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1 Introduction

The present work is the continuation of the study of continuous 2-colorings initiated in [L]. All
our relations will be binary. A coloring of a relation R on a set X is a map c from X into a set
κ with the property that c(x) ̸= c(y) if (x, y) ∈ R. We will call this a κ-coloring. In practice, κ
will be a countable cardinal, equipped with the discrete topology. We say that R (or (X,R)) is a
graph if R is symmetric and does not meet the diagonal ∆(X) := {(x, x) | x ∈X} of X . We set
R−1 := {(x, y)∈X2 | (y, x)∈R}, and s(R) :=R ∪ R−1 is the symmetrization of R. We compare
our relations with the following quasi-order:

(X,R) ⪯i (Y, S) ⇔ ∃h :X→Y injective with R⊆(h×h)−1(S).

If this holds, then we say that h is an injective homomorphism from (X,R) into (Y, S). In the present
article, we work with the quasi-order ⪯i

c associated with injective continuous homomorphisms. All
our topological spaces will be zero-dimensional, except where indicated, to ensure the existence of
enough continuous functions between them. We write (X,R) ≺i

c (Y, S) when (X,R) ⪯i
c (Y, S)

and (Y, S) ̸⪯i
c (X,R). The material in [L] shows that the structure of ⪯i

c is complex on a number
of classes of graphs. Recall that a basis for a quasi-order (Q,≤) is a subclass B of Q such that
any element of Q is ≤-above an element of B. We are interested in basis as small as possible for
the inclusion, which means that their elements are pairwise ≤-incomparable (if this last property is
satisfied, then we say that we have a ≤-antichain). Note that an antichain basis is always made of
minimal elements of the considered class. Conversely, let ≡i

c := ⪯i
c ∩ (⪯i

c)
−1 be the equivalence

relation associated with ⪯i
c. Note that we can derive an antichain basis from a basis made of minimal

elements by choosing an element in each ≡i
c-equivalence class, using the axiom of choice if necessary.

• Theorem 1.10 in [L] shows that there is no antichain basis for the class of graphs on a zero-
dimensional metrizable compact space (0DMC for short; we will also use similar abbreviations like
MC or 0DM) having no continuous 2-coloring. This theorem in fact gives the same result for graphs
(X,R) with R countable. The situation is completely different for closed graphs, which leads to the
first class we study. A compactness argument shows that any closed graph on a 0DMC space has a
continuous ℵ0-coloring.

Theorem 1.1 Let κ<ℵ0 be a cardinal.
(a) There is a ⪯i

c-basis made of minimal elements for the class of closed graphs on a 0DMC space
having no continuous κ-coloring.
(b) Such a basis can be {(1, ∅)} if κ=0, {(2, {(0, 1), (1, 0)})} if κ=1, and has size 2ℵ0 if κ≥2.

• The case of graphs induced by a function has been considered since the very beginning of the study
of definable colorings in [K-S-T], and also in [Co-M], [L], [P] and [T-V] for instance. If

f :Domain(f)⊆X→Range(f)⊆X
is a partial function, then the graph induced by f is Gf :=s

(
Graph(f)

)
\∆(X). The end of Section

9 in [L] shows that there is no antichain basis for the class of graphs induced by a partial homeomor-
phism on a 0DMC space with countable domain having no continuous 2-coloring. So we will focus
on graphs induced by a total homeomorphism.

The following example was essentially introduced in [L-Z]. We consider a converging sequence
with its limit in the Cantor space 2ω, for instance X1 :={0n1∞ | n∈ω}∪{0∞}, which is a countable
MC space. We define a homeomorphism f1 of X1 by f1(0∞) :=0∞ and f1(02n+ε1∞) :=02n+1−ε1∞

if ε∈2. We will see that (X1, Gf1) has no continuous ℵ0-coloring.
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Theorem 1.2 Let κ≤ℵ0 be a cardinal.
(a) There is a ⪯i

c-basis made of minimal elements for the class of graphs, induced by a homeomor-
phism of a 0DMC space, having no continuous κ-coloring.
(b) ([L], Theorems 1.17 (b) and 1.13 (d)) Such a basis can be {(1, G07→0)} if κ=0, {(2, Gε7→1−ε)} if
κ=1, has size 2ℵ0 if κ=2, and can be {(X1, Gf1)} if κ≥3.

This result can be refined when κ=2 if we consider the Cantor-Bendixson rank of the considered
spaces. Recall from 6.C in [K1] that if X is a topological space, then the Cantor-Bendixson deriva-
tive of X is X ′ := {x ∈X | x is a limit point of X}. The iterated Cantor-Bendixson derivatives
are defined by X0 :=X , Xα+1 :=(Xα)′, and, when λ is a limit ordinal, Xλ :=

⋂
α<λ Xα. Note that

if f is a homeomorphism of X , then all the derivatives are f -invariant, i.e., f [Xα] =Xα if α is an
ordinal. If X is a countable MC space, then the Cantor-Bendixson rank of X is the least countable
ordinal α0 such that Xα0 = ∅. If moreover X is nonempty, then this rank is a successor ordinal, by
compactness. More generally, the Cantor-Bendixson rank of a Polish space is the least countable
ordinal α0 such that Xα =Xα0 for each α≥α0, so that the Cantor space 2ω has Cantor-Bendixson
rank zero.

The following examples are of particular interest here.

- The odd cycles (2q+3, C2q+3), for q ∈ ω. In this case, the formula f(i) := (i+1) mod (2q+3)
defines a homeomorphism of the discrete MC space 2q+3, whose Cantor-Bendixson rank is one. We
set C2q+3 :=Gf , and the fact that (2q+3, C2q+3) has no (continuous) 2-coloring is classical.

- X1 has Cantor-Bendixson rank two.

- We also consider subshifts, which are particular dynamical systems widely studied in symbolic
dynamics. We refer to the book [Ku] for basic notions and definitions.

Definition 1.3 Let A be a finite set of cardinality at least two.
(a) The shift map σ :AZ→AZ is defined by the formula σ(α)(k) :=α(k+1).
(b) A two-sided subshift is a closed σ-invariant subset Σ of AZ.

The restriction of the homeomorphism σ to a two-sided subshift Σ induces a graph (Σ, Gσ|Σ) that
we will denote by (Σ, Gσ). If f is a bijection of the set X and x∈X , then the f -orbit of x is

Orbf (x) :={fk(x) | k∈Z}
(also denoted by Orb(x) when the context is clear). If x ∈A−ω and y ∈Aω, then z := x ·y ∈AZ is
defined by z(i) := y(i) and z(−i−1) := x(−i) when i∈ ω. If w ∈A<ω \{∅}, then w−∞ := · · ·ww
is in A−ω, w∞ := ww· · · is in Aω and wZ := w−∞ ·w∞. Note that (2q+3, C2q+3) can be seen as

a two-sided subshift by putting 2q+3Σ:=Orbσ
((

0· · ·(2q+2)
)Z). Recall that if X,Y are metrizable

compact spaces and f, g are homeomorphisms of X,Y respectively, then (X, f), (Y, g) (or f, g) are
conjugate (resp., flip-conjugate) if there is a homeomorphism φ :X→Y such that φ◦f=g◦φ (resp.,
φ◦f=g◦φ or φ◦f=g−1◦φ). We will see that (X1, Gf1) is not conjugate to the shift of a two-sided
subshift. We set

P=
{
p :=(l, λ0, · · · , λl,m, ε0, · · · , εl−1)∈ωl+3×2l | ∀i≤ l λi>0 is even and m<λ0 is odd

}
.

We associate to each p ∈ P a two-sided subshift as follows. We fix disjoint injective families of
symbols (aij)i,j∈ω and (bi)i∈ω, and set Ap := {aij | i≤ l ∧ j <λi} ∪ {bi | i<m}, which is finite of
cardinality at least two (in fact at least three).

3



We then set, for i≤ l, wi :=a
i
0· · ·aiλi−1∈A<ω

p \{∅}, and define

Σp :=
⋃

i≤l Orbσ(wZ
i ) ∪

⋃
i<l Orbσ(w−∞

i+εi
·w∞

i+1−εi
) ∪ Orbσ

(
w−∞
l ·b0· · ·bm−1(w

∞
0 )

)
,

a countable MC space with Cantor-Bendixson rank two. We will see that (Σp, Gσ) has no continuous
2-coloring. We set, for each p∈P , Fp :={p′∈P | (Σp′ , Gσ) ≡i

c (Σp, Gσ)}.

For κ=2, we prove the following.

Theorem 1.4 (a) The family {(2q+3Σ, Gσ) | q∈ω}∪{(X1, Gf1)}∪{(Σp, Gσ) | p∈P} is a concrete
⪯i

c-basis of size ℵ0 for the class of graphs, induced by a homeomorphism of a countable MC space
with Cantor-Bendixson rank at most two, having no continuous 2-coloring. Moreover, for each p∈P ,
the set Fp is finite, and choosing minlex Fp provides a ⪯i

c-antichain basis of size ℵ0.
(b) (see [L], Theorem 1.17 (b)) If ξ ≥ 3 is a countable ordinal, then there is a ⪯i

c-basis made of
minimal elements for the class of graphs, induced by a homeomorphism of a countable MC space
with Cantor-Bendixson rank at most ξ, having no continuous 2-coloring, and any such basis must
have size 2ℵ0 .
(c) ([L], Theorem 1.15) If ξ is a countable ordinal, then any ⪯i

c-basis made of minimal elements for
the class of graphs, induced by a homeomorphism of a 0DMC space with Cantor-Bendixson rank at
most ξ, having no continuous 2-coloring, must have size 2ℵ0 .

Note that the proof of Theorem 1.1 (b) will show that it has no such refinement when κ≥2.

• The class of graphs induced by the shift of a two-sided subshift is a natural subclass of the
previous one.

Theorem 1.5 Let κ≤ℵ0 be a cardinal.
(a) There is a ⪯i

c-basis made of minimal elements for the class of graphs, induced by the shift of a
two-sided subshift, having no continuous κ-coloring.
(b) Such a basis can be {(Orbσ(0Z), Gσ)} if κ=0,

{(
Orbσ

(
(01)Z

)
, Gσ

)}
if κ=1, and has size 2ℵ0

if κ≥2.

Here again, this result can be refined when κ = 2 if we consider the Cantor-Bendixson rank of
the considered spaces. As (X1, Gf1) is not conjugate to the shift of a two-sided subshift, we have to
introduce some other examples.

We set 0Σ:=Orbσ(0Z) ∪ Orbσ(0−∞ ·10∞), 1Σ:=Orbσ(0Z) ∪ Orbσ(1Z) ∪ Orbσ(0−∞ ·1∞) and,
for q∈ω, 2q+2Σ:=Orbσ(0Z) ∪ Orbσ

(
(1, · · · , 2q+2)Z

)
∪ Orbσ(0−∞ ·(1, · · · , 2q+2)∞).

Theorem 1.6 (a) The family {(nΣ, Gσ) | n ∈ ω} ∪ {(Σp, Gσ) | p ∈ P} is a concrete ⪯i
c-basis of

size ℵ0 for the class of graphs, induced by the shift of a countable two-sided subshift with Cantor-
Bendixson rank at most two, having no continuous 2-coloring. Moreover, choosing minlex Fp for each
p∈P provides a ⪯i

c-antichain basis of size ℵ0.
(b) ([L], Theorem 1.17 (b) and Corollary 10.12) If ξ ≥ 3 is a countable ordinal, then there is a ⪯i

c-
basis made of minimal elements for the class of graphs, induced by the shift of a countable two-sided
subshift with Cantor-Bendixson rank at most ξ, having no continuous 2-coloring, and any such basis
must have size 2ℵ0 .
(c) ([L], Corollary 10.12) If ξ is a countable ordinal, then any ⪯i

c-basis made of minimal elements for
the class of graphs, induced by the shift of a two-sided subshift with Cantor-Bendixson rank at most
ξ, having no continuous 2-coloring, must have size 2ℵ0 .
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A dynamical system (X, f) is given by a homeomorphism f of a metrizable compact space X .
If X is homeomorphic to 2ω, then we say that (X, f) is a Cantor dynamical system. A dynamical
system (or f ) is minimal if Orbf (x) is dense in X for each x ∈ X . The set of homeomorphisms
of 2ω is denoted by H(2ω). It is a Polish group when equipped with the topology whose basic
neighbourhoods of the identity are of the form {h ∈ H(2ω) | ∀i < n h[Oi] = Oi}, where (Oi)i<n

ranges over all finite families of clopen subsets of 2ω. By Lemma 4.1 in [Me], the space M of minimal
homeomorphisms of 2ω is a Polish space. The equivalence relation of flip-conjugacy on M is denoted
by FCO. The standard way to compare analytic equivalence relations on standard Borel spaces is
the Borel reducibility quasi-order ≤B (see, for instance, [G]). Recall that if X,Y are standard Borel
spaces and E,F are analytic equivalence relations on X,Y respectively, then

(X,E) ≤B (Y, F ) ⇔ ∃φ :X→Y Borel with E=(φ×φ)−1(F ).

Theorem 13.2 in [L] essentially shows that FCO is Borel reducible to the (analytic) restriction of
≡i

c to the set of irreflexive relations G on a fixed countable dense subset of 2ω such that (2ω, G)
has no continuous 2-coloring. A very recent result, in [De-GR-Ka-Kun-Kw], asserts that FCO is
analytic complete as a set. As a consequence, this restriction is also analytic complete. We make such
statement more systematic, and partly in relation with the classes Cκ (resp., Hκ) of closed graphs
(resp., of graphs induced by a homeomorphism) introduced in Section 3.

Let κ<ℵ0, Cκ be the set of closed graphs on 2ω having no continuous κ-coloring, and

EC
κ :={(G,H)∈C2

κ | (2ω, G) ≡i
c (2

ω, H)}.

Now let κ ≤ 3, Hκ be the set of homeomorphisms of 2ω whose induced graph has no continuous
κ-coloring, and EH

κ := {(f, g) ∈ H2
κ | (2ω, Gf ) ≡i

c (2ω, Gg)}. Now let κ ≤ ℵ0, D be a countable
dense subset of 2ω, Dκ be the set of graphs G on D such that (2ω, G) has no continuous κ-coloring,
and ED

κ :={(G,H)∈D2
κ | (2ω, G) ≡i

c (2
ω, H)}.

Theorem 1.7 The spaces Cκ, Hκ and Dκ are Polish, and FCO is Borel reducible to the analytic
equivalence relations EC

κ , EH
κ and ED

κ . In particular, these relations are analytic complete as sets.

2 Fixed points

The set Ff := {x ∈ Domain(f) | f(x) = x} of fixed points of f is very much related to the
continuous colorings of Gf . The next two results are essentially Proposition 7.2 and Corollary 7.3 in
[L]. We recall them for the convenience of the reader.

Proposition 2.1 Let X be a first countable space, and f :X→X be a partial continuous function. If
Ff is not an open subset of Domain(f), then there is no continuous ℵ0-coloring of Gf .

Proof. We argue by contradiction, which gives c :X→ℵ0. Let (Ci)i∈ℵ0 be the partition of X into
clopen sets given by Ci := c−1({i}). As Ff is not open in Domain(f), we can find x ∈ Ff and
(xn)n∈ω∈(Domain(f)\Ff )

ω converging to x. Note that f(xn) is different from xn, and
(
f(xn)

)
n∈ω

converges to f(x)=x. Let i with x∈Ci. Then we may assume that xn, f(xn)∈Ci. This implies that(
xn, f(xn)

)
∈Gf ∩ C2

i , which is the desired contradiction. □
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Corollary 2.2 Let X be a 0DM space, and f :X→X be a partial continuous function with closed
domain.
(a) Exactly one of the following holds:

(1) Ff is an open subset of Domain(f),
(2) there is no continuous ℵ0-coloring of Gf .

(b) If Domain(f) is clopen in X , Ff is an open subset of Domain(f), f is injective and 1≤κ≤ℵ0,
then (X,Gf ) has a continuous κ-coloring if and only if (X \Ff , Gf ∩ (X \Ff )

2) has a continuous
κ-coloring.

Proof. (a) Assume that (1) holds. Note that s
(
Graph(f|Domain(f)\Ff

)
)

and ∆(X) are disjoint and
closed in X2. 22.16 in [K1] gives C ⊆X2 clopen with ∆(X)⊆C⊆X2\s

(
Graph(f|Domain(f)\Ff

)
)
.

The relation C gives a continuous ℵ0-coloring of Gf since X is zero-dimensional and second count-
able. So (2) does not hold.

If Ff is not an open subset of Domain(f), then we apply Proposition 2.1.

(b) Let c : X \Ff → κ be a continuous κ-coloring of (X \Ff , Gf ∩ (X \Ff )
2). We extend c to

X by setting c(x) := 0 if x ∈ Ff . As Ff is a clopen subset of the clopen set Domain(f), this
extension is continuous. If

(
x, f(x)

)
∈ Gf , then x /∈ Ff . As f is injective and Ff is f -invariant,

f [Domain(f)\Ff ] ∩ Ff =∅, so that f(x) /∈Ff . Thus c(x) ̸= c
(
f(x)

)
, showing that c is a κ-coloring

of (X,Gf ). Conversely, any continuous κ-coloring of (X,Gf ) defines a continuous κ-coloring of
(X\Ff , Gf ∩ (X\Ff )

2) by restriction. □

In particular, (nΣ, Gσ) has no continuous ℵ0-coloring if n is 1 or even.

