 U {0°°}) NV, which is absurd. For
1, we argue similarly, with (No U | ¢, Nyj(+1)a) NV For ¢, we apply Lemma 3.2.3.

ct)?

Claim. Let | € w. Then either for each 0 <1i < 2n;+1 there is x € V N C with o;; C x, or for each
241 <j <4n+2 thereis ycV N C with o ; Cy.
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Indeed, towards a contradiction, suppose that [y, ¢, j exist. Assume, for example, that ¢, j are even,
the other cases being similar. We extend the notation o; ; for  <4n;+1 (not only 7 <2n;+1), and set

C"i=(Urcisi, (NVeia YUsery, Nsa) U Ucikeven Notgs Y Uit selly, oy 5 Notgisa Y
Uick<jkoda Noig U Ulzlo,tenl0<j§l d; Noy jtaV Uj<k<4mo+2,k even Moy ) NV
Then (C’, V\ (') is a coloring of F into clopen sets, which is absurd. o
Now letl €w, t€]];, i <2n;+1 with t0=o0;;, and 2n;+1 < j <4n;+2 with t(d;—1) =0, ;. We

may assume that ¢ # 0 and j # 2n;+1 since 0°°, € V. Then there is z € V N C with ¢t C x by the
claim, so that x €V N C N N;.
(b) For (c>,0°), we argue by contradiction. If [ > Iy is large enough, then (c'*'a@™>, 0"+ 1@a™) is
notin E. Let C":= (Ur<i<ty (Nag U UsGHl Ng) U UlsEngzO d; Nis) N V. Then (C",V\C")
is a coloring of E into clopen sets, which is absurd. For (u, ¢®), we argue similarly, with the clopen
set (Ur<i<ty (Neg U Useq, Nsa) U UOSGngzo a; Nos) V.
—(C+)2
In order to prove that Graph(o) C E(C ) , towards a contradiction, suppose that there is ig € w
. . —(C1T)2

such that (0"0(0°°), 001 (0>)) ¢ EC 11> 10y is large enough, then ip < 2n; and

(014, alotlg>, ol,i0+16i0+2a°°) ¢FE.

We set P_:= {0o®(000F) | i <ip}, Py :={o'(0"F1) | ip <i < mj<y, d;}, which defines a partition
(P-,{019,i0 }, P+) of [ [}, 1- Assume first that iy is even. Let

C":=( ] WNuzu |J Na)U U Nou | NonW

1<i<lp sell, s€P_U{oyg i },5(0)=0 s€Py,s(0)=1

Then (C", V\C"") is a coloring of E into clopen sets, which is absurd. If i¢ is odd, then we consider

c"=(J) (Nugu |J Na)UN.U U Nou | Nonv

1<I<lip selT; se€P_U{o,,iy },5(0)=1 s€P4,s(0)=0

(for instance c!1aa®> € C" and o; gaa™ ¢ C"").

(2) = (1) Towards a contradiction, suppose that there is a clopen subset C of V' with the property that
EN(C?U(V\C)?) =0, and by (a) we may assume that ¢ € C. (b) gives infinitely many [’s such
that (c"1a@>, 01@a™>) is in E, and infinitely many I’s with (u|((4+1)a?"+2@>, d*+'@a>) € E. For
these large enough I’s, 0'1@a> ¢ C and p|(I+1)a?"+2a> ¢ C. By (a), 0°, u € V'\ C. This gives
lp €w such that V' N (N010+1 U NM|(l0+1)) CV\C.

(a) provides 1 € V N C with 05,1 € 1, which gives [y > [p such that VN N,
VN Ngi, € VA\C. Let iy <2ny, with oy, ;, = (21]11)0. (a) provides 2o € V' N C with oy, ;,4+1 C 2,
which gives I3 > Iy such that V' N N,,;;,, € C or VN Ny,;, € V\C. Continuing like this we get,
for each j <2ny,, xj41 €V NC with oy, ;.41 Cxj41, and i1 > 1 such that V N N, CCor
VNN, CV\C, with i45:=0.

i € Cor

g1l

j+1ll+1
. . —(Ct)2
By (b), (0171(0%),0"(0)) € EC 5o that E meets Nytg+1 X Noy ;- As VN Nyjgsa is

. . —(Ct)2
contained in V'\ C, this implies that V' N N,, . CC. By (b), (0271(0),0"(0%)) € EC 5o that
FE meets NOZN.1 X N%YZ.Q. AsV N Nolw.1 C (), this implies that V' N N%,iz CV\C.
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More generally, if 1 <j <2n;,+1, then V' N ij,ij C C when j is odd, and V N Nolj,ij CV\C
when j is even. As yi[(lo+1) is an initial segment of 015, i, 11
0 0

VNN,

012nlo+17iin0+1 -

CCnN,

ul(lo+1) SC\C,

which is the desired contradiction. O

The compactness ensures some surjectivity.

Lemma 6.3 Letdc€®, V CC", X be a 0DMC space, and G be a digraph on X having CCN at least
three such that (X, G) <. (V,G,), with witness @. Then @ is onto CCV.

Proof. Note that (p[X], (¢ x)[G]) has CCN three. By Lemma 6.2, C is contained in ¢[X| N C . As
©[X] is compact, p[X] N c =¢[X]NC, and thus C C o[ X]. O

We now prove some minimality of the G,’s.

Theorem 6.4 Let d €D, V be a compact subspace of C*, and E CG, N V? be a graph with CCN at
least three. Then (C*,G,) =% (V, E).

Proof. Note that C* = proj[G,] U {¢>} U C. By Lemma 6.2 and compactness of V, {¢*} UCCV.
We have to define ¢ : C™ — V. The map ¢ will be the identity on {¢*} UC. Let € € {a,a}, | € w,
and either s=c!"! and i =0, or s=0;;. We define ¢ (sc"+12>°) by induction on [, in such a way that
5 C @(se™12%) and p(se?T12>°) finishes with some /712, As (¢>,0°) € E := E(C+)2, we can
find (¢(caa™), ¢(0aa>)) in E as desired. As (0°°,10°°) € E, we can find (¢(0aa>), ¢(1a%a™))
in E as desired. As (u,c™®) € E, we can find (¢(1a*a™), p(caa™)) € E as desired. Note that we
are done for [ =0. The general case is similar, we ensure the injectivity of ¢ by avoiding the finitely
many previously chosen sequences. O

The next lemma will provide several < .-antichains.

Lemma 6.5 Ler d,d’ € € such that the dj, d;’s are prime, d} is not in {d; | j€w} if dj#3 and l is
large enough, d' is unbounded, and (Cq, Goy) =¢ (Car, Go,,) with witness . Then ¢ is not onto.

Proof. We argue by contradiction. As ¢ is uniformly continuous, there is, for each | €w, L:=L(l) >1
with the property that p(z)|(I4+1) = ¢(y)|({+1) if z,y € Cq and z|(L+1) =y|(L+1). We choose
| > 2 with the property that d; | ¢ {d; | j € w}, which is possible for infinitely many I’s. As ¢ is
onto, we can find a surjection I';: ][, ,; = [[,;<; dj such that ¢[Cq N N,] C Ny,(,). We enumerate
[I141:= {sk]i< mj<r d;} in the order defined by o4, starting with 0L+, Note that, respecting this

L(l . .
order, {s; (1) | i<Tj<r@+1) dj}is
{SZ-LOL(H_I)_L | ’i<7Tj§L dj} u...u {SiLAL<j§L(Z+1) (dj—l) ’ i<7rj§L dj}

This implies that {Fl+1(sf(l+1)) | i<mj<rasr) dj}is

. d:)—
{Fl(sf)ég | i<7Tj§L dj} u...uU {FZ(SL)EZ(-WLQSL(HI) 2 ‘ i<7Tj§L dj}.

i
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As oq(2)|2 # 03/ ()|2 for each z € Car, oar (Ty(sh)) # o3 (Tu(sh)) if i < mj<r dj. As p is
a homomorphism, I';(s% ;) can only be the image or the inverse image of I';(s>) by the map ogs if

i+1<mj<r, dj. Similarly, I'; ¢ (sﬂ_lfl)) can only be the i 1mage or the inverse image of I';, (sf(lﬂ))

by the map oq if k+1 < mj<r41) dj- If sL(lH) extends sF, then I';11(s (Hl)) extends T(sF),
and T (s%, ;) is the image of T';(s”) if and only if I‘Hl(skfrlfl)) is the image of Fl+1($£(l+1
oa (Tu(sF)) # 03! (Tu(sk)) if i < mj<p dj. This implies that m:=e* —ef (mod dj ;) does

;<L d —1
k+1
i _1+1 (mod dj ;)

) ) since

k—i—l_g

not depend on k. Similarly, either &, =k | foreach £, or e

Ti<L d <L d
for each k, or ef ™! —efr cpd—1 1 (mod d;_ ;) for each k.
Assume first that 5’”1 Eﬁjq d;—1 for each k. An induction shows that

Efr]qd—l—go (k+1)m (mod dj ).

Thus e§ =e0+(Tr<j<r@+1) dj)m (mod d} ;) and dj_, divides m since dj, , is not in {d; | j €w}.

k+1 _Sk

o di_ ) for each k. An induction shows that
J<L %j

Assume now that ;) 1+1 (mod d;

41
ek ]-—1—50 (k+1)(m+1)—1(modd2+1).

Thus e§ =e0+ (T j<r@+1) dj)(m+1) (mod d, ) and d;,; divides m+1.

Assume now that e ™! —Efr n -1 1 (mod d;_ ;) for each k. An induction shows that
k —
ek a1 =e0+ (k1) (m—1)+1 (mod dj ).

Thus e =e(+ (T« j<r@+1) dj)(m—1) (mod dj, ;) and d;,; divides m—1.

In all cases, this shows that Ef does not depend on k. This argument can be extended to any length
strictly greater than /. This cannot always hold since the sequence d’ is unbounded. O

In our applications of Lemma 6.5, d;, d; can be 3 for infinitely many ’s.
Theorem 6.6 There is a map ®:2“ — D such that (Cg( X Gogay) Ze (C+ s Gogsy) if 7.

Proof. Let (pn)new be the sequence of prime numbers. We define, for each o € 2%, S, C w by
Se:={0}U {pgé(O)Jrl Cpotmt | n€w}. Note that S, is infinite, contains 0, and S, N Sj is finite
if a # f3. In this proof, we consider (da)o =2, (do); =3 if j € Sq, (da); =pj+1 if 0 < j €Sy, so
that ®(«) :=d, €D is unbounded, the (d,);’s are prime, (dg); is not in {(dn); | j € w} if a# B,
(dg);#3 and [ is large enough.

So assume that d,d’ € ©, the dj,d}’s are prime, d] is not in {d; | j € w} if d] # 3 and [ is
large enough, d’ is unbounded, and (Cj, Gog) =ec (C;{,, Go,, ) with witness . By Lemmas 3.2.3, 6.3
and Proposition 6.1, ¢ is onto {¢*°} U Cqr. As ¢ is uniformly continuous, there is, for each [ € w,
L:=L(l) > with the property that ¢(z)|(I+1)=p(y)|(I4+1) if z,y €CJ and z|(L+1)=y|(L+1).
Claim 1. If | € w, then there is L{, > L(l) such that, for each L' > L{, each i < 2n,+1 and each
ce{a.a), p(of, M1 +1) €] (&) U {c})
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Indeed, towards a contradiction, suppose that there is /o such that, for each k> L(lo), we can find

L) >k, iy, e, and my, <ly such that (P(O%;,ik 52”1@00)(771;{;) €{a,a}. As ¢ is a homomorphism, the

uniform continuity of ¢ and an induction on i—ij, show that p(0%, .c"1&>)(my), o(cPH1ez™) (my,)
k7 .

are in {a,a} if i <2ny, +1 and € € {a,@}. If now i € w, then (0}5(0%°), 015t1(0°°)) is the limit of

d _itlzoo d =042 00 :
couples of the form (oL;C G07a, 0,0 a ), where we may assume that (my)y is constant.

The continuity of ¢ implies that ¢ (0%(0°°)) () is in {a, a}. This shows that Cj C ¢~ (proj[Go,,])
and ¢ & ¢[C], which is absurd. o
Claim 2. ¢[Cq) =Cqr and o(c>®)=c*™.

Indeed, by Lemma 3.2.7 and Proposition 6.1, it is enough to see that p[Cq] C Cq-. By Lemma

3.2.5 and Proposition 6.1, it is enough to see that p[Cq N Ny Z {c>®} and ¢[Cq N Ny] € {se™ e}
if t€U;e,, [I;- We argue by contradiction.

If the singleton is of the form {se™ 12} with s = **1 or s € ]| i<k d;-, then we choose 7 € w
with £ C 0°(0°), so that ¢ (0*(0°°)) = se™*12°°. We may assume that se™ e C p(z) if z€C N Ny
We apply Claim 1 to [ := [s|, which gives L. We choose L' > max([¢[, Ly) with the property that
i<2np/+1. Then cp(o%,yia”la‘x’) |(I4+1)=sc€]];<; (d;U{c}), which is the desired contradiction.
If the singleton is {¢>®}, then we may assume that ¢(2)(0) = c if z € CJ N Ny. We fix [ > [t
with nf’ > 2nﬁ|+1 +2. Let w € Cq \ {¢(c™®)}, and u € ,Cd with ¢(u) = w. Note that there is
i <2n ., +1 with of | - =wu|(L+1)0, and @(u|(L+1)0a"a>)|(I+1) = w|(I+1). Also, there
is k<2n$ ., +1 such that t C ocLlJr1 e and |k—i| < 2nftl+1+1. Note that (,0(0%+1 LaFT1a@>®)(0) =,
and <p(o‘2+17kak+16w)](l+1) =l since ¢ is uniformly continuous. Also, there is i’ < ;< d’; with
w|(14+1) = of,. Note that i’ < 2n|dt‘+1+1 or |2nd +1—i'| < 2nﬁ|+l+1 since ¢ is a homomorphism.
Thus {y|({+1) | y€Ca } cannot be [[,;; d, which contradicts the fact that ¢ is onto Cq-. o

We set ¢ := ¢, By Claim 2, ¢ takes values in Cq’ and is onto Cg/. By Lemma 6.5, it remains
to see that ¢ x ¢ sends G4 into G, . As 0q is a minimal homeomorphism, it is fixed point free and
thus G, = s(Graph(oq)), and similarly with d’. By Proposition 6.1 and Lemma 6.2, Graph(oq) is

(c3)? €

N 2
contained in G,, N C3% by Claim 2. It remains to note

+\2
that G,_, Car)

, so that ¢ x ¢ sends G, into God,

is contained in G,_, U s({(c>,0°), (1, ¢*)} U Graph(oa/)) to conclude. O

In the compact case, the <%-minimality can be seen on subgraphs.

Lemma 6.7 Let (X, G) in R The following are equivalent:
(1) (X, Q) is =%-minimal in &,
(2) (X,G) <L (V,E) if V is a compact subset of X and E C G is a graph on' V with x.(V, E) > 3.

Proof. Tt is enough to see that (2) implies (1). So let X’ be a 0ODMC space, and G’ be a graph on
X" with x.(X’,G") > 3 and (X', G") =% (X,G) with witness . We set V := ¢[X’] and also
E:=(px¢)[G']. As X' is compact, so is V', and E C G is a graph on V. Note that ¢ is a witness for
the fact that (X', G') <% (V, E), so that x.(V, E) > 3. By (2), (X,G) <! (V, E). By compactness
of X’ again, ¢! is a witness for the fact that (V, E) <! (X’,G’), which as desired implies that
(X,G) =L (X', G"). O
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Proof of Theorem 1.5. Fix d € ©. Note that (CT, G,) satisfies the properties (a) and (b), by Lemma
3.2.2 and Proposition 6.1. For (c), i.e., the minimality of (C*, G,), we apply Proposition 6.1, Theorem
6.4 and Lemma 6.7. It remains to apply Theorem 6.6. 0

Remark. [P, Theorem 11.38] shows that the og(,)’s involved in Theorem 1.5 are pairwise not flip-
conjugate, as announced in the introduction just before Theorem 1.5.

Proof of Theorem 1.6. Fix d € ©. The idea is to modify G,. Let d be a letter not in w U {c, a,a}. We
set, for [ € w,
Hy:={ (1 d T aa>, o gd' T 1aa™) | jew} U
{(Ol,idj+1ai+1600, ol7i+1dj+16i+2a°°) |jewNi<2n} U
{(o1.2n, 11 TLa?+2q>, dH1dit1ga™) | jew}.
We then set Op :=J;,, H; and G, := s(0y), so that Gy, is a countable graph on the compact space
K:=1l;c. (dj U{c,a,a,d}). We set K::m’c, so that K is a 0ODMC space and G, is a graph
on K, (Gp)pew is C-decreasing and thus ((K, (Gp))pad

of Lemmas 3.2.1 and 3.2.2, we see that G, has CCN three, 2(1) ® H(l) chromatic number two, and is
Do (119).

is <. and <’-decreasing. As in the proofs

It remains to see that (K, G,) is not =.-below (K, G,1). Towards a contradiction, suppose that
there is ¢ : K — K. The continuity of ¢ implies that G, C (¢ x ¢)~}(Gp+1). Note that

(cPTd™, 0p,0d>, ..., 0p 2, +1d™)
isa @p-cycle of length 2n,,+3, and therefore has to be sent in a G,41-cycle of length at most 2n,,+-3.
But such a G,1-cycle does not exist since
Gp:=Gp U s({(H1d>, 00d®) | 1>p} U{(01;d>, 01;11d>°) | I>p Ni<2m} U

{(01,2n,41d>, cl+1d°°) [1>p}U{(c>,0%), (u,c>®)} U Graph(o)).
This finishes the proof. g

7 Graphs induced by a function: general facts

Remarks. (1) In the case of finite spaces, the quasi-order < on the class of graphs induced by a partial
bijection with chromatic number at least three is linear. Indeed, such a space can be decomposed in
pairwise f-unrelated injective walks of the form {z, f(z),..., f!(z)}. As the chromatic number is at
least three, one of these walks gives an odd cycle. The graph induced by the bijection is <-equivalent
to its odd cycle of minimal length. As the odd cycles are <-comparable, so too are all these graphs.

(2) Note that the map A— @pca (2p+3, Cop13) is an embedding of the quasi-order of inclusion on
the set of finite subsets of w into the quasi-order <* on the class of graphs induced by a bijection on a
finite set with chromatic number at least three.

Under some relatively weak assumptions, we can characterize when the CCN of G/ is big. Note
that we extend Theorem 1.7 under these assumptions.
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Theorem 7.1 Let X be a ODMS space of cardinality at least two, f: X — X be a homeomorphism,

and x € X with Orbs(x) = X. The following are equivalent:
(1) (X,Gy) has CCN at least three,
(2) {f?"(x) | neZ} N {f?+1(x) | p€Z} is not empty,

(3) AX) NUpew G’?ﬂrl is not empty,

(4) A(X) NUpew G7f2p+1 is not empty,
(5) (N,Gm) Zc (X, Gy).

Proof. (1) = (2) Note that f sends {f2"(z) | n€Z} onto { f>"*1(x) | n€Z}. As f is a homeomor-
phism, f sends C,:={f?"(x) | n€Z} onto C,:={f?P+1(z) | p€Z}. Note that

X =0rby(x)=C,. U C,.

If C. is disjoint from C,, then (C¢, C,) defines a continuous coloring of (X, G'¢), contradicting (1).

(2) = (3) By (2), there is y in the intersection. Let O be an open neighborhood of y, and m,n be
integers with f2(z), f2™*1(x) € O. As X has cardinality at least two, forby () 1s fixed point free.

We put p := |m|+|n], so that f2"(x),...,z, ..., f2™*1(x) is a witness for the fact that O? meets
GPH.

(3) = (4) Note that G ¢ gGﬁ.

(4) = (1) We apply Lemma 3.3.1.

(4) < (5) We apply Lemma 3.3.4. [l
Notation. The set of fixed points of a map f is very much related to the CCN of Gy. Let X be a set,

and f: X — X be a partial map. The set F} :={z € Domain(f) | f(x)==x} of fixed points of f is
sometimes also denoted by Flf .

Proposition 7.2 Let X be a ODMS space, and f : X — X be a partial continuous function. If Fy is
not an open subset of Domain(f), then x.(X, G ) =2".

Proof. Let (C});e., be a partition of X into clopen sets. As F} is not open in Domain( f), we can find
x € Fy and (xy,)ney € (Domain(f)\ F1)“ converging to x. Note that f(z,,) is different from x,,, and
(f(zn)),,, converges to f(z) =z. Let i with z € C;. Then we may assume that z,, f(z,) € C;.

This implies that (z,,, f(zn)) €GN CZ. O

Corollary 7.3 Let X be a ODMS space, and f: X — X be a partial continuous function with closed
domain.

(a) Exactly one of the following holds:

(1) Fy is an open subset of Domain(f),

(2) xe(X, Gp) =2,
(b) If Fy is an open subset of Domain(f) € AY(X) and f is injective, then x.(X,Gf)=0if X =0, 1
if Fi =Domain(f) and X #0, xc(X\ F1, G N (X \ F1)?) if Fi # Domain(f).
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Proof. (a) Assume that (1) holds. Note that s(Graph( J[Domain(f)\ F1)) and A(X) are disjoint closed
relations on the metrizable space X . By [K, 22.16], there is a clopen relation C' on X separating A(X)
from s (Graph( JiDomain(f)\ F1 )) This relation gives a countable continuous coloring of (X, G'f) since
X 1is zero-dimensional and second countable. So (2) does not hold.

