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1 Introduction

The reader should see [K] for the descriptive set theoretic notation used in this paper. The standard
way to compare the topological complexity of the subsets of the Baire spaceN := ωω is to use the
Wadge quasi-order≤W . Recall that ifX (resp.,Y ) is a zero-dimensional Polish space andA (resp.,
B) is a subset ofX (resp.,Y ), then

(X,A) ≤W (Y,B) ⇔ ∃f :X→Y continuous such thatA=f−1(B).

This is a very natural definition since the continuous functions are the morphisms of topological
spaces. So the diagram is as follows:

X A

¬A
−−−−−−−−→
−−−−−−−−→

B

¬B
Y

The “zero-dimensional” condition is here to ensure the existence of enough continuous functions
(recall that the only continuous functions fromR into N are the constant functions). In the sequel,
Γ will be a subclass of the class of Borel sets in zero-dimensional Polish spaces. We denote by
Γ̌ :={¬A | A∈Γ} the class of the complements of the elements ofΓ. We say thatΓ is self -dual if
Γ= Γ̌. We also set∆(Γ) :=Γ ∩ Γ̌. Following 4.1 in [Lo-SR2], we give the following definition:

Definition 1.1 We say thatΓ is aWadge class of Borel sets if there is a Borel subsetA of N
such that for any zero-dimensional Polish spaceX, and for anyA ⊆ X, A is in Γ if and only if
(X,A) ≤W (N ,A). In this case, we also say thatA is Γ-complete.

The Wadge hierarchy defined by≤W , i.e., the inclusion of Wadge classes, is the finest hierarchy
of topological complexity in descriptive set theory. The goal of this paper is to study the descriptive
complexity of the Borel sets in products of Polish spaces. More specifically, we are looking for
a dichotomy of the following form, quite standard in descriptive set theory: either a set is simple,
or it is more complicated than a well-known complicated set. Of course, we have to specify the
notion of complexity and the notion of comparison that we consider. The two things are actually very
much related. The usual notion of comparison between analytic equivalence relations is the Borel
reducibility quasi-order≤B. Recall that ifX (resp.,Y ) is a Polish space andE (resp.,F ) is an
equivalence relation onX (resp.,Y ), then

(X,E) ≤B (Y, F ) ⇔ ∃f :X→Y Borel such thatE=(f×f)−1(F ).

Note that this makes sense even ifE andF are not equivalence relations. The notion of complexity
that we consider is a natural invariant for≤B in dimension two. Its definition generalizes Definition
3.3 in [Lo3] to any dimensiond making sense in the context of classical descriptive set theory, and
also to any classΓ. So in the sequeld will be a cardinal, and we will have2≤d≤ω since2ω1 is not
metrizable.

Definition 1.2 Let (Xi)i∈d be a sequence of Polish spaces, andB be a Borel subset ofΠi∈d Xi. We
say thatB is potentially in Γ

(
or B∈pot(Γ)

)
if, for eachi ∈ d, there is a finer zero-dimensional

Polish topologyτi onXi such thatB∈Γ
(
Πi∈d (Xi, τi)

)
.
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One should emphasize the fact that the point of this definition is to consider product topologies.
Indeed, ifB is a Borel subset of a Polish spaceX, then there is a finer Polish topologyτ onX such
thatB is a clopen subset of(X, τ) (see 13.1 in [K]). This is not the case in products: if for exampleΓ
is a non self-dual Wadge class of Borel sets, then there are sets inΓ(N 2) that are not in pot(Γ̌) (see
Theorem 3.3 in [L1]). For example, the diagonal ofN is not potentially open.

Note also that the “zero-dimensional” condition is not a restriction since we work up to finer Pol-
ish topologies. Indeed, ifX is a Polish space, then there is a finer zero-dimensional Polish topology
onX (see 13.5 in [K]). The notion of potential complexity is an invariant for≤B in the sense that if
(X,E) ≤B (Y, F ) andF ∈pot(Γ), thenE∈pot(Γ) too.

The good notion of comparison is not the rectangular version of≤B. Instead of considering a
Borel setE and its complement, we have to consider pairs of disjoint analytic sets. This leads to the
following notation. Let(Xi)i∈d, (Yi)i∈d be sequences of Polish spaces, andA0, A1 (resp.,B0, B1)
be disjoint analytic subsets ofΠi∈d Xi (resp.,Πi∈d Yi). Then(
(Xi)i∈d, A0, A1

)
≤
(
(Yi)i∈d, B0, B1

)
⇔ ∀i∈d ∃fi :Xi→Yi continuous such that

∀ε∈2 Aε⊆(Πi∈d fi)−1(Bε).
So the good diagram of comparison is as follows:

Πi∈d Xi A0

A1

−−−−−−−−→

−−−−−−−−→

B0

B1

Πi∈d Yi

The notion of potential complexity was studied in [L1]-[L7] whend=2 andΓ is a non self-dual Borel
class. The main question of this long study was formulated by A. Louveau in 1990. He wanted to
know whether Hurewicz’s characterization of theGδ sets can be generalized to the sets potentially in
Γ whenΓ is a Wadge class of Borel sets. The main result of this paper gives a complete and positive
answer to this question:

Theorem 1.3 LetΓ be a Wadge class of Borel sets, or the class∆0
ξ for some1≤ξ<ω1. Then there

are Borel subsetsS0, S1 of (dω)d such that for any sequence of Polish spaces(Xi)i∈d, and for any
disjoint analytic subsetsA0,A1 of Πi∈d Xi, exactly one of the following holds:

(a) The setA0 is separable fromA1 by a pot(Γ) set.

(b) The inequality
(
(dω)i∈d,S0,S1

)
≤
(
(Xi)i∈d, A0, A1

)
holds.

Note that Theorem 1.3 is a result of continuous reduction. We already met the notion of contin-
uous reduction when the Wadge quasi-order was defined. This is one of the motivations for trying to
prove Theorem 1.3. This paper is the continuation of the article [L7], that was announced in [L6]. We
generalize the main result of [L7], which was obtained by G. Debs and the author. The generalization
goes in different directions: it works for

- any dimensiond,

- the self-dual Borel classes∆0
ξ ,

- any Wadge class of Borel sets (this is the hardest part).
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We generalize the one-dimensional version of Theorem 1.3. This version was obtained by A.
Louveau and J. Saint Raymond (see [Lo-SR1]), and is a generalization of the Hurewicz theorem. In
fact, we give a new proof of this version. The games are not involved in the new proof. This proof
gives a new approach for studying the Wadge classes.

Note that A. Louveau and J. Saint Raymond proved that ifΓ is not self-dual, then the reduction
map in (b) can be one-to-one (see Theorem 5.2 in [Lo-SR2]). We will see that there is no injectivity in
general in Theorem 1.3. However, G. Debs proved that we can have thefi’s one-to-one whend=2,
Γ∈{Π0

ξ ,Σ
0
ξ} andξ≥3. Some details about the injectivity will be given in the last section.

We will prove a version of Theorem 1.3 for the following classes:

- graphs (i.e., irreflexive and symmetric relations),

- oriented graphs (i.e., irreflexive and antisymmetric relations),

- quasi-orders (i.e., reflexive and transitive relations),

- partial orders (i.e., reflexive, antisymmetric and transitive relations).

