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1 Introduction

The reader should see [K] for the descriptive set theoretic notation used in this paper. The standard
way to compare the topological complexity of the subsets of the Baire sgaeew” is to use the
Wadge quasi-ordery,. Recall that if X (resp.,Y) is a zero-dimensional Polish space ahdresp.,

B) is a subset o (resp.,Y), then

(X, A) <w (Y,B) < 3f:X —Y continuous such that = f~(B).

This is a very natural definition since the continuous functions are the morphisms of topological
spaces. So the diagram is as follows:

X[ A4 d-——————] S B Y
ﬂA— ———————— —>—\B

The “zero-dimensional” condition is here to ensure the existence of enough continuous functions
(recall that the only continuous functions frdRninto A/ are the constant functions). In the sequel,

T will be a subclass of the class of Borel sets in zero-dimensional Polish spaces. We denote by
I':={-A | AcT} the class of the complements of the elementE .0iVe say thal is sel f-dual if

I'=T. We also sen\(T'):=T' N T. Following 4.1 in [Lo-SR2], we give the following definition:

Definition 1.1 We say thafl is a Wadge class of Borel sets if there is a Borel subseA of A/
such that for any zero-dimensional Polish spa€eand for anyA C X, A is in I if and only if
(X, A) <w (N, A). Inthis case, we also say that is I'-complete.

The Wadge hierarchy defined by, i.e., the inclusion of Wadge classes, is the finest hierarchy
of topological complexity in descriptive set theory. The goal of this paper is to study the descriptive
complexity of the Borel sets in products of Polish spaces. More specifically, we are looking for
a dichotomy of the following form, quite standard in descriptive set theory: either a set is simple,
or it is more complicated than a well-known complicated set. Of course, we have to specify the
notion of complexity and the notion of comparison that we consider. The two things are actually very
much related. The usual notion of comparison between analytic equivalence relations is the Borel
reducibility quasi-ordeK . Recall that if X (resp.,Y) is a Polish space anf (resp.,F') is an
equivalence relation oX (resp.,Y), then

(X,E) <p (Y,F) < 3f:X —Y Borel such thaltl=(f x f)"!(F).

Note that this makes sense everifand F' are not equivalence relations. The notion of complexity
that we consider is a natural invariant fagz in dimension two. Its definition generalizes Definition
3.3 in [Lo3] to any dimensio@ making sense in the context of classical descriptive set theory, and
also to any clas§'. So in the sequel will be a cardinal, and we will have < d <w since2“! is not
metrizable.

Definition 1.2 Let (X;);cq be a sequence of Polish spaces, d@hte a Borel subset df;-, X;. We

say thatB is potentially in T (or Bepot(I‘)) if, for eachi € d, there is a finer zero-dimensional
Polish topologyr; on X; such thatB € T’ (Il;cq (Xi, 74)).
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One should emphasize the fact that the point of this definition is to consider product topologies.
Indeed, ifB is a Borel subset of a Polish spa&e then there is a finer Polish topologyon X such
that B is a clopen subset ¢fX, 7) (see 13.1 in [K]). This is not the case in products: if for exanIple
is a non self-dual Wadge class of Borel sets, then there are sE{9\if) that are not in pdi’) (see
Theorem 3.3 in [L1]). For example, the diagonal/fis not potentially open.

Note also that the “zero-dimensional” condition is not a restriction since we work up to finer Pol-
ish topologies. Indeed, X is a Polish space, then there is a finer zero-dimensional Polish topology
on X (see 13.5in [K]). The notion of potential complexity is an invariant$gs in the sense that if
(X,E) <p (Y, F)andF epotT'), thenE € pot(T") too.

The good notion of comparison is not the rectangular versiosi ©f Instead of considering a
Borel setE’ and its complement, we have to consider pairs of disjoint analytic sets. This leads to the
following notation. Let(X;);cq, (Y;)ica be sequences of Polish spaces, did A; (resp.,By, B1)
be disjoint analytic subsets of;c4 X; (resp.,Il;cq Y;). Then
(Xi)ied: Ao, A1) < ((Yi)ied, Bo, B1) < Vied 3f;:X;—Y; continuous such that

Vee2 A.C (Hied fi)_l(BE).
So the good diagram of comparison is as follows:

Wiea X | 5| _ | Micq Yi
———————

The notion of potential complexity was studied in [L1]-[L7] whér- 2 andT is a non self-dual Borel

class. The main question of this long study was formulated by A. Louveau in 1990. He wanted to
know whether Hurewicz’s characterization of #ig sets can be generalized to the sets potentially in

T whenI' is a Wadge class of Borel sets. The main result of this paper gives a complete and positive
answer to this question:

Theorem 1.3 LetI" be a Wadge class of Borel sets, or the cI&@for somel <& <w;i. Then there

are Borel subset§,, S; of (d*)¢ such that for any sequence of Polish spat&s);cq, and for any
disjoint analytic subsetd, A, of IT;c4 X;, exactly one of the following holds:

(a) The setd is separable fromd; by a potI') set.
(b) The inequality((d“);cq, So,S1) < ((Xi)ica, Ao, 41) holds.

Note that Theorem 1.3 is a result of continuous reduction. We already met the notion of contin-
uous reduction when the Wadge quasi-order was defined. This is one of the motivations for trying to
prove Theorem 1.3. This paper is the continuation of the article [L7], that was announced in [L6]. We

generalize the main result of [L7], which was obtained by G. Debs and the author. The generalization
goes in different directions: it works for

- any dimension,
- the self-dual Borel classes?,
- any Wadge class of Borel sets (this is the hardest part).



We generalize the one-dimensional version of Theorem 1.3. This version was obtained by A.
Louveau and J. Saint Raymond (see [Lo-SR1]), and is a generalization of the Hurewicz theorem. In
fact, we give a new proof of this version. The games are not involved in the new proof. This proof
gives a new approach for studying the Wadge classes.

Note that A. Louveau and J. Saint Raymond proved thEtig not self-dual, then the reduction
map in (b) can be one-to-one (see Theorem 5.2 in [Lo-SR2]). We will see that there is no injectivity in
general in Theorem 1.3. However, G. Debs proved that we can haygstmne-to-one whed =2,

e {1, 22} and¢ > 3. Some details about the injectivity will be given in the last section.

We will prove a version of Theorem 1.3 for the following classes:

- graphs (i.e., irreflexive and symmetric relations),
- oriented graphs (i.e., irreflexive and antisymmetric relations),
- quasi-orders (i.e., reflexive and transitive relations),
- partial orders (i.e., reflexive, antisymmetric and transitive relations).
We will call € the set of these four classes. Note that a reduction on the whole product is not
possible in Theorem 1.3, for acyclicity reasons (see [L5]-[L7]). For example, the following result is

proved in [L5]. LetXy, X1, Yo, Y1 be Polish spaces, antl(resp.,B) be a subset oKy x X (resp.,
Yo xY7). We set

(Xo,X1,A) <" (Yo,Y1,B) & Vic23f;: X;—Y; continuous such that = (fox f1)"*(B).

If (Xo, X1,A4) <% (Yo, Y1, B) with Xo= X1, Yy =Y7 and fo = f1, then we writeg Xy, A) <. (Yo, B).
In the sequel, we will denote ithe Cantor spacg”.

Theorem 1.4 (a) There is a<’-antichain (C,C, Ay )acc Such thatA, € Dy(X9) is <7-minimal
among theAl\ pot(I1Y) sets, for anyveC.

(b) There is a<.-antichain(C, R, )acc such thatR,, is <.-minimal among theA{\pot(TIY) sets, for
anya eC. Moreover, for any elemeidt of €, we can ensure thgtR,, | o € C} CC.

We prove the following corollary of Theorem 1.3:

Theorem 1.5 LetC € &, andT" be a Wadge class of Borel sets, or the claééfor somel <& <w;.
Then there are Borel subsélg, Ry of C xC with Ry, Rg U R; € C such that for any Polish spack,
and for any Borel subsek of X2 in C, exactly one of the following holds:

(a) The setr is in pot(T").
(b) There isf :C — X continuous such tha C (f x f)~'(R) andR; C (f x )1 (=R).

We introduce the following notation and definition in order to dwell more deeply into Theorem
1.3. We define the notions of smallness that ensure the possibility of the reduction. We emphasize
the fact that in this paper, there will be a constant identification bet®hand(d)?, for I <w, in
order to simplify as much as possible the notations.



Notation. If X is a set, ther' := (2;);cq iS an arbitrary element ot?. If 7 C x¢, thenG7 is the
graph whose set of verticesTs and whose set of edges{i$:€, y}CT | Z#y and Jied xi:yi}
(see [B] for the basic notions about graphs). B¢ i € T are G7 -related if they have at least a
common coordinate.

Definition 1.6 (a) We say that” is one-sided if the following holds:

VEAYET Vi£jed (x; £y \/aﬁﬂéyj).
This means that if #y €7, 7, y have at most one common coordinate.

(b) We say that is almost acyclic if for everyGT-cycIe(:c_)”)nSL thereareicdandk<m<n<L
such thatz¥ =z =z, This means that every? -cycle contains a “flat” subcycle, i.e., a subcycle
in a fixed directioni € d.

(c) We say that a tre& ond? is atree with suitable levels if the setT!:=T' N (d?)! C (d')? is finite,
one-sided and almost acyclic for each natural number

We do not really need the finiteness of the levels, but it makes the proof of Theorem 1.3 much
simpler. The following classical property will be crucial in the sequel:

Definition 1.7 We say thal has theseparation property if for each A, B € T'(N) disjoint, there
is C'e A(T")(N) separatingA4 from B.

The separation property is studied in [S] and [vW], which contain a proof of the following result:

Theorem 1.8 (Steel-van Wesep) LEtbe a non self-dual Wadge class of Borel sets. Then exactly one
of the two classeF, I has the separation property.

We cut Theorem 1.3 into two parts.

Theorem 1.9 There is a tre€l’; with suitable levels such that, for each non self-dual Wadge class of
Borel setdl", the following statements hold.

(1) There exist§ € T'([T,]) that is not separable frorfiT;; ] \'S by a potT") set.
(2) If I" does not have the separation property, dnhe- 22 or A(T) is a Wadge class, then we can
find disjoint sets$Sy, S; € T'([T]) which are not separable by a pak(T")) set.

Theorem 1.10 Let Ty be a tree with suitable level§, be a non self-dual Wadge class of Borel sets,
(X.)icq be a sequence of Polish spaces, ahg A; be disjoint analytic subsets of;c; X;.

(1) Assume thas € T'([T,]) is not separable fromi7,;]\ S by a potI') set. Then exactly one of the
following holds:

(a) The setd is separable from1; by a potT’) set.

(b) The inequality((d“);ca, S, [T4]1\S) < ((Xi)icd, Ao, A1) holds.

(2) Assume thal' does not have the separation propeiliys- Eg or A(T') is a Wadge class, and that

So, S1€T([Ty]) are disjoint and not separable by a dt(I")) set. Then exactly one of the following
holds:

(a) The setd, is separable fromi; by a po{A(T')) set.
(b) The inequality((d‘“)ied, So, Sl) < ((Xi)ieda Ao, Al) holds.
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We now come back to the new approach for studying the Wadge classes mentioned earlier. There
are a lot of dichotomy results in descriptive set theory about the equivalence relations, the quasi-
orders, the partial orders, or even the arbitrary analytic sets. So it is natural to look for common
points between these dichotomies. B. Miller's recent work goes in this direction. He proved many
known dichotomies without using the effective descriptive set theory, using some variants of the
Kechris-Solecki-Toddrevic dichotomy for analytic graphs (see [K-S-T]). Here we want to point out
another common point, of effective nature. In these dichotomies, the first possibility of the dichotomy
is equivalent to the emptyness of sorig set. For example, in the Kechris-Solecki-Totevic
dichotomy, theX! set is the complement of the union of thg sets discrete with respect to thg
graph considered. We prove a strengthening of Theorem 1.10 in which sti¢tset appears. We
will state the first part of it, informally. Before that, we need the following notation.

Notation. Let X be a recursively presented Polish space. The topology generated byl}(X) is
denoted byA x. This topology is Polish (see (iii- (i) in the proof of Theorem 3.4 in [Lo3]). The
topologyr; on V¢ is the product topology\4;.

Theorem 1.11 Let T, be a tree withA? suitable levelsI" be a non self-dual Wadge class of Borel
sets having aAl code, andAy, A; be disjointY} subsets ofV'?. Assume thas € T'([Ty]) is not
separable fron{7;;]\ S by a potT') set. Then there is & subsetR of A such that the following
are equivalent:

(a) The set4, is not separable fromd; by a potT’) set.

(b) The set4, is not separable from; by a A} N pot(T") set.

(c) The setA is not separable fromi; by al'(r;) set.

(d) R#0.

(e) The inequality((d“)ieq, S, [Ta]\S) < ((N)ica, Ao, A1) holds.

This X! setR is built with topologies based on. This use of thesel}' sets is the new approach
for studying the Wadge classes.

We first prove Theorems 1.9 and 1.10 for the Borel classes, self-dual or not. Next, we consider
the case of Wadge classes. In Section 2, we start to prove Theorem 1.9. We construct a concrete tree
with suitable levels, and give a general condition ensuring the existence of complicated subsets of its
body (see the statement of Theorem 1.9). We actually reduce the problem to a problem concerning
the one-dimensional spaces. In Section 3, we prove Theorem 1.9 for the Borel classes. In Section
4, we prove Theorem 1.10 for the Borel classes, using some tools of effective descriptive set theory
and the representation theorem for Borel sets proved in [D-SR]. In Section 5, we prove Theorem 1.9,
using the description of the Wadge classes in [Lo-SR2]. In Section 6, we prove Theorems 1.3, 1.5,
1.10 and 1.11. Finally, in Section 7, we give some details about the injectivity.

2 A general condition ensuring the existence of complicated sets

We now build a tree with suitable levels. This tree has to be small enough since we cannot have a
reduction on the whole product. But as the same time it has to be big enough to ensure the existence
of complicated sets, as in Theorem 1.9.



Notation. Fix some standard bijection ., . >:w? —w, for example

n+p)(n+p+1
(n,p)< m,p i p)(2 2+ ip,

Letb:w—w? be its inversel(associate$(!)o, ()1 ) with 1).

In the introduction, we mentionned the idenfication betwg#jf’ and(d?)!. More precisely, the

bijection we use associatféiai(j)) ) l with @ € (d').

ied je

Definition 2.1 We say thate C | J,., (d')¢=(d?)<“ is anef fective frame if
(@) View3ls € En(d).
(b)Vp, ¢, rewVted<* IN ew (sfit0N)ica € E, (|s§0t0™ |[—1)o=p and ((|s§0t0™ | —1)1) , =7
(©VI>03g<lFHted<¥Vied st=sit.
(d) The mag+— ? can be coded by a recursive map franinto w?.
We will call T thetree on d? associated with an ef fective frame E = {? | lew}:
Ty={5e€(d")~ | (Vied s;=0) Vv BlewIHted~ Vied s;=skit NVn<|so| so(n)<n)}.

The uniqueness condition in (a) and Condition (c) ensurefhas small enough, and also the
almost acyclicity. The definition of}; ensures thal; has finite levels. Note that! =T, N (d%)!
can be coded by & subset of\" whend = w. The existence condition in (a) and Condition (b)
ensure thafly; is big enough. More precisely, {{X, ) is a Polish space and is a finer Polish
topology onX, then there is a deng&; subset of X, 7) on which7 ando coincide. The first part of
Condition (b) ensures the possibility to get inside the products of dénsets. We use the examples
in the articles [Lo-SR1] and [Lo-SR2] to build the examples in Theorem 1.9. Some conditions on the
vertical sections are involved, and the second part of Condition (b) gives a control on the choice of
the vertical sections. The very last part of Condition (b) is not necessary to get Theorem 1.9 for the
Borel classes, but is useful to get Theorem 1.9 for the Wadge classes of Borel sets. Definition 2.1 is
more restrictive than Definition 3.1 in [L7], with this very last part of Condition (b), with Condition
(d) (ensuring the regularity of the levels of the tree), and also with the last part of the definition of the
tree (ensuring the finiteness of the levels of the tree).

Proposition 2.2 The treeT,; associated with an effective frame is a tree with suitable levels. In
particular, [Ty] is compact.

Proof. Let! €w. Let us prove thaf ! is A} and finite. We argue by induction énThe result is clear
for 1 <1since7®= {0} and7'={(i);eq}. If i>1 and5c (d%)<«, then

FeT! & |so|=1A3Jq<l IHed< Vied s;=skit NVn<l so(n)<n.

But there are only finitely many possibilities fosincesy(n) <n for eachn <[, which implies that
t(m) <q+14+m<Il+1+1if m<[t|. This implies thaZ’ is Al and finite.
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e Let ;T be the tree generated by the effective frame:
JT={5c(d)= | (Vied s;=0) v (AlewIHtecd~ Vied s;=skit)}.

Note that7! C!7 := ;7 n (d?)! for each natural numbeisinceT,; C ;7. So it is enough to prove that
T is one-sided and almost acyclic since these properties are hereditary.

e Let us prove that7 is almost acyclic. We argue by induction énThe result is clear fof < 1.
So fix I > 1. We set, forj € d, C; := {(s%it)jca € 1T | t # 0 A t(]t|—1) = j}. Note that
PT ={(sli)ica} UU;eq Cj» and this union is disjoint.

The restriction ofG'"'7 to eachC); is isomorphic toG'Z. TheG'"'7-edges are between two

elements of the sam@;, or between(sli);c, and an element of one of th&;’s. If a Gl+17-cycle
exists, then we may assume that it involves ofd}i);c, and some elements of a fixed;. But

if 5€Cjis G -related to(sti);cq, then we must haveé.j = s;. This implies the existence of
k <m <n showing that*17 is almost acyclic.

e Now assume thaf # 4 € 7T, i, € d, z; = y; andz; = y;. Then we can writef = (slit);eq and
J= (sf{lit’)ied sincer#7. Asz; =1;, the reverses ! and(¢')~! of t andt’ are compatible. If =¢/,

theng=|s!|=1-1—|t|=1-1—||= |s§'\ =¢' and¥ =, which is absurd. Thus#t', for example
[t'| < |t|, andt='(|¢'|) =4. This proves that=j and'T is one-sided.

e We definer; : 7! — d? by my(5') := (Si(l))ied' As T'*1 is finite, the range; of ; is also finite.
Thus[Ty] is compact sincéT,| C I, ¢. O

We now give a concrete effective frame.

Notation. Let b;:w — d<* be the following bijection.

e If d<w, thenby(0):=0 is the sequence of length b,(1) :=0, ...,bs(d) :=d—1 are the sequences
of length1 in the lexicographical ordering, and so on.

o If d =w, then let(p,),c. be the sequence of prime numbers, &hdw<* — w be defined by

Z(0) :=1, andZ(s) := p8(0)+1...pr8(||i|1_1)+1 if s+ (. Note thatZ is one-to-one, so that there is an

increasing bijection: Seq=Z[w<“] —w. We seth,,:=(10Z) 11w —w<¥,
Note that|b;(n)| <n if n€w. Indeed, this is clear # <w. If d=w, then
Z (b (n)]0) <Z(by(n)[1) <...<Z(bu(n)),
so that(z 0 Z) (b, (n)[0) < (20 ) (by(n)|1) <...< (10 Z)(by(n)) =n. This implies thatb,,(n)| <n.

Lemma 2.3 There is a concrete effective frame.



Proof. The idea is to code the properties that we want, using the bije&tiBix i € d. We sets? =),
andsi =004 b ((((1)1)1)1) 0= (@010~ Note that

7

m(m+1) <)<
2 2

M@OMD+1) _

o+ (D)1=M(l):=max{mew | <l,

SO thatsﬁ is well defined an(ﬂsﬁ\ =1, by induction onl. It remains to check that Condition (b) in the
definition of an effective frame is fullfilled. We set:bgl(t), §:= < r,<q,n >> andl:=<p, s>.
-

It remains to putV :=1—q—|t|: (s7it0);cq=s"t1. O

The previous lemma is essentially identical to Lemma 3.3 in [L7]. Now we come to the lemma
crucial for proving Theorem 1.9. It strengthens Lemma 3.4 in [L7], even if the proof is essentially the
same.

Notation. If s€w<“ andq<|s|, thens—s|q is defined bys = (s|q)(s—s|q). We extend this definition
whense N andg <w. If 0#s€w<¥, then we defing™ :=s]|(|s|—1).

e We now defing:w<“\ {0} —w. The definition ofp(s) is by induction ons|:

s(0) if |s|=1,
p(S):{

<p(s7),s(]s|—1)> otherwise.

Note thatp‘wn :w" —w is a bijection, for each > 1.

e Let! <w be an ordinal. The map : d' x d' — 2 is the symmetric difference: for any €1,
(sAt)(m):=A(s,t)(m)=1 & s(m)#t(m).
e By conventionw—1:=w.

Lemma 2.4 Let T, be the tree associated with an effective frame and, foriany, G; be a dense
G, subset ofl[T,]. Then there areyy € Go and F': C — IIj,4 G, continuous such that, for any
ael,

(@) (a0, F()) € [Ty],

(b) for anysew<¥, and anym e w,

() a(p(sm))=1 = Fkew (wAFy(a))(p(sk)+1)=1,

(i) (a0AFy(a))(p(sm)+1)=1 = Fkew a(p(sk))=1.
Moreover, there is an increasing bijection

By:{mew | a(m)=1}—{kew | (aAFy(a))(k+1)=1}

such that{m)o = (Ba(m)), and ((m)1), = ((Ba(m))l)o if a(m)=1.



Proof. Let (Ofl)qgw be a decreasing sequence of dense open subsE{q®jf| whose intersection is
G;. We construct finite approximations af andF'. The idea is to linearize the binary trg&~. This
is the reason why we will use the bijectibndefined before Lemma 2.3. In order to constri¢ty),
we have to imagine, for each lengttthe different possibilities fot|l. More precisely, we construct

amapl:2<“ —w\{0}. In order to simplify the notation, we set, for atg 2<v, ;t:=s, '® we want
the mapl to satisfy the following conditions:

(1) Vte2<w Vied (i<|t| = 0#N, NI [T;]CO},)
(2) 31)@6d<w Vied Z‘@:i’t)@
() Vte2<¥ Vee2 Ju.ed<¥ Vied ;(te)=(;t)(i-e)vse

(4)Vrew (oba(r))0Coba(r+1) AVEE2SY Yn<i(t) (ot)(n)<n

(5) vte2= (1t)-1),=(Ito A ((U)-1),) = ((th1),

e Assume that this construction is done. #87) & ((07"!) for each natural numbey, we can
defineag:=sup,c,, 0(07). Similarly, as;11alq S iy+1/(g + 1), we can define, for any € C and any
i<d—1, Fj(«a) =SUp,e,, i+1¢|q, andF is continuous.

(a) Fixg €w. We have to see thaty, F(a))|q € T,. Note first that (¢) > |¢| sincel(te) > (t). Note

also thapt C ag sincey (018) C ot Co(0/1F1). Thus(ag, F(a))[l(a|g) =19 € E. This implies that
(o, F())]l(a|q) € Ty since(perlq) (n) <n if n<I(c|q). We are done sincka|q) > g.

Moreover,ag € (e, Nyoe) N15[Ta] CNye Of =Go. Similarly,

qEw

Fl(a) N +1ag N Hz/Jrl Td ﬂ OZ+1 Git1-
qEwW q>i+1

(b).(i) We sett := a|p(sm), so that(;£)1 C 1 (t1) = 1a|(p(sm) + 1) C Fo(e). As (I(t)—1),=p(s)
(or (m)o if s =0), there isk with I(t) = p(sk)+1 (ori(t) = k+1 and(k)g = (m)o if s= @) But
(0t)0 Co(t1) Cag, so thatog (1(t)) # Fo(c) (L(t)).

(i) First notice that the only coordinates whergand Fy(«) can differ ared and thel(«|q)’s. There-
fore there is a natural numbewith p(sm)+1=1(c|q). In particular,(q)o = (I(alq) —1), = p(s)
(or (m)g if s=0). Thus there is with ¢ = p(sk) (or ¢ = k and(k)o = (m)g if s =0). Note that
ao(l(alg)) = (oal(q + 1)) (I(alg)) =0 Fy(a) (I(alg)) = (1al(g + 1)) (I{alg) =alg). Soalg)=1
anda(p(sk))=1.

Now it is clear that the formul®, (m) :=I(a|m)—1 defines the bijection we are looking for.

« So let us prove that the construction is possible. We constftjdby induction orb,* (t).
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As (i0%);eq € [Ty], 0°° € I§[T4] and O is not empty. Thus there ig € <\ {0} such that
0N, NII§[T4] COY. Choosesy € N, N 114 [T,], anda € [T,] such thatyy = 3. Thend||u| € T,
andu(n) < n for eachn < |u|. Note thatu(0) =0 and (u—wu|1)(n) =u(n+1) < 1+n for each
n < |u|—1. We choosel € w with (i (u—wu|1) 0%),_, € E, (|0 (u—ul1) 0*]=1)g = (0)o and
((10 (u—wu|1) 0%[=1)1),=((0)1),. We putvy:=(u—ul1) 0 andi(D) :=1+|vy.

As (ivg0>)iea € [Tal, Nowyo NI [T,] is @ nonempty open subset Of [T;]. Thus there is
ug € d=<* such thatd # Noy,0u, N I§[Ty] € OY. As before we see thaty(n) < 1+ |vg|+1+n
for eachn < |ug|. This implies that(ivy0ug0>);eq € [T4]. ThUSN1yy0u, N I} [Ty] is a nonempty
open subset ofl{[T,]. So there isu; € d<“ such that) # Niy,oupu, N II{[T4] C O7. Choose
B1 € Nivyougu; NI [Ty], andy € [Ty] such thaty; = 1. Then¥||1vy0ugu, | € Ty andyy(n) <n for
eachn < |1vgOuguq|. This implies thaty(|1vg0ug|+n) < |1vgOug|+n for eachn < |u1|. Butwu;(n)
is eitherl, or yo(|lvgOup|+mn). Thusu;(n) <|lvgOug|+n if n <|u1|. We chooseVl € w such that
((z(b) Ououq OM)iedeE’ (Z(Q))—I—]uoul]—i—M)O:(l)o and((l(®)+]u0u1]+M)1)0: ((1)1)0. We put
vo:=upuy 0 andl(0):=1(0) 41+ |vg|.