Corollary 2.3 Let X be a 0DM space, and f be a homeomorphism of X . Then exactly one of the
following holds:

(1) Ff is an open subset of X ,
(2) (X1, Gf1) ⪯i

c (X,Gf ).

Proof. If (1) holds, then Corollary 2.2 provides a continuous ℵ0-coloring ofGf . If (2) also holds, then
Gf1 also has such a coloring c. AsFf1 ={0∞} is not an open subset of X1, this contradicts Proposition
2.1. So assume that (1) does not hold. Then we can find an injective sequence (xn)n∈ω of points of
X\Ff converging to a point x of Ff . Moreover, we may assume that {xm, f(xm)}∩{xn, f(xn)}=∅
if m ̸=n. We then set φ(0∞) :=x, φ(02n1∞) :=xn and φ(02n+11∞) :=f(xn), so that φ is a witness
for the fact that (X1, Gf1) ⪯i

c (X,Gf ). □

Remark. In the introduction, we mentioned the fact that (X1, Gf1) is not conjugate to the shift of a
two-sided subshift. Here’s the argument. We argue by contradiction. By Proposition 3.68 in [Ku],

∃n∈ω ∀x ̸=y∈X1 ∃k∈Z fk1 (x)|n ̸=fk1 (y)|n.

Fix n ∈ ω, and choose (x, y) := (02n1∞, 02n+11∞). Then fk1 (x)|n= fk1 (y)|n= 0n for each k ∈ Z,
which is the desired contradiction.

We will use the following fact, which is part of Proposition 7.6 in [L].

Proposition 2.4 (X1, Gf1) is ⪯i
c-minimal in the class of graphs on a 0DMC space having no contin-

uous 2-coloring.
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3 Basis made of minimal elements

The part (a) of Theorems 1.1, 1.2 and 1.5 is based on compactness. The first key fact is that it
is possible to keep a big chromatic number when we take infinite decreasing sequences of graphs or
spaces.

Lemma 3.1 Assume that 2 ≤ κ < ℵ0 is a cardinal, X is a 0DMC space, (Kp)p∈ω is a decreasing
sequence of closed subsets of X , (Gp)p∈ω is a decreasing sequence of closed graphs on X such
that, for each p ∈ ω, Gp ⊆ K2

p and (Kp, Gp) has no continuous κ-coloring, K :=
⋂

p∈ω Kp and
G :=

⋂
p∈ω Gp. Then (K,G) has no continuous κ-coloring.

Proof. We argue by contradiction, which gives a continuous coloring c :K → κ of (K,G). By 7.8
and 2.8 in [K1], there is a continuous extension c : X → κ of c. We set, for p ∈ ω and ε ∈ κ,
Kp

ε :=Kp ∩ c−1({ε}), so that (Kp
ε )ε∈κ is a partition of Kp into clopen subsets. By assumption, c|Kp

is not a κ-coloring of (Kp, Gp), which gives εp∈κ and (xp, yp)∈Gp ∩ (Kp
εp)

2. We may assume that
ε := εp does not depend on p. By compactness of X2, we may assume that

(
(xp, yp)

)
p∈ω converges

to some (x, y) ∈ K2. It remains to note that (x, y) ∈ G ∩
(
K ∩ c−1(ε)

)2, which is the desired
contradiction. □

We are now ready to prove Theorem 1.1 (a). Let Cκ be the class of closed graphs on a 0DMC
space having no continuous κ-coloring. When we write supp∈ω λp, we always assume that (λp)p∈ω
is a strictly increasing sequence of ordinals.

Proof of Theorem 1.1 (a). Note that (X,G)∈C0 exactly when X ̸= ∅, so that the singleton in (b) is
convenient. Note then that (X,G)∈C1 exactly when G ̸=∅, so that the singleton in (b) is convenient.

So we may assume that κ≥ 2. We argue by contradiction, which gives (X,G) ∈ Cκ such that,
for each (X ′, G′) ∈ Cκ with (X ′, G′) ⪯i

c (X,G), there is (X ′′, G′′) ∈ Cκ with the property that
(X ′′, G′′) ≺i

c (X
′, G′).

Claim. For each (X ′, G′)∈Cκ with (X ′, G′) ⪯i
c (X,G), there is (X ′′, G′′)∈Cκ such that X ′′⊆X ′

and G′′⫋G′.

Indeed, let X̃ be the projection proj[G′] of G′, and G̃ :=G′. Note that X̃= proj[G̃], (X̃, G̃)∈Cκ
and (X̃, G̃) ⪯i

c (X
′, G′) ⪯i

c (X,G). This gives ( ˜̃X, ˜̃G)∈Cκ with the property that ( ˜̃X, ˜̃G) ≺i
c (X̃, G̃).

Let h be a witness for the fact that ( ˜̃X, ˜̃G) ⪯i
c (X̃, G̃). We putX ′′ :=h[ ˜̃X] andG′′ :=(h×h)[ ˜̃G]. Note

that ( ˜̃X, ˜̃G) ⪯i
c (X ′′, G′′) ⪯i

c ( ˜̃X, ˜̃G) with witnesses h, h−1 respectively. In particular, (X ′′, G′′) is
in Cκ, X ′′⊆X̃=proj[G′]⊆X ′, and G′′⊆G̃=G′. If G′′=G′, then X ′′=X̃ and

(X̃, G̃)=(X ′′, G′′) ⪯i
c (

˜̃X, ˜̃G) ≺i
c (X̃, G̃),

which cannot be. ⋄
We inductively construct a ⊆-decreasing sequence (Xξ)ξ<ℵ1 and a strictly ⊆-decreasing sequence

(Gξ)ξ<ℵ1 such that (X0, G0) = (X,G) and (Xξ, Gξ) ∈ Cκ, which will contradict the fact that G
is a 0DMC space. If (Xξ, Gξ) is constructed, then the claim gives (Xξ+1, Gξ+1) ∈ Cκ such that
Xξ+1 ⊆ Xξ and Gξ+1 ⫋ Gξ. If λ = supp∈ω λp is a limit ordinal, then Lemma 3.1 applied to X ,
(Xλp)p∈ω and (Gλp)p∈ω implies, settingXλ :=

⋂
p∈ω Xλp andGλ :=

⋂
p∈ω Gλp , that (Xλ, Gλ)∈Cκ.

As Gλ⫋Gλp for each p∈ω, we are done. □
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We now study the graphs induced by a homeomorphism. Things become more complex since

- fixed poins can exist; when they cannot be avoided, the induced graph is not closed,
- the intersection of such a graph Gf with a closed square C2 is not necessarily of the form Gg; it is
of this form if C is f -invariant.

The next lemma is a first step towards invariance. It is about the preservation of the size of orbits
with at least three points under ⪯i

c.

Lemma 3.2 LetX be a topological space, f be a homeomorphism ofX , Y, g having the correspond-
ing properties and satisfying (X,Gf ) ⪯i

c (Y,Gg) with h as a witness, and x∈X with |Orbf (x)|≥3.
Then h[Orbf (x)]=Orbg

(
h(x)

)
, and either h◦f=g◦h on Orbf (x), or h◦f=g−1◦h on Orbf (x).

Proof. Let O := Orbf (x). As f|O is fixed point free,
(
x, f(x)

)
∈Gf . Thus

(
h(x), h

(
f(x)

))
∈Gg,

showing that h
(
f(x)

)
=g±1

(
h(x)

)
. In particular, h[O]⊆Orbg

(
h(x)

)
. We set

P :={z∈O | h
(
f(z)

)
=g

(
h(z)

)
}

and M := {z ∈ O | h
(
f(z)

)
= g−1

(
h(z)

)
}. As |O| ≥ 3, |Orbg

(
h(x)

)
| ≥ 3 by injectivity of h,

and P and M are disjoint closed subsets of O = P ∪M . If z ∈ P , then f(z) ∈ P since otherwise
f(z) ∈M , h

(
f2(z)

)
= g−1

(
h
(
f(z)

))
= h(z), f2(z) = z by injectivity of h, which contradicts the

fact that |O|≥3. Thus O=P or O=M . In particular, either h
(
f i(x)

)
=gi

(
h(x)

)
for each i∈Z, or

h
(
f i(x)

)
=g−i

(
h(x)

)
for each i∈Z. In both cases, we get h[O]=Orbg

(
h(x)

)
. □

The next lemma is about the preservation of the size of orbits of size two under ⪯i
c (an orbit of

size two could be sent into a bigger orbit since we consider symmetrizations). Let Hκ be the class of
graphs, induced by a homeomorphism of a 0DMC space, having no continuous κ-coloring. We set,
for (X,Gf )∈Hκ, FX,f

2 :={x∈X | f2(x)=x}.

Lemma 3.3 Let (X,Gf ), (Y,Gg)∈Hκ such that (X,Gf ) ⪯i
c (Y,Gg) with h as a witness and FX,f

2

is nowhere dense in X , and x∈X with |Orbf (x)|=2. Then h[Orbf (x)] is a g-orbit of size two.

Proof. As FX,f
2 is nowhere dense in X , we can find a sequence (xn)n∈ω of points of X \FX,f

2

converging to x. Note that |Orbf (xn)| ≥ 3 for each n∈ω. We set yn := h(xn), so that h[Orbf (xn)]
is Orbg(yn) by Lemma 3.2. We set z := f(x), so that (x, z) ∈ Gf since |Orbf (x)| = 2. Thus(
h(x), h(z)

)
∈Gg, which gives θ∈{−1, 1} with h(z)=gθ

(
h(x)

)
. Similarly, there is, for each n∈ω,

θn ∈ {−1, 1} with h
(
f(xn)

)
= gθn(yn), and we may assume that θn = θ0 for each n ∈ ω. Thus

h(z) = gθ0
(
h(x)

)
. So we are done if θ ̸= θ0 since h(z)∈ Orbg

(
h(x)

)
\{h(x)}. So we may assume

that θ = θ0. As |Orbf (xn)| ≥ 3, f−1(xn) ̸= f(xn) and h
(
f−1(xn)

)
̸= h

(
f(xn)

)
. This implies that

h
(
f−1(xn)

)
= g−θ0(yn). Thus h

(
f−1(x)

)
= g−θ0

(
h(x)

)
. As |Orbf (x)|=2, f−1(x)= f(x)= z, so

that gθ0
(
h(x)

)
=gθ

(
h(x)

)
=h(z)=g−θ0

(
h(x)

)
. □

In the next proof, we also have to deal with orbits of size one. We are now ready to prove Theorem
1.2 (a).

Proof of Theorem 1.2 (a). As in the proof of Theorem 1.1 (a), we may assume that κ≥2. We argue
by contradiction, which gives (X,Gf )∈Hκ such that, for each (X ′, Gf ′)∈Hκ with the property that
(X ′, Gf ′) ⪯i

c (X,Gf ), there is (X ′′, Gf ′′)∈Hκ with (X ′′, Gf ′′) ≺i
c (X

′, Gf ′).
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If Ff is not an open subset ofX , then (X1, Gf1) ⪯i
c (X,Gf ) by Corollary 2.3. By Corollaries 2.3

and 2.2, (X1, Gf1)∈Hκ. Our assumption gives (X ′′, Gf ′′)∈Hκ with the property that (X ′′, Gf ′′) is
strictly ⪯i

c-below (X1, Gf1), which contradicts Proposition 2.4. This shows that Ff is an open subset
of X . Corollary 2.2 then shows that we may assume that f is fixed point free. In particular, there is a
ℵ0-coloring of (X,Gf ), by Corollary 2.2, so that κ<ℵ0.

Claim. For each (X ′, Gf ′)∈Hκ with (X ′, Gf ′) ⪯i
c (X,Gf ), there is (X ′′, Gf ′′)∈Hκ such that f ′′

is fixed point free, (X ′′, Gf ′′) ⪯i
c (X

′, Gf ′) and FX′′,f ′′

2 is nowhere dense in X ′′.

Indeed, we argue by contradiction, which gives (X ′, Gf ′)∈Hκ. As (X ′, Gf ′) ⪯i
c (X,Gf ), there

is also a ℵ0-coloring of (X ′, Gf ′). Corollary 2.2 then shows that we may assume that f ′ is fixed point
free. We inductively construct a strictly ⊆-decreasing sequence (Xξ)ξ<ℵ1 such that X0 = X ′, Xξ

is f ′-invariant and (Xξ, Gf ′ ∩ X2
ξ ) ∈ Hκ, which will contradict the fact that X ′ is a 0DMC space.

Assume that Xξ is constructed. Note that F
Xξ,f

′
|Xξ

2 is closed and not nowhere dense in Xξ. This

gives a nonempty clopen subset C of Xξ with the property that C ⊆ F
Xξ,f

′
|Xξ

2 . Note that the set

U :=C ∪ f ′[C] is a nonempty clopen f ′-invariant subset of Xξ contained in F
Xξ,f

′
|Xξ

2 . In particular,
U is a ODM separable space and f ′|U is a fixed point free continuous involution. Proposition 7.5
in [L] provides a continuous 2-coloring of (U,Gf ′

|U
). All this implies that Xξ+1 := Xξ \U ⫋ Xξ,

Xξ+1 is f ′-invariant and (Xξ+1, Gf ′ ∩X2
ξ+1)∈Hκ. If λ= supp∈ω λp is a limit ordinal, then Lemma

3.1 applied to X ′, Gλp :=Gf ′ ∩ X2
λp

and (Xλp)p∈ω implies, setting Xλ :=
⋂

p∈ω Xλp , that Xλ is
f ′-invariant and (Xλ, Gf ′ ∩X2

λ)∈Hκ. As Xλ⫋Xλp for each p∈ω, we are done. ⋄
We inductively construct a strictly ⊆-decreasing sequence (Xξ)ξ<ℵ1 such that X0 = X , Xξ is

f -invariant and (Xξ, Gf ∩X2
ξ )∈Hκ, which will contradict the fact thatX is a 0DMC space. Assume

that Xξ is constructed. Our assumption gives (X ′, Gf ′) ∈ Hκ with the property that (X ′, Gf ′) is
stricly ⪯i

c-below (Xξ, Gf ∩ X2
ξ ). The claim gives (X ′′, Gf ′′)∈Hκ such that f ′′ is fixed point free,

(X ′′, Gf ′′) ⪯i
c (X ′, Gf ′) and FX′′,f ′′

2 is nowhere dense in X ′′. In particular, (X ′′, Gf ′′) is strictly
⪯i

c-below (Xξ, Gf ∩ X2
ξ ). Let h be a witness for the fact that (X ′′, Gf ′′) ⪯i

c (Xξ, Gf ∩ X2
ξ ). The

fact that f ′′ is fixed point free and Lemmas 3.2, 3.3 imply that Xξ+1 := h[X ′′]⊆Xξ is f -invariant.
Moreover, (h×h)[Gf ′′ ]⊆Gf ∩X2

ξ+1 and (X ′′, Gf ′′) ⪯i
c (Xξ+1, (h×h)[Gf ′′ ]) with h as a witness,

so that (Xξ+1, Gf ∩ X2
ξ+1) ∈ Hκ. If (y0, y1) ∈Gf ∩ X2

ξ+1, then let x0, x1 ∈X ′′ with yε = h(xε).

Note that
(
x0, f

′′θ(x0)
)
∈ Gf ′′ for each θ ∈ {−1, 1} since f ′′ is fixed point free, which implies

that
(
h(x0), h

(
f ′′θ(x0)

))
∈Gf . If |Orbf ′′(x0)| ≥ 3, then h

(
f ′′(x0)

)
̸= h

(
f ′′−1(x0)

)
is of the form

fη
(
h(x0)

)
for some η ∈ {−1, 1}. This gives η0, θ0 ∈ {−1, 1} with y1=fη0

(
h(x0)

)
=h

(
f ′′θ0(x0)

)
.

Thus x1 = f ′′θ0(x0), (x0, x1) ∈ Gf ′′ , and (y0, y1) ∈ (h× h)[Gf ′′ ]. If |Orbf ′′(x0)| < 3, then
|Orbf ′′(x0)|= 2 since f ′′ is fixed point free, and h[Orbf ′′(x0)] is an f -orbit of size two by Lemma
3.3. The conclusion is the same, with η0= θ0=1. So we proved that (h×h)[Gf ′′ ] =Gf ∩X2

ξ+1 in
any case. Now note that (Xξ+1, Gf ∩ X2

ξ+1) = (Xξ+1, (h×h)[Gf ′′ ]) ⪯i
c (X ′′, Gf ′′) with h−1 as a

witness, so that (Xξ+1, Gf ∩X2
ξ+1) ≺i

c (Xξ, Gf ∩X2
ξ ), proving that Xξ+1⫋Xξ. If λ= supp∈ω λp

is a limit ordinal, then Lemma 3.1 applied to X , Gλp := Gf ∩ X2
λp

and (Xλp)p∈ω implies, setting
Xλ :=

⋂
p∈ω Xλp , that Xλ is f -invariant and (Xλ, Gf ∩X2

λ)∈Hκ. As Xλ⫋Xλp for each p∈ω, we
are done. □
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We now study subshifts. We have to find another solution when fixed points cannot be avoided
since (X1, Gf1) is not conjugate to the shift of a two-sided subshift. If x∈AZ and j≤k are integers,
then we define x[j,k]∈Ak−j+1 by x[j,k] :=

(
x(j), · · · , x(k)

)
.

