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1 Introduction

The present work is the continuation of the study of continuous 2-colorings initiated in [L]. All
our relations will be binary. A coloring of a relation R on a set X is a map c¢ from X into a set
x with the property that c(x) # c(y) if (z,y) € R. We will call this a k-coloring. In practice,
will be a countable cardinal, equipped with the discrete topology. We say that R (or (X, R)) is a
graph if R is symmetric and does not meet the diagonal A(X) := {(z,z) | z € X} of X. We set
R™1:={(x,y) € X? | (y,z) € R}, and s(R) := R U R~! is the symmetrization of R. We compare
our relations with the following quasi-order:

(X,R) =" (Y,5) < 3h: X —Y injective with RC (hxh)~!(S).

If this holds, then we say that A is an injective homomorphism from (X, R) into (Y, .S). In the present
article, we work with the quasi-order <! associated with injective continuous homomorphisms. All
our topological spaces will be zero-dimensional, except where indicated, to ensure the existence of
enough continuous functions between them. We write (X, R) <% (V,S) when (X, R) <! (Y, 5)
and (Y, S) £% (X, R). The material in [L] shows that the structure of <’ is complex on a number
of classes of graphs. Recall that a basis for a quasi-order (Q, <) is a subclass B of Q such that
any element of Q is <-above an element of 3. We are interested in basis as small as possible for
the inclusion, which means that their elements are pairwise <-incomparable (if this last property is
satisfied, then we say that we have a <-antichain). Note that an antichain basis is always made of
minimal elements of the considered class. Conversely, let = := <! N (<)~ be the equivalence
relation associated with jé. Note that we can derive an antichain basis from a basis made of minimal
elements by choosing an element in each =¢-equivalence class, using the axiom of choice if necessary.

e Theorem 1.10 in [L] shows that there is no antichain basis for the class of graphs on a zero-
dimensional metrizable compact space (0DMC for short; we will also use similar abbreviations like
MC or ODM) having no continuous 2-coloring. This theorem in fact gives the same result for graphs
(X, R) with R countable. The situation is completely different for closed graphs, which leads to the
first class we study. A compactness argument shows that any closed graph on a 0DMC space has a
continuous Np-coloring.

Theorem 1.1 Ler k <Xy be a cardinal.

(a) There is a <'-basis made of minimal elements for the class of closed graphs on a ODMC space
having no continuous k-coloring.

(b) Such a basis can be {(1,0)} if c=0, {(2,{(0,1), (1,0)})} if k=1, and has size 2%° if k> 2.

e The case of graphs induced by a function has been considered since the very beginning of the study
of definable colorings in [K-S-T], and also in [Co-M], [L], [P] and [T-V] for instance. If

f:Domain(f) C X —Range(f)CX

is a partial function, then the graph induced by f is G :=s(Graph(f))\A(X). The end of Section
9 in [L] shows that there is no antichain basis for the class of graphs induced by a partial homeomor-
phism on a 0ODMC space with countable domain having no continuous 2-coloring. So we will focus
on graphs induced by a total homeomorphism.

The following example was essentially introduced in [L-Z]. We consider a converging sequence
with its limit in the Cantor space 2%, for instance X; :={0"1%° | n€w} U {0}, which is a countable
MC space. We define a homeomorphism f; of Xy by f1(0%°):=0% and f;(0?"+£1°°):=02?n+1-e1°
if e €2. We will see that (X1, G, ) has no continuous Xy-coloring.



Theorem 1.2 Let k <Ny be a cardinal.

(a) There is a <'-basis made of minimal elements for the class of graphs, induced by a homeomor-
phism of a ODMC space, having no continuous k-coloring.

(b) ([L], Theorems 1.17 (b) and 1.13 (d)) Such a basis can be {(1,Go—0)} if k=0, {(2, Gas1-¢)} if
k=1, has size 2% if k=2, and can be {(X1,Gy,)} if K> 3.

This result can be refined when x =2 if we consider the Cantor-Bendixson rank of the considered
spaces. Recall from 6.C in [K1] that if X is a topological space, then the Cantor-Bendixson deriva-
tive of X is X' :={z € X | z is alimit point of X }. The iterated Cantor-Bendixson derivatives
are defined by X%:= X, X*"1:=(X*)’, and, when X is a limit ordinal, X*:=(",_, X“. Note that
if f is a homeomorphism of X, then all the derivatives are f-invariant, i.e., f[ X% = X if « is an
ordinal. If X is a countable MC space, then the Cantor-Bendixson rank of X is the least countable
ordinal a such that X = (). If moreover X is nonempty, then this rank is a successor ordinal, by
compactness. More generally, the Cantor-Bendixson rank of a Polish space is the least countable
ordinal ag such that X = X0 for each a > o, so that the Cantor space 2% has Cantor-Bendixson
rank zero.

The following examples are of particular interest here.

- The odd cycles (2g+3, Ca¢+3), for ¢ € w. In this case, the formula f(7) := (i+1) mod (2¢+3)
defines a homeomorphism of the discrete MC space 2q+3, whose Cantor-Bendixson rank is one. We
set Cy¢+3:=G, and the fact that (2¢+3, Ca443) has no (continuous) 2-coloring is classical.

- X3 has Cantor-Bendixson rank two.

- We also consider subshifts, which are particular dynamical systems widely studied in symbolic
dynamics. We refer to the book [Ku] for basic notions and definitions.

Definition 1.3 Let A be a finite set of cardinality at least two.
(a) The shift map o : A” — A” is defined by the formula (o) (k) :=a(k+1).
(b) A two-sided subshift is a closed o-invariant subset ¥ of A%.

The restriction of the homeomorphism o to a two-sided subshift 3 induces a graph (32, Gopy
we will denote by (X, G,,). If f is a bijection of the set X and = € X, then the f-orbit of x is

Orbs(z):={f*(x) | ke Z}
(also denoted by Orb(z) when the context is clear). If z € A= and y € A“, then z:=x-y € A is
defined by z(i) :==y(i) and z(—i—1) := z(—%) when i € w. If w € A<Y\ {0}, then w™>°: =" ww
isin A™%, w™® ;= ww- - is in A and w? := w~>°-w>. Note that (2¢+3, Ca,13) can be seen as
a two-sided subshift by putting 244 3% := Orb,, ((0 . -(2q+2))z). Recall that if X, Y are metrizable

compact spaces and f, g are homeomorphisms of X, Y respectively, then (X, f), (Y, g) (or f, g) are
conjugate (resp., flip-conjugate) if there is a homeomorphism ¢ : X — Y such that po f = goy (resp.,
o f=goporpof=g lop). We will see that (X, G'y,) is not conjugate to the shift of a two-sided
subshift. We set

P:{p::(l,)\o,~~ S AL, Eg, -, e-1) €W 2L | Wi <1 \;>0is even and m < \g is odd}.

) that

We associate to each p € P a two-sided subshift as follows. We fix disjoint injective families of
symbols (a}); jew and (b;)iew, and set Ap :={a} | i <I A j <A} U{b; | i <m}, which is finite of
cardinality at least two (in fact at least three).



We then set, for i <1, w;:=aj- - -a}, _; € A5“\ {0}, and define
Yp:=Uiq Orbs(w))Ul;; Orby (w2 -wi$, ) UOrby (w; > by - -bm—1(w§?)),

a countable MC space with Cantor-Bendixson rank two. We will see that (X, G;) has no continuous
2-coloring. We set, for each pe P, Fp:={p' € P | (Ep/,Go) =L (Zp, Go)}-

For k=2, we prove the following.

Theorem 1.4 (a) The family {(2q+3%,Gs) | gew}U{(X1,Gy,) }U{(Xp,Go) | PEP} is a concrete
=i-basis of size N for the class of graphs, induced by a homeomorphism of a countable MC space
with Cantor-Bendixson rank at most two, having no continuous 2-coloring. Moreover, for eachp € P,
the set Fy, is finite, and choosing min,., Jp, provides a <! -antichain basis of size Ny.

(b) (see [L], Theorem 1.17 (b)) If £ > 3 is a countable ordinal, then there is a ji—basis made of
minimal elements for the class of graphs, induced by a homeomorphism of a countable MC space
with Cantor-Bendixson rank at most &, having no continuous 2-coloring, and any such basis must
have size 2%0.

(c) ([L], Theorem 1.15) If £ is a countable ordinal, then any <'-basis made of minimal elements for
the class of graphs, induced by a homeomorphism of a ODMC space with Cantor-Bendixson rank at
most &, having no continuous 2-coloring, must have size 2.

Note that the proof of Theorem 1.1 (b) will show that it has no such refinement when x > 2.

e The class of graphs induced by the shift of a two-sided subshift is a natural subclass of the
previous one.

Theorem 1.5 Ler k <Ny be a cardinal.

(a) There is a ='-basis made of minimal elements for the class of graphs, induced by the shift of a
two-sided subshift, having no continuous k-coloring.

(b) Such a basis can be {(Orby(07),Go)} if k=0, {(Orb,((01)%),G,) } if k=1, and has size 280
if Kk >2.

Here again, this result can be refined when x = 2 if we consider the Cantor-Bendixson rank of
the considered spaces. As (X1, Gy,) is not conjugate to the shift of a two-sided subshift, we have to
introduce some other examples.

We set oX:=Orb, (07) U Orb, (0~°°-10%°), 1 := Orb, (0%) U Orb, (1%) U Orb, (0~>°-1°°) and,
for g €w, 24425 :=0rb, (0%) U Orb, ((1,- -+ ,2g+2)%) UOrby(07°°-(1, - -+ ,2g+2)).

Theorem 1.6 (a) The family {(,X,Gs) | n € w} U {(Xp,Go) | P € P} is a concrete <%-basis of
size Ng for the class of graphs, induced by the shift of a countable two-sided subshift with Cantor-
Bendixson rank at most two, having no continuous 2-coloring. Moreover, choosing min., Jp, for each
p € P provides a ='-antichain basis of size .

(b) ([L], Theorem 1.17 (b) and Corollary 10.12) If £ > 3 is a countable ordinal, then there is a ji-
basis made of minimal elements for the class of graphs, induced by the shift of a countable two-sided
subshift with Cantor-Bendixson rank at most &, having no continuous 2-coloring, and any such basis
must have size 2%0.

(c) ([L], Corollary 10.12) If ¢ is a countable ordinal, then any <'-basis made of minimal elements for

the class of graphs, induced by the shift of a two-sided subshift with Cantor-Bendixson rank at most
&, having no continuous 2-coloring, must have size 280,



A dynamical system (X, f) is given by a homeomorphism f of a metrizable compact space X.
If X is homeomorphic to 2%, then we say that (X, f) is a Cantor dynamical system. A dynamical
system (or f) is minimal if Orby(z) is dense in X for each € X. The set of homeomorphisms
of 2¢ is denoted by #(2¥). It is a Polish group when equipped with the topology whose basic
neighbourhoods of the identity are of the form {h € H(2¥) | Vi <n h[O;] = O;}, where (O;)i<n
ranges over all finite families of clopen subsets of 2¢. By Lemma 4.1 in [Me], the space Ml of minimal
homeomorphisms of 2% is a Polish space. The equivalence relation of flip-conjugacy on M is denoted
by F'CO. The standard way to compare analytic equivalence relations on standard Borel spaces is
the Borel reducibility quasi-order <p (see, for instance, [G]). Recall that if X, Y are standard Borel
spaces and F, F' are analytic equivalence relations on X, Y respectively, then

(X,E) <p (Y, F) & 3p: X —Y Borel with E= (o x¢) "' (F).

Theorem 13.2 in [L] essentially shows that F'C'O is Borel reducible to the (analytic) restriction of
=! to the set of irreflexive relations G on a fixed countable dense subset of 2% such that (2, G)
has no continuous 2-coloring. A very recent result, in [De-GR-Ka-Kun-Kw], asserts that F'CO is
analytic complete as a set. As a consequence, this restriction is also analytic complete. We make such
statement more systematic, and partly in relation with the classes C, (resp., H,) of closed graphs
(resp., of graphs induced by a homeomorphism) introduced in Section 3.

Let k <N, €, be the set of closed graphs on 2“ having no continuous k-coloring, and
Eg={(G,H)e¢; | (2°,G) = (2*,H)}.

Now let k < 3, £, be the set of homeomorphisms of 2 whose induced graph has no continuous
k-coloring, and E := {(f,g) € 92 | (2¥,Gf) =L (2¥,Gy)}. Now let £ < Ny, D be a countable
dense subset of 2¢, ©,; be the set of graphs G on D such that (2%, G) has no continuous x-coloring,
and EY:={(G,H)eD2 | (2°,G) =L (2*, H)}.

Theorem 1.7 The spaces €, 9, and D, are Polish, and FCO is Borel reducible to the analytic
equivalence relations E€, EY and E,? In particular, these relations are analytic complete as sets.

2 Fixed points

The set F; := {x € Domain(f) | f(x) = «} of fixed points of f is very much related to the
continuous colorings of G y. The next two results are essentially Proposition 7.2 and Corollary 7.3 in
[L]. We recall them for the convenience of the reader.

Proposition 2.1 Let X be a first countable space, and f: X — X be a partial continuous function. If
Fy is not an open subset of Domain(f), then there is no continuous Xg-coloring of G ;.

Proof. We argue by contradiction, which gives c¢: X — Rg. Let (C;);en, be the partition of X into
clopen sets given by C; := ¢ ({i}). As F is not open in Domain(f), we can find x € Fy and
(%n)new € (Domain( f)\Fr)* converging to x. Note that f(x,,) is different from x,,, and (f(mn))nEw
converges to f(z)=ux. Let ¢ with x € C;. Then we may assume that x,, f(z,) € C;. This implies that
(zn, f(zn)) €GN CZ, which is the desired contradiction. O



Corollary 2.2 Let X be a ODM space, and f : X — X be a partial continuous function with closed
domain.
(a) Exactly one of the following holds:

(1) Fy is an open subset of Domain(f),

(2) there is no continuous Ro-coloring of G ;.
(b) If Domain(f) is clopen in X, Fy is an open subset of Domain(f), f is injective and 1 < k <X,
then (X, Gy) has a continuous r-coloring if and only if (X \ Fy, G N (X \ Ff)?) has a continuous
k-coloring.