Assume tha(l(t))bfl(t)q satisfying (1)-(5) have been constructed, which is the caseor.
2 >

Fix t €2<¥ ande € 2 such thab, (r+1) =te, with r > 1. Note thatb, ' (t) <r, so thatl(t) <1(ba(r)),
by induction assumption.

AS Ny, ) NG [Ty] is nonemptyN s, ry)0 N 115 [T;] is nonempty too. Thus thereis in d<+

such thaf) # N s, (r))0w, N g [Ta] € OI[;\H' As before we see thaty(n) <i(b2(r))+1+n for each

n < |wg|. Arguing as in the case= 1, we prove, for each <i <|¢|+1, the existence ofy; € d<“
such thal 7 N,1)(i-¢) (b2 (r) —ob2 ()| (1(8) +1))0wp..w; N IT7 [Ta] SO}y @nd
w;(n) §l(b2(r))+1+\w0...wi_1]+n

for eachn < |w;| (w;(n) can bei, in which case we use the fact thiét) > |¢|). We chooséV € w such
that((zt) (28) (Obg(’r’)—obg(?”)|(l(t)+1)) 0 wo...w|t‘+1 ON)iEdEE’

(L(b2(r)) + lwo-.wpy 1| +N) o = ([t]+1)o

and ((l(bz(?")) +\w0...w‘t|+1|+N)1)0 = ((Jt|+1)1),- We puti(te) := I(t) + 1+ |ve|, where by
definitionvte = (0b2(T)—0b2(T)|(l(t>+1)) 0 wo- - W|¢|41 ON. O

Now we come to the condition ensuring the existence of complicated sets announced in the intro-
duction.

Notation. The mapS:C —C is the shift mapS(«)(m):=a(m+1).
Definition 2.5 We say thaC CC is compatible with comeager sets (or ccs) if
aeC & S(awAFy(a))eC,

for eachag € d and F':C — (d*)?~! satisfying the conclusion of Lemma 2.4.(b).

11



Notation. Let T, be the tree associated with an effective frame, @idC. We put
Sc:={ae[Ty] | S(apAcy)€C}.

Lemma 2.6 Let T, be the tree associated with an effective frame, Brite a non self-dual Wadge
class of Borel sets.

(1) Assume thaC is aT'-complete ccs set. Theft € T'([T}]) is a Borel subset ofd~)?, and is not
separable fron{T,]\ Sc by a potT’) set.

(2) Assume thay, C; €T are disjoint, ccs, and not separable byTI") set. TherS¢,, Sc, arein
I'([T,]), disjoint Borel subsets df')¢, and not separable by a p\(T')) set.

Proof. (1) It is clear thatSc € T'([Ty]) sinceS and A are continuous. SO is a Borel subset of
(dv)? since[Ty] is a closed subset ¢f“). Indeed,[T,,] is closed:

ae[T,] & VYnew\{0} I <n View sliCa; A (asln—sti)=(ag|ln—sh0) A ag(n—1)<n—1.

We argue by contradiction to see th&t is not separable frorfil;]\ Sc by a potT') set: this gives
P € pot(T). For eachi € d there is a densé/s subsetG; of the compact spacH;[7;] such that
PN (jcq Gi) €T (Ilieq Gi), andSc N (Mg Gi) € P N (Tlieq Gi) € (Iieq Gi)\ ([T4]\Sc).

Lemma 2.4 provides € Gy andF':C — Iy<;<q G; continuous. Let
D:={aeC| (a0, F(a)) €PN (Iieq Gy) }-

ThenD cT. Let us prove thaC = D, which will contradict the fact tha ¢ I'. As C is ccs,a € C
is equivalent taS (A Fy()) € C. Thus

a€C = S(apAFy(a)) €C = (ap, F(a)) €Sc N (Wieqg Gi) S PN (ieq G;) = a€D.
Similarly, a¢ C = a¢ D, andC=D.
(2) We argue as in (1). O
This lemma reduces the problem of finding some complicated sets as in the statement of Theorem
1.9 to a problem concerning one-dimensional spaces.
3 The proof of Theorem 1.9 for the Borel classes
The full version of Theorem 1.9 for the Borel classes is as follows:

Theorem 3.1 There are a concrete treB; with A% suitable levels, and, for any<¢ <wy,
(1) asetSe ZY([T,]) not separable fromiT;;]\S by a pofIT?) set,
(2) disjoint sets5, S; € 22( [Ty]) not separable by a pmg) set.
This is an application of Lemma 2.6. We now introduce the objects that will be used to define the

C’s in this lemma. These objects will also be useful in the general case. The following definition can
be found in [Lo-SR2] (see Definition 2.2).
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Definition 3.2 A setH is I'-strategically complete if

(@ HeI'(C).

(b) If AeT' (), then Player 2 wins the Wadge gai@éA, H) (where Player 1 plays. € NV, Player
2 playsg eC and Player 2 wins ihe A < € H).

The following definition can essentially be found in [Lo-SR1] (see Section 3) and [Lo-SR2] (see
Definition 2.3).

Definition 3.3 Letn <w;. A function{:C — C is anindependent n- function if the following hold.
(a) For some functiomn : w — w, the value( () (m) depends only on the values@bn =1 ({m}).
(b) We set, for any natural numbet, Z,,,:={a€C | ((a)(m)=1}.
(1) If n=0, thenZ,, is AY-complete for anyn.
(2) If n=0+1is a successor ordinal, thes,, is H‘1)+9-strategically complete for anw.
(3) If nis a limit ordinal, then there is a sequen@,,) <., such that

(i) Om <n,

(i) sup, >4 0, =mn, for any one-to-one sequenge,,),>1 of natural numbers,

(iii) the setZ,, is 1‘[(1’ 1o, -Strategically complete for any..

Note that we added a condition when=0. Moreover, we do not ask the sequenég, )., to
be increasing, unlike in [Lo-SR2], Definition 2.3. Note also that an indepengantction has to be
2?+n-measurable. Moreover, {fis an independent-function, thenr has to be onto.

Examples.In [Lo-SR1], Lemma 3.3, the map: C — C defined as follows is introduced (it is in fact
calledpg in [Lo-SR1]):

1if a(<m,n>)=0foranynecw,
pla)(m) =

0 otherwise.

Note thatp is an independent-function, with7 (k) = (k)o. In this paperp” : C — C is also defined
for n<w; as follows, by induction om (see the proof of Theorem 3.2). We put

- p0:=1de.

-9 =po P,

- If n>0is a limit ordinal, then we fix a sequen¢®,,)..c., C 7 of successor ordinals satisfying the
equalityX, e, 0 =n. We definep(™m+1).C —C by

a(i) if i<m,

P70 () ) {
p'm (8™ () (i—m) if i>m.

We setp(0m+1) .= p(mm+1) o pm=1m) o - o p01) andp”(a)(m) := p(®™+ D (a)(m). The authors
prove thatp” is an independeng-function (see the proof of Theorem 3.2). In this paper, the set
Hi ., := (p")~'({0°°}) is also introduced, and the authors prove #Hat,, is I1{ ,, -complete (see
Theorem 3.2).
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Notation. Let 1 <¢:=1+n<w;. We setC, :=—-Hyg. If moreovere € 2, then we set
Ce:= {aeC|3Imew p"(a)(m)=1AVi<m p"(a)(l)=0A (m)o=¢ (mod2)}.
Then we seb:=Sc, andS, ::ch.
Theorem 3.1 is a corollary of Proposition 2.2, Lemmas 2.3 and 2.6, and the following lemma.

Lemma 3.4 Letl1<&<wy.
(1) The seC¢ is azg—complete ccs set.

(2) The set€C?, C{ e =, are disjoint, ccs, and not separable by set.
Proof. (1) C¢ is X¢-complete sincé, is ITY-complete.
e Assume thaty, F’ satisfy the conclusion of Lemma 2.4.(b). Let us prove that
p"(a)=p" (S(OéoAFo(Oé))> :
for eachl <n<w; anda €C. Forn=1 we apply the conclusion of Lemma 2.4.(b)taw. Then note

that p?*1(a) = p(p?(a)) = p <p9 (S(aoAFo(a))>> — 01 (S(aoAFo(a))>, by induction. From

this we deduce that® (a) = p (a) = p% (S(aOAFO(a))> = p(0.) (S(aoAFg(a))) if A\>0isa
limit ordinal, by induction again. Thug®"*1 (o) = p(0:m+1) (S(aOAFO(a))), and

o (@) (m) =D () (m) = p O (8 (a0 AFy (@) ) (m) = p* (S (A Fo(@) ) (m).
o If we apply the previous point, or the conclusion of Lemma 2.4.(b):te(), then we get
a€C; & Imew p'(a)(m)=1 Ikew oI <S(a0AF0(a))> (k)=1 < S(apAFy(a)) €Ce.
ThusCg is ccs.

(2) Note first thalcg, C% € 22 sincep' is E‘f+n-measurable, are clearly disjoint, and are ccs asin (1)
since(m)o = (Ba(m)), in Lemma 2.4.(b).

o We set, fore€2, Vo:={aeC | Imew p’(a)(m)=1A (m)o=e (mod2)}. ThenV., is aXx? set
sincep” is E?M-measurable. Let us prove tht is Eg-complete.

- If n=0, then0>® € V_\ V, so thatV_ is X!-complete.

- If n = 041, thenp” is an independeng-function. Let(A,,)me, be a sequence (31’.[‘1)+9(C)
sets. Choose a continuous m#ap : C — C such thatA,, = f,.}(Z,,). We definef : C — C by
f(a)(k) = fm(a)(k) if m,(k)=m, andf is continuous. Moreover,

a€Ay < fm(a)€Zy < fla)€Zy,,

so that J (mod2) Ay =f"YV.). ThusV.is 22-complete.

mewa(m)OEE

- If n is the limit of thef,,,’s, thenp” is an independent-function. We argue as in the successor case
to see thaW . is 322-complete.
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e We argue by contradiction, which givésc Ag separatingjg from 051. Letwg, v be disjointilg
subsets of. Then we can find a continuous mgp: C — C such that. = f-1(VZ). As p{ is an
independent)-function, we getr, : w — w. We define a may : C — C by f(a)(k) := fo(a)(k) if
(my(k)), =€ (mod2), and f is continuous. Note that € v. < f.(a) € V. & f(a) € Vz, so that
Ve = f—?(Vg). Thusacvg & fla)eVy < fla)eVp\Vi C Cg C D sincevy is disjoint fromuw;.
Similarly, a € vy < f(a)€Vi\Wo CC{ C=D. Thusf~!(D) separates, fromv;. As f~1(D) € A2,
this implies thafzg has the separation property, which contradicts 22.C in [K]. O

4 The proof of Theorem 1.10 for the Borel classes

The full versions of Theorems 1.10 and 1.3 for the Borel classes are as follows:
Theorem 4.1 Let T,; be a tree with suitable leveld, < £ < w1, (X;);eq be a sequence of Polish
spaces, andly, A, be disjoint analytic subsets of;c; X;.
(1) LetS e 22([Td1). Then one of the following holds:
(a) The setd; is separable from; by a po(l‘[?) set.
(b) The inequality((d“);ca, S, [T4]1\S) < ((Xi)icd, Ao, A1) holds.

If moreoversS is not separable froniZ,]\.S by a po(l‘[?) set, then this is a dichotomy.
(2) LetSy, S1 € E?([le) be disjoint. Then one of the following holds:
(a) The setd; is separable fromd; by a po(Ag) set.
(b) The inequality((d“’)ied, S(), Sl) < ((Xi)ieda Ao, Al) holds.

If moreoversS) is not separable fron$; by a po(Ag) set, then this is a dichotomy.

Corollary 4.2 LetT be Borel class. Then there are Borel subs&isS; of (d*)? such that for any

sequence of Polish spaceX););c4, and for any disjoint analytic subsets), A; of I;c4 X;, exactly
one of the following holds:

(a) The setd is separable fromd; by a po{T") set.
(b) The inequality((d‘“)ied, S(), Sl) < ((Xi)i€d7 Ao, Al) holds.

4.1 Acyclicity
In this subsection we give a result that will be used later to prove Theorem 4.1. This is the place
where the essence of the notion of a finite one-sided almost acyclic set is really used.
Lemma 4.1.1 Assume tha#” C X¢ is finite. Then the following are equivalent:
(a) The sefl is one-sided and almost acyclic.
(b) For eacht € 7, there is a natural numbe¥ < [ < d+2 and a partition(S;),¢; of 7\ {f } with
(1) Vied Vj#kel IL;[S;] N IL;[Sk] =0.
(2)Vied Vjel VZeS; xzj=t; = i=j.
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Proof. (a) = (b) If §+ 7€ T and @)N is awalk inGT with 40 = 7 and ! = 7, then we choose
such a walk of minimal length, and we calkif; . We will define a partition of/ . We put, forj € d,
N :={ZeT | ##t A wgpdoes not exis},
Ry = {ZeT |T#TA (wzp (Jwzp|—-2));=1; }.

So we defined a partitio\V, (R;)jcq) of T\{t'} sinceT is one-sided. A is finite, there igjp € d
minimal such tha®?; =0 if j > jo. We setS;:=R; if j <jo, Sjo+1:=N andl:=jo+2.

(1) Let us prove thatl;[R;] N IL;[N] = 0, for eachi, j € d. We argue by contradiction. This gives
z; € IL[R;] N IL;[N], # € Rj, and alsoy € N such thatr; = y;. AsZ,y€ T andR; N N = (),
Z#y andz, 7 areG7 -related. Note thaﬁ)gf does not exist, and thalff exists. Now the sequence
(,Z, ...t ) shows the existence of 7, which is absurd.

It remains to see thdl;[R;] N II;[Ry] = 0, for eachi, j, k € d with j # k. We argue by contra-
diction. This givesr; € II;[R;] N II;[R], £ € R;, and alsaj € Ry, such thatr; =y;. AsZ, €7 and

— —
| £k, £+ 7 andZ, 7 areGT -related. We set-, » := ( ") andw. » = < ") . Note
J#k Ay Ty Tt “ n<I+1 Wit Y n<J+1

- — — —
thatz" #y” sincez] =t; andy/ #t;, since otherwisg’, t € T, y/ #t andy;/ =t;, y;| = t, which
contradicts the fact thaf is one-sided.

—I>—> — = —

N . —
We denote byl := (w") . the following G7 -walk: (z L2 20 90yt ...,yJ>. If there
n=

— N
n

.
arek < n < K with w* = w", then we putiV’ := (wo, e

&l

—
,wn L ...,wK>. If we iterate this
—

—_
construction, then we get@? -walk without repetitionl/ := (v”) from w® to w’.

n<L

— - —
0 k ,n L
YA L § LY )
— —
0

from w

If there arei € d andk+1 < n < L with v¥ =v7, then we put/’:=

/N

iterate this construction, then we geG4 -walk without repetitionl := (u ) u
nx

for which it is not possible to finde d andk+1 < n < M with uf =u?.
N ¢ — o ) . ..
Now ¢, ', ...,uM ¢ is aG” -cycle contradicting the almost acyclicity @f.
(2) If e N, thenw_ » does not exist. This implies that #¢; for eachi € d, since otherwise’ andt’
would beG7 -related, which contradicts the non-existencevgf:.

If #< R;, theni is the only coordinate for which the equality =¢; holds sinceT is one-sided.
Note thatw, ; = (7,1'). AsZ€ R;, we get(w; ; (lwz ;| —2)); =t;. Butwg ; (jwyy|—2)=7. Thus
rj=t; andi=j.

(b) = (a) Lett#£Z €T, i,j €d such that; = x; andt; = z;, andk € [ such that? € S;,. By (2) we
geti=k=j and7 is one-sided. Now consider@’ -cycle (:c_)”)ngL. By (1) there isj €l such that
L—1

2 e S; for each0 <n < L. Then by (2) we get; :le. =z~ and7 is almost acyclic. O

Definition 4.1.2 and Lemma 4.1.3 below are essentially due to G. Debs (see Subsection 2.1 in
[L7]).
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Definition 4.1.2 (Debs) Let® : x4 — 2V T C x4, We say that the map=I;cq 0; € (N¥)? is a
m-selector on T for O if

(@) 0(2) = (i(x:)),, for eachi’e X7,

(b) (%) € ©(Z) for eachz e 7.

Lemma 4.1.3 (Debs) Letl be a natural numberYt := d*t T C x4 be A%, finite, one-sided, and

almost acyclic® : X% — X (N9), and© : ¢ — I (V) be defined by () := ©(Z) . Then®
admits ar-selector o7 if © does.
Proof. (a) Lett € 7, and¥ : x¢ — Y(N?). We assume tha¥ (i) = O(F) if £ # ¢, and that
v (t)co(t) " We first prove tha® admits ar-selector or” if ¥ does.
e Lemma 4.1.1 gives a finite partitioff;);c; of 7\ {# }. Fix ar-selectory) on 7 for ¥, and let
M :=max(dN1). We defineX} setsU;, fori < M, by

U, .= {OZGN ’ HwE(./\/’X)d OéZT,Z)Z'(ti) ANYZeT @ZJ(f) E\If(f)}
As 7,; (F) = (&i(ti))iede\ll ({) N ((Hng Ul) XNdiM*l) we get

T1

E (f) N ((HigM U;) x/\[dfol) co ({’) N ((HigM U;) X'N’df]\/ffl).

By the separation theorem this implies t&aft’) N ((IL;<as U;) x4~ ~1) is not empty and contains
some poin®@. Fix i < M. As o; € U; there isy® € (V)4 such thaty; = ¢! (t;) andyi(F) € () if
reT.

e Now we can defind, : X — N/, for eachi € d. We put

(67 if ﬂ’ji:ti,

0;(x;) == Q ) () if 2 €TL[S;]\{t:} A <M,

Y9 (x;) otherwise.
Then we seb(Z)(i):=0;(x;) if ied.
e It remains to see tha&k(%) € ©(Z) for eachz €T .

Note thaty (£ ) =a€© (¢). So we may assume thattt . So letj €l with € S;.
- If 2; #t; for eachi € d andj < M, thend(Z) = (0i(z:)) ., =¥ (F) € U(Z) = O(Z).
- Similarly, if z; #t; for eachi € d andj > M, thend(Z) = (i (z:)),, =" (%) € ¥(Z) =O().
- If 2;=t; for somei € d, theni=j <M. This implies thaf)j(xj):aj:wg(tj):wjf(xj) and
0(7)= (0i(:)) ;0= (B) €V (T) = O(D).
— _

(b) Write 7 := {xl, . ,?‘)}, and setV := 0. We define¥,,;: X% — 31 (N9) as follows. We put

U1 (2) :=0,(7) if #27T, and ¥4, (mJ“) =0 (:cJ“), for j <n. The result now follows
from an iterative application of (a). O
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4.2 The topologies

In this subsection we give two other results that will be used to prove Theorem 4.1. We use some
tools of effective descriptive set theory (the reader should see [M] for the basic notions). We first
recall a classical result in the spirit of Theorem 3.3.1 in [H-K-Lo].

Notation. Let X be a recursively presented Polish space. Using the bijection betweeral .
defined before Definition 2.1, we can build a bijectiof ) — < z,, > between X“)“ andX“ by the
formula< z,, > (I):=z(), ((1)1). The inverse map— ((z),) is given by(z),,(p) :=z(< n,p >).
These bijections are recursive.

Lemma 4.2.1Let X be a recursively presented Polish space. Then therelBresetsiW* C N,
CX CNx X with {(a,7) eEN'xX | ae WX andz ¢ CX} e IT}, AN (X)={CX | ac Al N WX},
and A} (X)={CX | ac WX},

Proof. By 3E.2, 3F.6 and 3H.1 in [M], there igX € T} (N x X) which is universal folI}(X) and
satisfies the two following properties.

- A subsetP of X is I1}! if and only if there iso € A recursive withP =£X.

- There isS: N x N — N recursive such thaty, 8, z) eUN*X < (S(a, B),z) eUX.

We set, forz €2, Uz :={(a,2) eN' x X | (()c, z) eUX}. ThenU; € I1!. By 4B.10 in [M], II}
has the reduction property, which giveig V; € IT}! disjoint with V. CU. andVy U V; =Uy U U;. We
setWX:={aeN | (Vp)a U (V1)a=X}andCX :=Vj, which definedI} sets. Moreover,

aeWX AnedCX o acWX A(a,z)eN;

is IT! in (o, z). Assume thatd € A{(X), which givesag, oy € N recursive withA = U2 (resp.,
—A=UZ). We definen € N by (). :=a, so thato is recursive. We get

r1€A S (ag,2) €U & (a,7) €Uy & (o, 2) €U\U; & (a, 1) €V,
r¢As (a1,2)eUX & (a,2) Uy & (a,2) €U \Uy & (o, 1) €V,

so thato € WX andC = A. This also proves thaA}(X) C{CX | ac WX},

Conversely, letv € Al N WX, ThenCX € II}, andz ¢ CX & ac WX Ax ¢ CX, so that
-CX e IT} andCX € Al. Note that this also proves that} (X) D {CX | ac WX}, O

We now give some notation in order to state an effective version of Theorem 4.1.
Notation. Let X be a recursively presented Polish space.

e We will use the Gandy-Harrington topologyy on X generated by} (X). Recall that the set
Qx:={reX |w] :w?K} is Borel andX}, that(Q2x, X'x) is a zero-dimensional Polish space (the
intersection of)x with any nonemptyZ’! set is a nonempty clopen subset 0fy, X'x)) (see [L8]).

e Recall the topology; defined before Theorem 1.11. We will also consider some topologies between
7 and Xyq. Let2 <& < wFK. The topologyr is generated byl (AV4) N H‘ig(ﬁ). We have
X0 (7e) C32(m1), so thatll}(r¢) CTIY(71). These topologies are similar to the ones considered in

[Lo2] (see Definition 1.5). IfA CN? and1 §§<w1CK, then we will write A° instead ofA ™.
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e We set pofll)) := {Il;cq4 A; | A; € A}(N), andA; = N for almost every € d}. We also set
W:=WN" andC:=CN" (see Lemma 4.2.1). We will define precisely, for w,

{(B,7)eN xW | 3 codes a pcﬂﬂg) set and”,, is the set coded by }.

The way we will do it is not the simplest possible (we can in fact forgeand work withy € w
instead ofy e V, see [L7]). We do it this way to start to give the flavor of what is going on with the
Wadge classes.

e In order to do this, we set

Vb::{ (mB,7) EN W |Vi<m (B);e WN Aye Al(mB)A
m=d A Cy=Iicyy Cj if d<w }
_ . N (BIT I ‘
C _(HKm C’(ﬁ)i)x/\/’ if d=w
We define an inductive operatgrover A/ x A/ (see [C]) as follows:

F(A)=AUVp U{(B,7) N xW | yeA}(B)A
36 AL(B) Vnew ((B)n, (6)n) €EAN-Cy=U,ey C((;)n}.

Theng is clearly alI;! monotone inductive operator. We set, for any ordifial; := §¢ (which is
coherent with the definition ofp). We also seV¢:=J, . V;. The effective version of Theorem
4.1, which is the precise version of Theorem 1.11 for the Borel classes, is as follows:

Theorem 4.2.2 Let T, be a tree withAl suitable levels] < ¢ < wPK, and Ay, A; be disjoint X}
subsets afV?.

(1) Assume tha$ € 22([le) is not separable fromi7;]\S by a po(l'Ig) set. Then the following
are equivalent:

(a) The set4 is not separable fromi; by a po(l'Ig) set.

(b) The setd, is not separable froml; by aAj N pof(I1Y) set.

(C) —|(EI(5, "y) € (A% X A%) N V% AgC C,y §—|A1).

(d) The set4 is not separable froml; by al‘Ig(ﬁ) set.

(&) Ao" N Ay #0.

(f) The inequality((d“);ca, S, [T4]1\S) < ((N)icd, Ao, A1) holds.

(2) The setd/; and V¢ are I},
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(3) Assume that, S; € 22( [Ty]) are disjoint and not separable by a pézttg) set. Then the follow-
ing are equivalent:

(a) The setd is not separable froml; by a po(Ag) set.

(b) The setd, is not separable froml; by aAj N pot(AP) set.

© =3B, 7). (B.7)e(AlxA) NVe Cpy==C, and AgCC,C—A4).
(d) The setd; is not separable froml; by aAg(n) set.

(€) Ag® N A" A0

(f) The inequality((d“);ca, So, S1) < ((N)ica, Ao, A1) holds.

The proofs of Theorems 4.1 and 4.2.2 will be by inductiorfoithis appears in the statement of
the following lemma.

Lemma 4.2.3 (1) The sel is 1.

(2) Let1 §§<w1CK. We assume that Theorem 4.2.2 is provedjfare.

(@) The selV¢ is I1}.

(b) Fix A€ X} (N?). ThenA® € X} (N9).

(c)Letn>1,1<& <& <...<E, <& andSy, ..., S, be X} sets. Assume that CS
1<i<n.ThenS, NNi<icp ?fi is 7, -dense inS; .

1
for

Proof. (1) The setl is clearly I}

(2).(a) The proof is contained in the proof of Theorem 4.1 in [L7]. It is a consequence of Lemma 4.8
in [C].

(b) The proof is essentially the proof of Lemma 2.2.2.(a) in [L7].
(c) The proof is essentially the proof of Lemma 2.2.2.(b) in [L7]. O

Lemma4.2.4Let S, T € X} (N9 be such thatS is 7;-dense inT, (X;);cq be a sequence of}
subsets o\ such thatX; =N if i >ig. ThenS N (I;cq X;) is i-dense ifl’ N (I;eq X5).

