Descriptive complexity of countable unions of Borel rectangles

Dominique LECOMTE and Miroslav ZELENY ${ }^{1}$

Topology Appl. 166 (2014), 66-84

- Université Paris 6, Institut de Mathématiques de Jussieu, Projet Analyse Fonctionnelle Couloir 16-26, 4ème étage, Case 247, 4, place Jussieu, 75252 Paris Cedex 05, France dominique.lecomte@upmc.fr
- Université de Picardie, I.U.T. de l'Oise, site de Creil, 13, allée de la faïencerie, 60107 Creil, France
- ${ }^{1}$ Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis Sokolovská 83, 18675 Prague, Czech Republic zeleny@karlin.mff.cuni.cz

Abstract

We give, for each countable ordinal $\xi \geq 1$, an example of a Δ_{2}^{0} countable union of Borel rectangles that cannot be decomposed into countably many Π_{ξ}^{0} rectangles. In fact, we provide a graph of a partial injection with disjoint domain and range, which is a difference of two closed sets, and which has no $\boldsymbol{\Delta}_{\xi}^{0}$-measurable countable coloring.

[^0]
1 Introduction

In this paper, we work in products of two Polish spaces. One of our goals is to give an answer to the following simple question. Assume that a countable union of Borel rectangles has low Borel rank. Is there a decomposition of this union into countably many rectangles of low Borel rank? In other words, is there a map $r: \omega_{1} \backslash\{0\} \rightarrow \omega_{1} \backslash\{0\}$ such that $\boldsymbol{\Pi}_{\xi}^{0} \cap\left(\boldsymbol{\Delta}_{1}^{1} \times \boldsymbol{\Delta}_{1}^{1}\right)_{\sigma} \subseteq\left(\boldsymbol{\Pi}_{r(\xi)}^{0} \times \boldsymbol{\Pi}_{r(\xi)}^{0}\right)_{\sigma}$ for each $\xi \in \omega_{1} \backslash\{0\}$?

By Theorem 3.6 in [Lo], a Borel set with open vertical sections is of the form $\left(\boldsymbol{\Delta}_{1}^{1} \times \boldsymbol{\Sigma}_{1}^{0}\right)_{\sigma}$. This leads to a similar problem: is there a map $s: \omega_{1} \backslash\{0\} \rightarrow \omega_{1} \backslash\{0\}$ such that, for each $\xi \in \omega_{1} \backslash\{0\}$, $\boldsymbol{\Pi}_{\xi}^{0} \cap\left(\boldsymbol{\Delta}_{1}^{1} \times \boldsymbol{\Sigma}_{1}^{0}\right)_{\sigma} \subseteq\left(\boldsymbol{\Pi}_{s(\xi)}^{0} \times \boldsymbol{\Sigma}_{1}^{0}\right)_{\sigma}$?

The answer to these questions is negative:
Theorem 1.1 Let $1 \leq \xi<\omega_{1}$. Then there exists a partial map $f: \omega^{\omega} \rightarrow \omega^{\omega}$ such that the complement $\neg \operatorname{Gr}(f)$ of the graph of f is $\boldsymbol{\Pi}_{2}^{0}$ but not $\left(\boldsymbol{\Sigma}_{\xi}^{0} \times \boldsymbol{\Delta}_{1}^{1}\right)_{\sigma}$.

In fact, we prove a result related to Δ_{ξ}^{0}-measurable countable colorings. A study of such colorings is made in [L-Z]. It was motivated by the \mathbb{G}_{0}-dichotomy (see Theorem 6.3 in [K-S-T]). More precisely, let B be a Borel binary relation having a Borel countable coloring (i.e., a Borel map $c: X \rightarrow \omega$ such that $c(x) \neq c(y)$ if $(x, y) \in B)$. Is there a relation between the Borel class of B and that of the coloring? In other words, is there a map $k: \omega_{1} \backslash\{0\} \rightarrow \omega_{1} \backslash\{0\}$ such that any Π_{ξ}^{0} binary relation having a Borel countable coloring has in fact a $\boldsymbol{\Delta}_{k(\xi)}^{0}$-measurable countable coloring, for each $\xi \in \omega_{1} \backslash\{0\}$? Here again, the answer is negative:

Theorem 1.2 Let $1 \leq \xi<\omega_{1}$. Then there exists a partial injection with disjoint domain and range $i: \omega^{\omega} \rightarrow \omega^{\omega}$ whose graph is the difference of two closed sets, and has no Δ_{ξ}^{0}-measurable countable coloring.

These two results are consequences of Theorem 4 in [Má] and its proof. This latter can also be used positively, to produce examples of graphs of fixed point free partial injections having reasonable chances to characterize the analytic binary relations without Δ_{ξ}^{0}-measurable countable coloring. We will see in Section 4 that such a characterization indeed holds when $\xi=3$, and give an example much simpler than the one in [L-Z]. In Section 2, we give a proof of Theorem 4 in [Má], in ω^{ω} instead of 2^{ω}, and also prove some additional properties needed for the construction of our partial maps. In Section 3, we prove Theorems 1.1 and 1.2. At the end of Section 4, we show that Theorem 1.2 is optimal in terms of descriptive complexity of the graph, and also give a positive result concerning the first two problems in the case of finite unions of rectangles.

2 Mátrai sets

Before proving our version of Theorem 4 in [Má], we need some notation, definition, and a few basic facts. The maps with closed graph will be of particular interest for us.

Lemma 2.1 Let $\left(X_{i}\right)_{i \in \omega},\left(Y_{i}\right)_{i \in \omega}$ be sequences of metrizable spaces, and, for each $i \in \omega, f_{i}: X_{i} \rightarrow Y_{i}$ be a partial map whose graph is a closed subset of $X_{i} \times Y_{i}$. Then the graph of the partial map $f:=\Pi_{i \in \omega} f_{i}: \Pi_{i \in \omega} X_{i} \rightarrow \Pi_{i \in \omega} Y_{i}$ is closed.

Proof. Let $\left(x^{j}\right)_{j \in \omega}$ be a sequence of elements of $\Pi_{i \in \omega} X_{i}$ converging to $x:=\left(x_{i}\right)_{i \in \omega}$ such that $\left(f\left(x^{j}\right)\right)_{j \in \omega}$ converges to $y:=\left(y_{i}\right)_{i \in \omega} \in \Pi_{i \in \omega} Y_{i}$. Then $y_{i}=f_{i}\left(x_{i}\right)$, since $\operatorname{Gr}\left(f_{i}\right)$ is closed, for each $i \in \omega$. This implies that $y=f(x)$ and the proof is finished.

Notation. Let X be a set and \mathcal{F} be a family of subsets of X. Then the symbol $\langle\mathcal{F}\rangle$ denotes the smallest topology on X containing \mathcal{F}.

The next two lemmas can be found in [K] (see Lemmas 13.2 and 13.3).
Lemma 2.2 Let (X, σ) be a Polish space and F be a σ-closed subset of X. Then the topology $\sigma_{F}:=\langle\sigma \cup\{F\}\rangle$ is Polish and F is σ_{F}-clopen.

Lemma 2.3 Let $\left(\sigma_{n}\right)_{n \in \omega}$ be a sequence of Polish topologies on X. Then the topology $\left\langle\bigcup_{n \in \omega} \sigma_{n}\right\rangle$ is Polish.

Lemma 2.4 Let $\left(H_{n}\right)_{n \in \omega}$ be a disjoint family of sets in a zero-dimensional Polish space (X, σ) and $\left(\sigma_{n}\right)_{n \in \omega}$ be a sequence of topologies on X such that
$\sigma_{0}=\sigma, H_{0}$ is σ_{0}-closed,
$\sigma_{n+1}=\left\langle\sigma_{n} \cup\left\{H_{n}\right\}\right\rangle, H_{n+1}$ is σ_{n+1}-closed for every $n \in \omega$.
Then the topology $\sigma_{\infty}=\left\langle\bigcup_{n \in \omega} \sigma_{n}\right\rangle$ satisfies the following properties:
(a) σ_{∞} is zero-dimensional Polish,
(b) $\sigma_{\infty \mid X \backslash \bigcup_{n \in \omega} H_{n}}=\sigma_{\mid X \backslash \bigcup_{n \in \omega} H_{n}}$,
and, for every $n \in \omega$,
(c) $\sigma_{\infty \mid H_{n}}=\sigma_{\mid H_{n}}$,
(d) H_{n} is σ_{∞}-clopen.

Proof. Using Lemma 2.2 we see that each topology σ_{n} is Polish. Then the topology σ_{∞} is Polish by Lemma 2.3. Now observe that the following claim holds.

Claim. A set $G \subseteq X$ is σ_{∞}-open if and only if G can be written as $G=G^{\prime} \cup\left(\bigcup_{n \in \omega} G_{n} \cap H_{n}\right)$, where G^{\prime}, G_{n} are σ-open.

Note that $H_{n} \in \boldsymbol{\Sigma}_{1}^{0}\left(\sigma_{n+1}\right) \subseteq \boldsymbol{\Sigma}_{1}^{0}\left(\sigma_{\infty}\right)$ and $H_{n} \in \boldsymbol{\Pi}_{1}^{0}\left(\sigma_{n}\right) \subseteq \boldsymbol{\Pi}_{1}^{0}\left(\sigma_{\infty}\right)$, thus H_{n} is σ_{∞}-clopen. Thus (d) is satisfied. Let \mathcal{B} be a basis for σ made of σ-clopen sets. Then the family

$$
\mathcal{B} \cup\left\{G \cap H_{n} \mid G \in \mathcal{B} \wedge n \in \omega\right\}
$$

is made of σ_{∞}-clopen sets and form a basis for σ_{∞} by the claim. This gives (a).
Let $G \in \Sigma_{1}^{0}\left(\sigma_{\infty}\right)$. By the claim, we find σ-open sets G^{\prime}, G_{n} such that $G=G^{\prime} \cup\left(\bigcup_{n \in \omega} G_{n} \cap H_{n}\right)$. Then $G \cap\left(X \backslash \bigcup_{n \in \omega} H_{n}\right)=G^{\prime} \cap\left(X \backslash \bigcup_{n \in \omega} H_{n}\right)$. This implies (b). Moreover, $G \cap H_{n}=G_{n} \cap H_{n}$, and (c) holds.

Notation. The symbol τ denotes the product topology on ω^{ω}.
Definition 2.5 We say that a partial map $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is nice if $\operatorname{Gr}(f)$ is a $(\tau \times \tau)$-closed subset of $\omega^{\omega} \times \omega^{\omega}$.

The construction of P_{ξ} and τ_{ξ}, and the verification of the properties $(1)_{\xi}-(3)_{\xi}$ from the next lemma, can be found in [Má], up to minor modifications.
Lemma 2.6 Let $1 \leq \xi<\omega_{1}$. Then there are $P_{\xi} \subseteq \omega^{\omega}$, and a topology τ_{ξ} on ω^{ω} such that
$(1)_{\xi} \tau_{\xi}$ is zero-dimensional perfect Polish and $\tau \subseteq \tau_{\xi} \subseteq \Sigma_{\xi}^{0}(\tau)$,
$(2)_{\xi} P_{\xi}$ is a nonempty τ_{ξ}-closed nowhere dense set,
$(3)_{\xi}$ if $S \in \Sigma_{\xi}^{0}\left(\omega^{\omega}, \tau\right)$ is τ_{ξ}-nonmeager in P_{ξ}, then S is τ_{ξ}-nonmeager in ω^{ω},
$(4)_{\xi}$ if U is a nonempty $\tau_{\xi \mid P_{\xi}}$-open subset of P_{ξ}, then we can find a τ_{ξ}-dense G_{δ} subset G of U, and a nice $\left(\tau_{\xi}, \tau\right)$-homeomorphism $\varphi_{\xi, G}$ from G onto ω^{ω},
$(5)_{\xi}$ if V is a nonempty τ_{ξ}-open subset of ω^{ω}, then we can find a τ_{ξ}-dense G_{δ} subset H of V, and a nice $\left(\tau_{\xi}, \tau\right)$-homeomorphism $\psi_{\xi, H}$ from H onto ω^{ω},
$(6)_{\xi}$ if U is a nonempty $\tau_{\xi \mid P_{\xi}}$-open subset of P_{ξ} and W is a nonempty open subset of ω^{ω}, then we can find a τ_{ξ}-dense G_{δ} subset G of U, a τ_{ξ}-dense G_{δ} subset K of $W \backslash P_{\xi}$, and a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$ homeomorphism $\varphi_{\xi, G, K}$ from G onto K,
$(7)_{\xi}$ if V, W are nonempty τ_{ξ}-open subsets of ω^{ω}, then we can find a τ_{ξ}-dense G_{δ} subset H of $V \backslash P_{\xi}$, a τ_{ξ}-dense G_{δ} subset L of $W \backslash P_{\xi}$, and a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism $\psi_{\xi, H, L}$ from H onto L.

Proof. We proceed by induction on ξ.
The case $\xi=1$
We set $P_{1}:=\left\{\alpha \in \omega^{\omega} \mid \forall n \in \omega \quad \alpha(2 n)=0\right\}$ and $\tau_{1}:=\tau$. The properties (1) $)_{1}-(3)_{1}$ are clearly satisfied.
(4) $)_{1}$ Note that $\left(P_{1}, \tau_{1}\right)$ is homeomorphic to $\left(\omega^{\omega}, \tau\right)$. As any nonempty open subset of $\left(\omega^{\omega}, \tau\right)$ is homeomorphic to $\left(\omega^{\omega}, \tau\right),\left(U, \tau_{1}\right)$ is homeomorphic to $\left(\omega^{\omega}, \tau\right)$. This gives $\varphi_{\xi, U}$, which is nice since ω^{ω} is closed in itself. This shows that we can take $G:=U$.
$(5)_{1}$ As in $(4)_{1}$ we see that $\left(V, \tau_{1}\right)$ is homeomorphic to $\left(\omega^{\omega}, \tau\right)$, and we can take $H:=V$.
(6) $)_{1}$ Note that U is the disjoint union of a sequence $\left(C_{n}\right)_{n \in \omega}$ of nonempty clopen subsets of $\left(P_{1}, \tau_{1}\right)$. Let $\left(U_{1, n}\right)_{n \in \omega}$ be a partition of $W \backslash P_{1}$ into clopen subsets of $\left(\omega^{\omega}, \tau_{1}\right)$. As any nonempty open subset of $\left(P_{1}, \tau_{1}\right)$ or $\left(\omega^{\omega}, \tau_{1}\right)$ is homeomorphic to $\left(\omega^{\omega}, \tau\right)$, we can find homeomorphisms

$$
\varphi_{0}:\left(C_{0}, \tau_{1}\right) \rightarrow\left(\bigcup_{n>0} U_{1, n}, \tau_{1}\right)
$$

and $\varphi_{1}:\left(\bigcup_{n>0} C_{n}, \tau_{1}\right) \rightarrow\left(U_{1,0}, \tau_{1}\right)$. As C_{0} and $U_{1,0}$ are τ-closed, φ_{0} and φ_{1} are nice. This shows that the gluing of φ_{0} and φ_{1} is a nice homeomorphism from $\left(U, \tau_{1}\right)$ onto ($W \backslash P_{1}, \tau_{1}$). Thus we can take $G:=U$ and $K:=W \backslash P_{1}$.
$(7)_{1}$ As in (6) $)_{1}$ we write $V \backslash P_{1}$ as the disjoint union of a sequence of nonempty clopen subsets of $\left(\omega^{\omega}, \tau_{1}\right)$, and similarly for $W \backslash P_{1}$. Since these clopen sets are homeomorphic to ($\omega^{\omega}, \tau_{1}$), we can take $H:=V \backslash P_{1}$ and $L:=W \backslash P_{1}$.