If F is not an open subset of Domain( f), then we apply Proposition 7.2.

(b) If F; # Domain(f), then we can find 2 < n < w and a continuous coloring ¢ : X \ F; — n of
(X\F1,Gy N (X\Fp)?), by (a). As f is injective, f[Domain(f)\ F1] N Fy =0, so that F} and X\ F}
are f-invariant. The extension of ¢ by 0 on F} is a continuous coloring of (X, G ). Conversely, any
continuous coloring of (X, G) gives a coloring of (X \ Fy, G N (X \ F1)?), by restriction. O

In the introduction, we announced a version of Theorem 1.2 for analytic spaces when £ =1. Here
are the argument and some precisions. Recall that X := {0} U {0"1*° | new}, f1:X; =X is
defined by f1(0°°): =0 and f;(0?"7¢1°°):=0?"+17¢1°° and R; := {(02"1°°,0?""11°) | n € w}.
We also define fp:X; —X; by fo(a):=0.

Proposition 7.4 (a) (Lecomte-Zeleny) Let X be a zero-dimensional Lindeldf first countable space,
and R be a relation on X. Then exactly one of the following holds:

(1) there is a countable continuous coloring of R,
(2) there is f:Xq — X continuous such that Ry C (f x f)~Y(R).

In particular, (X1, Gy, ) is =c-minimum in the class of graphs on a ODMS space with uncountable
CCN.

(b) {(X1,Gy,), (X1,Gy,)} is a ='-antichain basis for the class of graphs on a ODMS space with
uncountable CCN.

Proof. (a) If A(X) N R = (), then for each x € X there is a clopen neighborhood C, of = with
RN C2%=(. As X is Lindelof, the covering (C,).cx of X can be replaced with a covering (Cy, )nee-
Replacing Cy, with C,\(U,,,<,, Cm) if necessary, we may assume that the C',’s are pairwise disjoint,
which gives a countable continuous coloring of R. If there is (z,x) € R, then the fact that X is
first countable provides a sequence () converging to x with (z2,, T2,+1) € R. It remains to set
©(0%°) := x and p(0"1%°) := x,, to see that (2) holds. If C is a clopen subset of X; containing
0°°, then we can find n with 0271%°,02"+11%° € C, so that (0271°°,0?""11>°) € G, N C? and
(0271°°,0°°) € G, N C?. This implies that the (X1, Gy, )’s have uncountable CCN. It remains to note
that s(Ry) =Gy, to see that (1) and (2) cannot hold simultaneously.

(b) Let X be a 0ODMS space, and R be a graph on X with uncountable CCN. We use the proof of
(a), which gives (x,). As 2, # x2,+1, We may assume, extracting a subsequence if necessary, that
the sequence ((:cgn, x2n+1))n c., 18 injective, and that (T2n)new OF (T2n+1)new 1S injective too. By
symmetry, we may assume that (z2,)ne, is injective and does not take the value z. We may also
assume that (2,11 )ney is either injective and does not take the value x, or is constant with value .
If (225+1)new 18 injective, then we may assume that {x9, | n €w} and {x2,41 | n €w} are disjoint.
In this case, we define ¢ : X; — X by ©(0%°) := z, p(0%"1°):=29,, and (02" T11%°) := 29,1,
so that ¢ is an injective continuous homomorphism from (X, Gy, ) into (X, R). If (z2,41)new 18
constant with value x, then we define a function v¢: X; — X by (0%°):==z, and ¢)(0"1%°) := x9,,

so that ¢ is an injective continuous homomorphism from (X1, G',) into (X, R). This shows that
{(X1,Gy,), (X1,Gy,)} is a <i-basis.
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If f: Xy — X is a witness for (X1,Gp,) <% (Xq,Gy,), then f sends {02"1°°,02"T11°°} onto
some {0P»1°° 0°°}, which contradicts the injectivity of f. If g : X; — X is a witness for the
inequality (Xy,Gy,) <% (X1, Gy, ), then g sends (0P1°°,0°°) to some (0*rFer]o0 2nptl=ep]oo)
and (np)pew, (€p)pew have to be constant, which contradicts the injectivity of ¢g. This implies that
{(X1,Gy,), (X1,Gyp,)} is a <!-antichain. Note then that (X1, Gy,), (X1, Gy,) are in our class. [

Example. Recall (X1, f1) defined before Proposition 7.4. Then X; # ) is a ODMC space, and f;
is a homeomorphism whose only fixed point is 0°°. By Proposition 7.2, x.(X1,Gy,) = 280 If we
restrict f1 to the open set X; \ {0°°}, then F} becomes open in the domain of the restriction, and
Xe(X1, Gfl\xl\{ooo}) — 2%, Indeed, if (C;);e., be a partition of X into clopen sets, then there is i
with 0°° € C;. We may assume that 0271°°, 027*11° € C;. This implies that (0271°°,02"+11) is in

Gy, X000y () C’f. This shows that we cannot extend Corollary 7.3(a) when the domain of f is open.

We now turn to the study of involutions.

Proposition 7.5 Let X #() be a ODMS space, and f: X — X be a fixed point free continuous involu-
tion. Then x.(X,Gy)=2.

Proof. Note that f is a continuous bijection with inverse f, so that it is a homeomorphism. If z € X,
then f(x)# x since f is fixed point free, which gives a clopen neighborhood N of = with f(x)¢ N.
As f is a homeomorphism, C*:= N N f~1(X\ N) and C! := f[C°] = f[N]\ N are disjoint clopen
subsets of X. In particular, C° = f[C'] and C':= C° U C' is a f-invariant clopen neighborhood of
x. As X has the Lindel6f property, we can cover X with countably many such f-invariant clopen
sets, say (Cp)new- In particular, Uy, Cp, X\ (Up<n, Cp,) and Oy, :=C,,\ (Up<y, Cp) are f-invariant
clopen sets with union X. If U C C'is a f-invariant clopen set, then we set U¢ :=U N C*, so that U
is the disjoint union of U° and U, and U'~¢ = f[U¢] for each ¢ € 2. We can apply this to O,, C Cy,,
so that X is the disjoint union of the family of clopen sets (O )new ce2, and OL~¢ = f[OF] for each
(n,e) € wx 2. We then define ¢: X — 2 by ¢(z) :=¢ if z € O, for some n, and c is a continuous
coloring of (X, Gy). O

Proposition 7.5 implies some minimality of Gy, .
Proposition 7.6 (X;,Gy,) is jfj-minimal, but not < .-minimal, in A.

Proof: Let V be compact subset of X, and E'C Gy, be a graph on V' with Xc(V, E)>3. By Lemma
6.7, it is enough to see that (X1, Gy, ) =i (V, E). As P:=proj[E] CV N X;\{0>}, we can find, for
eache€2, S. Cw with P={0?""¢1%° | e¢€2 An€S.}. As E is a graph,

nesSy < 0°M1®eP 011 >®eP o ne sy,

so that Sp=S51. Thus E=Gy, p is the graph induced by the fixed point free involution fip:P—=P,
which is continuous since P is discrete. As P C X is not empty, x.(P, E') = 2 by Proposition 7.5.
This gives C € AY(P) with EN(C?U(P\C)?) =0. If 0°° ¢ V, then C'is a clopen subset of the discrete
space V, EN (C?U (V\C)?) =0 and x.(V, E) <2, which cannot be. Thus 0° € V. Note also that
there are infinitely many p’s with (0271°°,02P+11°°) € E, otherwise (0%P1°°,02P+11°°) ¢ E if p>py.
We then set C":= (U, Nozr1) NV, so that C’ is a clopen subset of V, EN ((CH2u(V\C")?) =0,

V2
and x.(V, E') <2. This implies that (0>°,0%°) € B , and gives an injective sequence (py,)ne, With
(0?P1°°,0%Pnt11°°) € E. We then define g: X; —V by g(0>°):=0 and g(0*"<1°°) := 0?1,
so that g is a witness for (X1, Gy,) =% (V, E), as desired.
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We now set (0, 1% 2%) = (1,2,0), X := {e*° | e € 3} U {e""}(eT)>® | e € 3 An € w},
and G := s({(e%T1(e7)>°, (e7)2P2((")*)™) | e €3 A p€Ew}). Note that X is a ODMC space,
and G is a graph on X. As (e, (sH)®) € G, (0°,0°) € A(X) N G, and thus x.(X,G) > 3
by Theorem 1.7. In particular, (X,G) € K. The map o — «(0) is a 3-continuous coloring of
(X, G), so that x.(X,G)=3. As (X1, Gy,) has uncountable CCN, (X;,Gy,) A. (X, G). However,
(X,G) = (X1,Gy,), with witness >+ 0> and "1 ()% 011, O

The proof of of Theorem 1.8 implies, as announced in the introduction, the following.

Theorem 7.7 There is no <'-antichain basis for the class of graphs induced by a partial homeomor-
phism on a 0ODMS (or ODP) space with CCN at least three. In fact, we can even restrict this class to
the case where the spaces are countable Polish and the functions are fixed point free involutions with
open domain.

Proof. By Proposition 3.3.7, Ps is countable Polish. Note that
proj[Gs] =Ps\ ({c™} U {ki0® | (k) =1 ANi<2k+1})

is an open subset of Ps. We define fs: proj[G;s] — proj[Gs| by fs(«) :=the unique 5 € proj[Gs] with
(a, B) € Gg, so that f5 is a fixed point free involution, and G5 = Graph(f5) = G,. As proj[Gs] is
discrete, f5 is continuous, and thus a homeomorphism. By Lemma 3.3.6, x.(P5,G¢,) = 3 if ¢ has
infinitely many ones. Let (X, G'¢) in our class with (X, G¢) <! (P1>, G, ). Theorem 1.8 provides
a family (0y)ye2+ in Poo such that (P, G, ) = (X,Gy) and the (Ps , Gy, )’s are pairwise =¢-
incompatible in our class. We then apply Lemma 4.1. g

The next results will help us to prove a condition sufficient to get the minimality of some Gf’s.

Lemma 7.8 Let X be a ODMC space, f : X — X be a minimal homeomorphism, and C # () be
a clopen subset of X. Then there is L > 0 such that, for each x € X, we can find 0 <l < L with
fl(x)eC, and 0<1' < L with f~V(x) € C.

Proof. This is standard. By minimality, X C|J,,c, {z€ X | f™(z) € C}. The compactness of X
gives M >0 with X CJ_p;pnens 12€X | fM(2)€C}. We put L:=2M. If x € X, then there is
—M <m< M with f™*M(z)eC, and 0<l:=m+M < L. This is similar for I'. O

Lemma 7.8 allows us to define 7 : X — L by r¢(z) :=min{l < L | f'(z) € C}, and r¢ is
continuous. Similarly, we can define r/: X — L continuous by 7, (z):=min{l'< L | f~¥ ()€ C}.

Lemma 7.9 Let X be a ODMC space, f: X — X be a minimal homeomorphism with the property
that x.(X,Gr) >3, and E C Gy be a graph. The following are equivalent:

(1) xe(X, E) 23,

(2) £ is dense in G .

Proof. (1) = (2) Towards a contradiction, suppose that we can find open subsets U, V' of X with
GrN(UxV)#£0and EN(UXV)=0. Pick (z,y) Gy N(UXV). If y=f(z), thenzeUN f~1(V),
and there is a clopen neighborhood C C U N f~1(V) of 2 with C' N f[C] = () since f is fixed point
free. By symmetry of E, (Cx f[C]) N E = (f[C]xC) N E = 0. We first define s : X — w by
s(x):=rc(x) —i—r}[c} (x), so that s is continuous.
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We then define ¢ : X — 2 by c(x) := parity(r¢(z)) if @ ¢ f[C], and c(z) := parity (s(z)) if
x € f[C]. Note that c is continuous. It is enough to see that ¢ is a coloring of (X, E). It is enough
to see that ¢(f(z)) # c(z) if (z, f(z)) € E. Note that z ¢ C. If ¢ f[C], then f(x) ¢ f[C] and
ro(z)=rc(f(z))+1. If z€ f[C], then f(z)¢ f[C] and s(z) =rc(x), and we conclude similarly.
(2) = (1) Towards a contradiction, suppose that there is a clopen subset C of X with the property
that EN (C? U (X\C)?)=0. As C is clopen and E is dense in G,

GyN (C?U(X\C)*)CEN (C?U(X\C)?) =0,
which is the desired contradiction. O

Lemma 7.9 essentially implies that GG ¢ is minimal if f is.

Lemma 7.10 Let X be a ODMC space, f:X — X be a minimal homeomorphism such that (X, G y)
has CCN at least three, K be a 0DMC space, G be a closed graph on K such that (K, G) <., (X,Gy).
Then exactly one of the following holds:
(1) (K, G) has CCN at most two,
(2) (X, Gy) <L (K, G).

In other words, (X,Gy) is =i-minimal in &3 and in the class of closed graphs on a 0DMC space
with CCN at least three.

Proof. Let V be compact subset of X, and £ C Gy be a compact graph on V' with x.(V, E) > 3 (which
implies that x.(X, E') >3). As in the proof of Lemma 6.7, it is enough to see that (X, G¢) <! (V. E)
to see that (1) or (2) holds. Let P:=proj[E], which is compact like E. The next two claims give our
result.

Claim 1. P=V =X.

Indeed, by compactness it is enough to see that P is dense in X . Towards a contradiction, suppose
that there is a clopen subset C' # () of X disjoint from P, so that r¢ is defined. We define ¢: P — 2
by ¢(x):=parity (rc(z)). Note that c is continuous. It is enough to see that c is a coloring of (P, E),
since this implies that x.(V, E) <2 by [E, Theorem 2.1(1)]. It is enough to see that ¢(f(z)) #c(z) if
(z, f(z)) € E since f is fixed point free and by symmetry. The equality rc(z) =rc (f(z)) +1 gives

the result. ©
Claim 2. E=Gj.
Indeed, Lemma 7.9 implies that F is dense in G'y. It remains to note that £ is compact. o

Claims 1 and 2 imply that (V, E) = (X, Gy).

For &9, assume that K is a ODMC space, h is a homeomorphism of K, x.(K,Gp) > 3, and
(K,Gp) <L (X,Gy). Then x.(K,Gp) < xc(X,G¢) < 2% by Corollary 7.3. Corollary 7.3 then
implies that F* is an open subset of K, F'# K and x.(K, Gp) =x(K\F}', G, 0 (K\ F}")?). Note
that K\ F{" is a ODMC space, /ojc\ p is @ homeomorphism of K\ FY', Gy, =G N (K\F!?,

Xe(K\F}, Gh|K\F1h) >3 and (K\ FP, Gh\K\F{z) <! (X, Gy). Moreover, hy g\ g 18 fixed point free,
is closed. Note that (X,Gf) <% (K\F},Gp, ) <t (K,G}), by the first part of

the present theorem. In other words, (X, G¢) is =i -minimal in &. O

h
‘K\Fl

so that GG},

|K\FJr |K\FJr

Remark. Proposition 7.6 shows that the converse of Lemma 7.10 does not hold, since 0 is a fixed
point of fi.
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The next result is in the style of Corollary 5.10.

Lemma 7.11 Let X,Y be ODMC spaces of cardinality at least three, and f: X — X, g:Y —Y be
minimal homeomorphisms. Then f, g are flip-conjugate if and only if (X, Gy) =, (Y, Gy), with the
same witness. In particular, (X, Gy) =i (Y, Gg) implies that (Y, G4) = (X, Gy).

Proof. Let ¢ be a witness for the fact that (X, Gy) <% (Y, Gy). If z € X, then (z, f(z)) € G since

f is fixed point free, so that (cp(x), w(f(x))) €Gy. Soo(f(x))=g(p(z)) or ¢(z) :g<cp (f(m)))
We apply Lemma 5.6 to f, V:=1:=X, g, W:=Y, and ¢. In particular, ¢[Orb(z)]=Orb, (¢(z)).
As g is minimal, the compact set p[X] is dense in Y, showing that ¢ is onto, and thus a homeomor-
phism by compactness of X.

Conversely, assume that f, g are flip-conjugate, which gives a homeomorphism ¢ : X — Y with
pof=goporgof=glop IfzeX, then g(p(z)) =¢(f(z)) or p(z) = g((p(f(:ﬁ))) so that
(go(x), @(f(x))) € G,. Thus ¢ is a witness for the fact that (X, G¢) <% (Y, G,). O

8 Possible chromatic numbers

The main goal of this section is to prove Theorem 1.10. The next result is essentially [Kra-St,
Corollary 2.3].

Theorem 8.1 (Krawczyk-Steprans) Let X #() be a ODMC space, and f: X — X be a fixed point free
continuous map. Then x.(X,G¢)€{2,3}.

Proof. [Kra-St, Corollary 2.3] shows that x.(X,G¢) <3. As X is not empty, x.(X,Gs)#0. As fis
fixed point free, x.(X,G ) #1. O

Corollary 8.2 Let X be a 0DMC space, and f: X — X be a continuous injection. Then x.(X, G ) is
in {0,1,2,3, PAC }, and all these values are possible with homeomorphisms of a countable metrizable
compact space.

Proof. If F is not an open subset of X, then x.(X,Gy) = 2% by Proposition 7.2. If F} is an open
subset of X, then we may assume that x.(X,Gf) = x.(X \ F1, Gy N (X \ F1)?) by Corollary 7.3.
In other words, we may assume that X is not empty and f is fixed point free. It remains to apply
Theorem 8.1 for the possible values.

If X =0, then x.(X,Gf)=0.If X=1and f =1d, then x.(X,Gf)=1.If X =2and f(e):=1—¢,
then c: 2 — 2 defined by c(e) := ¢ is a continuous coloring of (X, Gy), so that x.(X,Gy) =2. If
X =3and f(e):=e" where (07, 1%,27)=(1,2,0), then c: 3— 3 defined by ¢(¢) :=¢ is a continuous
coloring of (X, Gy), so that x.(X,Gy) =3 since (0,1), (1,2) and (2,0) are in Gy. We conclude
with the example just after Corollary 7.3. U

We will now extend Theorem 8.1 to some partial injections. In order to do that, we prove a fixed
point free version of the Ryll-Nardzewski theorem (see [Kn-R]). We need to emphasize one point in
the [Kn-R] proof, and give the full proof for completeness.
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Theorem 8.3 Let X be a Cantor space, P, (Q be closed nowhere dense subsets of X, and h: P — @Q
be a fixed point free homeomorphism. Then there is a fixed point free homeomorphism h* : X — X
extending h.

Proof. We may assume that X = 2% and, considering cae — (1 —¢)a, that P, () are not empty. Let
S:={se€2% | Nyn P =0}, sothat 2*\ P = | J,.¢ N, since P is closed. As P is not empty
and nowhere dense, P is not clopen and S is infinite. We enumerate .S in the increasing order of the
lengths of the finite binary sequences, which gives {s; | ¢ € w}. Note that we may assume that the
N,’s are pairwise disjoint, so that the length of s; goes to infinity.

Claim 1. (a) The sequence (d(Ns” P))iew converges to zero.
(b) Let p€ P and | €w. Then there is one (and thus infinitely many) i € w with 2~ > d(Ny,, p).

Indeed, we argue by contradiction for (a), which gives [ € w such that, for each j €w, thereis 1> j
such that, for each « € 2¢ and each v € P, v|l  s;c. This provides a strictly increasing sequence
(k) kew such that, for each k € w and each v € P, 7|l Z s;, 0°°. Extracting a further subsequence if
necessary, we may assume that (s;, 0°)xe,, converges to some ¢ € 2, by compactness. As the length
of s; goes to infinity, § ¢ P. This gives j with 6 € N,. Thus N, meets infinitely many N, sip S which
is the desired contradiction.

For (b), towards a contradiction, suppose that we can find p€ P and [ cw. As 2*\ P=|,.,, Ns,
and P is nowhere dense, we can find ¢ with s;,0°° € Np| I- o

Similarly, we can find {t; | j € w} C 2<% such that 2\ Q is the disjoint union of the N;’s, the
length of ¢; goes to infinity, the sequence (d(th, Q))j c

each [ € w, there is j € w with 27/ > d(Ny;,q). We fix, for each i, p; € P with d(Ns,, p;) =d(Ns,, P),
as well as, for each j, ¢; € Q with d(Ny;, gj) =d(N¢;, Q). Note that, by Claim 1,

., converges to zero, and, for each ¢ € Q) and

(D) there is f:w — w injective such that d(N,, p;) > d(Ntfm , h(pi)),
(ID) there is g:w—w injective such that d(Ny;, ;) > d (N, h ™' (g5)).-

[Ba, Theorem 1] provides partitions (I, I"), (J', J") of w with f[I'|=J" and g[J"]=1I".
Claim 2. Let s,t €2<%. Then there is a fixed point free homeomorphism ¢: Ng— Ny.

Indeed, if s, t are incompatible, we just set ¢(sa) :=ta. If s Ct, then we set
¢(sa)=t(1—a(lt|=|s]))a(0)...a(|t|=|s|-1)a(|t| =|s|+Da(|t| - |s|+2) ...