Proof. (a) Assume that (1) holds. Note that s(Graph( JiDomain(f)\ Ff)) and A(X) are disjoint and
closed in X?. 22.16 in [K1] gives C' C X clopen with A(X)C C C X?\ s(Graph(fipomain(f)\F;))-
The relation C' gives a continuous Ry-coloring of G ¢ since X is zero-dimensional and second count-
able. So (2) does not hold.

If F; is not an open subset of Domain( f), then we apply Proposition 2.1.

(b) Let ¢ : X\ Fy — & be a continuous r-coloring of (X \ F,Gy N (X \ Ff)?). We extend c to
X by setting c(x) := 0 if x € Fy. As Fy is a clopen subset of the clopen set Domain( f), this
extension is continuous. If (m, f (m)) € Gy, then x ¢ Fy. As f is injective and F) is f-invariant,
f[Domain(f)\ Ff] N Fy=0, so that f(z) ¢ Fy. Thus c(z) # c(f(z)), showing that c is a r-coloring
of (X,Gy). Conversely, any continuous x-coloring of (X, G ) defines a continuous x-coloring of
(X\Fy, Gy N (X \Fy)?) by restriction. O

In particular, (X, G) has no continuous Ny-coloring if n is 1 or even.

Corollary 2.3 Let X be a ODM space, and f be a homeomorphism of X. Then exactly one of the
following holds:

(1) Fy is an open subset of X,

(2) (X1,Gy,) =L (X, Gy).

Proof. If (1) holds, then Corollary 2.2 provides a continuous Ry-coloring of G';. If (2) also holds, then
Gy, also has such a coloring c. As Fy, ={0°} is not an open subset of X, this contradicts Proposition
2.1. So assume that (1) does not hold. Then we can find an injective sequence (x,, )ne., Of points of
X\ Fy converging to a point x of Fy. Moreover, we may assume that {@,, f(zm)} N {zn, f(zn)} =0
if m #n. We then set ©(0%°) :=x, ©(02"1°°) :=x,, and p(0?"+11°°):= f(x,,), so that © is a witness
for the fact that (X1, Gy,) <% (X, Gy). O

Remark. In the introduction, we mentioned the fact that (X, G'f,) is not conjugate to the shift of a
two-sided subshift. Here’s the argument. We argue by contradiction. By Proposition 3.68 in [Ku],

Inecw VeAyeXy IkeZ fFx)n#fFy)n.

Fix n € w, and choose (z,y) := (0%71%°,02"+11%°). Then ff(z)|n = fF(y)|n = 0" for each k € Z,
which is the desired contradiction.

We will use the following fact, which is part of Proposition 7.6 in [L].

Proposition 2.4 (X;,Gy,) is =i -minimal in the class of graphs on a 0ODMC space having no contin-
uous 2-coloring.



3 Basis made of minimal elements

The part (a) of Theorems 1.1, 1.2 and 1.5 is based on compactness. The first key fact is that it
is possible to keep a big chromatic number when we take infinite decreasing sequences of graphs or
spaces.

Lemma 3.1 Assume that 2 < k < Xq is a cardinal, X is a ODMC space, (Kp)pr is a decreasing
sequence of closed subsets of X, (Gp)pew is a decreasing sequence of closed graphs on X such
that, for each p € w, G, C Kg and (K, G)) has no continuous k-coloring, K := ﬂpew K, and
G:=(\,e,, Gp- Then (K, G) has no continuous r-coloring.

Proof. We argue by contradiction, which gives a continuous coloring ¢: K — k of (K, G). By 7.8
and 2.8 in [K1], there is a continuous extension ¢ : X — k of c. We set, for p € w and ¢ € &,
KP:=K,Nne 1({e}), so that (K?).¢ is a partition of K, into clopen subsets. By assumption, Ok,
is not a r-coloring of (K, G,), which gives &, € k and (2, yp) € G N (KE,)2. We may assume that
€ := ¢, does not depend on p. By compactness of X 2, we may assume that ((:cp, yp))p ., converges

to some (z,y) € K2. It remains to note that (z,y) € G N (K N 0*1(5))2, which is the desired
contradiction. O

We are now ready to prove Theorem 1.1 (a). Let C,; be the class of closed graphs on a 0DMC
space having no continuous r-coloring. When we write sup,c,, Ap, we always assume that (Ap)pew
is a strictly increasing sequence of ordinals.

Proof of Theorem 1.1 (a). Note that (X, G) € Cy exactly when X # (), so that the singleton in (b) is
convenient. Note then that (X, G) €Cy exactly when G # (), so that the singleton in (b) is convenient.

So we may assume that x > 2. We argue by contradiction, which gives (X, G) € Cy, such that,
for each (X', G’) € C,; with (X',G") <% (X, @), there is (X", G") € C, with the property that
(X", G") <% (X', G).

Claim. For each (X',G') € C,, with (X', G") =% (X, G), there is (X", G") € Cy;, such that X" C X'
and G" GG

Indeed, let X be the projection proj[G’] of G', and G :=G'. Note that X = projjél, (X,G)eC,
and (X, G) <% (X', G") <L (X, Q). _This gives (X, G) €C,, with the property that (X,G) < (X Q).
Let h be a witness for the fact that (X G) <! (X,G). We put X" :=h[X] and G := (hxh)[G]. Note

that (X G) =i (X", G") <Y (X G) with witnesses h, h~! respectively. In particular, (X", G") is
1nC,.Q,X”§X prOJ[G}CX’ and G’ CG=G'. If G"=G', then X" =X and

(Xa é) = (X//7 GH) jZc (X, é) '<i (Xv é)’

which cannot be. <

We inductively construct a C-decreasing sequence (X¢)¢<x, and a strictly C-decreasing sequence
(Gg)e<n, such that (Xo,Go) = (X, G) and (X¢, G¢) € Ci, which will contradict the fact that G
is a ODMC space. If (X¢, G¢) is constructed, then the claim gives (X¢y1,Geq1) € Ci such that
Xep1 € Xe and Gegq ;Cé Gg.. If A = SUPpey, Ap is a limit ordinal, then Lemma 3.1 applied to X,
(X, )pew and (G, ) pew, implies, setting X ::ﬂpew X, and G ::ﬂpew G, that (X, G ) €Cy.
As Gy, ; G, for each p€w, we are done. O



We now study the graphs induced by a homeomorphism. Things become more complex since

- fixed poins can exist; when they cannot be avoided, the induced graph is not closed,

- the intersection of such a graph G'; with a closed square C? is not necessarily of the form Gg;itis
of this form if C' is f-invariant.

The next lemma is a first step towards invariance. It is about the preservation of the size of orbits
with at least three points under <?.

Lemma 3.2 Let X be a topological space, f be a homeomorphism of X, Y, g having the correspond-
ing properties and satisfying (X, Gy) =i (Y, Gg) with h as a witness, and x € X with |Orbs(x)| > 3.
Then h[Orb ¢ (x)|=Orby(h(z)), and either ho f = goh on Orbs(z), or ho f =g~ Loh on Orby(z).

Proof. Let O :=Orbs(x). As f|o is fixed point free, (z, f(x)) € Gy. Thus (h(:c), h(f(x))) € Gy,
showing that i f(z)) =g*! (h(x)). In particular, R[O] C Orb, (h(z)). We set

P:={z€0 | h(f(2))=g(h(2))}

and M :={z € O | h(f(z)) =g ' (h(2))}. As|O| > 3, |Orby(h(z))| > 3 by injectivity of A,
and P and M are disjoint closed subsets of O = P U M. If z € P, then f(z) € P since otherwise
f(z) €M, h(f*(z))=g* (h (f(z))) = h(2), f?(2) = z by injectivity of h, which contradicts the

fact that |O| > 3. Thus O = P or O =M. In particular, either i (f*(x)) =g'(h(z)) for each i € Z, or
h(f(z)) =g *(h(z)) for each i € Z. In both cases, we get h|O] =Orb, (h(z)). O

The next lemma is about the preservation of the size of orbits of size two under =<’ (an orbit of
size two could be sent into a bigger orbit since we consider symmetrizations). Let H,, be the class of
graphs, induced by a homeomorphism of a 0DMC space, having no continuous x-coloring. We set,
for (X,G) €Hy, Fyl i={xeX | f2(z)=x}.

Lemma 3.3 Let (X,Gy),(Y,Gy) € H,, such that (X, Gy) <L (Y,Gy) with h as a witness and FQX’f
is nowhere dense in X, and x € X with |Orbg(x)|=2. Then h[|Orbs(x)] is a g-orbit of size two.

Proof. As F2X /" is nowhere dense in X, we can find a sequence (Zp)ne, of points of X \FQX U
converging to x. Note that |Orb(z,)| > 3 for each n € w. We set y,, := h(zy,), so that h[Orb¢(x,,)]
is Orby(y,) by Lemma 3.2. We set z := f(x), so that (z,2) € G since |Orbs(z)| = 2. Thus
(h(z), h(2)) € Gy, which gives § € {—1,1} with h(z) =g’ (h(z)). Similarly, there is, for each n € w,
0, € {—1,1} with h(f(zn)) = ¢’ (y»), and we may assume that §,, = 6 for each n € w. Thus
h(z) = g% (h(z)). So we are done if  # 6y since h(z) € Orby (h(x)) \{h(z)}. So we may assume
that 0 = 0g. As [Orby(z,)| >3, f~!(zn) # f(zn) and h(f~'(zy)) # h(f(2y)). This implies that
h(f 7 (xn)) = 97" (yn). Thus h(f~'(z)) =g~ (h(x)). As [Orbs(z)| =2, f~(2) = f(z) =z s0
that g% (h(z)) = g% (h(z)) =h(z) =g~ % (h(z)). O

In the next proof, we also have to deal with orbits of size one. We are now ready to prove Theorem
1.2 (a).

Proof of Theorem 1.2 (a). As in the proof of Theorem 1.1 (a), we may assume that x > 2. We argue
by contradiction, which gives (X, G'y) € H,; such that, for each (X', G'y) € H,; with the property that
(X', Gf/) = (X, GYy), there is (X", Gf//) €H,, with (X", Gf//) <! (X, Gf/).



and 2.2, (X1, Gy,) € H,. Our assumption gives (X", G y) € H,. with the property that (X", G ) is
strictly <!-below (X1, G, ), which contradicts Proposition 2.4. This shows that F’f is an open subset
of X. Corollary 2.2 then shows that we may assume that f is fixed point free. In particular, there is a
No-coloring of (X, G'¢), by Corollary 2.2, so that £ <Ry.

Claim. For each (X', G ) € Hy, with (X', G ) <L (X, Gy), there is (X", G ¢n) € H,, such that f”
is fixed point free, (X", G ) <. (X', G /) and szﬁ’f” is nowhere dense in X".

Indeed, we argue by contradiction, which gives (X', G ) € Hy. As (X', Gy) <L (X, Gy), there
is also a Ro-coloring of (X', G ). Corollary 2.2 then shows that we may assume that f” is fixed point
free. We inductively construct a strictly C-decreasing sequence (X¢)¢<y, such that Xo = X', X,
is f’-invariant and (X¢,Gp N X 52) € H,;, which will contradict the fact that X" is a ODMC space.

/

Xe,f
Assume that X¢ is constructed. Note that F., e is closed and not nowhere dense in X¢. This

If Fy is not an open subset of X, then (X1, Gf,) <% (X, G) by Corollary 2.3. By Corollaries 2.3

f|/X§

Xe,
gives a nonempty clopen subset C' of X with the property that C' C F;, . Note that the set

X 7f/

U:=CU f'[C] is a nonempty clopen f’-invariant subset of X¢ contained in F, ‘ ¢ In particular,
U is a ODM separable space and f|’U is a fixed point free continuous involution. Proposition 7.5
in [L] provides a continuous 2-coloring of (U, G f\'u)' All this implies that X¢ 1 := X \U G X,
Xetq is f'-invariant and (X¢qq, G N X£2+1) €Hy. If A=sup,,, \p is a limit ordinal, then Lemma
3.1 applied to X', G, :=Gp N Xfp and (X, )pew implies, setting X, := ﬂpew X, that X is
f'-invariant and (X, G N X)Z\) €Hw. As X, G X, for each p € w, we are done. o

We inductively construct a strictly C-decreasing sequence (X¢)¢<n, such that Xo = X, X¢ is
f-invariant and (X¢, Gy NX §2) € H ., which will contradict the fact that X is a 0DMC space. Assume
that X¢ is constructed. Our assumption gives (X', Gyr) € H,; with the property that (X', G ) is
stricly <.-below (X¢, Gy N Xg) The claim gives (X", G ¢) € H, such that f” is fixed point free,
(X", Gpr) =L (X',Gyp) and F2X”’f" is nowhere dense in X”. In particular, (X", G ) is strictly
=<i-below (X¢, Gy N X?) Let h be a witness for the fact that (X", Gpr) <L (X¢, Gy N Xg) The
fact that f” is fixed point free and Lemmas 3.2, 3.3 imply that X¢; := h[X"] C X¢ is f-invariant.
Moreover, (hxh)[G ] C Gy N XgJrl and (X", G¢r) 2% (Xeq1, (hxh)[G¢r]) with h as a witness,
so that (X¢y1,Gf N Xgﬂ) € M. If (yo,y1) € Gy N X£2+1’ then let xg, 71 € X” with y. = h(z.).
Note that (wo,f”e(xo)) € Gyn for each § € {—1,1} since f” is fixed point free, which implies
that (h(xo), h( f”e(xo))) €G. If |Orb pr (20)| > 3. then h(f"(z0)) # A ("~ (x0)) is of the form

S (h(z0)) for some n € {—1,1}. This gives o, 6o € {—1, 1} with y3 = 7 (h(z()) :h(f”eo (20)).
Thus 1 = f”go (:Bo), (3;‘0, :Bl) S Gf//, and (yo, yl) S (h X h) [Gf//]. If |Ol‘bf// (x0)| < 3, then
|Orb g (x0)| =2 since f” is fixed point free, and h[Orb s (xo)] is an f-orbit of size two by Lemma
3.3. The conclusion is the same, with 19 =6y =1. So we proved that (h x h)[G ] =G N X§+1 in

any case. Now note that (X¢y1,Gy N X€2+1) = (Xet1, (hxh)[Gpr]) <L (X", Gyr) with h ! as a
witness, so that (X¢ 41, Gy N X§2+1) <! (Xe, Gy N Xg), proving that Xe 1 G Xe. If A=sup,¢, Ay
is a limit ordinal, then Lemma 3.1 applied to X, G, := Gy N Xip and (X, )pew implies, setting
X ::ﬂPEw X, that X is f-invariant and (X, Gy N Xf) EHy. As X ;XAP for each p e w, we
are done. O



We now study subshifts. We have to find another solution when fixed points cannot be avoided
since (X1, Gy, ) is not conjugate to the shift of a two-sided subshift. If z € AZ and j <k are integers,
then we define z; € Ak=i+1 by wip = (x(h), - x(k)).