The induction step

We assume that $1<\xi<\omega_{1}$ and that the assertion holds for each ordinal $\theta<\xi$. We fix a sequence of ordinals $\left(\xi_{n}\right)_{n \in \omega}$ containing each ordinal in $\xi \backslash\{0\}$ infinitely many times. We set

$$
\begin{aligned}
& P_{\xi}=\omega^{\omega} \times\left(\Pi_{i \in \omega} \neg P_{\xi_{i}}\right), \\
& \tau_{\xi}^{<}=\tau \times\left(\Pi_{i \in \omega} \tau_{\xi_{i}}\right), \\
& U_{\xi, n}=\omega^{\omega} \times\left(\Pi_{i<n} \neg P_{\xi_{i}}\right) \times P_{\xi_{n}} \times\left(\omega^{\omega}\right)^{\omega} \quad(n \in \omega) .
\end{aligned}
$$

The family $\left\{U_{\xi, n} \mid n \in \omega\right\}$ is disjoint. We set $\sigma_{0}=\tau_{\xi}^{<}$and $\sigma_{n+1}=\left\langle\sigma_{n} \cup\left\{U_{\xi, n}\right\}\right\rangle$. It is easy to check that $U_{\xi, n} \in \boldsymbol{\Pi}_{1}^{0}\left(\sigma_{n}\right)$. Applying Lemma 2.4 we get a topology $\tau_{\xi}:=\sigma_{\infty}$ such that
(a) τ_{ξ} is zero-dimensional Polish,
(b) $\tau_{\xi \mid P_{\xi}}=\tau_{\xi}^{<} \mid P_{\xi}$,
and, for every $n \in \omega$,
(c) $\tau_{\xi \mid U_{\xi, n}}=\tau_{\xi \mid U_{\xi, n}}^{<}$,
(d) $U_{\xi, n}$ is τ_{ξ}-clopen.

We defined the topology τ_{ξ} on $\left(\omega^{\omega}\right)^{\omega}$ instead of ω^{ω}. However, since the spaces $\left(\left(\omega^{\omega}\right)^{\omega}, \tau^{\omega}\right)$ and $\left(\omega^{\omega}, \tau\right)$ are homeomorphic we can replace the latter space by the former one in the proof. Since there is no danger of confusion we will write τ instead of τ^{ω} to simplify the notation.
(1) ${ }_{\xi}$ Clearly, $\tau \subseteq \tau_{\xi}$. Note that $U_{\xi, n} \in \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$ for every $n \in \omega$ and $\tau_{\xi}^{<} \subseteq \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$, so that $\tau_{\xi} \subseteq \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$. Moreover, $\left(\omega^{\omega}, \tau_{\xi}\right)$ is clearly perfect.
(2) ${ }_{\xi}$ As $U_{\xi, n}$ is τ_{ξ}-clopen, P_{ξ} is τ_{ξ}-closed. Note that $\tau_{\xi \mid P_{\xi}}=\tau_{\xi}^{<}{ }_{\mid P_{\xi}}$ and P_{ξ} contains no nonempty basic $\tau_{\xi}^{<}$-open set. This implies that P_{ξ} is τ_{ξ}-nowhere dense.
(3) ${ }_{\xi}$ Let $S \in \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$ be τ_{ξ}-nonmeager in P_{ξ}. We may assume that $S \in \boldsymbol{\Pi}_{\theta}^{0}(\tau)$ for some $\theta<\xi$. As $\tau_{\xi \mid P_{\xi}}=\tau_{\xi}^{<}{ }_{P_{\xi}}$ and S has the Baire property with respect to the topology $\tau_{\xi}^{<}$there exists a $\tau_{\xi}^{<}$-open set V such that S is $\tau_{\xi}^{<}$-comeager in $P_{\xi} \cap V$. Moreover, we may assume that V has the following form:

$$
V=\tilde{V} \times\left(\Pi_{i \leq k} V_{i}\right) \times\left(\omega^{\omega}\right)^{\omega},
$$

where $\tilde{V} \in \tau, V_{i} \in \tau_{\xi_{i}}$ and $V_{i} \subseteq \neg P_{\xi_{i}}$ for each $i \leq k$. The set $V^{*}=\tilde{V} \times\left(\Pi_{i \leq k} V_{i}\right) \times\left(\Pi_{i>k} \neg P_{\xi_{i}}\right)$ is $\tau_{\xi}^{<}$comeager in V since $\neg P_{\xi_{i}}$ is $\tau_{\xi_{i}}$-comeager in ω^{ω} for every $i \in \omega$. As $P_{\xi} \cap V=V^{*}, S$ is $\tau_{\xi}^{<}$-comeager in V^{*}. Let $p \in \omega$ be such that $p>k$ and $\xi_{p} \geq \theta$. Define

$$
\begin{aligned}
& \tau^{*}=\tau \times\left(\Pi_{i \neq p} \tau_{\xi_{i}}\right), \\
& Z=\tilde{V} \times V_{0} \times \cdots \times V_{k} \times \neg P_{\xi_{k+1}} \times \cdots \times \neg P_{\xi_{p-1}} \times\left(\omega^{\omega}\right)^{\omega}, \\
& \tau^{\sharp}=\tau \times\left(\Pi_{i<p} \tau_{\xi_{i}}\right) \times \tau \times\left(\Pi_{i>p} \tau_{\xi_{i}}\right) .
\end{aligned}
$$

For $\alpha \in \omega^{\omega}$ define a set $(\neg S)_{\alpha}$ by

$$
(\neg S)_{\alpha}:=\left\{\left(\tilde{y}, y_{0}, y_{1}, \ldots, y_{p-1}, y_{p+1}, \ldots\right) \in \omega^{\omega} \mid\left(\tilde{y}, y_{0}, y_{1}, \ldots, y_{p-1}, \alpha, y_{p+1}, \ldots\right) \in \neg S\right\} .
$$

Denote $S^{*}:=\left\{\alpha \in \omega^{\omega} \mid(\neg S)_{\alpha}\right.$ is τ^{*}-nonmeager in $\left.Z\right\}$. Note that $\neg S \in \boldsymbol{\Sigma}_{\theta}^{0}(\tau) \subseteq \boldsymbol{\Sigma}_{\theta}^{0}\left(\tau^{\sharp}\right)$. By the Montgomery theorem (see 22.D in [K]), $S^{*} \in \boldsymbol{\Sigma}_{\theta}^{0}(\tau) \subseteq \boldsymbol{\Sigma}_{\xi_{p}}^{0}(\tau)$. By the Kuratowski-Ulam theorem, S^{*} is $\tau_{\xi_{p}}$-meager in $\neg P_{\xi_{p}}$. Using the induction hypothesis, Condition (3) $\xi_{\xi_{p}}$ implies that S^{*} is $\tau_{\xi_{p}}$-meager in $P_{\xi_{p}}$. Using the Kuratowski-Ulam theorem again, we see that S is $\tau_{\xi}^{<}$-comeager in the τ_{ξ}-open set

$$
W=\tilde{V} \times V_{0} \times \cdots \times V_{k} \times \neg P_{\xi_{k+1}} \times \cdots \times \neg P_{\xi_{p-1}} \times P_{\xi_{p}} \times\left(\omega^{\omega}\right)^{\omega}
$$

As $W \subseteq U_{\xi, p}, \tau_{\xi \mid W}=\tau_{\xi}^{<}{ }_{\mid W}$ by (c), and consequently S is τ_{ξ}-comeager in W. Thus S is τ_{ξ}-nonmeager in $\left(\omega^{\omega}\right)^{\omega}$ since W is τ_{ξ}-open.
(4) $)_{\xi}$ We first construct a τ_{ξ}-dense open subset of U, which is the disjoint union of sets of the form

$$
U^{n}:=\left(W^{n} \times\left(\Pi_{i<k_{n}} W_{i}^{n}\right) \times\left(\omega^{\omega}\right)^{\omega}\right) \cap P_{\xi}=W^{n} \times\left(\Pi_{i<k_{n}} W_{i}^{n} \backslash P_{\xi_{i}}\right) \times\left(\Pi_{i \geq k_{n}} \neg P_{\xi_{i}}\right)
$$

where W^{n} is a nonempty τ-clopen set and W_{i}^{n} is a nonempty $\tau_{\xi_{i}}$-clopen set. In order to do this, we fix an injective τ_{ξ}-dense sequence $\left(x_{n}\right)_{n \in \omega}$ of U, which is possible since $\left(P_{\xi}, \tau_{\xi}\right)$ is nonempty and perfect. We first choose W^{0} and the W_{i}^{0} 's in such a way that U^{0} is a proper τ_{ξ}-clopen neighborhood of x_{0} in U, which is possible since $\tau_{\xi_{\mid P_{\xi}}}=\tau_{\xi}^{<}{ }_{P_{\xi}}$. For the induction step, we choose p_{n} minimal such that $x_{p_{n}} \notin \bigcup_{q \leq n} U^{q}$. Then we choose W^{n+1} and the W_{i}^{n+1},s in such a way that U^{n+1} is a proper τ_{ξ}-clopen neighborhood of $x_{p_{n}}$ in $U \backslash\left(\bigcup_{q \leq n} U^{q}\right)$.

There is a nice (τ, τ)-homeomorphism ψ_{n} from W^{n} onto $N_{n}:=\left\{\alpha \in \omega^{\omega} \mid \alpha(0)=n\right\}$. The induction assumption gives,

- for $i<k_{n}$, a $\tau_{\xi_{i}}$-dense G_{δ} subset G_{i}^{n} of $W_{i}^{n} \backslash P_{\xi_{i}}$, and a nice $\left(\tau_{\xi_{i}}, \tau\right)$-homeomorphism $\psi_{\xi_{i}, G_{i}^{n}}$ of G_{i}^{n} onto ω^{ω},
- for $i \geq k_{n}$, a $\tau_{\xi_{i}}$-dense G_{δ} subset G_{i}^{n} of $\neg P_{\xi_{i}}$, and a nice $\left(\tau_{\xi_{i}}, \tau\right)$-homeomorphism $\psi_{\xi_{i}, G_{i}^{n}}$ of G_{i}^{n} onto ω^{ω}.

By Lemma 2.1, the map $\psi_{n} \times\left(\Pi_{i \in \omega} \psi_{\xi_{i}, G_{i}^{n}}\right)$ is a nice $\left(\tau_{\xi}^{<}, \tau\right)$-homeomorphism from

$$
W^{n} \times\left(\Pi_{i \in \omega} G_{i}^{n}\right)
$$

onto $N_{n} \times\left(\omega^{\omega}\right)^{\omega}$. If we set $G:=\bigcup_{n \in \omega}\left(W^{n} \times\left(\Pi_{i \in \omega} G_{i}^{n}\right)\right)$, then we get a nice $\left(\tau_{\xi}^{<}, \tau\right)$-homeomorphism from G onto ω^{ω}. We are done since $\tau_{\xi \mid P_{\xi}}=\tau_{\xi}^{<}{ }_{\mid P_{\xi}}$.
$(5)_{\xi}$ We essentially argue as in $(4)_{\xi}$. As P_{ξ} is τ_{ξ}-closed nowhere dense, we may assume that

$$
V \subseteq \neg P_{\xi}=\bigcup_{n \in \omega} U_{\xi, n}
$$

We first construct a τ_{ξ}-dense open subset of $V \cap U_{\xi, n}$, which is the disjoint union of sets of the form $V^{n, p}:=W^{n, p} \times\left(\Pi_{i<n} W_{i}^{n, p} \backslash P_{\xi_{i}}\right) \times\left(W_{n}^{n, p} \cap P_{\xi_{n}}\right) \times\left(\Pi_{n<i<k_{n}^{p}} W_{i}^{n, p}\right) \times\left(\omega^{\omega}\right)^{\omega}$, where $W^{n, p}$ is a nonempty τ-clopen set and $W_{i}^{n, p}$ is a nonempty $\tau_{\xi_{i}}$-clopen set. This is possible since $\tau_{\xi \mid U_{\xi, n}}=\tau_{\xi}^{<}{ }_{\mid U_{\xi, n}}$. We are done since $U_{\xi, n}$ is τ_{ξ}-clopen.
(6) $)_{\xi}$ As in $(4)_{\xi}$ we construct a τ_{ξ}-dense open subset of U, which is the disjoint union of sets of the form $U^{n}:=\left(W^{n} \times\left(\Pi_{i<k_{n}} W_{i}^{n}\right) \times\left(\omega^{\omega}\right)^{\omega}\right) \cap P_{\xi}=W^{n} \times\left(\Pi_{i<k_{n}} W_{i}^{n} \backslash P_{\xi_{i}}\right) \times\left(\Pi_{i \geq k_{n}} \neg P_{\xi_{i}}\right)$, where W^{n} is a nonempty τ-clopen set and W_{i}^{n} is a nonempty $\tau_{\xi_{i}}$-clopen set. Recall also that

$$
U_{\xi, n}=\omega^{\omega} \times\left(\Pi_{i<n} \neg P_{\xi_{i}}\right) \times P_{\xi_{n}} \times\left(\omega^{\omega}\right)^{\omega} .
$$

We also construct a τ_{ξ}-dense open subset of W, which is the disjoint union of sets of the form

$$
\pi^{n}:=Z^{n} \times\left(\Pi_{i<l_{n}} Z_{i}^{n} \backslash P_{\xi_{i}}\right) \times\left(Z_{l_{n}}^{n} \cap P_{\xi_{l_{n}}}\right) \times\left(\Pi_{l_{n}<i<m_{n}} Z_{i}^{n}\right) \times\left(\omega^{\omega}\right)^{\omega} \subseteq U_{\xi, l_{n}},
$$

where Z^{n} is a nonempty τ-clopen set and Z_{i}^{n} is a nonempty $\tau_{\xi_{i}}$-clopen set. Let $\left(W^{0, p}\right)_{p \in \omega}$ (respectively, $\left(Z^{0, p}\right)_{p \in \omega}$) be a partition of W^{0} (respectively, Z^{0}) into nonempty τ-clopen sets. Using the facts that $\tau_{\xi \mid P_{\xi}}=\tau_{\xi \mid P_{\xi}}^{<}$and $\tau_{\xi \mid U_{\xi, n}}=\left.\tau_{\xi}^{<}\right|_{U_{\xi, n}}$, we will build

- a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism from a dense G_{δ} subset $G^{0, p}$ of

$$
U^{0, p}:=W^{0, p} \times\left(\Pi_{i<k_{0}} W_{i}^{0} \backslash P_{\xi_{i}}\right) \times\left(\Pi_{i \geq k_{0}} \neg P_{\xi_{i}}\right)
$$

onto a dense G_{δ} subset $K^{0, p}$ of π^{p+1}. Then, using the fact that the $W^{0, p}$'s are τ-clopen, the gluing of these $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphisms will be a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism φ_{0} from

$$
G^{0}:=\bigcup_{p \in \omega} G^{0, p} \subseteq U^{0}
$$

onto $K^{0}:=\bigcup_{p \in \omega} K^{0, p} \subseteq \bigcup_{p>0} \pi^{p}$.