If tC s, then we set ¢(sar) :=tev(1) ... a(]s]—[t]) (1—a(0)) ex(|s| = [¢] + 1) ex(| s| = [t] +2) . . . o

If i’ € I', Claim 2 provides a fixed point free homeomorphism ¢y : Ny, — N ;- The sum of
these maps provides a fixed point free homeomorphism ¢ : U’ :=U;cpp Ns, = V' i=Ujic v N,
since f is injective. Similarly, if 7 € J”, Claim 2 provides a fixed point free homeomorphism
P :th// — ng G This gives a fixed point free homeomorphism

Y V"= U Ny, —U":= U Ny,

jl/eJN Z‘Ne]!l

by injectivity of g.
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As 2%\ P is the sum of U’, U"” and 2¥\ Q is the sum of V', V", the function k : 2\ P — 2¥\ Q
defined by

 fo(a)ifacl’
k() ‘_{ v Ha)ifaclU”
is a fixed point free homeomorphism. It remains to prove that the bijection h*:2“ — 2“ defined by
s | hla)ifaeP
h() '_{ k() if g P
is continuous at each point of P. So let p € P, and (pn)new € (2¥\ P)% converging to p. There

is i, with p, € Ny, , and the set {i, | n € w} is infinite. Note that d(N;, ,p;,) tends to 0. As
the length of s; goes to infinity, (d(pn, pln))n <., converges to zero, as well as (d(p,pi,)), .- Thus

new
Di. Jncw converges to p, and (A (p; converges to h(p). Let (i’ be the sequence of 7,,’s in I'.
n g n new g n q

As d(Ns, ,pi ) > d(Ntf(,, > hips; ). (d(Ntf(_, » h(pi ))) tends to zero. Call p/, the fixed element
n Zn n Zn n n
of N, , as in the notation p,, € Ny, . Note that the point ©(pr,) =i (py,) isin N Sy As the length

of ¢; goes to infinity, (d(gp(pﬁl), h(p%))> converges to zero, as well as (d((p(pil), h(p))) . So we

new converges to zero,

ie., (d(h*(p;), h* (p)))n converges to zero if (d(p},,p)),,.,, does. Similarly, (d(w(q;:), hfl(q))>n
converges to zero if g €Q, ¢ € th,, and (d(qg, q))n <., converges to zero. Consider now the sequence
(i) be the sequence of i,’s in I”. Let j/, € J"” with g(j]) =1;,. Note that there is ¢], € N, with
pr=1(qn) =vjr(qy). Let F:={q;s | n}. We will check that F\ F C {h(p)}. Let g€ F\F. As-
sume, for the simplicity of the notation, that (g;» ), converges to q. As (d(Nt . Q))j ., converges to

proved that (d(cp(pib), h(p))) converges to zero if pj, € Ny, and (d(p},,p))

€
zero, (d(th% , qJZ))n converges to zero. As the length of ¢; goes to infinity, (d(q, qﬁ{))n converges

to zero, as well as (d(qi{,q))n, (d(@b(q%),h_l(q)))n and <d(p;;,h_1(q)))n- Thus p=h~"(q),

as desired. Thus (d(q}, h(p))n converges to zero. So (d(zﬁ_l(px), h(p))) converges to zero if
(d(p,p)),, does, and (d(h*(p;;), h*(p))) converges to zero if (d(p],p)), does. O

Corollary 8.4 Let X be a ODMC space, and f : X — X be a fixed point free partial continuous
injection whose domain is not empty and closed. Then x.(X,Gy) €{2,3}.

Proof. By [K, 7.8], we may assume that X C 2% Note that the map I : 2* — 2% defined by
I(a):=(0,(0),0,x(1),...) is a homeomorphism onto its nowhere dense range. If moreover we

define g : I[Domain(f)] — I[Range(f)] by g(y):=1 (f (1! (y))), then ¢ is a fixed point free partial
continuous injection whose domain is not empty and closed, (X, Gy) <. (I[X], G4) with witness I,
and thus 2 < x.(X, Gf) < xc(I[X], Gg). So we may assume that X is closed nowhere dense in 2,
as well as Domain( f) and Range(f). By compactness, f is a fixed point free homeomorphism from
Domain( f) onto Range(f). Theorem 8.3 provides a fixed point free homeomorphism f*: 2% — 2%
extending f. By Theorem 8.1, x.(2*,G¢+) €{2,3}. Thus x.(X,Gf)€{2,3}. O
Remark. The conclusion of this corollary does not hold if the domain of f is open, by the example
after Corollary 7.3.
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Corollary 8.5 Ler X be a 0ODMC space, and [ : X — X be a partial continuous injection with closed
domain. Then x.(X,Gr)€{0,1,2,3, 2o }, and all these values are possible with homeomorphisms
of a countable metrizable compact space.

Proof. If F} is not an open subset of Domain(f), then x.(X, G ) = 2% by Proposition 7.2. If F} is
an open subset of Domain(f), then it is a clopen subset of Domain(f). This gives an open subset
O of X with F1 = O N Domain(f). Note that F; and X \ O are disjoint closed subsets of the
zero-dimensional metrizable space X, which gives a clopen subset C’ of X with F; C C’ C O, so
that F; = C’" N Domain(f). Note then that f[F}]| = F} and f[Domain(f)\ F}] are disjoint compact
subsets of X, which gives a clopen subset C” of X with F; C C” C X\ f[Domain(f)\ F1]. We
set C':= C" N C”, so that C is also a clopen subset of X with F; = C' N Domain(f). Note that
F:=(X\C)N f~1(X\O) is a clopen subset of Domain(f), and thus a closed subset of X. Moreover,
Grpr=GrN (X'\C)%. Note that X\ C is a ODMC space, and fp: X\ C — X\ C is a fixed point
free partial continuous injection with closed domain. Corollary 8.4 provides a continuous coloring
d:X\C—3of (X\C,G;N(X\C)?). We extend ¢’ by 0 on C, which defines ¢: X — 3 continuous.
If f(x)#x is defined, then 2 € Domain( f)\F; C X\C. If f(x) € Fy, then f?(x) = f(z), and f(z) =2
by injectivity of f, which is absurd, proving that f(x) ¢ Fy. If f(x) € Domain(f), then f(z)€ X\C
and c(z) #c(f(z)) since ¢ : X\C' — 3 is a coloring of (X\C, Gy N (X\C)?). If f(z) ¢ Domain(f),
then either f(z) € X\C and c(z) #c(f(x)) again, or f(z) € C CC” C X\ f[Domain(f)\F}], which
is absurd. So c is a coloring of (X, Gy).

We then apply Corollary 8.2. U

Proof of Theorem 1.10. The case (b) of a closed domain comes from Corollary 8.5. In fact, if G is
an arbitrary graph on X, two cases can happen. Either A(X) meets G in (z,z), in which case, for
any countable partition (C;);e,, of X into clopen sets, there is ¢ with x € C;, and G meets CE, so that
Xe(X,G) =280, Or A(X) does not meet GG, in which case the compactness of X provides a finite
continuous coloring of G. So x.(X, G) cannot be Xg. For the values 0, 1,20 in the open case (a),
we use the proof of Corollary 8.2.

Soletl <n<w Weset K,:={p® |p<n}u{p/m> | p#£m<nAj€w}and
Domain( fy,) := K, \{p™ | p<n}, so that Domain( f,,) is an open subset of the countable metrizable
compact space K,,. We set (07,17, ..., n%):=(1,2,...,n,0) and, for p<nandr<n, p™  :=p*
ifr=0,pt""" = (pt") T if r > 0. If @ € Domain(/f,), then we can find p # m < n, ¢ € w, and
r < n with a = p"t 1, We then set f(a) := (pt )"t (m )2 Note that f, takes
values in Domain( f,,), is continuous, and f?*! =1d. In particular, f, is a bijection and f, ! = f" is
continuous, so that f,, is a homeomorphism. The map « — «(0) is a continuous (n+1)-coloring of
(Kn, Gy, ) (in fact, f, is fixed point free). If c¢: K, —n is continuous, then we can find p <! <n with
c(p™) = ¢(I>°) =:i. This gives ¢ € w with Nys U Njg C ¢ 1({i}). Let r < n with p™ ' =1 Then
(et (p+1)>, (pt" " ynatrel ((p—i—l)*rﬂ)oo) eGy, N (cil({i}))2, so that the function c is not
a coloring of (K, Gy,). Thus x.(K,,Gy,)=n+1.

We then set X :=®,>1 Ky, Domain(f) :=®,>1 Domain(fy,), and f(n, ®):= (n, fn(a)). Then
X is a countable Polish space X, Domain(f) is an open subset of X, and f is a fixed point free
partial homeomorphism from Domain( f) onto it. As (K,,Gy,) Zc (X,Gy), xc(X,Gf) >Rq. The
map (n, o) — a(0) is an Rp-coloring of (X, Gf), so that x.(X, Gf)=No. O
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In the case of spaces which are not compact, the first space to look at is w.

Corollary 8.6 Let f:w— w be a partial (continuous) injection. Then x.(w,G¢) € {1,2,3}, and all
these values are possible.

Proof. Let n € w. If there is p € w with fP(n)=n, we take it minimal, in which case the orbit of n
is {f(n) | 0<i<p}. If pis odd, then we set c(f*(n)) :==0if i <p—1is even, c¢(f'(n)) :=1if
i <pis odd, ¢(fP~1(n)) := 2, so that c is a coloring of G on the orbit. If p is even, then we set
c(fi(n)):=0ifi<piseven, c(f*(n)):=1if i <pis odd, so that c is a coloring of G on the orbit.
If there is no p € w with fP(n) = n, then we can find ordinals &, < w such that the orbit of n is
{fi(n) | —=¢<i<n}. Wesetc(f(n)):=0ifiiseven, ¢(f(n)):=1ifiis odd, so that c s a coloring
of Gy on the orbit. We defined a continuous coloring ¢ : w — 3 of (w, Gy) since w is discrete. So
Xe(X,Gy) <3, and x.(X, G)#0 since w is not empty.

If f=Id, then x.(X,Gy)=1.If f(2n+e):=2n+(1—¢), then x.(X, G ) =2 by Proposition 7.5.
If f(3n+¢):=3n+e™, where (07,1%,27) =(1,2,0), then ¢: w — 3 defined by ¢(3n+¢c):=cisa
continuous coloring of (X, G), so that x.(X,G¢)=3 since (0,1),(1,2),(2,0) € Gy. O

The next natural space to look at is the Baire space w®.

9 Graphs induced by a function and odometers

We now study graphs induced by a homeomorphism of an uncountable 0DMC space.

Remark. We set, for d € ©, X, := proj[Go]Kd, so that X, is a ODMC space. This space is
Xo=proj[G,] U {c>*} UC, so that proj[G,] = X, \ ({¢>} UC) is a countable open subset of X,,.
We define f, : proj[G,] — proj[G,] by fo(«) :=the unique 3 € proj[G,| with («, ) € G,, so that f,
is a fixed point free involution, and G, = Graph(f,) =Gy,. As proj[G,] is discrete, f, is continuous,
and thus a homeomorphism. By Proposition 6.1, x.(X,, Gy,)=3.

The proof of Theorem 1.5 provides a =.-antichain made up of <’-minimal graphs in the class
of graphs induced by a partial fixed point free continuous involution with countable open domain
on a ODMC space with CCN at least three. In particular, any <-basis for this class must have size
continuum, as announced in the introduction.

We now turn to the proof of Theorem 1.13, i.e., we study the G,,’s instead of the G,’s.
Notation. We set O:={d €€ | Vjew d; is odd}.

Proposition 9.1 Let d=(d;) e, €. Then x.(C,G,)=3ifd€O, x.(C,G,) =2 otherwise.

Proof. The key remark is that 0™<t 4 (0°°) € Ny for each [ € w. Assume that there is jo €w such that
dj, is even. We define c¢: C — 2 by c(«) := parity(i) if i < 7j<j, d; and 0'(070T1) C a. Then c is
continuous, and a coloring of (C, G,) by the key remark and the fact that 7;<;, d; is even. Conversely,
assume that there is a coloring ¢’ :C —2 of (C,G,). Let e:=¢/(0%°), and also C:=(¢') "1 ({e}). As C
is a clopen subset of C, there is [y € w with Ny, C C. An induction shows that oi(OOO) € C if i is even,
0'(0>) ¢ C'if i is odd since ¢’ is a coloring of (C, G,). The key remark shows that m;; d; is even if
[ >1p. This gives j € w such that d; is even. This shows that x.(C,G,)>3ifdeO. Letde O. We
define ¢’ :C— 3 by () :=parity ((0)) if a(0) <do—1 and ¢’ () :=2 if a(0) =do— 1. Then ¢’ is
continuous, and a coloring of (C, G,). O
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Proposition 9.1 implies that we can apply Lemma 7.10 to (X, G¢) =(C, G,) if d=(d;) jew € O.
It is also important to assume that (X, G ¢) has CCN at least three in Lemma 7.10. Indeed, if d € €\O,
then Cq is a ODMC space, oq is a minimal homeomorphism with x.(Cq, Go,) > 2 by Proposition 9.1,
and the strict inequality (2, Gery1-c) <% (Cq, Goy) holds.

A consequence of Lemma 7.11 is the existence, announced in the introduction, of jé—basis in the

case of equicontinuity.

Definition 9.2 We say that a dynamical system (X, ), where a compatible metric d on X is fixed, is
equicontinuous if Yz € X Ve>0 36 >0 Vy€ By(z,8) Vnew d(f™(z), f"(y)) <e.

This means that the family ( f™),c. is equicontinuous. For instance, if d € (w\2)¥, then (C, 0) is
equicontinuous (see [Ku, 4.1.2]). We set

5:={(X,Gf)e®y | (X, f) is equicontinuous A Iz € X Orb}r (x) is dense infinite}.

Proposition 9.3 (a) {(C,G,) | d€(w\2)* N O} is a <%-basis for &s.

(b) Under the axiom of choice, there is a <'-antichain basis for 5.

Proof. (a) Let (X, G ) € &5. [Ku, Theorem 2.9, Corollary 2.34, and Section 4.1 (in particular The-
orem 4.4)] provide d € € such that (C,0) is conjugate to (X, f). This gives a homeomorphism
¢:C— X with poo= fop. If B=0(a), then p(8) = f (¢()), so that (C, G,) =L (X, Gy). Similarly,
(X,Gy) =L (C,G,), so that x.(C,Go) > Xx(X,Gy) > 3 since (X, G ) € By. Proposition 9.1 then
implies that d € O.

(b) Lemma 7.11 implies that <’ is an equivalence relation on {(C,G,) | d € (w\2)¥ N O}. Using
the axiom of choice, we can pick an element in each equivalence class, which provides the desired
= -antichain basis. g

We now get a <.-antichain in the style of Theorem 6.6.
Theorem 9.4 There is a map ©:2% — O such that (Cy(a), Gog,o)) Pe (Ca(s)s Gogs)) if 7 B

Proof. Let (pp)new be the sequence of prime numbers. We define, for each o € 2%, S, C w by
So = {p0 0T pa™T | e w). Note that S, is infinite, and S, N S is finite if o % B. In this
proof, we consider (do); =3 if j & Sa, (da); =pj+1 if j € Sa, so that ®(«) :=d, € O is unbounded,
the (d,);’s are prime, and (dg); is notin {(dn); | j€w} if a# S, (dg); #3 and [ is large enough.

If (Co(a) G%(a)) ¢ (Cop), G%(ﬁ)) with witness ¢, then we set V :=¢[Cg (o] and

E:=(pxyp) [G0q>(a)]’

so that V' is a compact subset of Cy(g) and £/ C G%(ﬁ) is a compact graph on V' with x.(V, E) > 3, by
Proposition 9.1. Claim 1 in the proof of Lemma 7.10 shows that V' =Cgg), so that ¢ is onto, which
contradicts Lemma 6.5. 0

Remark. By Lemma 7.11, the 0g(4)’s involved in Theorem 9.4 are pairwise not flip-conjugate.

Proof of Theorem 1.13. Theorem 9.4 provides a map @ : 2 — O. We now can set C, := Cg (o) and
Ja:=03(q), and we are done by Proposition 9.1 and Lemma 7.10. O
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We now turn to the version of Theorem 1.16(b). In fact, we prove something stronger since it is
possible to consider always the same space, with restrictions of the graph induced by a fixed odometer
to different countable dense subsets.

Notation. Fix d := 3°°, s0 that d € O and x.(3“,G,) = 3, by Proposition 9.1. We set, for [ € w,
ip =32, so that 0'2 C 0% (0>°). We set, for A Cw infinite, Sa:={0} U {i;+i | € AAi<3l}, s0
that S'4 C w is infinite and contains arbitrarily large intervals appearing in the definition of G,,.

Lemma 9.5 The map A S 4 is injective. Moreover, AC B is equivalent to Sy C Sp.

Proof. This comes from the fact that ¢; +3-1< i1+1 foreach l € w. O
We also set, for S Cw, Dg:={0'(0>) | i€ S}.

Lemma 9.6 The graphs (3“,G are countable and have CCN three, for each A Cw infinite.

O‘DSA)

Proof. Fix A C w infinite. Let us prove that Dg, is dense in 3*. Let ¢t € 3<% and i < 30t with
t C 0'(0°°). We choose I’ > |t| with I’ € A. Then iy +i € S4 and t C 0 T1(0%°) € Dg,. It remains
to prove that (3%, GO| ) = 3if D is dense in 3“. Towards a contradiction, suppose that there is a
clopen subset C' of 3* with G, , N (C?U (3“\C)?) =0. As x.(3“,G,) =3, we may assume that
G,NC? (), which implies that CNo~!(C) is not empty. The density of D gives a € DNC'No~1(C).
Then (a, o(a)) €G,,,, N C? since o is fixed point free, which is the desired contradiction. g

One can prove that if A, B C w are infinite, then (3¥, G ) =i (3%, G
A C B. But we will prove a better result.

OlD

oIps, oips,, ) is equivalent to

Lemma 9.7 We can find a sequence (Sg)qe. of pairwise disjoint infinite subsets of w such that, for
anylew, p#q, 3l<reS, and s€ Sy, |r—s|>1.

Proof. Fix a bijection b : w? — w, for instance b(q, j) := w +35. We set r? .= 20(a:9) and
Sq = {r? | 7 €w}. Then (S;)qe. is a sequence of pairwise disjoint infinite subsets of w. Fix [ € w,
p#q, and assume that 7 =77 € S, and =77 € S;. Note that
2b(P:1) (1 — 2b(0:0)=b(2:0) ) if b(p, i) > b(q, 7),
g — b)) _obla.d) —
9b(4.5) (Qb(p,i)*b(q,j) —1) if b(p, i) <b(q, j).

The first term is at least 2b(p’i)_1, and is bigger than [ if r > 21, If 20(@:)~1 > [, then the'second term
is smaller than —[ and we are done. If 20(:7)—1 </, then the second term is at least 20(p1) 9] and is
bigger than [ if r > 3. O

Proof of Theorem 1.16(b). Let 1) : w — 3<% be the bijection defined by the length and o: () for the
length 0, 0, 1, 2 for the length 1, 02, 10, 20, 01, 12, 21, 02, 12, 22 for the length 2, ... Note that
(k)| < k. Recall the sets S, := {r] | j € w} given by Lemma 9.7. If s = ¢(k) € 3<, then there

) 04»2';c

is 7, < 3% with s C 0% (0%°), and thus s Co "% ' *(0°°). Recall that Dg:={0*(0®) | i€ S} if S Cw,
so that Dg is countable, and GOI Dg is a countable graph on 3“. We proved that Dg is dense in 3%
if S contains {irg +i). | k €w}. In this case, Gop, is dense in G, and thus Xe(3%, Go ) =3 by
Proposition 9.1 and Lemma 7.9. We set, for ACw, Sa:={i,0 +i), | kew} U {’irz+1 |neANkew},
so that x.(3¥, G =3and (3¥,G =< (3%, G if ACB.

olDSA) O‘DSA) OlDSB)
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Assume now that n € A\ B and, towards a contradiction, that (3¥, G ) 2 (3¥,G

°ps, 0|DSB)

with witness ¢. If a € Dg,, then (a,0(w)) € Goyp - sO that (gp(a), @(o(a))) € Gop, - Thus
A B

p(o(a)) =0t (p(a)). As the set {ae3” | p(o(a)) =0 (p(a))} is closed and contains the dense
set Dg,,, ¢(o()) =0 (¢(ax)) holds for each a € 3“. In particular, p[{0"(0°°) | i €w}] C Orb,(0°°).

As ¢ is uniformly continuous, there is [ € w such that p(a)|1=¢(5)|1 if a|l = 5|l. As we work
with the odometer on 3%, o(¢(c))[1 7 0! (¢())|1, and thus ¢ (o(e)) = o(¢()) is equivalent to
¢(o())[1=0(p(a))|1. The previous discussion allows us to define, for each natural number r <3',
f(r) € Z with (07 (0°)) =0 (") (0%). Note that f(r+1)=f(r)£1if r <3, so that

f(0)=3l < f(r) < f(0)+3.