Lemma 3.4 Let ¥ C A” be a two-sided subshift, | € w, ag, - --,a; € A, and (2,)ne., be an injective
sequence of points of ¥ converging to (ag- - -a;)”. Then we can find s € A7\ {(ag- - -a;)} and v € A¥
with (ag---a;) "> -sy€X or v~ s-(ag---a;)® €X.

Proof. We may assume, for example, that x,,[_,, (141) k, (1+1)—1] = (@0" - -ap)n,

Lnlky, (141),(kn+1)([(+1)—1]

is a constant s # (ag---q;), and k, — co. By compactness, we may assume that the sequence
(T [k (14+1),00) Jnew cONverges to some s in A”. Note that (aq- - -a;) > -sy€X. O

We also need a version of Lemma 3.1 for subshifts. Let Sy be the class of graphs, induced by the
shift of a two-sided subshift, having no continuous x-coloring.

Lemma 3.5 Let (X,)pcw be a decreasing sequence of two-sided subshifts such that, for each p € w,
(3p,Gy) €Sy, and ¥:=( ,, Lp. Then (¥, G,) € Sy,.

pcw

Proof. Assume that ¥y C A%. Note that 0|s, has finitely many fixed points since these fixed points
are of the form a” for a € A and A is finite. As (X, G,) € S,» we can find a € A such that, for any
pEw, a? €Y, is not isolated in X,,. Lemma 3.4 provides b € A\ {a} and, for example and for each
D € w, vp € A% such that a=°°- by, is in X,,. Extracting a subequence if necessary, we may assume
that (a=>° - by,)pew converges to a~ > -by € Xy, by compactness. Note that a=>°-by € X, so that
(2,Gy) €Sx,- 0

We are now ready to prove Theorem 1.5 (a).

Proof of Theorem 1.5 (a). As in the proof of Theorem 1.1 (a), we may assume that x > 2. We argue
by contradiction, which gives (¥, G) € S;; such that, for each (¥', G;) € S, with the property that
(X, Gy) 2L (2,Gp), there is (X7, G,) €S, with (X, G,) <% (X, Gy).

Case 1. There is (¥', G;) €S, with (X', G5) =L (3, G,) such that 0|5 is fixed point free.
We can copy the proof of Theorem 1.2 (a) to conclude.
Case 2. For each (X', G,) € S with (X', G,) <L (2, G,), 05y is not fixed point free.

Claim 1. For each (Y, G,) €S, with (¥, Gy) =% (2, Gy ), there is (X, Gy) €S, with X" CY and
Y has a dense infinite orbit, and (X', G, ) € Sy,

Indeed, assume that ¥/ C AZ. Note that o|s has finitely many fixed points since these fixed points
are of the form a” for a € A and A is finite. Let U := {a” € ¥/ | a” is isolated in ¥'}. Note that U
is a clopen o5y -invariant subset of Y/, and G‘7|2/\U = fom” so that (X'\U, G,) € S,. As we are in
Case 2, os\p 18 not fixed point free, which gives a” € ¥ and a sequence (2, )ne,, Of points of ¥\ F,
converging to a”. Lemma 3.4 applied to ¥, [ := 0 and ag :=a provides b€ A\ {a} and v € A“ such
that, for example, z := a~°°-by € ¥/. In particular, a” € Orb,(z). So we proved the existence of
x €Y\ F, such that aZ € Orb, (z). So %" :=Orb, () is as desired since a” is a witness for the fact
that (X", G,) € Sy, C Sk. o
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Claim 2. There is X' C X such that (X', Gy) € Sk, X/ contains a dense infinite orbit O and, for each
(X", Gy) €S, with X' CY, ¥ N O is infinite.

Indeed, we argue by contradiction. We inductively construct a strictly C-decreasing sequence
(X¢)e<n, such that Xo=23 and (X¢, G) € S, which will contradict the fact that ¥ is a ODMC space.
Assume that Y¢ is constructed, which is the case for {=0. Claim 1 gives (X', G) € S, with X' C 3¢
and X' has a dense infinite orbit O. Our assumption gives (X¢41,Gy) € Sk with ¥ep C ¥ and
Ye1 N O is finite. In particular, Xey 1 G Ze. If (Ap)pew is strictly increasing and A =sup,c,, A, is a
limit ordinal, then we set Xy := ﬂPEw ¥,- By Lemma 3.5, (¥),G,) € Sc. As ¥\ G X, for each
pEw, we are done. o

Let (30, G,) € S, such that (Xg,G,) <. (X',G,). Claim 1 provides (Xf,G,) € S, with
3§ C X and X, has a dense infinite orbit Oy. Note that (X)), G,) <% (¥, G, ), with h as a witness,
and h[Oy) is an infinite orbit, by Lemma 3.2. We set ¥ := h[Og]. Then ¥ C ¥/, h is a witness for
the fact that (2}, G,) <% (X", G,), and thus (X", G,) € S,. Let O be the orbit given by Claim 2.
By Claim 2, ¥” N O is infinite. As X" is contained in the closed set h[X(], h[X{] N O is infinite.

As X, has a dense infinite orbit, F2E 07 is nowhere dense in Y. As X{ has finitely many fixed
points and a finite orbit of size at least two is sent onto an orbit of the same size by h by Lemmas
3.2, 3.3, there is zp € ¥, with an infinite orbit sent into O. This implies that 2[Orb(zp)] = O and
there is n € {—1,1} such that hoo = ¢"oh on Orb(z), by Lemma 3.2. In particular, the set
O is contained in the compact set h[X(], showing that h is onto, and thus a homeomorphism, by
compactness. In particular, Orb(zp) is dense in 3. This implies that hoo = 0" oh on Xf. If
y # o(y) € ¥/ and, for example, n = —1, then we set z := o(y). Let x € X{, with z = h(z). Note
that (y,0(y)) = (671(2),2) = (67 (h()), h(z)) = (h(c(z)), h(z)) € (hx h)[G,], showing that
(h x h)[Gy] = Gy. Thus (X',G,) =L (3, Gy) =% (20, Gy), which is the desired contradiction
concluding the proof. U

4 Concrete countable basis

We already checked the part (b) of Theorems 1.1, 1.2 and 1.5 when x <1.

Proof of Theorem 1.2 (b) when s > 3. Let X be a ODMC space, and f be a homeomorphism of
X such that (X, G¢) has no continuous x-coloring. If F; is an open subset of X, then there is a
continuous Np-coloring of G ¢, by Corollary 2.2. By Theorem 1.12 in [L], there is a continuous 3-
coloring of Gy, which contradicts the fact that x> 3. Thus F; is not an open subset of X and we can
apply Corollary 2.3. U

In this section, it remains to study the part (a) of Theorems 1.4 and 1.6.

4.1 Some general facts about symmetric relations

Let X be a set, R be a relation on X, x be a countable cardinal, and T := (x;);<, be a sequence
of elements of X. Recall that T is a R-walk if (z;,2;11) € R whenever i+ 1 < k. A R-path is an
injective R-walk. We say that T is a R-cycle if 3 < k < Ng, T is a R-path and (z,_1,20) € R. A
connected component of (X, R) is a subset C' of X such that, for each z € C,

C={ye X | 3 R-path with 1 <k <Ng, zg==z and z,_1 =y}.
We say that (X, R) is connected if X is a connected component of (X, R).
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The following fact is very classical.

Lemma 4.1.1 Let X be a set, and G be a symmetric relation on X. Exactly one of the following
holds:

(1) there is a 2-coloring of (X, G),
(2) we can find m € w and (x;)i<om € X > such that (x;, z;11) € G for each i < 2m (with the
convention Tom1:=2o)-

In particular, (2g+3, C24+3) has no continuous 2-coloring.

4.2 Isolated finite 2-colorable connected components
The next two results will allow us to remove the isolated finite 2-colorable connected components.

Lemma 4.2.1 Let X be a ODMC space, G be a closed graph on X, and
O:=J{CC X\ X' | C finite (X, G)-connected component and (C,G N C?) has a 2-coloring}.
If (X\O, G N (X\O)?) has a continuous 2-coloring, then so does (X, G).

Proof. Let c¢: X\O — 2 be a continuous 2-coloring of (X\O, G N (X\O)?). As O is an open subset of
the ODM space X, X \O is closed and there is a clopen partition (P-).c2 of X with P.\O=c"!({e})
(see 22.16 in [K1]).

Let us prove that if x ¢ O, then there is an open neighbourhood N, of = such that N, C Py,
and y € Py_.(, if there is 2’ € N, with (2,y) € G. We argue by contradiction. Let (N;)ie.
be a decreasing basis of open neighbourhoods of x contained in F.(,). Then for each ¢ there is
(wi,9i) € G N (N; X Pyy)). Note that (7;);e, converges to z, and we may assume that (y;)icw
converges to some y € P,y by compactness of X. As G is closed, (7,y) €G. Asx¢ O and O is a
union of connected components, y ¢ O, which contradicts the fact that ¢ is a coloring.

We now set N :=|J{N, | ¢ O}, and define¢: N — 2 by ¢(y) :=c(x) if x ¢ O and y € N,.
This definition is correct since x, 2’ ¢ O and y € N, N N,/ imply that ¢(z) = ¢(2'). If x,2 ¢ O and
(z',y) € G N (N x N,), then ¢(2) = c(x) # c(z) = ¢(y) since y € Pi_c(z) N Pyz). Thus Cis a
2-coloring of (N, G N N?2). By definition, € is continuous.

Now note that X \ V is finite, since otherwise there is an injective sequence (w;);e., of elements
of X'\ N, and we may assume that it converges to some w € X by compactness of X. As X\OCN,
X\N COCX\X' sothat we X' C N and w; € N if i is big enough, which is the desired
contradiction.

As X\ N is finite, the set 1 :=J{C | C appears in the definition of O and C'\ N # (}} is finite
and G-invariant. We restrict ¢ to N\ I and extend this restriction using any 2-coloring on each of the
components of I to conclude. O

Corollary 4.2.2 Let X be a ODMC space, f be a fixed point free homeomorphism of X, and
0:= U{Orb(a:)ﬁnite of even cardinality | x € X\ X'}.
If (X\O,G¢ N (X\O)?) has a continuous 2-coloring, then so does (X, Gy).

Note that in this section there is no upper bound on the Cantor-Bendixson rank of X.
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4.3 Finiteness results

Convention. In this section, X is a countable MC space, and f is a homeomorphism of X.

The following classical fact will be used a lot.
Lemma 4.3.1 Assume that X has Cantor-Bendixson rank 3+1. Then X is finite.

Proof. X7 is compact and discrete, and thus finite. (]

In practice, in our spaces of Cantor-Bendixson rank at most two, we will consider a partition of
the Cantor-Bendixson derivative into finitely many (closed) invariant sets.

Lemma 4.3.2 Let C be a clopen f-invariant subset of X', O be an open subset of X containing C,
and (xp)new be a sequence of points of X\ X' converging to a point of C. Then

{Orb(xy,) | n€w and Orb(x,) L O}
is finite.

Proof. Note that C', X'\ C are disjoint and clopen in X, and thus closed in the compact space X. If
y€C, theny, f(y), f~1(y) are in the open set V := X\ (X’\C), which gives an open neighbourhood

Ny of y with N, CONV N f~4V) N f[V]. The compactness of C provides F' C C finite such
that CC N :=,ep NyCN=U,cr N, CV N f1 (V)N f[V]. In particular, X'\ C' = X \V is
contained in the open set U := X \ (N U f[N] U f~*(N)). Note that we can find ny € w such that
T €ENifn>ng. Weset M:={n>ng | Imecw f™(x,)EN A f™ Y (z,)¢ N}. If n€ M, then
there is m,, € w with fm» (2, )¢ N UU. As X’C NUU, X\ (N UU) is finite. This shows that
{Orbs(xy) | n€ M} is finite. Moreover, { f™(z,) | mcw} C N CO if ng <n¢ M. We can argue
similarly with f~! instead of f, so that {Orb¢(z,,) | n€w A Orbs(z,,) Z O} is finite. O

Notation. If b is a bijection of a set S, z€ S and d € {—, +}, then we set

Orbg () :={b¥(x) | icw}.
Convention. In the rest of this section, we assume the existence of x € w and a (finite) partition
(Cj)j<x of X’ into closed f-invariant sets.

The next lemma controls the closures of the orbits and is a basic tool.

Lemma 4.3.3 Assume that x € X \ X' has an infinite orbit. Then we can find j~,j+ < k such that,
for each d € {—,+}, Orbd(z) COrbd(z) U Cja.

If moreover the C;’s are orbits, then X' is finite and we can find y~,y* € X' such that, for each
de {—,+}, 0rbd(z)=0rb(x) U Orb(yd) and (qu\Orb(yd)|(x))q€w converges to y9.