Proof. Let (A;);cq be a sequence ol subsets of\" such thatA; = N if i > jo > i, and also
T N (eq I;) # 0, wherel; := X; N A;. We have to see thai N (I;c, I;) # 0. We argue by
contradiction. This gives a sequen@®;);cq of Al subsets of\ such thatl; C D; if i € d, and
SN (IL;eq D;) =0, by jo applications of the separation theorem. But (11,4 D;) #0, andD; =N
if i >jo. S0S N (I;eq D;) #0, by m1-density ofS in T', which is absurd. O

4.3 Representation of Borel sets

Now we come to the representation theorem for Borel sets obtained by G. Debs and J. Saint
Raymond (see [D-SR]). It is a refinement of the classical Lusin theorem asserting that any Borel set
in a Polish space is the bijective continuous image of a closed subset of the Baire space. The material
in this subsection can be found in Subsection 2.3 of [L7], but we recall most of it since it will be used
iteratively in the case of the Wadge classes. The following definition can be found in [D-SR].
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Definition 4.3.1 (Debs-Saint Raymond) Letbe a countable set. A partial order relatid® on ¢<“
is atree relation if, for anyt € c<v,

@0 Rt,
(b) the setPr(t):={s€c<* | s R t} is finite and linearly ordered byR.
For instance, the non strict extension relatians a tree relation.

e Let R be a tree relation. AR-branch is a C-maximal subset of<“ linearly ordered byR. We
denote by R] the set of all infiniteR-branches.

We equip(c=“)“ with the product of the discrete topology of. If R is a tree relation, then the
space[R] C (¢<*)“ is equipped with the topology induced by tha{of*)~. The maph: ¢ — [C]
defined by () :=(7]j) jew is @ homeomorphism.

e Let R, S be tree relations witlR C S. Thecanonical map I1:[R] — [S] is defined by

I1(B) :=the uniqueS-branch containing3.
e Let S be atree relation. We say th& C S is distinguished in S if

sStSu

Vs, t,u€c v
B sRu

}:>th.

For example, let be a closed subset of, and define
sRt & sCtANysNC#(.

ThenR is distinguished inc.

e Letn <w;. Afamily(R”),<, of tree relations is a-esolution family if
(a) R+ is a distinguished subtree &, for all p <.

(b) R*=(,., R, forall limit \<7.

We will use the following extension of the property of distinction:

Lemma 4.3.2 Letn <wi, (R’),<, be a resolution family, and < n. Assume that R° ¢t R u and
s RP*1 y. Thens R ¢,

Notation. Let n < w1, (R”),<, be a resolution family such th& is a subrelation of:, p<nand
vEcA[D}. We set” :=v | max{r <|v| | v|r R” v}. We enumeratév” | p<n} by {v% | 1<i<n},
wherel <n cw and{; <... <& =n. We can writev®r Cvén-1 G .. C o2 C b1 Cv. By Lemma
4.3.2 we haveti+! RS+ & for anyl <i<n.

Lemma 4.3.3 Letn <wy, (R”),<, be a resolution family such that® is a subrelation ofZ, v be in
c<\{0}and1<i<n.

(@) We sety; :={p<n | v5 Cv”}. Then;, is a successor ordinal.

(b) We may assume that ! C v%.

The following result is a part of Theorem 1-6.6 in [D-SR].
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Theorem 4.3.4 (Debs-Saint Raymond) Let< w1, R be a tree relation, andI,,),c., be a sequence
of Hgﬂ subsets ofR]. Then there is a resolution famifyz”) ,<,, with

(@ R =R,
(b) the canonical mapl: [R"] — [R] is a continuous bijection,
(c) the sefll~1(1,,) is a closed subset ¢f2"] for each natural numben.

Now we come to the actual proof of Theorem 4.1.

4.4 Proof of Theorem 4.1

The next result is essentially Theorem 2.4.1 in [L7]. But we give its proof since it is the basis for
further generalizations.

Theorem 4.4.1 LetT; be a tree withA{ suitable levels¢ < w1CK be a successor ordinalf be in
Eg([le), and Ay, A; be disjoints] subsets ofV"?. We assume that Theorem 4.2.2 is proved for
n<&. Then one of the following holds:

(@) Ay* N Ay =0.
(b) The inequality( (I1/ [T4])ica, S, [T4]\S) < ((N)ied, Ao, A1) holds.

Proof. Fix n< w1CK with £ =n+1.

e Recall the finite sets; defined at the end of the proof of Proposition 2.2 (we only used the fact
that T; has finite levels to see that they are finite). Using the notation of Definition 4.3.1, we put
¢:=Uje, @, SO thateis countable. The sdt:=h[[T;]\S] is all;, , subset ofC|. Theorem 4.3.4

provides a resolution family. We pii2:= {5€ T} | §=0v3aIBel-1(I) 5e B}.

e Assume thatéTo)E N A is not empty. Recall thgt2x, X'x ) is a Polish space (see the notation at the
beginning of Section 4.2). We fix a complete mettig on (Qx, Xx).

e We construct

- (aé)ied,seH;’Td CN,

- (0%)i<)s) ied.serrr, © XN,
- (Us)ser, € ZHND).
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We want these objects to satisfy the following conditions.
(1) aL e OLC QN A (,)ied € Us S Qpra
(2) 04, CO;
(3) diamy,, (O}) <27 A diamy, , (U5) <271
(4) Us CAg° N A, if §€D
(5) Uz CAyif §¢ D
(6) (1<p<nAFRT) = Uy CUS

(7) ((5,te DV §,t¢D)ANSR"t) = Ur CUs

e Let us prove that this construction is sufficient to get the theorem.

- Fix § € [T;]. Then we can definéji)rew = (i} kew bY T ((815)jcw) = (k) rew, With the
inequalitiesj;, < ji+1. In particular,5|ji R" 8|jx+1. Note that

3¢S < hB)=Flj)jencl & (Blin)rewe€l (1) & Vk>ko:=0 FljreD

sincgl‘[—l(l) is a closed subset ¢R"]. Similarly, 5 € S is equivalent to the existence kf € w such
thatg|jx ¢ D for any k > k.

This implies that(UEUk)kaO is a decreasing sequence of nonempty clopen subsets of the space

(Qpra, Ypra) \ivhosede—diametgrs tend to zero, and we can defid&/3)} :=(;~,, Uz, € e
Note thatF'(j) is the limit of (o} . )ica) e,

- Now let~ e IT/ [Ty ], andf € [T,] such that3; = . We setf;(7) := F;(§). This defines a map
fi :Hg/ [Td—‘ —>N

Note thatf;(v) is the limit of (a! ;) ;e.. Indeed,f;(v) is the limit of (a’iﬂjk)kewl If j >4, then
oe%. € OE'W, and the sequenc(e?fy‘j)jzi is decreasing. Fix >0, k> i such tha =" < <. Then we

get, if j >k, dv (fi(v), O‘ilj) < diaij(OQU) <277 <27% <. In particular,f;() does not depend
on the choice off. This also proves that; is continuous onll! [Ty].

-,

- Note thatF; (/) is the limit of some subsequence ((Diimj)jew, by continuity of the projections.

ThusF;(8) = fi(3;), andF(3) = (I;eq f;)(3). This implies that the inclusion$C (IT;cq fi) 1 (Ao)
and (Td-| \S - (Hied fi)_l(Al) hold.

e So let us prove that the construction is possible.
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- Let (af)ica e A NA; N e, Which is nonempty sincdy" NA; £0 s YL, by Lemma4.2.3.(2).(b).
Then we choose Ell subseU@ of N'?, with dra-diameter at most, such that

(a%)iedGU@QTOE N A N Q.

We choose & subse)] of NV, with dxr-diameter at most, with o) € Oj €, which is possible
sinceQya € Q4. Assume thafal ) s <, (0%)5<; and (Us) 51« satisfying conditions (1)-(7) have
been constructed, which is the caselfe:.

-Letv:=tmeTyN (d+1)4. Note thatv” € D if v" € D is not equivalent ta € D (see the notation
before Lemma 4.3.3).

- The conclusions in the assertions (a) and (b) of the following claim do not really depend on their
respective assumptions, but we will use these assertions later in this form. Welsfefiﬁeogi if
1<l,andN if i >1.

Claim. Assume that) > 0.
(a) The setdo N ;< <, Upe” N (jeq X;) is my-dense in,: ' N (ieq X;) if v7€ D andv¢ D.

(b) The seUyn NN« <y Upr” NIy X;) is 7-dense i, N (Iieq X;) if v, ve D orv, v D.

Indeed, let us forgell;c, X; for the moment. We may assume thét+! ; V& if 1 <i<n, by
Lemma 4.3.3. We sef;:=U,, whenl <& <n. Asvéi+t R&TL 4% we can writeS; C Si+1§i+1, for
1<¢; <n, by induction assumption. if’ € D andv ¢ D, thenS,, g%”“. ThusAomﬂlg&Sn U e Si

v5e

andUyn N (Ny<¢, o,y U, <5 arer-dense i,: |, by Lemma 4.2.3.(2).(c).

v

But if 1 <p<n, then there ig <i<n with v* =v%. And p<¢; sincev® ™ Cobi if 1<i<n. We
are done sincg), -, Uor” =Ni<g,<y Uper” @NdU1 NNz pey U’ =Uun 0Ny, Uyer -

VS8

The claim now comes from Lemma 4.2.4. o
-Let X:=d't!'. The map9: x? — ¥} (N?) is defined ori7 ! by
Ao N Ni<pey Uor” N (ica Xi) N Qpa if 07€D Av gD,

O(v):=
Um N ﬂ1§p<n U,»" N (TLieq X;) if 0", veD VU v¢D.

By the claim,O(v) is i-dense if,: N (Iieq X;) if 7>0. Asv! CCv andR! is distinguished in
C we getv! R FandU; gUTll, by induction assumption. Therefore

U7 N (Thieq Xi) U N (e X;) CO(v),

and (o} )ieq € Up N (Iieq X;) € O(v) (even ifn =0). Therefore® admits ar-selector orZ '+,
Indeed, we define, for amye d, 0;: X — N by 0;(t;m;) := o, if t; €11/ T,, 0°° otherwise.
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- As T, is a tree withA{ suitable levels, we can apply Lemma 4.1.3. TRugdmits ar-selectord on
T We set, fors € I1; [T, ol :=0;(s).

- We chooseX} setsU, with d,«-diameter at mo2~!~! such that(v) € U, CO(v) if ve T,
- Finally, we choose the? 's. We first prove thati’, € O} if sq€Il;[T7], icd andi<l.

Let v:=tm € T+ such thatsg=t;m;. Thenal, =0i(sq) =0;(tim;). As0(v) €O(v) andi <1,
agq €0} =0..

Now we can define th@: 's. If sq € II;[ 7], then we choose &7 setO!

sq» With ds-diameter
at most2—'~1, such that

ol if i<,

5= Qu otherwise.

aiq cO! C {
- This finishes the proof sincé R v and ©u#v = # R’ v” R? v, by Lemma 4.3.2. g
Now we come to the ambiguous classes.

Theorem 4.4.2 Let T, be a tree withAl suitable levels¢ < w1CK be a successor ordinaky, S; be
in Eg(mﬂ) disjoint, and Ag, A; be disjoint X} subsets ofV?. We assume that Theorem 4.2.2 is
proved forn < £. Then one of the following holds:

(@) A" N AL =0.
(b) The inequality((II/ [T4] )ica, So, S1) < ((N)ica, Ao, A1) holds.

Proof. Let us indicate the differences with the proof of Theorem 4.4.1. AssumeTﬁam Aig # 0.
We setl, :=h[[Ty]\ Sc], so thatl, is al‘Ig subset ofC]. We also set, for €2,

Dl:={5eTy|5=0Vv3Be () 5B},
andD?:=T,\ D’. We set, foy, 0, €2, Dy, 5, := D% N D', For examplefi€ D, ;.
e Conditions (4), (5), and (7) become the following:

(4) Us CAg° N A if 5e Dy
(5) Us CAif 5€ Dy
(7) (5,t€De1— N§R"T) = Uy CUs

e Fix @ € [T;]. There are(fy,0;) € 22 andky € w such thatd|j, € Dg, g, if k > ko. Thus
Se C(Wea fi)H(Az).

o Let(o)icd € Ao° N A7 N Qe, which is nonempty sincdy” N A7 #0 is £, We choosé; with
(a)ica €Uz CAp" N AL N Q.
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e The statement of the claim is now as follows:
Claim. Assume that) > 0.
@ A N MNi<pen Uy’ N (Iieq X;) is 7-dense irtﬂ1 N (Meq X;) if "¢ D, 1 andve D, 1.
(0) Uun NNz pery U’ N (Tieq X;) is 7i-dense i, N (Iieq X;) otherwise.
The pointis thav” € Dy ; if v ¢ D, 1_. sincev” € Dy, g, With ¢ <0 and1l—e <6,.
e In the same fashior®(v) is now defined as follows:

AN ﬂlﬁpgn Uivpp N (Hied Xl) N QNd if v ¢D571,€ A\ ’UEDEJ,E,
O(v):=
Usn N Mi<pey U’ N (Iicq X;) otherwise.

We conclude as in the proof of Theorem 4.4.1. O
Now we come to the limit case. We need some more definitions that can be found in [D-SR].

Definition 4.4.3 (Debs-Saint Raymond) L& be a tree relation or<“. If t € c=¥, thenhy(¢) is the
number of strictR-predecessors df Thushy(t)=Card(Pg(t))—1.

Let{ <w; be aninfinite limit ordinal. We say that a resolution family”) ,<¢ is uni form if
Vkew I <& Vs, tec (min(hpe(s), hpe(t)) <k As R"™t) = s R*t.
We may (and will) assume that > 2.
The following result is a part of Theorem 1-6.6 in [D-SR].

Theorem 4.4.4 (Debs-Saint Raymond) Lét< w; be an infinite limit ordinal R be a tree relation,
and (I,,)necw be a sequence 6112 subsets ofR]. Then there is a uniform resolution familyg”) ,<¢
with

(@ R’ =R,

(b) the canonical mapl : [R¢] — [R] is a continuous bijection,

(c) the sefll~*(1,,) is a closed subset 0f¢] for each natural numben.

Here again, the next result is essentially in [L7] (see Theorem 2.4.4).

Theorem 4.4.5 Let Ty be a tree withA} suitable levels¢ < w1CK be an infinite limit ordinal,S be
in 22([Td1), and Ay, A; be disjoint>}! subsets ofV'?. We assume that Theorem 4.2.2 is proved for
n<&. Then one of the following holds:

(@) Ay* N Ay =0.
(b) The inequality( (I1/ [T4])ica, S, [T4]\S) < ((N)ied, Ao, A1) holds.
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Proof. Let us indicate the differences with the proof of Theorem 4.4.1.
e The setl :=h[[Ty]\S]isin Hg([g). Theorem 4.4.4 provides a uniform resolution family.
o If e c= then we seqj(i'):=max{n, (41 | 5 ST} Note that(5') <n(f) if 5 C1.
e Conditions (6) and (7) become
(6) (1<p<n(F)AFRrT)=U-CU5
(7) ((5,teDV §,t¢ D) NS R t) = Uy CUs
Claim 1. Assume that” #v¢. Thenp+1 <n(vPt!).

We argue by contradiction. Note that-1> p > n(v/!) > Th e (v6)+1 = T e (v)- AS VP R 0, we
getv” R v, and alsa” =v¢, which is absurd. o

Note thatt,, 1 < &,_1+1 <n(vé—111) <p(v). This implies that(*) = <.

Claim 2. (a) The setdo N <<, ) Upe” N (Wicq X;) is mi-dense inly: - N (Iieq X;) if v € D
andv¢ D.
(b) The setlye N N1<penw) U’ N (Wieq X;) is m-dense inl,1 N (Iicq X;) if v&,v € D or
v&,v¢D.

Indeed, we sef; :=U ¢, for 1 <& <&. By Claim 1 we can apply Lemma 4.2.3.(2).(c) and we
are done. o

e The mapo: X4 — £1(NY) is defined or7 '+ by

Ap N ﬂlgpgn(v) Uivpp N (Hied Xz) N QNd if v"€D A U%D,
O):= L
Ut NN 1< pene) Uoe’ N(Tiga X;) if v8,v€ DV oé,0¢ D.

We conclude as in the proof of Theorem 4.4.1, using the factg;that andn(.) is increasing. O
Now we come to the ambiguous classes.
Theorem 4.4.6 Let T be a tree withA] suitable levelsg < w1CK be an infinite limit ordinal,Sy, S1

be in 22([Td1) disjoint, and4,, A; be disjoint>} subsets oV, We assume that Theorem 4.2.2 is
proved forn < £. Then one of the following holds:

(@) Aot N AL =0.
(b) The inequality( (11! [T4] )ica, So, S1) < ((N)ica, Ao, A1) holds.
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Proof. Let us indicate the differences with the proofs of Theorems 4.4.1, 4.4.2 and 4.4.5.
o The setl. :=h[[T;]\ S| is in ITY([C]).
e The statement of Claim 2 is now as follows.

Claim 2. (@) Az N i< ey Uor’” N (ica X;) is i-dense i, N (Iieq X;) if o€ ¢ D1 and
Ve Ds,lfs- o

(b) Uvg N nl§p<77(v) mp N (Hied XZ) is 7;-dense Il’Uivl1 N (Hied XZ) otherwise.
e In the same fashior®(v) is now defined as follows:

Ag N mlgpgn(v) Twp M (Hied Xl) N QN'd if ’U§¢D571_5 A ’UEDEJ_E,
Ov):=
Upe N Ni<pen(wy Uor’ N (Tlica X;) otherwise.

We conclude as in the proof of Theorem 4.4.5. a

Lemma 4.4.7 LetT be a Wadge class of Borel sets. Then the class dpatets is closed under
pre-images by products of continuous maps.

Proof. Assume thatd € pot(T"), A C1l;<,4 Vi, andf;: X; — Y; is continuous. Let; be a finer zero-
dimensional Polish topology orj such thatd e T' (IL;cq (Y5, 7). As f;: X; — (Y, 7;) is Borel, there
is a finer zero-dimensional Polish topologyon X; such thatf; : (X;, 0;) — (Y;, ;) is continuous.
Thus(Ilicq fi) ' (A) €T (Ilieq (Xi,04)) and(Mieq fi) ™" (A) € pot(T). O

Proof of Theorem 4.1 for¢, assuming that Theorem 4.2.2 is proved fon < &.
(1) We assume that (a) does not hold. This implies thatifie are not empty.
- We first prove that we may assume tigt=\ for eachi e d.

By 13.5 in [K], there is a finer zero-dimensional Polish topolegyn X;, and, by 7.8 in [K],
(X;, 7;) is homeomorphic to a closed subgétof N, via a mapp;. By 2.8 in [K], there is a contin-
uous retraction; : ' — K. Let AL be the intersection dfl;c; K; with the pre-image ofd. by the
functionTl;c, (; ' o ;). ThenA) and A} are disjoint analytic subsets 8f¢. Moreover,A} is not
separable fromd) by a po(l‘Ig) set, since otherwise (a) would hold.

This givesg; : d“ — A continuous withS C (IT;cq g;) "1 (Af) and [Ty]\ S C (T;eq g:) 1 (A}). It
remains to sef;(a):=(¢; ' or; o g;)(a) if acd”.

1

- To simplify the notation, we may assume that hasA% levels, & < w1CK and Ag, A; are in

SHND). Notice thatzTog N A; is not empty, since otherwisé, would be separable from; by a set

in II9 () C ITY(71) C poy(ITy) set, which is absurd. So (b) holds, by Theorems 4.4.1 and 4.4.5 (as
II7[Ty] is compact, we just have to compose with continuous retractions to get functions defined on
d*). So (a) or (b) holds.
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If Pe pot(l'Ig) separatesl, from A; and (b) holds, thess C (IL;cq ;)1 (P) C—([T4]\S). This
implies thatS is separable fromi7;]\S by a po(l‘Ig) set, by Lemma 4.4.7.

(2) We argue as in the proof of (1). Here we considgr N 4;°, and we apply Theorems 4.4.2 and
4.4.6. This finishes the proof. O

Proof of Theorem 4.2.2.We assume that Theorem 4.1 is proved §oand that Theorem 4.2.2 is
proved forn <&.

(1) By Lemma 4.2.3V; andV.¢ arell}.
(a)= (b) and (a)= (d) are clear sinceé\ y/ is Polish.

(b) = (c) We argue by contradiction. Asc A} we getC, € Aj. If (3, v) € Vg, thenC., € pot(T12,.),
which is absurd. If 3,v) € Vo, thenC,, € pot(I1) C pot(Hg), which is absurd. If3,v) ¢ V¢ U V4,
then we get € A} (see the definition of before Theorem 4.2.2). A§3),, (0)n) € Ve, We get
Cls), €POYTIZ,). Now the equality-C, =, C(s), implies thatC,, € pot(IT?), which is absurd.

new
(d) = (e) This comes from the proof of Theorem 4.1.(1).

(e)= (f) This comes from Theorems 4.4.1 and 4.4.5.

(f) = (a) This comes from Theorem 4.1.(1).
(c) = (e) We argue by contradiction, so thﬁg separatesiy from A;.

If ¢ =1, then for eachi € A; there is(3,7) € (Al x Al) NV such thats € C5 C —A4,. The
first reflection theorem gives, § € A{ such that((3),, (6)») € Vo for each natural numbet and
A1 CU:=U,c, Cs), S~Ao. We choosey e A1 N W with =C,, =U, and (83, v) contradicts (c).

If ¢ > 2, then by induction assumption and the first reflection theorem therg,are Al with
((B)n, (0)n) € Vg andC(s,, €~ Ay, for each natural number, andA; CU:=J,, C(s),. ButU is
A} N pot(%Y) and separated; from Aq. So lety € A} N W with ~C., =U. Note that(3,) € V¢
andC, separatesl, from A, which is absurd.

(2) Itis clear that/ is 11} .

(3) We argue as in the proof of (1), except for the implication=£cfe) (for the implication (e} (f)
we use Theorems 4.4.2 and 4.4.6).

(c) = (e) We argue by contradiction. By 4D.2 in [M], there dféc II} (w) and a partial function
d:w— N, II}-recursive oi¥, such thad”W is the set ofA{ points of \/. We define

Ty, = {TLEw | (n)o, (n)1 €W A (d((n)o),d((n)l)) €Vee A Od((n)l) N Ag:@}.

Thenlly, € I} andV3 € N¢ 3n € T4, ULy, B € Caqmy) sinceAy" N A,° = 0 (we use the
induction assumption). By the first reflection theorem ther® is Al (w) such thatD C 14, U Il 4,
andvg eN? IneD pe Cd((n)l)
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As II! has the reduction property, we can finid, < I} disjoint such thatl, C Tl and
g ULy, =Tlag UTLay. We setA:=U,eprr, - Ca(mn \(Ugen Cagan)- Then

_ N N
A= G\ (U Gl

nGDﬁH’AO q<n

which proves that € A} Npot(A?), and separated, from A;. Let (3,7), (6',7') € (A1 x A1) NV
with A=C, and=A=C.,. Then we get a contradiction with (c). O

Remarks. The assertions 4.2.3.(2).(a) and 4.2.3.(2).(b) admit uniform versions in the following sense.
By 3E.2, 3F.6 and 3H.1in [M], there i8: N'xN — N recursive such that for any recursively presented
Polish spaceX there is a universal sétX ¢ 1} (N'9) satisfying the following properties:

-I(X) ={Uy | aeN},
- I} (X)) ={UX | a €N recursive,
(o, B,z) eUN*X & (S(a,ﬁ),:ﬁ) cuX.

We set/ :=1N". The following relations arel;:
Q(a, B,7) & a€WOA (8,7) €Vja),
R(o,3,6) & ac ALAWO A Ja|>1 A6 ¢ U5
Indeed, this comes from the proof of Lemma 4.2.3.
e One can give simpler exampl&s, S; for which Corollary 4.2 holds wheR =I1Y. Indeed, recall

the mapb,, defined before Lemma 2.3. Ak, (n)| <n for each natural number, we can define the
sequence® :=b,,(n)0" 1%« We setS; :=S;\ Sy, where

Sg::{(OsﬁOPy, <, 0820y, (n+1)s (n+1)7, (n+1)s5 (n+2)7y, ...) | (n,7) €w XN}

(we do not really need;, whenT =TI19). Note thatSy = (T;c4 fi) ' (Ao) NSy if (b) holds. Let us
denote this bysy < Ag (< is a quasi-order, by continuity of thg's).

e The fact thafl; has finite levels was used to give a proof of Corollary 4.2 as simple as possible. The
treeT, has finite levels wherd < w, and not always whed=w. This is one of the main new points
in the case of the infinite dimension. Let us dwell more deeply into this.

(a) We saw in the proof of Proposition 2.2 that the tj@egenerated by an effective frame is a tree
with one-sided almost acyclic levels. As before Lemma 2.6, we can define

c,S:={ael,T]|S(awAar)€Cr},

which is not separable fro, 7| \ ¢, S by a potentially closed set, since otherwisg, would be
separable fromiT,, ]\ Sc, by a potentially closed set, which would contradict Lemmas 2.6 and 3.4.

But Ag := {0'T"(1+n)>® | n € w} C N is not potentially closed since™ € Ay \ Ay and
the topology onw is discrete. And one can prove, in a straightforward way, ¢t £ Ay and
Ay £ ¢, S. This proves that the finiteness of the levels/pfis useful. But we will see that it is not
necessary.
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(b) We definen: {s€2<% | 0Z s} —w=<“ such thato(s)|=|s| by

0(10"010™...10" ) := 01470 (1410) ™1 (14m0) ..o (14 my—1)) T

In other words, we can write(s)(i) =i if s(i) =1, ando(s)(i) =o(s)(i—1) if s(i) =0. Note thato
is an injective homomorphism, in the sense @b C o(¢) if s Ct. This implies that we can extend
o to a continuous map from the basic clopen&Setinto V' by the formulao(a) :=sup,,¢,, o(a|m).