Lemma 3.4 Let Σ⊆AZ be a two-sided subshift, l ∈ω, a0, · · ·, al ∈A, and (xn)n∈ω be an injective
sequence of points of Σ converging to (a0· · ·al)Z. Then we can find s∈Al+1\{(a0· · ·al)} and γ∈Aω

with (a0· · ·al)−∞ ·sγ∈Σ or γ−1s·(a0· · ·al)∞∈Σ.

Proof. We may assume, for example, that xn[−kn(l+1),kn(l+1)−1]=(a0· · ·al)2kn ,

xn[kn(l+1),(kn+1)(l+1)−1]

is a constant s ̸= (a0· · ·al), and kn → ∞. By compactness, we may assume that the sequence
(xn[kn(l+1),∞))n∈ω converges to some sγ in Aω. Note that (a0· · ·al)−∞ ·sγ∈Σ. □

We also need a version of Lemma 3.1 for subshifts. Let Sκ be the class of graphs, induced by the
shift of a two-sided subshift, having no continuous κ-coloring.

Lemma 3.5 Let (Σp)p∈ω be a decreasing sequence of two-sided subshifts such that, for each p∈ω,
(Σp, Gσ)∈Sℵ0 , and Σ:=

⋂
p∈ω Σp. Then (Σ, Gσ)∈Sℵ0 .

Proof. Assume that Σ0 ⊆AZ. Note that σ|Σ0
has finitely many fixed points since these fixed points

are of the form aZ for a∈A and A is finite. As (Σp, Gσ)∈Sℵ0 , we can find a∈A such that, for any
p∈ω, aZ ∈Σp is not isolated in Σp. Lemma 3.4 provides b∈A\{a} and, for example and for each
p ∈ ω, γp ∈Aω such that a−∞ ·bγp is in Σp. Extracting a subequence if necessary, we may assume
that (a−∞ ·bγp)p∈ω converges to a−∞ ·bγ ∈ Σ0, by compactness. Note that a−∞ ·bγ ∈ Σ, so that
(Σ, Gσ)∈Sℵ0 . □

We are now ready to prove Theorem 1.5 (a).

Proof of Theorem 1.5 (a). As in the proof of Theorem 1.1 (a), we may assume that κ≥2. We argue
by contradiction, which gives (Σ, Gσ)∈Sκ such that, for each (Σ′, Gσ)∈Sκ with the property that
(Σ′, Gσ) ⪯i

c (Σ, Gσ), there is (Σ′′, Gσ)∈Sκ with (Σ′′, Gσ) ≺i
c (Σ

′, Gσ).

Case 1. There is (Σ′, Gσ)∈Sκ with (Σ′, Gσ) ⪯i
c (Σ, Gσ) such that σ|Σ′ is fixed point free.

We can copy the proof of Theorem 1.2 (a) to conclude.

Case 2. For each (Σ′, Gσ)∈Sκ with (Σ′, Gσ) ⪯i
c (Σ, Gσ), σ|Σ′ is not fixed point free.

Claim 1. For each (Σ′, Gσ)∈Sκ with (Σ′, Gσ) ⪯i
c (Σ, Gσ), there is (Σ′′, Gσ)∈Sκ with Σ′′⊆Σ′ and

Σ′′ has a dense infinite orbit, and (Σ′, Gσ)∈Sℵ0 .

Indeed, assume that Σ′⊆AZ. Note that σ|Σ′ has finitely many fixed points since these fixed points
are of the form aZ for a∈A and A is finite. Let U := {aZ ∈Σ′ | aZ is isolated in Σ′}. Note that U
is a clopen σ|Σ′-invariant subset of Σ′, and Gσ|Σ′\U =Gσ|Σ′ , so that (Σ′\U,Gσ)∈Sκ. As we are in
Case 2, σ|Σ′\U is not fixed point free, which gives aZ∈Σ′ and a sequence (xn)n∈ω of points of Σ′\Fσ

converging to aZ. Lemma 3.4 applied to Σ′, l :=0 and a0 :=a provides b∈A\{a} and γ ∈Aω such
that, for example, x := a−∞ ·bγ ∈ Σ′. In particular, aZ ∈ Orbσ(x). So we proved the existence of
x∈Σ′\Fσ such that aZ∈Orbσ(x). So Σ′′ :=Orbσ(x) is as desired since aZ is a witness for the fact
that (Σ′′, Gσ)∈Sℵ0 ⊆Sκ. ⋄
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Claim 2. There is Σ′⊆Σ such that (Σ′, Gσ)∈Sκ, Σ′ contains a dense infinite orbit O and, for each
(Σ′′, Gσ)∈Sκ with Σ′′⊆Σ′, Σ′′ ∩O is infinite.

Indeed, we argue by contradiction. We inductively construct a strictly ⊆-decreasing sequence
(Σξ)ξ<ℵ1 such that Σ0=Σ and (Σξ, Gσ)∈Sκ, which will contradict the fact that Σ is a 0DMC space.
Assume that Σξ is constructed, which is the case for ξ=0. Claim 1 gives (Σ′, Gσ)∈Sκ with Σ′⊆Σξ

and Σ′ has a dense infinite orbit O. Our assumption gives (Σξ+1, Gσ) ∈ Sκ with Σξ+1 ⊆ Σ′ and
Σξ+1 ∩ O is finite. In particular, Σξ+1⫋Σξ. If (λp)p∈ω is strictly increasing and λ= supp∈ω λp is a
limit ordinal, then we set Σλ :=

⋂
p∈ω Σλp . By Lemma 3.5, (Σλ, Gσ)∈Sκ. As Σλ ⫋Σλp for each

p∈ω, we are done. ⋄
Let (Σ0, Gσ) ∈ Sκ such that (Σ0, Gσ) ≺i

c (Σ′, Gσ). Claim 1 provides (Σ′
0, Gσ) ∈ Sκ with

Σ′
0⊆Σ0 and Σ′

0 has a dense infinite orbit O0. Note that (Σ′
0, Gσ) ⪯i

c (Σ
′, Gσ), with h as a witness,

and h[O0] is an infinite orbit, by Lemma 3.2. We set Σ′′ :=h[O0]. Then Σ′′⊆Σ′, h is a witness for
the fact that (Σ′

0, Gσ) ⪯i
c (Σ′′, Gσ), and thus (Σ′′, Gσ) ∈ Sκ. Let O be the orbit given by Claim 2.

By Claim 2, Σ′′ ∩ O is infinite. As Σ′′ is contained in the closed set h[Σ′
0], h[Σ

′
0] ∩ O is infinite.

As Σ′
0 has a dense infinite orbit, FΣ′

0,σ
2 is nowhere dense in Σ′

0. As Σ′
0 has finitely many fixed

points and a finite orbit of size at least two is sent onto an orbit of the same size by h by Lemmas
3.2, 3.3, there is z0 ∈ Σ′

0 with an infinite orbit sent into O. This implies that h[Orb(z0)] = O and
there is η ∈ {−1, 1} such that h ◦σ = ση ◦h on Orb(z0), by Lemma 3.2. In particular, the set
O is contained in the compact set h[Σ′

0], showing that h is onto, and thus a homeomorphism, by
compactness. In particular, Orb(z0) is dense in Σ′

0. This implies that h ◦σ = ση ◦h on Σ′
0. If

y ̸= σ(y) ∈ Σ′ and, for example, η = −1, then we set z := σ(y). Let x ∈ Σ′
0 with z = h(x). Note

that
(
y, σ(y)

)
=

(
σ−1(z), z

)
=

(
σ−1

(
h(x)

)
, h(x)

)
=

(
h
(
σ(x)

)
, h(x)

)
∈ (h×h)[Gσ], showing that

(h×h)[Gσ] = Gσ. Thus (Σ′, Gσ) ⪯i
c (Σ′

0, Gσ) ⪯i
c (Σ0, Gσ), which is the desired contradiction

concluding the proof. □

4 Concrete countable basis

We already checked the part (b) of Theorems 1.1, 1.2 and 1.5 when κ≤1.

Proof of Theorem 1.2 (b) when κ ≥ 3. Let X be a 0DMC space, and f be a homeomorphism of
X such that (X,Gf ) has no continuous κ-coloring. If Ff is an open subset of X , then there is a
continuous ℵ0-coloring of Gf , by Corollary 2.2. By Theorem 1.12 in [L], there is a continuous 3-
coloring of Gf , which contradicts the fact that κ≥3. Thus Ff is not an open subset of X and we can
apply Corollary 2.3. □

In this section, it remains to study the part (a) of Theorems 1.4 and 1.6.

4.1 Some general facts about symmetric relations

Let X be a set, R be a relation on X , κ be a countable cardinal, and x := (xi)i<κ be a sequence
of elements of X . Recall that x is a R-walk if (xi, xi+1) ∈R whenever i+1< κ. A R-path is an
injective R-walk. We say that x is a R-cycle if 3 ≤ κ < ℵ0, x is a R-path and (xκ−1, x0) ∈ R. A
connected component of (X,R) is a subset C of X such that, for each x∈C,

C={y∈X | ∃x R-path with 1≤κ<ℵ0, x0=x and xκ−1=y}.
We say that (X,R) is connected if X is a connected component of (X,R).
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The following fact is very classical.

Lemma 4.1.1 Let X be a set, and G be a symmetric relation on X . Exactly one of the following
holds:

(1) there is a 2-coloring of (X,G),
(2) we can find m∈ω and (xi)i≤2m∈X2m+1 such that (xi, xi+1)∈G for each i≤2m (with the

convention x2m+1 :=x0).

In particular, (2q+3, C2q+3) has no continuous 2-coloring.

4.2 Isolated finite 2-colorable connected components

The next two results will allow us to remove the isolated finite 2-colorable connected components.

Lemma 4.2.1 Let X be a 0DMC space, G be a closed graph on X , and

O :=
⋃
{C⊆X\X ′ | C finite (X,G)-connected component and (C,G ∩ C2) has a 2-coloring}.

If (X\O,G ∩ (X\O)2) has a continuous 2-coloring, then so does (X,G).

Proof. Let c :X\O→2 be a continuous 2-coloring of (X\O,G∩ (X\O)2). AsO is an open subset of
the 0DM space X , X\O is closed and there is a clopen partition (Pε)ε∈2 of X with Pε\O=c−1({ε})
(see 22.16 in [K1]).

Let us prove that if x /∈O, then there is an open neighbourhood Nx of x such that Nx ⊆ Pc(x),
and y ∈ P1−c(x) if there is x′ ∈ Nx with (x′, y) ∈ G. We argue by contradiction. Let (Ni)i∈ω
be a decreasing basis of open neighbourhoods of x contained in Pc(x). Then for each i there is
(xi, yi) ∈ G ∩ (Ni×Pc(x)). Note that (xi)i∈ω converges to x, and we may assume that (yi)i∈ω
converges to some y∈Pc(x) by compactness of X . As G is closed, (x, y)∈G. As x /∈O and O is a
union of connected components, y /∈O, which contradicts the fact that c is a coloring.

We now set N :=
⋃
{Nx | x /∈O}, and define c :N → 2 by c(y) := c(x) if x /∈O and y ∈Nx.

This definition is correct since x, x′ /∈O and y ∈Nx ∩ Nx′ imply that c(x) = c(x′). If x, z /∈O and
(x′, y) ∈ G ∩ (Nx×Nz), then c(x′) = c(x) ̸= c(z) = c(y) since y ∈ P1−c(x) ∩ Pc(z). Thus c is a
2-coloring of (N,G ∩N2). By definition, c is continuous.

Now note that X\N is finite, since otherwise there is an injective sequence (wi)i∈ω of elements
of X\N , and we may assume that it converges to some w∈X by compactness of X . As X\O⊆N ,
X \N ⊆ O ⊆ X \X ′, so that w ∈ X ′ ⊆ N and wi ∈ N if i is big enough, which is the desired
contradiction.

As X \N is finite, the set I :=
⋃
{C | C appears in the definition of O and C \N ̸= ∅} is finite

and G-invariant. We restrict c to N \I and extend this restriction using any 2-coloring on each of the
components of I to conclude. □

Corollary 4.2.2 Let X be a 0DMC space, f be a fixed point free homeomorphism of X , and

O :=
⋃

{Orb(x) finite of even cardinality | x∈X\X ′}.

If (X\O,Gf ∩ (X\O)2) has a continuous 2-coloring, then so does (X,Gf ).

Note that in this section there is no upper bound on the Cantor-Bendixson rank of X .
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4.3 Finiteness results

Convention. In this section, X is a countable MC space, and f is a homeomorphism of X .

The following classical fact will be used a lot.

Lemma 4.3.1 Assume that X has Cantor-Bendixson rank β+1. Then Xβ is finite.

Proof. Xβ is compact and discrete, and thus finite. □

In practice, in our spaces of Cantor-Bendixson rank at most two, we will consider a partition of
the Cantor-Bendixson derivative into finitely many (closed) invariant sets.

Lemma 4.3.2 Let C be a clopen f -invariant subset of X ′, O be an open subset of X containing C,
and (xn)n∈ω be a sequence of points of X\X ′ converging to a point of C. Then

{Orb(xn) | n∈ω and Orb(xn) ̸⊆O}

is finite.

Proof. Note that C,X ′\C are disjoint and clopen in X ′, and thus closed in the compact space X . If
y∈C, then y, f(y), f−1(y) are in the open set V :=X\(X ′\C), which gives an open neighbourhood
Ny of y with Ny ⊆ O ∩ V ∩ f−1(V ) ∩ f [V ]. The compactness of C provides F ⊆ C finite such
that C ⊆N :=

⋃
y∈F Ny ⊆N =

⋃
y∈F Ny ⊆ V ∩ f−1(V ) ∩ f [V ]. In particular, X ′\C =X \V is

contained in the open set U :=X \
(
N ∪ f [N ] ∪ f−1(N)

)
. Note that we can find n0 ∈ ω such that

xn ∈N if n≥n0. We set M := {n≥n0 | ∃m∈ω fm(xn)∈N ∧ fm+1(xn) /∈N}. If n∈M , then
there is mn ∈ω with fmn+1(xn) /∈N ∪ U . As X ′⊆N ∪ U , X \(N ∪ U) is finite. This shows that
{Orbf (xn) | n∈M} is finite. Moreover, {fm(xn) | m∈ω}⊆N ⊆O if n0≤n /∈M . We can argue
similarly with f−1 instead of f , so that {Orbf (xn) | n∈ω ∧ Orbf (xn) ̸⊆O} is finite. □

Notation. If b is a bijection of a set S, x∈S and d∈ {−,+}, then we set

Orbdb (x) :={bdi(x) | i∈ω}.

Convention. In the rest of this section, we assume the existence of κ ∈ ω and a (finite) partition
(Cj)j≤κ of X ′ into closed f -invariant sets.

The next lemma controls the closures of the orbits and is a basic tool.

Lemma 4.3.3 Assume that x∈X \X ′ has an infinite orbit. Then we can find j−, j+ ≤ κ such that,
for each d∈ {−,+}, Orbd(x)⊆Orbd(x) ∪ Cjd .

If moreover the Cj’s are orbits, then X ′ is finite and we can find y−, y+∈X ′ such that, for each
d∈ {−,+}, Orbd(x)=Orbd(x) ∪ Orb(yd) and

(
fdq|Orb(yd)|(x)

)
q∈ω converges to yd.

Proof. We first prove the following.

Claim. Let S be a closed subset of X ′, and 1≤κ′∈ω such that the limit points of {f qκ′
(x) | q∈ω}

are in S. Then it is not possible to find disjoint fκ
′
-invariant subsets S0, S1 clopen in S for which we

can find, for each ε∈2, yε∈Sε and (qεj )j∈ω such that
(
f q

ε
jκ

′
(x)

)
j∈ω converges to yε.
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Indeed, we argue by contradiction. Note that S0, S\S0 are disjoint and closed in S and X ′, and
thus closed in the compact space X . If y ∈ S0, then y, fκ

′
(y) are in the open set O :=X \(S\S0),

which gives an open neighbourhood Ny of y with Ny ⊆ O ∩ f−κ′
(O). The compactness of S0

provides F ⊆ S0 finite such that S0 ⊆ N :=
⋃

y∈F Ny ⊆ N =
⋃

y∈F Ny ⊆ O ∩ f−κ′
(O). In

particular, S \S0 = X \O is contained in the open set N ′ := X \ (N ∪ fκ
′
[N ]). Note that the set

{q∈ω | f qκ′
(x)∈N ∧ f (q+1)κ′

(x) /∈N}, and thus {q∈ω | f (q+1)κ′
(x) /∈N ∪N ′}, are infinite. By

compactness, a subsequence of these f (q+1)κ′
(x)’s has to converge to a point of S⊆N ∪N ′, which

is the desired contradiction. ⋄
As Orb(x) is infinite, the sequence

(
fn(x)

)
n∈ω is injective and contained in the discrete space

X\X ′. The compactness of X provides a strictly increasing sequence (nq)q∈ω and y+∈X ′ such that(
fnq(x)

)
q∈ω converges to y+. Fix j+≤κ with y+∈Cj+ . The claim applied to S :=X ′=

⋃
j≤κ Cj

and κ′ :=1 shows that Orb+(x)⊆Orb+(x) ∪ Cj+ .