Proof. We first prove the following.

Claim. Let S be a closed subset of X', and 1 < k! € w such that the limit points of { f% () | ¢ €w}
are in S. Then it is not possible to find disjoint f* -invariant subsets Sy, S1 clopen in S for which we
can find, for each € €2, y. € S; and (q?)j@) such that (fqag'“ (m))jew converges 1o e.
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Indeed, we argue by contradiction. Note that Sy, S\ Sy are disjoint and closed in S and X', and
thus closed in the compact space X. If y € S, then y, f*'(y) are in the open set O := X \ (S\ Sp),
which gives an open neighbourhood N, of y with N, C O N f _””'(O). The compactness of Sy
provides F' C Sy finite such that Sy € N := U,cp Ny C N = Uyer N, COnf*(0). I
particular, S\ Sy = X \ O is contained in the open set N’ := X \ (N U f*[N]). Note that the set
{gew | f9(x)e N A flatD' () ¢ N}, and thus {gew | f@D5 (2) ¢ N U N}, are infinite. By
compactness, a subsequence of these f (g+1)s’ (x)’s has to converge to a point of S C N U N’, which
is the desired contradiction. o

As Orb(z) is infinite, the sequence ( f”(:c))n c
X\ X'. The compactness of X provides a strictly increasing sequence (nq)qe. and y* € X’ such that
(fna (m))qew converges to y*. Fix j+* <k with y* € Cj+. The claim applied to S:=X'=J.,. C}
and £":=1 shows that Orb™ (2) COrb™ () U Cj+.

If the C;’s are orbits, then Cj+ = Orb(y™), so that Orb™ (z) COrb™ (z) U Orb(y™). As y isin
Orb™ (z), we actually have equality since f is a homeomorphism. As X’ is a nonempty countable
MC space, there is a countable ordinal /3 such that X’ has Cantor-Bendixson rank 3+1. Thus (X”)? is
nonempty finite by Lemma 4.3.1. If =0, then X" is finite. If 3>1 and 2z € X'\ (X’)? has an infinite
orbit, then this orbit is not closed, which contradicts our assumptions on the C}’s. This shows that X !
has finite orbits and 3=0. In particular, we may assume that ™ is a limit point of { f9' () | g€w?},
where ":=|Orb(y™)|. This gives (¢;)e., such that ( far’ (z)) , converges to y*. The claim applied

to S:=O0rb(y*) and x’ implies that (f7 (:U))qe

We argue similarly with Orb™ () instead of Orb™ (). O

There is no upper bound on the Cantor-Bendixson rank of X in Lemma 4.3.2, the first part of
Lemma 4.3.3, and Lemmas 4.3.4, 4.3.5 to come. The next two results complete Lemma 4.3.3.
Lemma 4.3.4 Let j= # j© < k, O~,07 be disjoint open subsets of X such that C;- CO™ and
Uj,;éjgﬂ C;CO™, and (xp)new be a sequence of points of X\ X' such that Orb(x,) is infinite and
Orb™ (x,,) meets O~ and O™ for each n. Then the set {Orb(x,) | n € w} is finite. In particular, the
set {Orb(z) infinite | € X\ X' andvVd e {—,+} Orbd(z) COrbd(z) U Cja} is finite.

., 1s injective and contained in the discrete space

J<K

le
_l’_
,, converges to y .

Proof. Note that the sets C;-, |J i~ i< C; are disjoint and clopen in X', and thus closed in the

compact space X. We argue by contradiction, so that we may assume that (Orb(xn))n ., 18 Injective.

If n € w, then we can find, for each d € {—, +}, (mg’d)q@ strictly increasing and yd € O9 such
that ( fmg’d (mn))q ., converges to yd. In particular, we may assume that fmg’d (zn) € O4. This
gives (pn)new such that fPr(x,) € X\OT and fPoT1(z,) € OF C X\ O~. The compactness of X
provides y € X' such that (fP"(x,)), _ converges to y € X'\OT = C;-. As C;- is f-invariant,
f(y) € Cj~ € O~. On the other hand, f(y) = limy_oe [P (25,) ¢ O™, which is the desired
contradiction.

For the last assertion, assume that (Orb(mn))n is a sequence of elements of our set. The

cw

compactness provides, for each n and each d € {—, +}, (lg ’d)qew strictly increasing and y< in Cja
digd

such that (fd% (xn))qu

that Orb(f %" (2,,)) = Orb(z,,) and Orb* (f 4" (,,)) meets O~ and O*. O

. n,d
converges to y<. In particular, we may assume that f4%" (z,) € 04, so
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Convention. In the rest of this section, we assume the existence of a continuous 2-coloring ¢ of
(X', Gy (X))
Notation. In order to simplify the notation, we will sometimes identify « with Z/xZ when x > 2 is

finite. For example, the parity par(n) of n € Z will often be viewed as an element of Z/2Z. We set,
for j<wandee2, C5:=C;ne ! ({e}).

Lemma 4.3.5 Letde{—,+}, j <k, €2, and x € X\ X' for which there is a sequence (my)qc., of
natural numbers of constant parity such that ( fdma ($))q ., Converges to a point of C5. Then

Orb?fz (fpar(mo)(x)) < Orb?”Q (fpar(mo)(g;)) N Cj,

OI’bdg (flfpar(mo) (x)) C OI’b(;g (fl—par(mo) (x)) U leig'

Proof. Note that Orb(z) is infinite since z € X \ X’ and C; C X’. It remains to apply Lemma 4.3.3 to
f2 and (C;)jgn7€€2. ]

4.4 Some general facts about homeomorphisms
The next lemma provides a sufficient condition for minimality.

Notation. Let & be the class of graphs induced by a homeomorphism of a MC space having no
continuous 2-coloring.

Lemma 4.4.1 LetY be a ODMC space, h be a fixed point free homeomorphism of Y such that (Y, Gy,)
has no continuous 2-coloring, and S be a dense subset of Y with the property that for any V CY,
for any graph H on 'V contained in Gy, such that (V, H) has no continuous 2-coloring, and for any
y€S, (y,h(y)) € H holds. Then (Y, Gy) is <i-minimal in & and in the class of closed graphs on a
MC space having no continuous 2-coloring.

Proof. Assume that (K, G)€® and (K, G) <! (Y,G}) with ¢ as a witness. Corollary 2.3 in [Kr-St]
shows that (Y, G},) has a continuous 3-coloring, which implies that (K, G) too. By compactness, K
is homeomorphic to a subspace of Y, so that K is OD. As (K, G) € &, there is a homeomorphism
g: K — K with G = G. In particular, the set I, of fixed points of g is a clopen subset of K, and
(K\Fy,Gy N (K\ F,)?) has no continuous 2-coloring, by Corollary 2.2.(b). This implies that we
may assume that g is fixed point free, so that G is compact. We set V:=p[K] and H := (¢ x ¢)[G],
sothat V C Y, H C Gy is a compact graph on V, (K, G) <% (V, H) with ¢ as a witness, and
(V,H) <% (K,G) with ¢! as a witness by compactness. Note that (y, h(y)) € H if y € S, by our
assumption. The density of S in Y and the compactness of H then imply that Graph(h) C H. As H
is a graph, we get H =G}, and therefore V=Y. Thus (Y, G},) <% (K, G) and (Y, G},) is <’-minimal
in &, and also in the class of closed graphs on a MC space having no continuous 2-coloring. 0

Corollary 4.4.2 Let q be a natural number. Then (2q+3, Caq+3) is <%-minimal in & and in the class
of closed graphs on a MC space having no continuous 2-coloring.
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Proof. Note that Y := 2¢+ 3, equipped with the discrete topology, is a 0DMC space. The formula
h(i) := (i+1) mod (2¢+ 3) defines a fixed point free homeomorphism A of Y, and Cyyy3 = Gp,.
Lemma 4.1.1 implies that (Y, G},) has no continuous 2-coloring. Any dense subset of Y is equal to
Y. If VCY, H is a graph on V contained in G}, such that (V, H) has no continuous 2-coloring, and
yeY, then (y, h(y)) € H. Indeed, we argue by contradiction, and we may assume that y =2¢+2, the
other cases being similar. Then the formula ¢(z) :=par(z) defines a continuous 2-coloring of (V, H),
which cannot be. It remains to apply Lemma 4.4.1. U

Remark. (2¢+3, Cy443) is in fact <% -minimal in the class of graphs on a Hausdorff topological space
having no continuous 2-coloring.

The following result is also without upper bound on the rank.

Convention. In the rest of this section, we assume that X is a countable 0DMC space, f is a home-
omorphism of X such that (X', Gy N (X’)?) has a continuous 2-coloring ¢, € w, and (C})<x is a
partition of X" into closed f-invariant sets.

Notation. Let F':={C5 | e€2 and j <r}. We define relations D', E' on F' by

(C5,C5)eD" & (e#€ and j=j') or
Jre X\ X' 3(myg)gew, (ng)gew €W with constant parity such that

mo~+ng is odd and limg_,oc f~™(x) € C5 and limgy, " (x)€e C]E-,/,
(G5, Cj,/) €F < Jre X\ X' 3(my)gew, (Ng)gew € W™ with constant parity such that
mo+ng is even and limy_,c f7"(z) € C5 and limy, f9 (x)€e Cj,/

and set D:=s(D’) and E:=s(E").

Lemma 4.4.3 Assume that [ is fixed point free and X \ X' contains only infinite orbits. Then, with
the notation just above, if there is g: F'— 2 satisfying

{wc;,c;f J€D g(C5)#9(C5),

v(Cs, c;.f JEE g(C5)=9(C%),

then (X, Gy) has a continuous 2-coloring.

Proof. We define ¢ : X — 2 as follows. If y € X', then there is a unique Cs € F with y € C5.
We put c(y) := g(C5). If € X\ X, then Orb(z) is infinite, and Lemma 4.3.3 provides a unique

J~ <& such that Orb™ (z) C Orb™ (z) U C;-. As X\ X' is discrete and Orb(x) is infinite, there is
(myg)gew € w* with constant parity strictly increasing such that ( [ (x))q c., converges to a point of

Cj-. Replacing m, with m,+1 if necessary, we may assume that this limit is in C’]Q,. Lemma 4.3.5
applied to d := —, j:=j~ and € :=0 implies that Oerj2 (fpar(mo)(q:)) - Oerj2 (fpar(mO)(J:)) U C’JQ,
and Orb , (f1-pr(mo)(z)) C Orb, (f17Pm0)(2)) U CL. Thus, if (f ™4 ()), .,
a point of CJQ_ and the parity of mj, is constant, then par(mq) = par(my). This allows us to put
e(2):=g(CY ) +par(mo).

converges to
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If y € C5, then f(y) EC}_E since f is fixed point free, so that c(y) = g(C5) # g( C’1 =c(f(y))
since (C5, C;fg) €D. If x€ X\ X', then ¢(x) :g(C]Q, )+par(mg) #g (C’JO )+par( m0+1 =c(f(2)).
Thus c is a 2-coloring of (X, G).

Assume that (2,)new € (X\ X')* converges to y € C5, so that c(y) = g(C5). Let us prove that
c(xn) =c(y) if n is big enough. As Orb(x,,) is infinite, Lemma 4.3.3 provides a unique j,; < such
that Orb™ (z,) € Orb™ (z,) U €. Splitting the sequence (zy)ne., into finitely many subsequences
if necessary, we may assume that the sequence (j,, )ne.w is @ constant j~. Replacing z¢ with f(zg) if
necessary, we may assume that c(xg) = g(C’]Q_ ). As above, there is (my; ) qew € w* with constant parity

strictly increasing such that ( fma (azn)) converges to a point y;, of C;-. If n>0, then, replacing

qEW
m{ with m +1 if necessary, we may assume that y,, € C}J,, so that c(z,,) = g(C?,)—l—par(mg). If
n=0, then we choose m even, and yo € C’JQ, since ¢(xg) = g(C]Q, ).

Let us prove that we can find disjoint clopen subsets OY, O! of X satisfying, for each n€2,
-C]COTC X\ (X'\Cy),

-0 fH oM =0.

Note that C’]Q, C} are disjoint and clopen in X’, and thus closed in the ODMC space X. By 22.16
in [K1], there is a clopen subset C' of X with C’;) cocx \C’Jl Similarly, we can find clopen subsets
CY C' of X with the properties that C’]Q CCY'CC\(X'\C;) and C'Jl CC' X\ (CU(X'\Cy)).
Note that C7 C f~H(C*) since f is fixed point free, so that we can set O7:=C" N f~H(C7).

We then put O :=0° U O1, so that, by Lemma 4.3.2 applied to C; and O, the set
{Orb(zy,) | n€w and Orb(z,) O}

is finite. We set [ :={ncw | Orb(z,,) Z O}. Note that we can find ny €w such that x,, € O° if n.>ny.

We first prove that c(z,,) = c(y) if n ¢ I is big enough. If n ¢ I, then Orb(x,,) C O, f~™4 (z,)
is in the clopen set O and thus y,, € CJQ, NO C X'\ (X'\Cj) = Cj. This implies that j~ = j and
c(xn) :g(C’jQ)—i—par(mg). If ¢ > qq is big enough, then f~™4 (1) is in O°. As Orb(z,,) is contained
in O and O° N f~1(0%) =0, f'=™a(z,) € O\O" =0O'. As Orb(z,) CO and O' N f~1(O!) =0,
f27mid (2,) € O\ O = 0°. Inductively, as (par(m q))q c., 18 constant, f~ ™8 (2,) € O°. Similarly,
z, € OP*("3) This implies that par(mf) = ¢ if n > ng. As g(C5) is different from g(C;_E),
c(xn)= (CO) +par(mg) = (CO) +e=g(C5)=c(y) if n>ny, as desired.

As {Orb(zy,) | n € w and Orb(z,,) Z O} is finite, it remains to see that if x,, € Orb(x) and n is
big enough, then c(x,,) = c(y). As x,, € Orb(x), we may assume that either there is (pp,)new € w*

with constant parity such that x,, = fP(z) for each n, or there is (7, )necw € w* with constant parity
such that z,, = f " (x¢) for each n.