We will call C the set of these four classes. Note that a reduction on the whole product is not
possible in Theorem 1.3, for acyclicity reasons (see [L5]-[L7]). For example, the following result is
proved in [L5]. LetX0, X1, Y0, Y1 be Polish spaces, andA (resp.,B) be a subset ofX0×X1 (resp.,
Y0×Y1). We set

(X0, X1, A) ≤r
c (Y0, Y1, B) ⇔ ∀i∈2 ∃fi :Xi→Yi continuous such thatA=(f0×f1)−1(B).

If (X0, X1, A) ≤r
c (Y0, Y1, B) withX0 =X1, Y0 =Y1 andf0 =f1, then we write(X0, A) ≤c (Y0, B).

In the sequel, we will denote byC the Cantor space2ω.

Theorem 1.4 (a) There is a≤r
c-antichain (C, C, Aα)α∈C such thatAα ∈ D2(Σ0

1) is ≤r
c-minimal

among the∆1
1\pot(Π0

1) sets, for anyα∈C.
(b) There is a≤c-antichain(C, Rα)α∈C such thatRα is≤c-minimal among the∆1

1\pot(Π0
1) sets, for

anyα∈C. Moreover, for any elementC of C, we can ensure that{Rα | α ∈ C}⊆C.

We prove the following corollary of Theorem 1.3:

Theorem 1.5 LetC ∈C, andΓ be a Wadge class of Borel sets, or the class∆0
ξ for some1≤ξ<ω1.

Then there are Borel subsetsR0,R1 of C×C with R0,R0 ∪ R1∈C such that for any Polish spaceX,
and for any Borel subsetR ofX2 in C, exactly one of the following holds:

(a) The setR is in pot(Γ).
(b) There isf :C→X continuous such thatR0⊆(f×f)−1(R) andR1⊆(f×f)−1(¬R).

We introduce the following notation and definition in order to dwell more deeply into Theorem
1.3. We define the notions of smallness that ensure the possibility of the reduction. We emphasize
the fact that in this paper, there will be a constant identification between(dd)l and(dl)d, for l≤ω, in
order to simplify as much as possible the notations.
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Notation. If X is a set, then~x := (xi)i∈d is an arbitrary element ofX d. If T ⊆X d, thenGT is the
graph whose set of vertices isT , and whose set of edges is

{
{~x, ~y}⊆T | ~x 6=~y and ∃i∈d xi =yi

}
(see [B] for the basic notions about graphs). So~x 6= ~y ∈ T areGT -related if they have at least a
common coordinate.

Definition 1.6 (a) We say thatT is one-sided if the following holds:

∀~x 6=~y∈T ∀i 6=j∈d (xi 6=yi ∨ xj 6=yj).

This means that if~x 6=~y∈T , ~x, ~y have at most one common coordinate.

(b) We say thatT is almost acyclic if for everyGT -cycle(
−→
xn)n≤L there arei∈d andk<m<n<L

such thatxk
i =xm

i =xn
i . This means that everyGT -cycle contains a “flat” subcycle, i.e., a subcycle

in a fixed directioni∈d.

(c) We say that a treeT ondd is a tree with suitable levels if the setT l :=T ∩ (dd)l⊆(dl)d is finite,
one-sided and almost acyclic for each natural numberl.

We do not really need the finiteness of the levels, but it makes the proof of Theorem 1.3 much
simpler. The following classical property will be crucial in the sequel:

Definition 1.7 We say thatΓ has theseparation property if for eachA,B ∈Γ(N ) disjoint, there
isC∈∆(Γ)(N ) separatingA fromB.

The separation property is studied in [S] and [vW], which contain a proof of the following result:

Theorem 1.8 (Steel-van Wesep) LetΓ be a non self-dual Wadge class of Borel sets. Then exactly one
of the two classesΓ, Γ̌ has the separation property.

We cut Theorem 1.3 into two parts.

Theorem 1.9 There is a treeTd with suitable levels such that, for each non self-dual Wadge class of
Borel setsΓ, the following statements hold.

(1) There existsS∈Γ(dTde) that is not separable fromdTde\S by a pot(Γ̌) set.

(2) If Γ does not have the separation property, andΓ = Σ0
ξ or ∆(Γ) is a Wadge class, then we can

find disjoint setsS0,S1∈Γ(dTde) which are not separable by a pot
(
∆(Γ)

)
set.

Theorem 1.10 LetTd be a tree with suitable levels,Γ be a non self-dual Wadge class of Borel sets,
(Xi)i∈d be a sequence of Polish spaces, andA0,A1 be disjoint analytic subsets ofΠi∈d Xi.

(1) Assume thatS ∈Γ(dTde) is not separable fromdTde\S by a pot(Γ̌) set. Then exactly one of the
following holds:

(a) The setA0 is separable fromA1 by a pot(Γ̌) set.

(b) The inequality
(
(dω)i∈d, S, dTde\S

)
≤
(
(Xi)i∈d, A0, A1

)
holds.

(2) Assume thatΓ does not have the separation property,Γ=Σ0
ξ or ∆(Γ) is a Wadge class, and that

S0, S1∈Γ(dTde) are disjoint and not separable by a pot
(
∆(Γ)

)
set. Then exactly one of the following

holds:

(a) The setA0 is separable fromA1 by a pot
(
∆(Γ)

)
set.

(b) The inequality
(
(dω)i∈d, S0, S1

)
≤
(
(Xi)i∈d, A0, A1

)
holds.
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We now come back to the new approach for studying the Wadge classes mentioned earlier. There
are a lot of dichotomy results in descriptive set theory about the equivalence relations, the quasi-
orders, the partial orders, or even the arbitrary analytic sets. So it is natural to look for common
points between these dichotomies. B. Miller’s recent work goes in this direction. He proved many
known dichotomies without using the effective descriptive set theory, using some variants of the
Kechris-Solecki-Todořcevíc dichotomy for analytic graphs (see [K-S-T]). Here we want to point out
another common point, of effective nature. In these dichotomies, the first possibility of the dichotomy
is equivalent to the emptyness of someΣ 1

1 set. For example, in the Kechris-Solecki-Todorčevíc
dichotomy, theΣ 1

1 set is the complement of the union of the∆1
1 sets discrete with respect to theΣ 1

1

graph considered. We prove a strengthening of Theorem 1.10 in which such aΣ 1
1 set appears. We

will state the first part of it, informally. Before that, we need the following notation.

Notation. LetX be a recursively presented Polish space. The topology onX generated by∆1
1(X) is

denoted by∆X . This topology is Polish (see (iii)⇒ (i) in the proof of Theorem 3.4 in [Lo3]). The
topologyτ1 onN d is the product topology∆d

N .

Theorem 1.11 Let Td be a tree with∆1
1 suitable levels,Γ be a non self-dual Wadge class of Borel

sets having a∆1
1 code, andA0, A1 be disjointΣ 1

1 subsets ofN d. Assume thatS ∈ Γ(dTde) is not
separable fromdTde\S by a pot(Γ̌) set. Then there is aΣ 1

1 subsetR ofN d such that the following
are equivalent:

(a) The setA0 is not separable fromA1 by a pot(Γ̌) set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot(Γ̌) set.

(c) The setA0 is not separable fromA1 by aΓ̌(τ1) set.

(d)R 6=∅.
(e) The inequality

(
(dω)i∈d, S, dTde\S

)
≤
(
(N )i∈d, A0, A1

)
holds.

ThisΣ 1
1 setR is built with topologies based onτ1. This use of theseΣ 1

1 sets is the new approach
for studying the Wadge classes.