- a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism from a dense G_{δ} subset $G^{1, p}$ of U^{p+1} onto a dense G_{δ} subset $K^{1, p}$ of $Z^{0, p} \times\left(\Pi_{i<l_{0}} Z_{i}^{0} \backslash P_{\xi_{i}}\right) \times\left(Z_{l_{0}}^{0} \cap P_{\xi_{0}}\right) \times\left(\Pi_{l_{0}<i<m_{0}} Z_{i}^{0}\right) \times\left(\omega^{\omega}\right)^{\omega}$. Then the gluing of these $\left(\tau_{\xi}, \tau_{\xi}\right)$ homeomorphisms will be a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism φ_{1} from $G^{1}:=\bigcup_{p \in \omega} G^{1, p} \subseteq \bigcup_{p>0} U^{p}$ onto $K^{1}:=\bigcup_{p \in \omega} K^{1, p} \subseteq \pi^{0}$.

The gluing of these two $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphisms will be a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism from $G:=G^{0} \cup G^{1}$ onto $K:=K^{0} \cup K^{1}$. The set $G^{0, p}$ (respectively, $K^{0, p}$) will be of the form

$$
W^{0, p} \times\left(\Pi_{i \in \omega} G_{i}^{p}\right)
$$

(respectively, $Z^{p+1} \times\left(\Pi_{i \in \omega} K_{i}^{p}\right)$). Note first that there is a (τ, τ)-homeomorphism ψ_{p} from $W^{0, p}$ onto Z^{p+1}. Then we build a permutation $i \mapsto j_{i}$ of the coordinates (with inverse $q \mapsto J_{q}$). This permutation is constructed in such a way that $\xi_{j_{i}}=\xi_{i}$, which will be possible since $\left(\xi_{n}\right)_{n \in \omega}$ contains each ordinal in $\xi \backslash\{0\}$ infinitely many times. If $i<m_{p+1}$ (respectively, $q<k_{0}$), then we choose $j_{i} \geq k_{0}$ (respectively, $\left.J_{q} \geq m_{p+1}\right)$, ensuring injectivity. For a remaining coordinate $q \notin\left\{0, \ldots, k_{0}-1\right\} \cup\left\{j_{l} \mid l<m_{p+1}\right\}$, we choose $J_{q} \notin\left\{0, \ldots, m_{p+1}-1\right\} \cup\left\{J_{l} \mid l<k_{0}\right\}$, ensuring that the map $q \mapsto J_{q}$ is a bijection from $\neg\left(\left\{0, \ldots, k_{0}-1\right\} \cup\left\{j_{l} \mid l<m_{p+1}\right\}\right)$ onto $\neg\left(\left\{0, \ldots, m_{p+1}-1\right\} \cup\left\{J_{l} \mid l<k_{0}\right\}\right)$. Then, using the induction assumption, we build our homeomorphism coordinate by coordinate, which means that $G_{j_{i}}^{p}$ will be homeomorphic to K_{i}^{p}. The induction assumption gives

- for $i<l_{p+1}$, a $\tau_{\xi_{j_{i}}}$-dense G_{δ} subset $G_{j_{i}}^{p}$ of $\neg P_{\xi_{j_{i}}}$, a $\tau_{\xi_{i}}$-dense G_{δ} subset K_{i}^{p} of $Z_{i}^{p+1} \backslash P_{\xi_{i}}$, and a nice $\left(\tau_{\xi_{i}}, \tau_{\xi_{i}}\right)$-homeomorphism $\psi_{\xi_{i}, G_{j_{i}}^{p}, K_{i}^{p}}$ from $G_{j_{i}}^{p}$ onto K_{i}^{p}.
- a $\tau_{\xi_{l_{l_{p+1}}}}$-dense G_{δ} subset $G_{j_{l_{p+1}}}^{p}$ of $\neg P_{\xi_{j_{p+1}}}$, a $\tau_{\xi_{l_{p+1}}}$-dense G_{δ} subset $K_{l_{p+1}}^{p}$ of $P_{\xi_{l_{p+1}}}$, and a $\operatorname{nice}\left(\tau_{\xi_{l_{p+1}}}, \tau_{\xi_{l_{p+1}}}\right)$-homeomorphism $\varphi_{\xi_{l_{p+1}}, K_{l_{p+1}}^{p}, G_{j_{l_{p+1}}}^{p}}^{-1} \quad$ from $G_{j_{l_{p+1}}}^{p}$ onto $K_{l_{p+1}}^{p}$.
- for $l_{p+1}<i<m_{p+1}$, a $\tau_{\xi_{j_{i}}}$-dense G_{δ} subset $G_{j_{i}}^{p}$ of $\neg P_{\xi_{j}}$, a $\tau_{\xi_{i}}$-dense G_{δ} subset K_{i}^{p} of $Z_{i}^{p+1} \backslash P_{\xi_{i}}$, and a nice $\left(\tau_{\xi_{i}}, \tau_{\xi_{i}}\right)$-homeomorphism $\psi_{\xi_{i}, G_{j_{i}}^{p}, K_{i}^{p}}$ from $G_{j_{i}}^{p}$ onto K_{i}^{p}.
- for $q<k_{0}$, a $\tau_{\xi_{q}}$-dense G_{δ} subset G_{q}^{p} of $W_{q}^{0} \backslash P_{\xi_{q}}$, a $\tau_{\xi_{J_{q}}}$-dense G_{δ} subset $K_{J_{q}}^{p}$ of $\neg P_{\xi_{J_{q}}}$, and a nice $\left(\tau_{\xi_{q}}, \tau_{\xi_{q}}\right)$-homeomorphism $\psi_{\xi_{q}, G_{q}^{p}, K_{J_{q}}^{p}}$ from G_{q}^{p} onto $K_{J_{q}}^{p}$.
- for a remaining coordinate $q \notin\left\{0, \ldots, k_{0}-1\right\} \cup\left\{j_{l} \mid l<m_{p+1}\right\}$, a $\tau_{\xi_{q}}$-dense G_{δ} subset G_{q}^{p} of $\neg P_{\xi_{q}}$, a $\tau_{\xi_{J_{q}}}$-dense G_{δ} subset $K_{J_{q}}^{p}$ of $\neg P_{\xi_{J_{q}}}$, and a nice $\left(\tau_{\xi_{q}}, \tau_{\xi_{q}}\right)$-homeomorphism $\psi_{\xi_{q}, G_{q}, K_{J_{q}}^{p}}^{p}$ from G_{q}^{p} onto $K_{J_{q}}^{p}$.

By Lemma 2.1, the product φ_{p}^{0} of ψ_{p} with these nice homeomorphisms is a nice $\left(\tau_{\xi}^{<}, \tau_{\xi}^{<}\right)$homeomorphism from $G^{0, p}:=W^{0, p} \times\left(\Pi_{i \in \omega} G_{i}^{p}\right)$ onto $K^{0, p}:=Z^{p+1} \times\left(\Pi_{i \in \omega} K_{i}^{p}\right)$, as well as a $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism since $\tau_{\xi \mid P_{\xi}}=\tau_{\xi}^{<}{ }_{\mid P_{\xi}}$ and $\tau_{\xi \mid U_{\xi, l_{p+1}}}=\tau_{\xi}^{<}{ }_{\mid U_{\xi, l_{p+1}}}$. As G^{0} is the sum of the $G^{0, p}$'s, G is a τ_{ξ}-dense G_{δ} subset of U^{0}. Similarly, K^{0} is a τ_{ξ}-dense G_{δ} subset of $\bigcup_{p>0} \pi^{p}$. Moreover, the gluing φ^{0} of the φ_{p}^{0} 's is a $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism from G^{0} onto K^{0}.

The construction of φ^{1} is similar.
$(7)_{\xi} \mathrm{We}$ argue as in $(6)_{\xi}$.
Lemma 2.7 Let $1 \leq \xi<\omega_{1}$. Then there are disjoint families $\mathcal{F}_{\xi}, \mathcal{G}_{\xi}$ of subsets of ω^{ω} and a topology T_{ξ} on ω^{ω} such that
$(a)_{\xi} T_{\xi}$ is zero-dimensional perfect Polish and $\tau \subseteq T_{\xi} \subseteq \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$,
$(b)_{\xi} \mathcal{F}_{\xi}$ is T_{ξ}-dense, i.e., for any nonempty T_{ξ}-open set V, there is $F \in \mathcal{F}_{\xi}$ with $F \subseteq V$,
and, for every $F \in \mathcal{F}_{\xi}$,
$(c)_{\xi} F$ is nonempty, T_{ξ}-nowhere dense, and in $\Pi_{2}^{0}\left(T_{\xi}\right)$,
$(d)_{\xi}$ if $S \in \Sigma_{\xi}^{0}(\tau)$ is T_{ξ}-nonmeager in F, then S is T_{ξ}-nonmeager in ω^{ω},
$(e)_{\xi}$ there is a nice $\left(T_{\xi}, \tau\right)$-homeomorphism φ_{F} from F onto ω^{ω},
$(f)_{\xi}$ for any nonempty T_{ξ}-open sets V, V^{\prime}, there are disjoint $G, G^{\prime} \in \mathcal{G}_{\xi}$ with $G \subseteq V, G^{\prime} \subseteq V^{\prime}$, and there is a nice $\left(T_{\xi}, T_{\xi}\right)$-homeomorphism $\varphi_{G, G^{\prime}}$ from G onto G^{\prime},
and, for every $G \in \mathcal{G}_{\xi}$,
$(g)_{\xi} G$ is nonempty, T_{ξ}-nowhere dense, and in $\boldsymbol{\Pi}_{2}^{0}\left(T_{\xi}\right)$,
$(h)_{\xi}$ if $S \in \Sigma_{\xi}^{0}(\tau)$ is T_{ξ}-nonmeager in G, then S is T_{ξ}-nonmeager in ω^{ω}.
Proof. Let P_{ξ} and τ_{ξ} be as in Lemma 2.6. We set $T_{\xi}=\left(\tau_{\xi}\right)^{\omega}$. Let $\left(U_{n}\right)_{n \in \omega}$ be a basis for the topology T_{ξ} made of nonempty sets. For each $n \in \omega$, there is a finite sequence $\left(V_{i}^{n}\right)_{i<k_{n}}$ of nonempty τ_{ξ}-open sets such that $\left(\Pi_{i<k_{n}} V_{i}^{n}\right) \times\left(\omega^{\omega}\right)^{\omega} \subseteq U_{n}$. Moreover, the sequence $\left(k_{n}\right)_{n \in \omega}$ is chosen to be strictly increasing.

- for $i<k_{n}$, a τ_{ξ}-dense G_{δ} subset H_{i}^{n} of $V_{i}^{n} \backslash P_{\xi}$ and a nice $\left(\tau_{\xi}, \tau\right)$-homeomorphism

$$
\psi_{\xi, H_{i}^{n}}: H_{i}^{n} \rightarrow \omega^{\omega},
$$

- a τ_{ξ}-dense G_{δ} subset $G_{k_{n}}^{n}$ of P_{ξ} and a nice $\left(\tau_{\xi}, \tau\right)$-homeomorphism $\varphi_{\xi, G_{k_{n}}^{n}}: G_{k_{n}}^{n} \rightarrow \omega^{\omega}$,
- for $i>k_{n}$, a τ_{ξ}-dense G_{δ} subset H_{i}^{n} of ω^{ω} and a nice $\left(\tau_{\xi}, \tau\right)$-homeomorphism $\psi_{\xi, H_{i}^{n}}: H_{i}^{n} \rightarrow \omega^{\omega}$.