Case 1. x,, = fP"(x¢) for each n.
Subcase 1.1. g(CY_) =g(C5).

Note that (f_mg(xg))qew = (f_(m8+p")(mn))q6w converges to Yy € CJQ_. Thus, by definition
of ¢, c(xy,) = g(CjQ_)—Fpar(pn). Note that (f7s (xo))qu converges to y € C5. As g(C’JQ_) = g(C5),
(CY-,C5) ¢ D, and mg+p, is even, like py,. Thus c(z,) =g(C)- ) =g(C5)=c(y), as desired.

17



Subcase 1.2. g(C7) #g(C5).

Arguing as in Subcase 1.1, as g(C7) # g(
pr. This implies that ¢(z,,) = (C’O )+1 9(Cs

Case 2. z, = f~""(z0) for each n.

Cs5), ( _,C%) ¢ E, and thus mg+pq is odd, just like
)=c(y ) as desired.

Note that 79 = 0 since Orb(zo) is infinite. Assume that € = 1, the other case being similar. Note
that Orb™ () € Orb™ (z) U C;-, so that y = lim,, 0 2, € C; N C;- and j = j~. In particular,
c(xp)= (C’O)+1 —par(r,) = (C’O)+1 g(Cl)—c( ), as desued

This proves the continuity of c. O

A key consequence of Lemma 4.4.3 is the following.

Lemma 4.4.4 Assume that f is fixed point free, X\ X' contains only infinite orbits, and (X, Gy) has
no continuous 2-coloring. Then we can find | € w, CJEOO, ,C;; with (ji)i<) injective, a sequence
(21)i<i of elements of X\ X', and, for i <1, a sequence (m é)qew of even natural numbers and a

sequence (nq)qew of natural numbers with constant parity satisfying the following:

(a) if i<l, then ”0 is even and one of the following holds:
()i y; =limg—oo Fma () €C; and Y =limg_o fra(z e,

Ji+1’

(B)i y; =limg o0 f*m (z )€C€1+1 andy =limg—oo [ q(zi) Cjiz,

Jit+1

(b) né is odd and one of the following holds:
(@) y; =limg—o0 fma (2)€C5) and Yy =limg o0 fma (2)€C3,
— . _ ! . 1 .
By =limgsoo f~M4(2)) €C5) and Yy =limgoo f4(2]) S
Proof. By Lemma 4.4.3 and the notation just above its statement, it is not possible to find g: F' — 2
satisfying

¥(C5,C5)ED g(C5)£9(C5),
Y(C5.C5)eE g(C5)= (CE)

Note that if (C5, CJE/I ) € E, then (C5, C;_g), (C;_E, C'Ja,, ) € D. In particular, the first condition (on
D) just above implies the second one (on £). So there is no g satisfying the first condition (on D).
Lemma 4.1.1 provides m € w and (g4, ji)i<zm € (2 #)*™+! such that (C5/, ;') € D for each
1 < 2m. We may assume that the sequence ((gi’ji))i<n is injective. We set [ :=2m. If ¢ <[, then
(C5, C’i’ill) € DU E, so that (g; # ;41 and j; = ji11), or we can find z; € X \ X’ and (m)) e
(ng)qew €w* with constant parity such that one of the following holds:

()i y; =limy 00 f7™4(2]) €C5 and y; :=1imy o0 Fa(z Z)eCt,

(B)i y; :=limgo0 ffmé(zl’-) EC’;TE and y;" :=limy_ o0 f”Q(z’-) eCyl.
Note that, changing €, 1 enough times if necessary, we may assume that (CE’ C’E’“) eFEifi<l, so
that (C’;’ ) C’;g) € D. Note then that, canceling C;ll if necessary, we may assume that the case when
(€i # €i41 and j; = j;41) never holds. Also, replacing (2], m},n ) with (f(z]), mf1+1,nf] —1)if

) ‘A
necessary, we may assume that mg is even if ¢ </[. O
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4.5 General homeomorphisms

We first study the ’s. Recall that the space Y, is MC with Cantor-Bendixson rank two, and
o)s, is a homeomorphism of the o-invariant space Xp. It will be convenient to set, for

+3 l
p:(lv)‘()?"'7)‘l7m7507"'75l71)€w+ X2,
Ui ::wiZ if 1 <, z; ::w;f; Wity _, i<, 2 i=w; by - by —1(wg®). It is important to note that

limg_ o0 o~ Pite; (2i) =Yite, and

limq—>oo gihiti=e; (zz) =Yit+1—g;
if 4 < 1. Similarly, lim,_,o 0% () =y and lim,_,o, o0+ (z)=y,.

Theorem 4.5.1 Let X be a countable MC space with Cantor-Bendixson rank at most two, and f be a
fixed point free homeomorphism of X such that (X, G f) contains no odd cycle and has no continuous
2-coloring. Then there is p € P such that (¥p,Go) =% (X, Gy).

Proof. Note that X is countable, so that X is OD by 7.12 in [K1]. By Corollary 4.2.2, we may assume
that X'\ X’ contains only infinite orbits. Note that X’ is finite by Lemma 4.3.1, which gives x € w and
a partition (C}) <, of X' into orbits, which are closed and f-invariant sets. Note that the C;’s have
even cardinality, which gives a (continuous) 2-coloring  of (X', Gy N (X’)?). Lemma 4.4.4 provides
I, Cj(?, cee C’Zl, (21)i<1» and, for i <1, (m;)qew and (nf])qau. We set, for i <[, \; :=|C},|, so that
\; >0 is even. Note that f~! is a homeomorphism and G 7-1=G/. So, replacing f and z; with f -1
and f(z;) respectively if necessary, we may assume that (c); holds. We set, for i <1,

| 0if (a); holds,
S0 1if (B); holds.

We also define, for i <[, i+1:=i+1 mod (I4+1) and d; € {—, +} by

dood if («); holds,
" +if (B); holds,

and we will use the conventions —— =+ and —+ = —. We will now show that we may assume that

my, or ng is equal to gA; if the limit coming from Lemma 4.4.4 is in C}j;, except nfl that will be gA\g+m
. diy

with m < A\g odd. We will also ensure that 3, di — Z:{I If z is in CJQZ,, then Orb 2 () C C’% and

Orby> (f(x)) CCj,, showing that C5' is a f*-orbit. The key fact is as follows.

Claim. Let x € X\ X', d € {—,+}, j < k and € € 2 for which there is a sequence (my)qc. of
natural numbers of constant parity such that ( fdma (a:))q ¢, Converges to a point of CJ’? . Then there is

yE C;+p ar(mo) such that ( f44IC;] (x))q <., converges to y.

Indeed, Lemma 4.3.3 provides y € C such that (qu‘cﬂ(x))qu converges to y. Lemma 4.3.5

e+par(mo)
C; o

implies that y € o
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Assume first that [ = 0. The claim provides y~ € C52,y* € C’jg“ such that (f *q)‘o(z(’)))q o
converges to y~ and ( fq)‘o(z(')))q <., converges to y. As C50 is an f>-orbit, there is p < |C5°| such

that y~ = f2PH1(yT). As (fPRor2Prl(2)) _, converges to y~, we are done.

q€
Assume now that [ >1 and ¢=0. The claim provides

- yp € G50 such that ( fdosto (z(’)))q <., converges to yp,
-y1 €C5} such that (f~doar (26))q€w converges to v},

-y € C5! such that (fh1aM (21)) 4e,, CONVerges to yy.

As G5! is a f?-orbit, there is p’ < |C5!| such that v} = 2 (). As (fdlq/\l (fzp'(zi)))qew

converges to y;, we are done if we replace 2| with f 2/ (z}), which does not affect our convergence
and parity properties. Iterating this process if necessary and arguing as in the case [ =0, we complete
our construction. In other words, possibly changing the z.’s, we ensured the existence of (y/);<; and
m < \g odd satisfying the following.

(a) if ¢ <1, then one of the following holds:

()i yj:=limg o0 froi(z)) e CJEZ and y;; :=limg_0 fr(z)e CJEZ:

(B)i Yiqr :=limg00 frhiv(zh) e C’i‘:ll and y! :=limg_,o f9%(2]) € C';;,
(b) yj:=limy 00 f9M(2])) € Cj! and yp:=limg 00 fPorm (e Cjy.

We now completely defined p := (I, Ao, -+, \j,m, €0, ,&1-1) € P, and are ready to define
h:Sp—X. We set h(od (y;)) := f9(y}) if i <land j <X, and h(0*(zq)) := f*(2}) if g<land k€ Z
so that A is an injective homomorphism from (X, G) into (X, G ¢). Assume that 7, g <! and ((,)new
is a sequence of points of Orb(z,) converging to a point y of Orb(y;). Let ky, € Z with (, =" (z,),
and j < \; with y = 07 (y;). Note that (k,)ne, tends to oo or —oo. Let i, € Z and 0 <7, < \; with
kn = inAi+7,. We may assume that 7, is a constant r. Then h((,) = h(oF"(2,)) = fk"(z;), and
h(y)=h(c7(y:)) = f7(y}). If ¢ <1 or ky, tends to —oo, then 0¥ (z,) tends to o” (y;), so that j =r and
h(¢,) tends to f7(y}) =h(y) as desired. If g=1 and k,, tends to oo, then o*"(z,) tends to "™ (y;),
so that j =r—m and h((,) tends to f"~ " (y.) =h(y) as desired. Thus h is continuous. O

Lemma 4.5.2 Let p<P. Then (Xp,Gy) is <%-minimal in & and in the class of closed graphs on a
MC space having no continuous 2-coloring.

Proof. Note first that o, is fixed point free, so that G is closed.
Claim 1. (X, G) has no continuous 2-coloring.

Indeed, we argue by contradiction, which gives c: ¥, — 2. Assume, for example, that ¢(z;) =0.
As )\ is even, ¢(o7%(z)) = 0, so that c(y;) = 0 by continuity. As Ag is even and m is odd,
c(aq)‘0+m(zl)) =1, so that ¢(yo) = 1 by continuity. On the other hand, if i <! and ¢; =0, as A\;,
is even, c(o ™%+ (z;)) = c(2;), so that (y;) = c(z;) by continuity. Similarly, as A1, is even,
(o915 (2;)) =c(2;), so that c(y;+1) = c(z;) by continuity. This shows that c(y;) = c(y;+1) if i <l
(even if ;=1). Thus ¢(yo) =c(y;), which is the desired contradiction. o
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This proves that (X, G) is in our classes. We now set S:=|J,; Orb,(z;), so that S is a dense
open subset of X, and F2E »7 js nowhere dense in Yp.

Claim 2. Let V C ¥, H be a graph on'V contained in G, such that (V, H) has no continuous
2-coloring, and x € S. Then (x, O'(l‘)) cH.

Indeed, we argue by contradiction. Recall that the sets of the form
[wly={y e Ag | Vj <|w| w(j)=y(a+j)}.

where w € A;‘*’ and g € Z, form a basis made of clopen subsets of the space A%. Assume first that
r=2z. Weset C:= (Uz<l]<>\ even [a}]o U [boJo U Uj<m odaa [05]0) NV, so that C' is a clopen subset
of V and H N (C* U (V\C)?) =0. Thus C defines a continuous 2-coloring of (V, H), which is the

desired contradiction. If there is k € Z with = = 0*(z;), then we just replace the basic clopen sets of
the form [w]o in the definition of C' with [w]_, the rest of the argument is the same. Similarly, if ¢ <
and z € Orb(z;), then we may assume that = = z;. If ¢; =0, then we set

c:=( U [afloulad,_1ap1 U U [ajlou |
n<i,j<Ap even 1<n<l,j<Ap odd j<m odd

and conclude similarly. If €; =1, then we set

c=( | [aflouleft! yaplau U [ajlou | J [blo) NV
n<i,j<Ap odd i<n<l,j<Apn even Jj<m even
and conclude similarly. o
It remains to apply our claims and Lemma 4.4.1. g

Proof of Theorem 1.4 (a). Let X be a countable MC space with Cantor-Bendixson rank at most two,
and f be a homeomorphism of X such that (X, G'y) has no continuous 2-coloring. As X is countable,
X is OD by 7.12 in [K1]. By Corollary 4.4.2, we may assume that (X, G¢) contains no odd cycle.
If Fy is not open in X, then (X1, Gp,) <! (X,Gy) by Corollary 2.3. So we may assume that F is
open in X. This implies that (X \ F,G¢ N (X \ Ff)?) has no continuous 2-coloring, by Corollary
2.2. Thus we may assume that f is fixed point free. It remains to apply Theorem 4.5.1 to get the basis
result.

Assume that p, p’ € P and (3p, Go) <% (Sp, Go) with h as a witness. As 0|y, is fixed point

free and FQZ »? is nowhere dense in Yp, Lemmas 3.2 and 3.3 show that /& sends any orbit onto an
orbit of the same size. This shows that the number of orbits of X, is at most the finite number of
orbits of ¥, by injectivity of h. By Lemma 4.5.2, (X,/,Go) <! (Xp, Go), so that ¥}, and X, have
the same number of orbits, in bijection by /. In particular, ¥, and ¥, have the same number of
finite orbits, i.e., [ =I’. This also shows that if A := maxz<l )\Z, then A max;<; A,. Note also that
m <X\ <A and, similarly, m’ < A. This shows that p’ € {I} x (A+1)"1 x Ax 2L, so that Fp is finite,
and mp, :=minjex Jp, is defined.