We first prove Theorems 1.9 and 1.10 for the Borel classes, self-dual or not. Next, we consider
the case of Wadge classes. In Section 2, we start to prove Theorem 1.9. We construct a concrete tree
with suitable levels, and give a general condition ensuring the existence of complicated subsets of its
body (see the statement of Theorem 1.9). We actually reduce the problem to a problem concerning
the one-dimensional spaces. In Section 3, we prove Theorem 1.9 for the Borel classes. In Section
4, we prove Theorem 1.10 for the Borel classes, using some tools of effective descriptive set theory
and the representation theorem for Borel sets proved in [D-SR]. In Section 5, we prove Theorem 1.9,
using the description of the Wadge classes in [Lo-SR2]. In Section 6, we prove Theorems 1.3, 1.5,
1.10 and 1.11. Finally, in Section 7, we give some details about the injectivity.

2 A general condition ensuring the existence of complicated sets

We now build a tree with suitable levels. This tree has to be small enough since we cannot have a
reduction on the whole product. But as the same time it has to be big enough to ensure the existence
of complicated sets, as in Theorem 1.9.
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Notation. Fix some standard bijection< ., . >:ω2→ω, for example

(n, p) 7→< n, p >:=
(n+p)(n+p+1)

2
+p.

Let b :ω→ω2 be its inverse (b associates
(
(l)0, (l)1

)
with l).

In the introduction, we mentionned the idenfication between(dl)d and(dd)l. More precisely, the

bijection we use associates
((
αi(j)

)
i∈d

)
j∈l

with ~α∈(dl)d.

Definition 2.1 We say thatE⊆
⋃

l∈ω (dl)d≡(dd)<ω is aneffective frame if

(a) ∀l∈ω ∃!
−→
sl ∈E∩(dl)d.

(b) ∀p, q, r∈ω ∀t∈d<ω ∃N ∈ω (sq
i it0

N )i∈d∈E, (|sq
00t0

N |−1)0 =p and
(
(|sq

00t0
N |−1)1

)
0
=r.

(c) ∀l>0 ∃q<l ∃t∈d<ω ∀i∈d sl
i =s

q
i it.

(d) The mapl 7→
−→
sl can be coded by a recursive map fromω into ωd.

We will callTd thetree on dd associated with an effective frame E={
−→
sl | l∈ω}:

Td :=
{
~s∈(dd)<ω | (∀i∈d si =∅) ∨

(
∃l∈ω ∃t∈d<ω ∀i∈d si =sl

iit ∧ ∀n< |s0| s0(n)≤n
)}
.

The uniqueness condition in (a) and Condition (c) ensure thatTd is small enough, and also the
almost acyclicity. The definition ofTd ensures thatTd has finite levels. Note thatT l = Td ∩ (dd)l

can be coded by aΠ 0
1 subset ofN l whend= ω. The existence condition in (a) and Condition (b)

ensure thatTd is big enough. More precisely, if(X, τ) is a Polish space andσ is a finer Polish
topology onX, then there is a denseGδ subset of(X, τ) on whichτ andσ coincide. The first part of
Condition (b) ensures the possibility to get inside the products of denseGδ sets. We use the examples
in the articles [Lo-SR1] and [Lo-SR2] to build the examples in Theorem 1.9. Some conditions on the
vertical sections are involved, and the second part of Condition (b) gives a control on the choice of
the vertical sections. The very last part of Condition (b) is not necessary to get Theorem 1.9 for the
Borel classes, but is useful to get Theorem 1.9 for the Wadge classes of Borel sets. Definition 2.1 is
more restrictive than Definition 3.1 in [L7], with this very last part of Condition (b), with Condition
(d) (ensuring the regularity of the levels of the tree), and also with the last part of the definition of the
tree (ensuring the finiteness of the levels of the tree).

Proposition 2.2 The treeTd associated with an effective frame is a tree with∆1
1 suitable levels. In

particular, dTde is compact.

Proof. Let l∈ω. Let us prove thatT l is ∆1
1 and finite. We argue by induction onl. The result is clear

for l≤1 sinceT 0 ={~∅} andT 1 ={(i)i∈d}. If l≥1 and~s∈(dd)<ω, then

~s∈T l ⇔ |s0|= l ∧ ∃q<l ∃t∈d<ω ∀i∈d si =s
q
i it ∧ ∀n<l s0(n)≤n.

But there are only finitely many possibilities fort sinces0(n)≤n for eachn< l, which implies that
t(m)≤q+1+m<l+1+l if m< |t|. This implies thatT l is ∆1

1 and finite.
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• Let dT be the tree generated by the effective frame:

dT :=
{
~s∈(dd)<ω | (∀i∈d si =∅) ∨

(
∃l∈ω ∃t∈d<ω ∀i∈d si =sl

iit
)}
.

Note thatT l⊆ lT :=dT ∩ (dd)l for each natural numberl sinceTd⊆dT . So it is enough to prove that
lT is one-sided and almost acyclic since these properties are hereditary.

• Let us prove thatlT is almost acyclic. We argue by induction onl. The result is clear forl ≤ 1.
So fix l ≥ 1. We set, forj ∈ d, Cj :=

{
(sq

i it)i∈d ∈ l+1T | t 6= ∅ ∧ t(|t|−1) = j
}

. Note that
l+1T ={(sl

ii)i∈d} ∪
⋃

j∈d Cj , and this union is disjoint.

The restriction ofG
l+1T to eachCj is isomorphic toG

lT . TheG
l+1T -edges are between two

elements of the sameCj , or between(sl
ii)i∈d and an element of one of theCj ’s. If a G

l+1T -cycle
exists, then we may assume that it involves only(sl

ii)i∈d and some elements of a fixedCj . But
if ~s ∈ Cj is G

l+1T -related to(sl
ii)i∈d, then we must havesl

jj = sj . This implies the existence of
k<m<n showing thatl+1T is almost acyclic.

• Now assume that~x 6= ~y ∈ lT , i, j ∈ d, xi = yi andxj = yj . Then we can write~x= (sq
i it)i∈d and

~y=(sq′

i it
′)i∈d since~x 6=~y. Asxi =yi, the reversest−1 and(t′)−1 of t andt′ are compatible. Ift= t′,

thenq= |sq
i |= l−1−|t|= l−1−|t′|= |sq′

i |= q′ and~x=~y, which is absurd. Thust 6= t′, for example
|t′|< |t|, andt−1(|t′|)= i. This proves thati=j andlT is one-sided.

• We defineπl :T l+1→dd by πl(~s ) :=
(
si(l)

)
i∈d

. As T l+1 is finite, the rangecl of πl is also finite.
ThusdTde is compact sincedTde⊆Πl∈ω cl. �

We now give a concrete effective frame.

Notation. Let bd :ω→d<ω be the following bijection.

• If d<ω, thenbd(0) :=∅ is the sequence of length0, bd(1) :=0, ...,bd(d) :=d−1 are the sequences
of length1 in the lexicographical ordering, and so on.

• If d = ω, then let(pn)n∈ω be the sequence of prime numbers, andI : ω<ω → ω be defined by

I(∅) := 1, andI(s) := p
s(0)+1
0 ...p

s(|s|−1)+1
|s|−1 if s 6= ∅. Note thatI is one-to-one, so that there is an

increasing bijectionı :Seq:=I[ω<ω]→ω. We setbω :=(ı ◦ I)−1 :ω→ω<ω.