If the Cj’s are orbits, then Cj+ =Orb(y+), so that Orb+(x)⊆Orb+(x) ∪ Orb(y+). As y+ is in
Orb+(x), we actually have equality since f is a homeomorphism. As X ′ is a nonempty countable
MC space, there is a countable ordinal β such thatX ′ has Cantor-Bendixson rank β+1. Thus (X ′)β is
nonempty finite by Lemma 4.3.1. If β=0, then X ′ is finite. If β≥1 and z∈X ′\(X ′)β has an infinite
orbit, then this orbit is not closed, which contradicts our assumptions on the Cj’s. This shows that X ′

has finite orbits and β=0. In particular, we may assume that y+ is a limit point of {f qκ′
(x) | q∈ω},

where κ′ := |Orb(y+)|. This gives (ql)l∈ω such that
(
f qlκ

′
(x)

)
l∈ω converges to y+. The claim applied

to S :=Orb(y+) and κ′ implies that
(
f qκ

′
(x)

)
q∈ω converges to y+.

We argue similarly with Orb−(x) instead of Orb+(x). □

There is no upper bound on the Cantor-Bendixson rank of X in Lemma 4.3.2, the first part of
Lemma 4.3.3, and Lemmas 4.3.4, 4.3.5 to come. The next two results complete Lemma 4.3.3.

Lemma 4.3.4 Let j− ̸= j+ ≤ κ, O−, O+ be disjoint open subsets of X such that Cj− ⊆ O− and⋃
j− ̸=j≤κ Cj⊆O+, and (xn)n∈ω be a sequence of points of X\X ′ such that Orb(xn) is infinite and

Orb+(xn) meets O− and O+ for each n. Then the set {Orb(xn) | n∈ω} is finite. In particular, the
set {Orb(x) infinite | x∈X\X ′ and ∀d∈{−,+} Orbd(x)⊆Orbd(x) ∪ Cjd} is finite.

Proof. Note that the sets Cj− ,
⋃

j− ̸=j≤κ Cj are disjoint and clopen in X ′, and thus closed in the
compact space X . We argue by contradiction, so that we may assume that

(
Orb(xn)

)
n∈ω is injective.

If n ∈ ω, then we can find, for each d ∈ {−,+}, (mn,d
q )q∈ω strictly increasing and ydn ∈ Od such

that
(
fm

n,d
q (xn)

)
q∈ω converges to ydn . In particular, we may assume that fm

n,d
q (xn) ∈ Od. This

gives (pn)n∈ω such that fpn(xn)∈X \O+ and fpn+1(xn)∈O+ ⊆X \O−. The compactness of X
provides y ∈X ′ such that

(
fpn(xn)

)
n∈ω converges to y ∈X ′ \O+ = Cj− . As Cj− is f -invariant,

f(y) ∈ Cj− ⊆ O−. On the other hand, f(y) = limn→∞ fpn+1(xn) /∈ O−, which is the desired
contradiction.

For the last assertion, assume that
(
Orb(xn)

)
n∈ω is a sequence of elements of our set. The

compactness provides, for each n and each d∈ {−,+}, (ln,dq )q∈ω strictly increasing and ydn in Cjd

such that
(
fdl

n,d
q (xn)

)
q∈ω converges to ydn . In particular, we may assume that fdl

n,d
q (xn) ∈Od, so

that Orb
(
f−ln,−

q (xn)
)
=Orb(xn) and Orb+

(
f−ln,−

q (xn)
)

meets O− and O+. □
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Convention. In the rest of this section, we assume the existence of a continuous 2-coloring c of
(X ′, Gf ∩ (X ′)2).

Notation. In order to simplify the notation, we will sometimes identify κ with Z/κZ when κ≥ 2 is
finite. For example, the parity par(n) of n∈Z will often be viewed as an element of Z/2Z. We set,
for j≤κ and ε∈2, Cε

j :=Cj ∩ c−1({ε}).

Lemma 4.3.5 Let d∈{−,+}, j≤κ, ε∈2, and x∈X\X ′ for which there is a sequence (mq)q∈ω of
natural numbers of constant parity such that

(
fdmq(x)

)
q∈ω converges to a point of Cε

j . Then
Orbdf2

(
fpar(m0)(x)

)
⊆Orbdf2

(
fpar(m0)(x)

)
∪ Cε

j ,

Orbdf2

(
f1−par(m0)(x)

)
⊆Orbdf2

(
f1−par(m0)(x)

)
∪ C1−ε

j .

Proof. Note that Orb(x) is infinite since x∈X\X ′ and Cj⊆X ′. It remains to apply Lemma 4.3.3 to
f2 and (Cε

j )j≤κ,ε∈2. □

4.4 Some general facts about homeomorphisms

The next lemma provides a sufficient condition for minimality.

Notation. Let G be the class of graphs induced by a homeomorphism of a MC space having no
continuous 2-coloring.

Lemma 4.4.1 Let Y be a 0DMC space, h be a fixed point free homeomorphism of Y such that (Y,Gh)
has no continuous 2-coloring, and S be a dense subset of Y with the property that for any V ⊆ Y ,
for any graph H on V contained in Gh such that (V,H) has no continuous 2-coloring, and for any
y∈S,

(
y, h(y)

)
∈H holds. Then (Y,Gh) is ⪯i

c-minimal in G and in the class of closed graphs on a
MC space having no continuous 2-coloring.

Proof. Assume that (K,G)∈G and (K,G) ⪯i
c (Y,Gh) with φ as a witness. Corollary 2.3 in [Kr-St]

shows that (Y,Gh) has a continuous 3-coloring, which implies that (K,G) too. By compactness, K
is homeomorphic to a subspace of Y , so that K is 0D. As (K,G) ∈G, there is a homeomorphism
g :K→K with G=Gg. In particular, the set Fg of fixed points of g is a clopen subset of K, and
(K \Fg, Gg ∩ (K \Fg)

2) has no continuous 2-coloring, by Corollary 2.2.(b). This implies that we
may assume that g is fixed point free, so that G is compact. We set V :=φ[K] and H := (φ×φ)[G],
so that V ⊆ Y , H ⊆ Gh is a compact graph on V , (K,G) ⪯i

c (V,H) with φ as a witness, and
(V,H) ⪯i

c (K,G) with φ−1 as a witness by compactness. Note that
(
y, h(y)

)
∈H if y ∈S, by our

assumption. The density of S in Y and the compactness of H then imply that Graph(h)⊆H . As H
is a graph, we get H=Gh and therefore V =Y . Thus (Y,Gh) ⪯i

c (K,G) and (Y,Gh) is ⪯i
c-minimal

in G, and also in the class of closed graphs on a MC space having no continuous 2-coloring. □

Corollary 4.4.2 Let q be a natural number. Then (2q+3, C2q+3) is ⪯i
c-minimal in G and in the class

of closed graphs on a MC space having no continuous 2-coloring.
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Proof. Note that Y := 2q+3, equipped with the discrete topology, is a 0DMC space. The formula
h(i) := (i+1) mod (2q+3) defines a fixed point free homeomorphism h of Y , and C2q+3 = Gh.
Lemma 4.1.1 implies that (Y,Gh) has no continuous 2-coloring. Any dense subset of Y is equal to
Y . If V ⊆Y , H is a graph on V contained in Gh such that (V,H) has no continuous 2-coloring, and
y∈Y , then

(
y, h(y)

)
∈H . Indeed, we argue by contradiction, and we may assume that y=2q+2, the

other cases being similar. Then the formula c(x) :=par(x) defines a continuous 2-coloring of (V,H),
which cannot be. It remains to apply Lemma 4.4.1. □

Remark. (2q+3, C2q+3) is in fact ⪯i
c-minimal in the class of graphs on a Hausdorff topological space

having no continuous 2-coloring.

The following result is also without upper bound on the rank.

Convention. In the rest of this section, we assume that X is a countable 0DMC space, f is a home-
omorphism of X such that (X ′, Gf ∩ (X ′)2) has a continuous 2-coloring c, κ∈ω, and (Cj)j≤κ is a
partition of X ′ into closed f -invariant sets.

Notation. Let F :={Cε
j | ε∈2 and j≤κ}. We define relations D′, E′ on F by

(Cε
j , C

ε′
j′ )∈D′ ⇔ (ε ̸=ε′ and j=j′) or

∃x∈X\X ′ ∃(mq)q∈ω, (nq)q∈ω∈ωω with constant parity such that

m0+n0 is odd and limq→∞ f−mq(x)∈Cε
j and limq→∞ fnq(x)∈Cε′

j′ ,

(Cε
j , C

ε′
j′ )∈E′ ⇔ ∃x∈X\X ′ ∃(mq)q∈ω, (nq)q∈ω∈ωω with constant parity such that

m0+n0 is even and limq→∞ f−mq(x)∈Cε
j and limq→∞ fnq(x)∈Cε′

j′ ,

and set D :=s(D′) and E :=s(E′).

Lemma 4.4.3 Assume that f is fixed point free and X \X ′ contains only infinite orbits. Then, with
the notation just above, if there is g :F→2 satisfying{

∀(Cε
j , C

ε′
j′ )∈D g(Cε

j ) ̸=g(Cε′
j′ ),

∀(Cε
j , C

ε′
j′ )∈E g(Cε

j )=g(C
ε′
j′ ),

then (X,Gf ) has a continuous 2-coloring.

Proof. We define c : X → 2 as follows. If y ∈ X ′, then there is a unique Cε
j ∈ F with y ∈ Cε

j .
We put c(y) := g(Cε

j ). If x ∈X \X ′, then Orb(x) is infinite, and Lemma 4.3.3 provides a unique

j− ≤ κ such that Orb−(x)⊆ Orb−(x) ∪ Cj− . As X \X ′ is discrete and Orb(x) is infinite, there is
(mq)q∈ω∈ωω with constant parity strictly increasing such that

(
f−mq(x)

)
q∈ω converges to a point of

Cj− . Replacing mq with mq+1 if necessary, we may assume that this limit is in C0
j− . Lemma 4.3.5

applied to d :=−, j := j− and ε := 0 implies that Orb−
f2

(
fpar(m0)(x)

)
⊆Orb−

f2

(
fpar(m0)(x)

)
∪ C0

j−

and Orb−
f2

(
f1−par(m0)(x)

)
⊆ Orb−

f2

(
f1−par(m0)(x)

)
∪ C1

j− . Thus, if
(
f−m′

q(x)
)
q∈ω converges to

a point of C0
j− and the parity of m′

q is constant, then par(m0) = par(m′
0). This allows us to put

c(x) :=g(C0
j−)+par(m0).
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If y∈Cε
j , then f(y)∈C1−ε

j since f is fixed point free, so that c(y)=g(Cε
j ) ̸=g(C

1−ε
j )=c

(
f(y)

)
since (Cε

j , C
1−ε
j )∈D. If x∈X\X ′, then c(x)=g(C0

j−)+par(m0) ̸=g(C0
j−)+par(m0+1)=c

(
f(x)

)
.

Thus c is a 2-coloring of (X,Gf ).

Assume that (xn)n∈ω ∈ (X \X ′)ω converges to y ∈Cε
j , so that c(y) = g(Cε

j ). Let us prove that
c(xn)= c(y) if n is big enough. As Orb(xn) is infinite, Lemma 4.3.3 provides a unique j−n ≤κ such
that Orb−(xn)⊆Orb−(xn) ∪ Cj−n

. Splitting the sequence (xn)n∈ω into finitely many subsequences
if necessary, we may assume that the sequence (j−n )n∈ω is a constant j−. Replacing x0 with f(x0) if
necessary, we may assume that c(x0)=g(C0

j−). As above, there is (mn
q )q∈ω∈ωω with constant parity

strictly increasing such that
(
f−mn

q (xn)
)
q∈ω converges to a point yn of Cj− . If n>0, then, replacing

mn
q with mn

q +1 if necessary, we may assume that yn ∈C0
j− , so that c(xn) = g(C0

j−)+par(mn
0 ). If

n=0, then we choose m0
0 even, and y0∈C0

j− since c(x0)=g(C0
j−).

Let us prove that we can find disjoint clopen subsets O0, O1 of X satisfying, for each η∈2,

- Cη
j ⊆Oη⊆X\(X ′\Cj),

- Oη ∩ f−1(Oη)=∅.

Note that C0
j , C

1
j are disjoint and clopen in X ′, and thus closed in the 0DMC space X . By 22.16

in [K1], there is a clopen subset C of X with C0
j ⊆C⊆X\C1

j . Similarly, we can find clopen subsets
C0, C1 of X with the properties that C0

j ⊆C0 ⊆C \(X ′\Cj) and C1
j ⊆C1 ⊆X \

(
C ∪ (X ′\Cj)

)
.

Note that Cη
j ⊆f−1(C1−η) since f is fixed point free, so that we can set Oη :=Cη ∩ f−1(C1−η).

We then put O :=O0 ∪O1, so that, by Lemma 4.3.2 applied to Cj and O, the set

{Orb(xn) | n∈ω and Orb(xn) ̸⊆O}

is finite. We set I :={n∈ω | Orb(xn) ̸⊆O}. Note that we can find n0∈ω such that xn∈Oε if n≥n0.

We first prove that c(xn) = c(y) if n /∈ I is big enough. If n /∈ I , then Orb(xn)⊆O, f−mn
q (xn)

is in the clopen set O and thus yn ∈ C0
j− ∩ O ⊆X ′\(X ′\Cj) = Cj . This implies that j− = j and

c(xn)=g(C
0
j )+par(mn

0 ). If q≥q0 is big enough, then f−mn
q (xn) is in O0. As Orb(xn) is contained

in O and O0 ∩ f−1(O0) = ∅, f1−mn
q (xn) ∈O\O0 =O1. As Orb(xn)⊆O and O1 ∩ f−1(O1)=∅,

f2−mn
q (xn) ∈ O\O1 = O0. Inductively, as

(
par(mn

q )
)
q∈ω is constant, f−mn

0 (xn)∈O0. Similarly,

xn ∈ Opar(mn
0 ). This implies that par(mn

0 ) = ε if n ≥ n0. As g(Cε
j ) is different from g(C1−ε

j ),
c(xn)=g(C

0
j )+par(mn

0 )=g(C
0
j )+ε=g(C

ε
j )=c(y) if n≥n0, as desired.

As {Orb(xn) | n∈ω and Orb(xn) ̸⊆O} is finite, it remains to see that if xn ∈Orb(x0) and n is
big enough, then c(xn) = c(y). As xn ∈ Orb(x0), we may assume that either there is (pn)n∈ω ∈ ωω

with constant parity such that xn=fpn(x0) for each n, or there is (rn)n∈ω∈ωω with constant parity
such that xn=f−rn(x0) for each n.

Case 1. xn=fpn(x0) for each n.

Subcase 1.1. g(C0
j−)=g(C

ε
j ).

Note that
(
f−m0

q(x0)
)
q∈ω =

(
f−(m0

q+pn)(xn)
)
q∈ω converges to y0 ∈ C0

j− . Thus, by definition
of c, c(xn) = g(C0

j−)+par(pn). Note that
(
fpq(x0)

)
q∈ω converges to y ∈Cε

j . As g(C0
j−) = g(Cε

j ),
(C0

j− , C
ε
j ) /∈D, and m0

q+pq is even, like pn. Thus c(xn)=g(C0
j−)=g(C

ε
j )=c(y), as desired.
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Subcase 1.2. g(C0
j−) ̸=g(C

ε
j ).

Arguing as in Subcase 1.1, as g(C0
j−) ̸=g(C

ε
j ), (C

0
j− , C

ε
j ) /∈E, and thus m0

q+pq is odd, just like
pn. This implies that c(xn)=g(C0

j−)+1=g(Cε
j )=c(y), as desired.

Case 2. xn=f−rn(x0) for each n.

Note that r0=0 since Orb(x0) is infinite. Assume that ε=1, the other case being similar. Note
that Orb−(x0) ⊆ Orb−(x0) ∪ Cj− , so that y = limn→∞ xn ∈ Cj ∩ Cj− and j = j−. In particular,
c(xn)=g(C

0
j )+1−par(rn)=g(C0

j )+1=g(C1
j )=c(y), as desired.