We setF, := {(mi;)icw € N | @ € [LT] AVi € w m; = o(apAay)(i)}, and we put
Sc, ={(mici)icw € Fo, | S(apAar) € C¢}. One can tak&; = S¢,, and the proof is much more
complicated than the one we gave. But the tree associatecﬁ@h: EF,is

{@} ) {(misi)iew eEN<Y | (mi)iew EO[Nl] ANSe ,TNAVi< ‘§| mizo(soAsl)(i)},

and has infinite levels. This proves that the finiteness of the levels of the tree associatedisvitbt
necessary.

(c) In [L8], an extension to any dimension of the Kechris-Solecki-Toewae dichotomy for analytic
graphs is proved. In [L5], it is proved that Corollary 4.2 is a consequence of the Kechris-Solecki-
Todor€evic dichotomy wherl* = 1‘[(1’. This works as well whed < w, but not wherd = w. More
specifically, letG:={aeN |Vmew In>m s¥0Ca} andA, :={(s¥iV)icw | nEW A YENT.

Then the extension of the Kechris-Solecki-Tatiornc dichotomy to the casé=w works with the set

G¥ N A, (see [L8]). But one can prove the following result:

Theorem 4.4.8 Let X be a recursively presented Polish spagg, be the topology otX“ generated
by {I;c,, Ci | C € Al(wx X)}, and A be aA} subset ofX“. Then exactly one of the following
holds:

() A7\ A=0.
(0) G¥ N A, < A.

In particular,G¥ N A, £ Ag and we cannot také; =G“ N A,,.

5 The proof of Theorem 1.9

5.1 Some one-dimensional material

The material in this subsection can be found in [Lo-SR1] or [Lo-SR2]. However, we need to make
some changes for our purpose. Moreover some proofs are left to the reader in these papers. These are
the reasons why we will give some proofs. The following definition can be found in [Lo-SR2] (see
Definition 1.5).

Definition 5.1.1 Let1 <¢ <wq, andT’, IV be two classes of sets. Then

A€S(T,T) & A= (4,NnCp)U (B\U Cp) :

p=>1 p>1

whereA, eT', BeI', and(C)),>1 is a sequence of pairwise disjoimg sets.
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Now we come to the definition of theecond type descriptions of the non self-dual Wadge
classes of Borel sets, which are elementsp{we sometimes identify; with (w$)). This defini-
tion can also be found in [Lo-SR2] (see Definition 1.6).

Definition 5.1.2 The relations *u is a second type description” and “ u describes T (written
uweD andTI', =T - ambiguously) are the least relations satisfying the following properties.

(@) If u=0°, thenue D andT’, ={0}.

(b) If u=¢"1"0, withv € D andv(0) =¢, thenue D andT, =T,

() If u=¢"2"< u, > satisfies{ > 1, u, € D, andu,(0) > & or u,(0) = 0, thenu € D and
Ly=5:(Up>1 Tup Tug)-

Remark. If A€ S¢(U,>1 T,y ), thenA has a decomposition as in Definition 5.1.1, afydis in
Up21 r,,. Butwe may assume thalt, | TP using the fact that’, may be empty if necessary.
This remark will be useful in the sequel, since it specifies the clasi, of

The following result can be found in [Lo-SR2] (see Section 3).

Theorem 5.1.3 LetT" be a non self-dual Wadge class of Borel sets. Then theiesi® such that
I'(NV)=T,(N). Conversely,

T,:={f"*A)| f: X —N continuousA X zero-dimensional Polistn AcT,(N)}
is a non self-dual Wadge class of Borel setsdfD.

If n <& <wi, thené—n is the unique ordinad with n+60 =¢. The following definition can be
found in [Lo-SR2] (see Definition 1.9).

Definition 5.1.4 Letn <w; andueD. We define:7 € D as follows.
(@) If u(0)=0, thenu" :=u.

(b) If u=¢&1v, with>1, thenu := (14+n+(£—1)) 1",

(©) fu=£2 <up>, with§ > 1, thenu:= (1+9+(£-1))2 < (up)" >.

The following result can be found in [Lo-SR2] (see Proposition 1.10).

Proposition5.1.5(@) If f : N — N is E?Jrn-measurable, andl € T',(N) for someu € D, then
f_l(A) elyn.

(b) The se® is the least subseb C D such that0*® € D, u(0)lue D if u € D, 12 < u, >€ D if
up € D foranypew, andu’e D if u € D (for anyn <wy).

Recall the definition of an independepfunction (see Definition 3.3).

Example. Let 7 : w — w be one-to-one (in [Lo-SR2], just before Lemma 2.5, the authors consider
increasing maps. In this paper, we work with this weaker property). We défite— C by the
formula7(a) := a o 7. The map7 is an independerni-function (with witnessr defined by the
formularn (k) =7"1(k) if k isin the range of, 0 otherwise). We now describe an important example
of this situation.
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Example.Let n be a natural number, ar®ibe the shift map (see the notation before Definition 2.5).
ThenS™ is an independerit-function. Indeed, if we set™(m) :=m-+n, thenS™ =77, by induction
onn. In particular, I¢ =S is an independerti-function.

The next result is essentially Lemma 2.5 in [Lo-SR2], which is given without proof. This is the
reason why we give the details here.

Lemmab5.1.6 Let 7 : w — w be one-to-one, and be an independenj-function. Thenr o ( is an
independeng-function.

Proof. Let  be the map associated with We definer’ : w — w by 7(k) := 7= (n(k)) if m(k)
is in the range of-, 0 otherwise, so that’(k) =m if 7(k) =7(m). If m is a natural number, then
(7 0 ¢)(a)(m)=((a)(7(m)) depends only of the values afon7 ! ({7(m)}) C (7)1 ({m}).

If € =0 (resp..§ =0+1, £ =sup,, Om), thenZ,, = {a € C | {(a)(7(m)) = 1} is AJ-
complete (respH?+9-strategically completel,'I(ereT(m)-strategically complete). We are done since
£=5UR,>1 O-(m,) if § is alimit ordinal ¢ is one-to-one). O

After Definition 3.3, we saw that” is an independenj-function. We will actually prove more.
In fact, we prove a result which is essentially Theorem 2.4.(b) in [Lo-SR2].

Theorem 5.1.7 Let n, £ < w1, and ¢ be an independerg-function. Therp” o ¢ is an independent
(&+n)-function.

Proof. Assume that €2 and(® :C — C is equipped withr® such that*(«)(m) depends only on the
values ofa on (7)1 ({m}). ThenD := (¢° o ¢!)()(m) depends only on the values ¢f(a) on
(7%)~1({m}). ThusD depends only on the values @fon (z!)~! ((z%)~! ({m})). This implies that
if we setr:=7" o 7!, thenD depends only on the values@fon 7= ({m}).

e We argue by induction on. The result is clear fo, = 0. So assume thaj = #+ 1, so that
p" o C=po p? o (. The induction assumption implies théto ¢ is an independer(t +6)-function.

The fact thap is an independent-function and the previous point prove the existence,pduch that
(p" o ¢)(x)(m) depends only on the values@fon =, ' ({m}).

-A,, isIIY

We setA,,:={aecC | (o’ o ¢)(a)(< m,n >)=1}. Let us prove thaf) Lrero”

strategically complete.

necw

Assume first thag+-60 #0. As p’ o ¢ is an independerft+6)-function, A, is H?+9n-strategically
complete, for somé,, < £+0 satisfyingd,,+1=¢£+0 if {+6 is a successor ordinal, sup, 0, =£+0
if {46 is a limit ordinal. Note that +6 = sup,.,, (6,+1). As p? o ¢ is an independentt + 6)-
function, there isty such that s’ o ¢)(a)(g) depends only on the values afon 7, ' ({¢}). We set
() (k) := (mg(a)),, S0 that the fact that € A,, depends only on the values @fon ! ({n}). By
Lemma 3.7 in [Lo-SR1] -A, s H?+§+9-strategically complete.

new
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Assume now that +60 = 0. ThenA,, := {a € C | ¢(a)(< m,n >) = 1} is AY-complete
since( is an independerii-function. LetB be a closed subset ¥, (B,).c. be a sequence of
clopen subsets witl3 = (.., B, andg, : N' — C be continuous withB,, = gl (=A,). As
¢ is an independeri-function, there isr; such that{(«)(q) depends only on the values afon
wgl({q}). We setr(«) (k) := (wp(a))l, so that the fact that € A,, depends only on the values of
aonm!({n}). We defineg: N'— C by g(8) (k) := gx()(8) (k), so thatg is continuous. Moreover,
Be B, < gn(B)¢ A, < g(p) ¢ A, since the fact thak € A,, depends only on the values @fon
71 ({n}). ThusB=g"'(N,c, ~An)and(,, —A, is II}-complete. Thereforf), ., —~A, is

11! +e Lg-Strategically complete.

new

Now note that

Niew "An={aeC|V¥new (p o ()(a)(< m,n >)=0}

={aeC|(pop’oC)(a)(m)=1}={aeC]| (p70()(a)(m)=1}.

Thus{aeC | (p"o()(a)(m)=1}is H1+§+9 strategically complete for eagh, andé+n=£+6+1,
so thatp” o ¢ is an independer(t +n)-function.

e Assume now thay is a limit ordinal. In the definition 0p” we fixed a sequencg), )me. C 1 of
successor ordinals with,,c., 7,, =n. As p™ is an independen,,-function, we getr,, : w — w.
We definer, y41:w—w by T, i1 (k) =k if k< m 7 (k—m)+m if k>m. Let us check that
p™ 1) (o) (i) depends only on the values afon wm +1({i}). It is clearly the case if <m. So
assume that>m. Note thatr, 41 (k) =i if ke (7rm) L({i—m})+m, and we are done. Now the
first point of this proof givesrg ,,+1:w—w such thatp(>"+1) () (i) depends only on the values of
aonmy, 4 ({i}). We will check thatp”(a)(m) := p(>*1(a)(m) depends only on the values of
a on By, =g ot ({mD) N Niem ™ l+1( —(I41)). We actually prove something stronger: for any

natural numbek, p(O™+1 (o) (k+m) depends only on the values @fon
7r0m+1 ({k+m}) N ﬂ 7Toz+1 =(l+1)).
<m

We argue by induction om. Form =0, the result is clear. Assume that the result is truesioiNote
that p(®2) () (k+m+1) depends only on the values@fon |, ,({k+m+1}). But

P(O’m+2) (a)(k+m+1) :p(m+1,m+2) (p((),m—H) (a)) (k+m+1)=pm+ (Sm—i-l (p(O,m—H) (a))) (k),

and we are done sing€’™*2 (a)(k+m+1) depends only on the values 81 (p(®™+1)(q)),
which depends only on the values®@bn TI‘(ITln+1( (m+1)) N Nier ™ z+1( —(14+1)).

As the E,,,’s are pairwise disjoint, we can define a map.w —w by #"(k) :=m if k€ E,,, and
0if k¢,,c, Em- Now itis clear thap”(«)(m) depends only on the values @fon (77)~! ({m}).
The first point of this proof gives,, :w — w such thai(p" o {)(«)(m) depends only on the values of
aonz t({m}).
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Let&,, suchthat,, :=¢&,,+1, andd,,, := &+« m+E&m, SO that,, < &+n and Sup>4 Om, =&+n
for any one-to-one sequente.,),>1 of natural numbers. It remains to see that

Zun:={aC | (o7 o)) (m)=1}

is H?+0m-strategically complete for any natural number

Let us check thas™ o p(0m+1) = piim o o, .. (S o p'm-1-1) for any natural numben. We argue
by induction onm. Form =0, the property is clear singg?!) = p0. Assume that the property is
true form. Then

Sm+l 4 p(O,m+2):pnm+1 oSt ¢ p((],m—H) =phmtl o So8S™o p(O,m—i-l)

:pn7n+1 o 8 o pnm o Ol<m (8 o pnm7171):p7]m+1 o) Olgm (S fe) pnmfl)
since in the last induction we proved thgit+! o p(0m+2) = pimt1 o Mt o p(0m+1) Thys

Zn={aeC | pOm ) (¢(a))(m) =1} ={a€C | (§™ 0 p0m D o ()(a)(0) =1}

={a€eC | (p" o orcm (S0 pm-t-1) 0 ¢)(a)(0)=1}.

So it is enough to see thét, :=p"™ o oj, (S o p''m-1-1) o ( is an independer{¥,,, +1)-function.

We argue by induction om. Form =0, we are done sincg™ o ¢ is by induction assumption an
independent¢ +mo)-function, and{ +ny =£+&y+1 =6y +1. Assume that the property is true for
m. Then(,,+1=p"+! o S o (,,. By induction assumptiorg,,, is an independen(®,,,+1)-function.
By Lemma 5.1.6 and the example just beforeit; ¢, is also an independef¥,,, +1)-function. By
induction assumptior,,, 1 is an independer{¥,, +1+n,,+1)-function, and

0m+1+77m+1 =&+ X1cm 77[+§m+1+77m+1 :€+El§m 77l+§m+1+1:9m+1+1'

This finishes the proof. d

5.2 Some complicated sets

Now we come to the existence of complicated sets, as in the statement of Theorem 1.9. Their
construction is based on Theorem 2.7 in [Lo-SR2] that we now change. The main problem is that we
want to ensure the ccs conditions in Lemma 2.6. In order to do this, we modify the definition of the
mapsr; in Lemma 2.11 in [Lo-SR2].

Notation. Let i be a natural number. We defing w — w by

<0,k >ifi=0,
Ti(/{>::
<< 1, (k)() >, (]{7)1 >ifi>1,

so thatr; is one-to-one. This allows us to define, for any C, «; :=7;(«). If s€ F:=(w\{0})<¥,
then we sef; ::7:5(0) 0..0 7:5(‘5|_1).
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Lemma5.2.1 LetT be a non self-dual Wadge class of Borel sets, Bhte aT'-strategically com-
plete set. Then the following hold.

(a) The set’; "} (H) is I'-strategically complete for any natural numbier

(b) Assume that : w — w is one-to-one with the property that the fact that H depends only on
aoT. ThenM:={a o7 | € H} is I'-strategically complete.

Proof. (a) As 7; is continuous,7;~'(H) € T'(C). We define a continuous mafy, : C — C by
fri(a)(m) == a(r;'(m)) if m is in the range ofr;, 0 otherwise. Note thaf;(f-,(a)) = «, so
thatH= f_! (77! (H)). This implies that’;~*(H) is I'-strategically complete.

(b) As in (a), we consider the continuous map so that%(fT(ﬂ)) = (3 for eachg € C. Here again
f7H(H) e T(C). Let 8 € M, which givesa € H with 3= o 7. As f-(8) o T =7(f-(8)) =5,
we getf-(8) o T=a o7, and f-(3) € H by the assumption oH. Conversely, iff-(3) € H, then
B=7(f+(8))=f+(8) oTeM. ThusM= f7}(H), andM €T'(C).

If € H, then7(a) =« o 7 € M. Conversely, assume thata) € M. Then there igg € H with
[ oT=aor. The assumption oH implies thato € H. ThusH=7"1(M) andM is I'-strategically
complete. O

Lemma 5.2.2 LetI" be a Wadge class of Borel sets, aAd_C. ThenA € T'(C) if and only if there is
BeT'(N)withA=BnC.

Proof. = Letr: N —C be a continuous retraction. We just have toBet-r~1(A).
< Leti:C— N be the canonical injection. Theh=i—1(B) €T (C). O

This lemma shows that the notati@h, in Theorem 5.1.3 will not create any trouble, since it is
equivalent to the one in Definition 5.1.2.

Notation. The following notation can essentially be found in [Lo-SR2] (after Lemma 2.5)RLbée
the least set of functions frotinto itself which contains the function#, the functionss; for i >1,
and is closed under composition. By Lemma 5.1.6 and Theorem 5.1.7¢ egkhis an independent
n-function for some, called theorder o(p) of p.

Definition 5.2.3 Letu € D. A setH CC is strongly u-strategically complete if, for each{ € R of
ordern, ¢~ (H) is T',»-strategically complete and ccs.

Theorem 5.2.4 Letu € D. Then there exists a stronglystrategically complete sé,,. In particular,
H, isT',-complete and ccs.

Proof. We will check that the se,, given by Theorem 2.7 in [Lo-SR2] essentially work, even if we
change them.

The construction is by induction ane D. Let us say that: is nice if it satisfies the conclusion
of the theorem. By Proposition 5.1.5, it is enough to prove @Rats nice, that:(0)1w is nice if u is
nice, thatu” is nice ifu is nice andy <wy, and thatl2 < w,, > is nice if theu,’s are nice.

e We setHy~ := (), which is clearly strongly)>°-strategically complete.
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e Assume that: is nice. We seH,,(g),, := ~H,. Note thatH, ), is stronglyu(0)1u-strategically
complete. Indeed, ifi(0) =0, thenT(,(o)14)n =Ly(0y1u =Lu=Tun. If u(0) >1, then

L () 1u)r =L (141 (u(0)-1))10n =L
sinceu(0) =1+n+ (u(0)—1).

e Assume thatu is nice andy < wy. We setH,» := (p”)~*(H,). Note thatH, is stronglyu”-
strategically complete. Indeed, létc R be of orderé. Then( ' (Hyn) = (p7 o ¢)"1(H,) is
I c+n-strategically complete and compatible with comeager sets sireaice antp” o  is in R of
order¢ +n. It remains to notice that:")¢ =u¢*", which is clear by induction on and by definition
of the ordinal subtraction.

e Assume that the,’s are nice. We set,, :=u ), and

CMO:OOO/\OQEHUO
OZEH12<UP> <~ vV
Imew ag(m)=1AVI<m ag(l)=0A a(n),+2€H

U(m)o+2°
- Recall thal12<y,~ = S1(Up>1 Ty, ,Ty). WesetKo:={aecC | a; € Hy} =7} (H,,), and,
forn>2, ;

Kn :{OéEC ’ aneHU'n}:fn_l(an)'

Cn :={aeC|Imew ag(m)=1AVi<m ap(l)=0A (m)o+2=n}.

Note that(C),),>2 is a sequence of pairwise disjoint open sets, &= I',,,, K,, € T, if n > 2
by Lemma 5.2.1.(a). Moreoved12<u,> =59 (Kn N Cp) U (Ko\U,>2 Cn) €T12<4,>(C), by
Lemma 5.2.2 and the reduction property for the class of the open sets (see 22.16 in [K]).

- Let ¢ € R be of ordern. Then (‘1(H12<up>) € I'(12<u,>)7(C), by Proposition 5.1.5.(a) and a
retraction argument in the style of the proof of Lemma 5.2.2.7 bt associated with, ep: w — w
be a one-to-one enumerationof! (Rar(rl)), and, forn>2, e,, :w — w be a one-to-one enumeration
of 7~ (Ran(r,,)) ande™ :w —w be a one-to-one enumeration of

7 ({jeRar(n) | (5(j))y+2=n}).

As 7; is one-to-one, Ram;) is infinite, and7~!(Ran(r;)) is also infinite sincer is onto. This

proves the existence of theg's and of thee™’s. Note that the Ram;)’s are pairwise disjoint since
0=< 0,0 >. This implies that the elements §Rar(e,,) | n# 1} U {Ran(e™) | n> 2} are pairwise

disjoint.

- Note that the fact that € L,, := ¢ ~!(K,,) depends only o o e,, if n#1. We set, fom #1,
M, :={aoce, | acLy}.

Note that¢ ™" (Ko) = ¢~ (71" (Hu,)) = (71 0 {) " (H,,) is T,n-strategically complete sinae, is
nice andr o ¢ is in R of ordern. Similarly, (1(K,,) is T',»-strategically complete i > 2. By
Lemma 5.2.1.(b)Mj is I‘ug-strategically complete, arl,, is T, »-strategically complete it > 2.
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-We set, fom>2, D,,:={aoce” | Imecw ((a)o(m)=1 and (m)o+2=n}. Let us prove thaD,,

is 3¢ +,-Strategically complete.

Note first that{a € C | f(a) # 0>} is 2(1’+n-strategically complete iff is an independent-
function. Indeed, using the notation of Definition 3.3, we can write

{aeC| f(@)=0"}= () = Zm.

mew

Moreover, the fact that € Z,,, depends only of the values afon F;l({m}).

Assume first thaty > 1. As f is an independent-function,Z,, is H?+9m -strategically complete,
for somed,,, < n satisfyingd,, +1 =n if n is a successor ordinal, and syp, ,, =n if n is a limit
ordinal. Note that) = sup,,c, (0, +1). By Lemma 3.7 in [Lo-SR1]{a € C | f(a) =0} is
&Y -Strategically complete.

Assume now tha) = 0. As in the proof of Theorem 5.1.7 we see thate C | f(a) =0} is

m ,-Strategically complete.

Now we come back to th®,,’s. We definer : w — w by 7(k) := <n—2,k >, so thatr is
one-to-one and Ran) = {m € w | (m)p =n—2}. As( is an independenj-function, 7y o ¢ and
7 o 7y o € are also independentfunctions, by Lemma 5.1.6. The previous point shows that

P:={aeC|(Fo7o()(a)#0*}
is>},,

P={aeC|Ikew 7((foo()(a))(k)=1}={aeC| Fkew (fyo()(a)(r(k))=1}

-strategically complete. Note that

={aeC|Imew (fpo()(a)(m)=1 and (m)o+2=n},

and the fact thatr € P depends only omx o ¢™”. By Lemma 5.2.1.(b)D,, is E(I’Jm-strategically
complete.

-Let M €T (1904, n(N), sayM =55 (M N D) U (Mo\U,;55 Dn), with D, € X0, pairwise
disjoint, My €T, ;», and without loss of generality/,, € T',». Then Player 2 has a winning strategy

in G(M,,M,,) (for anyn # 1), and a winning strategy,, in G(D,,, D,,) (for anyn >2). Then Player
2 plays inG(M, C’l(HulkuW)) against3 by playing his strategies,,, p,, at the right places (the
ranges ok,, ande™ respectively) against this sange independently, and by playingout of these
ranges. The result is somesuch that o e,, wins againsgi in G(M,,, M,,) anda o e™ wins against
Bin G(D,,,D,,). This wins, sincex € (~1(K,,) exactly when3 € M,,, and((«), takes valuel on
somem with (m)o+2=mn exactly whens € D,,. But as theD,,’s are pairwise disjoint, there is at most
onen in {(m)o+2 | ((a)o(m)=1}, anda € (~1(C,) exactly when3 € D,,. Thus¢ * (Hia<y,>) IS

I’ (12<.,>)n-strategically complete.

- It remains to see that™! (Hi2<,,>) is ccs. So lety € d* and F : C — (d*)?~! satisfying the
conclusion of Lemma 2.4.(b).
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olLetN>1andM €w. Then{(a)y €H,,, & (Tv o ()(a)€EHy,, & ac (T o) (Hy,,). As
N>1,7yo(isinR, and(7y o ()~ (H,,,) is ccs sinceuy, is nice. Thug(a) y € Hy,, if and only

if g(s(aoAFO(a)))N cH,,,.
o Recall the notation before Lemma 2.4. We define<“\ {0} —w as follows:
£(0) if [¢| =1,
q(t):=
< t(|t|-1), q(t™) > if [t|>2.
o Let us prove thaf,(a)(n) =a(< ¢((n)os), (n); >) foranyse F.

We argue by induction ofs|. So assume that the result is proved|fd [, which is the case for
[=0. Assume thats|=[+1. We get

7s(a) (n) =T (50 (@) (n) = 7570y (@) (< a((m)o(s1D)) ,(n)1 >) = a(ms (< a((m)o(s]1)) . (n)1>))
=a((<s(),q((no(sl)) >, (n)1)) =a(<q((n)os), (n)1>).

o Let us prove thatp o 7)(a) = (p o 7s) (8(a0AF0(a))) for any s € F and anya € C. This comes
from the following equivalences:

(poTs)(a)(n)=0 & Imew Ts(a)(<n,m>)=1<Imew a(< qg(ns),m >)=1

& Jkew S(aAFy(a))(< g(ns), k >)=1
s (po %5)(S(aoAFo(a)))(n):O.

o Let us prove thatp” o 7,)(a) = (p" o 7s) (S(aOAFO(a))> for any1 <n<wj, anys € F and any
ael.

We argue by induction on. Forn =1, this comes from the previous point.df>1 andn=60+1,
then this comes from the fact thelt=p o p?. If 5 is a limit ordinal andn is a natural number, then

(p" 0 Ts)(ar)(m)
— 1 (ul)) (m) =) (7 () ()

= (pmmD o o pll:2) (p(o’l) (%S(Oé))) (m)=(pmm ) o . o pl:2) (pef’ (%s(a))) (m)

= (pmm o .0 p12) <p9° <?s (s (aoAFo(a)))>> (m)=(p" 0 7) (S (a0 A Fo(@) ) (m).
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o Note that{(a)g =0 < a€ (75 o ¢)~1({0>°}). Let us prove that7 o ¢)~1({0>°}) is ccs.

We can write{ =o,<; ¢’, wherel is a natural number and eachis either of the fornp”, or one
of the7’s for i > 1. By the previous point, we may assume that that eddh eitherp® =1d., or one
of the7;’s for i >1. So there i € F such that =7,. Note that

ag (7o) 1 ({0°}) & Imew (fho()(@)(m)=1s Imew ((a)(n(m))=1
& Imew 7(a)(< 0,m >)=1< Imew a(< ¢(0s),m >)=1
& Imew a(p(g(0s),m)) =1
& Fkew S(aAFy(@))(p(g(0s),k)) =1
& S(anAFo(a)) ¢ (700 ) ({0*}).
Thus¢(a)o=0% < C(S(aOAFO(a))>O:0"°.
o It remains to see that if(a)o #0° andmy, is minimal with¢(a)o(me) =1, then

(mOé)O = (ms(aoAFo(a)))O'

As in the previous point we may assume that theredsF such thatf =7,. The computations of the
previous point show thal(«)o(m) =a(< ¢(0s), m >) for each natural number. Note that

Na:=<q(0s),me>=min{new | a(n)=1A (n)o=q(0s)}
since< ¢(0s),.> is increasing, and, similarly,
<q(0s), Ms(apar(a)) >=Mmin{mew | S(aAFy(a))(m)=1A (m)o=q(0s)}.
As B, is a bijection satisfyingn)o = (Ba(n)),,
Bal{new | a(n)=1A (n)o=q(0s)}] = {mew | S(apAFy(a))(m)=1A (m)o=q(0s)}.
As B,, is increasingBa (na) =< q(0s), ms(agaFr,(a)) >- Thus
(Mstaparo(@))o= ((Bama)),) = ((na)1)y=(ma)o
and we are done. O

Corollary 5.2.5 LetT" be a non self-dual Wadge class of Borel sets. Then thetedsC which is
T'-complete and ccs.

