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• Université Paris 6, Institut de Mathématiques de Jussieu, Projet Analyse Fonctionnelle
Couloir 16-26, 4ème étage, Case 247, 4, place Jussieu, 75 252 Paris Cedex 05, France

dominique.lecomte@upmc.fr
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1



1 Introduction

In this paper, we work in products of two Polish spaces. One of our goals is to give an answer
to the following simple question. Assume that a countable union of Borel rectangles has low Borel
rank. Is there a decomposition of this union into countably many rectangles of low Borel rank? In
other words, is there a map r :ω1\{0}→ω1\{0} such that Π0

ξ ∩ (∆1
1×∆1

1)σ⊆(Π0
r(ξ)×Π

0
r(ξ))σ for

each ξ∈ω1\{0}?

By Theorem 3.6 in [Lo], a Borel set with open vertical sections is of the form (∆1
1×Σ0

1)σ. This
leads to a similar problem: is there a map s : ω1 \{0} → ω1 \{0} such that, for each ξ ∈ ω1 \{0},
Π0
ξ ∩ (∆1

1×Σ0
1)σ⊆(Π0

s(ξ)×Σ
0
1)σ?

The answer to these questions is negative:

Theorem 1.1 Let 1 ≤ ξ < ω1. Then there exists a partial map f :ωω→ωω such that the complement
¬Gr(f) of the graph of f is Π0

2 but not (Σ0
ξ×∆1

1)σ.

In fact, we prove a result related to ∆0
ξ-measurable countable colorings. A study of such colorings

is made in [L-Z]. It was motivated by the G0-dichotomy (see Theorem 6.3 in [K-S-T]). More pre-
cisely, let B be a Borel binary relation having a Borel countable coloring (i.e., a Borel map c :X→ω
such that c(x) 6= c(y) if (x, y)∈B). Is there a relation between the Borel class of B and that of the
coloring? In other words, is there a map k :ω1\{0}→ω1\{0} such that any Π0

ξ binary relation having
a Borel countable coloring has in fact a ∆0

k(ξ)-measurable countable coloring, for each ξ∈ω1\{0}?
Here again, the answer is negative:

Theorem 1.2 Let 1 ≤ ξ < ω1. Then there exists a partial injection with disjoint domain and range
i :ωω→ωω whose graph is the difference of two closed sets, and has no ∆0

ξ-measurable countable
coloring.

These two results are consequences of Theorem 4 in [Má] and its proof. This latter can also be
used positively, to produce examples of graphs of fixed point free partial injections having reasonable
chances to characterize the analytic binary relations without ∆0

ξ-measurable countable coloring. We
will see in Section 4 that such a characterization indeed holds when ξ=3, and give an example much
simpler than the one in [L-Z]. In Section 2, we give a proof of Theorem 4 in [Má], in ωω instead of 2ω,
and also prove some additional properties needed for the construction of our partial maps. In Section
3, we prove Theorems 1.1 and 1.2. At the end of Section 4, we show that Theorem 1.2 is optimal in
terms of descriptive complexity of the graph, and also give a positive result concerning the first two
problems in the case of finite unions of rectangles.

2 Mátrai sets

Before proving our version of Theorem 4 in [Má], we need some notation, definition, and a few
basic facts. The maps with closed graph will be of particular interest for us.
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Lemma 2.1 Let (Xi)i∈ω, (Yi)i∈ω be sequences of metrizable spaces, and, for each i∈ω, fi :Xi→Yi
be a partial map whose graph is a closed subset of Xi×Yi. Then the graph of the partial map
f :=Πi∈ω fi :Πi∈ω Xi→Πi∈ω Yi is closed.

Proof. Let (xj)j∈ω be a sequence of elements of Πi∈ω Xi converging to x := (xi)i∈ω such that(
f(xj)

)
j∈ω converges to y := (yi)i∈ω ∈Πi∈ω Yi. Then yi = fi(xi), since Gr(fi) is closed, for each

i∈ω. This implies that y=f(x) and the proof is finished. �

Notation. Let X be a set and F be a family of subsets of X . Then the symbol 〈F〉 denotes the
smallest topology on X containing F .

The next two lemmas can be found in [K] (see Lemmas 13.2 and 13.3).

Lemma 2.2 Let (X,σ) be a Polish space and F be a σ-closed subset of X . Then the topology
σF :=〈σ ∪ {F}〉 is Polish and F is σF -clopen.

Lemma 2.3 Let (σn)n∈ω be a sequence of Polish topologies on X . Then the topology 〈
⋃
n∈ω σn〉 is

Polish.

Lemma 2.4 Let (Hn)n∈ω be a disjoint family of sets in a zero-dimensional Polish space (X,σ) and
(σn)n∈ω be a sequence of topologies on X such that

σ0 = σ, H0 is σ0-closed,
σn+1=〈σn ∪ {Hn}〉, Hn+1 is σn+1-closed for every n∈ω.

Then the topology σ∞=〈
⋃
n∈ω σn〉 satisfies the following properties:

(a) σ∞ is zero-dimensional Polish,
(b) σ∞|X\⋃n∈ω Hn =σ|X\

⋃
n∈ω Hn

,
and, for every n∈ω,

(c) σ∞|Hn =σ|Hn ,
(d) Hn is σ∞-clopen.

Proof. Using Lemma 2.2 we see that each topology σn is Polish. Then the topology σ∞ is Polish by
Lemma 2.3. Now observe that the following claim holds.

Claim. A set G⊆X is σ∞-open if and only if G can be written as G = G′∪ (
⋃
n∈ω Gn∩Hn), where

G′, Gn are σ-open.

Note that Hn∈Σ0
1(σn+1)⊆Σ0

1(σ∞) and Hn∈Π0
1(σn)⊆Π0

1(σ∞), thus Hn is σ∞-clopen. Thus
(d) is satisfied. Let B be a basis for σ made of σ-clopen sets. Then the family

B ∪ {G ∩Hn | G∈B ∧ n∈ω}

is made of σ∞-clopen sets and form a basis for σ∞ by the claim. This gives (a).

Let G∈Σ0
1(σ∞). By the claim, we find σ-open sets G′, Gn such that G=G′∪ (

⋃
n∈ω Gn∩Hn).

Then G ∩ (X\
⋃
n∈ω Hn)=G′ ∩ (X\

⋃
n∈ω Hn). This implies (b). Moreover, G ∩Hn=Gn ∩Hn,

and (c) holds. �
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Notation. The symbol τ denotes the product topology on ωω.

Definition 2.5 We say that a partial map f : ωω→ ωω is nice if Gr(f) is a (τ×τ)-closed subset of
ωω×ωω.

The construction of Pξ and τξ, and the verification of the properties (1)ξ-(3)ξ from the next lemma,
can be found in [Má], up to minor modifications.

Lemma 2.6 Let 1 ≤ ξ < ω1. Then there are Pξ⊆ωω, and a topology τξ on ωω such that
(1)ξ τξ is zero-dimensional perfect Polish and τ⊆τξ⊆Σ0

ξ(τ),
(2)ξ Pξ is a nonempty τξ-closed nowhere dense set,
(3)ξ if S∈Σ0

ξ(ω
ω, τ) is τξ-nonmeager in Pξ, then S is τξ-nonmeager in ωω,

(4)ξ if U is a nonempty τξ |Pξ -open subset of Pξ, then we can find a τξ-dense Gδ subset G of U ,
and a nice (τξ, τ)-homeomorphism ϕξ,G from G onto ωω,

(5)ξ if V is a nonempty τξ-open subset of ωω, then we can find a τξ-dense Gδ subset H of V , and
a nice (τξ, τ)-homeomorphism ψξ,H from H onto ωω,

(6)ξ if U is a nonempty τξ |Pξ -open subset of Pξ and W is a nonempty open subset of ωω, then
we can find a τξ-dense Gδ subset G of U , a τξ-dense Gδ subset K of W \Pξ, and a nice (τξ, τξ)-
homeomorphism ϕξ,G,K from G onto K,

(7)ξ if V,W are nonempty τξ-open subsets of ωω, then we can find a τξ-dense Gδ subset H of
V \Pξ, a τξ-dense Gδ subset L of W \Pξ, and a nice (τξ, τξ)-homeomorphism ψξ,H,L from H onto L.

Proof. We proceed by induction on ξ.

The case ξ=1

We set P1 := {α ∈ ωω | ∀n ∈ ω α(2n) = 0} and τ1 := τ . The properties (1)1-(3)1 are clearly
satisfied.