Note that|bd(n)|≤n if n∈ω. Indeed, this is clear ifd<ω. If d=ω, then

I
(
bω(n)|0

)
<I
(
bω(n)|1

)
<...<I

(
bω(n)

)
,

so that(ı ◦ I)
(
bω(n)|0

)
<(ı ◦ I)

(
bω(n)|1

)
<...<(ı ◦ I)

(
bω(n)

)
=n. This implies that|bω(n)|≤n.

Lemma 2.3 There is a concrete effective frame.
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Proof. The idea is to code the properties that we want, using the bijectionb. Fix i∈d. We sets0i =∅,
andsl+1

i :=s(((l)1)1)0
i i bd((((l)1)1)1) 0l−(((l)1)1)0−|bd((((l)1)1)1)|. Note that

(l)0+(l)1 =M(l) :=max{m∈ω | m(m+1)
2

≤ l}≤M(l)(M(l)+1)
2

≤ l,

so thatsl
i is well defined and|sl

i|= l, by induction onl. It remains to check that Condition (b) in the
definition of an effective frame is fullfilled. We setn :=b−1

d (t), s :=
〈
r,< q, n >

〉
andl :=<p, s>.

It remains to putN := l−q−|t|: (sq
i it0

N )i∈d =
−−→
sl+1. �

The previous lemma is essentially identical to Lemma 3.3 in [L7]. Now we come to the lemma
crucial for proving Theorem 1.9. It strengthens Lemma 3.4 in [L7], even if the proof is essentially the
same.

Notation. If s∈ω<ω andq≤|s|, thens−s|q is defined bys=(s|q)(s−s|q). We extend this definition
whens∈N andq<ω. If ∅ 6=s∈ω<ω, then we defines− :=s|(|s|−1).

• We now definep :ω<ω\{∅}→ω. The definition ofp(s) is by induction on|s|:

p(s) :=


s(0) if |s|=1,

<p(s−), s(|s|−1)> otherwise.

Note thatp|ωn :ωn→ω is a bijection, for eachn≥1.

• Let l≤ω be an ordinal. The map∆:dl×dl→2l is the symmetric difference: for anym∈ l,

(s∆t)(m) :=∆(s, t)(m)=1 ⇔ s(m) 6= t(m).

• By convention,ω−1:=ω.

Lemma 2.4 Let Td be the tree associated with an effective frame and, for anyi∈ d, Gi be a dense
Gδ subset ofΠ′′

i dTde. Then there areα0 ∈G0 andF : C→Π0<i<d Gi continuous such that, for any
α∈C,

(a)
(
α0, F (α)

)
∈dTde,

(b) for anys∈ω<ω, and anym∈ω,

(i) α
(
p(sm)

)
=1 ⇒ ∃k∈ω

(
α0∆F0(α)

)(
p(sk)+1

)
=1,

(ii)
(
α0∆F0(α)

)(
p(sm)+1

)
=1 ⇒ ∃k∈ω α

(
p(sk)

)
=1.

Moreover, there is an increasing bijection

Bα :{m∈ω | α(m)=1}→{k∈ω |
(
α0∆F0(α)

)
(k+1)=1}

such that(m)0 =
(
Bα(m)

)
0

and
(
(m)1

)
0
=
((
Bα(m)

)
1

)
0

if α(m)=1.
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Proof. Let (Oi
q)q∈ω be a decreasing sequence of dense open subsets ofΠ′′

i dTde whose intersection is
Gi. We construct finite approximations ofα0 andF . The idea is to linearize the binary tree2<ω. This
is the reason why we will use the bijectionb2 defined before Lemma 2.3. In order to constructF (α),
we have to imagine, for each lengthl, the different possibilities forα|l. More precisely, we construct

a mapl : 2<ω→ω\{0}. In order to simplify the notation, we set, for anyt∈2<ω, it :=s
l(t)
i . We want

the mapl to satisfy the following conditions:

(1) ∀t∈2<ω ∀i∈d (i≤|t| ⇒ ∅ 6=Nit ∩Π′′
i dTde⊆Oi

|t|)

(2) ∃v∅∈d<ω ∀i∈d i∅= iv∅

(3) ∀t∈2<ω ∀ε∈2 ∃vtε∈d<ω ∀i∈d i(tε)=(it)(i·ε)vtε

(4) ∀r∈ω
(
0b2(r)

)
0⊆0b2(r+1) ∧ ∀t∈2<ω ∀n<l(t) (0t)(n)≤n

(5) ∀t∈2<ω
(
l(t)−1

)
0
=(|t|)0 ∧

((
l(t)−1

)
1

)
0
=
(
(|t|)1

)
0

• Assume that this construction is done. As0(0q) $ 0(0q+1) for each natural numberq, we can
defineα0 :=supq∈ω 0(0q). Similarly, asi+1α|q $ i+1α|(q + 1), we can define, for anyα∈C and any
i<d−1, Fi(α) :=supq∈ω i+1α|q, andF is continuous.

(a) Fix q∈ω. We have to see that
(
α0, F (α)

)
|q∈Td. Note first thatl(t)≥|t| sincel(tε)>l(t). Note

also that0t⊆α0 since0(0|t|)⊆0t⊆0(0|t|+1). Thus
(
α0, F (α)

)
|l(α|q)=

−−−→
sl(α|q)∈E. This implies that(

α0, F (α)
)
|l(α|q)∈Td since(0α|q)(n)≤n if n<l(α|q). We are done sincel(α|q)≥q.

Moreover,α0∈
⋂

q∈ω N
0(0q) ∩Π′′

0dTde⊆
⋂

q∈ω O0
q =G0. Similarly,

Fi(α)∈
⋂
q∈ω

N
i+1α|q ∩Π′′

i+1dTde⊆
⋂

q≥i+1

Oi+1
q =Gi+1.

(b).(i) We sett :=α|p(sm), so that(1t)1⊆ 1(t1) = 1α|(p(sm) + 1)⊆F0(α). As
(
l(t)−1

)
0
= p(s)

(or (m)0 if s= ∅), there isk with l(t) = p(sk)+1 (or l(t) = k+1 and(k)0 = (m)0 if s= ∅). But
(0t)0⊆0(t1)⊆α0, so thatα0

(
l(t)
)
6=F0(α)

(
l(t)
)
.

(ii) First notice that the only coordinates whereα0 andF0(α) can differ are0 and thel(α|q)’s. There-
fore there is a natural numberq with p(sm)+1 = l(α|q). In particular,(q)0 =

(
l(α|q)−1

)
0
= p(s)

(or (m)0 if s= ∅). Thus there isk with q = p(sk) (or q = k and(k)0 = (m)0 if s= ∅). Note that
α0

(
l(α|q)

)
=
(
0α|(q+ 1)

)(
l(α|q)

)
=0 6=F0(α)

(
l(α|q)

)
=
(
1α|(q+ 1)

)(
l(α|q)

)
=α(q). Soα(q)=1

andα
(
p(sk)

)
=1.

Now it is clear that the formulaBα(m) := l(α|m)−1 defines the bijection we are looking for.