We then put $F_{n}:=\left(\Pi_{i<k_{n}} H_{i}^{n}\right) \times G_{k_{n}}^{n} \times\left(\Pi_{i>k_{n}} H_{i}^{n}\right)$, so that $F_{n} \subseteq U_{n}$. We set $\mathcal{F}_{\xi}=\left\{F_{n} \mid n \in \omega\right\}$. Then \mathcal{F}_{ξ} is clearly a disjoint family and the properties (a) $)_{\xi}$ and (b) $)_{\xi}$ are obviously satisfied.
(c) ${ }_{\xi}$ As P_{ξ} is τ_{ξ}-nowhere dense, each F_{n} is T_{ξ}-nowhere dense. Each F_{n} is obviously also in $\Pi_{2}^{0}\left(T_{\xi}\right)$.
(d) ${ }_{\xi}$ Let $n \in \omega$ and $S \in \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$ be T_{ξ}-nonmeager in F_{n}. We define

$$
\begin{aligned}
& T_{\xi}^{*}=\Pi_{i \neq k_{n}} \tau_{\xi \mid H_{i}^{n}}, \\
& \tilde{T}_{\xi}=\left(\Pi_{i<k_{n}} \tau_{\xi \mid H_{i}^{n}}\right) \times \tau \times\left(\Pi_{i>k_{n}} \tau_{\xi \mid H_{i}^{n}}\right) .
\end{aligned}
$$

If $\alpha \in \omega^{\omega}$, then we denote

$$
S_{\alpha}:=\left\{\left(y_{0}, \ldots, y_{k_{n}-1}, y_{k_{n}+1}, \ldots\right) \in \omega^{\omega} \mid\left(y_{0}, \ldots, y_{k_{n}-1}, \alpha, y_{k_{n}+1}, \ldots\right) \in S\right\} .
$$

We set $S^{*}=\left\{\alpha \in \omega^{\omega} \mid S_{\alpha}\right.$ is T_{ξ}^{*}-nonmeager $\}$. By the Montgomery theorem, $S^{*} \in \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$ since $S \in \boldsymbol{\Sigma}_{\xi}^{0}\left(\tilde{T}_{\xi}\right)$. The set S^{*} is τ_{ξ}-nonmeager in $G_{k_{n}}^{n}$ by the Kuratowski-Ulam theorem, in P_{ξ} also, and thus S^{*} is τ_{ξ}-nonmeager in ω^{ω}. Using the Kuratowski-Ulam theorem again, we see that S is T_{ξ}-nonmeager in $\left(\Pi_{i<k_{n}} H_{i}^{n}\right) \times \omega^{\omega} \times\left(\Pi_{i>k_{n}} H_{i}^{n}\right)$, and thus in $\left(\omega^{\omega}\right)^{\omega}$.
(e) ${ }_{\xi}$ We set $\varphi_{F}=\left(\Pi_{i<k_{n}} \psi_{\xi, H_{i}^{n}}\right) \times \varphi_{\xi, G_{k_{n}}^{n}} \times\left(\Pi_{i>k_{n}} \psi_{\xi, H_{i}^{n}}\right)$. The map φ_{F} is clearly a $\left(T_{\xi}, \tau\right)$-homeomorphism from F onto $\left(\omega^{\omega}\right)^{\omega}$. It is nice by Lemma 2.1.

We now construct \mathcal{G}_{ξ}. For each $m \in \omega$, there are finite sequences $\left(V_{i}^{m}\right)_{i<k_{m}},\left(W_{i}^{m}\right)_{i<l_{m}}$ of nonempty τ_{ξ}-open sets such that $\left(\Pi_{i<k_{m}} V_{i}^{m}\right) \times\left(\omega^{\omega}\right)^{\omega} \subseteq U_{(m)_{0}}$ and $\left(\Pi_{i<l_{m}} W_{i}^{m}\right) \times\left(\omega^{\omega}\right)^{\omega} \subseteq U_{(m)_{1}}$. Moreover, the sequences $\left(k_{m}\right)_{m \in \omega}$ and $\left(l_{m}\right)_{m \in \omega}$ are chosen to be strictly increasing and disjoint. Assume for example that $k_{m}<l_{m}$. Lemma 2.6 provides

- for $i<k_{m}$, a τ_{ξ}-dense G_{δ} subset H_{i}^{m} of $V_{i}^{m} \backslash P_{\xi}$, a τ_{ξ}-dense G_{δ} subset L_{i}^{m} of $W_{i}^{m} \backslash P_{\xi}$, and a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism $\psi_{\xi, H_{i}^{m}, L_{i}^{m}}$,
- a τ_{ξ}-dense G_{δ} subset $G_{k_{m}}^{m}$ of P_{ξ}, a τ_{ξ}-dense G_{δ} subset $K_{k_{m}}^{m}$ of $W_{i}^{m} \backslash P_{\xi}$, and a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$ homeomorphism $\varphi_{\xi, G_{k_{m}}^{m}, K_{k_{m}}^{m}}$,
- for $k_{m}<i<l_{m}$, a τ_{ξ}-dense G_{δ} subset H_{i}^{m} of $\neg P_{\xi}$, a τ_{ξ}-dense G_{δ} subset L_{i}^{m} of $W_{i}^{m} \backslash P_{\xi}$, and a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism $\psi_{\xi, H_{i}^{m}, L_{i}^{m}}$,
- a τ_{ξ}-dense G_{δ} subset $K_{l_{m}}^{m}$ of $\neg P_{\xi}$, a τ_{ξ}-dense G_{δ} subset $G_{l_{m}}^{m}$ of P_{ξ}, and a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$ homeomorphism $\varphi_{\xi, G_{l_{m}}^{m}, K_{l_{m}}^{m}}^{-1}$,
- for $i>l_{m}$, a τ_{ξ}-dense G_{δ} subset H_{i}^{m} of $\neg P_{\xi}$, a τ_{ξ}-dense G_{δ} subset L_{i}^{m} of $\neg P_{\xi}$, and a nice $\left(\tau_{\xi}, \tau_{\xi}\right)$-homeomorphism $\psi_{\xi, H_{i}^{m}, L_{i}^{m}}$.

We then put

$$
\begin{aligned}
& F_{m}^{\prime}:=\left(\Pi_{i<k_{m}} H_{i}^{m}\right) \times G_{k_{m}}^{m} \times\left(\Pi_{k_{m}<i<l_{m}} H_{i}^{m}\right) \times K_{l_{m}}^{m} \times\left(\Pi_{i>l_{m}} H_{i}^{m}\right), \\
& G_{m}:=\left(\Pi_{i<k_{m}} L_{i}^{m}\right) \times K_{k_{m}}^{m} \times\left(\Pi_{k_{m}<i<l_{m}} L_{i}^{m}\right) \times G_{l_{m}}^{m} \times\left(\Pi_{i>l_{m}} L_{i}^{m}\right),
\end{aligned}
$$

so that $F_{m}^{\prime} \times G_{m} \subseteq U_{(m)_{0}} \times U_{(m)_{1}}$. We set $\mathcal{G}_{\xi}=\left\{F_{m}^{\prime} \mid m \in \omega\right\} \cup\left\{G_{m} \mid m \in \omega\right\}$. Then \mathcal{G}_{ξ} is clearly a disjoint family.
$(\mathrm{f})_{\xi}$ The map $\varphi_{F_{m}^{\prime}, G_{m}}$ is by definition

$$
\left(\Pi_{i<k_{m}} \psi_{\xi, H_{i}^{m}, L_{i}^{m}}\right) \times \varphi_{\xi, G_{k_{m}}^{m}, K_{k_{m}}^{m}} \times\left(\Pi_{k_{m}<i<l_{m}} \psi_{\xi, H_{i}^{m}, L_{i}^{m}}\right) \times \varphi_{\xi, G_{l_{m}^{m}}^{m}, K_{l_{m}^{m}}^{-1} \times\left(\Pi_{i>l_{m}} \psi_{\xi, H_{i}^{m}, L_{i}^{m}}\right)}
$$

Note that $\varphi_{F_{m}^{\prime}, G_{m}}$ is clearly a $\left(T_{\xi}, T_{\xi}\right)$-homeomorphism from F_{m}^{\prime} onto G_{m}. It is nice by Lemma 2.1.
$(\mathrm{g})_{\xi}$ We argue as in $(\mathrm{c})_{\xi}$.
(h) ${ }_{\xi}$ We argue as in $(\mathrm{d})_{\xi}$.

3 Negative results

Proof of Theorem 1.1. We apply Lemma 2.7 to the ordinal $\xi+1$, which gives a family $\mathcal{F}_{\xi+1}$ and a topology $T_{\xi+1}$ satisfying (a) $)_{\xi+1}-(\mathrm{e})_{\xi+1}$. Let $\left(U_{n} \times V_{n}\right)_{n \in \omega}$ be a sequence of nonempty sets such that

- $U_{n} \in T_{\xi+1}, V_{n}$ is τ-clopen,
- $\left\{U_{n} \times V_{n} \mid n \in \omega\right\}$ is a basis for the topology $T_{\xi+1} \times \tau$.

For each $n \in \omega$ we find $F_{n} \in \mathcal{F}_{\xi+1} \backslash\left\{F_{q} \mid q<n\right\}$ with $F_{n} \subseteq U_{n}$. By the property (e) $)_{\xi+1}$ of $\mathcal{F}_{\xi+1}$ we find, for each $n \in \omega$, a nice $\left(T_{\xi+1}, \tau\right)$-homeomorphism f_{n} from F_{n} onto V_{n}. We define $f: \bigcup_{n \in \omega} F_{n} \rightarrow \omega^{\omega}$ by $f(x):=f_{n}(x)$ if $x \in F_{n}$. As $\mathcal{F}_{\xi+1}$ is a disjoint family, f is well-defined. The graph of f is $\boldsymbol{\Sigma}_{2}^{0}(\tau \times \tau)$ since each $\operatorname{Gr}\left(f_{n}\right)$ is $(\tau \times \tau)$-closed.

Suppose, towards a contradiction, that there exist, for $n \in \omega, C_{n} \in \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$ and $D_{n} \in \boldsymbol{\Delta}_{1}^{1}(\tau)$ such that $\neg \operatorname{Gr}(f)=\bigcup_{n \in \omega} C_{n} \times D_{n}$. By the Baire category theorem there is $n_{0} \in \omega$ such that $C_{n_{0}}$ is $T_{\xi+1^{-}}$ nonmeager and $D_{n_{0}}$ is τ-nonmeager. As $C_{n_{0}}$ has the Baire property, we find a nonempty $T_{\xi+1}$-open set O_{1} such that $C_{n_{0}}$ is $T_{\xi+1}$-comeager in O_{1}. Similarly, we find a τ-open set O_{2} such that $D_{n_{0}}$ is τ-comeager in O_{2}.

Let $n \in \omega$ and $F_{n} \subseteq O_{1}$. Suppose that $C_{n_{0}}$ is not $T_{\xi+1}$-comeager in F_{n}. Then $O_{1} \backslash C_{n_{0}}$ is $T_{\xi+1^{-}}$ nonmeager in F_{n}. Note that $O_{1} \in \boldsymbol{\Sigma}_{\xi+1}^{0}(\tau)$ and $C_{n_{0}} \in \boldsymbol{\Sigma}_{\xi}^{0}(\tau)$. Therefore $O_{1} \backslash C_{n_{0}} \in \boldsymbol{\Sigma}_{\xi+1}^{0}(\tau)$. Thus $O_{1} \backslash C_{n_{0}}$ is $T_{\xi+1}$-nonmeager in ω^{ω} by (d) $)_{\xi+1}$. Consequently, $O_{1} \backslash C_{n_{0}}$ is $T_{\xi+1}$-nonmeager in O_{1}, a contradiction. Thus $C_{n_{0}}$ is $T_{\xi+1}$-comeager in F_{n} for any $n \in \omega$ with $F_{n} \subseteq O_{1}$.

Find $n \in \omega$ such that $\operatorname{Gr}\left(f_{n}\right) \subseteq O_{1} \times O_{2}$. Then $C_{n_{0}}$ is $T_{\xi+1}$-comeager in F_{n} and $D_{n_{0}}$ is τ comeager in V_{n}. As f_{n} is a $\left(T_{\xi+1}, \tau\right)$-homeomorphism, $f_{n}^{-1}\left(V_{n} \cap D_{n_{0}}\right)$ is $T_{\xi+1}$-comeager in F_{n}. As $F_{n} \in \Pi_{2}^{0}\left(T_{\xi+1}\right)$ there exists $\alpha \in f_{n}^{-1}\left(V_{n} \cap D_{n_{0}}\right) \cap F_{n} \cap C_{n_{0}}$. This implies that $\left(\alpha, f_{n}(\alpha)\right) \in C_{n_{0}} \times D_{n_{0}}$, a contradiction.

Proof of Theorem 1.2. Apply Lemma 2.7 to the ordinal $\xi+1$, which gives a family $\mathcal{G}_{\xi+1}$ and a topology $T_{\xi+1}$ satisfying $(\mathrm{a})_{\xi+1^{-}}(\mathrm{h})_{\xi+1}$. Let $\mathcal{U}=\left\{U_{n} \mid n \in \omega\right\}$ be a basis for the space $\left(\omega^{\omega}, T_{\xi+1}\right)$ made of nonempty sets. For each $n \in \omega$ we find $T_{\xi+1}$-open sets V_{n}, W_{n} such that

$$
V_{n} \times W_{n} \subseteq B_{\tau \times \tau}\left(\Delta\left(\omega^{\omega}\right), 2^{-n}\right) \cap\left(U_{n} \times U_{n}\right) \backslash \Delta\left(\omega^{\omega}\right)
$$

(we use the standard metric on $\left(\omega^{\omega}, \tau\right)$).
By the properties $(\mathrm{f})_{\xi+1}$ and $(\mathrm{g})_{\xi+1}$ of $\mathcal{G}_{\xi+1}$ we find, for each $n \in \omega$, sets F_{n} and H_{n} from $\mathcal{G}_{\xi+1}$ such that

$$
(*) \quad F_{n} \subseteq V_{n} \backslash\left(\bigcup_{j<n} F_{j} \cup H_{j}\right) \wedge H_{n} \subseteq W_{n} \backslash\left(F_{n} \cup\left(\bigcup_{j<n} F_{j} \cup H_{j}\right)\right)
$$

Moreover, there is a nice $\left(T_{\xi+1}, T_{\xi+1}\right)$-homeomorphism f_{n} from F_{n} onto H_{n}. We set

$$
\mathcal{G}=\bigcup\left\{\operatorname{Gr}\left(f_{n}\right) \mid n \in \omega\right\}
$$

Now we check the desired properties.
As $\tau \subseteq T_{\xi+1}, \overline{\mathcal{G}}^{\tau \times \tau}=\mathcal{G} \cup \Delta\left(\omega^{\omega}\right)$, by construction. Thus \mathcal{G} is a difference of two $(\tau \times \tau)$-closed sets. As each f_{n} is a $\left(T_{\xi+1}, T_{\xi+1}\right)$-homeomorphism, the property $(*)$ implies that f is a partial injection with disjoint domain and range. In order to see that \mathcal{G} has no Δ_{ξ}^{0}-measurable countable coloring, we proceed by contradiction. Suppose that there are \mathcal{G}-discrete sets $C_{n} \in \Delta_{\xi}^{0}(\tau)$ (a set C is \mathcal{G}-discrete if $C^{2} \cap \mathcal{G}=\emptyset$), for $n \in \omega$, such that $\Delta\left(\omega^{\omega}\right) \subseteq \bigcup_{n \in \omega} C_{n}^{2}$. By the Baire theorem there exists $n_{0} \in \omega$ such that $C_{n_{0}}$ is $T_{\xi+1}$-nonmeager. As $C_{n_{0}}$ has the Baire property, we find a nonempty $T_{\xi+1}$-open set O such that $C_{n_{0}} \cap O$ is $T_{\xi+1}$-comeager in O.