(4)1 Note that (P1, τ1) is homeomorphic to (ωω, τ). As any nonempty open subset of (ωω, τ) is
homeomorphic to (ωω, τ), (U, τ1) is homeomorphic to (ωω, τ). This gives ϕξ,U , which is nice since
ωω is closed in itself. This shows that we can take G :=U .

(5)1 As in (4)1 we see that (V, τ1) is homeomorphic to (ωω, τ), and we can take H :=V .

(6)1 Note that U is the disjoint union of a sequence (Cn)n∈ω of nonempty clopen subsets of (P1, τ1).
Let (U1,n)n∈ω be a partition of W \P1 into clopen subsets of (ωω, τ1). As any nonempty open subset
of (P1, τ1) or (ωω, τ1) is homeomorphic to (ωω, τ), we can find homeomorphisms

ϕ0 : (C0, τ1)→(
⋃
n>0 U1,n, τ1)

and ϕ1 : (
⋃
n>0 Cn, τ1)→ (U1,0, τ1). As C0 and U1,0 are τ -closed, ϕ0 and ϕ1 are nice. This shows

that the gluing of ϕ0 and ϕ1 is a nice homeomorphism from (U, τ1) onto (W \P1, τ1). Thus we can
take G :=U and K :=W \P1.

(7)1 As in (6)1 we write V \P1 as the disjoint union of a sequence of nonempty clopen subsets of
(ωω, τ1), and similarly forW\P1. Since these clopen sets are homeomorphic to (ωω, τ1), we can take
H :=V \P1 and L :=W \P1.
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The induction step

We assume that 1<ξ<ω1 and that the assertion holds for each ordinal θ<ξ. We fix a sequence
of ordinals (ξn)n∈ω containing each ordinal in ξ\{0} infinitely many times. We set

Pξ=ωω×(Πi∈ω ¬Pξi),
τ<ξ =τ×(Πi∈ω τξi),
Uξ,n=ωω×(Πi<n ¬Pξi)×Pξn×(ωω)ω (n∈ω).

The family {Uξ,n | n∈ω} is disjoint. We set σ0 = τ<ξ and σn+1 = 〈σn ∪ {Uξ,n}〉. It is easy to check
that Uξ,n∈Π0

1(σn). Applying Lemma 2.4 we get a topology τξ :=σ∞ such that

(a) τξ is zero-dimensional Polish,
(b) τξ |Pξ =τ<ξ |Pξ

,

and, for every n∈ω,
(c) τξ |Uξ,n =τ<ξ |Uξ,n

,

(d) Uξ,n is τξ-clopen.

We defined the topology τξ on (ωω)ω instead of ωω. However, since the spaces
(
(ωω)ω, τω) and

(ωω, τ) are homeomorphic we can replace the latter space by the former one in the proof. Since there
is no danger of confusion we will write τ instead of τω to simplify the notation.

(1)ξ Clearly, τ ⊆ τξ. Note that Uξ,n ∈Σ0
ξ(τ) for every n ∈ ω and τ<ξ ⊆Σ0

ξ(τ), so that τξ ⊆Σ0
ξ(τ).

Moreover, (ωω, τξ) is clearly perfect.

(2)ξ As Uξ,n is τξ-clopen, Pξ is τξ-closed. Note that τξ |Pξ =τ<ξ |Pξ
and Pξ contains no nonempty basic

τ<ξ -open set. This implies that Pξ is τξ-nowhere dense.

(3)ξ Let S ∈Σ0
ξ(τ) be τξ-nonmeager in Pξ. We may assume that S ∈Π0

θ(τ) for some θ < ξ. As
τξ |Pξ =τ<ξ |Pξ

and S has the Baire property with respect to the topology τ<ξ there exists a τ<ξ -open set

V such that S is τ<ξ -comeager in Pξ ∩ V . Moreover, we may assume that V has the following form:

V = Ṽ ×(Πi≤k Vi)×(ωω)ω,

where Ṽ ∈τ , Vi∈τξi and Vi⊆¬Pξi for each i≤k. The set V ∗= Ṽ ×(Πi≤k Vi)×(Πi>k ¬Pξi) is τ<ξ -
comeager in V since ¬Pξi is τξi-comeager in ωω for every i∈ω. As Pξ ∩ V =V ∗, S is τ<ξ -comeager
in V ∗. Let p∈ω be such that p>k and ξp≥θ. Define

τ∗=τ×(Πi 6=p τξi),
Z= Ṽ ×V0×· · ·×Vk×¬Pξk+1

×· · ·×¬Pξp−1×(ωω)ω,
τ ]=τ×(Πi<p τξi)×τ×(Πi>p τξi).

For α∈ωω define a set (¬S)α by

(¬S)α :={(ỹ, y0, y1, . . . , yp−1, yp+1, . . . )∈ωω | (ỹ, y0, y1, . . . , yp−1, α, yp+1, . . . )∈¬S}.

5



Denote S∗ :={α∈ωω | (¬S)α is τ∗-nonmeager in Z}. Note that ¬S ∈Σ0
θ(τ)⊆Σ0

θ(τ
]). By the

Montgomery theorem (see 22.D in [K]), S∗∈Σ0
θ(τ)⊆Σ0

ξp
(τ). By the Kuratowski-Ulam theorem, S∗

is τξp-meager in ¬Pξp . Using the induction hypothesis, Condition (3)ξp implies that S∗ is τξp-meager
in Pξp . Using the Kuratowski-Ulam theorem again, we see that S is τ<ξ -comeager in the τξ-open set

W = Ṽ ×V0×· · ·×Vk×¬Pξk+1
×· · ·×¬Pξp−1×Pξp×(ωω)ω.

AsW ⊆Uξ,p, τξ |W =τ<ξ |W
by (c), and consequently S is τξ-comeager inW . Thus S is τξ-nonmeager

in (ωω)ω since W is τξ-open.

(4)ξ We first construct a τξ-dense open subset of U , which is the disjoint union of sets of the form

Un :=
(
Wn×(Πi<kn W

n
i )×(ωω)ω

)
∩ Pξ=Wn×(Πi<kn W

n
i \Pξi)×(Πi≥kn ¬Pξi),

where Wn is a nonempty τ -clopen set and Wn
i is a nonempty τξi-clopen set. In order to do this, we

fix an injective τξ-dense sequence (xn)n∈ω of U , which is possible since (Pξ, τξ) is nonempty and
perfect. We first choose W 0 and the W 0

i ’s in such a way that U0 is a proper τξ-clopen neighborhood
of x0 in U , which is possible since τξ |Pξ =τ<ξ |Pξ

. For the induction step, we choose pn minimal such

that xpn /∈
⋃
q≤n U q. Then we choose Wn+1 and the Wn+1

i ’s in such a way that Un+1 is a proper
τξ-clopen neighborhood of xpn in U \(

⋃
q≤n U

q).

There is a nice (τ, τ)-homeomorphism ψn from Wn onto Nn := {α ∈ ωω | α(0) = n}. The
induction assumption gives,

- for i<kn, a τξi-dense Gδ subset Gni of Wn
i \Pξi , and a nice (τξi , τ)-homeomorphism ψξi,Gni of

Gni onto ωω,

- for i≥kn, a τξi-dense Gδ subset Gni of ¬Pξi , and a nice (τξi , τ)-homeomorphism ψξi,Gni of Gni
onto ωω.

By Lemma 2.1, the map ψn×(Πi∈ω ψξi,Gni ) is a nice (τ<ξ , τ)-homeomorphism from

Wn×(Πi∈ω G
n
i )

ontoNn×(ωω)ω. If we setG :=
⋃
n∈ω

(
Wn×(Πi∈ω G

n
i )
)
, then we get a nice (τ<ξ , τ)-homeomorphism

from G onto ωω. We are done since τξ |Pξ =τ<ξ |Pξ
.

(5)ξ We essentially argue as in (4)ξ. As Pξ is τξ-closed nowhere dense, we may assume that

V ⊆¬Pξ=
⋃
n∈ω

Uξ,n.

We first construct a τξ-dense open subset of V ∩ Uξ,n, which is the disjoint union of sets of the form
V n,p :=Wn,p×(Πi<nW

n,p
i \Pξi)×(Wn,p

n ∩Pξn)×(Πn<i<kpn
Wn,p
i )×(ωω)ω, whereWn,p is a nonempty

τ -clopen set and Wn,p
i is a nonempty τξi-clopen set. This is possible since τξ |Uξ,n = τ<ξ |Uξ,n

. We are

done since Uξ,n is τξ-clopen.
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(6)ξ As in (4)ξ we construct a τξ-dense open subset of U , which is the disjoint union of sets of the
form Un :=

(
Wn×(Πi<kn W

n
i )×(ωω)ω

)
∩Pξ=Wn×(Πi<kn W

n
i \Pξi)×(Πi≥kn ¬Pξi), where Wn

is a nonempty τ -clopen set and Wn
i is a nonempty τξi-clopen set. Recall also that

Uξ,n=ωω×(Πi<n ¬Pξi)×Pξn×(ωω)ω.