This proves the continuity of c. □

A key consequence of Lemma 4.4.3 is the following.

Lemma 4.4.4 Assume that f is fixed point free, X\X ′ contains only infinite orbits, and (X,Gf ) has
no continuous 2-coloring. Then we can find l ∈ ω, Cε0

j0
, · · ·, Cεl

jl
with (ji)i≤l injective, a sequence

(z′i)i≤l of elements of X \X ′, and, for i ≤ l, a sequence (mi
q)q∈ω of even natural numbers and a

sequence (niq)q∈ω of natural numbers with constant parity satisfying the following:

(a) if i<l, then ni0 is even and one of the following holds:

(α)i y
−
i := limq→∞ f−mi

q(z′i)∈C
εi
ji

and y+i := limq→∞ fn
i
q(z′i)∈C

εi+1

ji+1
,

(β)i y
−
i := limq→∞ f−mi

q(z′i)∈C
εi+1

ji+1
and y+i := limq→∞ fn

i
q(z′i)∈C

εi
ji

,

(b) nl0 is odd and one of the following holds:

(α)l y
−
l := limq→∞ f−ml

q(z′l)∈C
εl
jl

and y+l := limq→∞ fn
l
q(z′l)∈C

ε0
j0

,

(β)l y
−
l := limq→∞ f−ml

q(z′l)∈C
ε0
j0

and y+l := limq→∞ fn
l
q(z′l)∈C

εi
jl
.

Proof. By Lemma 4.4.3 and the notation just above its statement, it is not possible to find g :F → 2
satisfying {

∀(Cε
j , C

ε′
j′ )∈D g(Cε

j ) ̸=g(Cε′
j′ ),

∀(Cε
j , C

ε′
j′ )∈E g(Cε

j )=g(C
ε′
j′ ).

Note that if (Cε
j , C

ε′
j′ ) ∈ E, then (Cε

j , C
1−ε
j ), (C1−ε

j , Cε′
j′ ) ∈D. In particular, the first condition (on

D) just above implies the second one (on E). So there is no g satisfying the first condition (on D).
Lemma 4.1.1 provides m ∈ ω and (εi, ji)i≤2m ∈ (2×κ)2m+1 such that (Cεi

ji
, C

εi+1

ji+1
) ∈ D for each

i≤ 2m. We may assume that the sequence
(
(εi, ji)

)
i<n

is injective. We set l := 2m. If i≤ l, then
(Cεi

ji
, C

εi+1

ji+1
) ∈D ∪ E, so that (εi ̸= εi+1 and ji = ji+1), or we can find z′i ∈X \X ′ and (mi

q)q∈ω,
(niq)q∈ω∈ωω with constant parity such that one of the following holds:

(α)i y
−
i := limq→∞ f−mi

q(z′i)∈C
εi
ji

and y+i := limq→∞ fn
i
q(z′i)∈C

εi+1

ji+1
,

(β)i y
−
i := limq→∞ f−mi

q(z′i)∈C
εi+1

ji+1
and y+i := limq→∞ fn

i
q(z′i)∈C

εi
ji
.

Note that, changing εp+1 enough times if necessary, we may assume that (Cεi
ji
, C

εi+1

ji+1
)∈E if i<l, so

that (Cεl
jl
, Cε0

j0
)∈D. Note then that, canceling Cεl

jl
if necessary, we may assume that the case when

(εi ̸= εi+1 and ji = ji+1) never holds. Also, replacing (z′i,m
i
q, n

i
q) with

(
f(z′i),m

i
q+1, niq−1) if

necessary, we may assume that mi
0 is even if i≤ l. □
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4.5 General homeomorphisms

We first study the Σp’s. Recall that the space Σp is MC with Cantor-Bendixson rank two, and
σ|Σp

is a homeomorphism of the σ-invariant space Σp. It will be convenient to set, for

p=(l, λ0, · · · , λl,m, ε0, · · · , εl−1)∈ωl+3×2l,

yi :=w
Z
i if i≤ l, zi :=w−∞

i+εi
·w∞

i+1−εi
if i< l, zl :=w−∞

l ·b0· · ·bm−1(w
∞
0 ). It is important to note that

limq→∞ σ−qλi+εi (zi)=yi+εi and

limq→∞ σqλi+1−εi (zi)=yi+1−εi

if i<l. Similarly, limq→∞ σ−qλl(zl)=yl and limq→∞ σqλ0+m(zl)=y0.

Theorem 4.5.1 LetX be a countable MC space with Cantor-Bendixson rank at most two, and f be a
fixed point free homeomorphism ofX such that (X,Gf ) contains no odd cycle and has no continuous
2-coloring. Then there is p∈P such that (Σp, Gσ) ⪯i

c (X,Gf ).

Proof. Note thatX is countable, so that X is 0D by 7.12 in [K1]. By Corollary 4.2.2, we may assume
that X\X ′ contains only infinite orbits. Note that X ′ is finite by Lemma 4.3.1, which gives κ∈ω and
a partition (Cj)j≤κ of X ′ into orbits, which are closed and f -invariant sets. Note that the Cj’s have
even cardinality, which gives a (continuous) 2-coloring c of (X ′, Gf ∩ (X ′)2). Lemma 4.4.4 provides
l, Cε0

j0
, · · ·, Cεl

jl
, (z′i)i≤l, and, for i≤ l, (mi

q)q∈ω and (niq)q∈ω. We set, for i≤ l, λi := |Cji |, so that
λi>0 is even. Note that f−1 is a homeomorphism and Gf−1 =Gf . So, replacing f and z′l with f−1

and f(z′l) respectively if necessary, we may assume that (α)l holds. We set, for i<l,

εi :=

{
0 if (α)i holds,
1 if (β)i holds.

We also define, for i≤ l, i+1:= i+1 mod (l+1) and di∈{−,+} by

di :=

{
− if (α)i holds,
+ if (β)i holds,

and we will use the conventions −−=+ and −+=−. We will now show that we may assume that
mi

q or niq is equal to qλi if the limit coming from Lemma 4.4.4 is in Cji , except nlq that will be qλ0+m

with m< λ0 odd. We will also ensure that y−di
i = y

di+1

i+1
. If x is in C0

ji
, then Orbf2(x) ⊆ C0

ji
and

Orbf2

(
f(x)

)
⊆C1

ji
, showing that Cεi

ji
is a f2-orbit. The key fact is as follows.

Claim. Let x ∈ X \X ′, d ∈ {−,+}, j ≤ κ and ε ∈ 2 for which there is a sequence (mq)q∈ω of
natural numbers of constant parity such that

(
fdmq(x)

)
q∈ω converges to a point of Cε

j . Then there is

y∈Cε+par(m0)
j such that

(
fdq|Cj |(x)

)
q∈ω converges to y.

Indeed, Lemma 4.3.3 provides y ∈ Cj such that
(
fdq|Cj |(x)

)
q∈ω converges to y. Lemma 4.3.5

implies that y∈Cε+par(m0)
j . ⋄
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Assume first that l = 0. The claim provides y− ∈ Cε0
j0
, y+ ∈ Cε0+1

j0
such that

(
f−qλ0(z′0)

)
q∈ω

converges to y− and
(
f qλ0(z′0)

)
q∈ω converges to y+. As Cε0

j0
is an f2-orbit, there is p< |Cε0

j0
| such

that y−=f2p+1(y+). As
(
f qλ0+2p+1(z′0)

)
q∈ω converges to y−, we are done.

Assume now that l≥1 and i=0. The claim provides

- y′0∈C
ε0
j0

such that
(
fd0qλ0(z′0)

)
q∈ω converges to y′0,

- y′1∈C
ε1
j1

such that
(
f−d0qλ1(z′0)

)
q∈ω converges to y′1,

- y′′1 ∈C
ε1
j1

such that
(
fd1qλ1(z′1)

)
q∈ω converges to y′′1 .

As Cε1
j1

is a f2-orbit, there is p′ < |Cε1
j1
| such that y′1 = f2p

′
(y′′1). As

(
fd1qλ1

(
f2p

′
(z′1)

))
q∈ω

converges to y′1, we are done if we replace z′1 with f2p
′
(z′1), which does not affect our convergence

and parity properties. Iterating this process if necessary and arguing as in the case l=0, we complete
our construction. In other words, possibly changing the z′i’s, we ensured the existence of (y′i)i≤l and
m<λ0 odd satisfying the following.

(a) if i<l, then one of the following holds:

(α)i y
′
i := limq→∞ f−qλi(z′i)∈C

εi
ji

and y′i+1 := limq→∞ f qλi+1(z′i)∈C
εi+1

ji+1
,

(β)i y
′
i+1 := limq→∞ f−qλi+1(z′i)∈C

εi+1

ji+1
and y′i := limq→∞ f qλi(z′i)∈C

εi
ji

,

(b) y′l := limq→∞ f−qλl(z′l)∈C
εl
jl

and y′0 := limq→∞ f qλ0+m(z′l)∈C
ε0
j0
.

We now completely defined p := (l, λ0, · · ·, λl,m, ε0, · · · , εl−1) ∈ P , and are ready to define
h :Σp→X . We set h

(
σj(yi)

)
:=f j(y′i) if i≤ l and j<λi, and h

(
σk(zq)

)
:=fk(z′q) if q≤ l and k∈Z

so that h is an injective homomorphism from (Σp, Gσ) into (X,Gf ). Assume that i, q≤ l and (ζn)n∈ω
is a sequence of points of Orb(zq) converging to a point y of Orb(yi). Let kn∈Z with ζn=σkn(zq),
and j <λi with y= σj(yi). Note that (kn)n∈ω tends to ∞ or −∞. Let in ∈Z and 0≤ rn<λi with
kn = inλi+rn. We may assume that rn is a constant r. Then h(ζn) = h

(
σkn(zq)

)
= fkn(z′q), and

h(y)=h
(
σj(yi)

)
=f j(y′i). If q<l or kn tends to −∞, then σkn(zq) tends to σr(yi), so that j=r and

h(ζn) tends to f r(y′i)=h(y) as desired. If q= l and kn tends to ∞, then σkn(zq) tends to σr−m(yi),
so that j=r−m and h(ζn) tends to f r−m(y′i)=h(y) as desired. Thus h is continuous. □

Lemma 4.5.2 Let p∈P . Then (Σp, Gσ) is ⪯i
c-minimal in G and in the class of closed graphs on a

MC space having no continuous 2-coloring.

Proof. Note first that σ|Σp
is fixed point free, so that Gσ is closed.

Claim 1. (Σp, Gσ) has no continuous 2-coloring.

Indeed, we argue by contradiction, which gives c : Σp→ 2. Assume, for example, that c(zl)=0.
As λl is even, c

(
σ−qλl(zl)

)
= 0, so that c(yl) = 0 by continuity. As λ0 is even and m is odd,

c
(
σqλ0+m(zl)

)
= 1, so that c(y0) = 1 by continuity. On the other hand, if i < l and εi = 0, as λi+εi

is even, c
(
σ−qλi+εi (zi)

)
= c(zi), so that c(yi) = c(zi) by continuity. Similarly, as λi+1−εi is even,

c
(
σqλi+1−εi (zi)

)
=c(zi), so that c(yi+1)=c(zi) by continuity. This shows that c(yi)=c(yi+1) if i<l

(even if εi=1). Thus c(y0)=c(yl), which is the desired contradiction. ⋄
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This proves that (Σp, Gσ) is in our classes. We now set S :=
⋃

i≤l Orbσ(zi), so that S is a dense

open subset of Σp, and FΣp,σ
2 is nowhere dense in Σp.

Claim 2. Let V ⊆ Σp, H be a graph on V contained in Gσ such that (V,H) has no continuous
2-coloring, and x∈S. Then

(
x, σ(x)

)
∈H .

Indeed, we argue by contradiction. Recall that the sets of the form

[w]q :={y∈AZ
p | ∀j< |w| w(j)=y(q+j)},

where w ∈A<ω
p and q ∈Z, form a basis made of clopen subsets of the space AZ

p. Assume first that
x= zl. We set C := (

⋃
i≤l,j<λi even [aij ]0 ∪ [b0]0 ∪

⋃
j<m odd [bj ]0) ∩ V , so that C is a clopen subset

of V and H ∩
(
C2 ∪ (V \C)2

)
=∅. Thus C defines a continuous 2-coloring of (V,H), which is the

desired contradiction. If there is k∈Z with x=σk(zl), then we just replace the basic clopen sets of
the form [w]0 in the definition of C with [w]−k, the rest of the argument is the same. Similarly, if i<l
and x∈Orb(zi), then we may assume that x=zi. If εi=0, then we set

C :=(
⋃

n≤i,j<λn even

[anj ]0 ∪ [aiλi−1a
i+1
0 ]−1 ∪

⋃
i<n≤l,j<λn odd

[anj ]0 ∪
⋃

j<m odd

[bj ]0) ∩ V

and conclude similarly. If εi=1, then we set

C :=(
⋃

n≤i,j<λn odd

[anj ]0 ∪ [ai+1
λi+1−1a

i
0]−1 ∪

⋃
i<n≤l,j<λn even

[anj ]0 ∪
⋃

j<m even

[bj ]0) ∩ V

and conclude similarly. ⋄
It remains to apply our claims and Lemma 4.4.1. □

Proof of Theorem 1.4 (a). Let X be a countable MC space with Cantor-Bendixson rank at most two,
and f be a homeomorphism ofX such that (X,Gf ) has no continuous 2-coloring. AsX is countable,
X is 0D by 7.12 in [K1]. By Corollary 4.4.2, we may assume that (X,Gf ) contains no odd cycle.
If Ff is not open in X , then (X1, Gf1) ⪯i

c (X,Gf ) by Corollary 2.3. So we may assume that Ff is
open in X . This implies that (X \Ff , Gf ∩ (X \Ff )

2) has no continuous 2-coloring, by Corollary
2.2. Thus we may assume that f is fixed point free. It remains to apply Theorem 4.5.1 to get the basis
result.

Assume that p,p′ ∈ P and (Σp, Gσ) ⪯i
c (Σp′ , Gσ) with h as a witness. As σ|Σp

is fixed point

free and FΣp,σ
2 is nowhere dense in Σp, Lemmas 3.2 and 3.3 show that h sends any orbit onto an

orbit of the same size. This shows that the number of orbits of Σp is at most the finite number of
orbits of Σp′ , by injectivity of h. By Lemma 4.5.2, (Σp′ , Gσ) ⪯i

c (Σp, Gσ), so that Σp and Σp′ have
the same number of orbits, in bijection by h. In particular, Σp and Σp′ have the same number of
finite orbits, i.e., l= l′. This also shows that if Λ := maxi≤l λi, then Λ= maxi≤l λ

′
i. Note also that

m<λ0≤Λ and, similarly, m′<Λ. This shows that p′∈{l}×(Λ+1)l+1×Λ×2l, so that Fp is finite,
and mp :=minlex Fp is defined.

Claim. There is Pa ⊆ P , obtained by choosing minlex Fp for each p ∈ P , with the properties that
{(Σm, Gσ) | m∈Pa} is a basis for {(Σp, Gσ) | p∈P} and

{(2q+3, C2q+3) | q∈ω} ∪ {(X1, Gf1)} ∪ {(Σm, Gσ) | m∈Pa}

is an antichain.
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Indeed, let Pa := {mp | p ∈ P}, so that {(Σm, Gσ) | m ∈ Pa} is an antichain basis for
{(Σp, Gσ) | p∈P}. As X1 and the Σp’s are infinite, the odd cycles are not above the other graphs.
As these graphs contain no odd cycle, they are not below them. As a homomorphism sends an odd
cycle of cardinality l into an odd cycle of cardinality at most l and by injectivity, the odd cycles form
antichain. We saw that σ|Σp

is fixed point free, so that (Σp, Gσ) has a continuous ℵ0-coloring, by
Corollary 2.2. Corollaries 2.2 and 2.3 imply that (X1, Gf1) has no continuous ℵ0-coloring. Thus the
(Σp, Gσ)’s are not above (X1, Gf1). As (Σp, Gσ) has an infinite orbit, the orbits of (X1, Gf1) have
size at most two and an orbit has to be sent into an orbit, (X1, Gf1) is not above the (Σp, Gσ)’s, by
injectivity. ⋄

By the claim, {(2q+3, C2q+3) | q∈ω} ∪ {(X1, Gf1)} ∪ {(Σm, Gσ) | m∈Pa} is our antichain
basis. □

4.6 Subshifts

We first prove a lemma useful to prove Theorem 1.6 (a). Note that the fixed points of the shift are
the constant sequences, of the form aZ∈Σ with a∈A.

Lemma 4.6.1 Let Σ⊆AZ be a countable two-sided subshift with Cantor-Bendixson rank at most two,
l∈ω, a0, · · ·, al ∈A, and (xn)n∈ω be an injective sequence of points of Σ converging to (a0· · ·al)Z.
Then the sequence

(
Orb(xn)

)
n∈ω is eventually constant, and we can find s∈Al+1\ {(a0· · ·al)} and

γ∈Aω with (a0· · ·al)−∞ ·sγ∈Σ or γ−1s·(a0· · ·al)∞∈Σ.