Proof. By Theorem 5.1.3 there isc D such thaf’(N)=T",(N). By Theorem 5.2.4 there H, CC
which is stronghI",,-strategically complete. It is clear th@t:=H,, is suitable. O

Now we can prove Theorem 1.9.(1). But we need some more material to prove Theorem 1.9.(2).

40



Definition 5.2.6 (a) A setU CC is strongly ccs if 7.1 (U) is ccs for anys € F.

(b) LetI" be a Wadge class of Borel sets, ddg, U; € I'(C) be disjoint. We say thdlUy, U;) is com-
plete for pairs of disjoint T sets if for any pair (Ay, A1) of disjoint sets iT' () there isf : N —C
continuous such that. = f~1(U.) for anye € 2. Similarly, we can define the notion of a sequence
(U,)p>1 complete for sequences of pairwise disjdirgets.

Lemma 5.2.7 (a) There is(Ug, U;) complete for pairs of disjoinE{ sets withU. strongly ccs, and
such that for any € F there is a pair(Oy, O;) of ccsx{ sets reducing

(a1 (Uo U U), 74,3(Ug U Uy)).

(b) There is(U,),>1 complete for sequences of pairwise disjdift sets withU,, strongly ccs, and
such that for any € F there is a sequend@); ).c2 p>1 of ccsx{ sets reducing

(’7—8_(61+1)(Up))6€2,p21'

Proof. (a) Recall the definition oH; after Definition 3.3:H; := {0>°}. We saw thai; € IT{(C)
and isTI{-complete. We seU :=—Hj, so thatU is X{-complete. Le{ 4y, 4;) be a pair of disjoint
Y subsets of\. As U is complete there arg), f1 : N — C continuous such that. = -1 (U) for
eache € 2. We definef : N'—C by

fe(a) (k) if e€2,
0 otherwise,

f(a)(< < z’f—l—l, (]6)0 >, (k‘)1>) :—{

so thatf is continuous andf. = 7.4 o f. Now A. = f~1(72}(U)) and (7, 1(U), 7 1(U)) is
complete for pairs oE{ sets (not necessarily disjoint). Note that

74 (U)={aeC|3kew a({ <e+1, (k) >, (k)1))=1}
={aeC|3INew ((N)o),=e+1Aa(N)=1}.
We Seth::{aGC |3N€ew ((N)o),=e+1Aa(N)=1AVI<N (((5)0)0¢{1,2}v@(5)=o)}.
Note thatV; € £9 and(Vy, V) reduceg7; ' (U), 7, '(U)). Thus
a€A. & fla)ei(U) & f(a)e7 (UK L(U) & f(a)eV.

and(Vy, V1) is complete for pairs of disjoirE! sets. Recall the definition ef, before Lemma5.2.1.
We setU. := 7,1 (V.), which defines a pair of disjoirE! sets. Nowg(a):=< a, a, ... > defines

g:C—C continuous. Note that€ A. & f(a)eV. & T (g(f(a))) €V. < g(f(a)) €U, which
shows thatUy, U, ) is complete for pairs of disjoirE! sets.

Fix s € 7. The proof of Theorem 5.2.4 shows thata) (n) =a(<q((n)os), (n)1 >). Thus

%;1(Ua):{aec |IN€w ((N)o),=e+1 A a(<q(0s), N>)=1A
Vi< N (((1)0)0¢{1,2} v a(<q(05),l>)20)}.
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Thus

%;1(Ua):{oz€C | IM ew (((M)l)o)oza—l—l A (M)o=q(0s) ANa(M)=1A

Vi< M ((((l)l)o)oqé{l, 2}V ()0 #q(0s) V a(l):o> }

Recall the conclusion of Lemma 2.4.(b). The bijectiBr induces an increasing bijection between
{MEw | (((M)1)0>06{1,2} A (M)o=q(0s) A a(M)zl} and

{Kew | (((K)l)o)oe{l,Q} A (K )o=q(05) /\S(aoAF(a))(K)zl}

since(M)o = (Ba(M)), and ((M)1), = ((BQ(M))l)O. A second application of this shows that
771(U,) is ccs. ThudJ. is strongly ccs. Note that

S

Pt (UoU U ={aeC |30 ew (((M)1), ) €{1.2} A (M)o=q(0Ls(=+1)) A a(M)=1].

We set

O.:— {aGC | 3M ew (((M)l)o)oe{l, 2} A (M)o=q(01s(z+1)) A a(M)=1 A

Vi< M ((((5)1)0)0 ¢ 11,2}V (1)o ¢ {q(01s1), ¢(0152)} V a(l) :o> }

This defines a pair o sets reducing#;,1(Uy U Uy), 7,5(Ug U Uy)). We check that they are ccs
as before.

(b) The proof is completely similar to that of (a). O

The following result is a consequence of Theorem 1.9 and Lemmas 1.11, 1.23 in [Lo1], and also
of Theorem 3 in [Lo-SR3]:

Theorem 5.2.8 LetT" be a self-dual Wadge class of Borel sets. Then there is a non self-dual Wadge
class of Borel set§” such thatl'(NV) = A(IV)(N), I does not have the separation property, and
one of the following holds:

(1) There isue D such that
I'(N) ={ (40 N Co) U (A1 N C1) | Ao, ~A1 €T(N) A Co, Cr € SYN) A Co 1 C1 =0}

(2) There is((u’),,)le eD* such that(T (), (J\/))le is strictly increasing and

r/(N):{ U (4,1 Cy) | Ap €T (), (V) A CESIN) A Cp 1 Cy=0if p¢q}.

p>1

Lemma 5.2.9 LetI” be as in the statement of Theorem 5.2.8. Then ther€gr€, € I'’(C) disjoint,
ccs, and not separable by/&(I") set.
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Proof. (1) Lemma 5.2.7.(a) give@Uq, U;) complete for pairs of disjoinE! sets withU, strongly
ccs, and such that for amye F there is a paifOy, O;) of ccsX! sets reducing the pair
(71:1(Uo U U1), 715(Up U UY)).
Theorem 5.2.4 giveH; C C which isT'z-complete and strongly ccs. We set
H:= (7 '(Ha) N7 '(Up)) U (75 ' (-Ha) N7 ' (U1))

and, fore € 2, E. :=7_} (H). Finally, we seC. := (O, N E.) U (O1_.\ E1_.), where(Oy, O1) is
associated with := 0.

e We set, for, j €2, A5 ::%2*(;+1)(Hﬁ), A5 ::%;(;H)(ﬁﬂg), Ff ;:%;(;H)(Uj), so that

E.= (A5 N FE) U (A N FY).
Note that
Co=(A5NF5NO)U(ASNFENO)U (A NEFy N0 U (AT NF ™ N0;_.)

= (((Ag NESNO)U(mA " NF ™ N01-)) N ((FsNO:) U (F 5N 01_5)))u

(((Ai NFENO)U(-AY  NFI N0 )N ((FEN0.) U(F < n 01,5))),

and thatF; N O, Fll‘E NO1—¢, Ff N O, Fol‘f N O1_. are pairwise disjoint open subsets(bfBy
Lemma 5.2.2 and the reduction property 3} we can writeC. as the intersection af with

(((A5n05) U EAIN01 ) N(O5UOL) ) U (((AENOHU (AT N0 ) N(OTUOL ™)),

whereA§, = Af € T'z(N) andO5 are four pairwise disjoint open subsets\éf By Lemma 1.4.(b) in
[Lol], (A5NO5)U(—A; SN0 %), ~((A5NOF)U(=AENO;9)) €Tw(N), so thatC. e IV(C),
by Lemma 5.2.2 again.

e Itis clear thatC, andC; are disjoint and ccs.

e Assume, towards a contradiction, thate A(T) separate€, from C;. Let Dy, D; € TV(N) be
disjoint. AsH is complete there ar¢. : N' — C continuous such thab. = f=1(H). We define
f:N—=Cby

| fe(a)(R) if e€2,
fe)((<e+1, (ko> (k)1)):= {0 otherwise,

so that(f(a))_,, = f-(@). Thenf is continuous and. = f~!(E.). Note that¥. \ E; . C C.. This
implies thata € Dy < f(a) € Ey & f(a) € Eg\E1 = f(a) €CoC D. Similarly, D; C f~1(=D),

and f~1(D) € A(T)(N) separatedD, from D;. ThusT' has the separation property, which is
absurd.

(2) Lemma 5.2.7.(b) give$U,),>1 complete for sequences of pairwise disjo{ sets withU,

strongly ccs, and such that for arye F there is a sequend®;).c2>1 Of ccs XY sets reducing
(%;(;H)(Up))selpzl. Theorem 5.2.4 give®(,y C C which isT'(,y -complete and strongly ccs.
We setH:={J -, (73, (H,) N7 ' (Up)) and, fore€2, E.:=7_ (H).
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We also setd? ::%(‘2;)(5+1)(H(u,)p), F¢ ::%1‘(;+1)(Up), so thatE. =J,», (45N Fy). Finally,
we setC. := (A7 N05)UU,>1 ((0p7\A,79)U(45,,N 05, ), where(O;)ce2 p>1 is associated

with s:=1.

Note thatC. e IV(C) since(I‘(u/)p(/\/))w1 is strictly increasing, using again Lemma 5.2.2, the

generalized reduction property f&1! (see 22.16 in [K]), and Lemma 1.4.(b) in [Lo1]. Here again,
E.\ E,_.CC. and we conclude as in (1). O

Proof of Theorem 1.9.1t is clear that Proposition 2.2, Lemmas 2.3, 2.6, Corollary 5.2.5, Lemma
5.2.9 and Theorem 3.1 imply Theorem 1.9, if weS$et S¢ andS, :=Sc. . O

6 The proof of Theorem 1.10

We first introduce an operator in the spirit®defined before Theorem 4.2.2, in dimension one.
Another important difference to notice is the following. In Theorem 4.2.2, (f) for exanspig jn a
boldface class, whilelg andA; are in a lightface class. The same phenomenon will hold in the case
of Wadge classes, and in the new operator we introduce we have boldface conditions (for example,
we do not ask to be A}(3)). We code the Borel classes, and define an opegaton A" x N to do
it. Recall the definition of Seq before Lemma 2.3. We set

Wo::{(nﬁ,’y)ENXWN\ (nESeq/\ C’,jy\[:{oze/\/' | Ifl(n)ga}> v (n%Squ Cy:@},

B(A):=AUWyU {(ﬂ,v)eNxWN | BN VYnew ((B)n, (0)n) €A A=CY = c@{)n}.

new

In the sequel, we will consided<¢:=J, ., &".

Lemma6.1l Letl <{<w;and BCN. ThenB e Hg if and only if there is(3, v) € ¢ such that
CN=B.
Y

Proof. Note first thatB = N, :={a e N | s Ca} for somes € w<* or B={) if and only if there is
(8,7) Wy =8° with C? = B. Then

BeIl) < J(sp)new € (w<¥)* =B=U,c, Ns, V-B=0
& 38,6eN Vnew ((B)n, (0)n) €6’ A=B=J

o)
< 3(8,7) 6! ¢ =B.

new

Assume now that the result is proved fiox n < £ > 2. Note that

BeII & 3(Bp)new € (M) =B=U,c,, Bn
& 3B,6eN Ynew ((B)n, (6)n) €B<EA=B={J,, cg}{)
& 3(B,7)€®t CYV=B.

This finishes the proof. 0
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We now define dI;! coding of D (recall Definition 5.1.2).

Notation. If o € A andyj, p, ¢ € w, then we will denotéa)s; by jo, and(a)ay<pg> by p . We
define an inductive operatdy over /' as follows:

H(D):=DU{aeN |Vnew (a), eWOA |(a),|=0} U
{aeN |Vnew (a), eWOA (a)o=(a)2 A |(a)1]=1A < ja >€D}U
{aeN |Vnew (@), eEWOA [()o] =1 A |(a)1]=2A
Vpew < pqa >€D A (Ipoal>|(a)o| V |poa|=0)}.

Then$ is a Il monotone inductive operator, by 4A.2 in [M].

By 7C.1in [M] we getH*>:={J; HE=H(H>)=N{DCN | H(D)C D}. An easy induction on
¢ shows that)* C {a e N | Vnew (a), € WO}, so that the coding function partially defined by
c(a):=(|(a)nl),, is defined oy

Lemma 6.2 The seth™> is a I1}! coding ofD, which means thad> € I} (V) andc[$H>°] =D.

Proof. We first prove thaph> € I1(\) (see 7C in [M] for that). We define a set relatipt, D) on
N by p(a, D) < acH(D). As § is monotoney is operative. IfQ € I} (Z x N), then the relation
oo, {BEN | (2,8) €Q})isin IIL. Thusyp is II! on II!. By 7C.8 in [M], ¢*=(«) is in I and
H>® e IIHN).

Let 5. € WO such thats.| =, fore €3. Then< 3y | n€w >€ H° C H™, so thatd™ € ¢[H>].
Let v € ¢[H*>], a € H°° with v = ¢(«). Then< (a)o, B1, (@)o, (@)1, ... >€ H(H) = H°°, so that
v(0)lv=c(<(a)o, b1, (a)o, (¥)1,...>) Ec[H™].

Now let& > 1, u, € ¢[$>°] such thatu,(0) > ¢ or u,(0) =0, for eachp € w. Choosex € WO with
la| =¢, anda® € $H> with u, =c(a?). Then< «, B2, (a(o)o)(o)l, (a(l)o)(l)l, . >ENHT)=H>,
so thaté2 < u, >=c( < a, B2, (a(0)g),, (@10) gy, ... > ) €c[H™]. ThusD C c[H™].

Assume now thaf Cw{’ satisfies the following properties:
(@)0>eé.
(b)ve& = v(0)lvel.
©) (521 AVpEw (up€E A (up(0) > €V up(o):o))) = €2 <y >EE.

We setD:={aeN | Vnew (a), e WO A c¢(a)€&}. It remains to see thai(D) C D. Indeed,
this will imply that $°° C D, ¢[$H*°] C¢[D] C &€ andc[$H*>]CD.

As0>® c&, we get{a e N |Vnew (a), EWOA |(a),| =0} C D. Assume thata), € WO
for eachn cw, that(a)o=(a)2, |(a)1|=1and< jo >€ D. Thenv:=(|;a|) € £, and|(a)2|1lvEE.
Thusc(a) €€ anda e D.

Assume now thata),, € WO for any natural numbet, |(a)o| > 1, |[(a)1| =2, < pqa >€ D,
and |, 0| > |(a)o| or [p0a| =0 for anyp € w. We set¢ := [(a)o]. Thenu, := (|,4al) € &, and
£2 < u, >€&. Thusc(a) €€ andae D. O
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Note that just like Definition 5.1.2, the definition §f is cut into three cases, that we will meet
again later on:|(«):| = 0 (or, equivalently,|(«),| = , (@)1 =1or

[(a)1]=2.

Even if “u € D" is the least relation satisfying some conditions, some simplifications are possible.
For exampleT'p1010c = T'o~. SOme other simplifications are possible, and some of them will sim-
plify the notation later on. This will lead to the notion of a normalized code of a description. To define
it, we need to associate a tree with a code of a description. The idea is to describe the construction
of a set inI';, using simpler and simpler sets, until we reach the simplest set, namely the empty set.
More specifically, we defin&: H>° — {trees onux H>} as follows. Leta € $H¢\ H<¢. We set

{0} U{<(0,a)>}if [(a)1]=0,

{0y U{(0,0)7s | seT(< ja>)}if [(a)1]=1,

{0} U{(0,0)"s | s€T(<gqa>)}U
Ups1 {(0:0)7s | s€ (< pa1,00>)} i [(0)1] =2,

An easy induction om shows thaff(«) is always a countable well-founded tree (the first coordinate
of (p, @) ensures the well-foundedness). A sequene&(«) is said to benaximal if sCteT(a)
implies thats =¢. Note tha (sl(ys\—l))l |=0if sis maximal. We denote hy1,, the set of maximal
sequences of («).

Definition 6.3 We say thatv € $H°° is normalized if the following holds:
(seMa Ni<]s| A |(31(i))1‘:1) = i=|s|—

This means that in a maximal sequenad T(a), | (s1(i)), | is 2, then possiblyl once, and finally
0 once. The next lemma says that we can always assuma featormalized. It is based on the fact
thatSg (T, IV) =S¢ (T, I).

Lemma 6.4 Leta € $°°. Then there iy € $*>° normalized with()o = (a)o andT(,y =T's(s)-

Proof. Assume thatv€ H%\ $<¢. We argue by induction o.
Case 1,|(a)1]|=0.
We just sety:=a since|(s1(i)), | =0.
Case 2|(a)1]|=1.
o We first defineV : §°° — $° as follows. We ensure thdfV(3)) , = (8)o andTc(y(5)) =T(s)- Let
B1 € WO with | 51| =1. We set
<(B)o b1, (B)o, (B)1, (B)2, . > I [(B)1] =0,
N(B) = ]ﬂ> if r< nl=1,
<)o, D1 ((N(< (1008 )y, ), > T 1B1I=2,

and one easily checks thatis defined and suitable.
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e As < ja >€ H<¢, the induction assumption givése $H>° r]ormalized Vsatisfying the equalities
((5)0 = (04)2 = (O[)() andI‘c((;) = Fc(<ja>)- In particular,I‘C(a) = Fc(<ja>) = Fc((g) = Fc(N((S))- So we
have to findy € $> normalized with(y)o = (0)o andT o,y =T o (s))- Assume thad is in 7\ H<".
We argue by induction on.

Subcase 1|(9);|<1.
We just sety:= N (9).
Subcase 2|(d)1|=2.

Note that<, ,6 > is normalized sinc0, )~ s € M; (resp.,(p,d) s € M) if se M, s (resp.,
S€ M(mOjLng andp>1). The induction assumptipn gives, ;v >€ H> normalized with, oy =06
andTl ., +>)=Tn (<, 6>))- We set(y);:=(d); if €2 and we are done.

Case 3|(a)1|=2.
The induction assumption gives,, ;v >¢< $H> normalized satisfying oy =, 0 and

I‘C(<qu7>) I‘C(<p,qa>)'
We set(v);:=(«); if €2 and we are done. O

Using &, we will now code the non self-dual Wadge classes of Borel sets, and define an operator
JonN?3 to do it. We set

J(A)::AU{(a,mﬂ,7)€N2xWN]Vn€w (o), €EWO A
<Vn€w \(a)n|:O/\m:O/\C,/Y\/=@> \Y%
<|(a)1|:1/\(a)oz(a)g/\mzl/\356/\/ (< jo >,ﬁ,6)€A/\ny:ﬁC§\/> Vv

(!(04)1122 A(@)o| =1 AVpew (lpoal > |(a)o] V [poa|=0) A

m=2A3EN (<oqa>,(B)o,(0)o)EAN
21 (<ior1q0>s (D) (0)p)g) EAN (((B)p)y: ((6)),) €810l A

N N _
Vp#421 Cg) )y, Y C(is),), =N A

N _ N N N N
5 =Upz1 (Clt6),0 \Ciorn) Y (Clagg M Mzt C((«s)p)l)) }
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Lemma 6.5 Let¢ be an ordinal.

(@) Assume thaor, mf3, ) € J¢. Thena € H¢.

(b) Leta € H¢ and BC N. ThenB ¢ T, if and only if there arem € w and 3, v € AV such that
(o, mB,7) €3¢ andC) = B.

Proof. (a) We argue by induction of. So leta € 3¢\ J<¢. We may assume thata),| > 1. If
[(a)1| =1, then(< ja >, 8,6) € I<¢ for somes, and< ;o >€ H<¢, by induction assumption, so
we are done. If(a)1| =2, then(< g4 >, (8)0, (8)0), (< (pyo+1.42 >, ((B)p) s ((6)p),) €T=* for
somes, and< , ,a >€ H<¢, by induction assumption, for any natural numper

(b) = We argue by induction og, and we may assume thatt H<¢,
Case 1,|(a)1|=0.

Note thatc(a) =0 and B = (). We setn :=0, 3:=0, and we choose € W with Cﬁf =0.
Then(a, 8,v)€3° C 3¢,

Case 2|(a)1|=1.

Note that< ;o >€ H<¢, and-B €T .., ,>)- The induction assumption gives d € V' such that
(< ja>,B,6)€T<¢ andC) =—B. We setm:=1 and choose € W with ¢/ =-C}.

Case 3|(a)1|=2.

Note that< , ;,a >€ $<¢ for any natural numbes. We can write

B={J (4,nCp)U(D\|J Cp),
p>1 p>1

where(C},),>1 is a sequence of pairwise disjomﬁ’(a)o‘ sets,D €T, a>) and

Ap S Fc(

<(p)o+1,4%>)"

Lemma 6.1 giveg ((3),),, ((6)p),) € 8!l such tha‘(){}fé)p)l =-C). The induction assumption

gives(B)o, (6)o €N such that(< g 4o >, (8)o, (6)0) € I<¢ andCy) =D, and((8),), ((8)p), €N
such that( < (541,62 >, ((8)p), ((6)p),) € T andC{\({;)p)o = A,. We setm := 2 and choose

yeWN with O =U 51 (CG),0, \C),00) Y (CH) NNyt Ol
< We argue by induction 0§, and we may assume that, mg3, ) ¢ J<¢.
Case 1|(a)1]|=0.

Note thatB=C% =0 €T g =T'(4).
Case 2|(a)1|=1.

Note that there i$ such that(< jo >, 3,6) € 3<¢ andC¥ = ~C}, which implies thatB is in
FC(<ja>) :Fc(a)'
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Case 3|(a)1|=2.
Let § be a witness for the fact thét, m3,v) € 35. As

(< 0,40 >, (B)o, (0)o), ( < (p)o+1,4% > ((ﬂ)p)(y ((5)1))0) eIt

the setC{}f)O iSINT (<, a>) andC{}fa)p)0 isinT<, ., a>) by induction assumption. As

(((B)p)1: ((6)),) € ®l@l,
N _
Clis)) €Ml DY Lemma 6.1. Thus € Sja), (U1 Te(<,qa>) Te(<oga>)) =Le(a)- O

Remark. We will also consider the operatgrdefined just likeJ, except that

- we replacg WV, CV) with (W, C) (we work in A/ instead of\),

- we replace the condition of the for(uffﬂ) e el(@)ol with ((a)o,ﬁﬁ) € @ (see the remark at the
end of Section 4 for the definition @J),

- we asks3, v, § to be Al (), so thatj is a II;' monotone inductive operator.

To prove Theorem 1.10, we will consider some tuples («, ag, a1, by, b1, ), wherea € H>° is
a (normalized in practice) code for a descriptios: c(«). We will inductively define them through
an inductive operator ove¥® calledf. The definition off is in the spirit of that ofy. We will use
the good universal sét for Hf defined after the proof of Theorem 4.2.2, at the end of Section 4, and
the following lemma.

Lemma 6.6 There is a recursive mag : N2 — N such thatd 4, ) =U(,), U Ups1 U, U it
a€ Al NWO andja| > 1.

Proof. Note first thatP := {(3,0) e N x N | (8)p € AL N WO A ]( Jo| =1 A

is a [T} set, by the remark defining at the end of Section 4. This givese N recursive with
P=U"N*, Leta€ A} NWO with || >1, andr € . Then

ol & (< a,rr, ... >,(§)€P

S (v, < a,rr, ... >,g)EMNXNd
& (S(’y, <,y .. >),0 ) cu.

561/[@)0 U UP21 —\—\U(T)p

We just have to sefl(«, ) :=S(v, < a, 7,7y ... >). O

We are now ready to defing (recall the remark definin@ at the end of Section 4).
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The operatoR is defined as follows (recall the definition ©):

R(A):=AU {(a,ao,al,bo,bl,r)e (VN A%(Oz))6 |Vnew (a), WO A

<Vn€w [(@)n| =0 AUyy Uy, =N A (bg,b1)=(ag,a1) AT=ay | V

<(a)1‘:1/\(a)0—< )2/\(< o>, ao,al,bo,bl,al GA/\T—CLO

(!(04)1!=2A|(a)0|21AVp€w (Ip.oal > [(a)o| V [p.0c|=0) A

Jeg, e1,s€ Af(@) (< 0,40 >,a0,a1,(co)o, (c1)o, (s)o) €
Vp>1 ( < (p)o+1,¢ > 00, a1, (Co)p, (1 ) ( )p) €
vie2 bi=A((a)o, < as, (s)1, e >)

A
A
A
Hdo,dleA%(a) (< 0,q >,b0,b1,d0,d1, € >}
Thenf is a I} monotone inductive operator.

Remark. Let ¢ be an ordinal, and’ := («, ag, a1, by, b1,7) € RS, An induction on¢ shows the
following properties.

- Uy N Uy, =0.

- B;:=—Uy, C A;:=—U,, for anyie 2. In particular,By N By =0.

- bo, by, r are completely determined By, ag, a1). This is the reason why we will sometimes identify
bi =b;(a, ag, a1) ~b;(u, ap,ar) andr=r(a, ag, a1) ~r(u, ag, a).

- If ~Uy, © U, for anyie2, then—ify, C—Uy, foranyie€ 2 and—U, (4 a9.01) © Ur(a,ap.af)-
- There isi € 2 such that-if, C —U,,.