We also construct a τξ-dense open subset of W , which is the disjoint union of sets of the form

πn :=Zn×(Πi<ln Z
n
i \Pξi)×(Znln ∩ Pξln )×(Πln<i<mn Z

n
i )×(ωω)ω⊆Uξ,ln ,

where Zn is a nonempty τ -clopen set and Zni is a nonempty τξi-clopen set. Let (W 0,p)p∈ω (respec-
tively, (Z0,p)p∈ω) be a partition of W 0 (respectively, Z0) into nonempty τ -clopen sets. Using the
facts that τξ |Pξ =τ<ξ |Pξ

and τξ |Uξ,n =τ<ξ |Uξ,n
, we will build

- a nice (τξ, τξ)-homeomorphism from a dense Gδ subset G0,p of

U0,p :=W 0,p×(Πi<k0 W
0
i \Pξi)×(Πi≥k0 ¬Pξi)

onto a dense Gδ subset K0,p of πp+1. Then, using the fact that the W 0,p’s are τ -clopen, the gluing of
these (τξ, τξ)-homeomorphisms will be a nice (τξ, τξ)-homeomorphism ϕ0 from

G0 :=
⋃
p∈ω

G0,p⊆U0

onto K0 :=
⋃
p∈ω K0,p⊆

⋃
p>0 π

p.

- a nice (τξ, τξ)-homeomorphism from a dense Gδ subset G1,p of Up+1 onto a dense Gδ subset
K1,p of Z0,p×(Πi<l0 Z

0
i\Pξi)×(Z0

l0
∩Pξl0 )×(Πl0<i<m0 Z

0
i )×(ωω)ω. Then the gluing of these (τξ, τξ)-

homeomorphisms will be a nice (τξ, τξ)-homeomorphism ϕ1 fromG1 :=
⋃
p∈ω G

1,p⊆
⋃
p>0 U

p onto
K1 :=

⋃
p∈ω K1,p⊆π0.

The gluing of these two (τξ, τξ)-homeomorphisms will be a nice (τξ, τξ)-homeomorphism from
G :=G0 ∪G1 onto K :=K0 ∪K1. The set G0,p (respectively, K0,p) will be of the form

W 0,p×(Πi∈ω G
p
i )

(respectively, Zp+1×(Πi∈ω K
p
i )). Note first that there is a (τ, τ)-homeomorphism ψp fromW 0,p onto

Zp+1. Then we build a permutation i 7→ji of the coordinates (with inverse q 7→Jq). This permutation
is constructed in such a way that ξji =ξi, which will be possible since (ξn)n∈ω contains each ordinal
in ξ\{0} infinitely many times. If i<mp+1 (respectively, q<k0), then we choose ji≥k0 (respectively,
Jq ≥mp+1), ensuring injectivity. For a remaining coordinate q /∈ {0, ..., k0−1} ∪ {jl | l <mp+1},
we choose Jq /∈ {0, ...,mp+1−1} ∪ {Jl | l < k0}, ensuring that the map q 7→ Jq is a bijection from
¬({0, ..., k0−1} ∪ {jl | l < mp+1}) onto ¬

(
{0, ...,mp+1−1} ∪ {Jl | l < k0}

)
. Then, using the

induction assumption, we build our homeomorphism coordinate by coordinate, which means that Gpji
will be homeomorphic to Kp

i . The induction assumption gives

- for i<lp+1, a τξji -dense Gδ subset Gpji of ¬Pξji , a τξi-dense Gδ subset Kp
i of Zp+1

i \Pξi , and a
nice (τξi , τξi)-homeomorphism ψξi,Gpji ,K

p
i

from Gpji onto Kp
i .

7



- a τξjlp+1
-dense Gδ subset Gpjlp+1

of ¬Pξjlp+1
, a τξlp+1

-dense Gδ subset Kp
lp+1

of Pξlp+1
, and a

nice (τξlp+1
, τξlp+1

)-homeomorphism ϕ−1
ξlp+1

,Kp
lp+1

,Gpjlp+1

from Gpjlp+1
onto Kp

lp+1
.

- for lp+1<i<mp+1, a τξji -denseGδ subsetGpji of ¬Pξji , a τξi-denseGδ subsetKp
i of Zp+1

i \Pξi ,
and a nice (τξi , τξi)-homeomorphism ψξi,Gpji ,K

p
i

from Gpji onto Kp
i .

- for q <k0, a τξq -dense Gδ subset Gpq of W 0
q \Pξq , a τξJq -dense Gδ subset Kp

Jq
of ¬PξJq , and a

nice (τξq , τξq)-homeomorphism ψξq ,Gpq ,Kp
Jq

from Gpq onto Kp
Jq

.

- for a remaining coordinate q /∈ {0, ..., k0−1} ∪ {jl | l <mp+1}, a τξq -dense Gδ subset Gpq of
¬Pξq , a τξJq -dense Gδ subset Kp

Jq
of ¬PξJq , and a nice (τξq , τξq)-homeomorphism ψξq ,Gpq ,Kp

Jq
from

Gpq onto Kp
Jq

.

By Lemma 2.1, the product ϕ0
p of ψp with these nice homeomorphisms is a nice (τ<ξ , τ

<
ξ )-

homeomorphism from G0,p := W 0,p× (Πi∈ω G
p
i ) onto K0,p := Zp+1× (Πi∈ω K

p
i ), as well as a

(τξ, τξ)-homeomorphism since τξ |Pξ = τ<ξ |Pξ
and τξ |Uξ,lp+1

= τ<ξ |Uξ,lp+1

. As G0 is the sum of the

G0,p’s, G is a τξ-dense Gδ subset of U0. Similarly, K0 is a τξ-dense Gδ subset of
⋃
p>0 π

p. More-
over, the gluing ϕ0 of the ϕ0

p’s is a (τξ, τξ)-homeomorphism from G0 onto K0.

The construction of ϕ1 is similar.

(7)ξ We argue as in (6)ξ. �

Lemma 2.7 Let 1 ≤ ξ < ω1. Then there are disjoint families Fξ, Gξ of subsets of ωω and a topology
Tξ on ωω such that

(a)ξ Tξ is zero-dimensional perfect Polish and τ⊆Tξ⊆Σ0
ξ(τ),

(b)ξ Fξ is Tξ-dense, i.e., for any nonempty Tξ-open set V , there is F ∈Fξ with F ⊆V ,

and, for every F ∈Fξ,
(c)ξ F is nonempty, Tξ-nowhere dense, and in Π0

2(Tξ),

(d)ξ if S∈Σ0
ξ(τ) is Tξ-nonmeager in F , then S is Tξ-nonmeager in ωω,

(e)ξ there is a nice (Tξ, τ)-homeomorphism ϕF from F onto ωω,

(f)ξ for any nonempty Tξ-open sets V, V ′, there are disjoint G,G′∈Gξ with G⊆V , G′⊆V ′, and
there is a nice (Tξ, Tξ)-homeomorphism ϕG,G′ from G onto G′,

and, for every G∈Gξ,
(g)ξ G is nonempty, Tξ-nowhere dense, and in Π0

2(Tξ),

(h)ξ if S∈Σ0
ξ(τ) is Tξ-nonmeager in G, then S is Tξ-nonmeager in ωω.

Proof. Let Pξ and τξ be as in Lemma 2.6. We set Tξ=(τξ)
ω. Let (Un)n∈ω be a basis for the topology

Tξ made of nonempty sets. For each n∈ω, there is a finite sequence (V n
i )i<kn of nonempty τξ-open

sets such that (Πi<kn V
n
i )×(ωω)ω ⊆ Un. Moreover, the sequence (kn)n∈ω is chosen to be strictly

increasing.
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Lemma 2.6 provides

- for i<kn, a τξ-dense Gδ subset Hn
i of V n

i \Pξ and a nice (τξ, τ)-homeomorphism

ψξ,Hn
i

:Hn
i →ωω,

- a τξ-dense Gδ subset Gnkn of Pξ and a nice (τξ, τ)-homeomorphism ϕξ,Gnkn
:Gnkn→ωω,

- for i>kn, a τξ-dense Gδ subset Hn
i of ωω and a nice (τξ, τ)-homeomorphism ψξ,Hn

i
:Hn

i →ωω.