Proof. For the last assertion, we can apply Lemma 3.4. We argue by contradiction, so that we may
assume that the sequence

(
Orb(xn)

)
n∈ω is injective. We may also assume, for example, that

xn[−kn(l+1),kn(l+1)−1]=(a0· · ·al)2kn ,

xn[kn(l+1),(kn+1)(l+1)−1] is a constant s ̸=(a0· · ·al), and kn→∞. By compactness, we may assume
that the sequence (xn[kn(l+1),∞))n∈ω converges to some sγ ∈Aω. We put x := (a0· · ·al)−∞ ·sγ, so
that x∈Σ. Note that x is the limit of

(
σkn(l+1)(xn)

)
n∈ω. As the sequence

(
Orb(xn)

)
n∈ω is injective,

this sequence
(
σkn(l+1)(xn)

)
n∈ω is also injective, so that x∈Σ′. Thus Orb(x) is finite of cardinality

κ, and x=σ−κ(l+1)(x), contradicting s ̸=(a0· · ·al). □

We now provide an antichain basis when fixed points exist.

Lemma 4.6.2 Let Σ be a countable two-sided subshift with Cantor-Bendixson rank at most two such
that Fσ|Σ is not open in Σ. Then there is n∈ω with the property that (nΣ, Gσ) ⪯i

c (Σ, Gσ). Moreover,
{(nΣ, Gσ) | n∈ω} is a ⪯i

c-antichain.

Proof. Assume that Σ ⊆ AZ and (xn)n∈ω is an injective sequence of points of Σ\{aZ | a ∈ A}
converging to aZ∈Σ. By Lemma 4.6.1, we may assume that Orb(xn)=Orb(x0) for each n, and that
x0 is of the form a−∞ ·bγ or γ−1b·a∞ with b∈A\{a} and γ∈Aω, so that x0∈Σ\Σ′. Lemma 4.3.3
provides y−, y+∈Σ′, and at least one of them is aZ. The other one is of the form (a0· · ·al)Z, where
l∈ω and a0, · · · , al∈A. If l≥2 is even, then the map (0· · ·l)Z 7→ (a0· · ·al)Z is a witness for the fact
that (l+1Σ, Gσ) ⪯i

c (Σ, Gσ).
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If l=0 and a0=a, then the map defined by 0Z 7→aZ and σk(0−∞ ·10∞) 7→σk(x0) when k∈Z is
a witness for the fact that (0Σ, Gσ) ⪯i

c (Σ, Gσ).

If l=0 and a0 ̸=a, then the map defined by

- 0Z 7→aZ, 1Z 7→aZ0 and σk(0−∞ ·1∞) 7→σk(x0) when k∈Z and x0=a−∞ ·bγ,
- 0Z 7→aZ0 , 1Z 7→aZ and σk(0−∞ ·1∞) 7→σk(x0) when k∈Z and x0=γ−1b·a∞,

is a witness for the fact that (1Σ, Gσ) ⪯i
c (Σ, Gσ).

If l is odd, then the map defined by

- 0Z 7→aZ, σi
(
(1, · · · , l+1)Z

)
7→σi

(
(a0· · ·al)Z

)
when i≤ l and σk(0−∞ ·(1, · · · , l+1)∞) 7→σk(x0)

when k∈Z and x0=a−∞ ·bγ,
- 0Z 7→aZ, σi

(
(1, · · · , l+1)Z

)
7→σ−i

(
(a0· · ·al)Z

)
when i≤ l and σk(0−∞·(1, · · · , l+1)∞) 7→σ−k(x0)

when k∈Z and x0=γ−1b·a∞,

is a witness for the fact that (l+1Σ, Gσ) ⪯i
c (Σ, Gσ).

By Theorem 1.4, the odd cycles (2q+3Σ, Gσ) form antichain. The other (nΣ, Gσ)’s are infinite and
contain no odd cycle, so they are incomparable with the odd cycles. Assume, towards a contradiction,
that m ̸=n and (mΣ, Gσ) ⪯i

c (nΣ, Gσ) with h as a witness. The previous discussion shows that we
may assume that m,n are not of the form 2q+3. This implies that the two subshifts have a unique
infinite orbit, which is dense. Note that an orbit has to be sent into an orbit. In particular, the infinite
orbit Orb(xm) of (mΣ, Gσ) has to be sent into that Orb(xn) of (nΣ, Gσ), by injectivity. Note that
h[Orb(xm)]=Orb(xn), and h◦σ=σ◦h on Orb(xm) or h◦σ=σ−1◦h on Orb(xm), by Lemma 3.2. In
particular, h[mΣ\Orb(xm)]⊆nΣ\Orb(xn) by injectivity, and h◦σ=σ◦h or h◦σ=σ−1◦h, by density.
Thus m < n, by injectivity. If m = 0, then

(
σdi(xm)

)
i∈ω converges to 0Z for each d ∈ {−,+},

so that
(
σ−i

(
h(xm)

))
i∈ω

,
(
σi
(
h(xm)

))
i∈ω

have the same limit, which cannot be. If m= 1, then(
σdi(xm)

)
i∈ω converges for each d ∈ {−,+}, so that

(
σdi

(
h(xm)

))
i∈ω

also converges for each

d∈{−,+}, which cannot be. If m=2q+2, then h
[
Orb

(
(1, · · · ,m)Z

)]
=Orb

(
(1, · · · , n)Z

)
, which

cannot be. □

Proof of Theorem 1.6 (a). Let Σ be a countable two-sided subshift with Cantor-Bendixson rank at
most two such that (Σ, Gσ) has no continuous 2-coloring. If Fσ|Σ is not open in Σ, then Lemma 4.6.2
provides n∈ω such that (nΣ, Gσ) ⪯i

c (Σ, Gσ). If Fσ|Σ is open in Σ, then Corollary 2.2 implies that
(Σ\Fσ|Σ , Gσ) has no continuous 2-coloring. Thus we may assume that σ|Σ is fixed point free. We
may also assume that (Σ, Gσ) contains no odd cycle. It remains to apply Theorem 4.5.1 to get the
basis result.

The set Pa ⊆ P provided by the claim in the proof of Theorem 1.4 has the properties that
{(Σm, Gσ) | m∈Pa} is a basis for {(Σp, Gσ) | p∈P} and

{(2q+3Σ, Gσ) | q∈ω} ∪ {(Σm, Gσ) | m∈Pa}

is an antichain. By Lemma 4.6.2, {(nΣ, Gσ) | n ∈ ω} is also an antichain. We saw that σ|Σp
is

fixed point free, so that (Σp, Gσ) has a continuous ℵ0-coloring, by Corollary 2.2. We also saw after
Corollary 2.2 that (nΣ, Gσ) has no continuous ℵ0-coloring if n is 1 or even. Thus the (Σp, Gσ)’s are
not above (nΣ, Gσ) if n is 1 or even.
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Let us check that (nΣ, Gσ) is not above the (Σp, Gσ)’s if n is 1 or even. We argue by con-
tradiction, which provides h : Σp → nΣ. Note that h[Σp] is compact and does not contain a
fixed point of σ|nΣ. This provides a continuous 2-coloring of (h[Σp], (h×h)[Gσ]), and thus one
of (Σp, Gσ), which is not possible by Claim 1 in the proof of Lemma 4.5.2. This shows that
{(nΣ, Gσ) | n∈ω} ∪ {(Σm, Gσ) | m∈Pa} is our antichain basis. □

5 Basis of size continuum

Recall the definition of Cκ, Hκ, and Sκ, before the proof of Theorem 1.1 (a), Lemma 3.3, and
Lemma 3.5, respectively. Theorem 1.17 (b) in [L] provides a ⪯i

c-antichain
(
(Σν , Gσ)

)
ν∈2ω made

of countable two-sided subshifts with Cantor-Bendixson rank three such that σ|Σν
is fixed point free

(and thus Gσ|Σν
is closed), (Σν , Gσ) has a continuous 3-coloring and is ⪯i

c-minimal in C2 and in H2.
This proves Theorem 1.1 (b) for κ=2, finishes the proof of Theorem 1.2 (b), proves Theorem 1.5 (b)
for κ= 2, and proves the second part of Theorems 1.4 (b) (the first part comes from Theorem 1.2),
and 1.6 (b) (the first part comes from Theorem 1.5). The proof of Theorem 1.5 (b) for κ≥3 is partly
similar, so we recall the construction of Theorem 1.17 (b) in [L].
Notation. Let α0 :=(01)−∞·(01)∞, α1 :=(01)−∞·12(01)∞,Q :=(qj)j∈ω∈ωω converging to infinity,
and βQ :=(01)−∞ ·1⌢j∈ω

(
(01)qj12

)
. This defines ΣQ=

⋃
m≤1 Orbσ(αm) ∪ Orbσ(βQ).

Note that ΣQ is a countable two-sided subshift. By Claim 8 in the proof of Theorem 1.17 (b) in
[L], ΣQ has Cantor-Bendixson rank three, and the remark after this claim shows that (ΣQ, Gσ) has a
continuous 3-coloring. The proof of Theorem 1.17 (b) in [L] also shows the minimality of (ΣQ, Gσ).
In order to get the antichain, we consider the sequence (pn)n∈ω of prime numbers. We set, for ν∈2ω

and n∈ω, qν0 := 0 and qνn+1 := p
ν(0)+2
0 · · ·pν(n)+2

n −1, which defines Qν ∈ωω converging to infinity.
Then Σν :=ΣQν .

Proof of Theorem 1.5 (b) for κ ≥ 3. Let L := (lj)j∈ω ∈ ωω converging to infinity, γ0 := 0Z,
γ1 := (01)Z, γ2 := (01)−∞ · 12(01)∞, and δL := 0−∞ ·⌢j∈ω

(
(01)lj12

)
. This defines as above

ΣL=
⋃

m≤2 Orbσ(γm) ∪ Orbσ(δL). Note that ΣL is a countable two-sided subshift. As γ0 ∈Fσ|ΣL

is the limit of
(
σ−n(δL)

)
n∈ω ∈ (ΣL\Fσ|ΣL

)ω, Fσ|ΣL
is not an open subset of ΣL. By Corollary 2.2,

there is no continuous ℵ0-coloring of Gσ|ΣL
, so that (ΣL, Gσ)∈Sκ.

Claim. (ΣL, Gσ) is ⪯i
c-minimal in Sκ.

Indeed, let (Σ, Gσ)∈Sκ such that (Σ, Gσ) ⪯i
c (ΣL, Gσ) with h as a witness. We first prove that

there is (Σ′, Gσ)∈Sκ with (Σ′, Gσ) ⪯i
c (Σ, Gσ) and F

Σ′,σ|Σ′
2 is nowhere dense in Σ′. We argue as in

the proof of the claim in the proof of Theorem 1.2 (a), by contradiction. We inductively construct a
strictly ⊆-decreasing sequence (Σξ)ξ<ℵ1 such that Σ0=Σ, Σξ is σ-invariant and (Σξ, Gσ ∩Σ2

ξ)∈Sκ,
which will contradict the fact that Σ is a 0DMC space. Assume that Σξ is constructed. Note that
Fσ|Σξ

is finite. Let I := {x ∈ Fσ|Σξ
| x is isolated in Σξ}. Note that I is a finite σ-invariant clopen

subset of Σξ, Gσ|Σξ
=Gσ|Σξ\I

, (Σξ\I,Gσ)∈Sκ, and (Σξ\I,Gσ) ⪯i
c (Σξ, Gσ). So, restricting Σξ to

Σξ \I if necessary, we may assume that Fσ|Σξ
is nowhere dense in Σξ. Note that F

Σξ,σ|Σξ

2 is closed
and not nowhere dense in Σξ.
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This gives a nonempty clopen subset C of Σξ with the property that C ⊆F
Σξ,σ|Σξ

2 \Fσ|Σξ
. Note

that U :=C∪σ[C] is a nonempty clopen σ-invariant subset of Σξ contained in F
Σξ,σ|Σξ

2 \Fσ|Σξ
. In par-

ticular, U is a ODM separable space and σ|U is a fixed point free continuous involution. Proposition
7.5 in [L] provides a continuous 2-coloring of (U,Gσ|U ). All this implies that Σξ+1 :=Σξ \U ⫋Σξ,
Σξ+1 is σ-invariant and (Σξ+1, Gσ ∩ Σ2

ξ+1)∈Sκ. If (λp)p∈ω is strictly increasing and λ=supp∈ω λp
is a limit ordinal, then we set Σλ :=

⋂
p∈ω Σλp . As κ≥ 3, the (Σλp , Gσ)’s are in Sℵ0 , by Theorem

1.12 in [L]. By Lemma 3.5, (Σλ, Gσ)∈Sκ. As Σλ⫋Σλp for each p∈ω, we are done. In other words,

we may assume that F
Σ,σ|Σ
2 is nowhere dense in Σ. By Lemmas 3.2, 3.3, h sends an orbit of size at

least two onto an orbit of the same size. We set P :=h−1
(
Orbσ(δL)

)
. If P is contained in Fσ|Σ , then

P is finite since a two-sided subshift has only finitely many fixed points. Moreover, these points are
isolated in Σ since so are the elements of Orbσ(δL) in ΣL. This shows that P is a finite σ-invariant
clopen subset of Σ. In particular, Σ\P is a σ-invariant clopen subset of Σ and (Σ\P,Gσ)∈Sκ. On the
other hand, (Σ\P,Gσ) ⪯i

c (
⋃

m≤2 Orbσ(γm), Gσ), which has a continuous 2-coloring, which cannot
be. This shows that P contains an element of Σ\Fσ|Σ . Thus the dense set Orbσ(δL) is contained in the
compact set h[Σ] by the previous size argument, proving that h is onto, and thus a homeomorphism
by compactness. In particular, P is a dense orbit Orbσ(x). By Lemma 3.2, there is θ ∈ {−1, 1}
such that h◦σ|Σ = σθ|ΣL

◦h on Orbσ(x), and thus on Σ. In particular, (h×h)[Gσ|Σ ] = Gσ|ΣL
and

(ΣL, Gσ) ⪯i
c (Σ, Gσ) with h−1 as a witness. ⋄

We now define Lν as we defined Qν just before this proof. It remains to check that the family(
(ΣLν , Gσ|ΣLν

)
)
ν∈2ω is a ⪯i

c-antichain. Assume, towards a contradiction, that ν ̸=ν ′ and

(ΣLν , Gσ|ΣLν
) ⪯i

c (ΣLν′ , Gσ|Σ
Lν′

)

with h as a witness. Let m0 be minimal with the property that ν(m0) ̸= ν ′(m0). By minimality of
(ΣLν′ , Gσ|Σ

Lν′
), we may assume that ν(m0) is smaller than ν ′(m0). By Lemma 3.2, h[Orbσ(γ2)],

h[Orbσ(δLν )] are disjoint infinite orbits in ΣLν′ , so they are Orbσ(γ2), Orbσ(δLν′ ). As Orbσ(δLν′ ) is
dense in ΣLν′ , the compact set h[ΣLν ] is ΣLν′ , so that h is a homeomorphism from ΣLν onto ΣLν′ .
Moreover, h is a witness for the fact that σ|ΣLν and σ|Σ

Lν′
are flip-conjugate, by density of Orbσ(δLν )

in ΣLν and Lemma 3.2. In particular, h[Σ′
Lν ]=Σ′

Lν′ and h[Σ′′
Lν ]=Σ′′

Lν′ , so that

h[Orbσ(γ1)]=Orbσ(γ1),

h[Orbσ(γ2)] = Orbσ(γ2), h[Orbσ(δLν )] is Orbσ(δLν′ ) and h(γ0) = γ0. This gives n0, n1 ∈ Z with
h(γ2) = σn1(γ2) and h(δLν ) = σn0(δLν′ ). We then set, for r ∈ ω, Kν

r :=
(
Σj<r (2lj+2)

)
+2lr.

Note that the sequence
(
σK

ν
r (δLν )

)
r∈ω converges to γ2, so that

(
h
(
σK

ν
r (δLν )

))
r∈ω

converges to

h(γ2) = σn1(γ2). As h
(
σK

ν
r (δLν )

)
= σn0±Kν

r (δLν′ ), this implies that
(
σn0−n1±Kν

r (δLν′ )
)
r∈ω con-

verges to γ2. As (Kν
r )r∈ω is strictly increasing, this implies that σ|ΣLν and σ|Σ

Lν′
are conjugate and(

σn0−n1+Kν
r (δLν′ )

)
r∈ω converges to γ2. In particular,

σn0−n1+Kν
r (δLν′ )[−2,2]

=
(
δLν′ (n0−n1+Kν

r −2), · · · , δLν′ (n0−n1+Kν
r +2)

)
=γ2[−2,2]=0130

if r is large enough. Using similar notation, this implies that n0−n1+Kν
r ∈ {Kν′

m | m∈ ω} if r is
large enough.
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In particular, this gives, for r large enough, m<M ∈ω with n0−n1+Kν
r =K

ν′
m and

n0−n1+Kν
r+1=K

ν′
M .