Let $F \in \mathcal{G}_{\xi+1}$ with $F \subseteq O$. Suppose that $C_{n_{0}}$ is not $T_{\xi+1}$-comeager in F. Then $O \backslash C_{n_{0}}$ is $T_{\xi+1}$-nonmeager in F. Note that $O \in \boldsymbol{\Sigma}_{\xi+1}^{0}(\tau)$ and $C_{n_{0}} \in \Delta_{\xi}^{0}(\tau)$. Therefore $O \backslash C_{n_{0}} \in \boldsymbol{\Sigma}_{\xi+1}^{0}(\tau)$. Thus $O \backslash C_{n_{0}}$ is $T_{\xi+1}$-nonmeager in ω^{ω} by $(\mathrm{h})_{\xi+1}$. Consequently, $O \backslash C_{n_{0}}$ is $T_{\xi+1}$-nonmeager in O, a contradiction. Thus $C_{n_{0}}$ is $T_{\xi+1}$-comeager in F for any $F \in \mathcal{G}_{\xi+1}$ with $F \subseteq O$.

Find $n \in \omega$ such that $\operatorname{Gr}\left(f_{n}\right) \subseteq O^{2}$. Then $C_{n_{0}}$ is $T_{\xi+1}$-comeager in F_{n} and in H_{n}. As f_{n} is a $\left(T_{\xi+1}, T_{\xi+1}\right)$-homeomorphism, $f_{n}^{-1}\left(H_{n} \cap C_{n_{0}}\right)$ is $T_{\xi+1}$-comeager in $F_{n} \in \boldsymbol{\Pi}_{2}^{0}\left(T_{\xi+1}\right)$. Thus there exists $\alpha \in f_{n}^{-1}\left(H_{n} \cap C_{n_{0}}\right) \cap F_{n} \cap C_{n_{0}}$. This implies that $\left(\alpha, f_{n}(\alpha)\right) \in C_{n_{0}}^{2}$, a contradiction.

4 Positive results

(A) Δ_{ξ}^{0}-measurable countable colorings

In [L-Z], the following conjecture is made.

Conjecture Let $1 \leq \xi<\omega_{1}$. Then there are

- a 0 -dimensional Polish space \mathbb{X}_{ξ},
- an analytic relation \mathbb{A}_{ξ} on \mathbb{X}_{ξ}
such that for any (0 -dimensional if $\xi=1$) Polish space X, and for any analytic relation A on X, exactly one of the following holds:
(a) there is a Δ_{ξ}^{0}-measurable countable coloring of A (i.e., a Δ_{ξ}^{0}-measurable map $c: X \rightarrow \omega$ such that $\left.A \subseteq(c \times c)^{-1}(\neq)\right)$,
(b) there is a continuous map $f: \mathbb{X}_{\xi} \rightarrow X$ such that $\mathbb{A}_{\xi} \subseteq(f \times f)^{-1}(A)$.

This would be a Δ_{ξ}^{0}-measurable version of the \mathbb{G}_{0}-dichotomy in [K-S-T]. This conjecture is proved for $\xi \leq 3$ in [L-Z]. Our goals here are the following. We want to give

- a reasonable candidate for \mathbb{A}_{ξ} in the general case,
- an example for $\xi=3$ that is much simpler than the one in [L-Z].

We set $\boldsymbol{\Pi}_{0}^{0}:=\boldsymbol{\Delta}_{1}^{0}$. The following result is proved in [Má] (see Theorem 4 and Lemma 13.(i)).
Theorem 4.1 (Mátrai) Let $1 \leq \xi<\omega_{1}$. There are a true Π_{ξ}^{0} subset P_{ξ} of 2^{ω}, and a Polish topology τ_{ξ} on 2^{ω} such that
$(1)_{\xi} \tau_{\xi}$ is finer than the usual topology τ^{\prime} on 2^{ω},
(2) $)_{\xi} P_{\xi}$ is τ_{ξ}-closed and τ_{ξ}-nowhere dense,
$(3)_{\xi}$ if G is a basic τ_{ξ}-open set meeting P_{ξ}, and $D \in \Pi_{<\xi}^{0}\left(2^{\omega}, \tau^{\prime}\right)$ is such that $D \cap P_{\xi} \cap G$ is comeager in $\left(P_{\xi} \cap G, \tau_{\xi \mid P_{\xi} \cap G}\right)$, then there is a τ_{ξ}-open set G^{\prime} such that $P_{\xi} \cap G^{\prime}=P_{\xi} \cap G$ and $D \cap G^{\prime}$ is comeager in $\left(G^{\prime}, \tau_{\xi \mid G^{\prime}}\right)$.

Notation. In the sequel $1 \leq \xi<\omega_{1}$. Fix, for each ξ, an increasing sequence $\left(\eta_{n}\right)_{n \in \omega}$ of elements of ξ (different from 0 if $\xi \geq 2$) such that $\sup _{n \in \omega}\left(\eta_{n}+1\right)=\xi$.

- Let $<.,\rangle: \omega^{2} \rightarrow \omega$ be a bijection, defined for example by $\langle n, p\rangle:=\left(\Sigma_{k \leq n+p} k\right)+p$, whose inverse bijection is $q \mapsto\left((q)_{0},(q)_{1}\right)$.
- If $u \in 2^{\leq \omega}$ and $n \in \omega$, then we define $(u)_{n} \in 2^{\leq \omega}$ by $(u)_{n}(p):=u(<n, p>)$ if $<n, p><|u|$.
- Let $\left(t_{n}\right)_{n \in \omega}$ be a dense sequence in $\omega^{<\omega}$ with $\left|t_{n}\right|=n$. For example, let $\left(p_{n}\right)_{n \in \omega}$ be the sequence of prime numbers, and $I: \omega^{<\omega} \rightarrow \omega$ defined by $I(\emptyset):=1$, and $I(s):=p_{0}^{s(0)+1} \ldots{ }_{||s|-1}^{s(|s|-1)+1}$ if $s \neq \emptyset$. Note that I is one-to-one, so that there is an increasing bijection $i: I\left[\omega^{<\omega}\right] \rightarrow \omega$. Set $\psi:=(i \circ I)^{-1}: \omega \rightarrow \omega^{<\omega}$, so that ψ is a bijection. Note that $|\psi(n)| \leq n$ if $n \in \omega$. Indeed,

$$
I(\psi(n) \mid 0)<I(\psi(n) \mid 1)<\ldots<I(\psi(n)),
$$

so that $(b \circ I)(\psi(n) \mid 0)<(b \circ I)(\psi(n) \mid 1)<\ldots<(b \circ I)(\psi(n))=n$. As $|\psi(n)| \leq n$, we can define $t_{n}:=\psi(n) 0^{n-|\psi(n)|}$, and $\left(t_{n}\right)_{n \in \omega}$ is suitable.

- Theorem 4.1 gives P_{ξ} and τ_{ξ}. Let $Q_{\xi}:=2 \times P_{\xi}, T_{\xi}:=\operatorname{discrete} \times \tau_{\xi}$, and $T_{\xi}^{<}:=\Pi_{i \in \omega} T_{\eta_{i}}$ if $\xi \geq 2$.
- $\left(W_{\xi, n}\right)_{n \in \omega}$ is a sequence of nonempty T_{ξ}-open sets.
- $S_{i}:=Q_{\eta_{i}} \cup \bigcup_{n \in \omega} W_{\eta_{i}, n}$ (for $i \in \omega$), and $S:=\Pi_{i \in \omega} S_{i}$, so that $S \in \Pi_{2}^{0}\left(T_{\xi}^{<}\right)$is a Polish space.
- If $\xi \geq 2$, then we set

$$
\begin{aligned}
& \mathbb{K}_{\xi}:=\bigcup_{n \in \omega}\left\{(\alpha, \beta) \in 2^{\omega} \times 2^{\omega} \mid\left(\forall i<n(\alpha)_{i}=(\beta)_{i} \in W_{\eta_{i}, t_{n}(i)}\right) \wedge\right. \\
&\left.\left(\exists \gamma \in P_{\eta_{n}}\left((\alpha)_{n},(\beta)_{n}\right)=(0 \gamma, 1 \gamma)\right) \wedge\left(\forall i>n(\alpha)_{i}=(\beta)_{i}\right)\right\},
\end{aligned}
$$

Lemma 4.2 Let $2 \leq \xi \leq \omega_{1}$. We assume that $Q_{\eta_{i}} \subseteq{\overline{\bigcup_{n \in \omega} W_{\eta_{i}, n}}}^{T_{\eta_{i}}}$ for each $i \in \omega$. Then any \mathbb{K}_{ξ}-discrete $\boldsymbol{\Sigma}_{\xi}^{0}$ subset C of $\left(S, \tau^{\prime}\right)$ is $T_{\xi}^{<}$-meager in S.

Proof. We may assume that C is $\Pi_{<\xi}^{0}$. We argue by contradiction. This gives $n \in \omega$ with $C \in \boldsymbol{\Pi}_{\eta_{n}}^{0}$, a basic $T_{\xi}^{<}$-open set O such that $C \cap O$ is $T_{\xi}^{<}$-comeager in $O \cap S \neq \emptyset, l \geq n$, and a sequence $\left(O_{i}\right)_{i<l}$ with $O_{i} \in T_{\eta_{i}}$ and $O=\left\{\alpha \in 2^{\omega} \mid \forall i<l(\alpha)_{i} \in O_{i}\right\}$. The assumption gives, for each $i<l, n_{i} \in \omega$ such that $O_{i} \cap W_{\eta_{i}, n_{i}} \neq \emptyset$. Let $m \geq l$ such that $t_{m}(i)=n_{i}$ for each $i<l$, and

$$
U:=\left\{\alpha \in S \mid \forall i<l(\alpha)_{i} \in O_{i} \wedge \forall i<m(\alpha)_{i} \in W_{\eta_{i}, t_{m}(i)}\right\},
$$

which is a nonempty $T_{\xi}^{<}$-open subset of S. In particular, $C \cap U$ is $T_{\xi}^{<}$-comeager in U. We set

$$
V:=\left\{\left(\alpha_{i}\right)_{i \neq m} \in \Pi_{i \neq m} S_{i} \mid \forall i<l \quad \alpha_{i} \in O_{i} \wedge \forall i<m \quad \alpha_{i} \in W_{\eta_{i}, t_{m}(i)}\right\},
$$

so that, up to a permutation of coordinates, $U \equiv S_{m} \times V$. We also set

$$
C^{\prime}:=\left\{\alpha \in S_{m} \mid\left(C \cap\left(S_{m} \times V\right)\right)_{\alpha} \text { is } \Pi_{i \neq m} T_{\eta_{i}} \text {-comeager in } V\right\} .
$$

By the Kuratowski-Ulam theorem, C^{\prime} is $T_{\eta_{m}}$-comeager in S_{m} (see 8.41 in [K]). Write $C=D \cap S$, where $D \in \boldsymbol{\Pi}_{\eta_{n}}^{0}\left(2^{\omega}\right)$. Note that $C^{\prime}:=S_{m} \cap\left\{\alpha \in 2^{\omega} \mid\left(D \cap\left(2^{\omega} \times V\right)\right)_{\alpha}\right.$ is $\Pi_{i \neq m} T_{\eta_{i}}$-comeager in $\left.V\right\}$. As $m \geq n$ and $\Pi_{i \neq m} T_{\eta_{i}}$ is finer than the usual topology, $D \cap\left(2^{\omega} \times V\right) \in \Pi_{\eta_{m}}^{0}\left(2^{\omega}, \tau^{\prime} \times\left(\Pi_{i \neq m} T_{\eta_{i}}\right)_{\mid V}\right)$. By the Montgomery theorem, C^{\prime} is $\Pi_{\eta_{m}}^{0}\left(S_{m}, \tau^{\prime}\right)$ (see 22.22 in $[\mathrm{K}]$).

The set C^{\prime} cannot be $T_{\eta_{m}}$-comeager both in $Q_{\eta_{m}} \cap N_{0}$ and in $Q_{\eta_{m}} \cap N_{1}$. Indeed, we argue by contradiction to see that. We set $h_{0}(\alpha):=<1-\alpha(0), \alpha(1), \alpha(2), \ldots>$. As $h_{0 \mid Q_{\eta_{m}} \cap N_{0}}$ is a $T_{\eta_{m}}$ homeomorphism, $\left.C^{\prime} \cap h_{0}\right|_{Q_{\eta_{m}} \cap N_{0}} ^{-1}\left(C^{\prime} \cap Q_{\eta_{m}} \cap N_{1}\right)$ is $T_{\eta_{m}}$-comeager in $Q_{\eta_{m}} \cap N_{0}$, and if 0γ is in it, then $1 \gamma \in C^{\prime}$, which gives $\delta \in(C \cap U)_{0 \gamma} \cap(C \cap U)_{1 \gamma}$ and contradicts the \mathbb{K}_{ξ}-discreteness of C.