We then put Fn :=(Πi<kn H
n
i )×Gnkn×(Πi>kn H

n
i ), so that Fn⊆Un. We set Fξ={Fn | n∈ω}.

Then Fξ is clearly a disjoint family and the properties (a)ξ and (b)ξ are obviously satisfied.

(c)ξ As Pξ is τξ-nowhere dense, each Fn is Tξ-nowhere dense. Each Fn is obviously also in Π0
2(Tξ).

(d)ξ Let n∈ω and S∈Σ0
ξ(τ) be Tξ-nonmeager in Fn. We define

T ∗ξ =Πi 6=kn τξ |Hn
i

,

T̃ξ=(Πi<kn τξ |Hn
i

)×τ×(Πi>kn τξ |Hn
i

).

If α∈ωω, then we denote

Sα :={(y0, . . . , ykn−1, ykn+1, . . . )∈ωω | (y0, . . . , ykn−1, α, ykn+1, . . . )∈S}.

We set S∗ = {α ∈ ωω | Sα is T ∗ξ -nonmeager}. By the Montgomery theorem, S∗ ∈ Σ0
ξ(τ) since

S ∈ Σ0
ξ(T̃ξ). The set S∗ is τξ-nonmeager in Gnkn by the Kuratowski-Ulam theorem, in Pξ also,

and thus S∗ is τξ-nonmeager in ωω. Using the Kuratowski-Ulam theorem again, we see that S is
Tξ-nonmeager in (Πi<kn H

n
i )×ωω×(Πi>kn H

n
i ), and thus in (ωω)ω.

(e)ξ We set ϕF =(Πi<kn ψξ,Hn
i

)×ϕξ,Gnkn×(Πi>kn ψξ,Hn
i

). The map ϕF is clearly a (Tξ, τ)-homeo-
morphism from F onto (ωω)ω. It is nice by Lemma 2.1.

We now construct Gξ. For each m ∈ ω, there are finite sequences (V m
i )i<km , (Wm

i )i<lm of
nonempty τξ-open sets such that (Πi<km V m

i )×(ωω)ω ⊆U(m)0 and (Πi<lm Wm
i )×(ωω)ω⊆U(m)1 .

Moreover, the sequences (km)m∈ω and (lm)m∈ω are chosen to be strictly increasing and disjoint.
Assume for example that km<lm. Lemma 2.6 provides

- for i < km, a τξ-dense Gδ subset Hm
i of V m

i \Pξ, a τξ-dense Gδ subset Lmi of Wm
i \Pξ, and a

nice (τξ, τξ)-homeomorphism ψξ,Hm
i ,L

m
i

,

- a τξ-dense Gδ subset Gmkm of Pξ, a τξ-dense Gδ subset Km
km

of Wm
i \Pξ, and a nice (τξ, τξ)-

homeomorphism ϕξ,Gmkm ,K
m
km

,

- for km<i<lm, a τξ-dense Gδ subset Hm
i of ¬Pξ, a τξ-dense Gδ subset Lmi of Wm

i \Pξ, and a
nice (τξ, τξ)-homeomorphism ψξ,Hm

i ,L
m
i

,

- a τξ-dense Gδ subset Km
lm

of ¬Pξ, a τξ-dense Gδ subset Gmlm of Pξ, and a nice (τξ, τξ)-
homeomorphism ϕ−1ξ,Gmlm ,K

m
lm

,
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- for i > lm, a τξ-dense Gδ subset Hm
i of ¬Pξ, a τξ-dense Gδ subset Lmi of ¬Pξ, and a nice

(τξ, τξ)-homeomorphism ψξ,Hm
i ,L

m
i

.

We then put

F ′m :=(Πi<km Hm
i )×Gmkm×(Πkm<i<lm Hm

i )×Km
lm
×(Πi>lm Hm

i ),
Gm :=(Πi<km Lmi )×Km

km
×(Πkm<i<lm Lmi )×Gmlm×(Πi>lm Lmi ),

so that F ′m×Gm⊆U(m)0×U(m)1 . We set Gξ ={F ′m | m∈ω} ∪ {Gm | m∈ω}. Then Gξ is clearly a
disjoint family.

(f)ξ The map ϕF ′m,Gm is by definition

(Πi<km ψξ,Hm
i ,L

m
i

)×ϕξ,Gmkm ,Km
km
×(Πkm<i<lm ψξ,Hm

i ,L
m
i

)×ϕ−1ξ,Gmlm ,Km
lm
×(Πi>lm ψξ,Hm

i ,L
m
i

).

Note that ϕF ′m,Gm is clearly a (Tξ, Tξ)-homeomorphism from F ′m onto Gm. It is nice by Lemma 2.1.

(g)ξ We argue as in (c)ξ.

(h)ξ We argue as in (d)ξ. �

3 Negative results

Proof of Theorem 1.1. We apply Lemma 2.7 to the ordinal ξ+1, which gives a family Fξ+1 and a
topology Tξ+1 satisfying (a)ξ+1-(e)ξ+1. Let (Un×Vn)n∈ω be a sequence of nonempty sets such that

- Un∈Tξ+1, Vn is τ -clopen,

- {Un×Vn | n∈ω} is a basis for the topology Tξ+1×τ .

For each n∈ω we find Fn∈Fξ+1\{Fq | q<n}with Fn⊆Un. By the property (e)ξ+1 ofFξ+1 we find,
for each n∈ω, a nice (Tξ+1, τ)-homeomorphism fn from Fn onto Vn. We define f :

⋃
n∈ω Fn→ωω

by f(x) :=fn(x) if x∈Fn. AsFξ+1 is a disjoint family, f is well-defined. The graph of f is Σ0
2(τ×τ)

since each Gr(fn) is (τ×τ)-closed.

Suppose, towards a contradiction, that there exist, for n∈ω, Cn ∈Σ0
ξ(τ) and Dn ∈∆1

1(τ) such
that ¬Gr(f)=

⋃
n∈ω Cn×Dn. By the Baire category theorem there is n0∈ω such that Cn0 is Tξ+1-

nonmeager and Dn0 is τ -nonmeager. As Cn0 has the Baire property, we find a nonempty Tξ+1-open
set O1 such that Cn0 is Tξ+1-comeager in O1. Similarly, we find a τ -open set O2 such that Dn0 is
τ -comeager in O2.

Let n∈ω and Fn⊆O1. Suppose that Cn0 is not Tξ+1-comeager in Fn. Then O1\Cn0 is Tξ+1-
nonmeager in Fn. Note that O1 ∈Σ0

ξ+1(τ) and Cn0 ∈Σ0
ξ(τ). Therefore O1\Cn0 ∈Σ0

ξ+1(τ). Thus
O1\Cn0 is Tξ+1-nonmeager in ωω by (d)ξ+1. Consequently, O1\Cn0 is Tξ+1-nonmeager in O1, a
contradiction. Thus Cn0 is Tξ+1-comeager in Fn for any n∈ω with Fn⊆O1.
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Find n ∈ ω such that Gr(fn) ⊆ O1×O2. Then Cn0 is Tξ+1-comeager in Fn and Dn0 is τ -
comeager in Vn. As fn is a (Tξ+1, τ)-homeomorphism, f−1n (Vn ∩Dn0) is Tξ+1-comeager in Fn. As
Fn∈Π0

2(Tξ+1) there exists α∈f−1n (Vn∩Dn0)∩Fn∩Cn0 . This implies that
(
α, fn(α)

)
∈Cn0×Dn0 ,

a contradiction. �

Proof of Theorem 1.2. Apply Lemma 2.7 to the ordinal ξ + 1, which gives a family Gξ+1 and a
topology Tξ+1 satisfying (a)ξ+1-(h)ξ+1. Let U = {Un | n ∈ ω} be a basis for the space (ωω, Tξ+1)
made of nonempty sets. For each n∈ω we find Tξ+1-open sets Vn, Wn such that

Vn×Wn⊆Bτ×τ
(
∆(ωω), 2−n

)
∩ (Un × Un)\∆(ωω)

(we use the standard metric on (ωω, τ)).

By the properties (f)ξ+1 and (g)ξ+1 of Gξ+1 we find, for each n∈ω, sets Fn and Hn from Gξ+1

such that
(∗) Fn⊆Vn\(

⋃
j<n

Fj ∪Hj) ∧ Hn⊆Wn\
(
Fn ∪ (

⋃
j<n

Fj ∪Hj)
)
.

Moreover, there is a nice (Tξ+1, Tξ+1)-homeomorphism fn from Fn onto Hn. We set

G=
⋃
{Gr(fn) | n∈ω}.