Thus Kν
r+1−Kν

r =2lνr+1+2=Σm<j≤M (2lν
′

j +2) and

p
ν(0)+2
0 · · ·pν(r)+2

r = lνr+1+1=Σm≤n<M (lν
′

n+1+1)=Σm≤n<M (p
ν′(0)+2
0 · · ·pν′(n)+2

n ).

We may assume that r is large enough to ensure that r,m≥m0, which implies that pν
′(m0)+2

m0 divides
p
ν(0)+2
0 · · ·pν(r)+2

r , which cannot be since ν(m0)<ν
′(m0). □

It remains to prove Theorem 1.1 (b) for κ≥3.

Proof of Theorem 1.1 (b) for κ ≥ 2. We set, for ε ∈ κ, ε+ := (ε+1) mod κ. We then set, for
ν∈(ω\{0})ω and j, k∈ω, βν,k,j0 :=02+j+Σi<kν(i)1∞ if j<ν(k), βν,2k+1,j

ε :=ε2+j+Σi<2k+1ν(i)(ε+)∞

if 0<ε<κ and j < ν(2k+1), and βν,2k,jε := ε2+j+Σi<2kν(i)(ε+)∞ if κ≤ ε< 2κ−1 and j < ν(2k).
This allows us to define the (countable) set of vertices

Xν :={ε∞ | ε∈2κ−1} ∪ {01∞} ∪ {βν,k,j0 | k∈ω ∧ j<ν(k)} ∪
{βν,2k+1,j

ε | k∈ω ∧ 0<ε<κ ∧ j<ν(2k+1)} ∪ {βν,2k,jε | k∈ω ∧ κ≤ε<2κ−1 ∧ j<ν(2k)}

and the set of edges

Gν :=s({(ε∞, η∞) | ε ̸=η∈κ} ∪ {(ε∞, η∞) | ε ̸=η∈{0} ∪ [κ, 2κ−1)} ∪ {(0∞, 01∞)} ∪
{(01∞, βν,0,0ε ) | κ≤ε<2κ−1} ∪

{(βν,2k,jε , βν,2k,jη ) | k∈ω ∧ ε ̸=η∈{0} ∪ [κ, 2κ−1) ∧ j<ν(2k)} ∪

{(βν,2k,ν(2k)−1+j
0 , βν,2k+1,j

ε ) | k∈ω ∧ 0 ̸=ε∈κ ∧ j<ν(2k+1)} ∪
{(βν,2k+1,j

ε , βν,2k+1,j
η ) | k∈ω ∧ ε ̸=η∈κ ∧ j<ν(2k+1)} ∪

{(βν,2k+1,ν(2k+1)−1+j
0 , βν,2k+2,j

ε ) | k∈ω ∧ ε∈ [κ, 2κ−1) ∧ j<ν(2k+2)}).

Note that Xν is a closed subspace of κω, and thus a 0DMC space, with Cantor-Bendixson rank two.
Also, the set Gν is closed graph on Xν . If c :Xν → κ is a continuous coloring of (Xν , Gν), then,
for example, c(0∞) = 0. This implies that c(βν,k,j0 ) = 0 if k is big enough. Inductively, this implies
that c(βν,k,j0 ) = 0 for each k ∈ ω since 0n1∞ and 0n+11∞ have κ−1 common Gν-neighbors which
are all pairwise Gν-related. Thus c(01∞) = 0. In particular, c(01∞) = c(0∞) = 0, contradicting
(0∞, 01∞) ∈ Gν . This shows that (Xν , Gν) ∈ Cκ. For the minimality, it is enough to see that
(Xν , Gν) ⪯i

c (X,G) if X⊆Xν and G⊆Gν is a graph on X such that (X,G)∈Cκ, by compactness.
The previous discussion shows that

G⊇Gν\s({(ε∞, η∞) | ε ̸=η∈κ} ∪ {(ε∞, η∞) | ε ̸=η∈{0} ∪ [κ, 2κ−1)}).

Indeed, if one edge e in the difference is not in G, then we may assume that e /∈ s({(0∞, 01∞)}),
and we can give the same color to the two vertices (εn+2(ε+)∞ with ε ̸= 0 for one of them) of e
and ensure that c(0n+11∞) ̸= 0. Thus G = Gν since G is closed. This implies that X = Xν , and
(Xν , Gν) ⪯i

c (X,G).
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For instance, for κ=2, 3 and ν∈N132, this gives the following pictures.

01∞

021∞ 220∞

132∞ 031∞

142∞ 041∞

152∞ 051∞

061∞ 260∞

071∞ 270∞

· · ·

1∞ 0∞ 2∞

κ=2

01∞

420∞

021∞

324∞

233∞

031∞

132∞

243∞

041∞

142∞

253∞

051∞

152∞

460∞

061∞

364∞

470∞

071∞

374∞

· · ·

2∞ 4∞

0∞

1∞ 3∞

κ=3
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Let us prove that (Xν , Gν) ̸⪯i
c (Xν′ , Gν′) if (ν, ν ′) /∈Et, where Et is the equivalence relation on

(ω\{0})ω (introduced for example in [Do-J-K]) defined by

(ν, ν ′)∈Et ⇔ ∃l,m∈ω ∀n∈ω ν(l+n)=ν(m+n).

We argue by contradiction, which gives h :Xν→Xν′ . Note that 0∞ is the only limit point in Xν with
κ+1 neighbors in Gν , so that h(0∞)=0∞. The limit vertex 1∞ is Gν-related to ε∞ if 1 ̸=ε<κ only,
so that

h[{ε∞ | ε<κ}], h[{ε∞ | ε∈{0} ∪ [κ, 2κ−1)}]∈
{
{ε∞ | ε<κ}, {ε∞ | ε∈{0} ∪ [κ, 2κ−1)}

}
.

Assume that h(ε∞)=η∞ε . The continuity of h implies that
h(βν,k,j0 )∈N0,
h(βν,2k+1,j

ε )∈Nηε if 0<ε<κ,
h(βν,2k,jε )∈Nηε if κ≤ε<2κ−1

if k ≥ k0 is big enough. Assume, for example, that η1 ≥ κ, the case η1 < κ being similar. Then
h(βν,2k0+1,0

1 ) is of the form βν
′,2K0,J0

η1 . Thus h(βν,2k0+1,0
0 ) = βν

′,2K0,J0
0 . Then, for 0 < ε < κ and

inductively on 0 < j < ν(2k0+1), h(βν,2k0+1,j
ε ) = βν

′,2K0,J0+j
ηε and h(βν,2k0+1,j

0 ) = βν
′,2K0,J0+j

0 .
Note then that, for κ ≤ ε < 2κ−1, h(βν,2k0+2,0

ε ) = βν
′,2K0+1,0

ηε and h(βν,2k0+2,0
0 ) = βν

′,2K0+1,0
0 .

Then, for κ < ε < 2κ− 1 and inductively on 0 < j < ν(2k0+2), h(βν,2k0+2,j
ε ) = βν

′,2K0+1,j
ηε

and h(βν,2k0+2,j
0 ) = βν

′,2K0+1,j
0 . Note then that, for 0 < ε < κ, h(βν,2k0+3,0

ε ) = βν
′,2K0+2,0

ηε and
h(βν,2k0+3,0

0 )=βν
′,2K0+2,0

0 . This implies that

2+ν(2k0+2)−1+
(
Σi<2K0+1 ν

′(i)
)
+1=2+Σi<2K0+2 ν

′(i),

so that ν(2k0+2) = ν ′(2K0+1). Then, for 0 < ε < κ and inductively on 0 < j < ν(2k0+3),
h(βν,2k0+3,j

ε ) = βν
′,2K0+2,j

ηε and h(βν,2k0+3,j
0 ) = βν

′,2K0+2,j
0 . Note then that, for κ ≤ ε < 2κ−1,

h(βν,2k0+4,0
ε )=βν

′,2K0+3,0
ηε and h(βν,2k0+4,0

0 )=βν
′,2K0+3,0

0 . This implies that

2+ν(2k0+3)−1+
(
Σi<2K0+2 ν

′(i)
)
+1=2+Σi<2K0+3 ν

′(i),

so that ν(2k0+3)=ν ′(2K0+2). Inductively, we get ν(2k0+2+n)=ν ′(2K0+1+n) for each n∈ω,
so that (ν, ν ′)∈Et.

Consider now the sequence (pn)n∈ω of prime numbers. We set, for α∈2ω,

Sα :={pα(0)+1
0 · · ·pα(n)+1

n | n∈ω},

so that Sα⊆ω\{0} is infinite, and Sα∩Sβ is finite if α ̸=β. Let να∈(ω\{0})ω be an injective enumer-
ation of Sα. Then (να, νβ) /∈Et if α ̸=β, so that (Xνα , Gνα) ̸⪯i

c (Xνβ , Gνβ ). So
(
(Xνα , Gνα)

)
α∈2ω

is an antichain of size 2ℵ0 made of minimal elements of (Cκ,⪯i
c), proving that any basis for this class

must have size 2ℵ0 . □

Remark. This proof improves the previous proof of Theorem 1.1 (b) for κ=2, in the sense that the
Σν’s mentioned at the beginning of this section had Cantor-Bendixson rank three, while theXν’s here
have Cantor-Bendixson rank two.
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6 Some analytic complete sets

Notation. The space K(X) of compact subsets of a metrizable compact space X , equipped with
the Vietoris topology, is a metrizable compact space (see Theorem 4.22 in [K1]). Let κ < ℵ0 (see
the remark just before Theorem 1.1). We denote by Cκ the set of closed graphs on 2ω having no
continuous κ-coloring, and code Cκ by

Cκ :={(K,G)∈K(2ω)×K(2ω×2ω) | G is a graph on K having no continuous κ-coloring}.

Note that C0 is simply the set of closed graphs on 2ω. We then set

QC
κ :={(G,H)∈C2

κ | (2ω, G) ⪯i
c (2

ω, H)},

EC
κ :={(G,H)∈C2

κ | (2ω, G) ≡i
c (2

ω, H)}= i(QC
κ) (where i(Q) :=Q ∩Q−1),

QC
κ :=

{(
(K,G), (L,H)

)
∈C2

κ | (K,G) ⪯i
c (L,H)

}
and EC

κ := i(QC
κ ). Note that QC

κ, QC
κ are quasi-orders, while EC

κ , EC
κ are equivalence relations.

Now let κ≤ 3 (see Theorem 1.12.(b) in [L]), and H(2ω) be the set of homeomorphisms of 2ω.
We equip H(2ω) with the topology whose basic open sets are of the form

OU1,...,Un,V1,...,Vn :={f ∈H(2ω) | ∀1≤ i≤n f [Ui]=Vi},

where n is a natural number and Ui, Vi are clopen subsets of 2ω. By Section 2 in [I-Me], this defines
a structure of Polish group on H(2ω). A compatible complete distance is given by

d(f, g) :=supα∈2ω d2ω
(
f(α), g(α)

)
+supα∈2ω d2ω

(
f−1(α), g−1(α)

)
.

We denote by Hκ the set of homeomorphisms of 2ω whose induced graph has no continuous κ-
coloring and, as in the introduction of [L], code Hκ by

Hκ :={(K, f)∈K(2ω)×H(2ω) | f [K1]=K ∧ (K,Gf|K ) has no continuous κ-coloring}.

Note that H0 = H(2ω). We then set QH
κ := {(f, g) ∈ H2

κ | (2ω, Gf ) ⪯i
c (2ω, Gg)}, EH

κ := i(QH
κ ),

QH
κ :=

{(
(K, f), (L, g)

)
∈H2

κ | (K,Gf ) ⪯i
c (L,Gg)

}
and EH

κ := i(QH
κ ).

Now let κ ≤ ℵ0 and D be a countable dense subset of 2ω. We identify P(D×D) with 2D×D

(equipped with the product topology of the discrete topology on 2). We denote by Dκ the set of
graphs G on D such that (2ω, G) has no continuous κ-coloring and set

Dκ :={(K,G)∈K(2ω)×P(D×D) | G is a graph on K having no continuous κ-coloring}.

Note that D0 is simply the set of graphs on D. We then set

QD
κ :={(G,H)∈D2

κ | (2ω, G) ⪯i
c (2

ω, H)},

ED
κ := i(QD

κ ), Q
D
κ :=

{(
(K,G), (L,H)

)
∈D2

κ | (K,G) ⪯i
c (L,H)

}
and ED

κ := i(QD
κ ).
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Theorem 6.1 The spaces Cκ, Cκ, Hκ, Hκ, Dκ andDκ are Polish, and FCO is Borel reducible to the
analytic relations QC

κ, EC
κ , QC

κ , EC
κ , QH

κ , EH
κ , QH

κ , EH
κ , QD

κ , ED
κ , QD

κ and ED
κ . In particular, these

relations are analytic complete as sets.

Proof. Let G∈K(2ω×2ω). Note that G∈Cκ if and only if

G=G−1 ∧G ∩∆(2ω)=∅ ∧ ∀(Ci)i<κ∈
(
∆0

1(2
ω)
)κ

(2ω ̸⊆
⋃

i<κ Ci) ∨ (∃i ̸=j<κ Ci ∩ Cj ̸=∅) ∨ (G ∩ (
⋃

i<κ C2
i ) ̸=∅).

Note that, by continuity of the map (x, y) 7→ (y, x) and 4.29 in [K1], the condition “G = G−1” is
closed. By definition of the Vietoris topology, the condition “G ∩∆(2ω)=∅” is open, while the last
condition is closed. Thus Cκ is a difference of two open sets, and thus Π0

2 in K(2ω×2ω), and Polish.
Note that Cκ = {(K,G) ∈ K(2ω)×K(2ω×2ω) | G ∈ Cκ ∧ G⊆K2} by Theorem 2.2.1 in [E]. By
4.29 in [K1], Cκ is also Polish. By Theorem 12.5 in [L], the set Hκ is Π0

2 in H(2ω), and Polish. By
Theorem 1.14 in [L], the set Hκ is Π0

2 in K(2ω)×H(2ω), and Polish. Let G∈P(D×D). Note that
G ∈Dκ if and only if the formula above holds. We enumerate D := {dn | n ∈ ω} injectively. The
condition “G=G−1” can be written “∀m,n ∈ ω (dm, dn) /∈G ∨ (dn, dm) ∈G”, which is a closed
condition. The condition “G ∩∆(2ω)=∅” can be written “∀n∈ω (dn, dn) /∈G”, which is a closed
condition. For the last condition, note that ∆0

1(2
ω) is countable. If κ is finite, then the condition

“G ∩ (
⋃

i<κ C2
i ) ̸= ∅” can be written “∃m,n∈ω ∃i < κ (qm, qn)∈G ∩ C2

i ”, so that Dκ is Π0
2 in

P(D×D), and Polish. If κ=ℵ0, then by compactness the last condition can be written

∀n∈ω ∀(Ci)i<n∈
(
∆0

1(2
ω)
)n

(2ω ̸⊆
⋃
i<n

Ci) ∨ (∃i ̸=j<n Ci ∩ Cj ̸=∅) ∨ (G ∩ (
⋃
i<n

C2
i ) ̸=∅),

so that Dκ is Polish again. Note that Dκ = {(K,G)∈K(2ω)×P(D×D) | G∈Dκ ∧ G⊆K2} by
Theorem 2.2.1 in [E]. The condition “G⊆K2” is “∀m,n∈ω (dm, dn) /∈G ∨ dm, dn∈K”, which is
a closed condition, so that Dκ is Polish.

Recall that

(2ω, G) ⪯i
c (2

ω, H) ⇔ ∃φ :2ω→2ω injective continuous with G⊆(φ×φ)−1(H).

Note that φ : 2ω → 2ω is injective if and only if φ[O ∩ U ] =φ[O] ∩ φ[U ] whenever O,U are clopen
subsets of 2ω. By Lemma 12.4 in [L], and [K, 4.19, 4.29, 27.7],

{(G,H)∈K(2ω×2ω)2 | (2ω, G) ⪯i
c (2

ω, H)}

is analytic, and thus QC
κ and EC

κ are analytic.

If now (K,G), (L,H)∈K(2ω)×K(2ω×2ω), then, since K is a retract of 2ω by 2.8 in [K1],

(K,G) ⪯i
c (L,H) ⇔ ∃ψ∈C(2ω, 2ω) ψ[K1]⊆L ∧ ψ|K is injective ∧ (ψ×ψ)[G]⊆H.

By Lemma 12.4 in [L] and 4.29 in [K1],{(
(K,G), (L,H)

)
∈
(
K(2ω)×K(2ω×2ω)

)2 | (K,G) ⪯i
c (L,H)

}
,

QC
κ and EC

κ are analytic.
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Let f, g∈H(2ω). Then

(2ω, Gf ) ⪯i
c (2

ω, Gg) ⇔ ∃φ :2ω→2ω injective continuous
∀α∈2ω f(α)=α ∨ φ

(
f(α)

)
=g

(
φ(α)

)
∨ φ

(
f(α)

)
=g−1

(
φ(α)

)
.