• So let us prove that the construction is possible. We constructl(t) by induction onb−1
2 (t).
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As (i0∞)i∈d ∈ dTde, 0∞ ∈Π′′
0dTde andO0

0 is not empty. Thus there isu ∈ d<ω \{∅} such that
∅ 6=Nu ∩Π′′

0dTde⊆O0
0. Chooseβ0∈Nu ∩Π′′

0dTde, and~α∈dTde such thatα0 =β0. Then~α||u|∈Td

andu(n) ≤ n for eachn < |u|. Note thatu(0) = 0 and(u−u|1)(n) = u(n+1) ≤ 1+n for each
n < |u|−1. We chooseL ∈ ω with

(
i (u−u|1) 0L

)
i∈d

∈ E, (|0 (u−u|1) 0L|−1)0 = (0)0 and(
(|0 (u−u|1) 0L|−1)1

)
0
=
(
(0)1

)
0
. We putv∅ :=(u−u|1) 0L andl(∅) :=1+|v∅|.

As (iv∅0∞)i∈d ∈ dTde, N0v∅0 ∩ Π′′
0dTde is a nonempty open subset ofΠ′′

0dTde. Thus there is
u0 ∈ d<ω such that∅ 6= N0v∅0u0 ∩ Π′′

0dTde ⊆ O0
1. As before we see thatu0(n) ≤ 1+ |v∅|+1+n

for eachn< |u0|. This implies that(iv∅0u00∞)i∈d ∈ dTde. ThusN1v∅0u0 ∩ Π′′
1dTde is a nonempty

open subset ofΠ′′
1dTde. So there isu1 ∈ d<ω such that∅ 6= N1v∅0u0u1 ∩ Π′′

1dTde ⊆ O1
1. Choose

β1∈N1v∅0u0u1 ∩Π′′
1dTde, and~γ∈dTde such thatγ1 =β1. Then~γ||1v∅0u0u1|∈Td andγ0(n)≤n for

eachn< |1v∅0u0u1|. This implies thatγ0(|1v∅0u0|+n)≤|1v∅0u0|+n for eachn< |u1|. But u1(n)
is either1, or γ0(|1v∅0u0|+n). Thusu1(n)≤ |1v∅0u0|+n if n< |u1|. We chooseM ∈ω such that(
(i∅) 0u0u1 0M

)
i∈d
∈E,

(
l(∅)+|u0u1|+M

)
0
=(1)0 and

(
(l(∅)+|u0u1|+M)1

)
0
=
(
(1)1

)
0
. We put

v0 :=u0u1 0M andl(0) := l(∅)+1+|v0|.

Assume that
(
l(t)
)
b−1
2 (t)≤r

satisfying (1)-(5) have been constructed, which is the case forr=1.

Fix t∈2<ω andε∈2 such thatb2(r+1)= tε, with r≥1. Note thatb−1
2 (t)<r, so thatl(t)<l

(
b2(r)

)
,

by induction assumption.

AsN
0b2(r) ∩Π′′

0dTde is nonempty,N(0b2(r))0 ∩Π′′
0dTde is nonempty too. Thus there isw0 in d<ω

such that∅ 6=N(0b2(r))0w0
∩Π′′

0dTde⊆O0
|t|+1. As before we see thatw0(n)≤ l

(
b2(r)

)
+1+n for each

n< |w0|. Arguing as in the caser= 1, we prove, for each1≤ i≤ |t|+1, the existence ofwi ∈ d<ω

such that∅ 6=N(it)(i·ε)(0b2(r)−0b2(r)|(l(t)+1))0w0...wi
∩Π′′

i dTde⊆Oi
|t|+1 and

wi(n)≤ l
(
b2(r)

)
+1+|w0...wi−1|+n

for eachn< |wi| (wi(n) can bei, in which case we use the fact thatl(t)≥|t|). We chooseN ∈ω such
that

(
(it) (i·ε)

(
0b2(r)−0b2(r)|(l(t)+1)

)
0 w0...w|t|+1 0N

)
i∈d
∈E,(

l
(
b2(r)

)
+|w0...w|t|+1|+N

)
0
=(|t|+1)0

and
((
l
(
b2(r)

)
+ |w0...w|t|+1|+N

)
1

)
0

=
(
(|t|+1)1

)
0
. We put l(tε) := l(t)+1+ |vtε|, where by

definitionvtε :=
(
0b2(r)−0b2(r)|(l(t)+1)

)
0 w0...w|t|+1 0N . �

Now we come to the condition ensuring the existence of complicated sets announced in the intro-
duction.

Notation. The mapS :C→C is the shift map:S(α)(m) :=α(m+1).

Definition 2.5 We say thatC⊆C is compatible with comeager sets (or ccs) if

α∈C ⇔ S
(
α0∆F0(α)

)
∈C,

for eachα0∈dω andF :C→(dω)d−1 satisfying the conclusion of Lemma 2.4.(b).
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Notation. Let Td be the tree associated with an effective frame, andC⊆C. We put

SC :=
{
~α∈dTde | S(α0∆α1)∈C

}
.

Lemma 2.6 Let Td be the tree associated with an effective frame, andΓ be a non self-dual Wadge
class of Borel sets.

(1) Assume thatC is aΓ-complete ccs set. ThenSC∈Γ(dTde) is a Borel subset of(dω)d, and is not
separable fromdTde\SC by a pot(Γ̌) set.

(2) Assume thatC0, C1∈Γ are disjoint, ccs, and not separable by a∆(Γ) set. ThenSC0 , SC1 are in
Γ(dTde), disjoint Borel subsets of(dω)d, and not separable by a pot

(
∆(Γ)

)
set.

Proof. (1) It is clear thatSC ∈ Γ(dTde) sinceS and∆ are continuous. SoSC is a Borel subset of
(dω)d sincedTde is a closed subset of(dω)d. Indeed,dTωe is closed:

~α∈dTωe ⇔ ∀n∈ω\{0} ∃l<n ∀i∈ω sl
ii⊆αi ∧ (αi|n−sl

ii)=(α0|n−sl
00) ∧ α0(n−1)≤n−1.

We argue by contradiction to see thatSC is not separable fromdTde\SC by a pot(Γ̌) set: this gives
P ∈ pot(Γ̌). For eachi ∈ d there is a denseGδ subsetGi of the compact spaceΠ′′

i dTde such that
P ∩ (Πi∈d Gi)∈ Γ̌(Πi∈d Gi), andSC ∩ (Πi∈d Gi)⊆P ∩ (Πi∈d Gi)⊆(Πi∈d Gi)\(dTde\SC).

Lemma 2.4 providesα0∈G0 andF :C→Π0<i<d Gi continuous. Let

D :=
{
α∈C |

(
α0, F (α)

)
∈P ∩ (Πi∈d Gi)

}
.

ThenD∈ Γ̌. Let us prove thatC=D, which will contradict the fact thatC /∈ Γ̌. As C is ccs,α∈C
is equivalent toS

(
α0∆F0(α)

)
∈C. Thus

α∈C ⇒ S
(
α0∆F0(α)

)
∈C ⇒

(
α0, F (α)

)
∈SC ∩ (Πi∈d Gi)⊆P ∩ (Πi∈d Gi) ⇒ α∈D.

Similarly,α /∈C ⇒ α /∈D, andC=D.

(2) We argue as in (1). �

This lemma reduces the problem of finding some complicated sets as in the statement of Theorem
1.9 to a problem concerning one-dimensional spaces.

3 The proof of Theorem 1.9 for the Borel classes

The full version of Theorem 1.9 for the Borel classes is as follows:

Theorem 3.1 There are a concrete treeTd with ∆1
1 suitable levels, and, for any1≤ξ<ω1,

(1) a setS∈Σ0
ξ(dTde) not separable fromdTde\S by a pot(Π0

ξ) set,

(2) disjoint setsS0,S1∈Σ0
ξ(dTde) not separable by a pot(∆0

ξ) set.