Now we check the desired properties.

As τ⊆Tξ+1, Gτ×τ =G∪∆(ωω), by construction. Thus G is a difference of two (τ×τ)-closed sets.
As each fn is a (Tξ+1, Tξ+1)-homeomorphism, the property (∗) implies that f is a partial injection
with disjoint domain and range. In order to see that G has no ∆0

ξ-measurable countable coloring, we
proceed by contradiction. Suppose that there are G-discrete sets Cn ∈∆0

ξ(τ) (a set C is G-discrete
if C2 ∩ G = ∅), for n ∈ ω, such that ∆(ωω)⊆

⋃
n∈ω C2

n. By the Baire theorem there exists n0 ∈ ω
such that Cn0 is Tξ+1-nonmeager. As Cn0 has the Baire property, we find a nonempty Tξ+1-open set
O such that Cn0 ∩O is Tξ+1-comeager in O.

Let F ∈ Gξ+1 with F ⊆ O. Suppose that Cn0 is not Tξ+1-comeager in F . Then O \Cn0 is
Tξ+1-nonmeager in F . Note that O ∈ Σ0

ξ+1(τ) and Cn0 ∈∆0
ξ(τ). Therefore O\Cn0 ∈ Σ0

ξ+1(τ).
Thus O\Cn0 is Tξ+1-nonmeager in ωω by (h)ξ+1. Consequently, O\Cn0 is Tξ+1-nonmeager in O, a
contradiction. Thus Cn0 is Tξ+1-comeager in F for any F ∈Gξ+1 with F ⊆O.

Find n ∈ ω such that Gr(fn) ⊆ O2. Then Cn0 is Tξ+1-comeager in Fn and in Hn. As fn is a
(Tξ+1, Tξ+1)-homeomorphism, f−1n (Hn ∩ Cn0) is Tξ+1-comeager in Fn ∈ Π0

2(Tξ+1). Thus there
exists α∈f−1n (Hn ∩ Cn0) ∩ Fn ∩ Cn0 . This implies that

(
α, fn(α)

)
∈C2

n0
, a contradiction. �

4 Positive results

(A) ∆0
ξ-measurable countable colorings

In [L-Z], the following conjecture is made.
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Conjecture Let 1≤ξ<ω1. Then there are

- a 0-dimensional Polish space Xξ,
- an analytic relation Aξ on Xξ

such that for any (0-dimensional if ξ = 1) Polish space X , and for any analytic relation A on X ,
exactly one of the following holds:

(a) there is a ∆0
ξ-measurable countable coloring of A (i.e., a ∆0

ξ-measurable map c :X→ω such
that A⊆(c×c)−1(6=)),

(b) there is a continuous map f :Xξ→X such that Aξ⊆(f×f)−1(A).

This would be a ∆0
ξ-measurable version of the G0-dichotomy in [K-S-T]. This conjecture is

proved for ξ≤3 in [L-Z]. Our goals here are the following. We want to give
- a reasonable candidate for Aξ in the general case,
- an example for ξ=3 that is much simpler than the one in [L-Z].

We set Π0
0 :=∆0

1. The following result is proved in [Má] (see Theorem 4 and Lemma 13.(i)).

Theorem 4.1 (Mátrai) Let 1≤ξ<ω1. There are a true Π0
ξ subset Pξ of 2ω, and a Polish topology τξ

on 2ω such that

(1)ξ τξ is finer than the usual topology τ ′ on 2ω,

(2)ξ Pξ is τξ-closed and τξ-nowhere dense,

(3)ξ if G is a basic τξ-open set meeting Pξ, and D ∈Π0
<ξ(2

ω, τ ′) is such that D ∩ Pξ ∩ G is
comeager in (Pξ ∩G, τξ |Pξ∩G), then there is a τξ-open set G′ such that Pξ ∩G′=Pξ ∩G and D∩G′

is comeager in (G′, τξ |G′).

Notation. In the sequel 1≤ξ<ω1. Fix, for each ξ, an increasing sequence (ηn)n∈ω of elements of ξ
(different from 0 if ξ≥2) such that supn∈ω (ηn+1)=ξ.

• Let < ., . >: ω2→ ω be a bijection, defined for example by < n, p >:= (Σk≤n+p k)+p, whose
inverse bijection is q 7→

(
(q)0, (q)1

)
.

• If u∈2≤ω and n∈ω, then we define (u)n∈2≤ω by (u)n(p) :=u(< n, p >) if < n, p >< |u|.

• Let (tn)n∈ω be a dense sequence in ω<ω with |tn|=n. For example, let (pn)n∈ω be the sequence of
prime numbers, and I :ω<ω→ω defined by I(∅) :=1, and I(s) :=p

s(0)+1
0 ...p

s(|s|−1)+1
|s|−1 if s 6=∅. Note

that I is one-to-one, so that there is an increasing bijection i :I[ω<ω]→ω. Setψ :=(i◦I)−1 :ω→ω<ω,
so that ψ is a bijection. Note that |ψ(n)|≤n if n∈ω. Indeed,

I
(
ψ(n)|0

)
<I
(
ψ(n)|1

)
<...<I

(
ψ(n)

)
,

so that (b ◦ I)
(
ψ(n)|0

)
< (b ◦ I)

(
ψ(n)|1

)
< ... < (b ◦ I)

(
ψ(n)

)
= n. As |ψ(n)| ≤ n, we can define

tn :=ψ(n)0n−|ψ(n)|, and (tn)n∈ω is suitable.

• Theorem 4.1 gives Pξ and τξ. Let Qξ :=2×Pξ, Tξ :=discrete×τξ, and T<ξ :=Πi∈ω Tηi if ξ≥2.
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• (Wξ,n)n∈ω is a sequence of nonempty Tξ-open sets.

• Si :=Qηi ∪
⋃
n∈ω Wηi,n (for i∈ω), and S :=Πi∈ω Si, so that S∈Π0

2(T
<
ξ ) is a Polish space.

• If ξ≥2, then we set

Kξ :=
⋃
n∈ω

{
(α, β)∈2ω×2ω |

(
∀i<n (α)i=(β)i∈Wηi,tn(i)

)
∧(

∃γ∈Pηn
(
(α)n, (β)n

)
=(0γ, 1γ)

)
∧
(
∀i>n (α)i=(β)i

)}
,

Lemma 4.2 Let 2 ≤ ξ ≤ ω1. We assume that Qηi ⊆
⋃
n∈ω Wηi,n

Tηi for each i ∈ ω. Then any
Kξ-discrete Σ0

ξ subset C of (S, τ ′) is T<ξ -meager in S.

Proof. We may assume that C is Π0
<ξ. We argue by contradiction. This gives n∈ω with C∈Π0

ηn , a
basic T<ξ -open set O such that C ∩ O is T<ξ -comeager in O ∩ S 6= ∅, l≥n, and a sequence (Oi)i<l
with Oi∈Tηi and O={α∈2ω | ∀i<l (α)i∈Oi}. The assumption gives, for each i< l, ni∈ω such
that Oi ∩Wηi,ni 6=∅. Let m≥ l such that tm(i)=ni for each i<l, and

U :=
{
α∈S | ∀i<l (α)i∈Oi ∧ ∀i<m (α)i∈Wηi,tm(i)

}
,

which is a nonempty T<ξ -open subset of S. In particular, C ∩ U is T<ξ -comeager in U . We set

V :=
{

(αi)i 6=m∈Πi 6=m Si | ∀i<l αi∈Oi ∧ ∀i<m αi∈Wηi,tm(i)

}
,

so that, up to a permutation of coordinates, U≡Sm×V . We also set

C ′ :=
{
α∈Sm |

(
C ∩ (Sm×V )

)
α

is Πi 6=m Tηi-comeager in V
}
.

By the Kuratowski-Ulam theorem, C ′ is Tηm-comeager in Sm (see 8.41 in [K]). Write C =D ∩ S,

where D∈Π0
ηn(2ω). Note that C ′ :=Sm ∩

{
α∈2ω |

(
D∩ (2ω×V )

)
α

is Πi 6=m Tηi-comeager in V
}

.

As m≥n and Πi 6=m Tηi is finer than the usual topology, D∩ (2ω×V )∈Π0
ηm(2ω, τ ′×(Πi 6=m Tηi)|V ).

By the Montgomery theorem, C ′ is Π0
ηm(Sm, τ

′) (see 22.22 in [K]).