This shows that {(f, g) ∈H(2ω)2 | (2ω, Gf ) ⪯i
c (2ω, Gg)} and thus QH

κ and EH
κ are analytic. The

previous discussions show that QH
κ and EH

κ are also analytic. If G,H∈P(D×D), then the condition
“G⊆(φ×φ)−1(H)” can be written

“∀m,n∈ω (dm, dn) /∈G ∨
(
φ(dm), φ(dn)

)
∈H”,

which is a closed condition, proving that {(G,H)∈
(
P(D×D)

)2 | (2ω, G) ⪯i
c (2ω, H)}, QD

κ and
ED

κ are analytic. The previous discussions show that QD
κ and ED

κ are also analytic.

We define a map g :M→K(2ω×2ω) by g(f) :=Gf . Let O be an open subset of 2ω×2ω, and
(C0

n)n∈ω, (C1
n)n∈ω be sequences of clopen subsets of 2ω with the property that O=

⋃
n∈ω (C0

n×C1
n).

If f ∈M and Gf ⊆O, then there is a finite subset F of ω with Gf =s
(
Graph(f)

)
⊆
⋃

n∈F (C0
n×C1

n).
Note then that ⋃

n∈F
(C0

n×C1
n)=

⋃
S⊆F

(
(
⋂
n∈S

C0
n ∩

⋂
n∈F\S

2ω\C0
n)×(

⋃
n∈S

C1
n)
)
.

Thus

Graph(f)⊆
⋃

n∈F (C0
n×C1

n)⇔ ∀S⊆F f [
⋂

n∈S C0
n ∩

⋂
n∈F\S 2ω\C0

n]⊆
⋃

n∈S C1
n

⇔ ∀S⊆F ∃Rn∈∆0
1(2

ω)
f [
⋂

n∈S C0
n ∩

⋂
n∈F\S 2ω\C0

n]=Rn⊆
⋃

n∈S C1
n.

This implies that {f ∈M | Gf ⊆O} is an open subset of M since

Gf ⊆O ⇔ ∃F ⊆ω finite with Graph(f)⊆
⋂
ε∈2

( ⋃
n∈F

(Cε
n×C1−ε

n )
)
.

Now Gf ∩ O ̸=∅ ⇔ ∃n∈ω ∃ε∈2 Cε
n ∩ f−1(C1−ε

n ) ̸=∅ ⇔ ∃n∈ω ∃ε∈2 ∃α∈Cε
n f(α)∈C1−ε

n ,
so that {f ∈M | Gf ∩O ̸=∅} is an open subset of M. Thus g is continuous.

By Lemma 7.11 in [L], if f, g ∈M, then (f, g)∈FCO if and only if (2ω, Gf )⪯i
c (2ω, Gg). As

FCO is symmetric, (f, g)∈FCO if and only if (2ω, Gf )≡i
c (2

ω, Gg). We define ϕ1(f) :N1→N1

by ϕ1(f)(1α) :=1f(α), so that ϕ1(f) is a homeomorphism with infinite orbits and Gϕ1(f) is a closed
graph on N1. We define a map g+ :M→Cκ by

g+(f) :=Gϕ1(f) ∪ {(0m+11∞, 0n+11∞) | m ̸=n∈κ+1}.

Note that Gϕ1(f)= {(1α, 1β) | (α, β)∈G(f)}, so that g+ is continuous by 4.29 (iv and vi) in [K1].
In order to prove that FCO is Borel reducible to QC

κ and EC
κ , it is enough to prove that if f, g ∈M,

then (2ω, Gf )⪯i
c (2ω, Gg) if and only if

(
2ω, g+(f)

)
⪯i

c

(
2ω, g+(g)

)
. So let φ : 2ω → 2ω injective

continuous with Gf ⊆ (φ×φ)−1(Gg). We define Φ : 2ω → 2ω by Φ(0α) :=0α and Φ(1α) :=1φ(α),
so that Φ is injective continuous.
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Moreover,
(
Φ(0m+11∞),Φ(0n+11∞)

)
=(0m+11∞, 0n+11∞)∈g+(g) and(

Φ(1α),Φ
(
ϕ1(f)(1α)

))
=
(
1φ(α), 1φ

(
f(α)

))
=
(
1β, 1g±1

(
β)

)
∈g+(g),

showing that Φ is a witness for the fact that
(
2ω, g+(f)

)
⪯i

c

(
2ω, g+(g)

)
.

Conversely, let Φ : 2ω → 2ω injective continuous with g+(f)⊆ (Φ×Φ)−1
(
g+(g)

)
. Note that the

g+(f)-connected component of N0 has size κ+1, while each g+(f)-connected component of N1 is
infinite. This implies that Φ(1α)(0)=1. We now define φ :2ω→2ω by the formula

φ(α) :=Φ(1α)− :=
(
Φ(1α)(1),Φ(1α)(2), · · ·

)
,

so that φ is injective continuous. Moreover,(
1φ(α), 1φ

(
f(α)

))
=
(
Φ(1α),Φ

(
1f(α)

))
=
(
Φ(1α),Φ

(
ϕ1(f)(1α)

))
∈g+(g),

so that φ
(
f(α)

)
= g±1

(
φ(α)

)
and

(
φ(α), φ

(
f(α)

))
∈Gg, showing that φ is a witness for the fact

that (2ω, Gf ) ⪯i
c (2

ω, Gg). Thus FCO is Borel (in fact continuously) reducible to QC
κ and EC

κ . Now
note that the map iC :Cκ→Cκ defined by iC(G) :=(2ω, G) is continuous, QC

κ=(iC×iC)−1(QC
κ ) and

EC
κ=(iC×iC)−1(EC

κ ), so that FCO is also Borel (in fact continuously) reducible to QC
κ and EC

κ .

Note then that H3 ⊆ H2 ⊆ H1 ⊆ H0 = H(2ω). We define h3 : 2ω → 2ω by h3(0∞) := 0∞ and
h3(0

2n+ε1α) := 02n+1−ε1α, so that h3 ∈ H(2ω) has orbits of size at most two and Fh3 = {0∞}
is not open in 2ω. By Proposition 2.1, there is no continuous ℵ0-coloring of Gh3 , so that h3 ∈ H3.
We define, for f ∈ M, ϕ(f) ∈ H(2ω) by ϕ(f)(0α) := 0h3(α) and ϕ(f)(1α) := 1f(α). Note that
ϕ(f) ∈ H3 and ϕ :M→ H3 is continuous (consider the distance d). In order to prove that FCO is
Borel reducible toQH

3 andEH
3 , it is enough to prove that if f, g∈M, then (2ω, Gf ) ⪯i

c (2
ω, Gg) if and

only if (2ω, Gϕ(f)) ⪯i
c (2

ω, Gϕ(g)). We argue essentially as above, using the facts that the ϕ(f)-orbit
of 0α has size at most two like the h3-orbit of α, while the ϕ(f)-orbit of 1α is infinite like the f -orbit
of α. Thus FCO is Borel (in fact continuously) reducible to QH

3 and EH
3 , and in fact to QH

κ and EH
κ

because of the inclusions above. Now note that the map iH :Hκ→Hκ defined by iH(f) :=(2ω, f) is
continuous, QH

κ =(iH×iH)−1(QH
κ ) and EH

κ =(iH×iH)−1(EH
κ ), so that FCO is also Borel (in fact

continuously) reducible to QH
κ and EH

κ .

By Corollary 5.10 in [L], if f, g∈M, then (f, g)∈FCO if and only if

(proj[Gf ],Gf )⪯i
c (proj[Gg],Gg)

(see Section 5 in [L] for the definition of the graph Gf , whose vertices have degree at most one).
This definition, as well as the notation before Theorem 13.2 in [L], show that proj[Gf ] is contained
in the copy K2∞ :=(2 ∪ {c, a, a})ω of 2ω. In fact, the definition of Gf shows that proj[Gf ] is in fact
contained in the closed nowhere dense subset {x∈K2∞ | ∀m∈ω x(m)= c ∨ ∀n≥m x(n) ̸= c} of
K2∞ . In particular, proj[Gf ] is nowhere dense in K2∞ .

Claim 1. (Ryll-Nardzewski) Let P,Q be closed nowhere dense subsets of 2ω, and φ : P → Q be a
continuous injection. Then there is a homeomorphism φ∗ of 2ω such that φ∗(α)=φ(α) if α∈P .

Indeed, the compact subset R := φ[P ] of Q is also closed and nowhere dense in 2ω, and the
map φ′ : P → R defined by φ′(α) := φ(α) is a homeomorphism. The Ryll-Nardzewski theorem
(see Corollary 2 in [Kn-R]) provides a homeomorphism φ∗ of 2ω extending φ′, and thus having the
desired property. ⋄
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Claim 1 implies that if f, g ∈ M, then (f, g) ∈ FCO if and only if (K2∞ ,Gf ) ⪯i
c (K2∞ ,Gg).

Indeed, assume that φ :proj[Gf ]→proj[Gg] is injective continuous and Gf ⊆(φ×φ)−1(Gg). Claim 1
provides φ∗ ::K2∞ →K2∞ injective continuous coinciding with φ on proj[Gf ], which is a witness for
the fact that (K2∞ ,Gf )⪯i

c (K2∞ ,Gg). Conversely, if Φ::K2∞ →K2∞ is injective continuous and Gf

is contained in (Φ×Φ)−1(Gg), then proj[Gf ] and thus proj[Gf ] are contained in Φ−1(proj[Gg]), so
that the map φ :=Φ

|proj[Gf ]
is a witness for the fact that (proj[Gf ],Gf )⪯i

c (proj[Gg],Gg). As FCO

is symmetric, (f, g)∈FCO if and only if (K2∞ ,Gf )≡i
c (K2∞ ,Gg).

Let i :K2∞ →N1⊆ 2ω be a homeomorphism. The definition of Gf shows that it is contained in
the countable dense subset Q :=

{
x∈K2∞ | ∃l∈ω ∃ε∈{a, a} ∀k≥ l x(k)=ε

}
of K2∞ . In particular

Q := i[Q] is a countable dense subset of N1, as well as N1 ∩D.

Claim 2. (van Engelen) Let Q,D be countable dense subsets of 2ω. Then there is h ∈H(2ω) such
that h[Q]=D.

Indeed, we enumerate injectively Q = {qi | i ∈ ω} and D = {di | i ∈ ω}. Note that {q0} is a
zero-dimensional space homeomorphic to any of its nonempty clopen subsets, {qi} (resp., {di}) is
closed nowhere dense in Q (resp., D), and {qi} ≈ {q0} ≈ {di} for each i. Theorem 3.2.6 in [vE]
provides the desired homeomorphism. ⋄

Claim 2 provides h∈H(N1) such that h[Q]=N1 ∩D. We set H :=h◦i, so that H :K2∞ →N1

is a homeomorphism. Recall that the chromatic number of a graph (X,G) is the smallest cardinal
κ for which there is a κ-coloring of (X,G).

Claim 3. There is a sequence
(
(Fn, Gn)

)
n∈ω made of finite connected graphs which are pairwise ⪯i-

incomparable, have pairwise different chromatic numbers, and whose vertices have degree at least
two.

Indeed, we use the Kneser graphs K(n, k). Recall that, if n, k ∈ ω \{0}, then K(n, k) has
set of vertices [n]k, and A,B ∈ [n]k are K(n, k)-related if A ∩ B = ∅. If n ≥ 3k, then K(n, k) is
finite connected and its vertices have degree at least two. Note that Cardinality([n]k) =

(
n
k

)
and, by

Theorem 6.29 in [H-N],K(n, k) has chromatic number n−2k+2 if n≥2k. Moreover, by Proposition
6.27 in [H-N], K(n, k) ̸⪯i K(n′, k′) if 2 ≤ n′

k′ <
n
k (even without necessarily injectivity). All this

implies that it is enough to construct a sequence
(
(np, kp)

)
p∈ω of pairs of positive natural numbers

satisfying the following.
(1) 3≤ np+1

kp+1
<

np

kp

(2)
(np

kp

)
<
(np+1

kp+1

)
(3) (np−2kp+2)p∈ω is injective

We set np :=3·2p+1 and kp :=2p, so that (1) and (3) are satisfied. For (2), note that(
np
kp

)
=

np!

kp!(np − kp)!
=

(3 · 2p + 1)!

(2p)!(2 · 2p + 1)!
,

thus
(np

kp

)
<
(np+1

kp+1

)
⇔ (3·2p+1)!

(2p)!(2·2p+1)!<
(6·2p+1)!

(2·2p)!(4·2p+1)! ⇔ (3·2p+1)!·(4·2p+1)!<(6·2p+1)!·(2p)!·(2·2p+1),(np

kp

)
<
(np+1

kp+1

)
⇔ (3·2p+1)!<(6·2p+1)· · ·(4·2p+2)·(2·2p+1)·(2p)!. This holds since there are 2·2p

factors in (6·2p+1)· · ·(4·2p+2)>(3·2p+1)· · ·(2p+2) and 2·2p+1>2p+1. ⋄
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We may assume that Fn⊆N0n+11 ∩D. Claim 3 allows us to define G :M→Dℵ0 , by

G(f) :=(H×H)[Gf ] ∪
⋃
n∈ω

Gn.

This definition is correct since
(
2ω,G(f)

)
has no continuous ℵ0-coloring. Indeed, we argue by con-

tradiction to see that. By compactness of 2ω, this graph would have a continuous κ-coloring for some
κ ∈ ω, which is not the case because the Gn’s have pairwise different chromatic numbers. The be-
ginning of the proof of Theorem 13.2 in [L] shows that G is Borel. Let f, g ∈M. If (f, g)∈ FCO,
then (K2∞ ,Gf ) ⪯i

c (K2∞ ,Gg), with φ as a witness. We define Φ:2ω→2ω by Φ(0α) := 0α and

Φ(1α) := H
(
φ
(
H−1(1α)

))
, so that Φ witnesses

(
2ω,G(f)

)
⪯i

c

(
2ω,G(g)

)
. Conversely, assume

that Φ:2ω→2ω is injective continuous and G(f) ⊆ (Φ×Φ)−1(G(g)). The vertices in N1 have de-
gree at least two, while the other vertices of G(f) have degree at most one like those of Gf . This
implies that Φ×Φ sends

⋃
n∈ω Gn into itself, by injectivity. As the Gn’s are connected and pair-

wise ⪯i-incomparable, Φ×Φ sends Gn into itself, and onto itself by finiteness. Therefore Φ×Φ sends
(H×H)[Gf ] into (H×H)[Gg], by injectivity. Thus Φ sends proj

[
(H×H)[Gf ]

]
into proj

[
(H×H)[Gg]

]
,

and proj
[
(H×H)[Gf ]

]
into proj

[
(H×H)[Gg]

]
. As H is a homeomorphism,

proj
[
(H×H)[Gf ]

]
=H

[
proj[Gf ]

]
,

and similarly with g. This allows us to define ϕ : proj[Gf ]→ proj[Gg] by ϕ(α) :=H−1
(
Φ
(
H(α)

))
,

and ϕ is a witness for the fact that (proj[Gf ],Gf )⪯i
c (proj[Gg],Gg). Thus (f, g)∈FCO and G Borel

reduces FCO to QD
ℵ0

and ED
ℵ0

. As Dℵ0 ⊆Dκ, this also holds for QD
κ and ED

κ if κ< ℵ0. Now note
that the map iD :Dκ→Dκ defined by iD(G) := (2ω, G) is continuous, QD

κ =(iD×iD)−1(QD
κ ) and

ED
κ =(iD×iD)−1(ED

κ ), so that FCO is also Borel reducible to QD
κ and ED

κ .

[De-GR-Ka-Kun-Kw] shows that FCO is analytic complete as a set. Thus our sets are Borel
analytic complete (using pre-images by Borel functions). By [K2], our sets are analytic complete. □

Question. [De-GR-Ka-Kun-Kw] shows that FCO is analytic complete as a set. On the other hand,
Theorem 5 in [Ca-G] shows that the conjugacy relation on H(2ω) is Borel-bi-reducible with the most
complicated of the orbit equivalence relations induced by a Borel action of the group of bijections
of ω. Also, in [Lo-R] it is proved that the bi-homomorphism relation between countable graphs is
analytic complete as an equivalence relation. So we can ask about the position of the equivalence
relations mentioned in Theorem 6.1 among analytic equivalence relations, in particular

(1) EC
0 :={(G,H)∈K(2ω×2ω)2 | G,H are graphs ∧ (2ω, G) ≡i

c (2
ω, H)},

(2) EH
0 :={(f, g)∈H(2ω)2 | (2ω, Gf ) ≡i

c (2
ω, Gg)},

(3) ED
0 :={(G,H)∈P(D×D)2 | G,H are graphs ∧ (2ω, G) ≡i

c (2
ω, H)}, where D is a countable

dense subset of 2ω.
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[T-V] S. Todorčević and Z. Vidnyánszky, A complexity problem for Borel graphs, Invent. Math. 226
(2021), 225-249
[vE] A. J. M. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tract, 27.
Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1986. iv+133
pp

35