We set d:=Card({r <3' | f(r+1)=f(r)+1})—Card({r <3’ | f(r+1)=f(r)—1}), so that d € Z\{0}

and —3' <d <3'. Note that any natural number ¢ has a unique decomposition 3tq+r, where g€ w and

r < 3!. The previous discussion shows that ©(0'(0%)) = 0%+7(r)(0°°). We apply this to i,nt1 €54,
k

. i el Ptlio g
where k is large enough to ensure that 7} 42 > [, so that @0 (0%°))=o®* +10)(00).
The previous discussion shows the existence of i € Sp, say 7, —i—i;-k, and € € 2 with the property that
ik

dgri e + f(0) =i+-e. In particular, taking & large enough, we see that d > 1. Moreover,
-/
i f(O) :371;: _TQ-H Yk te
3! 3r2+1+2 3r2+1+2 ’
n+l Mg il +
showing that T;L: < rZH if k is large enough. Similarly, d3" ~"ix Lt TJ;(,? )+2 =1+ lﬂ’%k ;, showing
3"k 37k

that TZH < T;’L: +1 if k is large enough. This shows that 0 < r?“ —r?: <. Asi€Sg, npy=0or

ng—1 € B, showing that n+17#ny, since n ¢ B. It remains to apply Lemma 9.7 to p:=n+1, ¢:=ny,
ri= r?“ with £ large enough so that rZ“ > 31, and s:=7r"" to get the desired contradiction. So we

j
proved that (3¥, G ) Ae (3¥, Gopg )if AZ B. *
B

O‘DSA

It remains to check that the map A— G is injective. First, the map A +— S4 is injective by

O‘DSA
Lemma 9.5. Then the map S — Dg from P(w) = 2% into 200(0%) jg injective. Finally, the map
D GO‘ , from 201b0(0%) jpto 20100 (0°)? g injective by minimality of o. O

Proof of Theorem 1.9. Let o be the odometer on 3“, and recall .S, defined before Lemma 9.5. We set
G:=G, D, " By Lemma 9.6, the graph (3“, G) is countable and has CCN three, and is therefore in K.
Let (K, G) in & satisfying (K, G) =% (3*, G), with witness ¢. We set V := [K] and E:= (ox)[G],
so that V is a compact subset of 3* and E C G is a graph on V. Also (K,G) <! (V, E) with
witness ¢, so that x.(V, E) = 3. Claim 1 in the proof of Lemma 7.10 shows that V' = 3. Note
that (3¥, E) <% (K,G) with witness ¢~ '. So it is enough to find a <!-antichain ((3*, GO‘))QGZ“’
of graphs with CCN three and <’-below (3“, F), by Lemma 4.1. We first inductively construct a
sequence (v, )ney Of points of Dg, satisfying the following:

() Vee2, Eo:i= ], {(azpte,0(azpie)), (0(agpie), agpic) } is dense in E,
(2) Ey N By =0,

(3) an :Oizn%—iél(ooo)’

(4) (In)new is injective.
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Lemma 7.9 implies that F is dense in G,. As o is a homeomorphism of the perfect (= without
isolated point) space 3¥ # 0, G,, E # () are also perfect. Let (B,)sec. be a basis for the topol-
ogy of F made up of sets which are not empty. We first choose (5y,70) € Bo. As E C G,
either vo = o(fo), or So = o(y0). The point «y is fp in the first case, o in the second one, so
that { (o, o(a)), (o(aw), ap) } € E since E is symmetric, and o € Dg,, since o is minimal. As
By # 10 is perfect, we can then choose (81,71) € Bo\ { (a0, o)), (o(c), @) }. Here again, either
v1=0(51), or f1 =0(~1). The point « is 31 in the first case, y; in the second one, so that

{ (al, o(al)), (o(al), al) } CE\ { (O[(), o(ao)), (O(ao), ao) }

and a1 € Dg,, . It remains to iterate this construction in the other B,’s. At this point, we only ensured
(1) and (2). As i < 3! in the definition of S,,, we can also ensure (3) and (4).

We ensured that the graph Ejy is dense in Gy, as well as any Ey U D if D C E is a graph. Lemma
7.9 implies that x.(3“, Eg U D) =3. Let (p,)new be the sequence of prime numbers. We define, for

each v €2¥, S, Cwby S, := {108‘(0)Jr1 .. .p,%(”)“ | n€w}. Note that S, is infinite, and S, N Sg is
finite if v 3. We then set D, := UpGSa { (a2p+1, o(agp+1)), (o(a2p+1), a2p+1) }, so that D, C E;
is a graph. We put G, := Eg U D,, so that G, is a graph with CCN three and <’-below (3“, E).

It remains to see that ((3“, Ga))a cow 182 = antichain. So let a«# 8 € 2%, and assume, towards a
contradiction, that (3¥, G,) <% (3%, G) with witness 1. We set
Do :={ag; | kew} U{agk+1 | K€ S}
Claim. Dy is dense in 3“.

Indeed, let ) # s € 3<“. Note that G, meets Ny ¥ Nos)- As Ejp is dense in G,

Ga=Goyp, =Graph(o|p,) U Graph(ojp,) !

91Dg

also meets this clopen set. As o is the odometer on 3“, Graph(o|p,) meets this clopen set, and Dy
meets N. o

If z € Dy, then (z,0(z)) € G4, so that (1p(x), w(o(aj))) € G, and either ¢ (o(x)) =0(¢(x)), or
Y (o(x)) =0~ (¢(x)). This leads to define P:={x €3 | 1(o(z)) =0((z))} and

M :={ze3* | ¢(o(x)) =01 (¥(x))}

Note that P, M are closed, and disjoint by minimality of 0. Moreover, Dy C PUM, so that 3% = PUM
by the claim. If y € P, then o(y) € P by injectivity of ¢ and minimality of o, and similarly with M.
In particular, the dense set {0"(0°°) | i €w} is contained in either P, or M. Thus P=3“ or M =3%,
which means that 9poo=o001) or yoo=0"to1.

Fix p€ S, \ Sp. If poo=0""to1p, then there is n € w with 1 (a2p+1) = 0(v,) by minimality of o.
In particular, w(o”2p+1+1/2p+1 (0)) =0/ T F1(0%). If i €w, then

¢(Oil2p+l+i/2p+1+i (Ooo)) :Oiln +i$L+1—i(Ooo)‘

If we choose i large enough so that oi12p+1+i/2p+1+i(0"°) €{agk | k€ew} U {aops1 | k€ Sy} and
i1, +1i,,+1—i <0, then we get a contradiction with the minimality of o. This shows that 1)oo=001).
The minimality of o provides n € w with 1(a2p41) = v, and n#2p+1 since p ¢ Sg.
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4 , L
In particular, 1 (0"'2r+1 Fiop i (0%°)) =oitn T (0%). If i €w, then
w (Oil2p+1 +i,2p+1+i (000)) — O’iln-i-ifn-i-i (OOO)
Applying this to i =1y, | +ip,, 1 —il,,,, —i5,,1 >0, we get
¥ (Oil2q+l Fidg 41 (0°)) = otn Fintitgg g iy, 1y ~iny g (0,
which has to be of the form o/tm T (0%°) if g € S,. In particular,

l +2 . -/ . -/ _lm+2 o/
32T gy i,y — iy, —lopp1 =3 iy,

g1, Hin—1 —i5 i . o
and 3l2a+1—lm_y 201N ;lmlljﬁl Pptl 145,25 < 2, showing that I 1 <y, if ¢ is large enough.
iy i =, ) _ o
Also, 14 22+ Zl"gl;q+ff§’“ el _ gln—laq+1 4 312;% < 2, showing that l,;, < laq41 if ¢ is large
enough. Thus m=2¢+1 if ¢ is large enough, by (4), and i, = i’2q 41 if g is large enough. This implies
that n=2p+1, which is the desired contradiction finishing the proof. g

Remark. In fact, G and the G’s are induced by a partial homeomorphism with countable domain,
so that there is no <!-antichain basis for the class of graphs on a 0ODMC space induced by a partial
homeomorphism with countable domain with CCN at least three.

10 Subshifts

We now prove a version of Theorem 1.6 for graphs induced by a homeomorphism, as announced
in the introduction. The proof of Theorem 1.11 will provide descending chains of graphs of uncount-
able CCN, and here we get CCN three. We consider subshifts, which are widely studied particular
dynamical systems. We refer to the book [Ku] for basic notions and definitions.

Definition 10.1 (a) An alphabet is a finite set of cardinality at least two.

(b) Let A be an alphabet, and X € {Z,w}. The shift map o : AX — AX is defined by the formula
o(a)(k):=a(k+1).

Recall that the sets of the form [w],:={B€2% | Vj < |w| w(j)=08(p+7)}, where w € 2<* and
p € Z, form a basis made up of clopen subsets of the space 2%, which is therefore homeomorphic to
2. If X =7, then the shift map is a homeomorphism, so that (A%, o) is a Cantor dynamical system.
Corollary 7.3 shows that the fixed points of a homeomorphism f are important in the computation of
the CCN of G.

Notation. If A is an alphabet and () # w € A<%, then w” € A% is defined by (w?)(k|w|+7) =w(j) if
k€Z and j <|w|.

Proposition 10.2 Let A be an alphabet, and i >0 be a natural number. Then o (o) =« holds exactly
when there is w € A* with a=w” (in this case, we say that o is a periodic point of o). In particular,
the fixed points of o are exactly the constant sequences.

Proof. If k € Z, then o'(a)(k) = a(k+1i). For the left to right implication, we consider w := ali
defined by w(j):=a(y) if j <. O
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Definition 10.3 Let A be an alphabet. A two-sided subshift is a closed subset ¥ of A% with the
property that o[¥X]=X..
Note that a two-sided subshift defines a dynamical system, by restriction.

Notation. If A is an alphabet, o« € AS% U A% and w € AS“, then we write w C o when w appears in
@, i.e., when there is k € Z such that w(j) = a(k+7) for each j < |w|. In particular, if o € AZ, then
o= (a(0),a(1),...)Ce

Example. If A is an alphabet and F' C A<, then X := {a € A? | Yw C o w ¢ F} is the set of
biinfinite words without subword in F'. This is a two-sided subshift, and any two-sided subshift is of
this form (see [Sa-To, Section 2]).

The next notion will be crucial in our study of subshifts.

Definition 10.4 Let A be an alphabet. A substitution on A is a map 7 : A<Y — A<Y satisfying
7(uwv) =7(u)7(v) for all u,v e A<“.

A substitution is determined by the images of the letters of the alphabet. Some authors require
that 7=1({0}) = {0}, which will be the case in our examples. We now provide infinite descending
chains of graphs induced by a homeomorphism of a 0DMC space with CCN exactly three.

Theorem 10.5 There is a <. and ji-descending chain ((Ep, Gglzp))p cw’ where ¥, is a two-sided
subshift, (U|Ep)2 is fixed point free, and (¥,, Gy, ) has CCN three.

U‘EP

Proof. We consider the generalized Fibonacci sequence of natural numbers defined by fy:=2, f;:=3,
and fpy2:= fp+ fp+1. Note that f, >0, (f,)pew is strictly increasing, and f,, is even exactly when 3
divides p, by induction. Also, f,15>8f), since

fp+5:fp+3+fp+4:fp+1+2fp+2+fp+3:fp-i-l+2fp+2fp+1+fp+1+fp+2:5fp+1+3fp-

In particular, 8 fo,15 < fop+14.
This leads to define a C-increasing sequence (F},)pc., of subsets of 2<“ by
F,={0%, 13} U {w® | we2~¥ A 0<8|w| < fopis}-

This allows us to define the two-sided subshifts ¥, := X, . Note that (X,),e,, is C-decreasing, so
that ((Zp, GU\EP))pau is <i-decreasing. Also, w” ¢ ¥, if 0 < 8|w| < fopis, so that o' (a) # o if
@€ Upcsic fo, 5 Sp- In particular, (015,)? is fixed point free for each p since f5 =21.

We finally define a sequence (wp)pe., of finite binary sequences by wg := 01, wy := 101 and
Wp-42 :=Wpwp41. Note that [wy|= fp, inductively, so that o/7 (w5) =w?. Here is the key fact.

Claim 1. Let pew. Then wgp% €.

Indeed, we consider the subsitution 7:2<“ — 2<% defined by 7(0):=1 and 7(1) :=01. Note that
w,=7PT1(1). Indeed, 72(1) =7(01) =7(0)7(1)=101=1w; and

TPH3(1) =7P+2 (7'(1)) =7PT2(01) =7P+2(0)7P+2(1) =7PH! (T(O))Tp+2(1) =7PTL(1)7P+2(1)

= WpWp+1 = Wp42-
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If w= (w(0),...,w(|w|—1)) € 2<%, then we set w' = (w(|w|—1),...,w(0)). The sequence
(w; 1)p€w of Fibonacci words is strictly C-increasing, so that its elements are initial segments of
the infinite Fibonacci word ® € 2“. By [Kar, Section 4], ® contains no fourth power, i.e., v Z P
if ) # v € 2<¥. An induction shows that w? € Xyp2,13). We argue by contradiction to prove our
claim, which gives p and w with 0 < 8|w| < fopy5 and w® C w§,, 5. Note that w* C wg, 5 since
8|w| < fop+5=|wopss5|. In particular, if v:=w~!, then v* = ®, which cannot be. o
Claim 2. Let p € w. Then we can find o € ¥, and k € w with 2k+3 < fo,15, 02*3(a) = o and
o) #aif 0<i<2k+3.

Indeed, we choose a := wgp+5. By Claim 1, a € 5. As |wopi5| = fopts, 0/%7+5(a) = a, and
fop+5 is odd. Let n be odd and minimal with o™ (c) = a. As o|s, is fixed point free, n > 3, which
gives k €w with n=2k+3, so that 2k+3 < fo,15 and 02**3(a)=a. If 0<i<2k+3 and o' (a) =q,
then ¢ has to be even by minimality of n. Note then that 0 <n—i <n is odd and 0" *(a)) = o, which
contradicts the minimality of n. o

Claim 2 implies that (*()), ,, 5 is a Gy, -cycle, so that (2k+3, Corts) =i (2p, Goyg ).
In particular, x.(%,, G‘Tmp) > 3. By Theorem 8.1, x.(%,, Gglzp) = 3. Assume now, towards a
contradiction, that (Ep,Gglzp) =e (Zp11,G

As (o' () isa G

o +1) with witness ¢. Let a be given by Claim 2.
P

-cycle and odd cycles must map to odd cycles of at most equal length,

i<2k+3 o|p
(Xpt1, GJIEPH) contains a cycle of length 243 < 2k+3. This implies that o273 (p(a)) = (),
which cannot be since 0 < 8(2/43) <8(2k+3) <8 fopt5 < fop+14. O

Lemma 7.10 shows that many odometers induce minimal graphs with CCN three. We will now
see that it is also the case with subshifts.

Notation. Let r € (0, %)\ Q. We consider the irrational rotation R, : R/Z — R/Z (well-)defined by
R, ([z]) :== [z+7r]. We (well-)define ¢, : R/Z — 2 by ¢,([z]) :=0if x € [0,7) mod 1, ¢, ([z]) :=1

otherwise, and set $2 := { (qbr (R?([m])))nez | [z] ER/Z}.

The following result is mentioned in [MB, Section 4].
Theorem 10.6 (Hedlund) Let r € (0, 3)\Q. Then (32, 0|x2) is @ minimal two-sided subshift.

Notation. If X € {Z,w} and X C A%, then we denote by L(X):={w € A<¥ | 3a€X wC a} the set
of finite words word occurring in 3. If moreover n € w, then we set £,,(3):=L(3) N A™.

Let 7 € (0, 3)\ Q. By Theorem 10.6, (X2, 0|52) is a two-sided subshift. We set L” := L(¥%2). If
moreover n € w, then we set L7 := £" N 2", so that LT = £, (X2).

Definition 10.7 A subshift 3 is uniformly recurrent if, for each w € L(X), there is a natural number
[ such that, for each v e Unzl L,(2), wC.

By [Sa-To, Section 2], the following result holds.
Theorem 10.8 Any minimal two-sided subshift is uniformly recurrent.

Lemma 10.9 Letre(0,3)\Q.
(a) The map o|s2 is fixed point free.
(b) ¥2 is homeomorphic to 2°.
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Proof. By Theorems 10.6 and 10.8, X2 is uniformly recurrent. By [MB, Section 4], (X2 0|5:2) has no
periodic point

(a) If ox2 has a fixed point «, Proposition 10.2 gives a € 2 with a = a”. In particular, « is a periodic
point of ¥:2, which cannot be. Thus 0|2 is fixed point free.

(b) Let o € ¥2. Assume now that « is isolated in X2, which gives ) # w C « and p € Z with

2 N [w], = {a}. As X2 is uniformly recurrent, there is [ such that w C | [p+ |w], p+|w|+1]. This
gives a natural number i with w C a|[p+|w|+i, 00), so that o/l () € [w],. Thus ¢*1*(a) = and
a is periodic. This contradiction shows that ¥2 is perfect, and thus homeomorphic to 2, by [K, 7.4],
finishing the proof. O

The following result is also mentioned in [MB, Section 4].

Theorem 10.10 Let r#1' € (0, %)\Q Then the homeomorphisms 0|52 and o|x2 are not conjugate.

We are now ready to prove that the ¥:2’s induce minimal graphs with CCN exactly three.

Theorem 10.11 Let r€ (0, 3)\Q.

(a) The dynamical system (%2, 0|5:2) is minimal and the graph (%2, GJ‘EQ) has CCN three.
(b) The graph (X2, G"\z2) is <!-minimal in ®o and in the class of closed graphs on a 0DMC space

with CCN at least three.

Proof. (a) Note that X2 is not empty. By Theorem 10.6, (32, U|zg) is minimal. By Lemma 10.9,
»2 has cardinality at least two and osz 1s fixed point free. By Theorem 8.1, (22, GU\22) has CCN

two or three. By Theorem 7.1 and minimality, it is enough to find o € ¥ such that the intersection
{o?°(a) | p€Z} N{o?P+1(«) | p€Z} is not empty.

If [] €R/Z, then 0<<¢T (R;}([x])))nez) _ <¢T (R;}H([x]))) , 50 that

neL

o (0o (m(aD), ) = (o (R =(1a))
Note then that ¢r((gz)\ (jojuj)) 1S continuous. So it is enough to find
(2] € R/Z)\{R.([y]) [ L€Z nye{0,7}}
such that { (R}"**Y([2])), _, | p€Z} is not empty. Pick [z] in
(R/Z\{R([y]) | LeZ A ye{0,r}}

arbitrary. It is enough to check that (R;([z])), _, € {( ?HPH([;U]))%Z | pEZ}. Note that the
restriction b of the canonical map from 7: R — R/Z to [0, 1) is a bijection. The map b is a homeo-
morphism from [0, 1) equipped with 7:= {b=1(O) | O open in R/Z} onto R/Z. As usual, [0, 1) is
equipped with the T-compatible metric defined by d(z,y) := min(|z—y|, 1 —|x —y|). The previous
identification through b defines a compatible metric D on R /Z for which the R,’s are isometries. Let
¢ be a natural number, and, for n € [—q,¢] N Z, 0 < ap <rp:=b""(R}([])) < b, <1 mod 1. We
choose a natural number m >0 such that % < minne[,qu}mz min(r,, — @y, by, —7y,). The next claim is
inspired by the proof of [Ku, Proposition 1.32].

nez nez’
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Claim. Let r € (0, %) \Q, z € R, and m >0 be a natural number. Then there is p € Z such that, for
eachn€Z, D(R?HPH([:J;]), R ([z])) < &

m

Indeed, as r ¢ Q, the m classes [z], R%([x]), ..., R?™~2([x]) are pairwise different. As b is
defined on [0,1), we can find 0 < i < j < m with the property that D (R ([z]), 33([55})) <L
As R, is an isometry, D ([z], R?«(j*i)([x])) = D(R?*([x]), %J([x])) Now R2U™ = Ry is also a
rotation, and either 0 < b < %, or1— % < b < 1. In both cases, for any y € R/Z, there is k > 0
with D(Rzk(jfi)([az]), y) < L. Applying this to y := R,([z]), and putting p := k(i —j), we get
D(Rzp 1 ([]), [2]) < L. It remains to apply again the fact that R, is an isometry. o

The claim provides p € Z such that, for each n € Z, D ( nrtL (), b(rn)) < L. In particular,
b1 (R ([2])) € (an, by) mod 1if n € [—g, g] N Z, as desired.

(b) We apply (a) and Lemma 7.10. Il

Theorem 10.11 gives a version of Theorem 1.13 for subshifts.

Corollary 10.12 There is a <'-antichain (%, Goy, Jrer, where
(a) X2y is a two-sided subshift homeomorphic to 2,

(b) ox, is a minimal homeomorphism of 3, and G has CCN three,

(c) (3, GU‘ET )rer is <i-minimal in B and in the class of closed graphs on a ODMC space with
CCN at least three.

9|2,

Proof. Let r € (0, 5)\ Q. By Theorem 10.6 and Lemma 10.9(b), (X2, GU\E2) is a minimal two-sided
subshift homeomorphic to 2*. By Lemma 10.9(a), o|x:2 is fixed point free, so that ¥2 is a closed
graph, with CCN three by Theorem 10.11(a). As (32, GU\22) has cardinality at least three and is
minimal, the vertices of ¥.2 have degree two. By Theorem 10.11(b), (X2, G‘7|z%) is <’-minimal in &
and in the class of closed graphs on a ODMC space with CCN at least three.