The set C ′ cannot be Tηm-comeager both in Qηm ∩ N0 and in Qηm ∩ N1. Indeed, we argue by
contradiction to see that. We set h0(α) :=< 1−α(0), α(1), α(2), ... >. As h0|Qηm∩N0

is a Tηm-
homeomorphism, C ′ ∩ h0−1|Qηm∩N0

(C ′ ∩Qηm ∩N1) is Tηm-comeager in Qηm ∩N0, and if 0γ is in it,
then 1γ∈C ′, which gives δ∈(C ∩ U)0γ ∩ (C ∩ U)1γ and contradicts the Kξ-discreteness of C.

Assume for example that C ′ is not Tηm-comeager in Qηm ∩N0. Then ¬C ′ is Tηm-non meager in
Qηm . As C ′ is Π0

ηm(Sm, τ
′), there is a sequence (Cj)j∈ω of Π0

<ηm(2ω) sets such that

Sm\C ′=
⋃
j∈ω

Cj ∩ Sm.

This gives j ∈ ω such that Cj ∩ Qηm is Tηm-non meager in Qηm , and a basic Tηm-open set O such
that Cj ∩Qηm ∩O is Tηm-comeager in Qηm ∩O 6=∅.
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The set O is of the form {ε}×G, where ε ∈ 2 and G is a basic τηm-open set. Let S :Nε→ 2ω

be the map defined by S(εα) :=α. Note that S is a τ ′-τ ′ and Tξ-τξ homeomorphism. In particular,
E := {α ∈ 2ω | εα ∈ Cj} is τ ′-Π0

<ηm and E ∩ Pηm ∩ G is comeager in (Pηm ∩ G, τηm |Pηm∩G).
Theorem 4.1.(3) gives a τηm-open set G′ such that Pηm ∩ G′=Pηm ∩ G and E ∩ G′ is comeager in
(G′, τηm |G′). NowO′ :={ε}×G′ is a Tηm-open set such thatQηm∩O′=Qηm∩O andCj∩O′ is Tηm-
comeager in O′. The assumption gives n∈ω such that Wηm,n ∩ O′ 6=∅. Note that Cj ∩Wηm,n ∩ O′
is Tηm-comeager in Wηm,n ∩O′, so that ¬C ′ is Tηm-non meager in Sm, which is absurd. �

Corollary 4.3 Let 2≤ξ≤ω1. We assume that Qηi⊆
⋃
n∈ω Wηi,n

Tηi for each i∈ω. Then
(a) there is no ∆0

ξ-measurable map c :2ω→ω such that Kξ⊆(c×c)−1( 6=),

(b) if Xξ ∈ Π0
2(2

ω) and Kξ ⊆ X2
ξ , then there is no ∆0

ξ-measurable map c : Xξ → ω such that
Kξ⊆(c×c)−1( 6=).

Proof. (a) We just have to apply Lemma 4.2.

(b) We argue by contradiction. This gives a partition (Ck)k∈ω of Xξ into Kξ-discrete ∆0
ξ(Xξ) sets.

We set D0 := 2ω \Xξ, and choose Dk+1 ∈Σ0
ξ(2

ω) such that Ck =Dk+1 ∩ Xξ. Then (Dk)k∈ω is a
covering of 2ω into Kξ-discrete Σ0

ξ sets. It remains to apply the reduction property of the class Σ0
ξ to

contradict (a). �

The case ξ=2

Example. Let α 7→α∗ be the shift map on 2ω: α∗(j) :=α(j+1). Then we set

A2 :=
⋃
n∈ω

{
(α, β)∈2ω×2ω |

(
∀i<n (α)i=(β)i ∧ 0tn(i)1⊆(α)∗i

)
∧(

(α)n, (β)n
)

=(0∞, 10∞) ∧
(
∀i>n (α)i=(β)i

)}
.

Theorem 4.4 (2ω,A2) satisfies the conjecture.

Proof. We set P1 := {0∞} and τ1 := τ ′, so that P1 and τ1 satisfy the properties of Theorem 4.1. We
also setW1,n :=N0n+11∪N10n1, so that (W1,n)n∈ω is a sequence of nonempty T1-open sets satisfying
the assumption of Corollary 4.3, so that A2 = K2 satisfies its conclusions. In particular, (a) and (b)
cannot hold simultaneously.

We define, for (ε, n) ∈ 2×ω, Kε
n := {α ∈ 2ω | ∀i < n 0tn(i)1 ⊆ (α)∗i ∧ (α)n(0) = ε},

and also Cεn := Kε
n \
(⋃

n<k K0
k ∪ K1

k

)
, so that Cεn is closed, the Cεn’s are pairwise disjoint, and

A2⊆
⋃
n∈ω C0

n×C1
n. We set, for each p, q∈ω,

Opq :=


Kε
n\
(⋃

n<k≤q K
0
k ∪K1

k

)
if p=2n+ε≤2q+1,

2ω\(
⋃
p′≤2q+1 O

p′
q ) if p=2q+2,

∅ if p≥2q+3,

so that (Opq )p∈ω is a covering of 2ω into clopen sets. Assume that p= 2n+ε 6= p′= 2n′+ε′≤ 2q+1

and α∈Opq ∩Op
′
q , so that n, n′≤q. As α∈Kε

n ∩Kε′
n′ , n 6=n′ and for example n<n′, which is absurd.

Thus (Opq )p∈ω is a partition of 2ω.
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(a) Assume that q<n. Note that C0
n∪C1

n is contained in or disjoint from each set of the formKε
k with

k≤q. By disjonction, there is at most one couple (ε, r) such that 2r+ε≤2q+1 and C0
n∪C1

n⊆O2r+ε
q .

If it does not exist, then C0
n ∪ C1

n⊆O
2q+2
q .

(b) Assume that q≥n. Note that Cεn⊆Kε
n. As q≥n, p :=2n+ε≤2q+1. Thus Cεn⊆O

p
q .

It remains to apply Proposition 4.6 in [L-Z] to see that (a) or (b) holds. �

The case ξ=3

Example. Let (sn)n∈ω be a dense sequence in 2<ω with |sn|=n. For example, let φ :ω→2<ω be a
natural bijection. More specifically, φ(0) :=∅ is the sequence of length 0, φ(1) :=0, φ(2) :=1 are the
sequences of length 1, and so on. Note that |φ(n)| ≤ n if n∈ ω. Let n∈ ω. As |φ(n)| ≤ n, we can
define sn :=φ(n)0n−|ψ(n)|. We set P2 :={α∈2ω | ∀p∈ω ∃q≥p α(q)=1}, and

A3 :=
⋃
n∈ω

{
(α, β)∈2ω×2ω |

(
∀i<n (α)i=(β)i=stn(i)10∞

)
∧(

∃γ∈P2

(
(α)n, (β)n

)
=(0γ, 1γ)

)
∧ ∀i>n (α)i=(β)i

}
.

We will see that A3, together with a suitable Π0
2 subset X3 of 2ω, satisfies the conjecture. The topology

τ2 makes the countably many singletons of ¬P2 open. Then P2 is a true Π0
2 subset of 2ω (see 23.A

in [K]), τ2 is Polish finer than τ ′, P2 is closed nowhere dense for τ2 since τ2 coincides with τ ′ on P2

and ¬P2 is τ ′-dense, and 4.1.(3) is satisfied since a basic τ2-open set meeting P2 is a basic τ ′-clopen
set and P2 is τ ′-comeager. Thus P2 and τ2 satisfy the properties of Theorem 4.1. We set

W2,n :={sn10∞}.

Then Q2⊆
⋃
n∈ω W2,n

T2 since (sn)n∈ω is dense. This shows that A3 =K3 satisfies the conclusions
of Corollary 4.3. In particular, (a) and (b) cannot hold simultaneously. In order to prove that (a) or
(b) holds, we simply indicate the modifications to make to Section 5 in [L-Z]. We just need to prove
the right lemmas since the final construction is the same.

Lemma 4.5 (a) Let n∈ω and i<n. Then tn(i)<n−i.
(b) The map M :{stn(i)10∞ | n∈ω ∧ i<n}→ω, defined by M(α) :=max{p∈ω | α(p)=1}, is

one-to-one.

Proof. (a) Recall the map ψ defined after Theorem 4.1. It is enough to prove that ψ(n)(i) < n− i
if i < |ψ(n)|. We argue by induction on n, and the result is clear for n = 0. We may assume that
ψ(n)(i) = q+1 for some natural number q. We define t∈ ω<ω by t(i) := q, and t(j) := ψ(n)(j) if
j 6= i. Let p∈ω with ψ(p)= t. Note that I

(
ψ(p)

)
<I
(
ψ(n)

)
, so that p<n. The induction assumption

implies that q=ψ(p)(i)<p−i, so that ψ(n)(i)=q+1≤p−i<n−i.