Assume for example that C^{\prime} is not $T_{\eta_{m}}$-comeager in $Q_{\eta_{m}} \cap N_{0}$. Then $\neg C^{\prime}$ is $T_{\eta_{m}}$-non meager in $Q_{\eta_{m}}$. As C^{\prime} is $\Pi_{\eta_{m}}^{0}\left(S_{m}, \tau^{\prime}\right)$, there is a sequence $\left(C_{j}\right)_{j \in \omega}$ of $\Pi_{<\eta_{m}}^{0}\left(2^{\omega}\right)$ sets such that

$$
S_{m} \backslash C^{\prime}=\bigcup_{j \in \omega} C_{j} \cap S_{m}
$$

This gives $j \in \omega$ such that $C_{j} \cap Q_{\eta_{m}}$ is $T_{\eta_{m}}$-non meager in $Q_{\eta_{m}}$, and a basic $T_{\eta_{m}}$-open set O such that $C_{j} \cap Q_{\eta_{m}} \cap O$ is $T_{\eta_{m}}$-comeager in $Q_{\eta_{m}} \cap O \neq \emptyset$.

The set O is of the form $\{\varepsilon\} \times G$, where $\varepsilon \in 2$ and G is a basic $\tau_{\eta_{m}}$-open set. Let $S: N_{\varepsilon} \rightarrow 2^{\omega}$ be the map defined by $S(\varepsilon \alpha):=\alpha$. Note that S is a $\tau^{\prime}-\tau^{\prime}$ and $T_{\xi^{-}}-\tau_{\xi}$ homeomorphism. In particular, $E:=\left\{\alpha \in 2^{\omega} \mid \varepsilon \alpha \in C_{j}\right\}$ is $\tau^{\prime}-\Pi_{<\eta_{m}}^{0}$ and $E \cap P_{\eta_{m}} \cap G$ is comeager in $\left(P_{\eta_{m}} \cap G, \tau_{\eta_{m} \mid P_{\eta_{m}} \cap G}\right)$. Theorem 4.1.(3) gives a $\tau_{\eta_{m}}$-open set G^{\prime} such that $P_{\eta_{m}} \cap G^{\prime}=P_{\eta_{m}} \cap G$ and $E \cap G^{\prime}$ is comeager in $\left(G^{\prime}, \tau_{\eta_{m} \mid G^{\prime}}\right)$. Now $O^{\prime}:=\{\varepsilon\} \times G^{\prime}$ is a $T_{\eta_{m}}$-open set such that $Q_{\eta_{m}} \cap O^{\prime}=Q_{\eta_{m}} \cap O$ and $C_{j} \cap O^{\prime}$ is $T_{\eta_{m}}$ comeager in O^{\prime}. The assumption gives $n \in \omega$ such that $W_{\eta_{m}, n} \cap O^{\prime} \neq \emptyset$. Note that $C_{j} \cap W_{\eta_{m}, n} \cap O^{\prime}$ is $T_{\eta_{m}}$-comeager in $W_{\eta_{m}, n} \cap O^{\prime}$, so that $\neg C^{\prime}$ is $T_{\eta_{m}}$-non meager in S_{m}, which is absurd.
Corollary 4.3 Let $2 \leq \xi \leq \omega_{1}$. We assume that $Q_{\eta_{i}} \subseteq \bigcup_{n \in \omega} W_{\eta_{i}, n}{ }^{T}{ }_{\eta_{i}}$ for each $i \in \omega$. Then
(a) there is no Δ_{ξ}^{0}-measurable map $c: 2^{\omega} \rightarrow \omega$ such that $\mathbb{K}_{\xi} \subseteq(c \times c)^{-1}(\neq)$,
(b) if $\mathbb{X}_{\xi} \in \Pi_{2}^{0}\left(2^{\omega}\right)$ and $\mathbb{K}_{\xi} \subseteq \mathbb{X}_{\xi}^{2}$, then there is no $\boldsymbol{\Delta}_{\xi}^{0}$-measurable map $c: \mathbb{X}_{\xi} \rightarrow \omega$ such that $\mathbb{K}_{\xi} \subseteq(c \times c)^{-1}(\neq)$.

Proof. (a) We just have to apply Lemma 4.2.
(b) We argue by contradiction. This gives a partition $\left(C_{k}\right)_{k \in \omega}$ of \mathbb{X}_{ξ} into \mathbb{K}_{ξ}-discrete $\boldsymbol{\Delta}_{\xi}^{0}\left(\mathbb{X}_{\xi}\right)$ sets. We set $D_{0}:=2^{\omega} \backslash \mathbb{X}_{\xi}$, and choose $D_{k+1} \in \boldsymbol{\Sigma}_{\xi}^{0}\left(2^{\omega}\right)$ such that $C_{k}=D_{k+1} \cap \mathbb{X}_{\xi}$. Then $\left(D_{k}\right)_{k \in \omega}$ is a covering of 2^{ω} into \mathbb{K}_{ξ}-discrete $\boldsymbol{\Sigma}_{\xi}^{0}$ sets. It remains to apply the reduction property of the class $\boldsymbol{\Sigma}_{\xi}^{0}$ to contradict (a).

The case $\xi=2$
Example. Let $\alpha \mapsto \alpha^{*}$ be the shift map on $2^{\omega}: \alpha^{*}(j):=\alpha(j+1)$. Then we set

$$
\begin{aligned}
& \mathbb{A}_{2}:=\bigcup_{n \in \omega}\left\{(\alpha, \beta) \in 2^{\omega} \times 2^{\omega} \mid\left(\forall i<n \quad(\alpha)_{i}=(\beta)_{i} \wedge 0^{t_{n}(i)} 1 \subseteq(\alpha)_{i}^{*}\right) \wedge\right. \\
&\left.\left((\alpha)_{n},(\beta)_{n}\right)=\left(0^{\infty}, 10^{\infty}\right) \wedge\left(\forall i>n(\alpha)_{i}=(\beta)_{i}\right)\right\} .
\end{aligned}
$$

Theorem $4.4\left(2^{\omega}, \mathbb{A}_{2}\right)$ satisfies the conjecture.
Proof. We set $P_{1}:=\left\{0^{\infty}\right\}$ and $\tau_{1}:=\tau^{\prime}$, so that P_{1} and τ_{1} satisfy the properties of Theorem 4.1. We also set $W_{1, n}:=N_{0^{n+1} 1} \cup N_{10^{n} 1}$, so that $\left(W_{1, n}\right)_{n \in \omega}$ is a sequence of nonempty T_{1}-open sets satisfying the assumption of Corollary 4.3 , so that $\mathbb{A}_{2}=\mathbb{K}_{2}$ satisfies its conclusions. In particular, (a) and (b) cannot hold simultaneously.

We define, for $(\varepsilon, n) \in 2 \times \omega, K_{n}^{\varepsilon}:=\left\{\alpha \in 2^{\omega} \mid \forall i<n \quad 0^{t_{n}(i)} 1 \subseteq(\alpha)_{i}^{*} \wedge(\alpha)_{n}(0)=\varepsilon\right\}$, and also $C_{n}^{\varepsilon}:=K_{n}^{\varepsilon} \backslash\left(\bigcup_{n<k} K_{k}^{0} \cup K_{k}^{1}\right)$, so that C_{n}^{ε} is closed, the C_{n}^{ε},s are pairwise disjoint, and $\mathbb{A}_{2} \subseteq \bigcup_{n \in \omega} C_{n}^{0} \times C_{n}^{1}$. We set, for each $p, q \in \omega$,

$$
O_{q}^{p}:=\left\{\begin{array}{l}
K_{n}^{\varepsilon} \backslash\left(\bigcup_{n<k \leq q} K_{k}^{0} \cup K_{k}^{1}\right) \text { if } p=2 n+\varepsilon \leq 2 q+1, \\
2^{\omega} \backslash\left(\bigcup_{p^{\prime} \leq 2 q+1} O_{q}^{p^{\prime}}\right) \text { if } p=2 q+2, \\
\emptyset \text { if } p \geq 2 q+3,
\end{array}\right.
$$

so that $\left(O_{q}^{p}\right)_{p \in \omega}$ is a covering of 2^{ω} into clopen sets. Assume that $p=2 n+\varepsilon \neq p^{\prime}=2 n^{\prime}+\varepsilon^{\prime} \leq 2 q+1$ and $\alpha \in O_{q}^{p} \cap O_{q}^{p^{\prime}}$, so that $n, n^{\prime} \leq q$. As $\alpha \in K_{n}^{\varepsilon} \cap K_{n^{\prime}}^{\varepsilon^{\prime}}, n \neq n^{\prime}$ and for example $n<n^{\prime}$, which is absurd. Thus $\left(O_{q}^{p}\right)_{p \in \omega}$ is a partition of 2^{ω}.
(a) Assume that $q<n$. Note that $C_{n}^{0} \cup C_{n}^{1}$ is contained in or disjoint from each set of the form K_{k}^{ε} with $k \leq q$. By disjonction, there is at most one couple (ε, r) such that $2 r+\varepsilon \leq 2 q+1$ and $C_{n}^{0} \cup C_{n}^{1} \subseteq O_{q}^{2 r+\varepsilon}$. If it does not exist, then $C_{n}^{0} \cup C_{n}^{1} \subseteq O_{q}^{2 q+2}$.
(b) Assume that $q \geq n$. Note that $C_{n}^{\varepsilon} \subseteq K_{n}^{\varepsilon}$. As $q \geq n, p:=2 n+\varepsilon \leq 2 q+1$. Thus $C_{n}^{\varepsilon} \subseteq O_{q}^{p}$.

It remains to apply Proposition 4.6 in [L-Z] to see that (a) or (b) holds.
The case $\xi=3$
Example. Let $\left(s_{n}\right)_{n \in \omega}$ be a dense sequence in $2^{<\omega}$ with $\left|s_{n}\right|=n$. For example, let $\phi: \omega \rightarrow 2^{<\omega}$ be a natural bijection. More specifically, $\phi(0):=\emptyset$ is the sequence of length $0, \phi(1):=0, \phi(2):=1$ are the sequences of length 1 , and so on. Note that $|\phi(n)| \leq n$ if $n \in \omega$. Let $n \in \omega$. As $|\phi(n)| \leq n$, we can define $s_{n}:=\phi(n) 0^{n-|\psi(n)|}$. We set $P_{2}:=\left\{\alpha \in 2^{\omega} \mid \forall p \in \omega \quad \exists q \geq p \quad \alpha(q)=1\right\}$, and

$$
\begin{aligned}
\mathbb{A}_{3}:=\bigcup_{n \in \omega}\left\{(\alpha, \beta) \in 2^{\omega} \times 2^{\omega} \mid(\forall i<n\right. & \left.(\alpha)_{i}=(\beta)_{i}=s_{t_{n}(i)} 10^{\infty}\right) \wedge \\
& \left.\left(\exists \gamma \in P_{2}\left((\alpha)_{n},(\beta)_{n}\right)=(0 \gamma, 1 \gamma)\right) \wedge \forall i>n(\alpha)_{i}=(\beta)_{i}\right\}
\end{aligned}
$$

We will see that \mathbb{A}_{3}, together with a suitable Π_{2}^{0} subset \mathbb{X}_{3} of 2^{ω}, satisfies the conjecture. The topology τ_{2} makes the countably many singletons of $\neg P_{2}$ open. Then P_{2} is a true Π_{2}^{0} subset of 2^{ω} (see 23.A in $[\mathrm{K}]), \tau_{2}$ is Polish finer than τ^{\prime}, P_{2} is closed nowhere dense for τ_{2} since τ_{2} coincides with τ^{\prime} on P_{2} and $\neg P_{2}$ is τ^{\prime}-dense, and 4.1.(3) is satisfied since a basic τ_{2}-open set meeting P_{2} is a basic τ^{\prime}-clopen set and P_{2} is τ^{\prime}-comeager. Thus P_{2} and τ_{2} satisfy the properties of Theorem 4.1. We set

$$
W_{2, n}:=\left\{s_{n} 10^{\infty}\right\}
$$

Then $Q_{2} \subseteq \bar{\bigcup}_{n \in \omega} W_{2, n}{ }^{-T_{2}}$ since $\left(s_{n}\right)_{n \in \omega}$ is dense. This shows that $\mathbb{A}_{3}=\mathbb{K}_{3}$ satisfies the conclusions of Corollary 4.3. In particular, (a) and (b) cannot hold simultaneously. In order to prove that (a) or (b) holds, we simply indicate the modifications to make to Section 5 in [L-Z]. We just need to prove the right lemmas since the final construction is the same.

Lemma 4.5 (a) Let $n \in \omega$ and $i<n$. Then $t_{n}(i)<n-i$.
(b) The map $M:\left\{s_{t_{n}(i)} 10^{\infty} \mid n \in \omega \wedge i<n\right\} \rightarrow \omega$, defined by $M(\alpha):=\max \{p \in \omega \mid \alpha(p)=1\}$, is one-to-one.

Proof. (a) Recall the map ψ defined after Theorem 4.1. It is enough to prove that $\psi(n)(i)<n-i$ if $i<|\psi(n)|$. We argue by induction on n, and the result is clear for $n=0$. We may assume that $\psi(n)(i)=q+1$ for some natural number q. We define $t \in \omega^{<\omega}$ by $t(i):=q$, and $t(j):=\psi(n)(j)$ if $j \neq i$. Let $p \in \omega$ with $\psi(p)=t$. Note that $I(\psi(p))<I(\psi(n))$, so that $p<n$. The induction assumption implies that $q=\psi(p)(i)<p-i$, so that $\psi(n)(i)=q+1 \leq p-i<n-i$.
(b) Assume that $M(\alpha)=M\left(\alpha^{\prime}\right)$. Let $n, n^{\prime}, i, i^{\prime}$ with $\alpha=s_{t_{n}(i)} 10^{\infty}$ and $\alpha^{\prime}=s_{t_{n^{\prime}}\left(i^{\prime}\right)} 10^{\infty}$. Then $t_{n}(i)=\left|s_{t_{n}(i)}\right|=M(\alpha)=M\left(\alpha^{\prime}\right)=t_{n^{\prime}}\left(i^{\prime}\right)$, so that $\alpha=\alpha^{\prime}$.

Notation. If $\emptyset \neq u \in 2^{<\omega}$, then $u^{m}:=u \mid(|u|-1)$.
The following notion is technical but crucial.

Definition 4.6 We say that $u \in 2^{<\omega}$ is placed if
(a) $u \neq \emptyset$,
(b) $\forall i<\left(\left|u^{m}\right|\right)_{0} \quad(u)_{i} \subseteq s_{t_{\left(\left|u^{m}\right|\right)_{0}}(i)} 10^{\infty}$,
(c) $u\left(\left|u^{m}\right|\right)=1$ if $\left(\left|u^{m}\right|\right)_{1}>0$.