So it is enough to find a subfamily of (X2, Go s
7.11, it is enough to ensure that the homeomorphisms corresponding to the elements of the subfamily
are pairwise not flip conjugate. By Theorem 10.10, the os:2’s are pairwise not conjugate. Thus o|s2

1 which is a <‘-antichain. By Lemma
>re(072)\<@ c y

is flip-conjugate to 052 exactly when o)s:2 is conjugate to o The key remark is that if ox2

=2,
then 052 is conjugate to oy2 , which implies that v’ = r”. We

is conjugate to o~ and o5 ,
|ZT/ ‘E,’,N

inductively construct a injective family (r¢)¢ o5, of elements of (0, $)\Q such that the 7|3, s are

pairwise not flip-conjugate. rg is an arbitrary element of (0, %) \ Q. Assume that 1 <7 < 280 and

(r¢)e<n are constructed. The key remark shows that, for each £ <7, there is at most one element ré
-1
122,
"¢
ry€(0,3)\(QU Ug<y {re: 7)), so that (re)e<y is as desired. O

Corollary 10.12 gives a second proof of the fact, met in Theorem 1.13, that any <‘-basis for &5
must have size continuum. We now prove that the basis given by Proposition 9.3(a) is far from being
a basis for ®-, as announced in the introduction.

of (0, 3)\Q such that o|xz is conjugate to 0|, . If r; does not exist, then we set 7 :=r¢. We choose
¢
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Proposition 10.13 Ler d € (w\2)* N O and r € (0, 3)\Q. Then (C,G,) and (X2, G"W) are <!-
incompatible in the class of closed graphs on a ODMC space with CCN at least three.

Proof: Towards a contradiction, suppose that we can find a 0DMC space K and a closed graph G on K
which is <?-below our two graphs. Thus (X2, GU|22) <! (C,G,), by Corollary 10.12. Theorem 10.6
and Lemma 10.9 allow us to apply Lemma 7.11, so that o|sz and o are flip-conjugate, with witness
say ¢. We already saw that (C, o) is equicontinuous, i.e., (0")e,, is equicontinuous. In fact, as o is an
isometry, (0"),cz is equicontinuous. The uniform continuity of ¢ and ¢ ~! implies that (X2, o|x2) is
also equicontinuous. Theorem 10.6 and [Ku, Proposition 3.68(2)] imply that (%2, O’|Z%) is expansive,
which gives & > 0 such that, for each v 8 € X2, there is n € Z with d (0" (), 0" (8)) > €. Lemma
10.9(b) gives o € ¥.2. The equicontinuity of (32, 0|x2) gives d > 0 such that, for each 8 € B(a,9)
and each k € Z, d(c*(a),0%(8)) <e. Lemma 10.9(b) gives 3 € B(«,§)\{a}, which is the desired
contradiction. O

Remark. Theorem 1.13 and Corollary 10.12 provide examples <’-minimal in &5. None of them is
=c-minimal in . Indeed, there is a dense orbit. Let (X, G'f) be one of them. Theorem 3.2.4 provides
f € J¢ such that (Kg,Gg) =. (X,Gy) and the vertices of Gz have degree at most one. Assume
that (X,Gy) <. (Kg,Gg), towards a contradiction. Then the dense orbit of f has to be sent to a
two-point set because of the degree. So X has to be sent to this closed set, by density. But this
contradicts the fact that (X, G¢) has CCN at least three. The examples are not <’-minimal in £.
Indeed, consider the dense orbit D = Orby(z). Assume that (X, Gy) = (X, Gy ,,) with witness ¢,

towards a contradiction. The proof of Lemma 7.11 shows that p[D] = Orb £(@(x)) =D since (f|p)?
is fixed point free. Thus ©?[G ip]=Gp- By injectivity of ¢, there is no more room for ¢[ X\ D].

We now turn to the proof of Theorem 1.15. By [K, 6.C], the countable MC spaces can be ana-
lyzed through their Cantor-Bendixson rank. Recall that if X is a topological space, then the Cantor-
Bendixson derivative of X is X":={x € X | x is a limit point of X }. The iterated Cantor-Bendixson
derivatives are defined by X°:= X, X1 := (X), and X*:=(,_, X if X is a limit ordinal.
Note that if f is a homeomorphism of X, then all the derivatives are f-invariant, i.e., f[ X=X if
«ais an ordinal. If X #() is a countable metrizable compact space, then the Cantor-Bendixson rank of
X is the minimal countable ordinal o with X ®= (), which is a successor ordinal by compactness. The
odd cycles provide examples of graphs induced by a homeomorphism of a countable (0D)MC space
with Cantor-Bendixson rank one whose CCN is three, and which are jfz—minimal in 5. We now
provide examples for higher ranks, including the example (K, ho) mentioned in the introduction.

Proof of Theorem 1.15. (a) For ¢ = 1, we can take ¥ := Orb, ((012)>°-(012)>°) C 3%, which de-
fines a cycle on three points and we apply Corollary 2.2. Assume now that 2 < £ = n+2 < w.
We set, for j,m € w, wj =01, wj™! =12, and wﬂﬁl i= (01711127 <541 wi™. We then set

ag:=(01)>-(01)>, and, for m € w, i1 = (01)*-1*7 je, w} and By, := (01)™- 17 jey, w
Finally, Y=y Orbg () U Orb, (3y,), so that Y= Ko and o5, = hg if {=2.

Y is by definition countable, and o [X] =3. We then set, for 1 <i<n+1,

»0) = U Orb, ().

m<n+1—i

w™
i

m<n
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Claim 1. (a) Let 1 <i<n+1. Then £ = Orby (0t 11_;)-

(b) X=O0rbs(8n).

Indeed, for (a), we argue by induction on n+1—1. Note first that
Orb, () ={(01)>-(01)>, (10)>-(10)>}

is closed, so that (1) =Orb, (ayg).

Let us prove that o, € Orb, (i +1) if m € w, which holds for m =0. Note that

amya=(01)21%7 jey w1 =(01)>- 12127 je, ((01)7 712 pgjpr W),

If a € 2% and a <b are integers, then we define Qg p € 2b—atlpy Qe p)(l) =ala+1) if [ <b—a. Note
that (01)7H1127 o0y wi' = Ot 1[-2j-2,11 52,4, |wpr]]- AN induction shows that |wi*| > 2, so that
14+ Yg<jt1 |wi*|>25+5. This implies that a1 € Orby (uy,42), as desired.

From this we deduce, inductively and by continuity of ¢ and o~!, that
» (@) = »+1) Orb, (ap4+1-4i) CSOrbg (ay,—i) U Orby (anr1—;) COrby (apt1—4)-

This shows that () C Orb, (a1 1) if 1 <i <n+1.

Assume then that 1 < i < n, (kp)pew € Z* and (o™ (an41-:)) ., converges to a € 2%, We

pe
want to see that o € (), and we may assume that ¢ < n. If (kp)pew has a constant subsequence,
then a € Orb,(a41-) and we are done. So we may assume that (k;)pe., tends to +o0. If (kp)pew

tends to —oo, then « € Orb, () since ay,41—; = (01)°- 12“]@, w;b_l, and we are done. So we
may write k, = 2+, \w;‘_il + jp, where j, < ]wZ)‘i\, and (Ip)pew tends to co. As above,

Ap41—i—= (01)00-1212Aj€w ((01)j+112Ak§j+1 ’LUZ'_i_l), and

(01)j+112/\k§j+1 wziiilzanfi[ —i1)-

—2j-2,14Zk<j41 |wp

If (jp)pew and (|wg_’\ — jip)pew also tend to oo, then a € Orb, (a,—;) € B C (), by induction
assumption, as desired. Otherwise, we may assume that (j,)pec. Or (\w;;_’] — Jp)pew 18 constant, so

that o€ Orb, (o) since wgnﬂ starts and ends with (01)7, by induction.

The proof of (b) is similar. o
Claim 1 implies that X is a two-sided subshift.
Claim 2. ¥ has Cantor-Bendixson rank €.

Indeed, let us show that () is the ith iterated Cantor-Bendixson derivative of Y if 1 <i<n+1.
By Claim 1(b), ¥\ Orb,(8,) C ¥'. As X is countable, it has an isolated point, which has there-
fore to be in Orb,(3,). As o is a homeomorphism, Orb,(f,,) is disjoint from 3’, showing that
¥ =¥\O0rb,(8n) CU, <, Orby(cy,) =%, It remains to see that o, ¢ Orb,(By,) if m < n to
get »(1) =3/, As all the odd coordinates of the wj"’s and the ayy,’s are 1, and we can find an even
coordinate of (3, and an odd coordinate of [3,, which are 0, we are done.
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Fix now 1 <i <n. By Claim 1(a), )\ Orb, (an41—;) € (2?). As () is countable, it has an
isolated point, which has therefore to be in Orb, (v, 1—;). As o is a homeomorphism, Orb, (a,+1—;)
is disjoint from (X)), showing that (X)) = 5% \Orb, (ant1-i) CU,ep; Orby(ay,) =30+,
It remains to see that a,, ¢ Orb, (Qmy14p) if m,p € w to get T+ = (X))’ and, inductively,
that X(+1) is the (i + 1)th iterated Cantor-Bendixson derivative of .. Note that if m € w, then
w2 :=(01)1212w7+?, so that (011212)™011201 C w ™, w*t and w}" "> are incompatible if
p € w. In particular, a2 # Gy y3+p, and, because of (01)*°, a2 ¢ Orb (Ctm+34p). Because of
12, ap ¢ Orb, (av14,), and because of 1212, oy ¢ Orby (ai24p).

As X1 =Orb, (ap) #0 is finite, > has Cantor-Bendixson rank . o

As no sequence in ¥ is constant, oyy; is fixed point free. As moreover ¥ is not empty, (X, GU‘E)
has CCN two or three by Theorem 8.1. Note then that

(Oé[), a[)) :llmpﬁoo (0'_2p(6n) I+Ej<p Juf ‘ U Gg(‘];rl,

gew
so that x¢(X, G|y, ) =3 by Theorem 1.7. For the minimality of (X, G, ), we first prove the following.
Claim 3. Let V C %, and E C G
(o, 0(a)) € E if a € Orby(By).

Indeed, we argue by contradiction. Let k € Z with o = % (3,,). Recall that the sets of the form
[w]y :={B €2 | Vi< |w| w(j)=pB(qg+3)}, where w € 2<¢ and g € Z, form a basis made up of
clopen subsets of the space 27%.

Assume first that =0, so that ,, = Orb, ((01)>°-(01)>) U Orb, ((01)>°-1(01)>°), and

zp+s<an>={ (01)°-(01) if e =0,

N V2 be a graph on V such that (V, E) has CCN three. Then

0"2

(10)>-(10)® if e =1,

(10)® if p>0 A £=0,
(0D)>®ifp>0Ae=1,

-(01)P1(01)>® if p<O A e=0,

10)P11(01)>® if p<OAe=1

if p€Zand e €2. We set C:= ([0]_x U[120]_x_1) NV, so that C is a clopen subset of V and

EnN(C?uU(V\C)?) =0 since

o 02 ), 0P (o), 0" (o), ... €C,
0" 3 (), 0P ), M (o), .. 2O,

0 (B), 02 (Bn), 0F (Bn), o (Bn), F 2 (Bn), M (Br), -
3B, 03 (B, 0 (B, 028, 0FH(B,), 0+ (B, ¢C
which contradicts the fact that (V, E') has CCN three.

In this argument, the case k # 0 is similar to the case k = 0, we just have to translate the basic
clopen sets of the form [w],. It will also be the case in the general case n > 1 that we now consider,
so that we may and will assume that k£ =0.
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We set C := ([0]p U [120]p U [1°0]_; U [01*0] _5) N V/, so that C' is a clopen subset of V. We

already noticed that the odd coordinates of the w}"’s and the avy,’s are 1, that the w?"’s have a stricly

positive even length, and that w;-nH starts and ends with (01)7. The definition of the wj"’s, the auy,’s
and the 3,’s then imply that O can only be an even coordinate of a,,, a negative even coordinate of
B, or a positive odd coordinate of /3,,. Moreover, 010 can be of the form oy, [a,p) Only if L € {1,3,5}
and a is even, and of the form f3,,(, 3 only if =1 and a<—4 is even, [€{1,3,5} and a> 3 is odd, or

=4 and a=—2. This implies that E N (C? U (V\C)?) =0 since

o0 2 ), am, 0% (o), . .. €C,
0 3 ), 0 a), o(am,), ... ¢ C

if m<n and

o 0 HBR), 072(Bn), Bry 0 (Bn), a2 (Bn), 0 (Bn), ... €C,
e 073(BR), 073(Bn), 0 H(Bn), 72 (Bn), 0 (Bn), 5 (Bn), . . . 2 C,

which contradicts the fact that (V, E') has CCN three again. ©

Assume now that (K,G) € &3 and (K,G) =< (%, Go,y,) with witness ¢, which implies that
(K, G) has CCN three. As (K, G) € &9, there is a homeomorphism f: K — K with G = Gy. As
xe(K, G)=3, the set F} of fixed points of f is a clopen subset of K, and x.(K\Fi, G N (K\F1)?)=3
by Corollary 7.3. This implies that we may assume that f is fixed point free, so that G is compact.
We set V:=p[K] and E:=(pXx¢)[G], so that V' C X is a ODMC space, E C Gy, is a compact graph
onV, (K,G) < (V, E) with witness ¢, and (V, E) <% (K, G) with witness ¢! by compactness.

By Claim 3, (o, () € E if a € Orb, (). The density of Orb,(58,) in ¥ given by Claim 1
and the compactness of ' then imply that Graph(am) CE. As E is a graph, we get I/ = thm and
therefore V' =3. Thus (2, G,;)) <L (K,G) and (3, Gy,
closed graphs on a ODMC space with CCN at least three.

) is <’-minimal in &5 and in the class of

Assume now that ¢ > w is of the form 7+ 3. Using ideas similar to those in [Ce-Da-To-Wy],
we now provide a two-sided subshift with Cantor-Bendixson rank of the form & having the desired
minimality property. The first step of our construction is inspired by [Ce-Da-To-Wy, Theorem 4.6].
Fix an infinite countable ordinal 7, and a closed countable subset P of 2* with Cantor-Bendixson
rank 77+ 1, which exists by [K, 6.13]. The following fact is known. However, we include a proof for
completeness.

Claim 4. Let P be a countable Polish space. Then P\ P’ is dense in P.

Indeed, we set, for z € P’, O, := X \ {z}, so that O, is a dense open subset of X. Moreover,
P\P'=(,cp O is a G; subset of the countable space P. It remains to apply the Baire category
theorem (see [K, 8.4]). o

We enumerate P\ P':={~; | j €w} and set, for j cw,
wj =124 ((01)7(j)0(k)+2i<k ('Y(j)o(i)+1)12),
and 0o :=(01)>°-17 ey, (w;(01)711). Similarly, we define ®¢:2% — 2% by

Bo(7) ="rew ((01)7(’9)+Z¢<k (7(1')4'1)12)‘
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We also define ®:2% — 2% by ®(y):=(01)>-12®¢(7). We then set

Q:=0rb, ((01)-(01)>) U Orb, ((01)>-1%(01)>) U | | Orbs(®(7))
yeP

and 3 :=Q U Orb, (d~ ). Note that P, () and ¥ are countable, and 0[Q]=Q, o[X]=X.

Claim 5. ¥ is a countable two-sided subshift with Cantor-Bendixson rank &, and Orb, () is dense
in 2.

Indeed, as in [Ce-Da-To-Wy], we check that () is closed and has Cantor-Bendixson rank £. Note
first that Orb, ((01)>-(01)>°) ={(01)>°-(01)>°, (10)>°-(10)*>} is closed, as well as

Orb, ((01)>-(01)>) U Orb, ((01)>-1%(01)).

Let (8, )nce be a sequence of elements of () converging to § € 2. By the previous remark, we may
assume that the §,,’s are in UveP Orb, (@(7)) This gives (5 )new € P and (ky,)new € Z“ with
Sp=0kn (@(ﬂn)), and we may assume that (53, )ne, converges to S € P. If we may assume that
(kn)new is constant, then § =o* (®(3)) € Q by continuity of ®o and . Otherwise, we may assume
that (k,,)new is either strictly increasing, or strictly decreasing. In the latter case, d € Orb,, ((01)00-
(01)>) CQ. So we may assume that (ky, )ne. is strictly increasing and ko > 2. Note that

Si={"ka ((01)™1%)(01)> | l€w AVE<I—1 my<myq} U
{Tkew ((01)™12) | Yk €w myg <myy1}

and o[S] are closed subsets of 2¢, as well as C := S U o[S]. We define, for 3 € 2%, 5* € 2% by
B*(i) := B(i) if i € w. As ®q takes values in S, 02[S] = S and k,, > 2, 6} € C for each n, and
§* € C. If 6* contains at most one 13, then 6 € Orb, ((01)>°-(01)>°) U Orb, ((01)>-1%(01)>) C Q.
So we may assume that there are ng,n1 > 1 with 12(01)"012(01)™112 C §*, (01)"012(01)™ 1% C §*
or (10)™~1112(01)™12 C §*. As (6;)new converges to 6*, we may assume that is also the case
for the 9;’s. Note then that, just after this initial segment, J;; can have at most n; 42 blocks 01
before having a block 12, by definition of ®q. This implies that 6* is of the form 1274, ((01)”’€ 12),
“pew ((01)™1%) or (10)"07 11127 5q ((01)™12), with njpq+1 < ngyo < ngir+2. So we may
assume that either 12, ((01)™1%) C 4} for each n, ~j<, ((01)"¢1%) C &% for each n, or
(10)"0 11127 <<y, ((01)"1%) C6;; for each n. Note that ®o(/3,,) has an initial segment of the form
either “j<; ((01)™*12) "k, ((01)™12), or “p<y ((01)™12)0(10)"0 11127 <y ((01)7%12).
As mp < mp < --- < my < ng in both cases, there are only finitely many possible values for the
block "< ((Ol)mk 12). So we may assume that this block does not depend on n. Note then that
&5 = o*n=2(®¢(B,)). This implies that we may assume that (ky)ne, is constant, which is not the
case. This shows that () is closed.

In order to prove that () has Cantor-Bendixson rank &, we introduce the notion of the rank of a
point. If X € {w, Z}, P is a countable compact subset of 2% and ¢ € P, then the rank rkp () of § in
P is the least ordinal « such that ¢ P+l Under this definition, the Cantor-Bendixson rank of P is
sup{rkp(d)+1| d € P} (see [Ce-Da-To-Wy, Section 2]).

Note that P, := {®(v) | v € P} C Q, which implies that rkp, (§) < rkg(0) if 6 € P;. By
[Ce-Da-To-Wy, Lemma 3.3, rkg (0% (8)) =rkq(8) if k€Z and § € Q.

59



Thus rkg (0% (8)) >rkp,(8) if k € Z and § € Py. It follows that kg ((01)°°-1%(01)>) >n+1
and hence rkg ((01)>°-(01)>) >n+2.

For the other direction, note that the map (k,~) > o*(®(v)) is injective. We now prove by
induction on p := rkp, (9) that rkg(0) = p if § € P;. If p =0, then ¢ is isolated in P;. If § is not
isolated in @), then there is an injective sequence (d,,)new Of elements of @) converging to §. The
discussion above provides ko € Z and (8, )new € P¥ converging to 8 € P with 6, = o* (®(5,)).
Thus § = oFo (®(8)). The injectivity property shows that ko =0, so that 8, € Py, contradicting the
fact that ¢ is isolated in P;. Suppose now that our claim holds for all ordinals strictly below p, and
that rk¢g(0) > p. Then we can find an injective sequence (J,,)ne. of elements of () converging to 0.
The discussion above provides ko € Z and (8,)new € P¥ converging to 8 € P with 6, =" (®(8,)).
The injectivity property shows that kg = 0, so that 6,, € P;. As rkp,(§) = p, we may assume
that rkp, (8,) < p, so that rkg(d,) < p by induction assumption. This contradicts the fact that
6n € Q. This implies that rkg(0) <nif § € J cp Orb, (@(v)). It follows that rkq(6) < n+1 if
8§ € Orb, ((01)°°-1%(01)>), and rkg(8) <n+2 if 6 € Orby ((01)>°-(01)°). This proves that Q has
Cantor-Bendixson rank &.

Let us prove that X is closed. Assume that (J,,)ne. is @ sequence of elements of ¥ converging
to & € 22, We may assume that the §,,’s are in Orb, (60 ) since @ is closed. This gives k,, € Z
with the property that 6, = 0¥ (do). If (ky,)new has a constant subsequence, then & € Orb, (o)
and we are done. So we may assume that (ky,)ne, tends to +o0o. If (ky)ne, tends to —oo, then
§ € Orb, ((01)°°-(01)>), and we are done. So we may write kp, =1+, (|wj|+2542)+jn.
where j, < |wy, |+ 20, +2, and (I,)ne, tends to co. In particular, the distance between J, and
C:={B€2”|3€c2 VicZ B(2i+c)=1} tends to zero as n tends to infinity, so that J is in the
closed set C.. As above we may assume that § is not in Orb, ((01)°°-(01)>°) UOrb, ((01)>°-12(01)>),
which gives m minimal such that 12(01)™12 is a finite subword of §, and we may also assume that
12(01)™1% =6}9 91m-+3) = On[0,2m+3]- This implies that we may assume that j,, = 0. Note then that

Gn =" jz1, (w;(01)7F1)

n

=" s (12 (Ak<j ((01)7(j>0(1f)+2i<k (v<j>0(i)+1)12)>(01)j+1)
212"t ((01)0m0 B ek Gana41)12) ) (1)in 1

converges to 0*. This implies that (7(;,),)new converges to some v € P, and that 6 = ®(v) € Q,
showing that 3 is closed.