Lemma 6.7 (a) Let¢ be an ordinal,a € A, and (a, m3,7) € 3¢. Thena € ¢ and the set’,, is in
A% N Fc(a) (Tl)'

(b) Leta € Al N H> normalized, andig, a; € Al with A9 N A1 =(). Then there aréy, by, r €N such
that (a, aop, ai, bg, by, 7“) € R™.

Proof. (a) We argue as in the proof of Lemmas 6.5.(a) and 6.5=(bJhe only thing to notice is that
in the casg(a)1| =2, ((@)o, ((8)p),, ((5)p)1) € Q. Proposition 2.2, Lemma 2.3 and Theorem 3.1
give a tre€l; with Al suitable levels anSe EI( Yo |([ 2]) which is not separable frofi;]\ S by a

pot(HKa ) set. Asa € Al |(a)o] <w K and Theorem 4.2.2 implies thas) ), is in H|(a) |( T1).
ThusC, eI‘ c(a)(T1)-

(b) Let¢ be an ordinal withy € $¢. Here again we argue by induction 6nSo assume that ¢ $<¢.
Case 1(«)1|=0.

Letb;:=a; andr:=a;. Then(a, ag, ax, by, by, 7) € RO C 8.
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Case 2|(a)1|=1.

As < ja >€$H<¢, the induction assumption givés, by, s) with
(< ja>,a9,a1,b,b1,s)€R™.
As « is normalized|;o| =0 for any j, ands=a;. We setr:=aq. Then
(v, ag, a1, bg, by, r) € R(RT)=RK™.
Case 3|(a)1|=2.
As < , ., >€ 9<%, the induction assumption givés), af, 77) with
(< 0,qC >,ao,a1,a8,a?,r0) € R,
and (< (), 41,40 >, a0, 01,00, al,7P) € £, for anyp > 1. As in the proof of Lemma 6.2 we see
that & € II'. By A}-selection, we may assume that the sequeie®s (a}) and(r?) are A{. In
particular, there ig; € A} with (¢;), =a?. We set(s),:=7P, and
bi :=A(()o, < ai, ()1, (8)2, ... >).
The induction assumption give, d;, r such that(< o ;o >, bo, b1, do, d1,7r) € R°. We are done
since(a, ag, a1, by, by, ) € K. O
The next lemma is the crucial separation lemma.

Lemma 6.8 Let ¥ := («, ag, a1, by, b1, ) € K% with a € Al normalized andug,a; € Al, ¥ in
SHN) with (=4,) N S =0. Then there aren € w and 3, v € N such that(a, mf3,v) € 3 and C,
separatesd; N ¥ from Ag N X. In particular, A; N ¥ is separable fromiy N X by aA{ N Ty (11)
set.

Proof. The last assertion comes from Lemma 6.7.(a). bt an ordinal withi € K7. We argue by
induction onn. So assume thate 87\ <.

Case 1|(a)1]|=0.
We setm :=0, 3:=0°, and choose € A% N W with C, =0. We are done sindé=A; N X.
Case 2|(a)1|=1.

As « is normalized|;a| = 0 for any j. We setm :=1, 3:= 0>, and choosey € Al N W with
C,=N4%. Thend € Al N W with Cs=10 is a witness for the fact thaty, mg3,y) € 3°°. We are done
sincer =ay.

Case 3|(a)1]|=2.

There arecg, c1,s € A With (< ()041,4@ >, a0, a1, (Co)p, (¢1)p, (s)p) € K<, for anyp > 1,
and, for anyi € 2, b; = A((a)o, < a;, (s)1,(s)2,... > ). Moreover, there aréy,d; € A{ with
(< 0,q0 >, bo,b1,do,dy, ) € RS

By Lemma 6.7.(a), one of the goals is to build € T (71). The proof of Lemma 6.7.(a) shows
thatl',,,) :S‘(&M(Ule Te(<,4a5) Fe(<g4a>))- This means that we want to find some sequences
(Cp)p=1, (Sp)p=1 @ndB such thatlly =~ (Sp N Cp) U (B\U,>; Cp)-
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- Let us construcB.

The induction assumption give¥, 1 € V" such thaf < ¢ ,a >, 8,7%) € 3°° andC.0 separates
A, N ¥ from A, N3 We setB:=Cp.

- Let us construct thé’,’s.
We sett:= |(a)o|- Note thath; = 4; N (5, ~Us), . This implies that

U:=(CoNANE) U (~Coo N A NE)C | ] ~ )"
p>1
As in the proof of Lemma 6.6 we see that the relatigﬁ‘%u(s)pl(a)o‘” is 11} in (p, a, s,0). By Al-
selection there is &} -recursive mag : V¢ — w such thatf(c?) >1 for anyge N andggé ﬂu(s)f(;
for anyge U.

In particular, for any € U there isP € X! N I (1) such thaty € P C Y, Now P and

D@’
ﬁz/{(s)f((§> are disjoint>! sets, separable byﬁgg(ﬁ) set. Asa € A}, 1< |(a)| < w?K_ As in
the proof of Lemma 6.7.(a) we gét; and.S. Theorem 4.2.2 give§3', ') € (A} x A}) N Ve with

PC Cy QU(S)f®.

By Lemma 4.2.3.(2).(a) the relatior{#,~’) is in (A} x A}) N V¢"is II!, so there is aA}-
recursive mag : N9 —w x (N x N) such that

= =

VoeU go(0)=f(0) Agi(d)e(Alx ANV AdeC CUy

(9151 £

by Al-selection. In particular, th&] setg[U] is a subset of

{(p.(8',7) €wx (A1 x A1) N Veg) | Oy ), },
which is /7! and countable. The separation theorem giles A} between these two sets. Asis
countable, there ardy/, 3,5 € Al with D = {(N(q), ((B)q, (7)[1)) | g€ w}. Now we can define
Co=Usewn@=p €50 \Ur<y C5),)-

- We now study the properties of tiig,'s. We can say that

o The relation 5 C," is Al in (p, d).

o TheC,’s are pairwise disjoint.

o CpeX(11) sinceCy), €%, (1) C A2(ry), by Theorem 4.2.2.

o We setf:={(p,d) cwx N | Jgew N(q)=pAdeC),}, sothatt e A} andE, € 29 ()
for anyp > 1. Note thatC), C E,,.

© Ule Cp:UpZI Ep.

o E, separate$/ N f~1({p}) from U, In particular,U is a subset of thet! setUle Cp.
Moreover,,5, T(S)f C(Ups1 Ep)-
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- The induction assumption gives, for apy> 1, 57,7 with (< (), 11,40 >, 67,7F) € 3% andC,p
separatesl; N E, from AoN E,. As in the proof of Lemma 6.7.(b) we may assume that the sequences
(8P) and(4?) are Al. By Al-selection again there isAl-recursive magh : w — N x N such that

h(p) € (A} x A1) NV andCy, () = —C,, for anyp>1. We set((53),,) , :=ho(p) and((9),) , :=hi1(p),

o) that((a)o, ((B)p), ((5)p)1) eQ foranyp>1.

We setm:=2, (3)o:= (", and((3),),:= 0" if p>1, so that3 is completely defined. Similarly,
we define(d)o := ", and ((9),), := 7 if p > 1. Finally, we choosey € A} N W such that
(0N :Up21 (Cyp\Chy () U (Cis), N anl Ch(p))» SO that(a, m3, v) € 3> andC,, separatesl; N %
from Ay N X. O

The next result is the actual (effective) content of Theorem 1.10.(1). It is also the version of
Theorem 4.4.1 for the non self-dual Wadge classes of Borel setg, Let’)? — N be a continuous
embedding (for example we can embett)? into A’ in the obvious way, and then use a bijection
between\V'¢ and\).

Theorem 6.9 Let T, be a tree withA] suitable levelsp in Al normalized,3,~ in A such that
(o, B,7) €T, S ;:jgl(Cy) N [Ty], andag, a1, bg, by, 7 € N with 7:= («, ag, a1, b, by, 1) € K.
Then one of the following holds:

(@) ~U,=0.

(b) The inequality( (I1/ [T4])ica, S, [T4]\S) < ((N)ied, Ao, A1) holds.

Now we can state the version of Theorem 4.2.2 for the non self-dual Wadge classes of Borel sets.
Theorem 6.10 Let T,; be a tree withA] suitable levelsp in Al normalized,3,~ in A/ such that
(Oé, 0, ’Y) €J>, 5 :jd—l(c’Jy\/) N (T([l, andag, a1, by, b1, r € N with v:= (a, ap, ai, by, by, T) € R,
We assume thatt is not separable fromiT;|\S by a po(f‘c(a)) set. Then the following are equivalent:
(a) The setd is not separable fromi; by a po(f‘c(a)) set.

(b) The set, is not separable fromt; by aAi N pot(I"C(a)) set.
(¢)—~(36',7' €N such that(a, #',7') € 3> and A; CCy C—Ay).
(d) The setd is not separable froml; by afc(a) (11) set.

(e) U #0.

(f) The inequality((d“);cq, S, [T4]1\S) < ((NV)ied, Ao, A1) holds.
Proof. (a) = (b) and (a)= (d) are clear sinceél 5 is Polish.

(b) = (c) This comes from Lemma 6.7.(a).

(b) = (e), (c)= (e) and (d)= (e) This comes from Lemma 6.8.

(e) = (f) This comes from Theorem 6.9 (&B/[7};] is compact, we just have to compose with con-
tinuous retractions to get functions definedd).

H=@IlfPe pot(fc(a)) separatesl, from A; and (f) holds, thet$ C (I;cq fi) ~H(P) C~([T4]\S).
This implies thatS is separable from7|\S by a po(f‘c(a)) set, by Lemma 4.4.7. But this contradicts
the assumption of. O
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Proof of Theorem 1.10.(1) Note first that (a) and (b) cannot hold simultaneously, as in the proof of
Theorem 6.10.

We assume that (a) does not hold. This implies thatXhs are not empty, since otherwise
Ag=A; =0, andp €T unlessI"'= {()}. As in the proof of Theorem 4.1, we may assume tkiat= \/
for eachi € d, by Lemma 4.4.7. By Theorem 5.1.3 thereuis D with T(N) =T, (N). If Fis a
zero-dimensional Polish space, then we also Ha4€) =T, (F), by Theorem 4.1.3 in [Lo-SR2].
It follows that potI') = pot(T',). By Lemmas 6.2 and 6.4 we may assume that there é&H>°
normalized withc(a) =u.

By Theorem 4.1.3 in [Lo-SR2] there B € T'(NV) with S = jd_l(B) N [Ty]. To simplify the
notation, we may assume th#j has A} levels,a € Al, and Ay, A; € 2} (N?). By Lemma 6.5
there areB,y € N such that(a, 3,7) € 3% andC)’ = B. Lemma 6.7.(b) givesy, by, with
(o, ag, ay, bg, by, r) € 8. Lemma 6.8 implies thati/, # 0. So (b) holds, by Theorem 6.10. [

The sequel is devoted to the proof of Theorem 6.9. We have to introduce a lot of objects before we
can do it. We will create some paragraphs to describe these objects. We start with a general notion.
The idea is that, given a sétin ', ([74]), and with the help of the treg(«), we will keep all the
Eg (or equivalentyIT?, if we pass to complements) sets used to bgilich mind. We will represent
theseHg sets, on most sequencesf T(«), by induction on|s|, applying the Debs-Saint Raymond
theorem. At each induction step, sorﬂg sets of the level become closed, but we also partially

simplify the Hg sets to come. This is the reason why the ordinal subtraction is involved (recall the
definition of the ordinal subtraction after Theorem 5.1.3).

Definition 6.11 Let X be a set,A C X, B be a countable family of subsets ®f andT" be a Borel
class. We say thal eI'(B) if AcT'(X, r) for any topologyr on X containingB.

Proposition 6.12 Let X be a topological space.

(a) LetAC X, B be a countable family of open subsets¥gfandI" be a Borel class. TheA €T'(X)
if AcT'(B).

(b) LetY beasetBCY, f: X —Y be a bijection5 be a countable family of subsets¥f andT’
be a Borel class. Thefi=}(B)eT'({f~1(D) | DeB}) if BET(B).

(c) Let1 <n < &andA e IIY(X). We assume thak is metrizable. Then there i8 C II7)(X)
countable such thatl € H?H&fn)(l?), whereB:={-B | B€B}.

In practice, X will be the metrizable spackgz], for some tree relatio?, and f will be the
canonical map given by the Debs-Saint Raymond theorem.

Proof. (a) The topology:- is simply the topology ofX .
(b) Let 7 be a topology onX containing{f~'(D) | D € B}. Theno := {f[A] | A€ r}isa

topology onY containingB. ThusB € (Y, o) sinceB € T'(B). Thereforef ~}(B) e T'(X, 7) since
f:(X,7)— (Y, 0) is continuous.
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(c) We argue by induction ofi—n. The result is clear if —n=0. So assume thgt—» > 1. Write
A=, e, ~An, Wheren, <¢ andA, € Hgn (X). As X is metrizable, we may assume thgt 7,,.
The induction assumption gives, C H%(X) countable such that,, € H?Hnn_n) (B,). It remains
to setB:={J O

new

(A) The witnesses

Notation. We first define a map producing witnesses for the fact #hati*>°. More precisely, we
define a map: R — &> U (R®)“. Let7:=(a, ag, a1, by, by, r) € R\ &<E. If |(a)1| =0, then we
setV(v):=7. If |(a)1| =1, then, using the definition o, we set

V(ﬁ) = (< jo >,ap,01, bOa b17 al)'
Note thatV (7)) € R<¢. If |(a)1]| =2, then we set
( <o,q0>,a0,a1,(co)o, (c1)o, (8)o) if p=0,

V(9)(p) :{

( <(p)o+1,¢& > @0, 01, (co)ps (c1)ps (S)p) if p>1.
Here again) () (p) € 8<¢.

Similarly, we define a mapV producing witnesses for the fact that 3°°. Moreover, we keep
§ in mind. More precisely, we define a mapy : 3 — J°° U (M x J*®) U (N x (I®)¥). Let
W = (o, mB3,7) be inTE\T<E. If |(a)1] = 0, then we seWW(w) := . If |(a)1] =1, then, using
the definition ofJ and choosing, we setW () := (6, (< ja >,3,4)). If |(a)1| =2, then we set
W (@) := (8, Y(w)), where

(<oqa>,(B)o, (8)0) if p=0,

Y(w)(p):= { |
( <(p)o+1,¢¥ > ((/8)11)07 ((5)1))0) if p>1.

(B) The trees associated with the codes for the non self-dual Wadge classes of Borel sets

¢ Recall the definition of («) after Lemma 6.2. Similarly, we defing: 3°° — {trees onv x 3>} as
follows. Letw:=(a, 3,7) € 3¢\ T<E. We set

{0} U {<(0, @) >} if |(a)1] =0,
()= {0} U{(0,9)"s | s€eT(V(W)) } if |(@)1]=1,
{0} UUpew {(0,0)7s [ s€T(V(W)(p)) } I ()] =2.
Here againf(«) is a countable well founded tree containing the sequenc¢e, «/) >. The set of
maximal sequences B(w) is M gz:={se (W) | VteZ (W) sCt = s=t}.

e Fix w:=(a, 3,7) €3 with a € Al normalized. In the sequel, it will be convenient to set, for
s € (W) \ Mz,

wif s=0,
81(8)2{37(81(51)) if 875@/\‘(31 |s|— ‘:
Y(s1(|s|=1)) (so(|s|—1)) if s;é@/\ ]( (s|-1)(0)),| =2
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e LetseT(uw). WesetB,:={i<|s| | |(s1(7)(0)),|=2}. As«is normalized B; is a natural number.
Note thatB, <|s|. If moreovers € T(w)\ M, then we seC,:={i<|s| | |(s1(i)(0)),|=2]}.

e The ordinalg(a)o|, for a € Al N $°°, will be of particular importance in the sequel. We define a
function Z: T () \ M g — (w 1CK)<“’ satisfying| Z(s)|=|s|+1. The sequencecodes somﬂg sets,
and the role ofZ(s) is to give these’s. We setZ(s)(i) := | (s1(¢)(0)),| if i <|s|. We can easily
check the following properties &(s):

- Z( )(7) depends only onl|s.
Z(s)CZ(1) if sCt.
Z(s)(i+1)>Z(s)(i) or Z(s)(i+1)=01if i <|s].
Z(s)(i+1)=0if Z(s)(i)=0andi<|s|.
- (Z(s)(i))iecs is an increasing sequence of recursive ordinals different from zero.

(C) The resolution families
o Fix i :=(a, 3,v) €3 with o € A normalized, angh>1. We set

o [N |(a)]<1,
% ={ g, W12

p

Note thatQy’ € IIf, ,, (N) if |(a)1|=2, by Lemma 6.1.

e Recall the finite sets; C d defined at the end of the proof of Proposition 2.2 (we only used the fact
thatT}; has finite levels to see that they are finite). We put  J,.,, ¢, so thatc is countable. This
will be the countable setmentioned in Definition 4.3.1.

« Recall the embedding; defined before Theorem 6.9. We & := h[j; ' (QY) N ¢*], so that the
union Py U PF=[C] if p£q>1. Moreover,Ps' () €XT% i) ([S) if s €T(w)\ M andi € ;.

elf Tisatreeand T, thenT,:={tcT | sCt}.

o Fix @ := (a, 8,7) € 3% with a € A} normalized andi(«); | =2. We say that € T (1) is extendable
if there ist € T(w), such thats| < B; (which implies thats ¢ M.;). We will construct, for eaclk
extendable, a resolution fami(yz%) ,<,,.. We construct simultaneously some ordinglsindé;. If ¢
is an ordinal, then we set
eﬁ:{nw0=n+L
' 6 otherwise

(this is what appears in the Debs-Saint Raymond theorem). The following will halds= 67,

£s=Z2(s)(|s|) and |
0 -:{5825(8)(0)=I(a)o! if s=0,
ST (s~ ) if s£D.
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We want the resolution family to satisfy the following conditions.

- The family (R%) y<, is uniform if 6, is a limit ordinal.

- R)=C,andR!" =RYif s£0.

- I : [R¥] — [RY] is a continuous bijection.

- We set,IT:=1IIg o I o ... o I1. Then 1= (Py *D) e TIO ([R™)) i p> 1.

S JINPRIY ETI), iy ((BRE]) i p>1, €T (15),\ Mg and|s| < j+1€Cy.

e The construction is by induction dr|. Assume that =0, p>1, t € (@) \ Mgz andj+1 € C;.
Proposition 6.12.(c) gives;’ C ITj ([C]) countable such thap! U Y ¢ T, (2(0)+1)—0) (B5)-
This implies thatuy := {P¥ | p > 1} U Up>1.texa) My, j+1ec By’ is countable and made of

Hgm([g]) sets. Theorems 4.3.4 and 4.4.4 give a faniiif) ,<,,, uniform if 6, is a limit ordinal,
such that

- Rj=C,
- Ty: [R"] — [R{)] is a continuous bijection,
- 11,1 (Q) e IIY([R"]) for eachQ € ug.

This family is suitable, by Proposition 6.12.

e Assume now that () is extendable, and that the construction is done for the strict predecessors of
s. Note that,_ TI=1(p3*(*D) e IT) ([R!="]). Assume thap > 1, t € T(w),\ M and|s| < j+1€ Cy.
Then Proposition 6.12.(c) gives a countable fargfly C IT) ([R”*"]) such that,_TT-1(PL U™V is

: 5t,9 .. .
in H[1)+(Z(t)(j+1)_£5)(cp])- This implies that

Ug = {571171(77;1“8')) |p>1} U U C;;j
p>1teX (W) s\ Mg, |s|<j+1€Ct

IS countable and made (Iﬁgs([RZi*]) sets. Theorems 4.3.4 and 4.4.4 give a resolution family
(RE) <y, uniform if 6, is a limit ordinal, such that

-RI=R-",
- 4 : [R¥] — [RY] is a continuous bijection,
- H(Q) e I ([RY)) for eachQ € us.

This family is suitable, by Proposition 6.12. This completes the construction of the families.
(D) The subsets offy

We now build some subsets @ that will play the role thatD and7};\ D played in the proof of
Theorem 4.4.1. Fixt := («, 3,7) € 3 with o € A normalized and(«);| = 2. We will define a
family of subsets of; as follows. Assume thatc T(w) is extendable.
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We set, forg > 1,
Pols)e={Fe Ty | 5=0vvp>1 3B, () 5eB, ),
Pq(s)::{g'er | 520 AVB, e 11 (P0) 5¢B, A
Wpew\{0,q} 3B, 1PNy §eBp}.

Note that theP(s)’s are pairwise disjoint. We set, forc T(w) andi <|s|, Z; : _ﬂ]Q s(7)(0) (817)-
If i =|s|, then we writeZ, instead ofZ; ;. The next lemma associates to eacil; a sequence( £)
in T (&) specifying in whichP,(s)’s the sequenceis.

Proposition 6.13 Letw := («, 3, ) € 3> with o € A} normalized and(a);| =2, andt € T;. Then
there arel cw ands(t') € (w) of lengthl satisfying the following statements.

(a) teT ()"

(b) If s(¢) is extendable by, thentgéPt (o) (E[).

Proof. We actually construct, fof € w, a sequence; € T(w). We will haves; C s;j11, |s;| =j if
j<l, sj=sif j>1,andt€Z,,. Atthe end,s(t’) will be s;. The definition ofs; is by induction on

Jj. Assume thats;).<; are constructed and satisfy these properties, which is the cage-for We
may assume thas ;| = ;.

If s] is not extendable of ¢ B for eachB € [R 7], then we set; 1 := s;. If £ € B for some
Be [st '], then there is a unique natural numgesuch that € P,(s;) since

s

—1(731§5j)1(j)) U st_1<P<§Sj)1(j)) =R
if p#¢>1. We will have|s;;1|=7j+1, ands;;1(j)(0) :=¢. Moreover,

, @if j=0,
sj+1(7)(1) :—{ y(sj(j_l)(l)) (s;(G=1)(0)) if j>1.

This completes the construction of thgs, and they are ir€(«w). The well-foundedness & (w)
proves the existence éfands(t) is suitable. O

Notation. Proposition 6.13 associatet ) € () to t € Ty. Under the same conditions, we can
associates(t ) € M to £. In order to do this, we need the following lemma:

Lemma 6.14 Let 1 := («a, 8,7) € 3% with a € Al normalized and(«a);| =2, ands € T(w). Then
there isS € Mz extendings such thatSy(7) =0 if |s| <i<|S].

Proof. If s=0, then we seB(0):= (0, @). If W(51(i)) # S1(i), then we set
(0.9(8()) if ¥(5()) €3,
S(i+1):=
(o, y(S(i))(O)) if Y(S(i)) € (3%

By induction, we see tha|(i+1) € T(w) for eachi <|.S|, which proves that the length 6fis finite
since¥(w) is well-founded. Thus € M .
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If s#£0, thenS(|s|—1) is defined. We argue similarly. The only thing to change is that
S(Isl) = (0, ¥ (s(Is1-1)) (so(Js|-1)) )
it W (s1(|s| 1)) #s1(]s|— 1) andY (s(|s|— 1)) € (3%)<. 0
We now associate a maximal extensi®fi ) of s(¢') to anyt in T.

Remark. There isS((}) € M with (S(ﬁ))o(i) =0if i <|S(0)|. Note thats(f) C S(0). If §£Te Ty,
then we define5(#') by induction onl¢]:

-Ifs

(F)=0, theni'# 0 sincell € Py(0), andS(¥):= S(£°).
- If S(F
fs(t

)#0 andF:Zt(f)): €7, thenS(#) ;ZS(FZzg‘)t).

£)#0 andfzaﬁf)f ¢, thenS(1) is the extension of(#) given by Lemma 6.14 applied to
=s(t).

Note thatS(q) € M and is an extension &f(z ), by induction on/Z|. This comes from the fact

thats(t') Cs(f E;f)) ) in the second case.

(E) The tuples

We now keep the tuplesy, ag, a1, by, b1, ) along the elements &f(«) in mind, using the witness
map). Fix & := («a, 8,7) € 3°° andv := («, ag, a1, b, b1, ) € K. In the sequel, we will say that
(w,7) is standard if a € A} is normalized and(c);|=2. Assume thafw, 7' ) is standard. We will
define a maf/ : T(w) — (&)< such tha{V (s)| = [s|, V> := (V") ;<5 := V(s)(i) depends only
on s|i as follows. We set, for<|s|,

vif 1=0
Vei.={ Y(Veis 1)|f1>1/\|( Ve <1,
V(1) (so(i—1)) m>1Ay( Ve =2.

Lemma 6.15 Let (&, ¢ ) be standards € T(w), andi < |s|. ThenVOS’i = $1(4)(0). In particular,
s¢ Mg andi<|s| imply thatZ(s)(i)=|(VS")ol.

Proof. The last assertion clearly comes from the first one. The proof is by inductian dihe
assertion is clear far=0 sinceVOS’0 =51(0)(0) =a. Assume that it holds for< |s| —

o If i¢ By, then|(Vy")1|=|(s1 (4 i)(0)),|=1. Thus
Vo =V(Ve)(0) =<, V5 >=<s1(0)(0) >=s1(i+1)(0).
o If i€ By, then|(Vy")1|=|(s1(i)(0)),|=2. If moreoversy (i) =0, then

V=<0V =< g1 1)0) =1 (41)0).

The argument is similar i§y (i) > 1. O
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The next lemma is a preparation for Lemma 6.21, which is the crucial step for proving a version
of the claim in the proof of Theorem 4.4.1 for the non self-dual Wadge classes of Borel sets.

Lemma 6.16 Let (w, ') be standard{ € T(w), andi € B,.
)= “Uyti ©Uptist.
(a) If to(Z) 0, then Z/[V5t, - Vg, +1

(b) The inCIUSion_‘uV;,i C ﬁuvg,mg”" holds.