We are now ready to define

$$
\mathbb{X}_{3}:=\left\{\alpha \in 2^{\omega}|\forall n \in \omega \quad \exists p \geq n \quad \alpha| p \text { is placed }\right\}
$$

Note that \mathbb{X}_{3} is a Π_{2}^{0} subset of 2^{ω}. In particular, \mathbb{X}_{3} is a 0 -dimensional Polish space.
Lemma 4.7 (a) The set \mathbb{A}_{3} is a Σ_{3}^{0} (and thus analytic) relation on \mathbb{X}_{3}.
(b) $\left(\mathbb{X}_{3}, \mathbb{A}_{3}\right) \not \varliminf_{3}^{0}(\omega, \neg \Delta(\omega))$.

Proof. (a) \mathbb{A}_{3} is clearly a Σ_{3}^{0} relation on 2^{ω}. So it is enough to see that it is a relation on \mathbb{X}_{3}. Fix $(\alpha, \beta) \in \mathbb{A}_{3}$ (which defines a natural number n). Choose an infinite sequence $\left(p_{k}\right)_{k \in \omega}$ of natural numbers such that $(\alpha)_{n}\left(p_{k}\right)=(\beta)_{n}\left(p_{k}\right)=1$. Then $\alpha \mid\left(<n, p_{k}>+1\right)$ and $\beta \mid\left(<n, p_{k}>+1\right)$ are placed, so that $\alpha, \beta \in \mathbb{X}_{3}$.
(b) This comes from Corollary 4.3.

Lemma 4.8 Let $n \in \omega, \alpha \in 2^{\omega}$ such that $(\alpha)_{i}=s_{t_{n}(i)} 10^{\infty}$ for each $i<n$, and $p><n, 0>$ such that $\alpha \mid p$ is placed. Then $(p-1)_{0} \geq n$.

Proof. We argue by contradiction. As $p-1 \geq<n, 0>,(p-1)_{0}+(p-1)_{1} \geq n+0=n$. Thus $(p-1)_{1} \geq n-(p-1)_{0}>0$. As $\alpha \mid p$ is placed, $\alpha(p-1)=1$. But

$$
\alpha(p-1)=\alpha\left(<(p-1)_{0},(p-1)_{1}>\right)=(\alpha)_{(p-1)_{0}}\left((p-1)_{1}\right)=\left(s_{t_{n}\left((p-1)_{0}\right)} 10^{\infty}\right)\left((p-1)_{1}\right)
$$

By Lemma 4.5.(a), we get $(p-1)_{1}<n-(p-1)_{0}$, which is absurd.
Definition 4.9 Let $u \in 2^{<\omega}$ and $l \in \omega$.
(a) If u is placed, then we will consider

- the natural number $l(u):=\left(\left|u^{m}\right|\right)_{0}$
- the sequence $u^{l(u)} \in 2^{|u|} \backslash\{u\}$ defined by $u^{l(u)}(m):=u(m)$ exactly when $m \neq<l(u), 0>$. Note that $u^{l(u)}$ is placed, $l\left(u^{l(u)}\right)=l(u)$ and $\left(u^{l(u)}\right)^{l(u)}=u$
- the digit $\varepsilon(u):=u(<l(u), 0>)$. Note that $\varepsilon\left(u^{l(u)}\right)=1-\varepsilon(u)$.
(b) We say that u is l-placed if u is placed and $l(u)=l$. We say that u is $(\leq l)$-placed (resp., $(<l)$-placed, $(>l)$-placed) if there is $l^{\prime} \leq l\left(\right.$ resp., $\left.l^{\prime}<l, l^{\prime}>l\right)$ such that u is l^{\prime}-placed.

When we consider the finite approximations of an element of \mathbb{A}_{3}, we have to guess the natural number n. We usually make some mistakes. In this case, we have to be able to come back to an earlier position. This is the role of the following predecessors.

Notation. Let $u \in 2^{<\omega}$. Note that $\langle\eta>$ is 0 -placed with $\varepsilon(<\eta>)=\eta$ if $\eta \in 2$. This allows us to define

$$
u^{-}:=\left\{\begin{array}{l}
\emptyset \text { if }|u| \leq 1, \\
u \mid \max \{l<|u||u| l \text { is placed }\} \text { if }|u| \geq 2,
\end{array}\right.
$$

and, for $l \in \omega$,

$$
u^{-l}:=\left\{\begin{array}{l}
\emptyset \text { if }|u| \leq 1, \\
u \mid \max \{k<|u||u| k \text { is }(\leq l) \text {-placed }\} \text { if }|u| \geq 2 .
\end{array}\right.
$$

The following key lemma explains the relation between these predecessors and the placed sequences.
Lemma 4.10 Let $l \in \omega$ and $u \in 2^{<\omega}$ be l-placed with $|u| \geq 2$.
(a) Assume that u^{-}is l-placed. Then $\varepsilon\left(u^{-}\right)=\varepsilon(u)$. If moreover $\left(u^{l}\right)^{-}$is l-placed, then the equality $\left(u^{l}\right)^{-}=\left(u^{-}\right)^{l}$ holds.
(b) u^{-l} is l-placed if and only if $\left(u^{l}\right)^{-l}$ is l-placed. In this case, $\varepsilon\left(u^{-l}\right)=\varepsilon(u)$ and the equality $\left(u^{l}\right)^{-l}=\left(u^{-l}\right)^{l}$ holds.
(c) Assume that u^{-}or $\left(u^{l}\right)^{-}$is $(<l)$-placed. Then $u^{-}=u^{-l}=\left(u^{l}\right)^{-}=\left(u^{l}\right)^{-l}$.
(d) Assume that u^{-}or $\left(u^{l}\right)^{-}$is $(>l)$-placed. Then exactly one of those two sequences is $(>l)$ placed, and the other one is l-placed. If $u^{-}\left(\right.$resp., $\left.\left(u^{l}\right)^{-}\right)$is $(>l)$-placed, then $u^{-l}=\left(\left(u^{l}\right)^{-}\right)^{l}($ resp., $u^{-l}=u^{-}$) and $\varepsilon\left(u^{-l}\right)=\varepsilon(u)\left(\right.$ resp., $\varepsilon\left(\left(u^{l}\right)^{-l}\right)=\varepsilon\left(u^{l}\right)$).

Proof. We first prove the following claim:
Claim. (i) Assume that $\left(\left|u^{m}\right|\right)_{1}=0$. Then $u^{-}=u^{-l}=\left(u^{l}\right)^{-}=\left(u^{l}\right)^{-l}$ is $(<l)$-placed.
(ii) Assume that $\left(\left|u^{m}\right|\right)_{1}>0$. Then $u^{-}\left(\right.$resp., $\left.u^{-l}\right)$ is $(\geq l)$-placed and there is j_{0} (resp., j_{1}) with $u^{-}=u \mid\left(<l\left(u^{-}\right), j_{0}>+1\right)\left(\right.$ resp., $\left.u^{-l}=u \mid\left(<l, j_{1}>+1\right)\right)$.

Proof. (i) Note that $l \geq 1$ since $|u| \geq 2$. As $\left(\left|u^{m}\right|\right)_{1}=0,\left|u^{m}\right|=<\left(\left|u^{m}\right|\right)_{0},\left(\left|u^{m}\right|\right)_{1}>=<l(u), 0>$ and the sequence u^{-}is $(<l)$-placed, which implies that $u^{-}=u^{-l}=\left(u^{l}\right)^{-}=\left(u^{l}\right)^{-l}$.
(ii) The last assertion about j_{0} and j_{1} comes from the first one. It is enough to see that u^{-}is $(\geq l)$ placed since the proof for u^{-l} is similar. We argue by contradiction. Then $u \mid(<l, 0>+1)$ is l-placed and $u|(<l, 0>+1) \varsubsetneqq u|\left(<l,\left(\left|u^{m}\right|\right)_{1}>+1\right) \subseteq u$, so that $u \mid(<l, 0>+1) \varsubsetneqq u^{-}$. This implies that $l+0 \leq l\left(u^{-}\right)+\left(\left|u^{-}\right|-1\right)_{1},\left(\left|u^{-}\right|-1\right)_{1} \geq l-l\left(u^{-}\right)>0$ and $u^{-}\left(\left|u^{-}\right|-1\right)=1$. But

$$
\begin{aligned}
u^{-}\left(\left|u^{-}\right|-1\right) & =u^{-}\left(<l\left(u^{-}\right),\left(\left|u^{-}\right|-1\right)_{1}>\right)=u\left(<l\left(u^{-}\right),\left(\left|u^{-}\right|-1\right)_{1}>\right) \\
& =(u)_{l\left(u^{-}\right)}\left(\left(\left|u^{-}\right|-1\right)_{1}\right)=\left(s_{t_{l}\left(l\left(u^{-}\right)\right)} 10^{\infty}\right)\left(\left(\left|u^{-}\right|-1\right)_{1}\right) .
\end{aligned}
$$

Lemma 4.5.(a) implies that $\left(\left|u^{-}\right|-1\right)_{1}<l-l\left(u^{-}\right)$, which is absurd.
(a) By the claim, $\left(\left|u^{m}\right|\right)_{1}>0$. Therefore $u|(<l, 0>+1) \varsubsetneqq u|\left(<l,\left(\left|u^{m}\right|\right)_{1}>+1\right) \subseteq u$ is l-placed, $u \mid(<l, 0>+1) \subseteq u^{-}$and $<l, 0><\left|u^{-}\right|$. Thus $\varepsilon\left(u^{-}\right)=\left(u^{-}\right)(<l, 0>)=u(<l, 0>)=\varepsilon(u)$.

Assume now that $\left(u^{l}\right)^{-}$is l-placed. As $u \mid(<l, 0>+1) \subseteq u^{-} \varsubsetneqq u$, we get

$$
(u \mid(<l, 0>+1))^{l} \subseteq\left(u^{l}\right)^{-} .
$$

Thus $<l, 0><\left|\left(u^{l}\right)^{-}\right|$. If $u^{-}=u \mid\left(<l, j_{0}>+1\right)$, then there is no $j_{0}<j<\left(\left|u^{m}\right|\right)_{1}$ such that $u(<l, j>)=1$, and $\left(u^{l}\right)^{-}=u^{l} \mid\left(<l, j_{0}>+1\right)=\left(u^{-}\right)^{l}$.
(b) Assume that u^{-l} is l-placed. By the claim, we get $\left(\left|u^{m}\right|\right)_{1}>0$ and j_{1} with

$$
u^{-l}=u \mid\left(<l, j_{1}>+1\right) .
$$

Thus $\left(u^{l}\right)^{-l}=u^{l} \mid\left(<l, j_{1}>+1\right)=\left(u^{-l}\right)^{l}$ is l-placed, by Lemma 4.8. The equivalence comes from the fact that $\left(u^{l}\right)^{l}=u$. We argue as in (a) to see that $\varepsilon\left(u^{-l}\right)=\varepsilon(u)$ if u^{-l} is l-placed.
(c) Assume first that u^{-}is $(<l)$-placed. Then $\left(\left|u^{m}\right|\right)_{1}=0$, by the claim, (ii). Now the claim, (i), gives the result. If $\left(u^{l}\right)^{-}$is $(<l)$-placed, then we apply this to u^{l}, using the facts that u^{l} is l-placed and $\left(u^{l}\right)^{l}=u$.
(d) Assume first that u^{-}is $(>l)$-placed. The claim, (i), implies that $\left(\left|u^{m}\right|\right)_{1}>0$, and the claim, (ii), gives j_{1} with $u^{-l}=u \mid\left(<l, j_{1}>+1\right)$. Note that $u^{-l} \varsubsetneqq u^{-},\left(u^{-}\right)_{l} \subseteq s_{t_{l\left(u^{-}\right)}(l)} 10^{\infty}$ and $M\left(s_{t_{l\left(u^{-}\right)}(l)} 10^{\infty}\right)<l\left(u^{-}\right)-l$, by Lemma 4.5.(a). Thus

$$
<l, M\left(s_{t_{l\left(u^{-}\right)}(l)} 10^{\infty}\right)>\leq<l\left(u^{-}\right), 0>\leq<l\left(u^{-}\right),\left(\left|u^{-}\right|-1\right)_{1}>=\left|u^{-}\right|-1
$$

and $\left(u^{-}\right)_{l}\left(M\left(s_{t_{l\left(u^{-}\right)}(l)} 10^{\infty}\right)\right)$ is defined. This shows that $j_{1}=M\left(s_{t_{l\left(u^{-}\right)}(l)} 10^{\infty}\right)$.
Note that $u^{l} \mid\left(<l, j_{1}>+1\right) \subseteq\left(u^{l}\right)^{-}$. The claim, (ii), shows that $\left(u^{l}\right)^{-l}=u^{l} \mid\left(<l, j_{1}>+1\right)$. We argue by contradiction to see that $\left(u^{l}\right)^{-}$is not $(>l)$-placed. The proof of the previous point shows that $j_{1}=M\left(s_{t_{l\left(\left(u^{l}\right)^{-}\right)}(l)} 10^{\infty}\right)$. Lemma 4.5.(b) shows that $s_{t_{l\left(u^{-}\right)}(l)} 10^{\infty}=s_{t_{l\left(\left(u^{l}\right)^{-}\right)}(l)} 10^{\infty}$. Thus

$$
\begin{aligned}
& \left(u^{-}\right)_{l}(0)=\left(s_{\left.t_{l\left(u^{-}\right)}\right)}(l) 10^{\infty}\right)(0)=\left(s_{t_{\left.l\left(u^{l}\right)^{-}\right)}(l)} 10^{\infty}\right)(0)=\left(\left(u^{l}\right)^{-}\right)_{l}(0), \\
& \varepsilon(u)=u(<l, 0>)=(u)_{l}(0)=\left(u^{-}\right)_{l}(0)=\left(\left(u^{l}\right)^{-}\right)_{l}(0)=\varepsilon\left(u^{l}\right),
\end{aligned}
$$

which is absurd. This shows that $\left.\left(u^{l}\right)^{-}=u^{l} \mid\left(<l, j_{1}\right\rangle+1\right)=\left(u^{-l}\right)^{l}$ is l-placed, by Lemma 4.8, so that $u^{-l}=\left(\left(u^{l}\right)^{-}\right)^{l}$. Moreover, $\varepsilon\left(u^{-l}\right)=\left(u^{-l}\right)(<l, 0>)=u(<l, 0>)=\varepsilon(u)$.