(b) Assume that M(α) = M(α′). Let n, n′, i, i′ with α = stn(i)10∞ and α′ = stn′ (i′)10∞. Then
tn(i)= |stn(i)|=M(α)=M(α′)= tn′(i

′), so that α=α′. �

Notation. If ∅ 6=u∈2<ω, then um :=u|(|u|−1).

The following notion is technical but crucial.

15



Definition 4.6 We say that u∈2<ω is placed if

(a) u 6=∅,
(b) ∀i<(|um|)0 (u)i⊆st(|um|)0 (i)10∞,

(c) u(|um|)=1 if (|um|)1>0.

We are now ready to define

X3 :=
{
α∈2ω | ∀n∈ω ∃p≥n α|p is placed

}
.

Note that X3 is a Π0
2 subset of 2ω. In particular, X3 is a 0-dimensional Polish space.

Lemma 4.7 (a) The set A3 is a Σ0
3 (and thus analytic) relation on X3.

(b) (X3,A3) 6�∆0
3

(
ω,¬∆(ω)

)
.

Proof. (a) A3 is clearly a Σ0
3 relation on 2ω. So it is enough to see that it is a relation on X3. Fix

(α, β) ∈ A3 (which defines a natural number n). Choose an infinite sequence (pk)k∈ω of natural
numbers such that (α)n(pk) = (β)n(pk) = 1. Then α|(< n, pk > +1) and β|(< n, pk > +1) are
placed, so that α, β∈X3.

(b) This comes from Corollary 4.3. �

Lemma 4.8 Let n∈ω, α∈2ω such that (α)i= stn(i)10∞ for each i<n, and p>< n, 0 > such that
α|p is placed. Then (p−1)0≥n.

Proof. We argue by contradiction. As p−1 ≥< n, 0 >, (p−1)0 + (p−1)1 ≥ n+ 0 = n. Thus
(p−1)1≥n−(p−1)0>0. As α|p is placed, α(p−1)=1. But

α(p−1)=α(< (p−1)0, (p−1)1 >)=(α)(p−1)0
(
(p−1)1

)
=
(
stn((p−1)0)10∞

)(
(p−1)1

)
.

By Lemma 4.5.(a), we get (p−1)1<n−(p−1)0, which is absurd. �

Definition 4.9 Let u∈2<ω and l∈ω.

(a) If u is placed, then we will consider

• the natural number l(u) :=(|um|)0
• the sequence ul(u)∈2|u|\{u} defined by ul(u)(m) :=u(m) exactly when m 6=< l(u), 0 >. Note that
ul(u) is placed, l(ul(u))= l(u) and (ul(u))l(u)=u

• the digit ε(u) :=u(< l(u), 0 >). Note that ε(ul(u))=1−ε(u).

(b) We say that u is l-placed if u is placed and l(u) = l. We say that u is (≤ l)-placed (resp.,
(<l)-placed, (>l)-placed) if there is l′≤ l (resp., l′<l, l′>l) such that u is l′-placed.

When we consider the finite approximations of an element of A3, we have to guess the natural
number n. We usually make some mistakes. In this case, we have to be able to come back to an
earlier position. This is the role of the following predecessors.
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Notation. Let u∈ 2<ω. Note that < η > is 0-placed with ε(< η >) = η if η ∈ 2. This allows us to
define

u− :=

{
∅ if |u|≤1,
u|max{l< |u| | u|l is placed} if |u|≥2,

and, for l∈ω,

u−l :=

{
∅ if |u|≤1,
u|max{k< |u| | u|k is (≤ l)-placed} if |u|≥2.

The following key lemma explains the relation between these predecessors and the placed sequences.

Lemma 4.10 Let l∈ω and u∈2<ω be l-placed with |u|≥2.
(a) Assume that u− is l-placed. Then ε(u−) = ε(u). If moreover (ul)− is l-placed, then the

equality (ul)−=(u−)l holds.
(b) u−l is l-placed if and only if (ul)−l is l-placed. In this case, ε(u−l) = ε(u) and the equality

(ul)−l=(u−l)l holds.
(c) Assume that u− or (ul)− is (<l)-placed. Then u−=u−l=(ul)−=(ul)−l.
(d) Assume that u− or (ul)− is (> l)-placed. Then exactly one of those two sequences is (> l)-

placed, and the other one is l-placed. If u− (resp., (ul)−) is (>l)-placed, then u−l=
(
(ul)−

)l (resp.,
u−l=u−) and ε(u−l)=ε(u) (resp., ε

(
(ul)−l

)
=ε(ul)).

Proof. We first prove the following claim:

Claim. (i) Assume that (|um|)1=0. Then u−=u−l=(ul)−=(ul)−l is (<l)-placed.
(ii) Assume that (|um|)1>0. Then u− (resp., u−l) is (≥ l)-placed and there is j0 (resp., j1) with

u−=u|(< l(u−), j0 >+1) (resp., u−l=u|(< l, j1 >+1)).

Proof. (i) Note that l≥ 1 since |u| ≥ 2. As (|um|)1 = 0, |um|=< (|um|)0, (|um|)1 >=< l(u), 0 >
and the sequence u− is (<l)-placed, which implies that u−=u−l=(ul)−=(ul)−l.

(ii) The last assertion about j0 and j1 comes from the first one. It is enough to see that u− is (≥ l)-
placed since the proof for u−l is similar. We argue by contradiction. Then u|(< l, 0 >+1) is l-placed
and u|(< l, 0 >+1)$ u|(< l, (|um|)1 >+1)⊆ u, so that u|(< l, 0 >+1)$ u−. This implies that
l+0≤ l(u−)+(|u−|−1)1, (|u−|−1)1≥ l−l(u−)>0 and u−(|u−|−1)=1. But

u−(|u−|−1) =u−(< l(u−), (|u−|−1)1 >)=u(< l(u−), (|u−|−1)1 >)
=(u)l(u−)

(
(|u−|−1)1

)
=(stl(l(u−))10∞)

(
(|u−|−1)1

)
.

Lemma 4.5.(a) implies that (|u−|−1)1<l−l(u−), which is absurd. �

(a) By the claim, (|um|)1 > 0. Therefore u|(< l, 0 >+1)$ u|(< l, (|um|)1 >+1)⊆ u is l-placed,
u|(< l, 0 >+1)⊆u− and < l, 0 >< |u−|. Thus ε(u−)=(u−)(< l, 0 >)=u(< l, 0 >)=ε(u).

Assume now that (ul)− is l-placed. As u|(< l, 0 >+1)⊆u−$u, we get(
u|(< l, 0 >+1)

)l⊆(ul)−.

Thus < l, 0 >< |(ul)−|. If u− = u|(< l, j0 > +1), then there is no j0 < j < (|um|)1 such that
u(< l, j >)=1, and (ul)−=ul|(< l, j0 >+1)=(u−)l.
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(b) Assume that u−l is l-placed. By the claim, we get (|um|)1>0 and j1 with

u−l=u|(< l, j1 >+1).

Thus (ul)−l = ul|(< l, j1 >+1) = (u−l)l is l-placed, by Lemma 4.8. The equivalence comes from
the fact that (ul)l=u. We argue as in (a) to see that ε(u−l)=ε(u) if u−l is l-placed.

(c) Assume first that u− is (< l)-placed. Then (|um|)1 = 0, by the claim, (ii). Now the claim, (i),
gives the result. If (ul)− is (< l)-placed, then we apply this to ul, using the facts that ul is l-placed
and (ul)l=u.

(d) Assume first that u− is (> l)-placed. The claim, (i), implies that (|um|)1 > 0, and the claim,
(ii), gives j1 with u−l = u|(< l, j1 > +1). Note that u−l $ u−, (u−)l ⊆ stl(u−)(l)

10∞ and
M(stl(u−)(l)

10∞)<l(u−)−l, by Lemma 4.5.(a). Thus

< l,M(stl(u−)(l)
10∞) >≤< l(u−), 0 >≤< l(u−), (|u−|−1)1 >= |u−|−1

and (u−)l
(
M(stl(u−)(l)

10∞)
)

is defined. This shows that j1=M(stl(u−)(l)
10∞).