This discussion above shows that if ¢ € @), then rkg(d) =0 if and only if there is v € P\ P’ with
& € Orb, (®(7)). In particular, rkq(6) > 1 if § is not of this form. If now j € w, then ®(v;) is in
Orb(d~ ), showing that () is a subset of the Cantor-Bendixson derivative ¥’ of ¥. As X is countable,
it has an isolated point which has to be in Orb, (4 ), and X’ = @) since o is a homeomorphism.
This implies that ©**! = Q* for each natural number k, and ¥.¢ = QY if 6 is infinite, so that ¥ has

Cantor-Bendixson rank ¢ since 7 is infinite.
The density assertion comes from the previous discussion and Claim 4. o

We then partially argue as in the finite case. Note that
((01)%°-(01)>°, (01)>-(01)>) =limp—,00 (07%(500)7 oltEi<ep (\wj|+2j+2)+\w2p|+2p(5oo))

isin U, G2t 5o that (3, G

U|E ’

)=3.

U'E
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Claim 6. Let V C Y, and E C G
(o, 0(a)) €EE if a € Orby(ds0).

N V2 be a graph on V such that (V, E) has CCN three. Then

U\E

Indeed, we argue by contradiction. Let k € Z with a = 0¥(d,,). As in the proof of Claim 3, we
may assume that £=0. We set

C:=([0]o U [120]o U [01*0]_2) N V/,

so that C is a clopen subset of V. Noted that the odd coordinates of the w;’s are 1, and that the w;’s
have a stricly positive even length. The definition of the w;’s and J then imply that O can only be
an even coordinate of the elements appearing in the definition of ) (which is the union of the orbits
of these elements), a negative even coordinate of J, or a positive odd coordinate of §,,. Moreover,
01%0 can be of the form Q[q,p) With o appearing in the definition of @ only if k€ {1,3} and a is even,
and of the form o[y ) Only if k=1 and a < —4 is even, k € {1,3} and a > 3 is odd, or k = 4 and
a=—2. In particular,
02 (a),a,0%(a),. .. €C,
.0 3(), 07 a), 0(a),...¢C

if « appears in the definition of (), and
30 4 60),072(00) 000, 7(000 )5 03 (00), 0° (60 ), - - - €C,
07 (000), 03 (000), 0 (000, 02 (000 ), 04 (000 ), 08 (600), - . - € C.
This implies that E N (C* U (V\C)?) =0, which contradicts the fact that (V, E) has CCN three. ¢
We now conclude as in the finite case.

(b) Let Q:=(q;)jew € w* converging to infinity. We set ag := (01)>-(01)>°, ag :=(01)>°-12(01)>°
and Bq:=(01)>-17je,, ((01)%1?). This defines ¥g =J,,,<; Orbs () U Orb,(8q).

We first essentially argue as in the finite case when =1 to check the individual properties of Xq).
Claim 7. (a) Let 1 <i<2. Then £{3) = Orby (az—;).
(b) X =0rb,(Bq).
Indeed, let us prove that a; € Orb,(8¢). Fix a natural number N. If j is large enough, then
N2\ — _
¢j 2 N, so that (O IHO1)™ = a1(-anan+1] = BQU14(5,<; 20042420~ N).(Suz; Caat2)+2N]
This implies that a; € Orb,(8g), as desired.

Assume then that (k,)pew € Z“ and (akp(BQ))p c., converges to a € 2%, We want to see that
a€Xq. If (ky)pew tends to oo, then we may write k, =1+ (Zj<lp (2¢; +2)) +7jp» Where j, <2q;,+2,
and (Ip)pe., tends to oo. If (j,)pew and (2q;, +2— jp)pew also tend to oo, then o € Orb, (ap) € Xg,
as desired. Otherwise, we may assume that (j,)pew O (241, +2— jp)pew is constant, so that o is in
Orb, (a1) CXq. o
Claim 8. X has Cantor-Bendixson rank 3.

Indeed, as all the odd coordinates of the c,;,’s are 1, and we can find an even coordinate of 8¢
and an odd coordinate of g which are 0, so that a,, ¢ Orb,(3¢) if m < 1. It remains to note that

ap ¢ Orb, (o) to get 28) = (Eg))’ and, inductively, that E(QQ) is the 2nd iterated Cantor-Bendixson
derivative of Y. o
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Note then that
(0, ) =limy 00 (0—217(5@) 1+(Zj<p (2q7+2))+2fqp1 (8o)) U th‘];rl’
qew
so that x.(2q, G0|2Q )=3.
Claim 9. Let V C X, and ECG
(o, 0(a)) €Eif a€0rby(Bg).

Indeed, let k € Z with a = 0*(3g). As in the proof of Claim 3, we may assume that k = 0. Fix
Jo €w such that g; > 1 if j > jo. We set

N V2 be a graph on V such that (V, E) has CCN three. Then

U‘EQ

C:=([0jou |J (0170l U [ J [01%%%0] 9) NV,
qujo J<qJ0
so that C' is a clopen subset of V. We already noticed that the odd coordinates of the «,,’s are 1. The
definition of the cv,,’s and ¢ then imply that O can only be an even coordinate of «,,, a negative even

coordinate of 3¢ or a positive odd coordinate of 5. Moreover, 01%0 can be of the form Qmq,p) ONLY
if k€ {1,3} and a is even, and of the form BQap only if k=1 and a < —4 is even, k € {1,3} and

a>11isodd, or 2<k<2jy+2 is even and a=—2. This implies that £' N (02 U (V\C)2) =() since

o0 2 (), am, 0 (), . .. €C,
03 am), 0 am), o(am), ... ¢C

if m<1 and
o4 (Bq),07*(Bq), Ba, 0 (Be),a* (Bq),0°(Bq), ... . €C,
a%(Bg),0*(Bq), 07 (Bo). o*(Ba), o4 (Bq), o°(Bq), ... ¢ C

which contradicts the fact that (V, E') has CCN three again. ©

We conclude as in the finite case to get the individual properties of ¥g. We now provide a family
of size continuum of countable subshifts (X¢g»),e2+. Let (pn)new be the sequence of prime numbers.

We set, for v € 2 and n € w, gy :=0 and ¢, := pg(o)ﬂ- . -pz(n)ﬁ —1, which defines Q¥ € w*
converging to infinity.

Let us check that the family ((Xqv, GU‘EQU ) coe
tradiction, that v # v/ and (X¢v, GU\EQV) <? (B G

is a <’-antichain. Assume, towards a con-

<! o1 ) with witness . Let m( be minimal

with v(mo) # v/(mo). By minimality of (2.7, G ), we may assume that v(mg) <v/(myg). If

9|z oV
z €Xgv, then (z,0(x)) € Gy, SinCE 0|5, is fixed point free. Thus (<p(m), go(a(x))) € G”\EQw

and ¢(o(z)) = 0% (p(x)). We choose = € v \ Orb, (), so that Orb,(z) is infinite, as well as
Orb, (¢(x)) 2 ¢[Orb,(z)], and o?(z) # . In particular, U\Qorba(go(a:)) is fixed point free. We apply
Lemma 5.6 and its proof to V=X =Yqv, f=015,,, = Orb,(z), W=Y = Yovs 9= |5, and
¢. The proof of Lemma 5.6 shows that P N M =), either ¢ (o (z)) =0 (¢(z)) for each z € Orb, ()
or p(o(z)) = o (p(2)) for each z € Orb,(z), and ¢[Orb, ()] = Orb, (¢(x)). In particular,
¢[Orbg ()], ¢[Orbs (B~ )] are disjoint infinite orbits in ¥,,/, so they are Orb (a1 ), Orbs (8. ).
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As Orby(fBg.) is dense in X,,/, the compact set p[Xqv] is X/, so that ¢ is a homeomor-
phism from Y¢» onto ZQV/. Moreover, ¢ is a witness for the fact that o)y, and %Iz, are flip-

conjugate, by density of Orb,(g~) in Xgv. In particular, [, ] = E'QV, and ¢[¥¢, ] = Egu,, SO
that ¢[Orb, ()] =Orbs (o), p[Orb, (a1 )] =Orb, (1) and ¢[Orbg (B )] =Orbs (8. ). This gives
no,n1 € Z with p(ar) =0™ (a1) and o(Bgv) =0" (8. ). We then set, for r €w,

K} =14+(Zj<r (2¢;+2))+2¢:.

Note that the sequence (o7 (6qv)), ., converges to a, so that (gp (or (ﬁQu))> converges to
rew

p(ar) = o™ (a1). As p(a"7(Bgv)) = o™ (8,.0), this implies that (0”057 (5,,))
converges to a. As (K)re is strictly increasing, this implies that o)y, ov and oz, are conjugate

and (0”0_"1‘”{: (BQ,,/ ))TEw converges to «. In particular,
ghommtiy B )i_p9= (B (no—n1+ Ky =2), -, B (no—n1+ K} +2)) = 19,9 =01°0
if 7 is large enough. Using similar notation, this implies that ng—ni+K* € {K” | m € w} if r is

large enough. In particular, this gives, for r large enough, m < M € w with ng—n; + K} = K, 7’;’ and
no—nm+K; =Ky Thus K/ ) — K/ =2q; | +2=3,cj<m (2¢] +2) and

0)+2 / 1(0)+2 /
pg( 2. .p:(r)-&-? =@/ 1+ 1=Sm<nenm (G 1+1) =Smenanr (Py O+2.. ply (T2,
We may assume that r is large enough to ensure that r, m >mg, which implies that pz;gmo)w divides
prOF2 %2 \yhich cannot be since v(mg) </ (mg). O

Note that Theorem 1.15(b) provides a version of Corollary 10.12 (and thus Theorem 1.13) for
countable subshifts (which are not necessary minimal). By minimality and for cardinality reasons,
the examples provided by Theorem 1.15(b) are <‘-incompatible in the class of closed graphs on a
ODMC space with CCN at least three with the examples given by Proposition 10.13.

11 Homeomorphisms of a 0DMS space

In this section, we prove Theorem 1.14, among other things.

Remarks. (a) Let X be a ODMC space, and f: X — X be a homeomorphism such that (X, Gf) has
CCN at least three. Lemma 7.10 says that if f is minimal, then (X, Gf) is <!-minimal in the class
of closed graphs on a 0DMC space with CCN at least three. Theorem 1.15 shows that the converse is
not true since the finite orbit Orb, () is not dense in the infinite countable space K.

(b) Theorem 1.15 also provides (Ko, Ghy) € B, for which it is not possible to find (K, G ¢) € B with
f minimal and (K, Gy) =i (Ko, Gp,). In particular, K¢ contains no subshift 3> such that (¥, o5)
is minimal and has CCN at least three, even if it contains Orb, () and (Orb, (), o(0rb, (ag)) 1
minimal.

We will see that (Ko, Gp,) is no more minimal in 0ODMS (or ODP) spaces. Let 7 be the set
of finer ODMS topologies 7 on K such that ((K(),T), Gho) has CCN at least three and hg is a
homeomorphism of (K, 7).
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Lemma 11.1 Let S be a 0ODMS ( resp ODP) space, f be a homeomorphism of S with the properties
that x.(S,Gf) >3 and (S,G¢) =i (Ko, Gho) Then there is a finer ODMS (resp., ODP) topology T
in T with the property that ((Ko, ) Ghy) =L (S, Gy).

Proof. By Theorem 1.15, (Ko, G},) has CCN three, and thus (S, G'y) has CCN three too. Therefore
the set Fy of fixed points of f is a clopen subset of S, and x.(S\ F1,G; N (S\ F1)?) = 3 by
Corollary 7.3. So we may assume that f is fixed point free. Let ¢ be a witness for the fact that
(S,Gy) <t (Ko, Gh,). We define V :=¢[S] and E:= (¢ x )[G]. The finer topology is

r={0CKy | ¢ '(0) eSS},

Note that ¢ : S — (V, 7) is a homeomorphism, so that (V, 7) is a 0DMS (resp., 0DP) space As ¢ is
a witness for the fact that (S, Gy) <¢ ((K0,7), Ghy), xe((Ko, ), Ghy) > 3. Also, ¢! is a witness
for the fact that ((V, 7), E) =< (S, Gy).

Let us prove that V = Ky and E = Gp,,. As ¢ is a witness for the fact that (S, Gy) <% (V, E),
Xc(V,E) > 3. As Orby,(5p) is discrete, there is ¢ € 2 with 0°(op) € V, which gives z € S
with ( ) o°(ap). As f is fixed point free, f(z) # x, which implies that (z, f(z)) € Gy,

f(x) ) € Gpy, and 0'%(ag) = ¢(f(z)) € V. This implies that Orbs(cg) C V and
{(ao, (ao)) ( ( 0)s ao)} CE. As x.(V, E) > 3 again, there is a € Orby,, (8y) NV, which gives
ye S with p(y)=

Let us check that f%(y) # y. We argue by contradiction. As just above, ¢(f(y)) = ho(e(y))
or gp(f(y)) = hgl (gp(y)) Assume that go(f(y)) = hgl (gp(y)), the other case being similar. Then
(v, ho(av)) ¢ E since f(y)=f~1(y) is sent to hy ' (a) by ¢ and h3 is fixed point free on Orby, (Bo).
This contradicts Claim 3 in the proof of Theorem 1.15.

As f2(y) #y, either p(f(2)) = ho(p(2)) for each z € Orbs(y), or v(f(2)) = hy ' (¢(2)) for
each 2 €Orby(y), by Lemma 5.6. Lemma 5.2 then implies that [Orb ¢ (y)] = Orby,, () =Orbp, (5o)-
Thus V = Ko and E = G}, In particular, ((Ko,7),Gh,) =L (S, Gy) and 7 is a finer ODMS (resp.,
0DP) topology on K.

The previous discussion shows that S =Orb(x) UOrb(y) by injectivity of ¢, and o f = hlop
Thus hg = o f*1op~! is a homeomorphism of (K, 7). g
Notation. Lemma 9.7 provides a sequence (S;)qe. of pairwise disjoint infinite subsets of w such that,
forany l €w, p#¢q, 3-2"1 <r € S, and s € S, |r—s| > 2*1. We enumerate, here again, S in a
strictly increasing way by {rq | j€w}. We set, forl€w, j;:= 3-2t14 1 and, for ACw,

Na={r! +r| (¢>0=>g—1€A) Alew A —-I<r<I}.

Note that N4 Cw. Let 7 be a finer 0DMS topology on Ky, and B” be a countable basis, made up of
clopen sets and closed under finite intersections, for 7. We set, for A Cw,

B=B"U{C N {OD™O)%} Ulen . (vasnnw {ODF1(01)"-(01)%} U
Unen_, < cpy Watrnw 1001 '(01)n+11(01)°°}) | C€B™ A po,qo, 1,01 GW} U
{CNH0®- 10} UUen . (vatrne {ODF101)70-(10)%} U

Unen e (vari {(10)%-101)"101)%}) | CEBT A po, do, pr a1 €.
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Lemma 11.2 Let ACw and 7 be in T. Then
(a) BY is the basis for a ODMS (ODP if T is) topology t7y in T finer than T,

(b) the sequences ((Ol)ool(Ol)T?l'(Ol)oo)lew and ((Ol)m-(Ol)r?l+11(01)°°)l€w are t7y-converging to
+1 +1
(01)>-(01), as well as ((01)001(01)“5z -(01)),,, and ((01)00-(01)7’5 +11(01)°°)l€w ifgc A

Proof. Note that B7, contains 57, is countable, and closed under finite intersections. Thus B7 is the
basis for a second countable topology t7 finer than 7. Moreover, B, is made up of closed subsets of
Ky, so that t7; is zero-dimensional. This shows that (K, t7,) is a ODP space (see [K, 13.2 and 13.3])
if (Ko, 7) is.

We apply the definitions of N4 and B to see that (b) holds. Note then that

(010175 101, (01210175 00)%) = (b (3R (80)) G

Thus ((Ko,tg), Gho) has CCN at least three by (b) and Lemma 3.3.1. It remains to note that
((Ko,t7%), Gny) = (Ko, Gp,) to see that the CCN is three. Note that

ho[{(10)%°-(10)*} U Upen (NVatrnew 1(01)°1(01)"0-(10)*} U
Uneﬂfplgrgql (Na+r)Nw {(10)00,1(01)711(01)00}] =

{1 (01>} Ulnen_, -, (Natnrw {(01)>1(01)"**-(01)>} U

Unen_,, vy (Na+rnw 1(01)%-(01)71(01)%}

po<r<qq

is equal, up to a finite open discrete set, to
OD™- O} UUeny 1o (v {01101 (01)%} U
Uneﬂ—prlgréqlfl (Na+r)Nw {(01>OO'(01)”+11(01)OO}’

and thus ¢7,-open. We argue similarly with hy' instead of hg, or with (01)>-(01)> instead of
(10)*°-(10)°, to see that hg is a homeomorphism as desired. O

Lemma 11.3 Let A, BCw with AZ B, T bein T, and 7’ be in T finer than 7. Then
((Ko,t4), Gho) 2% (Ko, t5), Ghy)-

Proof. Towards a contradiction, suppose that there is ¢ : (Ko, 7% ) — (Ko, t5). We define V := @[K]
and E:= (¢ x)[Gh,]. If z € Orby,(Bo), then (z, ho(2)) € G, since hy is fixed point free, so that
¢(ho(z)) = hE! (¢(2)). Thus ¢[Orbp, (80)] € Orby, (By) or ¢[Orbp, (B0)] € Orby, (ag). By injectiv-
ity of ¢, the first case holds. As h3 is fixed point free on Orby, (3p), either ¢ (ho(z)) =ho(p(z)) for
each z € Orby, (Bo), or ¢ (ho(2)) =hg ' (p(2)) for each z € Orby, (By), by Lemma 5.6. Lemma 5.2
then implies that ¢[Orby,, (8y)] =Orbp, (¢(80)). This provides n € Z with (o) =h{ (o). So either
@ (hi(Bo)) =hg(Bo) for each i € Z, or (ki (Bo)) =hy " (Bo) for each i € Z, by Lemma 5.2 again.
In particular, if g€ A\ B and [ € w, then

(011005 (1)) = (he T (Bo)) e b T Bo) ke S (Bo))

is t;-converging to ¢((01)°°-(01)), in {(01)>°-(01)>°, (10)>°- (10)>} by injectivity of ¢ since
¢[Orby,, (Bo)] =Orbp, (Bo)-
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Assume, for example, that ¢ ((01)>-(01)>°) = (10)>°-(10)>, the other case being similar. Then
{(10)>-(10)*} UlUnen, {(01)%1(01)"0-(10)°} UlUpen, {(10)°-1(01)"1(01)>} =
{(10)-(10)} UUpen,, {h6"(80),ho ™"~ (50)}
is a ¢tj;-neighborhood of ¢ ((01)>°-(01)°), and thus contains go((Ol)ool(Ol)rng-
enough.

(01)*) if L is large

The injectivity of hg provides, for example, p € B, k € w and —k < r < k with the property that
n— 21";?;“1 —-1= —2(7“?:1 +7)—1if [ is large enough (the other case is similar). This implies that
ZIT?ZH —r§’:1| =|n+2r| <|n|+2k, k goes to oo as | goes to oo, and \r‘?fl —r§:1| <2k if [ is large
enough. As g+ 1+p+1, this contradicts our choice of jj, since [r4 —r§:1| > 2k > ok, O

Ji
Proof of Theorem 1.14. (a) We apply Theorem 1.15.

(b) Lemma 11.1 provides a finer ODMS (resp., ODP) topology 7 on Ky such that hg is a homeo-
morphism of (Ko, 7), Xc((Ko,7),Gry) = 3 and ((Ko,7),Ghr,) =% (S,Gy). We apply Lemmas
112 and 113 to A := {2¢ | ¢ € w}, B:={2¢+1|gcw}, and 7. As t7,t} are finer than T,
((K07t2)7 Gho)? ((K()atTB)? Gho) <! ((K07T)7 Gho)' As AZBa

((Ko,th), Ghy) 2% ((Ko,tB), Gn)

and thus ((Ko,7),Gn,) 2% ((Ko,tg), Gh,). This proves that ((Ko,tg), Gp,) is strictly <%-below
((Ko,7),Ghy), and also (S, Gy).

Assume now, towards a contradiction, that there is a jz—antichain basis ‘B for a class in the state-
ment. By Theorem 1.15, (Ko, Gy, ) is in this class, which gives (S, Gf) € B with the property that
(S,Gy) =% (Ko, Gp,). The first part of this theorem provides a finer ODMS (resp., 0DP) topology 7/
on K with the properties that /g is a homeomorphism of (Ko, 7’), ((Ko, '), G,) has CCN at least
three, and ((Ko,7’), Gp, ) is strictly <%-below (S, Gf), which is the desired contradiction.