Claim. There is P, C P, obtained by choosing min;.. Jp, for each p € P, with the properties that
{(m,Gy) | meP,} is abasis for {(Xp,Gy) | pEP} and

{(2(]"1'37 C’2q+3) | qu} U {(Xla Gf1)} U {(Em, Ga) ’ IIlE'Pa}

is an antichain.
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Indeed, let P, := {my | p € P}, so that {(¥m,Gs) | m € P,} is an antichain basis for
{(3p,Gs) | p€P}. As Xy and the ¥’s are infinite, the odd cycles are not above the other graphs.
As these graphs contain no odd cycle, they are not below them. As a homomorphism sends an odd
cycle of cardinality [ into an odd cycle of cardinality at most / and by injectivity, the odd cycles form
antichain. We saw that o)y is fixed point free, so that (¥p,Gs) has a continuous Ry-coloring, by
Corollary 2.2. Corollaries 2.2 and 2.3 imply that (X, Gf,) has no continuous Xq-coloring. Thus the
(Xp,Gs)’s are not above (X1, Gy, ). As (Xp, Go) has an infinite orbit, the orbits of (X, Gy, ) have
size at most two and an orbit has to be sent into an orbit, (X, Gy, ) is not above the (X, G)’s, by

injectivity. o

By the claim, {(2¢+3,C24+3) | ¢cw} U{(X1,Gp)} U{(Xm,Gs) | meP,} is our antichain
basis. U
4.6 Subshifts

We first prove a lemma useful to prove Theorem 1.6 (a). Note that the fixed points of the shift are
the constant sequences, of the form a” € ¥ with a € A.

Lemma 4.6.1 Let Y C A% be a countable two-sided subshift with Cantor-Bendixson rank at most two,
l€w, ag, -, a1 € A, and (2,,)new be an injective sequence of points of ¥ converging to (ag- - -a;)”.
Then the sequence (Orb(xy)) <., I8 eventually constant, and we can find s € AR {(ag---a;)} and
v € A with (ag- - -a;) > -syEX or vy~ Ls-(ag- - -a;)>® €.

Proof. For the last assertion, we can apply Lemma 3.4. We argue by contradiction, so that we may

assume that the sequence (Orb(xn))n c., 18 Injective. We may also assume, for example, that

L —ky (14-1),kn (14+1)—1] = (ag-- 'al>2k"

)

Tk (14+1), (kn-+1)(i+1)—1] 1S @ constant s # (ag- - -a;), and k,, — oo. By compactness, we may assume
that the sequence (Zy g, (1+1),00) Jncw cONverges to some sy € A“. We put z := (ag- - -a;)~ >+ s, 0
that x € 3. Note that z is the limit of (O'k”(H_l) (a:n))new. As the sequence (Orb(avn))nE
this sequence (o*(*1)(x,,)) _ is also injective, so that z € X'. Thus Orb(x) is finite of cardinality

is injective,
w

r, and z =0 "+ (z), contradicting s# (ag- - -a;). O

We now provide an antichain basis when fixed points exist.

Lemma 4.6.2 Let Y be a countable two-sided subshift with Cantor-Bendixson rank at most two such
that F,, . is not open in 3. Then there is n € w with the property that (, X, G,) =L (X, G, ). Moreover,

U|Z

{(nX, Gy) | n€w} is a <i-antichain.

Proof. Assume that 3 C A% and (x,,)new is an injective sequence of points of ¥\ {a? | a € A}
converging to a” € ¥. By Lemma 4.6.1, we may assume that Orb(x,,) = Orb(x) for each n, and that
g is of the form a=°-by or y~1b-a® with b€ A\ {a} and vy € A%, so that 2o € ¥\ X', Lemma 4.3.3
provides y~,yT €Y', and at least one of them is a”. The other one is of the form (ag- - -a;)%, where
l€wand ag,--- ,a;€ A. If 1 >2 is even, then the map (0- - -[)%+ (ag- - -a;)” is a witness for the fact
that (;1%, Go) =L (2, Gy).
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If |=0 and ag=a, then the map defined by 0%+ a” and 0¥ (07°°-10%°) s 0¥ (x9) when k € Z is
a witness for the fact that (o2, G,) =% (£, Gy).

If /=0 and a # a, then the map defined by
-0%—a”%, 12— a% and 0% (07°°-1%°) = 0% (x9) when k€ Z and o =a~>°-b,
- 0% af, 12— a” and 0*(07>°-1%°) = 0¥ (9) when k €Z and z9=~"1b-a*,
is a witness for the fact that (13, G,) <% (2, G,).

If [ is odd, then the map defined by

-0Zal, ot (1, -+, 141)%) =0 ((ap- - -a;)?) when i<l and o®(07>°-(1, - ,14+1)*°) 0¥ (20)
when k€7 and xg=a"°-b,
-0Z—=a”, o' ((1, -, 1) %) o7 ((ag - -ar)”) wheni<land o*(07°%(1, -+, I4+1)>®) 0~ * (o)
when k€Z and zg=~"1b-a°,

is a witness for the fact that (1,13, G,) <& (2, Gy).

By Theorem 1.4, the odd cycles (24433, G ) form antichain. The other (,,X, G,;)’s are infinite and
contain no odd cycle, so they are incomparable with the odd cycles. Assume, towards a contradiction,
that m #n and (,2, Go) =% (X, G,) with h as a witness. The previous discussion shows that we
may assume that m, n are not of the form 2¢+ 3. This implies that the two subshifts have a unique
infinite orbit, which is dense. Note that an orbit has to be sent into an orbit. In particular, the infinite
orbit Orb(z,,) of (,,2, G,) has to be sent into that Orb(x,,) of (,,3, G,), by injectivity. Note that
h[Orb(z,,)]=Orb(x,,), and hoo =caoh on Orb(z,,) or hoo =~ 1oh on Orb(z,,), by Lemma 3.2. In
particular, h[;,,X\Orb(x,,)] C ,X\Orb(x,) by injectivity, and hoo = goh or hoo = o~ 'oh, by density.
Thus m < n, by injectivity. If m = 0, then (0% (xy,)),., converges to 07 for each d € {—,+},
so that <a‘i(h(:cm))) ) <az(h(:cm))> . have the same limit, which cannot be. If m = 1, then

1cw 1cw

(Jdi(xm))i c., converges for each d € {—,+}, so that (Jdi(h(acm))) also converges for each

1€EW

d € {—, +}, which cannot be. If m =2¢+2, then h[Orb((1,--- ,m)%)] =0rb((1,--- ,n)%), which
cannot be. U
Proof of Theorem 1.6 (a). Let > be a countable two-sided subshift with Cantor-Bendixson rank at
most two such that (X, G,) has no continuous 2-coloring. If Fg, is not open in ¥, then Lemma 4.6.2
provides n € w such that (,%, G,) <% (3, Gy). If Fy\., is open in X, then Corollary 2.2 implies that
(E\FU‘E, G ) has no continuous 2-coloring. Thus we may assume that oy, is fixed point free. We
may also assume that (3, G, ) contains no odd cycle. It remains to apply Theorem 4.5.1 to get the
basis result.

The set P, C P provided by the claim in the proof of Theorem 1.4 has the properties that
{(Zm,Gs) | meP,} is abasis for {(Xp,Gy) | p€P} and

{(2q+3ZaG0) lgew} U{(Zm,Go) | meP,}

is an antichain. By Lemma 4.6.2, {(,X,G5) | n € w} is also an antichain. We saw that o)y is
fixed point free, so that (X, G) has a continuous Ry-coloring, by Corollary 2.2. We also saw after
Corollary 2.2 that (,,2, G) has no continuous Ry-coloring if n is 1 or even. Thus the (¥, G)’s are
not above (3, G, ) if nis 1 or even.
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Let us check that (,%, G,) is not above the (Xp, G,)’s if n is 1 or even. We argue by con-
tradiction, which provides h : ¥, — ,X. Note that h[¥p] is compact and does not contain a
fixed point of |, x. This provides a continuous 2-coloring of (h[2p], (b x h)[G,]), and thus one
of (3p,Gs), which is not possible by Claim 1 in the proof of Lemma 4.5.2. This shows that
{(n2,Gs) | newt U{(E¥m,Gs) | meP,} is our antichain basis. O

5 Basis of size continuum

Recall the definition of C,, H,, and Sy, before the proof of Theorem 1.1 (a), Lemma 3.3, and
Lemma 3.5, respectively. Theorem 1.17 (b) in [L] provides a <!-antichain ((X,,Gs)), <o Made
of countable two-sided subshifts with Cantor-Bendixson rank three such that oy, is fixed point free
(and thus Gamu is closed), (X,, G ) has a continuous 3-coloring and is jz—minimal in C and in Hs.
This proves Theorem 1.1 (b) for k=2, finishes the proof of Theorem 1.2 (b), proves Theorem 1.5 (b)
for k = 2, and proves the second part of Theorems 1.4 (b) (the first part comes from Theorem 1.2),
and 1.6 (b) (the first part comes from Theorem 1.5). The proof of Theorem 1.5 (b) for x > 3 is partly
similar, so we recall the construction of Theorem 1.17 (b) in [L].

Notation. Let ap:= (01)7>°-(01)%°, vy :=(01)°*1%(01)*°, Q :=(g;) jew € w* converging to infinity,
and Bg:=(01)"°°-17j¢,, ((01)%1?). This defines Xg={J,,,«; Orby(cu,) U Orb,(8g).

Note that X is a countable two-sided subshift. By Claim 8 in the proof of Theorem 1.17 (b) in
[L], ¥¢ has Cantor-Bendixson rank three, and the remark after this claim shows that (¥, G, ) has a
continuous 3-coloring. The proof of Theorem 1.17 (b) in [L] also shows the minimality of (X¢, Gy).
In order to get the antichain, we consider the sequence (py, )ne., of prime numbers. We set, for v € 2%
andn€w, qg:=0and q, | := pg ©+2, -pz(n)H —1, which defines Q¥ € w“ converging to infinity.
Then X, :=%¢,.

Proof of Theorem 1.5 (b) for x > 3. Let L := (Ij)jc, € w* converging to infinity, 7o := 0%,
Y1 1= (01)%, 45 := (01)7>°-1%(01)*, and &, := 07>+ "¢, ((01)%12). This defines as above
Y= Um§2 Orb, (7m) U Orb,(d1). Note that X7, is a countable two-sided subshift. As vy € F"IZL
is the limit of (07"(1)) ¢, € (B2 \Foy, )*, Foyy, is not an open subset of X 7. By Corollary 2.2,
there is no continuous Ry-coloring of GU‘EL, so that (X1, Gy) €S.

Claim. (X1, Gy) is <%-minimal in S.
Indeed, let (X, G,) € S, such that (X, G,) <% (¥, G,) with h as a witness. We first prove that

there is (X', G, ) €S, with (X', G,,) =% (2, G,) and F2E “1" is nowhere dense in X/, We argue as in
the proof of the claim in the proof of Theorem 1.2 (a), by contradiction. We inductively construct a
strictly C-decreasing sequence (3¢ )¢<x, such that ¥ =X, 3¢ is o-invariant and (3¢, G5 N Eg) €S,
which will contradict the fact that > is a ODMC space. Assume that ¢ is constructed. Note that
F, . isfinite. Let [ :={z € FO.Izg | a is isolated in X¢}. Note that I is a finite o-invariant clopen

0"25 .
subset of X¢, G G Ye\I,Go) €Sy, and (3e\1,Go) =0 (X¢, Go). So, restricting ¢ to

Ilge — TOIS\I? (

. . . E{,O’ S
Y¢\ I if necessary, we may assume that F(,-‘25 is nowhere dense in Y¢. Note that F, ¢ is closed
and not nowhere dense in .
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Ze,
This gives a nonempty clopen subset C' of ¥¢ with the property that C' C F;, o1 \Fv\zg- Note

that U :=C'Uo|[C] is a nonempty clopen o-invariant subset of ¢ contained in Ff 5,0|25\Fa‘26 . In par-
ticular, U is a ODM separable space and oy is a fixed point free continuous involution. Proposition
7.5 in [L] provides a continuous 2-coloring of (U, G, ). All this implies that X1 := X \U G e,
2£+1 is o-invariant and (X¢41, G5 N E§+1) €Sy If (Ap)pew 1s strictly increasing and A=sup,,c,, Ap
is a limit ordinal, then we set X := ﬂpew Y, As k>3, the (X ,G,)’s are in Sy,, by Theorem
1.12in [L]. By Lemma 3.5, (X, G,;) € Sy As X3 & X, for each p € w, we are done. In other words,

we may assume that F2E ?I® is nowhere dense in . By Lemmas 3.2, 3.3, h sends an orbit of size at
least two onto an orbit of the same size. We set P:=h"! (Orbg @ L)) If P is contained in FJIE, then
P is finite since a two-sided subshift has only finitely many fixed points. Moreover, these points are
isolated in X since so are the elements of Orb, (d7,) in X. This shows that P is a finite o-invariant
clopen subset of 3. In particular, ¥\ P is a o-invariant clopen subset of ¥ and (X\P, G ) € S;;.. On the
other hand, (X\P, G5) =% (U,,<o Orbs(¥m), Go), which has a continuous 2-coloring, which cannot
be. This shows that P contains an element of E\FU‘E. Thus the dense set Orb,, (dy,) is contained in the
compact set h[X] by the previous size argument, proving that 4 is onto, and thus a homeomorphism
by compactness. In particular, P is a dense orbit Orb,(x). By Lemma 3.2, there is § € {—1,1}
such that hoos; = JfEL oh on Orb, (), and thus on X. In particular, (h x h)[Gy ] = Goy, and

(X1,Gy) <L (,Gy) with h~1 as a witness. o

We now define L as we defined Q¥ just before this proof. It remains to check that the family

((E v, G0|2Lu ))V cou is a <’-antichain. Assume, towards a contradiction, that v # v’ and

(S1vs G ) = (S0 Gy )

U‘ELV Lv

with h as a witness. Let mg be minimal with the property that v(mg) # v/(mg). By minimality of

(X1, Goyy ), we may assume that v(mg) is smaller than v/(my). By Lemma 3.2, h[Orbs(72)],
LV

h[Orb,(61»)] are disjoint infinite orbits in ¥, ,/, so they are Orbs(72), Orbs(d, /). As Orbs (6, ,) is

dense in 3, ,/, the compact set h[¥z~] is X, ,/, so that h is a homeomorphism from X. onto X, /.