This is an application of Lemma 2.6. We now introduce the objects that will be used to define the
C’s in this lemma. These objects will also be useful in the general case. The following definition can
be found in [Lo-SR2] (see Definition 2.2).
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Definition 3.2 A setH is Γ-strategically complete if

(a) H∈Γ(C).
(b) If A∈Γ(N ), then Player 2 wins the Wadge gameG(A,H) (where Player 1 playsα∈N , Player
2 playsβ∈C and Player 2 wins ifα∈A⇔ β∈H).

The following definition can essentially be found in [Lo-SR1] (see Section 3) and [Lo-SR2] (see
Definition 2.3).

Definition 3.3 Letη<ω1. A functionζ :C→C is anindependent η-function if the following hold.

(a) For some functionπ :ω→ω, the valueζ(α)(m) depends only on the values ofα onπ−1({m}).
(b) We set, for any natural numberm, Zm :={α∈C | ζ(α)(m)=1}.
(1) If η=0, thenZm is ∆0

1-complete for anym.

(2) If η=θ+1 is a successor ordinal, thenZm is Π0
1+θ-strategically complete for anym.

(3) If η is a limit ordinal, then there is a sequence(θm)m∈ω such that

(i) θm<η,

(ii) supp≥1 θmp =η, for any one-to-one sequence(mp)p≥1 of natural numbers,

(iii) the setZm is Π0
1+θm

-strategically complete for anym.

Note that we added a condition whenη= 0. Moreover, we do not ask the sequence(θm)m∈ω to
be increasing, unlike in [Lo-SR2], Definition 2.3. Note also that an independentη-function has to be
Σ0

1+η-measurable. Moreover, ifζ is an independentη-function, thenπ has to be onto.

Examples.In [Lo-SR1], Lemma 3.3, the mapρ :C→C defined as follows is introduced (it is in fact
calledρ0 in [Lo-SR1]):

ρ(α)(m) :=


1 if α(<m,n>)=0 for anyn∈ω,

0 otherwise.

Note thatρ is an independent1-function, withπ(k) = (k)0. In this paper,ρη : C →C is also defined
for η<ω1 as follows, by induction onη (see the proof of Theorem 3.2). We put

- ρ0 := IdC .

- ρθ+1 :=ρ ◦ ρθ.

- If η> 0 is a limit ordinal, then we fix a sequence(θm)m∈ω⊆ η of successor ordinals satisfying the
equalityΣm∈ω θm =η. We defineρ(m,m+1) :C→C by

ρ(m,m+1)(α)(i) :=


α(i) if i<m,

ρθm
(
Sm(α)

)
(i−m) if i≥m.

We setρ(0,m+1) :=ρ(m,m+1) ◦ ρ(m−1,m) ◦ . . . ◦ ρ(0,1) andρη(α)(m) :=ρ(0,m+1)(α)(m). The authors
prove thatρη is an independentη-function (see the proof of Theorem 3.2). In this paper, the set
H1+η := (ρη)−1({0∞}) is also introduced, and the authors prove thatH1+η is Π0

1+η-complete (see
Theorem 3.2).
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Notation. Let 1≤ξ :=1+η<ω1. We setCξ :=¬Hξ. If moreoverε∈2, then we set

Cε
ξ :=

{
α∈C | ∃m∈ω ρη(α)(m)=1 ∧ ∀l<m ρη(α)(l)=0 ∧ (m)0≡ε (mod2)

}
.

Then we setS :=SCξ
andSε :=SCε

ξ
.

Theorem 3.1 is a corollary of Proposition 2.2, Lemmas 2.3 and 2.6, and the following lemma.

Lemma 3.4 Let1≤ξ<ω1.

(1) The setCξ is aΣ0
ξ-complete ccs set.

(2) The setsC0
ξ , C1

ξ ∈Σ0
ξ , are disjoint, ccs, and not separable by a∆0

ξ set.

Proof. (1) Cξ is Σ0
ξ-complete sinceHξ is Π0

ξ-complete.

• Assume thatα0, F satisfy the conclusion of Lemma 2.4.(b). Let us prove that

ρη(α)=ρη
(
S
(
α0∆F0(α)

))
,

for each1≤η<ω1 andα∈C. Forη=1 we apply the conclusion of Lemma 2.4.(b) tos∈ω. Then note

thatρθ+1(α) = ρ
(
ρθ(α)

)
= ρ

(
ρθ
(
S
(
α0∆F0(α)

)))
= ρθ+1

(
S
(
α0∆F0(α)

))
, by induction. From

this we deduce thatρ(0,1)(α)=ρθ0(α)=ρθ0

(
S
(
α0∆F0(α)

))
=ρ(0,1)

(
S
(
α0∆F0(α)

))
if λ>0 is a

limit ordinal, by induction again. Thusρ(0,m+1)(α)=ρ(0,m+1)
(
S
(
α0∆F0(α)

))
, and

ρλ(α)(m)=ρ(0,m+1)(α)(m)=ρ(0,m+1)
(
S
(
α0∆F0(α)

))
(m)=ρλ

(
S
(
α0∆F0(α)

))
(m).

• If we apply the previous point, or the conclusion of Lemma 2.4.(b) tos :=∅, then we get

α∈Cξ ⇔ ∃m∈ω ρη(α)(m)=1 ⇔ ∃k∈ω ρη
(
S
(
α0∆F0(α)

))
(k)=1 ⇔ S

(
α0∆F0(α)

)
∈Cξ.

ThusCξ is ccs.

(2) Note first thatC0
ξ , C1

ξ ∈Σ0
ξ sinceρη is Σ0

1+η-measurable, are clearly disjoint, and are ccs as in (1)
since(m)0 =

(
Bα(m)

)
0

in Lemma 2.4.(b).

• We set, forε∈2, Vε :=
{
α∈C | ∃m∈ω ρη(α)(m)=1 ∧ (m)0≡ε (mod2)

}
. ThenVε is aΣ0

ξ set
sinceρη is Σ0

1+η-measurable. Let us prove thatVε is Σ0
ξ-complete.

- If η=0, then0∞∈Vε\Vε, so thatVε is Σ0
1-complete.

- If η = θ+1, thenρη is an independentη-function. Let (Am)m∈ω be a sequence ofΠ0
1+θ(C)

sets. Choose a continuous mapfm : C → C such thatAm = f−1
m (Zm). We definef : C → C by

f(α)(k) :=fm(α)(k) if πη(k)=m, andf is continuous. Moreover,

α∈Am ⇔ fm(α)∈Zm ⇔ f(α)∈Zm,

so that
⋃

m∈ω,(m)0≡ε (mod2) Am =f−1(Vε). ThusVε is Σ0
ξ-complete.

- If η is the limit of theθm’s, thenρη is an independentη-function. We argue as in the successor case
to see thatVε is Σ0

ξ-complete.
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• We argue by contradiction, which givesD∈∆0
ξ separatingC0

ξ fromC1
ξ . Let v0, v1 be disjointΣ0

ξ

subsets ofC. Then we can find a continuous mapfε : C → C such thatvε = f−1
ε (Vε). As ρη

0 is an
independentη-function, we getπη : ω→ ω. We define a mapf : C → C by f(α)(k) := fε(α)(k) if(
πη(k)

)
0
≡ ε (mod2), andf is continuous. Note thatα ∈ vε ⇔ fε(α) ∈ Vε ⇔ f(α) ∈ Vε, so that

vε = f−1(Vε). Thusα∈ v0 ⇔ f(α)∈ V0 ⇔ f(α)∈ V0\V1 ⊆C0
ξ ⊆D sincev0 is disjoint fromv1.