Note that ul|(< l, j1 > +1) ⊆ (ul)−. The claim, (ii), shows that (ul)−l = ul|(< l, j1 > +1).
We argue by contradiction to see that (ul)− is not (> l)-placed. The proof of the previous point
shows that j1=M(st

l((ul)−)
(l)10∞). Lemma 4.5.(b) shows that stl(u−)(l)

10∞=st
l((ul)−)

(l)10∞. Thus

(u−)l(0)=(stl(u−)(l)
10∞)(0)=(st

l((ul)−)
(l)10∞)(0)=

(
(ul)−

)
l
(0),

ε(u)=u(< l, 0 >)=(u)l(0)=(u−)l(0)=
(
(ul)−

)
l
(0)=ε(ul),

which is absurd. This shows that (ul)−= ul|(< l, j1 >+1) = (u−l)l is l-placed, by Lemma 4.8, so
that u−l=

(
(ul)−

)l. Moreover, ε(u−l)=(u−l)(< l, 0 >)=u(< l, 0 >)=ε(u).

Assume now that (ul)− is (> l)-placed. As ul is l-placed and (ul)l = u, the previous arguments
show that u− is l-placed. In particular, u−l=u−. �

Theorem 4.11 (X3,A3) satisfies the conjecture.

Proof. We already noticed that it is enough to see that (a) or (b) holds. In Condition (5) in the proof of
Theorem 5.1 in [L-Z], u−l should be replaced with u−l(u). We need to check that the map f defined
there satisfies A3 ⊆ (f×f)−1(A). So let (α, β) ∈ A3, which defines n. Let (pj)j∈ω be the infinite
strictly increasing sequence of natural numbers pj ≥ 1 such that (pj−1)0 = n, (pj−1)1 > 0 and
α(pj−1) = 1. In particular, α|pj is n-placed and ε(α|pj) = 0. Note that (pj)j∈ω is also the infinite
strictly increasing sequence of natural numbers pj ≥ 1 such that (pj−1)0 = n, (pj−1)1 > 0 and
β(pj−1)=1 on one side, and a subsequence of both (pαk )k∈ω and (pβk)k∈ω on the other side.

If moreover p≥p0 and α|p is placed, then l(α|p)≥n, by Lemma 4.8. In particular, if p≥p0 and
α|p is (≤n)-placed, then α|p is n-placed. This proves that (pj)j∈ω is the infinite strictly increasing
sequence of integers pj≥p0 such that α|pj is (≤n)-placed. Therefore (α|pj+1)

−n=α|pj .

18



By Condition (3), (Uα|pj )j∈ω is a non-increasing sequence of nonempty clopen subsets ofA∩ΩX2

whose GH-diameter tend to 0. So we can define F (α, β)∈A by {F (α, β)} :=
⋂
j∈ω Uα|pj . Note that

F (α, β)= limj→∞ (xα|pj , xβ|pj )=
(
f(α), f(β)

)
∈A, so that A3⊆(f×f)−1(A).

It remains, when k≥2 (second case), to replace l−1 with l(u−). �

The general case

Here we just give, for each i ∈ ω, a sequence (Wηi,n)n∈ω of nonempty Tηi-open sets such that

Qηi⊆
⋃
n∈ω Wηi,n

Tηi . This will imply that Kξ has no ∆0
ξ-measurable countable coloring, by Corol-

lary 4.3. We assume that ξ≥4, so that we may assume that ηi≥3. If η=supn∈ω (θn+1)≥2, then we
set Vη,n :={α∈2ω | ∀i<n (α)i /∈Pθi ∧ (α)n∈Pθn}. We set, for η≥3,

Wη,n :=
{
α∈2ω | α(0)=sn+1(0) ∧ (α∗)n∈Pθn ∧ ∀i<n (α∗)i∈

⋃
j<n−i

Vθi,j
}
.

Mátrai’s construction ensures that Vη,n is τη-open, and that Wη,n is a nonempty Tη-open set. Let O
be a basic Tη-open set meeting Qη. As Tη = discrete×τη and τη |Pη ≡ (Πi∈ω τθi)|Pη , we can find
ε ∈ 2 and (Oi)i<l ∈ πi<l τθi such that O = {α ∈ 2ω | α(0) = ε ∧ ∀i < l (α∗)i ∈ Oi}. As Pθi
is τθi-closed nowhere dense and ¬Pθi =

⋃
n∈ω Vθi,n, we can find ni such that Oi meets Vθi,ni . We

choose n>maxi<l (ni+i) such that sn+1(0)=ε. Then Wη,n meets O.

Our motivation to introduce these examples is that they induce a set K3 satisfying the conjecture.
This is the reason why we think that they are reasonable candidates for the general case.

(B) The small classes

In Section 3, we met D2(Π
0
1) graphs of fixed point free partial injections with a Borel countable

(2-)coloring, but without ∆0
ξ-measurable countable coloring. Their complement are Ď2(Π

0
1) sets in

(∆1
1×Σ0

1)σ, but not in (Σ0
ξ×Σ0

ξ)σ. However, a positive result holds for the simpler classes, which
shows some optimality in our results.

Proposition 4.12 Let Γ⊆D2(Π
0
1) be a Wadge class (in zero-dimensional spaces), and A be a set in

Γ ∩ (∆1
1×Σ0

1)σ (resp., (∆1
1×∆1

1)σ). Then A∈(Γ×Σ0
1)σ (resp., (Γ×Γ)σ).

Proof. Let us do it for (∆1
1×Σ0

1)σ, the other case being similar. The result is clear for {∅}, {̌∅}, ∆0
1,

Σ0
1. If Γ=Π0

1, then we can write A=
⋃
n∈ω Cn×Dn, with Cn∈∆1

1 and Dn∈Σ0
1. We just have to

note thatA=
⋃
n∈ω Cn×Dn. If Γ=Π0

1⊕Σ0
1, then we can writeA=

⋃
n∈ω Cn×Dn=(C∩D)∪(O\D),

with Cn∈∆1
1, ¬C,O,D,¬D,Dn∈Σ0

1. Note that A= (D ∩
⋃
n∈ω Cn×Dn) ∪ (O\D). Finally, if

Γ=D2(Π
0
1), then write A=

⋃
n∈ω Cn×Dn =C ∩ O, with Cn ∈∆1

1, ¬C,O,Dn ∈Σ0
1. Note that

A=O ∩
⋃
n∈ω Cn×Dn. �

(C) The finite case

Proposition 4.13 Assume that Γ is closed under finite intersections and continuous pre-images,X,Y
are topological spaces, κ is finite, and A∈Γ(X×Y ) is the union of κ rectangles. Then A is the union
of at most 22

κ
rectangles whose sides are in Γ.

19



Proof. Assume that A=
⋃
n<κ An×Bn. Let us prove that

A=
⋃

I⊆κ,(
⋂
n∈I An)\(

⋂
n/∈I An)6=∅

(
⋂
n∈I

An)×(
⋃
n∈I

Bn).

So let (x, y)∈A, and let I := {n<κ | x∈An}. Then x∈ (
⋂
n∈I An)\(

⋂
n/∈I An), and (x, y) is in

(
⋂
n∈I An)×(

⋃
n∈I Bn) since (x, y)∈An×Bn for some n<κ. The other inclusion is clear.

Assume now that x ∈ (
⋂
n∈I An)\ (

⋂
n/∈I An). Then

⋃
n∈I Bn = Ax = f−1(A), where the

formula f(y) := (x, y) defines f :Y →X×Y continuous. This shows that
⋃
n∈I Bn is in Γ. So we

proved the following:

A is the union of at most 2κ rectangles A′n×B′n, where A′n is a finite intersection of some of the
An’s, and B′n is a finite union of some of the Bn’s which is in Γ.

Applying this again, we see that A is the union of at most 22
κ

rectangles A′′n×B′′n, where A′′n is
a finite union of some of the A′n’s which is in Γ, and B′′n is a finite intersection of some of the B′n’s.
We are done since Γ is closed under finite intersections. �

This proof also shows the following result:

Proposition 4.14 Assume that Γ is closed under continuous pre-images, X,Y are topological spa-
ces, κ is finite, and A∈Γ(X×Y ) is the union of κ rectangles of the form 2X×Σ0

1(Y ). Then A is the
union of at most 22

κ
rectangles of the form Γ(X)×Σ0

1(Y ).

Remarks. (1) For colorings, Theorem 1.2 gives, for each ξ, a D2(Π
0
1) binary relation with a Borel

finite (2-)coloring, but with no ∆0
ξ-measurable finite coloring.

(2) ∅ has a 1-coloring. An open binary relation having a finite coloring c has also a D2(Π
0
1)-

measurable finite coloring (consider the differences of the c−1({n})’s, for n in the range of the
coloring). This leads to the following question:

Question. Can we build, for each ξ, a closed binary relation with a Borel finite coloring but no ∆0
ξ-

measurable finite coloring?
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