Moreover, & is a witness for the fact that o}y, , and O, are flip-conjugate, by density of Orb,, (97 )

in ¥7v and Lemma 3.2. In particular, h[¥7,]=%' , and h[X7,]=%7 . so that
h[OI‘bg (71 )] =Orb, ('71),

h[Orb,(72)] = Orb,(7y2), h[Orb, (5Lu)] is Orb, (0;,/) and h(~yo) = vo. This gives ng,n; € Z with

h(y2) = 0™ (v2) and h(8rv) = 0™ (8;,/). We then set, for r € w, KZ:= (< (2j+2))+2L,.

Note that the sequence (o’ (5LU))r€w converges to 72, so that <h(UK:(5Lu))) converges to
rew

h(7v2) =™ (v2). As h(o®7(61v)) = o™EE(5,,/), this implies that (0”0_”1iK5(5LV/))T€w con-

verges to yo. As (K}),ew is strictly increasing, this implies that o5, and o}y, , are conjugate and

v’

(o076 ,,0)), ., cOnVerges to ya. In particular,
UnoinlJrK: <6LV,)[—212} = (5LV' (no—m —i—Kﬁ—?), SR 5LV' (no—m —i—K:f—f—?)) =72[-2,2] 20130

if r is large enough. Using similar notation, this implies that no —ni 4+ K” € {KY% | m € w} if r is
large enough.
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In particular, this gives, for r large enough, m <M €w with ng—n; + K}/ =K, 7’;’ and
no—nq +KTI{+1 :K]ﬁ

Thus K, — K¥ =21%,,+2=Sm<j<u (215 +2) and

0)+2 / '(0)+2 /
pg( " o 'p;{(T)JrZ :l$+1+1 :Em§n<M (lTVL+1+1) :2m§n<M (pg O o 'p;; (n)+2).
We may assume that r is large enough to ensure that r, m >mg, which implies that pz;ng)” divides
pOF2 pXF2 which cannot be since v(mg) < v/ (mo). O

It remains to prove Theorem 1.1 (b) for x> 3.
Proof of Theorem 1.1 (b) for x > 2. We set, for ¢ € k, e := (e+1) mod k. We then set, for
ve (W\{0})* and j, k € w, /3(1)/71430' — )2+ + i<k (i) 100 if j<v(k), ?Qk-&-ld — g2+t icak1v(i) (et)>°
if 0<e<randj<v(2k+1), and B2 = 2HitBicav (i) (1) if s <2 < 2k —1 and j < v(2k).
This allows us to define the (countable) set of vertices
X, :={e™ | e€2k—1} U{01°} U{B" | kew A j<v(k)} U
{(Br TN | kewAO<e<r Aj<v(2k+1)} U {8 | kew Ar<e<2k—1Aj<v(2k)}

and the set of edges

Gui=s({(e>,n>) [ e#nert U{(e™,n>) [e#ne{0} Ulr, 2s—1)} U{(0>,01%)} U
{(01°°, BY%0) | k<e<2k—1} U
(8229, 8y7%9) | kew A e#ne {0} U [, 26— 1) A j <w(2k)} U
(YR ERTIHT guaktLiy | ke AO£e€R A j<v(2k+1)} U
{(BLTha, BZ’szrl’j) |kewAe#ner Nj<v(2k+1)} U
(BRI BRI vkt 20y | ey Ae €k, 26—1) A j<v(2k+2)}).
Note that X, is a closed subspace of x“, and thus a ODMC space, with Cantor-Bendixson rank two.
Also, the set G, is closed graph on X,,. If ¢: X,, — & is a continuous coloring of (X,,G,), then,
for example, ¢(0°°) = 0. This implies that ¢(3; kg ) =0 if k is big enough. Inductively, this implies
that ¢(84*7) = 0 for each k € w since 0"1°° and 011 have x—1 common G, -neighbors which
are all pairwise G, -related. Thus ¢(01°°) = 0. In particular, ¢(01°°) = ¢(0*°) = 0, contradicting
(0°°,01%°) € G,. This shows that (X,,G,) € C.. For the minimality, it is enough to see that

(X,,G),) =L (X,Q) if XC X, and GCG, is a graph on X such that (X, G) €Cy, by compactness.
The previous discussion shows that

G2G\s({(e,n) [e#ner} U{(e*n>) [e#ne{0} Ul 2r—1)}).

Indeed, if one edge e in the difference is not in G, then we may assume that e ¢ s({(0°°,01°°)}),
and we can give the same color to the two vertices (£"72(¢*)> with € # 0 for one of them) of e
and ensure that c(0"+11°°) # 0. Thus G = G, since G is closed. This implies that X = X,,, and
(X,,G)) =L (X,Q).
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For instance, for k =2, 3 and v € N39, this gives the following pictures.

01°°

420>

324

37400

1% 3%
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Let us prove that (X, G),) A% (X, G,) if (v,V) ¢ E;, where [, is the equivalence relation on
(w\{0})“ (introduced for example in [Do-J-K]) defined by

(v,V)eE; & J,mew Vnew v(i+n)=v(m+n).

We argue by contradiction, which gives h: X,, — X,/. Note that 0°° is the only limit point in X,, with
k+1 neighbors in G, so that h(0°°) =0°°. The limit vertex 1°° is G, -related to e if 1#¢ < & only,
so that

h{{e™ | e<r}], h[{e>® | e€{0} U [k, 26—1)} € {{e® | e<k},{e*° | e€{0} U [k, 2k—1)} }.
Assume that h(£>°) =72°. The continuity of & implies that

h(Be* e N, if0<e <k,
h(BY* e N, if k<e<2k—1

if k > kg is big enough. Assume, for example, that 7; > &, the case 11 < x being similar. Then
h(ﬂi”zk”l’o) is of the form B” 2KoJo - hyg h(B, L2kt 1,0y ,86/ 2KoJo  Then, for 0 < & <  and
inductively on 0 < j < v/(2ko+1), h(BV ,2ko+1, J) 71;5 2Ko,Joti 404 h(ﬂy ,2ko+1, J) 5(1)/’,2K0,J0+j.
Note then that, for £ < ¢ < 2k — 1, h(B22F0F20) = 117’5 2Kot1.0 ang h(5; v2kot 20y BO’/’QKOH’O,

Then, for £ < ¢ < 2k —1 and inductively on 0 < j < v(2kg+2), h( ”2k°+2’J) = Bﬁ,’l 2Ko+Ly

, 4
and h(By2Rot27y = gr2Kotld - Note then that, for 0 < & < &, h(8220T30) = 717/5 2K02.0 4pd
h( OV%OJF?’ 0= o "2K0+2.0 T implies that

2+v(2ko+2) =14 (Bicaro+1 V' (1)) +1=24Dicar, 42 V' (i),

so that v(2ko +2) = /(2Kp+1). Then, for 0 < € < x and inductively on 0 < j < v(2ko+3),

. g :
h(Bg 2kOJr?”]) BZ 2K0+2.J and h(By 2kﬁg’]) Bg 2Ko+2.J - Note then that, for k < & < 2k — 1,

h(ﬁl/ 2k0+4 0) ”I; 2K()+3 0 and h( v 2]€0+4 0) BV ,2K0+3,0
e

2+V(2k0—|—3)—1—|—(21<2[(0+2 1% ( >)+1 2+Ez<2K0+3 1% ( )

. This implies that

so that v(2ko+3) =1/ (2K +2). Inductively, we get v(2ko+2+n)=1'(2K¢+1+n) for each n € w,
so that (v, ) € E;.

Consider now the sequence (py,)new of prime numbers. We set, for o € 2%,

Sa ::{pg(0)+1' : pg(n)—i_l | new}’

so that S, Cw\{0} is infinite, and S, NS is finite if o # B. Let v € (w\{0})* be an injective enumer-
ation of S,. Then (va,vg) ¢ By if a# B, so that (X,,,Gy,,) Z: (X, Guy)- So (Xvas GVa))aezw
is an antichain of size 2"0 made of minimal elements of (C,;, <’), proving that any basis for this class

must have size 2%0, U

Remark. This proof improves the previous proof of Theorem 1.1 (b) for x =2, in the sense that the
>,’s mentioned at the beginning of this section had Cantor-Bendixson rank three, while the X,,’s here
have Cantor-Bendixson rank two.
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6 Some analytic complete sets

Notation. The space (X)) of compact subsets of a metrizable compact space X, equipped with
the Vietoris topology, is a metrizable compact space (see Theorem 4.22 in [K1]). Let x < Ng (see
the remark just before Theorem 1.1). We denote by €,; the set of closed graphs on 2* having no
continuous k-coloring, and code C,; by

Cr:={(K,G)eK(2¥)x K(2“x2¥) | G is a graph on K having no continuous k-coloring}.
Note that € is simply the set of closed graphs on 2*. We then set
Qr={(G,H)eC | (2°,G) =; (2*, H)}.
E={(G,H)e; | (2°,G) = (2*, H)} =i(Qf) (where i(Q):==Q N Q™)
Qi ={((K,G), (L, H)) € C | (K, G) =i (L, H)}

and E¢ :=4(QY). Note that Q%, Q¢ are quasi-orders, while E¢, EC are equivalence relations.

Now let k < 3 (see Theorem 1.12.(b) in [L]), and H(2“) be the set of homeomorphisms of 2¢.
We equip H(2“) with the topology whose basic open sets are of the form

Ouvy,.Ui,.. Vo =1 EH(2Y) | VIZi<n fUi]=Vi},

where n is a natural number and U;, V; are clopen subsets of 2. By Section 2 in [I-Me], this defines
a structure of Polish group on #(2“). A compatible complete distance is given by

d(f,9):=supeqn dow (f(), () +5up,eqn dow (f' (), g7 ().

We denote by §),; the set of homeomorphisms of 2* whose induced graph has no continuous k-
coloring and, as in the introduction of [L], code H by

H:={(K, f)eK(2¥)xH(2¥) | f[K1]=K A (K, G, ) has no continuous x-coloring}.

Note that $o = H(2¥). We then set Q7 := {(f,9) € 97 | (2, Gy) =L (29, Gy)}, ER = 1i(Q7),
QF ={((K. f).(L,9)) € HZ | (K,Gy) =i (L,Gy)} and E[T:=i(Q[).

Now let x < g and D be a countable dense subset of 2*. We identify P(D x D) with 2P*P
(equipped with the product topology of the discrete topology on 2). We denote by ©, the set of
graphs G on D such that (2*, ) has no continuous x-coloring and set

D, :={(K,G)eK(2¥)xP(DxD) | G is a graph on K having no continuous s-coloring}.
Note that D¢ is simply the set of graphs on D). We then set
QR ={(G,H)eD} | (2*,G) = (2°, H)},

ER=i(Q9). Q2 ={((K,G), (L, H)) e D} | (K,G) =i (L, H)} and E? :=i(QP).
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Theorem 6.1 The spaces €, C, 9y, Hx, D« and D,; are Polish, and FCO is Borel reducible to the
analytic relations Q%, E¢, Q¢, EC, Q2, E9, QH, EH, @2, E®, QP and EP. In particular; these
relations are analytic complete as sets.

Proof. Let G € £(2* x 2¥). Note that G € €, if and only if
G=G'AGNA@2Y)=0AY(Cy)icr € (AI(2¢¥))"

(29ZUics C) V @i#i<r CiNC#0) V(G N (Ujey CF)#0).
Note that, by continuity of the map (x,y) — (y,x) and 4.29 in [K1], the condition “G = G~!" is
closed. By definition of the Vietoris topology, the condition “G N A(2¥) ={" is open, while the last
condition is closed. Thus €, is a difference of two open sets, and thus TI9 in K(2% x 2¢), and Polish.
Note that C, = {(K,G) € K(2¥) x K(2¥ x2¥) | G € €, A G C K?} by Theorem 2.2.1 in [E]. By
4.29 in [K1], C is also Polish. By Theorem 12.5 in [L], the set £, is Hg in #(2%), and Polish. By
Theorem 1.14 in [L], the set H, is TI9 in K(2%) x H(2%), and Polish. Let G € P(D x D). Note that
G € ®,, if and only if the formula above holds. We enumerate D := {d,, | n € w} injectively. The
condition “G = G~!” can be written “Ym,n € w (dm,d,) & G V (dn,dn) € G”, which is a closed
condition. The condition “G N A(2¥) =" can be written “Vn cw (d,,d,) ¢ G”, which is a closed
condition. For the last condition, note that AY(2%) is countable. If  is finite, then the condition
“G N (Ujcp, C?)#0” can be written “Im,n€w Fi <k (gm,qn) € G N CE”, so that D, is II3 in
P(D x D), and Polish. If k=g, then by compactness the last condition can be written

Vnew Y(C;)icn € (A?(Zw))n (2vg U Ci)V (Fi£j<n C;N C]#@) V(Gn (U 012)7&@),
i<n i<n
so that D, is Polish again. Note that D,, = {(K,G) € K(2¥)xP(Dx D) | G€D, A G C K?} by

Theorem 2.2.1 in [E]. The condition “G C K27 is “Ym,n€w (dm,dy) ¢ G V dp,d, € K”, which is
a closed condition, so that D, is Polish.

Recall that
(2%, G) <! (2%, H) < Jp:2* — 2% injective continuous with G C (o x )~ (H).

Note that ¢ : 2 — 2¢ is injective if and only if p[O N U] = p[O] N p[U] whenever O, U are clopen
subsets of 2“. By Lemma 12.4 in [L], and [K, 4.19, 4.29, 27.7],

{(G,H)eK(29x2°)% | (2°,G) =, (2*, H)}

is analytic, and thus Q¢ and E¢ are analytic.