Similarly,α∈v1 ⇔ f(α)∈V1\V0⊆C1
ξ ⊆¬D. Thusf−1(D) separatesv0 from v1. Asf−1(D)∈∆0

ξ ,
this implies thatΣ0

ξ has the separation property, which contradicts 22.C in [K]. �

4 The proof of Theorem 1.10 for the Borel classes

The full versions of Theorems 1.10 and 1.3 for the Borel classes are as follows:

Theorem 4.1 Let Td be a tree with suitable levels,1 ≤ ξ < ω1, (Xi)i∈d be a sequence of Polish
spaces, andA0,A1 be disjoint analytic subsets ofΠi∈d Xi.

(1) LetS∈Σ0
ξ(dTde). Then one of the following holds:

(a) The setA0 is separable fromA1 by a pot(Π0
ξ) set.

(b) The inequality
(
(dω)i∈d, S, dTde\S

)
≤
(
(Xi)i∈d, A0, A1

)
holds.

If moreoverS is not separable fromdTde\S by a pot(Π0
ξ) set, then this is a dichotomy.

(2) LetS0, S1∈Σ0
ξ(dTde) be disjoint. Then one of the following holds:

(a) The setA0 is separable fromA1 by a pot(∆0
ξ) set.

(b) The inequality
(
(dω)i∈d, S0, S1

)
≤
(
(Xi)i∈d, A0, A1

)
holds.

If moreoverS0 is not separable fromS1 by a pot(∆0
ξ) set, then this is a dichotomy.

Corollary 4.2 Let Γ be Borel class. Then there are Borel subsetsS0, S1 of (dω)d such that for any
sequence of Polish spaces(Xi)i∈d, and for any disjoint analytic subsetsA0, A1 of Πi∈d Xi, exactly
one of the following holds:

(a) The setA0 is separable fromA1 by a pot(Γ) set.

(b) The inequality
(
(dω)i∈d,S0,S1

)
≤
(
(Xi)i∈d, A0, A1

)
holds.

4.1 Acyclicity

In this subsection we give a result that will be used later to prove Theorem 4.1. This is the place
where the essence of the notion of a finite one-sided almost acyclic set is really used.

Lemma 4.1.1 Assume thatT ⊆X d is finite. Then the following are equivalent:

(a) The setT is one-sided and almost acyclic.

(b) For each~t∈T , there is a natural number0<l<d+2 and a partition(Sj)j∈l of T \{~t } with

(1) ∀i∈d ∀j 6=k∈ l Πi[Sj ] ∩Πi[Sk]=∅.

(2) ∀i∈d ∀j∈ l ∀~x∈Sj xi = ti ⇒ i=j.
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Proof. (a)⇒ (b) If ~y 6=~z ∈T and
(−→
yj
)

j≤l
is a walk inGT with

−→
y0 = ~y and

−→
yl =~z, then we choose

such a walk of minimal length, and we call itw~y,~z. We will define a partition ofT . We put, forj∈d,

N := { ~x∈T | ~x 6=~t ∧ w~x,~t does not exist},
Rj := { ~x∈T | ~x 6=~t ∧

(
w~x,~t (|w~x,~t |−2)

)
j
= tj }.

So we defined a partition
(
N, (Rj)j∈d

)
of T \{~t } sinceT is one-sided. AsT is finite, there isj0∈d

minimal such thatRj =∅ if j >j0. We setSj :=Rj if j≤j0, Sj0+1 :=N andl :=j0+2.

(1) Let us prove thatΠi[Rj ] ∩ Πi[N ] = ∅, for eachi, j ∈ d. We argue by contradiction. This gives
xi ∈ Πi[Rj ] ∩ Πi[N ], ~x ∈ Rj , and also~y ∈ N such thatxi = yi. As ~x, ~y ∈ T andRj ∩ N = ∅,
~x 6=~y and~x, ~y areGT -related. Note thatw~y,~t does not exist, and thatw~x,~t exists. Now the sequence(
~y, ~x, ...,~t

)
shows the existence ofw~y,~t , which is absurd.

It remains to see thatΠi[Rj ] ∩ Πi[Rk] = ∅, for eachi, j, k ∈ d with j 6= k. We argue by contra-
diction. This givesxi∈Πi[Rj ] ∩ Πi[Rk], ~x∈Rj , and also~y∈Rk such thatxi =yi. As ~x, ~y∈T and

j 6= k, ~x 6= ~y and~x, ~y areGT -related. We setw~x,~t :=
(−→
zn
)

n≤I+1
andw~y,~t :=

(−→
yn
)

n≤J+1
. Note

that
−→
zI 6=

−→
yJ sincezI

j = tj andyJ
j 6= tj , since otherwise

−→
yJ , ~t∈T ,

−→
yJ 6=~t andyJ

j = tj , yJ
k = tk, which

contradicts the fact thatT is one-sided.

We denote byW :=
(−→
wn
)

n≤K
the followingGT -walk:

(−→
zI ,

−−→
zI−1, ...,

−→
z0,

−→
y0,

−→
y1, ...,

−→
yJ
)

. If there

arek < n ≤ K with
−→
wk =

−→
wn, then we putW ′ :=

(−→
w0, ...,

−→
wk,

−−−→
wn+1, ...,

−→
wK
)

. If we iterate this

construction, then we get aGT -walk without repetitionV :=
(−→
vn
)

n≤L
from

−→
w0 to

−→
wK .

If there arei∈d andk+1<n≤L with vk
i =vn

i , then we putV ′ :=
(−→
v0, ...,

−→
vk,

−→
vn, ...,

−→
vL
)

. If we

iterate this construction, then we get aGT -walk without repetitionU :=
(−→
un
)

n≤M
from

−→
w0 to

−→
wK

for which it is not possible to findi∈d andk+1<n≤M with uk
i =un

i .

Now~t ,
−→
u0, ...,

−→
uM ,~t is aGT -cycle contradicting the almost acyclicity ofT .

(2) If ~x∈N , thenw~x,~t does not exist. This implies thatxi 6= ti for eachi∈d, since otherwise~x and~t

would beGT -related, which contradicts the non-existence ofw~x,~t .

If ~x∈Rj , theni is the only coordinate for which the equalityxi = ti holds sinceT is one-sided.
Note thatw~x,~t =

(
~x,~t

)
. As ~x∈Rj , we get

(
w~x,~t (|w~x,~t |−2)

)
j
= tj . Butw~x,~t (|w~x,~t |−2)=~x. Thus

xj = tj andi=j.

(b)⇒ (a) Let~t 6= ~x∈T , i, j ∈ d such thatti =xi andtj =xj , andk∈ l such that~x∈Sk. By (2) we

get i= k= j andT is one-sided. Now consider aGT -cycle(
−→
xn)n≤L. By (1) there isj ∈ l such that

−→
xn∈Sj for each0<n<L. Then by (2) we gettj =x1

j =xL−1
j andT is almost acyclic. �

Definition 4.1.2 and Lemma 4.1.3 below are essentially due to G. Debs (see Subsection 2.1 in
[L7]).
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Definition 4.1.2 (Debs) LetΘ :X d→ 2N
d
, T ⊆X d. We say that the mapθ=Πi∈d θi ∈ (NX )d is a

π-selector on T for Θ if

(a) θ(~x)=
(
θi(xi)

)
i∈d

for each~x∈X d.