For the size of the basis, towards a contradiction, suppose we can find x < 2% and a basis (By)~y<s
for our class. Let (p,,)ne. be the sequence of prime numbers. We define, for each o €2%, S, Cw by

So = {pg(O)Jrl CLptFL pew)

Note that S, C w is infinite, and S, N S is finite if a# 3. By Theorem 1.15, we can apply Lemma
11.2 to any .S, and the topology 7y on K, so that tg"a is a ODP topology in 7. As x < 2%, we can

find v < x and a # 3 with B, < ((Ko,tgoa), Gho), ((KO, tgoﬁ), Gho) <! (Ko, Gp,). Lemma 11.1
provides a finer ODMS (resp., ODP) topology 7 in T with ((K 0,T), Gho) < B.,. We can apply again
Lemma 11.2, to A:=w and 7, so that ¢/, is a ODMS (resp., ODP) topology in 7 finer than 7, so that
((Ko,t5), Gry) =t ((Ko,7),Gho) =t ((Ko,tg.),Ghy). As Sg is infinite, w € S,. Lemma 11.3
then implies that ((Ko,t7,), Gp,) 2% ((Ko, tg ), G ho)» Which is the desired contradiction. O

We turn to the proof of Theorem 1.16(a). In fact, we prove something stronger since it is possible
to consider always the same graph, with different underlying ODP spaces.

Proof of Theorem 1.16(a). We define, for A Cw,
Ka:={e""(e+1mod 4)1®° |c€4 Ancw} U {e"(e—1mod 4)0®° | e€4 An€cw} U
{e*|e€bUlU,ea {e"T(e+1mod 4)s2° | ecd Nse2" T}
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We then enumerate 27! := {1 | § < 271} C 2<% and define a function h4 : K4 — K4 by
ha(e%°) = (e+1 mod 4)% if £ €4, ha(4%°) :=01%%, 4 (320°°) := 4,

ha(e" (41 mod 4)1°°) := (41 mod 4)" ™! (€42 mod 4)1°°

if € #3, ha(3"7101%°) 1= 0"+21°, hy ("1 (e—1 mod 4)0°°) := (e +1 mod 4)" 10> if £ # 3, as
well as h 4 (37+220°°) :=0""130° on the one hand,

ha(e"?(e+1 mod 4)s7T12%) := (¢ +1 mod 4)" (¢ +2 mod 4)s7 2%

if £ #3, ha(3"T20s0112%) .= 0”+215?++11m0d on+12°° on the other hand. In other words, K4 is the
union of the h4-orbit {0°°,1°°,2°° 3%} the orbit {4} U {e"* (e 1mod4)n™ | e €2An €
w A n € 2} in the style of the infinite h3-orbit of K, and even cycles given by the elements of A.
The beginning of the proof of Theorem 1.15 shows that K 4 is a countable 0ODMC space, hy4 is a
homeomorphism of K 4, and (K 4,G},,) has CCN three. If A C B, then K4 C Kp, G, C G},
which implies that (K 4, Gy ,) <t (Kp, Ghy,).- If AZ B, then let n€ A\ B. Note that (K 4, Gp,) 2%

(Kp,Gh,,) because (K 4, G}, ) has a cycle of length 4-2""! and (K, G}, ;) does not. O

As announced in the introduction, one can check that the o}x’s appearing in the statement of
Theorem 1.15 are expansive, which leaves the question of infinite Cantor Bendixson ranks uncertain.

Remark. By [K, 33.B], the set Ky, (2“) of countable compact subsets of 2¢ is IT{-complete. By
[K, 34.18(3)], the Cantor-Bendixson rank |- |cp is a co-analytic rank on Ky, (2*). Thus the map
r: (X, f) = | X|cp defines a co-analytic rank on P N (Ky,(2¥) x H(2¥)) (P was defined before
Theorem 1.12). By [K, 35.23], |-|cp has to be unbounded. Thus 7 is unbounded, which implies
that the co-analytic set P N (/CNO (2¥) x 7-[(2“)) is not Borel, by [K, 35.23] again. By [K, 34.2],
(X, )~ |X|cp also defines a co-analytic rank on 05° := Oa N (K, (2) x #(2¥)). Theorem 1.15

implies that the co-analytic subset Og o of P is not Borel. This set is in fact IT{-complete. Indeed,
define {s; | i€3}:={0%10,12}, fo € H(2¥) by fo(0a):=0a;, fo(lsa):=1saif s€2?\{s; | i€3},
and fo(1s;a) := 1841 mod 3. The map X — ({0a | a« € X} U {1s,0° | i €3}, fo) is a continuous
reduction of Ky, (2) to 03°, by [K, 4.29] and since G #, contains the 3-cycle {1s;0> | i€ 3}.

12 The classes &,

We consider, for k<3,

- the class &,; of graphs induced by a homeomorphism of a ODMC space with CCN strictly bigger
than x,

- the class §),, of homeomorphisms of 2“ whose induced graph has CCN strictly bigger than «.
Proof of Theorem 1.11. (a) The CCN is strictly bigger than 0 if and only if the space is not empty.
(b) The CCN is strictly bigger than 1 if and only if the graph is not empty.

(c) By Theorem 1.13, any jf;basis for &5 must have size continuum.

(d) We apply Proposition 7.4(b).

For the well-foundedness, fix n € w. We enumerate the set of finite binary sequences 2"*! by
{Si ’ 1< 2n+1}, so that Ngn1 = Ngn19 U Ui<2"+1 NOleSi.
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We consider the map c,, on Ng»1 defined by ¢, (0"10a) := 012590, ¢, (0"1%5;00) :=0"1%5; v if
i<2"t1 1, and ¢, (0"1259n+1_1 ) :=0"10cv. Note that ¢, is a homeomorphism, c%nHH =Idn,n,»
and ¢ (8) # B if i < 2"TL. Moreover, the function h, : 2 — 2%, defined by h,(3) := 3 if 3 is
in {0} U U,., Non1 and hy(B) := c,(B) if n > p and B € Non1, is a homeomorphism whose
set {0°°} UU,,<,, Nor1 of fixed points is not open. By Proposition 7.2, xc(2*, Gp,) = 280 5o that
(2,Gp,) isinall the &,’s. As Gp,, ., CGh,. (2¥,Gh,,,) =& (2¥,Gh,). As G}, contains a cycle of
length 2P + 1 and all the cycles in G}, , have length at least 2°+2 + 1, (2¥, G},,) Zc (29, Gh,,,)-

Theorem 1.13 provides =.-antichains of size continuum in &, if K <2. For 3, we use again the
cn’s. Let (S4)ae2w be as in the proof of Theorem 9.4. The map h,, : 2 — 2“, defined by h,(8) :=f
if 8€{0°} UU,.¢s, Non1 and ha(B):=cn(B) if n€ Sq and 3 € Non1, is a homeomorphism whose
set of fixed points {0°°} U J,,¢g, Nor1 is not open. By Proposition 7.2, x¢(2¥, Gp,,) = 280, 50 that
(2¥,Gp,, ) isin all the &,;’s. If ae# 3, then there is n € S, \ S, so that G}, contains a cycle of length
2"+1 41, which is not the case of G, Thus (2¥, Gy, ) 2% (2%, Gh,). O

We can also evaluate the descriptive complexity of &, and £),,. Let H(2%) be the set of homeo-
morphisms of 2*. We equip #(2“) with the topology whose basic open sets are of the form

Ouvy,... Ui, Vo = ER(2Y) | VI<i<n f[Ui]=Vi},

where n is a natural number and U;, V; are clopen subsets of 2«. By [I-Me, Section 2], this defines a
structure of Polish group on H(2%). A compatible complete distance is given by

d(f,g):=supgeqo daw(f(@), g(ar)) +3upgepo dow (F7 (), 97" (@)
Lemma 12.1 The map f+ Graph(f) from H(2%) into K(2% x 2¥) is continuous.

Proof. If O # () is an open subset of 2¢ x 2*, and (S, )necw, (tn)necw are sequences of finite binary
sequences with O =|J (Ns,, x Ny, ), then

new

Graph(f) CO < 3F Cw finite with Graph(f) CUp:= | (Ne, x Ny,,).

If Graph(f) C Up, | := max,cr |t,| and d(f, g) <27, then Graph(g) C Up, which proves that
{f€H(2¥) | Graph(f)C O} is open. Now

Graph(f)NO#0 < Inew Graph(f) N (Ns, x Ny, ) #0 < In€w JaeN;, f(a)E Ny,
so that { f € H(2%) | Graph(f) N O#0} is open. O

Lemma 12.2 The map f — F 1f Sfrom H(2%) into K(2*) is Baire class one and not continuous. In
fact, {feH(2¥) | F lf CUY} is open for each open subset U of 2%.

Proof. If U is an open subset of 2*, then Flf CU <« Graph(f) C =A(2“\U). This implies that
{f € H(2¥) | Flf C U} is open by Lemma 12.1. If now U = J,,o,, Ns, is not empty, then
FI NU#0 < 3new Graph(f) Z~A(Ny, ), so that {f e H(2¢) | F{ N U #0} is 2Y. This last set

is not open if U = 2% since it contains Id, which is the limit of g,, defined by g,,(«)(p) =a(p) < p<n.
This finishes the proof. O
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Notation. We define a family (h;)qc.<w of functions from 2¢ into itself as follows. If s € w<“, then
we set s(—1):=0.

- If |s| is even, then we set hs(0°°) :=0°,

he(0Fi<i SCOFIHP e ) .= i< ((RO+HDI+P1(1 —¢)ar

if j < %, p<s5(27),t€2°®=D cc2and a€2¥, and

(Z _1s) (s(2)+1)+ (Z _1s) (s@i)+1)+
he(0 <5 T ey =0 < T T (1 —0)a
ifpew, t€23(|s|*1), c€2and a€ 2.

- If |s| is odd, then we set

he(0i<s (SCOHINFP o) .= (Fi<s CCOFIFPIE(1 —g) oy

if j <L p<s(25), t€ 221, s €2 and @ €2¥, and

(0Tt COMD (Bt (G

if a€2?.

Lemma 12.3 The hy’s are continuous involutions, x.(2¥, Gy, ) =20 if |s| is even, x(2¥,Gp,) =2
if |s| is odd, and (hgp)new converges to hs in H(2“).

Proof. Note that hg is a continuous involution, and thus a homeomorphism. If |s| is even, then

0> is the only fixed point of the map hs, so that x.(2¥,Gp,) = 280 by Proposition 7.2. If |s|

is odd, then Flhs = N=s |, e is a clopen subset of 2¢. By Corollaries 7.3(a) and 8.2,
[

Xc(2¥,Gh,) € {2,3}. By Corollary 7.3(b) and Proposition 7.5, x.(2¥,Gp,) = 2. Note that the
inequality Sup, cow dow (hen(c), hs(r)) <27™ holds. We are done since the h,’s are involutions. [J

Lemma 12.4 The map (K, f) — f[K] from K(2¥) x C(2¥,2%) into K(2%) is continuous. This is
also the case if we replace C(2%,2%) with H(2%), 2% with Kac. The map (K, f)— (f x f)[K] from
(24 %x29) xC(2%,2%) into K(2¥ x2¥) is also continuous.

Proof. Let O () be an open subset of 2%, and (s, )ne., be a sequence of finite binary sequences with
O=U,c,, Ns,. Note that

fIK]CO < 3F Cuw finite with f[K]CU,cp Ns,
& JF Cw finite 3C € AY(29) KCC ACC fHUper Nsn)-

Let lp:=maxycp |sn|- If supyeqw dow (f(),g9(a)) <277 and CC f~1(U,.cp Ns,). then

ccg (Y N

neF

so that {(K, f) € K(2¥)xC(2¥,2¥) | K CC ACC f~ (Uner Nso)} is open. This shows that
{(K, f)eK(2¥)xC(2¥,2%) | f{[K]C O} is open (even if O is empty).
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Now
fIKINO#D < Inew fIK]| N Ny, #0

S IncwICeAI2) KNCADACC f~H(Ns,),
so that {(K, f) e £(2¥)xC(2¥,2¥) | f[K]NO#D} is open. O

Theorem 12.5 $y = H(2%), H1 is a ZO\IIY subset of H(2¥), while H2, 93 are TI3\ XY subsets of
H(2%).

Proof. We may restrict our attention to $o, 3 since 1 = H(2*)\ {Id}. Fix now x < w. Note that
Xc(2¥, G ¢) <k holds if and only if

H(CZ')Z(HEA?(QW)K (Vi;ﬁj<,‘€ Ciij:(b) /\(QWQU CZ')/\(V’L'<I€ GfﬂCZ?:@).

1<K
As k is finite and A{(2%) is countable, A?(2%)* is countable. So we can restrict our attention to

GrNC2=0& 29 C(2°\Ci) U f~1(2%\Ci) U Ff
& ~(3C € AY2)\{0} (2\Ci) U F7H(2\Cy) U Ff C29\C).

By Lemmas 12.4 and 12.2, H(2¥)\ ), is a X subset of H(2¥). In particular, §o, $3 are ITJ. It
remains to see that o, $3 are not 39. We will use the family (h;) e, < defined before Lemma 12.3.
We set P:={hs | s € w<¥}, so that P is a Polish space. Note that $3 N P C £ N P are dense and
co-dense ITY subsets of P, by Lemma 12.3. By Baire’s theorem, $)o, 3 are not X9. O

We next turn to the &,’s.

Proof of Theorem 1.12. Note that f[X]=X & f[X]C X A f71[X]C X. By Lemma 12.4 and [K,
4.29], P is a closed subset of the Polish space K(2%)x#(2%), and thus a Polish space. Note also that
Oo="P\ ({0} xH(2¥)) is a clopen subset of P since () is an isolated point in K(2*).

Note that x.(X,Gj,) <1 & X C Fiie., fix =1djx. Let ((Xn,hn)), ., be a sequence of
elements of P\ O; converging to a point (X, h) of P. As x.(Xp, G(hn)\Xn) <1, (hn)x, =ldix,.
Assume, towards a contradiction, that hjx # Id|x. This gives o € X with h(a) # a, | € w such
that h(a)|l # all, and L > [ such that g(8)|l = h(a)|l # all = B|l if B € Ny)y, and d(g, h) <27~
As a € X N Ny, Xn N Ny # 0 and d(hp, h) < 271 if n is large enough. We pick, for such
an, B€XnN Ny, so that hy,(B)|l # B, contradicting (hy,)|x, = 1dx,. This shows that Oy is
open. We define, for n € w, a map g, : 2% — 2% by ¢,,(0°) := 0%, g,(0Pla) := 0Pla if p < 2n,
and g, (0%**¢1a) := 0%**(1=9) 1 if p>n and € € 2, so that g, is a continuous involution whose set
of fixed points {0°°} U J, o, Nor1 is not open. By Proposition 7.2, x.(2¥, Gg,) = 2% As the
sequence (g,,) converges in H(2%) to Id, Oy is not closed. Thus O is X{-complete, by [K, 22.11].

Fix now k <w. Note that, by [E, Theorem 2.1(1)],

XC(X,Gflx)SH@H(Ci)i@.;EA(l)(X)N (Vi;’éj</€ CiﬂCj:(Z))/\(XQUKK Cz)/\
(Vi<k GfﬁCiQ:@)

<:>E|(C¢)i<,€EA(1)(2w)H (Vi#j</€ CiﬂCj:Q))/\(ngUi<H Cl)/\

(Vi<l<c Gfﬁ(XﬂCi)QZQ)).
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As K is finite and A9(2%) is countable, AY(2%)* is countable. So we can restrict our attention to

GrN(XNC)2=0e XC(2\Ci) U f1(29\Ci) U Ff
& =(3CeAN2Y) X NCADA (29\C) U f1(29\Ci) U Ff c2\C).
By Lemmas 12.4 and 12.2, P\ O, is a Eg subset of P. In particular, the sets Oy, O3 are Hg. As

Oy)ae = 9y, Oz, O3 are not Y by Theorem 12.5. Thus Oy, O3 are II-complete, by [K, 22.11].
2 0y 2 p y
The ITi-completeness of (’)k;o was proved at the very end of Section 11. 0

13 Equivalence relations

Lemma 7.11 and Corollary 5.10 imply that FCO is Borel reducible to different versions of =?.

Notation. We set M:={f € H(2¥) | f is minimal}. By [Me, Lemma 4.1], the set Ml is a G5 subset
of H(2%), and thus a Polish space. If f,g € M, then f, g are flip-conjugate if and only if there is
© € H(2¥) with o f = gop or o f = g~ Lo, proving that FCO is analytic. Similarly, CO is analytic.

We first consider the case of graphs induced by a function. As in the introduction, we consider
the equivalence relation = := <% N (=%)~! on S, associated with
(2¥, K) =<' (2¥, K') & 3¢ :2¥ —2* injective continuous with K C (o x @) H(K).
We define a map g:M—S,,, by g(f):=(2*,G) (see Theorem 8.1).

Theorem 13.1 The equivalence relation =, on the Polish space S,, is analytic, and g reduces con-
tinuously FCO to =.. Moreover, the vertices of the graph g(f) have degree two, for each f € M.

Proof. By Lemma 7.11, g reduces FCO to =:. Let O be an open subset of 2 x 2%, and (C9),c.,
(C})new be sequences of clopen subsets of 2 with O =, (COxCp). If f € Mand Gy C O,
then there is a finite subset F' of w with Gy = s(Graph(f)) C U,,cp (C2xC}). Note then that

Uner (CgXC%)ZUng ((Mhes Cn NNer\s 2°\C) % (Uyes Cyp))- Thus

Graph(f) CU,ep (CoxCp) & VSCF flMNhes Con ﬂneF\S 2°\CplC Unes Cy
& VSCF 3R, e AY(2v)
f[ﬂnGS CPL N mneF\S Qw\CPL] :Rn C UnES C?%
This implies that { f €M | Gy C O} is an open subset of M since
Gy CO « IF Cw finite with Graph(f) €[] (| (C5xCL79)).
€€2 neF

Now Gy NO#0 < Incw Fee2 CENfHCI ) #D & Inew Fe€2 JaeCs fla)eCle,
so that { f €M | Gy N O#D} is an open subset of M. Thus g is continuous.

Note that (2¢, K) € S,y, if and only if
KNA@2Y)=0AK#DA3(Cilicse (AJ(29)° 29CU,_y CiAVi£j<3 CiNCj=0 A
KN (U C2)=0,
so that S, is an open subset of {2¢} x (2% x 2¢) and thus a Polish space.
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Note then that ¢ : 2 — 2¥ is injective if and only if p[O N U] = [O] N ¢[U] whenever O, U are

clopen subsets of 2¢. By Lemma 12.4, and [K, 4.19, 4.29, 27.7], jé and thus =, are analytic. O

Notation. We now consider the case of general graphs, and we can ensure that the reduction map
associates graphs of continuous chromatic number at least three instead of two or three. Recall that
Koso :=(2U{c,a,a})¥. As Ko~ # 0 is a perfect ODMC space, it is homeomorphic to 2¢ via a map
i, by [K, 7.4]. We equip k(K2 ) with the Vietoris topology, so that K(Ka ) is a metrizable compact
space, by [K, 4.26]. By [K, 4.29], the map K — i[K| defines a homeomorphism from KC(/Ca ) onto
K(2¥). We set Q:={z € Ks~ | I €w Fe€{a,a} Vk>1 z(k)=c}. Note that Q is countable, as
well as Q:=i[Q]. We set S;:={(K, R) € C(2¥) x 2@Q” | RC K2\ A(K) A xe(K, R) >3} and equip
2Q” with the product topology of the discrete topology on 2, so that

{(K,R)€K(2¥)x29" | RCK?\A(K)}
is a metrizable compact space.
We consider the equivalence relation =¢ on S, associated with
(K,R) <’ (K',R") & 3¢: K — K’ injective continuous with RC (¢ x )~} (R).

We equip 29 with the product topology of the discrete topology on 2, so that 2@” is homeomorphic
to 2¢. The map R + (i x i)[R] defines a homeomorphism from 22° onto 29°, and the equality

i[K]=proj[(ix4)[s(R)]] holds if K =proj[s(R)]. Moreover, (K, R) = (i[K], (ixi)[R]). We define
amap G:M— S, by G(f):= (proj[(ix4)[G]], (i xi)[Gy]) (see Lemma 5.1).

Theorem 13.2 The equivalence relation =.. on the Polish space S, is analytic, and G Borel reduces
FCO to =.. Moreover, the vertices of the graph G( f) have degree at most one, for each f € M.

Proof. As (K, R) =L (i[K], (i x i)[R]), we may replace 2* and @ with Kz and Q respectively. By
Corollary 5.10, G reduces FCO to =, since C™ =proj|G ]. Note that, for each i € Z, the map f+ f*
defined on H(2“) is continuous since H(2%) is a topological group. Note also that the evaluation map

(f, ) f(a) is continuous since daw (f(t), fo(aw)) < d(f, fo)+dae (fo(e), fo(ao)). This implies
that the map from M into (2¢)% defined by f ( fi(OOO))Z. ¢z, is continuous. Here we only consider
d :=2°°. Recall from the notation before Lemma 5.9 that Loy, := Roy,+1 := ((m). The map from
(2¢)Z into 2@” associating
s({(daa™, v, |(1+1)aa>®) | lew} U
[l (4 1)@ 17, 3,44 D@ 20%) [ 1ew A i <20} U
{(vr,| 14+ 1)a* 2@, H1aa>) | lew})

to (7i)iez is continuous, as well as f — G ;. The map from 20Q” into 2Q defined by R+ proj[s(R)] is
Baire class one. The map from 22 into K(Ka ) defined by S — S is Borel, by [K, 12.11]. Thus G is
Borel.