Proof. (a) Note that/’+1 = V(V%#)(0), by Lemma 6.15. Thu¥."""" = V(V%)(0)(5) = (s)o for

somes for which — Y C—U(s),, by the 2nd and the 4th remarks after the definitiotk of

(b) We may assume thaj(i) > 1, so thatVEf (g 8)to (i), ANA—Uy 10 €=U, it o el by the 5th
remark after the definition of and the definition ofA. We are done by Lemma 6.15. O

(F) The sequences of natural numbers

Let s € T(w). We have to keep the natural numbegéi) in mind. We will consider an ordering
of these finite sequences of natural numbers that will help us to prove the claim we just mentioned.

Notation. Fix (w, v ) standard and, u € T(w).

o If s andu are not compatible, then we denate u:=s|i=uli, wherei is minimal withs(7) # u(7).
Note that|s A u| € Bs.

o We defineO(s) e w!*l: we setO(s) (i) :=s0(i).
e We also define a partial order arr as follows:
OC P < O=PVv3Ii<min(|O|,|P]) (Oli=Pli AO(i)=0<P(i)).

Lemma 6.17 Let (w, 7 ) be standard ands,u € T(w) be incompatible. We assume thts in
I|s/\u|+1,sa t_’EI\s/\qu wands Rnﬂuj\mil t. ThenO( ) C O( )

Proof. As s(|s A u|) #u(]s A ul) andsi(|s A ul) =u1(]s A ul), 80(]5/\u|)7éu0(\s/\u\). Recall the
definition of theP, (s)'s. Note the following facts. Assume that B, ands R 1.

sl
- If s9(i) =0 andt'€ Py(si), thens'c Py(s|i) too.
- If s9(i) > 1 andt'e Py, ;) (s]i), thense Py(s|i) U Py, (sli).

These facts imply thaty(|s A u|) =0<wug(|s A u|). ThereforeO(s) C O(u). O
(G) The ranges

The goal of this paragraph is to define the analytic Béﬁé(f)) that will containU in the proof

of Theorem 6.9. They will play the role th%g N A; and Ay played in the proof of Theorem 4.4.1
(see Conditions (4)-(5)).
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Notation. Fix (w, 7 ) standard and € T(w) \ {0}. We set

o[ lsl=1ifVi<|s| so(s)>1,
~ min{i<]|s| | so(¢)=0} otherwise,

5. |s|—1if so(|s|—1)>1,
Tl min{i<|s| | Vj>i so(j)=0} otherwise.

Note thati® <I° < B;. We assomatéf)’, by*, o € N with eachi® <i < |s|. The definition is by
induction oni. We sethe” :=b.(Vy"" ,ap,a1), r 5,8 ::r(VOS”S ag, ay) = V5“ Then

si1 _ ) b if so(i+1)> 1,
T b (VT B bEY) i so(i4+1) =0,

i1 [ rotif so(i+1)>1,
il . )=
r(VEbe 05" if s(i+1)=0.

Therange of sisr(s):=—U,s1s.

Lemma 6.18 Assume thatw, ¥ ) is standard,s € T(&)\ {0}, andi® <i < B;—1 satisfiessy(i) =0.
Thenys?=psitl,

Proof. We may assume thag(i+1)=0. Assume first that=1:°. Then

;S

r(Vy" ao,al)

T(V(VSZ (0) bo (V3" ao,al) b1 (V" ao,al))
(v(ver) ( i*))(0), bo (V™" a0, a1), b1 (Vg™ ap, a1))
(Vo

(

Il
3

r(VETH! bOVQ' ag, a1), b (Ve ,a,a1))
—r Vsz S+1 b(s)z biez)

szs—&—l
The argument is similar if > ¢°. O
Lemma 6.19 Let (w, v ) be standard. Then there iS(q) € My such thatf € 7, 5@ and
S(6)’

_‘ur QT(S(@))

Proof. We sets:= S(@) We already saw thate M g, 6613575, ands (i) =0 for eachi < |s| after
Lemma 6.14. Note that =7°=0. Thus

Uy = ﬂuvss,o = ﬂuvss,is = _\Urs,is = _\Urs,ls = T(S).
This finishes the proof. g

The role of the next objects is to determine whether we go todiheide or theA; side in the
proof of Theorem 6.9.

Notation. Let @ := (o, 3,7) € 3 with a € Al normalized and(a);| = 2, ands € M. We set
es:=01if Bs<|s|—1, e5:=1 otherwise, i.e., iBs=|s|—
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Lemma 6.20 Let (w, 7' ) be standard and € M ;. Thenr(s) C—U,, .

Proof. Note first that-i/,s.; C —U,_, by induction on; and the 2nd remark after the definition ©f
This implies that-/,..1s C ﬁur = _‘Z/{VS,IS, by the 4th remark after the definition &f
5

(Vo' ao,a1)
Thusr(s) =-U,.s1s C ﬁuv;,zs. Lemma 6.16 implies thaﬁL{V;,zs - VB But V;’BS =a.,, by
Lemma 6.15. O

The next lemma is crucial for proving the claim mentioned before Lemma 6.16.

Lemma 6.21 Let (w, v ) be standard, and, ¢ € T(w) with O(s) # O(t) andO(s) T O(t). Then
— s snt|
r(s)Cr(t) :

Proof. We can writeO(s) := 0/0my...07-1m;_ 107, with 1, j; € w, andm; > 1. Similarly, we write
O(t) := 0%0ny...0%-1n,_10%. The assumption implies that> 1, and also the existence pf< ¢

with (ji, m;) = (ki, n;) if i <p andk; <j,. Lemma 6.14 shows the existencdpf; > 1 andu e M3

with O(u) = 0%ng...0k-1n, 10krn,0%+1 if p < g—1. If p=q—1, then we set, :=t. Note that
O(s)#0(u), O(s) E O(u), andO(u) C O(t). Moreover,O(u) #O(t) and|s A t|=|s Au| < |t Au]

if p<q—1. Itis enough to prove that(s) C 7(u)
(jirmq) = (ki,ng) if i <qg—1andk, 1 <j, . ThusI*>1,
So([t—l):0<t0(ft—1) andisglt—l.

gs\|s/\u|

. This means that we may assume that
sAt|=1"—1,s|(It=1) =t|(I*-1),

Case 1:°=1I° andi! =1I".
Note thatr(s) =—U,..rs = U, =—U, s =—U, 11+ Lemma 6.16 implies that
5 5

763 sAt
r(s) = Uygre Uy iy C Uy ™00 = (D)1,
Case 2:i°=1°% andi' < I,
Note thati® =i* <I'—1. Lemma 6.18 implies that(s) = —,.c.;s =—U , ;t_,. Thus

r(s)=-U

Jt—1 5,7t -2 5,7t —2 =-U t, 7t —1 ¢, 7t —2 ;¢ 1t —2
T(VOS 7b8 ,bi ) r(Vy b0 b3 )

=t s gty E et s i D =B
by Lemma 6.16.
Case 3i5<I*< I
We argue as in Case 2.
Case 4.° <I® andI' < I*, which implies thatl* < I¢.

The 5th remark after the definition ot givese € 2 with r(s) = ~l,.1s C ~U15-1. Thus
T(S) g “Ubs,I‘Sfl g aes g ﬁZ/{bSJt,l .
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If I*>2, then

_ Ss||sAt|
U, =—U t_ t_ o C—U t t_ t_
po Tt ac (VT 171%,1 2,b§’1 2= r(VJ‘I 7()31 2,b§’1 2)

e\vo

& [

— Ss||sAt| __ gsHs/\t\

==U i1t ert—1,ert-1 =r(t .
/],.(Vov 7b0v ’blv ) ( )

sl|s 755 s
Otherwise,l' =1, i* =0, i = I and— bSO ——|u (V0 ag,an) c-U r(VE a0 al)ﬁ llens =r(t) flontl,

This finishes the proof. O
(H) The maximal sequences

We now associate a maximal sequence to a (i) with 5 € [T;]. Its construction is similar
to that of thes(¢')’s, but is about infinite sequences instead of finite ones.

o Let @ := (o, 3,7) € 3% with o € Al normalized and(a),| = 2, and3 € [T;;]. We will define
s(ﬁ, W) € Mz. Recall the definition oQﬁ. We set, fors € Mz andi € By,

{mp>1 "M if 5(i)(0) =0,

S )
Bl=) | 5o i s()(0) =1
5(4)(0) o

7

We defines(3, ) in such a way thafi;(3) € Mien, 5., Ef(ﬁ’w). Let ¢ be an ordinal such that
@ e3¢\ T<€. The definition ofs(5, @) is by induction ore.
Case 1|(a)1]|=0.
We sets(3, @) :=< (0, @) >.
Case 2|(a)1|=1.
We sets(3, @) := (0,%) " s (3, V().
Case 3|(a)1]|=2.

3 )= (. Y(@)(0) if ja(F)€Myz1 O,
e se( {(pﬁ)ﬁs(ﬂjy(w)(p)) if ja(5)¢ Q¥ Ap>1.

-,

o We set(5lji)ew = yg.ai(s, 5., -0 (MH))-
Recall the definition of before Lemma 6.20.

Lemma 6.22 Let:=(a, 3,) € 3 with o € A normalized and(«);| =2, and3 e [T}].

(a) There isky € w such thatg\jk SN if k> kg. In this case, the sequeneeﬁm) given

5(B.®)
by Proposition 6.13 is(/3, )\B and is not extendable.

(b) The sequencﬁl(ﬂ) isin Cﬁf if and only |f55(5 ) =0.
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Proof. We sets:=s(j, @) for simplicity.

(@) In order to definé, we will define, fori < By, kj € w, and we will sety:=max{k{ | i < Bs}. In

order to do this, we €8 e, : =i 11 (h(5)), so that 3]ji " )se., is a subsequence 6|7 ) re.
if < B,—1. By the choice of th&v}’s we get, fori < By,

Ny PV so(i) =0,
h(B)eq ?
(8) {4381“) if so(i)>1,

s0(4)
MNysi il 1Py DY if s (i) =0,

i TP i so(i) > 1.

(ﬁlj}i)kew € {
Note the existence @, in S‘in(p;l(i)) such thatj|ji € B} if s0(i) =0, kewandp>1. If so(i) >1
andp € w\ {0, 50(i)}, then(A]ji)xew € 4111 (P;"?) sinceP; ™ U P = [C]. This implies the
existence of3;, € ;11 -1 (P;*") such thatd]ji e B if kew. As 11~ (Pssg((’))) € HO([RT]‘S“]) there
is ki > 1 such that3|i ¢ Bl if s0(d) 21, BL € s‘iH‘l(P;”;((f))) andk > k{. This definest} and
ko. It remains to check thaﬁ\]k € Py(i)(0)(s]?) if i < Bs andk > ko. This comes from the fact that
Je=dr T =4 K (x) for someK (k) >k > ko > kj. The last assertion comes from the construction of

s(t).

(b) We define, foi < |s|, €, € 2. The definition is by induction on We first set?:=1. Thensi™!:=0
if |s|—i—2¢ Bs, séﬂ :=¢' otherwise. Note that, — sl (¢s is defined before Lemma 6.20). We
have to see th%(,@’) is in C L (0)(2) if and only if 271 = 0. We prove the following stronger fact:

ja(B) € CSI(‘ —i—1)(2) IS equivalent te’ =0 if i <|s|. Here again we argue by induction anThe
result is clear foi =0 smceC L (1s1-1)(2) =(). So assume that the result is true fer|s|—

If |s|—i—2¢ By, then we are done sine&™ =1—¢! andCS (5] —i— 2)(2)_ﬂCS (sl—i—n2)- |
|s|—i—2€ By, thengtt! =<t and

N _ N N
O (sl-i-2)@ = Up>1 (Citmte (ts1-i-2)p)0 \CiiWo(sn (15 —i-2)))p)1 )
N N
(Cowp(sitsi—i—2)0 M1 Ciiwi s (tsl—i—2))p)):

. s1(|s]—i—2)
If so(|s|—i—2) =0, thenju(3) € N,=1 2" =2, ClWo (s (1] —i—2))),),- We can say

(73 N i — N
thatyd(ﬁ)' € CSI.(|S‘_i_2)(2) |s' equivalent to]d(.ﬁ).e C(WO(S1(|5|—z‘—2)))o = Csl(|s|—i—1)(2)' and we are
done by induction assumption. We argue similarly whefs| —i—2) > 1. O

Remark. Recall the definition of an extendable sequence at the beginning of the construction of
the resolution families. I is not extendable, thes admits a unique extensicM( ) in M.

particular, in Lemma 6.22. (aM( (§|jk)) = (8, @) =S(F|j). In Lemma 6.195(0 )_s]B is not
extendable and/ (s(0)) = S(0).
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Notation. Recall the construction of the resolution families, and also the proof of Theorem 4.4.5,
especially the definition ofi('). If 6, is a limit ordinal, then we consider some ordingl$t )’s, as

, ~\__ | nsif 85 is a successor ordinal,
in the proof of Theorem 4.4.5. We sefts, §') ._{ n.(3) if 0. is a limit ordinal.

The next lemma is the final preparation for proving the claim mentioned before Lemme 6.16.

Lemma 6.23 Let 1w := (o, 3,7) € I with o € Al normalized and(a);| =2, s € (&), andi < Bs.
Then(S<i p(slj v) +1 <&y

Proof. We argue by induction on Note first thatp(s|0, v) +1<6,0=E, 0. Then, inductively,

(Bj<itr p(sl4,0))+1 < (Ej<i p(s]d,v)) +0s)41)
< (Bj<i p(sld, )+ 14+ (Egji1) —Esli)
<Eepi (&) i 1) —Es)i)
<&|(i+1)

This finishes the proof. O

Proof of Theorem 6.9.Let ¢ be an ordinal withs := (o, 3, ) € 3¢. We argue by induction oé. So
assume that € 3¢\ J<¢,

Case 1|(a)1]|=0.

Lemma 6.5 implies tha@y €T (o) =Tox = {0}, so thatS = (. Note also that =a;. Assume
that (a) does not hold. The#, (), so it contains som&. We just have to sef;(3;) := «;.

Case 2//(a)1|=1.

The fact thatis € 3¢ givess € N with (< ja >, 3,6) € 3<¢ andC% = ~C}" (see the definition
of 7). As « is normalizedC¥ =0, so thatS = [Ty]. Note also that =a,. Assume that (a) does not
hold. ThenA,+# (), and we argue as in Case 1.

Case 3|(a)1]|=2.

Assume that (a) does not hold. We constr@zﬁt)ied’senﬁd, (og)ig‘s‘,iedvsenm, (Ug)zer,, @S
in the proof of Theorems 4.4.1 and 4.4.5.
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We want these objects to satisfy the following conditions.

(1) L e OL QN A ()ied € Us CQpra,

(2) 05, €05,

(3) diamy,, (0) <271 A diamy , (Ug) <271,
(4) teTy = U-Cr(S(1)),

S€Micinm, . () (s19)

’ J<ins|;=1 0 e .

(5) 1<p<p( ‘Z g) = U{QU§(EJ<Z p(s‘j,g))+p’
SRt

sl

(6) <s€I<t)/\ SR t):> Uy CUs.

e Let us prove that this construction is sufficient to get the theorem.

- Fix 4 € [Ty] and sets := s(3,@). Lemma 6.22 gived € w such that3|jy. € Zp, , for each
k > ko. Proposition 6.13 gives(ﬁ\jk) € T(wf) with 5|]k el s(Alje)’ and Lemma 6.22.(a) implies

77O'I(Ba 1)

that s(3|j;) = o|B,. This implies that(Ug‘jk)kzkO is decreasing sincé|sj, R s, ﬁ‘]k+1 for

each natural numbé, by Conditign (6). As in the proof of Theorem 4.4.1 we deflﬁ@B) and f;
continuous with?'(3) = (IT;cq f;)(5). Note thatS C (TLicq f;) " (Ao) and [Ty \S C (I;eq fi) L (A1),
by Lemmas 6.20 and 6.22, sincer) C A, .

e So let us prove that the construction is possible.

- As U, is nonempty andl!, we can choos@a%)ied € U, NQya. Then we choose Ell subseU@
of N4, with d,.«-diameter at most, such thai(a%)zed € Uy € ~U, N Qyra. We choose &/ subset

Og of Qy, with dy-diameter at most, with ag € 0y C QN, which is possible sinc@,.. C Q4;.
Assume that o’ )s|<ts (O} )1s)<t @nd (Us) o)<t satlsfylng conditions (1)-(6) have been constructed,
which is the case far=0 by Lemma 6.19.

-Letv:=tmeTy N (d7)7. We defineX; := O}, if i <I, and\ if i >1.

Claim. Assume that € < (), z<Bs,v"|S" vET;,, andig <i is minimal withr;, > 1.

(a) The set

U7(2j<i p(slg,v))+p

v
s|i

Uyptetio M ipepislis)

77— (k< ps|kv))+
Nj<i Mi<p<p(sliv Uv;j bt "N (Wieq Xi)

. e |
is 7 -dense |rU,U1|_ N (Ieq Xi).
slig
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(b) Assume moreover thate T(w), s and u are incompatible; := |s A ul, v € P, ;) (uli), and
s|i . by k,’U + .
vl € Py iy (s]). Thenr(S(v V) NNj<i Ni<p<p(slin Uy, ( ks PEIRUITE o (11 X;) is 7 -dense

s|z

inU,- U, N (Ieq Xi).
S 10

(a) Assume first thaty =0. Note thaw] "' Rf*! vf Rf vif 1< p<p(0,v), by Lemma4.3.2. Asinthe
proof of Claim 2 in Theorem 4.4.5, this implies tﬂég:g C ng“pﬂ' By assumptiony:ri\i7 vETL;.

Note thatv” Py (slk) if k <j <iandp <ny;41)- Indeed, this comes from the fact that

|( +1) €
vzri“ Rgr,'f AT RZFA’C v. As in the proof of Claim 2 in Theorem 4.4.5 again, this implies that
U”£|(j+1) - U ot Rt PRIREITPTN 0 p < p(s|(j+1),v). Note thatv? G+ =0 ‘]'J =0 |(j sliv),

This implies the result. We argue similarlyiif > 0.

(b) By (a) and Lemma 6.22, it is enough to see that= U ,(ji.) C 7(S(v) )E&“. The induction
s|z
Es\i

assumption |mpI|es thdt C r(S(vnf“)) So let us prove that(S( "S'Z ) C ( v))"". Note that

s|(i+1) C s(v™ Vg ")y C S(v Zf") and, similarly,u|(i+1) C S(v). Now O( ( k 1) © O(S(v)), by

Lemma 6.17, and the beginning of its proof shows &8 (v"")) # O (S(v)). It remains to apply

s|z

Lemma 6.21. S
-LetX:=d"*!. The mapl: X4 — 5 (V) is defined or7 “+! by
(S(0)) Vi< p<p(o) UTS” N (Mieq Xi) N Qpa if s(v) =0,

( j<|s(v)|—1 p(s‘]zv))+p
U otsr=) N i<pep(s(o)-w) Un? . !
5(11)7 S v

(Z (slk,v))+
mr]j<|s(v)| 1 ml<p<p(s\j v) U p b e g N (HiEd XZ)
if s(v)#£0Av 5(’;), EIS(U) A Fig <[s(v)] Ns(w)jio =1
(Br<j p(s()[kv))+p A (Wieq X;) N Qpa
it s(u)£0 A v ¢ Ty,
A i <|s(v)| is maximal W|thvn(b“)’|"leI sw) AN Fiog<i M) >1

W(v):=4 7(8®) "Nj<i Micp<ptswiioy Uor

s(v)li

lio =

UpN (Wica Xi) if 5(v ﬁé@f\”siﬁ;f ET () N Vio<|5(0)| Ms(w)jio =0,
’I“(S(U)) N (Hied Xl) ﬂQNd if 5(,0)#@/\ ’Uns('u)* ¢I

A i< |s(v)|is maximal withngglyez sw) A Vio<i mg(0)i =0.

By the claim,¥(v) is 7;-dense inU, ol U, N (IL;eq X;) in the second and the third cases.
s(v ZO
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_ 1 1 Ing
lio =S Vs(w) i Ls(v)lio T AN

by induction assumption. Therefoig N (I1;cq X;) C UU1< . 'n (Mieq Xi) S (v).
s(v ZO

In these cases, ag,,, Cf CvandR) . isdistinguished i), ,
U;QU 1 ol

‘0 . .

Slmllarly, one can prove that this also holds in the last two cases.

Let us look at the first case. #; > 1, thenU s N Ni<p<p@.0) Us

P
Yy
in U1 1 N (I;eq X;), as in the claim. Now/ 0 Cr(S(vg") =r(S(v)

previous argument singg=0. If n3=0, thenv =t,

N (IL;eq X;) is 71-dense

and we can repeat the

UrN (Iieq X;) Cr(S(£)) N (Wieqg Xi)=7(S(v)) N (Lieq X;)
and we are done.

Now we can write(a}, )ica € Uz (I;eq X;) € ¥ (v), and we conclude as in the proof of Theorem
4.4.1. O

The rest of this section is devoted to the proof of Theorem 1.10.(2) &{&1) is a Wadge class,
and also to the proof of Theorem 1.5. Recall Theorem 5.2.8. We will saythat] N $> is suitable
if A(T(q)) is @a Wadge class and one of the following holds:

(1) There isat€ Al N $> normalized with
Fc(a) = {(AO N C()) (Al N Cl) ‘ Ay, A €T (@) A Cy, C1 EEO AConN Cl—Q)}
(2) There isa’ € Al such that(a), € $* is normalized for eachp > 1, (I‘C((a,)p))p21 is strictly

increasing, and’,) :{ Ups1 (ApNGCp) [ ApeT((ary,) A CreZY A Cp N Cy=0 if p#q}.

Assume thaty is suitable andig,a; € Al satisfy 49 N A; = (. Then Lemma 6.7.(b) gives
(@, ag, a1) andr(a, a1, ag), or r((e)p, ao, a1). We setR(a, ag, a1) := Uy q0,q,) in the same
fashion as before, and

R(@, ap, al)l NR(@, ay, ao)1 if we are in Casé€1),
R'(a,ap,a1):=

1
Ny>1 R((@)p; a0, a1) if we are in Casé?2).
We now give the self-dual version of Lemma 6.8.

Lemma 6.24 Leta be suitable, andg, a; € A} such thatdo N A; =(). We assume tha'(«, ag, a1)
is empty. Then, is separable fromi; by aAl N A(Tn))(m1) set.

Proof. (1) As R(@, ao, al)l N R(a,aq, ao)1 = (), there isC € A{(r1) separatingR(@, ap, a;) from
R(@,a1,ap). As R(@,ag,a;) and R(@, a1, ap) are X}, we may assume th&t € Al, by Theorem
4.2.2. A double application of Lemmas 6.7.(b) and 6.8 gives somelxetB; € Al N T @) (1)
such thatBy (resp.,B;) separatesiy N C (resp.,A;\ C) from A; N C (resp.,Ao\ C). Now the set
(BoNC)U (=B N =C) is suitable.
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(2) The proof is similar, but we have to use the-selection principle. A&™ is I} and the sequence
r((a')p, a0, a1) is A} and completely determined k'), ap anday, (r((a’)p,ao,al)) . is Al
p=

1
As(,>1 R((a')p,a0,a1) =0, there is adj-recursive mapf : N — w such thatf (@) > 1 and
— 1
&gé R((O/)f(o-;), ag, al) for eacha e V.

We setlU, := f~({p}), so thatU, and R((c/),, ao, a1) are disjoint2} and separable by -
open set. By Theorem 4.2.2, therdijse Al N X{(r1) separating them. Moreover, we may assume
that the sequenc@/,) is Al. We reduce the sequen¢E,), which gives aA{-sequenceC),) of
AlNx9(m) sets. Note thatC),) is a partition oAV into A9 () sets. AsR((c'), ag, a1) NCp =0,
Lemma 6.8 gives,y' € N such that((a/),, (8'), (7')p) € 3 andC(, separatesi; N C, from
AyNC,, for eachp > 1. Moreover, we may assume thit 7' € A}. Now the set),>1 (=Cy), NCyp)
is suitable. O

We now give the self-dual version of Theorem 6.9.

Theorem 6.25 Let T, be a tree withA] suitable levelso be suitable,3.,7. € N be such that
(Oé, Oe, ’Yg) €J>, 5 ::jd_l(c,YE ) N [Td—‘ ,andag, a1, bg, by, 1 eN withv:= (a, aop, ai, by, by, T) € R,
We assume thaffy and.S; are disjoint. Then one of the following holds:

(a) R/(Oé, ap, al) = (D
(b) The inequality( (11! [T4])ica, So, S1) < ((N)ica, Ao, A1) holds.

Now we can state the version of Theorem 4.2.2 for the self-dual Wadge classes of Borel sets.

Theorem 6.26 Let T; be a tree withAl suitable levelsq be suitable,3.,7. € A be such that
(Oé, Oe, ’)/5) €3, 5, ::jd_l(C% ) N [Td—‘ ,andag, ai, bg, b1, 7 eN with:= (a, aop, ai, by, by, 7“) € R™.
We assume thaffy, S; are disjoint and not separable by a p(dt(I‘C(a))) set. Then the following are
equivalent:

(a) The set4, is not separable fromal; by a po(A(T(,))) set.

(b) The set4, is not separable froral; by aA{ N pot(A(T,))) set.

(c) The setd, is not separable froml; by aA(T'.,))(71) Set.

(d) R' (e, ap, a1) #0.

(e) The inequality((d*);ca, So, S1) < ((N)ica, Ao, A1) holds.