If now (K, G), (L, H) € K(2¥) x KC(2¥ x 2¢), then, since K is a retract of 2* by 2.8 in [K1],
(K,G) =% (L, H) & FpeC(2¥,2¥) Y[K1)CLA Y|k is injective A (Y x9)[G] C H.
By Lemma 12.4 in [L] and 4.29 in [K1],
{((K,G), (L, H)) € (K(2°)xK (2 x2))* | (K, G) =i (L, H)},

Q¢ and E¢ are analytic.
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Let f, g€ #H(2*). Then
(2%, Gy) =L (29, Gy) & Jp:2¥ — 2% injective continuous
Vae2” fla)=aVe(f(a))=g(p(a)) Ve(f(a)=g""(p(a).
This shows that {(f,g) € H(2%)? | (2¥,Gy) <% (2¥,Gy)} and thus QY and EY are analytic. The

previous discussions show that Q@ and EX are also analytic. If G, H € P(Dx D), then the condition
“GC(px¢@)~1(H)” can be written

“Vm,new (dm,dn)¢GV (@(dm)7 @(dn)) €eH”,

which is a closed condition, proving that {(G, H) € (P(D x D))2 | (2¢,G) <L (2, H)}, Q2 and
E? are analytic. The previous discussions show that Q2 and E? are also analytic.

We define a map g: M — KC(2¥ x 2%) by g(f) := G¢. Let O be an open subset of 2* x 2, and
(CY)news (C})new be sequences of clopen subsets of 2 with the property that O =/J,,.,, (CYxC}).

If f €M and G C O, then there is a finite subset F of w with Gy =s(Graph(f)) CU,cr (CAxC}).
Note then that

U @ixch=1) (Y crn () 2\¢)x( ).

nekl SCF  neS neF\S nes
Thus

Graph(f) CUer (CoxCp) € YSCF f[Nues Cp NMuers 2°\CRlSUnes Cn
& VSCF 3R, cA)(2v)
f[mnes Cg N ﬂnEF\S 2W\C7QL] :Rn - UnES C711

This implies that { f e M | Gy C O} is an open subset of M since

G CO < JF Cuw finite with Graph(f) C ﬂ ( U (CExCL79)).
€€2 neF

Now GfNO#0 & Inew Fe€2 CoN fHCI ) #0 < Incew Fe€2 FJaeC: f(a)eCle,
so that { f €M | Gy N O#0} is an open subset of M. Thus g is continuous.

By Lemma 7.11 in [L], if f, g € M, then (f, g) € FCO if and only if (2, Gf) <% (2¥,G,). As
FCO is symmetric, (f,g) € FCO if and only if (2¥,Gy) =, (2*,G,). We define ¢1(f): Ny — Ny
by ¢1(f)(1a):=1f(c), so that ¢1(f) is a homeomorphism with infinite orbits and G 4, () is a closed
graph on N;. We define a map g : M — €, by

gt (f) =Gy U{0™T1°,0"11%°) | m#£ner+1}.

Note that G4, () ={(1a,18) | (a, ) € G(f)}, so that g* is continuous by 4.29 (iv and vi) in [K1].
In order to prove that FCO is Borel reducible to Q% and EY, it is enough to prove that if f,g € M,
then (2¥,Gy) =& (2¥,Gy) if and only if (29, g™ (f)) <% (2¥,97(g)). So let ¢ : 2 — 2¢ injective
continuous with G C (¢ x ¢) 71 (G,). We define ®:2* — 2 by ®(0c) :=0cv and ®(1ax) := 1ip(v),
so that ® is injective continuous.
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Moreover, ((I)(Oerl 100)’ q)(onJrl 100)) — (Om+l 1007 0n+1 100) €g+(g) and

(210, 2(a1(5) (1) ) = (16(0), 10(f(2)) ) = (18,157 (8)) €57 (9),

showing that @ is a witness for the fact that (2, g*(f)) <% (2“, g7 (9)).

Conversely, let @ : 2 — 2 injective continuous with g™ (f) C (®x®)~!(g*(g)). Note that the
g7 (f)-connected component of Ny has size k+ 1, while each g™ (f)-connected component of Ny is
infinite. This implies that ®(1a)(0)=1. We now define ¢ :2“ —2“ by the formula

p(a):=0(la)” == (2(la)(1), ®(1a)(2), ),

so that ¢ is injective continuous. Moreover,
(10(0), 10 (f(@)) ) = (@(10), @(1f(a) ) = (2(1), (41 (F)(10)) ) €87 (9),

so that (f(a)) = g* (¢()) and (gp(a), cp(f(a))) € G4, showing that ¢ is a witness for the fact

that (29, Gf) =% (2¥,G,). Thus FCO is Borel (in fact continuously) reducible to Q% and ES. Now
note that the map ic : €, — C,, defined by ic(G) := (2%, G) is continuous, Q% = (icxic) ™1 (QY) and
E¢=(icxic) Y (EY), so that FCO is also Borel (in fact continuously) reducible to Q¢ and ES.

Note then that $3 C 92 C 9 C Hy = H(2¥). We define hg : 2 — 2% by hg(0°°) := 0> and
h3(0?" 1) := 0?1 =¢1q, so that hy € H(2*) has orbits of size at most two and Fj, = {0}
is not open in 2¥. By Proposition 2.1, there is no continuous Ny-coloring of G}, so that h3 € $3.
We define, for f € M, ¢(f) € H(2¥) by ¢(f)(0a) := 0hs(«) and ¢(f)(1la) := 1f(«). Note that
o(f) € H3 and ¢ : Ml — $3 is continuous (consider the distance d). In order to prove that FFCO is
Borel reducible to QF and F3, it is enough to prove that if f, g €M, then (2, Gf) <% (2¥, G,) if and
only if (2%, Gy(s)) =t (2, Gy(g))- We argue essentially as above, using the facts that the ¢( f)-orbit
of Ocv has size at most two like the h3-orbit of «,, while the ¢( f)-orbit of 1« is infinite like the f-orbit
of a. Thus FCO is Borel (in fact continuously) reducible to QF and E3, and in fact to Q and E?
because of the inclusions above. Now note that the map iz : 9,, — Hy, defined by i (f):= (2%, f) is
continuous, Q2 = (i x i)"Y (QH) and E? = (i x i) (EH), so that FCO is also Borel (in fact
continuously) reducible to Q¥ and EX.

By Corollary 5.10 in [L], if f,g€ M, then (f, g) € FCO if and only if
(proj[G], G ) =t (proj[Gyl, Gy)
(see Section 5 in [L] for the definition of the graph Gy, whose vertices have degree at most one).
This definition, as well as the notation before Theorem 13.2 in [L], show that proj|G f] is contained
in the copy Ko :=(2 U {c,a,a})* of 2¥. In fact, the definition of Gy shows that proj[G] is in fact
contained in the closed nowhere dense subset {z € Koo | VM ew x(m)=cV Vn>m x(n)#c} of
ICae. In particular, proj[G | is nowhere dense in KCoo.

Claim 1. (Ryll-Nardzewski) Let P,(Q be closed nowhere dense subsets of 2%, and ¢ : P — Q) be a
continuous injection. Then there is a homeomorphism ¢* of 2% such that p* (o) =p(a) if « € P.

Indeed, the compact subset R := ¢[P] of () is also closed and nowhere dense in 2, and the
map ¢’ : P — R defined by ¢'(a) := ¢(«) is a homeomorphism. The Ryll-Nardzewski theorem
(see Corollary 2 in [Kn-R]) provides a homeomorphism ¢* of 2% extending ', and thus having the
desired property. o
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Claim 1 implies that if f,g € M, then (f,g) € FCO if and only if (Kae,Gy) <% (Kae, Gy).
Indeed, assume that ¢ : proj[G s] — proj[Gy] is injective continuous and G 5 C (¢x )~ (Gy). Claim 1

provides ™ : Koo — Kooo injective continuous coinciding with ¢ on proj [G¢], which is a witness for
the fact that (oo, G¢) =% (Ko, G,). Conversely, if ®:/Co — Koo is injective continuous and G ¢
is contained in (® x ®)~1(G,), then proj[G| and thus proj[G/] are contained in ®~!(proj[G]), so
Projc;] is a witness for the fact that (proj(G], G¢) =i (proj[G,], Gy). As FCO

is symmetric, (f, g) € FCO if and only if (Koo, G ) =L (Ko, Gy).

that the map ¢ :=® ————

Let i : Koo — N1 C 2% be a homeomorphism. The definition of G shows that it is contained in
the countable dense subset Q:={z € Ko~ | Il €w Je € {a,a} Vk>1 z(k)=c} of Ky In particular
() :=1[Q] is a countable dense subset of Ny, as well as Ny N D.

Claim 2. (van Engelen) Let ), D be countable dense subsets of 2“. Then there is h € H(2“) such
that h[Q] =

Indeed, we enumerate injectively Q = {¢; | i € w} and D = {d; | i € w}. Note that {go} is a
zero-dimensional space homeomorphic to any of its nonempty clopen subsets, {¢;} (resp., {d;}) is
closed nowhere dense in @ (resp., D), and {¢;} ~ {qo} ~ {d;} for each i. Theorem 3.2.6 in [VE]
provides the desired homeomorphism. o

Claim 2 provides h € H(N1) such that h[Q] = N1 N D. We set H := hoi, so that H : Koo — N;
is a homeomorphism. Recall that the chromatic number of a graph (X, G) is the smallest cardinal
« for which there is a k-coloring of (X, G).

Claim 3. There is a sequence ((Fn, G"))n ¢, 'nade of finite connected graphs which are pairwise <.
incomparable, have pairwise different chromatic numbers, and whose vertices have degree at least
two.

Indeed, we use the Kneser graphs K (n, k). Recall that, if n,k € w)\ {0}, then K (n, k) has
set of vertices [n]*, and A, B € [n]* are K (n, k)-related if AN B = (. If n > 3k, then K (n, k) is
finite connected and its vertices have degree at least two. Note that Cardinality([n]¥) = (Z) and, by
Theorem 6.29 in [H-N], K (n, k) has chromatic number n—2k+2 if n > 2k. Moreover, by Proposition
6.27 in [H-N], K (n,k) £° K(n',k')if 2 < ", < % (even without necessarily injectivity). All this
implies that it is enough to construct a sequence ((np, kp))p ¢, Of pairs of positive natural numbers

satisfying the following.
n +1
<1> 3l
2) (i ) ()
Ept1
(3) (np—2k: +2)pe. is injective
We set ny:=3-2P+1 and kj, := 2P, so that (1) and (3) are satisfied. For (2), note that

np\ nyp! o (3-2P41)!
kp)  kpl(ny —kp)! (29)1(2- 20 + 1)

n n . !
thus (37) < (1) & oot < masriiy © (B2PH)HA2H1)! < (62P41)1(27)H(22041),

(h) < (Z;’f) (3-2P+1)! < (6-2P+1)- - -(4-2P42)-(2-2P+1)-(2P)!. This holds since there are 2-2P

factors in (6-2P+1)---(4-2P42) > (3-2P+1)-- (2P +2) and 2-2P +1>2P+1. o
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We may assume that F;, C Nyn+17 N D. Claim 3 allows us to define G: M — Dy, by

G(f):=(HxH)[GslU | Gn.

new

This definition is correct since (2“’, G(f )) has no continuous Ng-coloring. Indeed, we argue by con-
tradiction to see that. By compactness of 2%, this graph would have a continuous «-coloring for some
K € w, which is not the case because the GG,,’s have pairwise different chromatic numbers. The be-
ginning of the proof of Theorem 13.2 in [L] shows that G is Borel. Let f,g € M. If (f,g) € FCO,
then (Kase,Gf) <% (Koo, Gy), with ¢ as a witness. We define ®:2% —2* by ®(0a) := Oa and
O(la) = H(gp(H‘%la))), so that ® witnesses (2¢,G(f)) =% (2¥,G(g)). Conversely, assume

that ®:2 — 2 is injective continuous and G(f) C (® x ®)~1(G(g)). The vertices in N7 have de-
gree at least two, while the other vertices of G(f) have degree at most one like those of G¢. This
implies that ® x ® sends | J,,,, G into itself, by injectivity. As the G,’s are connected and pair-
wise <’-incomparable, ®x ¥ sends (7, into itself, and onto itself by finiteness. Therefore & x P sends
(HxH )[Gy] into (HxH)[G,], by injectivity. Thus ® sends proj[(HxH )[G ]] into proj [(HxH )[G]],
and proj[(H x H)[G/]] into proj[(H x H)[Gg]]. As H is a homeomorphism,

proj [(H x H)[Gy]] = H [proj[Gy]],

and similarly with g. This allows us to define ¢ : proj[G ¢] — proj[G,] by ¢(a) := H! (i) (H(a))),

and ¢ is a witness for the fact that (proj(G ], G ) <% (proj|G,), G4). Thus (f, g) € FCO and G Borel
reduces F'CO to ng and Effo. As Dy, €D, this also holds for Q? and E,? if K < Ng. Now note
that the map ip : D, — D, defined by ip(G) := (2, G) is continuous, QP = (ip xip) 1 (Q) and
E? =(ipxip) Y (EP), so that FCO is also Borel reducible to Q2 and EP.

[De-GR-Ka-Kun-Kw] shows that £'C'O is analytic complete as a set. Thus our sets are Borel
analytic complete (using pre-images by Borel functions). By [K2], our sets are analytic complete. [

Question. [De-GR-Ka-Kun-Kw] shows that F'CO is analytic complete as a set. On the other hand,
Theorem 5 in [Ca-G] shows that the conjugacy relation on H (2%) is Borel-bi-reducible with the most
complicated of the orbit equivalence relations induced by a Borel action of the group of bijections
of w. Also, in [Lo-R] it is proved that the bi-homomorphism relation between countable graphs is
analytic complete as an equivalence relation. So we can ask about the position of the equivalence
relations mentioned in Theorem 6.1 among analytic equivalence relations, in particular

(1) ES:={(G, H)eK(2* x2¥)? | G, H are graphs A (2¥,G) =L (2, H)},
2) B7 ={(f,9) € H(2°)? | (2¢,Gy) =, (2°,Gy)},

(3) B :={(G,H)€P(DxD)?| G, H are graphs A (2*,G) =. (2%, H)}, where D is a countable
dense subset of 2¢.
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