Note that, by [E, Theorem 2.1(1)],
Ye(K,R) <2< 3ICcAYK) RNC?=RN (K\C)>=0
& EICGA?(Q“’) RNC?=RnN (2“’\6‘)229)

if RC K2, so that S, is a G5 subset of {(K, R) € K(2¥) x 2@° | RC K2\ A(K)} and thus a Polish
space.
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If (K,G),(L,H) €Sy, then (K,G) <% (L, H) holds if and only if there is ¢ : K — L injective
continuous such that (¢(z), ¢(y)) € H if (z,y) € G. By [K, 2.8], this holds if and only if there is
1 : Kgoo — Koo continuous such that 1[K] C L, 1| is injective, and (¢ (), ¢ (y)) € H if (z,y) € G.
Note that | is injective if and only if »[O NU N K] =4[O0 N K] Ny[U N K] whenever O, U are
clopen subsets of Ky. We conclude as in the proof of Theorem 13.1 to see that = is analytic. [
Remark. As mentioned in the introduction, using oriented graphs instead of graphs, one can prove

that CO is Borel reducible to =¢. In that case, the proof also works in the case of dynamical systems
involving continuous maps instead of homeomorphisms, considering forward orbits instead of orbits.

14 Digraphs and oriented graphs

14.1 General digraphs

We start with a version of Theorem 1.4 for digraphs.

Theorem 14.1.1 We can find a concrete family ((Ka, ]D)a))a — where K, is a compact subset of
2% and D, is a countable digraph on K, such that, for any ODMC space X and any digraph D on
X, exactly one of the following holds:
(1) D has CCN at most two,
(2) we can find o €2 and ¢ K, — X injective continuous such that Dy, C (¢ x ) "1 (D).

In other words, ((Ka, Da))a cow IS @ =i -basis (and thus a =.-basis) for the class of digraphs on
a ODMC space with CCN at least three.

Proof. We define, for (v, 8) € T x 2{(k:)€<?li<2k} "3 countable relation ., 5 on 2 by

S(kyi) o\ 1—6(kyi) /. .
D, s ::{('yk( Z)(z),yk ( )(z)) | kew Ai< 2k},
so that s(D, 5) =G~ and D, 5 is a digraph on K, 5 :=K,. By Proposition 3.1.1, x.(K,, (Gﬂ,) 22'3. As
5D 5) =G, xc(K,, D, 5) >3 as well. It will be convenient to replace 2 with Z x 2{(k:0)€w[i2k},
We just proved that (1) and (2) cannot hold simultaneously.

Assume ‘that (1) does not hold. Then Y. (X , S(D)) > 3. Theorem 1.4 provides v € Z with
(Ky,G,) =% (X, s(D)), with witness say ¢. Let D:=G, N (¢ x )~ (D). Note that s(D) = G,
which gives § € 2{(EDEI<2k} with D, 5 CD. 0

Considering the D,’s which are oriented graphs, and using the fact that a digraph <’-below an
oriented graph is also an oriented graph, we get a (less concrete) basis for oriented graphs.

Corollary 14.1.2 We can find a <'-basis (and thus a =.-basis) of size at most continuum, made up
of countable oriented graphs, for the class of oriented graphs on a ODMC space with CCN at least
three.

By Theorem 1.5, any =<’-basis for the class of digraphs on a 0DMC space with CCN at least
three must have size at least continuum. We will see that the <’-basis given by Corollary 14.1.2 must
also have size exactly the continuum later. The second basis given by Theorem 3.2.4 also provides a
second basis for digraphs, which is also a basis for oriented graphs, more concrete than the first one
we just met.
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Theorem 14.1.3 We can find a concrete <.-basis of size continuum, made up of countable oriented
graphs, for the class of digraphs on a ODMC space with CCN at least three.

Proof. We adapt the proof of Theorem 3.2.4. We set
To:={(B,a) €T x (29 |View |a(l)|=N+1}.

and J5:=J,N (jc X (2<“’)‘*’). We also set, for z,y € Kq and € €2,

[ (z,y) ife=0,
(:”’y)e‘_{(y,i) ifi:l.

We then define, for (5, o) € J,, a countable digraph Dg , on Kq by

]D)B’a::{(clﬂaaoo, 51(0)@a™) a0y | lEW} U
{(sl(i)ai“aoo, Sl<i+1)ai+2aoo)a(l)(i+1) |lewNi<N—2}U
{(Sl()\l—l)a)‘lﬁoo, CH_laaoo)a(l)()\l) | lew},
so that s(Dg ) = G and Dg 4 is an oriented graph on Kg. By Lemma 3.2.1, x.(Kg,Gg) > 3. As
5(Dg o) =Gg, xc(Ks,Dg o) >3 as well. By Theorem 14.1.1, it is enough to prove that if (v, ) is in
T x 2{(k:)€w?li<2k} then we can find (8, a) € J¢ (for d =2°°) such that (Kg, Dg o) Zc (Ky, Dy 5).
We first define 3’ as in the proof of Theorem 3.2.4, and define o/ € (2<%)% by o/(¢) () :=0d(kq, 7)
if g cwand i <\, Then (§',0) € Jo, and (Kg, Dgr o) =Zc (K4, Dy 5), by the proof of Theorem
3.2.4. We then define 3 as in the proof of Theorem 3.2.4, and define o € (2<“)“ by the formula

a(l)(@) = a’(qé”?)(i) if l€w and i < \;. Then (B, ) € J¢ and the proof of Theorem 3.2.4 shows
that (K187 ]D)ﬁ’a) < (K,ﬁ’ Dﬁ’,a’)- |:|

In order to prove that the basis given by Corollary 14.1.2 has size exactly continuum, we prove
the following oriented version of Theorem 6.4.

Theorem 14.1.4 Ler d €D, V be a compact subspace of C*t, and E CQ, N V? having CCN three.
Then (CT,0,) =% (V, E).

Proof. We essentially copy the proof of Theorem 6.4, replacing E with s(F) under the closure sym-
bols, and using the fact that £ CQ,,. O

We are now ready to prove a version of Theorem 1.5 for oriented graphs.

Theorem 14.1.5 There is a =.-antichain (and thus <'-antichain) ((Ka, (O)O‘))a cowr Where
(a) K, is a ODMC space,

(b) O is a countable Do (l_[(l)) oriented graph on K, with CCN three and 2(1) é H? chromatic number
two, and whose vertices have degree at most one,

(c) (Ky,OQy) is jé—minimal in the class of digraphs on a 0ODMC space with CCN at least three.

In particular, any <'-basis for the class of digraphs (or oriented graphs) on a 0ODMC space with
CCN at least three. must have size at least continuum.
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Proof. Fix d € ®. By Proposition 6.1, (C*,G,) has CCN three and X{ @ II{ chromatic num-
ber two. As s(0,) = G,, this is also the case of (CT,0,). We check that O, is D2(II) as in
the proof of Lemma 3.2.2, so that (a) and (b) hold. For (c), i.e., the minimality of (CT,Q,), we
first note that the proof of Lemma 6.7 works for digraphs instead of graphs. We then apply Theo-

rem 14.1.4. (C;(a),G%(a)) Ae (Cg(ﬁ), Gog s ) if @ # 3, by Theorem 6.6. As s(0,) = G, again,

(Cda) Douiay) Ze (Cday Toysy): 0

Replacing G, = s(0,) with O, we get a version of Theorem 1.6 for oriented graphs in a straight-
forward way. This kind of argument will be used several times in the sequel, and we will not always
repeat it.

Our version of Theorem 1.8 for digraphs and oriented graphs is as follows.

Theorem 14.1.6 Let D be a digraph on a ODMS space Z, with CCN at least three and satisfying
(Z,D) =L (P,0y,). Then there is a family ((Pa, Oa))QGQ“’ of oriented graphs on a ODP space with
CCN three, <'-below (Z,D), and pairwise <'-incompatible in the class of digraphs on a 0DMS
space with CCN at least three.

In particular, there is no <'-antichain basis in the class of digraphs (or oriented graphs) on a
ODMS (or ODP) space with CCN at least three, and any =<i-basis for one of these classes must have
size at least continuum.

Proof. Note first that we can modify Lemma 4.2 as follows. Let € 2, and D be a digraph on a
ODMS space Z, with CCN at least three and satisfying (Z, D) <! (Ps,Qs). Then there is ¢’ € Py,
such that {k€w | §'(k)=1}C{kecw | d(k)=1} and (Ps,Qs) <% (Z, D). We complete the proof
of Lemma 4.2 as follows. We set G := s(D), so that G is a graph on Z with CCN at least three and
(Z,G) =i (Ps, Gs). We then set R:= (¢ x )[D], so that s(R) = E. We can then follow the proof of
Lemma 4.2. For the conditions (b)-(d), the couples are not only in s(R), but also in R since R C O
and thus R~ C @5_1. So we can replace E with R after the first line of the proof, which implies that
(Psr, O5) <. (Z, D).

The version of Lemma 4.3 for oriented graphs is straightforward, and we then follow the proof of
Theorem 1.8 to conclude. g

Our version of Theorem 1.9 for digraphs and oriented graphs is as follows.

Theorem 14.1.7 There is a countable oriented graph (3*,Q) in the class of digraphs on a 0DMC
space with CCN at least three such that, for each (K, G) in this class satisfying (K, D) = (3%, 0),
there is a <\-antichain ((3%, Oa))a@w of oriented graphs with CCN three and <!-below (K, D). In

particular, there is no <'-antichain basis in this class (or the corresponding one for oriented graphs).
Proof. We just have to follow the proof of Theorem 1.9. The oriented graphs O :=Graph(o|p Sw) and
Oq :=G, N Graph(o) are convenient since s(0) =G and s(Oy) =G4 O

We can prove a version of Theorem 1.16 for oriented graphs in a straightforward way. A straight-
forward modification of Section 5 gives the following version of Corollary 5.10 for oriented graphs.
In order to do that, we replace G, with O, in the definition of continuous tuples.

Theorem 14.1.8 Let d,d’ € €, fq : Cq — Ca, fa : Ca — Cq' be minimal homeomorphisms, and
(n)iews (L1)icw, (R1)icw defined before Lemma 5.9. Then (C(Jir, Oy,) =t (C:{,,@fd,) if and only if
fa, far are conjugate.
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A straightforward modification of the proof of Proposition 7.4(b) gives the following result. We
set @1 :=Graph(fp)\{(0°°,0%)}.

Proposition 14.1.9 {(X1,0;), (X;,07"), (X1, Ry)} is a <'-antichain basis for the class of digraphs
on a O0DMS space with uncountable CCN.

Our version of Proposition 7.6 for digraphs and oriented graphs is as follows.

Proposition 14.1.10 (X1, Ry) is <%-minimal, but not <.-minimal, in the class of digraphs (or ori-
ented graphs) on a 0ODMC space with CCN at least three.

Proof. We follow the proof of Proposition 7.6 since s(R1) =Gy, . For <., we work with the oriented
graph {(e2PF1(gT)o (eT)2PH2 ((€+)+)OO) |e€3 Apew}. O

14.2 Digraphs induced by a partial function

Notation. If f:Domain(f) C X — Range(f) C X is a partial function, then the digraph induced by
fis Dy := Graph(f)\ A(X). Note that Gy = s(Dy), which gives versions of Proposition 7.2 and
Corollary 7.3 with D/ instead of Gy in a straightforward way.

We also have the following versions of Theorem 7.7 for digraphs and oriented graphs.
Theorem 14.2.1 There is no <'-antichain basis for the class of digraphs (or oriented graphs) in-
duced by a partial homeomorphism on a O0ODMS (or ODP) space with CCN at least three. In fact, we

can even restrict this class to the case where the spaces are countable Polish and the functions are
fixed point free with open domain.

Proof. We follow the proof of Theorem 7.7. We restrict f5 to

Ds:={zeproj[Gs] | Incw z(n)=a Azlne(wU{c})"},
so that @5 = Graph(fs|p, ) is an oriented graph. We then work with the (Ps, O5)’s since G4 :=s(Qs),
applying Theorem 14.1.6. U

14.3 Digraphs induced by a total function

Similarly, the versions of Proposition 7.5 and Lemma 7.9 for the Dy’s are straightforward. For
Lemma 7.9, we just assume that £ C D ;. We now give a motivating result.

Lemma 14.3.1 Let X, Y be ODMC spaces, and f: X — X, g:Y —Y be homeomorphisms, g being
minimal. Then

(a) Graph(g) is an oriented graph on'Y if Y has cardinality at least three,

(b) f, g are conjugate with witness @ if and only if (X, Graph(f)) =i (Y, Graph(g)) with witness .
Proof. (a) As Y has cardinality at least three and g is minimal, g and ¢? are fixed point free.

(b) The proof is similar to and simpler than the proof of Lemma 7.11. U

The version of Lemma 7.10 for the D ’s is straightforward.
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Lemma 14.3.2 Let X be a ODMC space, and f : X — X be a minimal homeomorphism with
Xe (X, Graph(f)) > 3. Then (X, Graph(f)) is <%-minimal in the class of closed digraphs (or
oriented graphs) on a ODMC space with CCN at least three. This is the case of (C , Graph(o)) if
d= (dj)jEw eO.

This gives a version of Theorem 1.13 for digraphs and oriented graphs.

Theorem 14.3.3 There is a = .-antichain (and thus <'-antichain) ((Ca, Graph( fa))) " where
oac2v

(a) Cq, is homeomorphic to 2%,
(b) fo is a minimal homeomorphism of C,, and Graph( f,) has CCN three,

(c) (Ca, Graph( fa)) is <'-minimal in the class of closed digraphs (or oriented graphs) on a 0DMC
space with CCN at least three.

In particular, any ='-basis for the class of digraphs (or oriented graphs) induced by a homeo-
morphism of a 0ODMC space with CCN at least three must have size continuum.

We consider, for k <3, the class &7 of digraphs D induced by a homeomorphism f of a 0DMC
space with CCN strictly bigger than k. Replacing G, with D, = Graph(o), we get the version of
Proposition 9.3 for the D’s in a straightforward way, using Lemma 14.3.1. It is worth noting that the
version of Theorem 1.11 for the D’s is different from the one for the graphs.

Theorem 14.3.4 (a) (1,0) is <%-minimum in .
(b) Any <! -basis for &9 must have size continuum.
(c) Any =<!-basis for &3 must have size continuum.

Moreover; the (82, <%)’s and the (62, <.)’s are not well-founded. They also contain antichains
of size continuum (except maybe for <. when k=3).

Proof. (a) See the proof of Theorem 1.11(a).

(b) The situation here is very different from the one for &;. Let K be a 0DMC space of cardinality
at least two, and f be a minimal homeomorphism of K. Note that f is fixed point free, so that
D¢ =Graph( f) is not empty and thus has CCN strictly bigger than 1. Assume that L is a ODMC space,
g is a homeomorphism of L such that D, has CCN strictly bigger than 1, and (L, Dy) =i, (K, Dy).
We will see that (K, Dy) <! (L, D), which will prove the <}-minimality of (K, D) in &9. If the
set of fixed points of g is not open, then (L, D) has uncountable CCN by the version of Proposition
7.2 for the Dy’s, and thus (K, D) and (K, Gy) too, which contradicts Theorem 8.1. Thus the set
Fy of fixed points of g is open, which by the version of Corollary 7.3 for the D;’s implies that
Xe(L\ F1, Dy N (L\ F1)?) = x(L,Df) > 1. This implies that we may assume that g is fixed
point free and thus D, = Graph(g). Lemma 14.3.1 then implies that g, f are conjugate and thus
(K,Dyg) =% (L,Dgy). Theorem 14.3.3 now provides a <!-antichain of size continuum made up of
minimal elements in &¢, which gives the result.

(c) By Theorem 14.3.3, any <i-basis for &3 must have size continuum.

We then argue as in the proof of Theorem 1.11, using the fact that Gy =s(Dy). g
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Remark. If (K, Dy) is in ®¢ and the set of fixed points of f is open, then (K, D) is <’-above a
similar element (L, Dy) with g fixed point free by the proof of Theorem 14.3.4(b). [W, Theorem
5.2] gives a compact subset M of L such that g[M]= M # () and the dynamical system (M, g|s) is
minimal. As g is fixed point free, M has cardinality at least two. The proof of Theorem 14.3.4(b)
shows that (M, Dy, ) is <!’-minimal in &9, and is <%-below (K, D). So the elements of &¢ induced
by a minimal homeomorphism form a =<’-basis for the subclass of ®¢ whose elements are induced
by a homeomorphism with an open set of fixed points. So in order to get an interesting basis, we
need to understand the elements (K, Df) of &¢ whose set of fixed points is not open. In such a
case the CCN is 280, by the version of Proposition 7.2 for the D ¢’s. Proposition 14.1.9 implies that
(X1,Rq) =% (K, Dy). The problem is that Ry is not of the form D,,.

The versions of Theorems 1.12, 10.5, 10.11 and Proposition 10.13 for the D’s are direct.

Corollary 14.3.5 There is a <!-antichain (Er, Graph(a‘gT))r cr Of size continuum, where
(a) Xy is a two-sided subshift homeomorphic to 2%,
(b) o|x, is a minimal homeomorphism of ¥y, Graph(amr) is an oriented graph with CCN three,

(c) (Er, Graph(amr))?, cr IS =% -minimal in the class of closed digraphs (or oriented graphs) on a
ODMC space with CCN at least three.

The version of Theorem 1.14 for digraphs, &5 and the Dy’s is straightforward. For oriented
graphs, we modify Ko and hg (note that (0°(cy),0" %(aw)) € Dp, for each € € 2, so that Dp,
is not an oriented graph). In order to get a version of Theorem 1.14 for oriented graphs, we set
af:=(0123)>-(0123)>°, 8§ := (0123)>°-4(0123)>°, K§ := Orb,(af) U Orb,(3§) and h§ := O|Kg-
The version of Lemma 11.1 is as follows.

Lemma 14.3.6 Let S be a ODMS (resp., ODP) space, f be a homeomorphism of S with the properties
that xc(S, Dy) >3 and (S, Dy) = (K§, Dpg). Then there is a finer ODMS (resp., ODP) topology T
in T with the property that ((K§, ), Dhg) <t (S, Dy).

Proof. The argument is a slight variation of that in the proof of Lemma 11.1. For instance, as
Orbpg (B9) is discrete, there is € € 4 with 0°(af) € V, which gives z € S with p(z)=0°(ag).
As f is fixed point free, f(z) # x, which implies that (z, f(z)) € Dy, (cp(a:), gp(f(x))) € Dpg,

and o°T1md4(q8) = o(f(x)) € V. Iterating this argument, we see that Orb,(c§) C V and
[(0°(ag), 07144 (2)) | c €4} CE. 0

Notation. We set, for ACw,
Bh =B UU.es {CN({0%(00)} UUvery_
Uneﬂ_

The version of Lemma 11.2, that of Lemma 11.3, as well as the rest of the proof of Theorem 1.14
for oriented graphs, are then straightforward. The version of Theorem 1.15 for digraphs and &9 is
straightforward.

(N atr)e {a.£+4n+l (ﬁo)} U

(Nt 1057 72(B0)}) | CEBT Apo.o.pr i €w}.

po<r<qq

p1<r<qy
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14.4 Equivalence relations
We define a map d : M — S,,, by d(f) := (2%, Graph(f)). Applying Lemma 14.3.1, we get the

following result.

Theorem 14.4.1 The map d reduces continuously CO to =.. Moreover, the vertices of the digraph
d(f) have degree one, for each f € M.

We then define a map D:M— S, by D(f) := (proj [ (i x1)[Gy]], (i xi)[Oy]). Applying Theorem
14.1.8, we get the following result.

Theorem 14.4.2 The map D Borel reduces CO to =.. Moreover, the vertices of the digraph D(f)
have degree at most one, for each f € M.
15 A summary for future work

We summarize a number of our results in the following table, which leaves open questions about
graphs on a 0DMS space with CCN at least three.

finite metrizable compact Polish or metrizable separable
(1) concrete antichain basis of size X (1) no antichain basis - .
(2) concrete basis of size X (2) concrete basis of size 280 (1) no antlghaln béSIS Ro
(3) any basis is infinite (3) any basis has size at least 280 (i) any- bss.]s h?s -31ze2§‘; least 2
jf: (4) antichain of size Ry made up of minimals (4) antichain of size 280 made up of minimals (5) fmftich a1(111 ° Sl? hai
(5) no infinite descending chain (5) infinite descending chain 2 6; xinrﬁileal :T:s;l;[zg chain
(6) minimal elements (6) minimal elements (7) embed C onP(w)
(7) embed C on Peoo(w) (7) embed C on P(w) =
(1) no antichain basis
(2) concrete basis of size X (2) concrete basis of si;e 280 (4) antichain of size 2%
= (3) any basis is infinite (4) antichain of size 280 (5) infinite descén ding chain
= (4) antichain of size Ng (5) infinite descending chain (7)embed C on P(w)
(5) infinite descending chain (7) embed C on P(w) =
(6) no minimal element

It is remarkable that the properties in the last two columns are the same for graphs induced by
a partial homeomorphism with countable domain, (possibly) up to (2)-=<% in the compact case. For
graphs induced by a total homeomorphism, (4) and (5) hold, as well as (3), (6) and (7)—ji, and (1)—5@
in the case of spaces which are not compact. All these results admit versions for digraphs and oriented
graphs.
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