Assume now that $\left(u^{l}\right)^{-}$is $(>l)$-placed. As u^{l} is l-placed and $\left(u^{l}\right)^{l}=u$, the previous arguments show that u^{-}is l-placed. In particular, $u^{-l}=u^{-}$.

Theorem $4.11\left(\mathbb{X}_{3}, \mathbb{A}_{3}\right)$ satisfies the conjecture.

Proof. We already noticed that it is enough to see that (a) or (b) holds. In Condition (5) in the proof of Theorem 5.1 in [L-Z], u^{-l} should be replaced with $u^{-l(u)}$. We need to check that the map f defined there satisfies $\mathbb{A}_{3} \subseteq(f \times f)^{-1}(A)$. So let $(\alpha, \beta) \in \mathbb{A}_{3}$, which defines n. Let $\left(p_{j}\right)_{j \in \omega}$ be the infinite strictly increasing sequence of natural numbers $p_{j} \geq 1$ such that $\left(p_{j}-1\right)_{0}=n,\left(p_{j}-1\right)_{1}>0$ and $\alpha\left(p_{j}-1\right)=1$. In particular, $\alpha \mid p_{j}$ is n-placed and $\varepsilon\left(\alpha \mid p_{j}\right)=0$. Note that $\left(p_{j}\right)_{j \in \omega}$ is also the infinite strictly increasing sequence of natural numbers $p_{j} \geq 1$ such that $\left(p_{j}-1\right)_{0}=n,\left(p_{j}-1\right)_{1}>0$ and $\beta\left(p_{j}-1\right)=1$ on one side, and a subsequence of both $\left(p_{k}^{\alpha}\right)_{k \in \omega}$ and $\left(p_{k}^{\beta}\right)_{k \in \omega}$ on the other side.

If moreover $p \geq p_{0}$ and $\alpha \mid p$ is placed, then $l(\alpha \mid p) \geq n$, by Lemma 4.8. In particular, if $p \geq p_{0}$ and $\alpha \mid p$ is $(\leq n)$-placed, then $\alpha \mid p$ is n-placed. This proves that $\left(p_{j}\right)_{j \in \omega}$ is the infinite strictly increasing sequence of integers $p_{j} \geq p_{0}$ such that $\alpha \mid p_{j}$ is $(\leq n)$-placed. Therefore $\left(\alpha \mid p_{j+1}\right)^{-n}=\alpha \mid p_{j}$.

By Condition (3), $\left(U_{\alpha \mid p_{j}}\right)_{j \in \omega}$ is a non-increasing sequence of nonempty clopen subsets of $A \cap \Omega_{X^{2}}$ whose GH-diameter tend to 0 . So we can define $F(\alpha, \beta) \in A$ by $\{F(\alpha, \beta)\}:=\bigcap_{j \in \omega} U_{\alpha \mid p_{j}}$. Note that $F(\alpha, \beta)=\lim _{j \rightarrow \infty}\left(x_{\alpha \mid p_{j}}, x_{\beta \mid p_{j}}\right)=(f(\alpha), f(\beta)) \in A$, so that $\mathbb{A}_{3} \subseteq(f \times f)^{-1}(A)$.

It remains, when $k \geq 2$ (second case), to replace $l-1$ with $l\left(u^{-}\right)$.

The general case

Here we just give, for each $i \in \omega$, a sequence $\left(W_{\eta_{i}, n}\right)_{n \in \omega}$ of nonempty $T_{\eta_{i}}$-open sets such that $Q_{\eta_{i}} \subseteq \bigcup_{n \in \omega} W_{\eta_{i}, n} T_{\eta_{i}}$. This will imply that \mathbb{K}_{ξ} has no Δ_{ξ}^{0}-measurable countable coloring, by Corollary 4.3. We assume that $\xi \geq 4$, so that we may assume that $\eta_{i} \geq 3$. If $\eta=\sup _{n \in \omega}\left(\theta_{n}+1\right) \geq 2$, then we set $V_{\eta, n}:=\left\{\alpha \in 2^{\omega} \mid \forall i<n(\alpha)_{i} \notin P_{\theta_{i}} \wedge(\alpha)_{n} \in P_{\theta_{n}}\right\}$. We set, for $\eta \geq 3$,

$$
W_{\eta, n}:=\left\{\alpha \in 2^{\omega} \mid \alpha(0)=s_{n+1}(0) \wedge\left(\alpha^{*}\right)_{n} \in P_{\theta_{n}} \wedge \forall i<n\left(\alpha^{*}\right)_{i} \in \bigcup_{j<n-i} V_{\theta_{i}, j}\right\}
$$

Mátrai's construction ensures that $V_{\eta, n}$ is τ_{η}-open, and that $W_{\eta, n}$ is a nonempty T_{η}-open set. Let O be a basic T_{η}-open set meeting Q_{η}. As $T_{\eta}=$ discrete $\times \tau_{\eta}$ and $\tau_{\eta \mid P_{\eta}} \equiv\left(\Pi_{i \in \omega} \tau_{\theta_{i}}\right)_{\mid P_{\eta}}$, we can find $\varepsilon \in 2$ and $\left(O_{i}\right)_{i<l} \in \pi_{i<l} \tau_{\theta_{i}}$ such that $O=\left\{\alpha \in 2^{\omega} \mid \alpha(0)=\varepsilon \wedge \forall i<l\left(\alpha^{*}\right)_{i} \in O_{i}\right\}$. As $P_{\theta_{i}}$ is $\tau_{\theta_{i}}$-closed nowhere dense and $\neg P_{\theta_{i}}=\bigcup_{n \in \omega} V_{\theta_{i}, n}$, we can find n_{i} such that O_{i} meets $V_{\theta_{i}, n_{i}}$. We choose $n>\max _{i<l}\left(n_{i}+i\right)$ such that $s_{n+1}(0)=\varepsilon$. Then $W_{\eta, n}$ meets O.

Our motivation to introduce these examples is that they induce a set \mathbb{K}_{3} satisfying the conjecture. This is the reason why we think that they are reasonable candidates for the general case.

(B) The small classes

In Section 3, we met $D_{2}\left(\boldsymbol{\Pi}_{1}^{0}\right)$ graphs of fixed point free partial injections with a Borel countable (2-)coloring, but without $\boldsymbol{\Delta}_{\xi}^{0}$-measurable countable coloring. Their complement are $\check{D}_{2}\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets in $\left(\boldsymbol{\Delta}_{1}^{1} \times \boldsymbol{\Sigma}_{1}^{0}\right)_{\sigma}$, but not in $\left(\boldsymbol{\Sigma}_{\xi}^{0} \times \boldsymbol{\Sigma}_{\xi}^{0}\right)_{\sigma}$. However, a positive result holds for the simpler classes, which shows some optimality in our results.

Proposition 4.12 Let $\boldsymbol{\Gamma} \subseteq D_{2}\left(\Pi_{1}^{0}\right)$ be a Wadge class (in zero-dimensional spaces), and A be a set in $\boldsymbol{\Gamma} \cap\left(\boldsymbol{\Delta}_{1}^{1} \times \boldsymbol{\Sigma}_{1}^{0}\right)_{\sigma}\left(\right.$ resp., $\left.\left(\boldsymbol{\Delta}_{1}^{1} \times \boldsymbol{\Delta}_{1}^{1}\right)_{\sigma}\right)$. Then $A \in\left(\boldsymbol{\Gamma} \times \boldsymbol{\Sigma}_{1}^{0}\right)_{\sigma}\left(\right.$ resp., $\left.(\boldsymbol{\Gamma} \times \boldsymbol{\Gamma})_{\sigma}\right)$.

Proof. Let us do it for $\left(\boldsymbol{\Delta}_{1}^{1} \times \boldsymbol{\Sigma}_{1}^{0}\right)_{\sigma}$, the other case being similar. The result is clear for $\{\emptyset\},\{\emptyset\}, \boldsymbol{\Delta}_{1}^{0}$, $\boldsymbol{\Sigma}_{1}^{0}$. If $\boldsymbol{\Gamma}=\boldsymbol{\Pi}_{1}^{0}$, then we can write $A=\bigcup_{n \in \omega} C_{n} \times D_{n}$, with $C_{n} \in \boldsymbol{\Delta}_{1}^{1}$ and $D_{n} \in \boldsymbol{\Sigma}_{1}^{0}$. We just have to note that $A=\bigcup_{n \in \omega} \overline{C_{n}} \times D_{n}$. If $\boldsymbol{\Gamma}=\boldsymbol{\Pi}_{1}^{0} \oplus \boldsymbol{\Sigma}_{1}^{0}$, then we can write $A=\bigcup_{n \in \omega} C_{n} \times D_{n}=(C \cap D) \cup(O D)$, with $C_{n} \in \Delta_{1}^{1}, \neg C, O, D, \neg D, D_{n} \in \boldsymbol{\Sigma}_{1}^{0}$. Note that $A=\left(D \cap \bigcup_{n \in \omega} \overline{C_{n}} \times D_{n}\right) \cup(O \backslash D)$. Finally, if $\boldsymbol{\Gamma}=D_{2}\left(\boldsymbol{\Pi}_{1}^{0}\right)$, then write $A=\bigcup_{n \in \omega} C_{n} \times D_{n}=C \cap O$, with $C_{n} \in \boldsymbol{\Delta}_{1}^{1}, \neg C, O, D_{n} \in \boldsymbol{\Sigma}_{1}^{0}$. Note that $A=O \cap \bigcup_{n \in \omega} \overline{C_{n}} \times D_{n}$.

(C) The finite case

Proposition 4.13 Assume that $\boldsymbol{\Gamma}$ is closed under finite intersections and continuous pre-images, X, Y are topological spaces, κ is finite, and $A \in \boldsymbol{\Gamma}(X \times Y)$ is the union of κ rectangles. Then A is the union of at most $2^{2^{\kappa}}$ rectangles whose sides are in Γ.

Proof. Assume that $A=\bigcup_{n<\kappa} A_{n} \times B_{n}$. Let us prove that

$$
A=\bigcup_{I \subseteq \kappa,\left(\bigcap_{n \in I}\right.} \bigcup_{\left.A_{n}\right) \backslash\left(\bigcap_{n \notin I} A_{n}\right) \neq \emptyset}\left(\bigcap_{n \in I} A_{n}\right) \times\left(\bigcup_{n \in I} B_{n}\right) .
$$

So let $(x, y) \in A$, and let $I:=\left\{n<\kappa \mid x \in A_{n}\right\}$. Then $x \in\left(\bigcap_{n \in I} A_{n}\right) \backslash\left(\bigcap_{n \notin I} A_{n}\right)$, and (x, y) is in $\left(\bigcap_{n \in I} A_{n}\right) \times\left(\bigcup_{n \in I} B_{n}\right)$ since $(x, y) \in A_{n} \times B_{n}$ for some $n<\kappa$. The other inclusion is clear.

Assume now that $x \in\left(\bigcap_{n \in I} A_{n}\right) \backslash\left(\bigcap_{n \notin I} A_{n}\right)$. Then $\bigcup_{n \in I} B_{n}=A_{x}=f^{-1}(A)$, where the formula $f(y):=(x, y)$ defines $f: Y \rightarrow X \times Y$ continuous. This shows that $\bigcup_{n \in I} B_{n}$ is in Γ. So we proved the following:
A is the union of at most 2^{κ} rectangles $A_{n}^{\prime} \times B_{n}^{\prime}$, where A_{n}^{\prime} is a finite intersection of some of the A_{n} 's, and B_{n}^{\prime} is a finite union of some of the B_{n} 's which is in Γ.

Applying this again, we see that A is the union of at most $2^{2^{\kappa}}$ rectangles $A_{n}^{\prime \prime} \times B_{n}^{\prime \prime}$, where $A_{n}^{\prime \prime}$ is a finite union of some of the A_{n}^{\prime} 's which is in Γ, and $B_{n}^{\prime \prime}$ is a finite intersection of some of the B_{n}^{\prime} 's. We are done since $\boldsymbol{\Gamma}$ is closed under finite intersections.

This proof also shows the following result:
Proposition 4.14 Assume that $\boldsymbol{\Gamma}$ is closed under continuous pre-images, X, Y are topological spaces, κ is finite, and $A \in \boldsymbol{\Gamma}(X \times Y)$ is the union of κ rectangles of the form $2^{X} \times \boldsymbol{\Sigma}_{1}^{0}(Y)$. Then A is the union of at most $2^{2^{\kappa}}$ rectangles of the form $\boldsymbol{\Gamma}(X) \times \boldsymbol{\Sigma}_{1}^{0}(Y)$.

Remarks. (1) For colorings, Theorem 1.2 gives, for each ξ, a $D_{2}\left(\boldsymbol{\Pi}_{1}^{0}\right)$ binary relation with a Borel finite (2-)coloring, but with no Δ_{ξ}^{0}-measurable finite coloring.
(2) \emptyset has a 1-coloring. An open binary relation having a finite coloring c has also a $D_{2}\left(\boldsymbol{\Pi}_{1}^{0}\right)$ measurable finite coloring (consider the differences of the $\overline{c^{-1}(\{n\})}$'s, for n in the range of the coloring). This leads to the following question:

Question. Can we build, for each ξ, a closed binary relation with a Borel finite coloring but no $\boldsymbol{\Delta}_{\xi^{-}}^{0}$ measurable finite coloring?

5 References

[K] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, 1995
[K-S-T] A. S. Kechris, S. Solecki and S. Todorčević, Borel chromatic numbers, Adv. Math. 141 (1999), 1-44
[L-Z] D. Lecomte and M. Zelený, Baire-class ξ colorings: the first three levels, to appear in Trans. Amer. Math. Soc. (see arXiv)
[Lo] A. Louveau, A separation theorem for Σ_{1}^{1} sets, Trans. Amer. Math. Soc. 260 (1980), 363-378
[Má] T. Mátrai, On the closure of Baire classes under transfinite convergences, Fund. Math. 183, 2 (2004), 157-168

[^0]: 2010 Mathematics Subject Classification. Primary: 03E15, Secondary: 54H05
 Keywords and phrases. Borel chromatic number, Borel class, coloring, product, rectangle
 Acknowledgements. The results were partly obtained during the second author's stay at the Université Paris 6 in May 2013. The second author thanks the Université Paris 6 for the hospitality.

 The research was supported by the grant GAČR P201/12/0436 for the second author.