Proof. We argue as in the proof of Theorem 6.10, using Lemma 6.24 (resp., Theorem 6.25) instead
of Lemma 6.8 (resp., Theorem 6.9). O

Proof of Theorem 1.10.(2).We argue as in the proof of Theorem 1.8.(1). Theorem 5.2.8 gives
or ((u’)p)p>1. The equalities in Theorem 5.2.8 hold M, and also in any zero-dimensional Polish
space (we argue as in Lemma 5.2.2 to see it). Using Definition 5.1.2, we canaiddvith T' =T,,.
Lemmas 6.2 and 6.4 givec $H*° normalized withI‘c(a) =TI, anda € 9> (resp.,o’ € H>° such that
(o) is) normalized withl'z =T () (resp..L' ), =Le((an,))-

By Theorem 4.1.3 in [Lo-SR2] there B. € T'(N) with S. =3, ' (B-) N [T,]. In order to simplify
the notation, we may assume thathasAi levels,a, as well asv (or o), are Af, and Ay, A, are
zi
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By Lemma 6.5 there arg.,~. € N such that(a, §3-,~.) € 3 and Cg\ef = B.. Lemma 6.7.(b)
givesbyg, by, with (o, ag, a, bg, by, ) € K. Lemma 6.24 implies thak'(«, ag,a1) # . So (b)
holds, by Theorem 6.26. O

Proof of Theorem 6.25.(1) Let C%, € X9([Ty]), Af € Lo ([T4]), AT € f‘c(a)((Td}) such that
S.=(A5N C5) U (A5 N C5). We reduceCl, CY, CL, C1). This gives a familyOf, 07, O}, O1) of
open subsets dfl;]. Note thatS. C 7 := (A5N05)U(A5NO5)U(=A N0 5)U(=A]°NO; ).
We will in fact ensure thaf (11! [T4])ica, T°, T") < ((N)ica, Ao, A1) if (@) does not hold, which
will be enough.
Subcase 1|(a)p|=0.
We seto?, :=h[[T;]\O%], so thats, e IIY([C]). We also set
D:={5€Ty | §=0VV(e,e')€2® 3B, 5B},
DS :={5eT,; | §£0 AVBEoS §¢B AV(",e")e2\{(c,e')} ABeotn §€BY,

so that(D, DY, DY, D}, D1) is a partition ofT};. The proof is very similar to the proof of Theorem
4.4.2 wher¢ =1. The changes to make in the conditions (1)-(7) are as follows:

(4) Us CR(ov, ag, a1)=Ag' N A, if €D,
(5) Uy C Ag if 5€ DY U D},
(6) Us C Ay if 5e DJ U D},
(7) (5,te DV 5,t€ D) = Uy CUs.
We conclude as in the proof of Theorem 4.4.2.
Subcase 2|(a)p| > 1.

We will have the same kind of construction as in the proof of Theorem 6.9. As lohg Bs the
inclusionU; C R'(«, ag, a1) will hold. If € D%, then all the extensions éfwill stay in D=, and we
will copy the construction in the proof of Theorem 6.9, since inside the clopen set defineaédy
want to reduce a paiiSy, S1) to (Ag, A;).

As Aj € T (g ([Tq]), there isBj € T' () (N) with Af = 37 (B§) N [Ty]. Asa € Al N H™,
Lemma 6.5.(b) givesl, v5 € N such that(@, 55,75) € 3> and C%f = Bj. Similarly, there are
57,75 €N such that@, 65, §) € 3 and AT = j; ' (=C2) N [T4].

We can associate to arnfy, ') € 22 the objects we met before, among which the functisit
the ordinals);© , the resolution familie$ R” and the ordinalg(s, ¢, s, §).

s
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we will considerP; (s) N D, If '€ DS, then we set
)eZ(w(t)) andS(t )eMw@. We also set

Instead of considering the sé%(s),
W(t ) :=1w5,. This allows us to define(t') €
1_),(75—»): (&,ao,al,bg,bl,r) if ZZED(()]UD%,
' (a,al,ao,bg,bl,r) iftGD?UDé.
The other modifications to make in the conditions (1)-(6) are as follows. In condition (4), we ask for
the inclusionU; C R(S(¥ )) only if ¢ D. If t€ D, then we want thal/; C R'(«, ag, a1 ). Condition
(6) was described whes te D: . If 5, te D, then we also want thaf; C Us.

The sequencé’() is defined if3 € CQ U COUCI UCL If ¢ CYUCY U CLuCL, then
3|k € D for each natural numbek, and F () is also defined. The definition af(’) ensures that
T¢ C (Mieq fi) " (A2).

The definition of¥(v) is done ifv ¢ D. If v € D, then we simply se¥ (v) := Uy N (Il;cq X;).
Then we conclude as in the proof of Theorem 6.9.

(2) LetC; e =Y([Ty]) and AS €T )»)([Ta]) be such thaS Up>1 (A, N C). We reduce the
family (C?,CY, ...,C, C1, ...) ThIS glves a family(0{, 09, ..., 01,04, ...) of open subsets df7;].
Note thatS. CT°:=(ATNO7) UU,>; ((4,7°N O;*E) (A€+1 NO;.,)). We will in fact ensure
that ((T1/ [T ] )ica, TO, T*) < ((N)ied, Ao, A1) if (a) does not hold, which will be enough.

The proof is similar. We can assume théta’),),| > 1 for eachp > 1, since(T((ar,))p>1 is
strictly increasing. So there is no Subcase 1. We set

o @by e 08
’ (a7 a17a07bo,b1,7“) if tEUpZI Dll)

We conclude as in Case 1. O
It remains to prove Theorem 1.5.

Proof of Theorem 1.5.Theorem 1.3 giveSy, S1 C Ny X V5.

Case 1.C'= graphs.

We setR, :=S, U (Sg)fl. ASRoUR; =SqUS; U (So U Sl)fl, Ro,RpUR; €. Let X be a
Polish space an® be a Borel subset ak? in C. If (a) and (b) hold, theiR, is separable fronR;
by a potI') setS. ThusSy =Ry N (No x N;) is separable fror$; = R; N (No x N1) by S, which
is absurd. So assume thatis not in po(I‘) Theorem 1.3 givegy, f1:C — X continuous such that
SoC (fox f1) YR ) andS; C (fox f1) (= ) We setf(ia) := f;(ir), so thatf is continuous. Note
thatSo C (f x f)~1(R), so thatRg C (f x f)~1(R). Similarly, R; C (f x f)~*(=R).

Case 2.C'= oriented graphs.
We setR. :=§,, and argue as in Case 1.
Case 3.C'= quasi orders o€’ = partial orders.

We setR:=Sy U A(C), R;:=S;, and argue as in Case 1. O
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7 Injectivity complements

In the introduction, we saw that G. Debs proved that we can havg ‘thene-to-one in Theorem
1.3whend=2, T {II, ¢} and¢ > 3.

e This cannot be extended to higher dimensions, even if we repdb{oé with IL;c4 P;, whereP,; is
a sequence of Polish spaces.

Indeed, we argue by contradiction. Recall the proof of Theorem 3.1. We saw that tiigrénis
2(C)\II such thaB, := {a € [T3] | S(awAay) € C¢} is not separable frorfils]\S¢ by a pofTI?)
set. We set

By:= {(5263“’ x3¥x1 ’ S(OzoAO&l) S Cg},

By:={de3“x1x3% | S(agAag) € C¢},

By := {626 1x3¥x3% | S(OélAOég) S Cg}
Let0:3% —1. AsS¢:=(Idze xId3wx0) ' (Bo) N [T3], Bo ¢ pot(ILY). Similarly, By, B ¢ po(TLY).
This implies that the?;’s have cardinality at most one, aBge AY. ThusS is separable fror§; by
a po(I1y) set, which is absurd.

elf d=w, IT'= 1‘[2 and¢ > 3, then we cannot ensure that at least two of flie are one-to-one.
Indeed, we argue by contradiction again. Consiler=w, andB; € E?(N)\Hg. Then B¢ is not
pot(l'Ig) since the topology ow is discrete. This implies that two of the’s at least are countable,
sayFy, P, for example. Consider now, :=S; andA; := [T, |\S¢. Then( f;oIl;)[Se] is countable for
eachi € 2. ThusC := (Il;cq fi)[So] €S¢ C [1.,] is countable since an element[df, | is completely
determined by two of its coordinates. Thiise pot(9) C pot(I1{). Therefore(Ilicq f;)~'(C) is a
pot(l‘Ig) set separatinf§, from S, which is absurd.

e However, ifT" € {T12, 22, Ag} and¢ > 3, then we can ensure théfl;cq fi)s,us, iS one-to-one,
using G. Debs’s proof and some additional arguments. This remains ruelf, is a non self-dual
Wadge class of Borel sets witl{0) > 3. This leads to the following notation. Lé&P;);cq, (X;)icq be

sequences of Polish spaces, &g S; (resp.,Aq, A1) be disjoint analytic subsets of;-, P; (resp.,

IL;cq Xz) Then

((P)icd, So,51) T ((Xi)ied Ao, A1) < Vied 3f;: P;— X; continuous such that
(Iieq fi)isous, IS one-to-one and/e€2 S, C (Iieq fi) (Ae).

Theorem 7.1 Thereis no tupIé(Pi)ieg, So, S1), where theP;’s are Polish spaces an8l), S; disjoint
analytic subsets dfl;c» P;, such that for any tupIé(Xi)ieg, Ay, Al) of the same type exactly one of
the following holds:

(@) The setd, is separable from¥; by a pofIT}) set.

(b) The inequality((PZ-)ieQ, S(), Sl) C ((Xi)i€27 Ao, Al) holds.

One can prove this result with the Borel digragh := {U,,c,, Gr(gnjc\ar) considered in [L5]
(see Section 3), which has countable vertical sections but is not locally countable. We give here
another proof which moreover shows that we cannot hope for a positive result, eygisifocally
countable. This has to be noticed, since the locally countable sets have been considered a lot during
the last decades.
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Lemma 7.2 LetT be a Borel class, and(Pi)igz, So, S1) be as in the statement of Theorem 7.1 such
that Sy is not separable fron$; by a potI') set. Thery N (1175, xI1{.S1) is not separable frons,
by a potT’) set. MoreoverS is not separable fron$; N (IIj;.Sy x II}.Sy) by a potI') set.

Proof. We prove the first assertion by contradiction, which gives pot(T*). The first reflection
theorem gives Borel sef8), B; such thaflI/.S; C B; and.Sy N (Byx B;) C P. Now

SoCPU (—|B()XP1) U (PoX—!Bl) C =951,
which contradicts the fact th&) is not separable frorfi; by a potI’) set.
We prove the second assertion using the first one (we pass to complements). O

Lemma 7.3 Let ((P)ic2, S0, S1) and ((X;)ic2, Ao, A1) be as in the statement of Theorem 7.1 such
that ((P))ie2, S0, 51) T ((Xi)ie2, Ao, A1), (fi)ic2 be witnesses for this inequality, and 2 be such
that A, is Borel locally countable. They‘iimglse is countable-to-one for any< 2 and S, is locally
countable.

Proof. The inequality((P;)ic2, So, S1) T ((X;)ic2, Ao, A1) gives f; : P; — X; continuous such that
(Iie2 fi)|sous; is one-to-one, and als. C (I1;e2 fi)"1(A.) for eache €2.

e By the Lusin-Novikov theorem and Lemma 2.4.(a) in [L2] we can find Borel one-to-one partial
functionsb,, with Borel domain such thatc =J,,c,, Gr(b,). We setR,, :=S.N (2 fi) ' (Gr(by)).
Let us prove thaf; v, is one-to-one for eache 2.

Assume for example that=0. Let z # 2’ € I[j R,,, andy, v’ € P; such that(z,y), (¢',y') € R,,.
As (z,9) # (2,9, (fo(2), fi(y)) # (fo(2), f1(y')). Butba(fo(2)) = f1(y), bu(fo(2)) = f1(y'), sO

that fo(z) # fo(2') sinceb,, is a partial function. I =1, then we use the fact tha} is one-to-one to
see thay‘;muRn is also one-to-one.

e This proves thafimqse is countable-to-one sincg = R,.

new

e Now S, is locally countable sincé, C (I1;c2 fHH/_,SE)*l(AE), A is locally countable and; g,
is countable-to-one for anye 2.

Lemma 7.4 LetY be a Polish space3 be a Borel subset df and( f,,),c. be a sequence of Borel
partial functions from a Borel subset &f into 5. We assume thdt:=J,,.,, Gr(f,) is disjoint from
A(B), but not separable fronA(B) by a potII{) set. Then there are natural numbets< p and

y € B such thatf,(y) and f, (f»(y)) are defined.

Proof. We may assume that is recursively presented arfgl ' and thef,,’s are Al. We put
V= J{DeA}(Y) | D* N F has finite vertical sections

ThenV € ITL(Y).
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Case 1V =Y.

We can find a sequene®,, ) c., of A} subsets ot” such thaty’ ={J,,.,, D, andDZ2 N F has
finite vertical sections. By Theorem 3.6 in [LoZP2 N F is po(I1?), so thatD?\ F is pot(X?). Thus
A(B) CU,e, D2\FC~F andA(B) is separable front” by a pofX?) set, which is absurd.

Case 2.V #£Y.

The first reflection theorem proves that for each noneniftysubsetS of Y contained in-V/
there isy € S such tha(S? N F), is infinite. So there is a natural numbesuch thatY\ V) meets
Gr(f,). In particular,S := (Y \V) N £, 1(Y'\ V) is a nonempty>! subset ofY’, which givesy € S
such that S N F"), is infinite. This proves the existencewf-n such that(y, f,(y)) € S*. Note that
y€ B sinceY \ BCV. Now itis clear that:, p andy are suitable. O

Lemma 7.5 LetYy, Y7 be Polish spaced3. be a Borel subset df; (for e €2), i: By — By be a Borel
isomorphism{c, e be a sequence of Borel partial one-to-one functions with Borel domain from
Yp into Yy, andC :=J,,¢,, Gr(c,). We assume that' N (By x By) is disjoint from G(7), but not
separable from Gfi) by a potIT}) set. Then there are natural numbers< p andy € Y; such that
(icyte,)(y) and(ic, i) (y) are defined and different.

Proof. We setd,, := ¢y g -1 (p,), SO thatC' N (BoxB1)=U Gr(d,). We also set

new
i1

li[BoNen* (B1)]’
so thate,, is a Borel one-to-one partial function with Borel domain. Now we consider the pre-images
A(By)=(i"'xldg,)"(Gr(:)) and Gfe,,) = (it xIdp,)~*(Gr(d,)). Note thatE :=J, ., Gr(e,)
is not separable from (B ) by a potT1?) set. This implies that) Gr(e, ') is not separable from
A(B1) by a potI1?) set.

én:=d, o

new

By Lemma 7.4 there are < p andz € B; such that(e,)*(z) ande, ' (e, *(z)) are de-
fined. We sety := d,'(z), so that(id, 'd,)(y) and (id,'i)(y) are defined and equal respectively
to (ic;, *¢p)(y) and(ic, 'i)(y). Now note that: # e, ! (z) for eachz in the range of,,. This implies
that (ic,, "¢ (y) # (ic, ") (y)- O

Lemma 7.6 Leti be a continuous open partial function frafrinto C with open domain(cy, ),c., be
a sequence of such functions, alid:=J,,.,, Gr(can+.) (for e € 2). We assume thdf is disjoint
from Uy U Gr(i), but() # Gr(i) C Uy N U;. ThenUyj is not separable frond/; by a pofAY) set,
and Uy is not separable from Gf¥) by a potII{) set. If moreover the Do, )’s are dense, then

Uo N (Nye., DoM(cy,) xC) is not separable fron/; N () Dom(c,) xC) by a pofA?) set.

new

Proof. We argue by contradiction, which give? € pot(A?). Let G; be a densés subset ofC
such thatP N (Go x G1) € AY(Gy x G1). The proof of Lemma 3.5 in [L1] shows the inclusion
Gr(i) CGr(i) N (Go x Gy), and similarly withc,,. Thus

Gr(i)gﬁoﬂﬁlﬁ (GoXGl)gUg N (G()XGl) NUL N (G[)XGl) N (GoXGl)
- (Pﬂ (GoXGl))\(Pﬂ (G()XG1)) =0,

which is absurd. The last assertion follows since we may assumé& that(),,.,, Dom(c,). The
proof of the second assertion is similar and simpler. O
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Lemma 7.7 There is a tuplg(Y;)ic2, Bo, B1) such that

(a) Yp andY; are Polish spaces.

(b) Bo=U, ., Gr(cn) Cllie2 Y;, for some Borel one-to-one partial functionswith Borel domain.
(c) B1 =Gr(i), for some Borel function: Yy — Y7.

(d) By is disjoint fromB;, but not separable fron3; by a po{TI{) set.

(e) We seC.:=(U,c, Gr(cante)) N (Nhew DOM(cy) x Y1), for e €2. ThenCy is disjoint fromCy,
but not separable fron®’; by a pofAY) set, andCo N C1 N (N),,c., DOM(c,) x Y1) CGr(i).

(f) The equality(ic,, ' c,)(y) = (ic;, i) (y) holds as soon as the two members of the equality are defined
andn <p.

Proof. We setY; :=C andi(«a) (k) :=a(2k).

e We first build an increasing sequencs, ),c., of co-infinite subsets ab, a sequencéy,,),c., of
bijections with, : =S,, - —25,,, and a sequenadg:, ),c., of homeomorphisms fror@ onto itself.
We do it by induction om. We setSj :=0), 1 :=1d,, andhg :=Id¢. Assume thaf.S;)g<n, (¥g)q<n
and(hg)q<n are constructed, which is the case foe 0. We define a map,, :w —w by

{ (k) if k¢ 25y,

k.
5 if k€2S,.

on(k):=

Note thaty,, is a bijection. We seb,, ;1 := ¢,[2w] U (n+1), which is co-infinite. The sequence
(Sn)new IS increasing sincé,, = ¢,,[25,] C Sp+1. As Sp41 is co-infinite we can build the bijection
Y411 Sn41 — 128,41 in such a way that),, 1 (k) # ¢, (k) for infinitely manyk ¢ S, 41, for any
q<n.We set
i(a)(k)if ke Spta,
hnt1(a)(k):= {
o (Ui (k)) if k¢ Spia.

As h,,11 permutes the coordinates, it is an homeomorphism.

e We setD,, :={aeC | i(a) # hp(a) ANVg<n hy(a)# hy(a)}, so thatD,, is an open subset of
C. We setc,, := hy|p,, SO thatc, is an homeomorphism frory,, onto its open rang€3 is disjoint
from By, and(j is disjoint fromC}.

Let us prove thaD,, is dense for any natural number Note that
Dy={aeC|Ikew a(2k)#a(k)},

which is clearly dense. Now,,; contains

{aeC | 3k EShi Q(Qk)%a(wn—i—l(k))} N ﬂ {aeC| k¢S O‘(wn—&-l(k)) #a(wq(k))}

q<n

The sef{aeC | Ik ¢ Sny1 (2k) #a(¥n41(k))} is open dense since the odd natural numbers are in
Un+1[~Sn+1). The sef{a €C | 3k ¢ Spi1 a(vny1(k)) #a(vq(k))} is open dense by construction
of ¥, 1. This proves thaD,,, 1 is dense.
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e Note that G(i) C Cy N C7 sincei(a)|n = hy,(a)|n, D, is dense and is continuous. Lemma 7.6
proves the non-separation assertions. Note alsoathat C; N (N Dom(c,) xC) C Gr(7) since
i(a)|[n="hy(a)|n ande, is continuous.

new

e Now it is enough to prove that,, th,=1ih, ‘i if n<p. Note that

B(k)if j=2ke2S,,
hl(m(j):{

B () if j ¢ 2Sn.
Thus

i(a) (k) if k€S,
(ihy, i) (@) (k) =i((hy i) (@) (k) = (i) (@) (2k) =
i(a) (v, 1(2k)) if k¢ Sn.

Similarly,

hp(e) (k) if k€S,
(ihyy ) () (k) = {
hy(0) (i (2)) i k¢S,

Note thatS,, C S,. Thus(ih,1h,)(a)(k) = (ih, i) (a) (k) if k€ S,. If k¢ S, then2k ¢ 25,, and
on(2k) =11 (2k) € Spy1 CS,. Thus

(ihpy  hy) () (k) = hy () (5, (2k)) =i(@) (¢, 1 (2K)) = (ihy, 1) () (k).
This finishes the proof. g

Proof of Theorem 7.1.We argue by contradiction. Note thg§ is not separable frorfi; by a potI1Y)
set since (b) holds. By Lemma 7.2 we may assumeShatII{.Sy x IT} Sp.

e Recall the digrapi; in [L5], that we will call Ay. If we take X; :=C and A, := A(C), then by
Corollary 12 in [L5], A is Borel locally countable, not pd?), andA; = Ag\ 4. It follows that 4,

is not separable from; by a potTI?) setQ, since otherwise we would havk = QN Ay € pot(T1?).

This implies that((Xi)iez, Ao, Al) satisfies condition (b) in Theorem 7.1. By Lemma m’%i;’so is
countable-to-one for anie 2 and.S is locally countable.

e Lemma 7.7 gives a tupl@(Y;)ic2, Bo, B1). Note that((Y;)ic2, Bo, B1) satisfies condition (b) in
Theorem 7.1, which giveg; : P, — Y;. Lemma 7.3 implies thag; 5, is countable-to-one for any
i€2. The first reflection theorem gives a Borel 68D 11”.S;, such thatfﬂoi andgi|0i are countable-

to-one, for anyi €2. By Lemma 2.4.(a) in [L2] we can find a partitid®? ),,c., of O; into Borel sets
such thatf;o: andg; o: are one-to-one, for anye 2.

o We setR. := (Ilica fijo,) ' (Ac) N (Iicz i)~ ' (B:), for anye € 2, so thatR. is a Borel subset
of II;co P; containingS.. In particular, R, is not separable fronk; by a potIT{) set. We choose
natural numbers, andn, such thatRy N (Il;ez O},,) is not separable fronk; N (ILie2 O}) by a
pot(I17) set. We sefD, := (Ilie2 f;)[Re N (Iie2 O.)], so thatD is a Borel subset ofly which is
not separable fron; by a potT1?) set.

76



Note thatD; is a Borel subset afi; = A(C). In particular, there is a Borel subg@tof C such that
Dy =A(D). By Lemma 7.2,Dy N D? is not separable fronv; by a potI1?) set. Leth;: D —Y; be
defined byh,; (o) :=(g;o fi 1) (). Thenh, is Borel, one-to-one, anB.ND? C A.N(;c b))~ (B.).

e Note that(IL;c2 h;)[A(D)] is a Borel subset aB;, which proves the existence of a Borel subBet
of Yy such tha(ILics h;)[A(D)]=Gr(i|p). If y#2z€ B, then(y,i(y)) = (ho(), h1(a)) and

(,i(2)) = (ho(B), h1 ()

for somea# 3¢ D. As h; is one-to-one we gety) #i(z), i iS one-to-one and' B is Borel.

As Dy N D? C (2 hy)~*(Bo) and D1 C (ILiez hi) ' (Gr(ijp)), Bo is not separable from
Gr(i|5) by a potIL}) set. By Lemma 7.23) N (Bxi” B) is not separable from G 3) by a potI1?)
set.

e By Lemma 7.5 applied t6 := B andC; :=i" B there aren < p andy € Y, such thatic;, c,)(y)
and(ic,'i)(y) are defined and different, which contradicts Lemma 7.7.(f). O

Remark. We recover the algebraic relation,'= g,, o g, if n<p” that was already present in Section
3in [L5] mentioned just after the statement of Theorem 7.1.

Theorem 7.8 There is no tupIe{(Pi)Z-ez, So, S1), where theP;’s are Polish spaces an8), S; disjoint
analytic subsets dfl;c» P;, such that for any tupIé(Xi)iez, Ay, Al) of the same type exactly one of
the following holds:

(@) The setd, is separable fron¥; by a pofA?) set.
(b) The inequality((Pl-),-eQ, S(), Sl) C ((Xi)i€27 Ao, Al) holds.

Proof. Let us indicate the differences with the proof of Theorem 7.1. This tispés not separable
from S; by a potAY) set.

e Note thatdy =J,,c,, Gr(H,), whereH,, : Ny, o — N, 1 is a partial homeomorphism with clopen
domain and range. The crucial propertie$9f),c. C 2<“ is thatitis dense and,,| =n. We can eas-
ily ensure this in such a way th@ts,, ) new and(s2,41)neo are dense. We sét :=J,,c,, Gr(Hap ).
The previous remark implies that(C) = U.\U.. By Lemma 7.6]J; is not separable frorty; by a
pot(A?) set. So here agaify /5, is countable-to-one for anye 2, andSy, 51 are locally countable
by Lemma 7.3.

e Lemma 7.7 gives a tuplé(ﬂn@) Gr(cn),C),CO,CH). Note that((ﬂnew
satisfies condition (b) in Theorem 7.8.

Gl‘(cn), C) ) CO; Cl)

¢ We change the topology aninto a finer Polish topology so that the setﬁi”Ofn become clopen
and the mapg&foli' become continuous. Now
Do” Dy CUonTi=(Uo UA(C)) N (U1 UA(C)) =A(C).

2 2 )
So there is a Borel subsétof C suchthatD, N Dy =A(D),andDC (), f{'O;,.
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e Let us prove thaDy N D? is not separable fronw; N D? by a pofA?) set.

We argue by contradiction, which givése pot(AY) such thatDy N D? C P C D?\ D;. The
T2 2
setsD,” N (-DxC)andD; N (~DxC) are disjoint, potTTY), so that they are separable By in

pot(AY). Similarly, there isA,. € pot{ A{) which separateETOT2 N (Cx-D) from DN (Cx~—D).
Now we can write

DyCPU (Don (~DxC)) U (DoN(Cx-D))CPU (A N(—=DxC))U (A, N(Cx—-D))C—Dy,
which is absurd sinc® U (A; N (=D xC)) U (A, N (Cx D)) €pot(AY).
e Let us prove thaD, N D? is not separable from\ (D) by a potII}) set.

We argue by contradiction, which givése pot(T1) such thatD, N D? C Q C D*\ A(D). The
setsQ andA(D) are disjoint, pof1}), so that there iz in pot(AY) such thaty C RC D?\ A(D).
2 2

The setsD,” N R andD; N R are disjoint, patTI}), so that there isS in pot(AY) such that

2 2 . . .
Dy NRCSCR\D; .ButS separatedy N D? from D; N D2, which contradicts the previous
point.

e Note that(IT;cz h;) [A(D)] € CoNCi N (N, DOM(cy)xC) CGr(i). We conclude as in the proof
of Theorem 7.1. O
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