(b) θ(~x)∈Θ(~x) for each~x∈T .

Lemma 4.1.3 (Debs) Letl be a natural number,X := dl+1, T ⊆ X d be∆1
1, finite, one-sided, and

almost acyclic,Θ :X d →Σ 1
1 (N d), andΘ :X d →Σ 1

1 (N d) be defined byΘ(~x) := Θ(~x)
τ1

. ThenΘ
admits aπ-selector onT if Θ does.

Proof. (a) Let~t ∈ T , andΨ : X d → Σ 1
1 (N d). We assume thatΨ(~x) = Θ(~x) if ~x 6= ~t , and that

Ψ
(
~t
)
⊆Θ

(
~t
)τ1

. We first prove thatΘ admits aπ-selector onT if Ψ does.

• Lemma 4.1.1 gives a finite partition(Sj)j∈l of T \{~t }. Fix a π-selectorψ̃ on T for Ψ, and let
M :=max(d ∩ l). We defineΣ 1

1 setsUi, for i≤M , by

Ui :=
{
α∈N | ∃ψ∈(NX )d α=ψi(ti) ∧ ∀~x∈T ψ(~x)∈Ψ(~x)

}
.

As ψ̃
(
~t
)
=
(
ψ̃i(ti)

)
i∈d
∈Ψ

(
~t
)
∩
(
(Πi≤M Ui)×N d−M−1

)
we get

∅ 6=Ψ
(
~t
)
∩
(
(Πi≤M Ui)×N d−M−1

)
⊆Θ

(
~t
)τ1

∩
(
(Πi≤M Ui)×N d−M−1

)
.

By the separation theorem this implies thatΘ
(
~t
)
∩
(
(Πi≤M Ui)×N d−M−1

)
is not empty and contains

some point~α. Fix i≤M . Asαi∈Ui there isψi∈ (NX )d such thatαi =ψi
i(ti) andψi(~x)∈Ψ(~x) if

~x∈T .

• Now we can defineθi :X →N , for eachi∈d. We put

θi(xi) :=


αi if xi = ti,

ψj
i (xi) if xi∈Πi[Sj ]\{ti} ∧ j≤M ,

ψ0
i (xi) otherwise.

Then we setθ(~x)(i) :=θi(xi) if i∈d.

• It remains to see thatθ(~x)∈Θ(~x) for each~x∈T .

Note thatθ
(
~t
)
=~α∈Θ

(
~t
)
. So we may assume that~x 6=~t . So letj∈ l with ~x∈Sj .

- If xi 6= ti for eachi∈d andj≤M , thenθ(~x)=
(
θi(xi)

)
i∈d

=ψj(~x)∈Ψ(~x)=Θ(~x).

- Similarly, if xi 6= ti for eachi∈d andj>M , thenθ(~x)=
(
θi(xi)

)
i∈d

=ψ0(~x)∈Ψ(~x)=Θ(~x).

- If xi = ti for somei∈d, theni=j≤M . This implies thatθj(xj)=αj =ψj
j (tj)=ψj

j (xj) and

θ(~x)=
(
θi(xi)

)
i∈d

=ψj(~x)∈Ψ(~x)=Θ(~x).

(b) Write T :=
{−→
x1, . . . ,

−→
xn
}

, and setΨ0 :=Θ. We defineΨj+1 :X d→Σ 1
1 (N d) as follows. We put

Ψj+1(~x) := Ψj(~x) if ~x 6=
−−→
xj+1, andΨj+1

(−−→
xj+1

)
:=Θ

(−−→
xj+1

)
, for j < n. The result now follows

from an iterative application of (a). �
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4.2 The topologies

In this subsection we give two other results that will be used to prove Theorem 4.1. We use some
tools of effective descriptive set theory (the reader should see [M] for the basic notions). We first
recall a classical result in the spirit of Theorem 3.3.1 in [H-K-Lo].

Notation. Let X be a recursively presented Polish space. Using the bijection betweenω andω2

defined before Definition 2.1, we can build a bijection(xn) 7→< xn > between(Xω)ω andXω by the
formula< xn > (l) :=x(l)0

(
(l)1
)
. The inverse mapx 7→

(
(x)n

)
is given by(x)n(p) :=x(< n, p >).

These bijections are recursive.

Lemma 4.2.1 Let X be a recursively presented Polish space. Then there areΠ 1
1 setsWX ⊆ N ,

CX ⊆N×X with {(α, x)∈N×X | α∈WX andx /∈CX
α }∈Π 1

1 , ∆1
1(X)={CX

α | α∈∆1
1 ∩WX},

and∆1
1(X)={CX

α | α∈WX}.

Proof. By 3E.2, 3F.6 and 3H.1 in [M], there isUX ∈Π 1
1 (N×X) which is universal forΠ1

1(X) and
satisfies the two following properties.

- A subsetP of X is Π 1
1 if and only if there isα∈N recursive withP =UX

α .

- There isS :N×N→N recursive such that(α, β, x)∈UN×X ⇔
(
S(α, β), x

)
∈UX .

We set, forε∈2, Uε :={(α, x)∈N×X |
(
(α)ε, x

)
∈UX}. ThenUε∈Π 1

1 . By 4B.10 in [M], Π 1
1

has the reduction property, which givesV0, V1∈Π 1
1 disjoint withVε⊆Uε andV0 ∪ V1 =U0 ∪U1. We

setWX :={α∈N | (V0)α ∪ (V1)α =X} andCX :=V0, which definesΠ 1
1 sets. Moreover,

α∈WX ∧ x /∈CX
α ⇔ α∈WX ∧ (α, x)∈V1

is Π 1
1 in (α, x). Assume thatA ∈∆1

1(X), which givesα0, α1 ∈ N recursive withA = UX
α0

(resp.,
¬A=UX

α1
). We defineα∈N by (α)ε :=αε, so thatα is recursive. We get

x∈A⇔ (α0, x)∈UX ⇔ (α, x)∈U0 ⇔ (α, x)∈U0\U1 ⇔ (α, x)∈V0,
x /∈A⇔ (α1, x)∈UX ⇔ (α, x)∈U1 ⇔ (α, x)∈U1\U0 ⇔ (α, x)∈V1,

so thatα∈WX andCX
α =A. This also proves that∆1

1(X)⊆{CX
α | α∈WX}.

Conversely, letα ∈ ∆1
1 ∩WX . ThenCX

α ∈ Π 1
1 , andx /∈ CX

α ⇔ α ∈WX ∧ x /∈ CX
α , so that

¬CX
α ∈Π 1

1 andCX
α ∈∆1

1. Note that this also proves that∆1
1(X)⊇{CX

α | α∈WX}. �

We now give some notation in order to state an effective version of Theorem 4.1.

Notation. LetX be a recursively presented Polish space.

• We will use the Gandy-Harrington topologyΣX onX generated byΣ 1
1 (X). Recall that the set

ΩX :={x∈X | ωx
1 =ωCK

1 } is Borel andΣ 1
1 , that(ΩX ,ΣX) is a zero-dimensional Polish space (the

intersection ofΩX with any nonemptyΣ 1
1 set is a nonempty clopen subset of(ΩX ,ΣX)) (see [L8]).

•Recall the topologyτ1 defined before Theorem 1.11. We will also consider some topologies between
τ1 andΣN d . Let 2 ≤ ξ < ωCK

1 . The topologyτξ is generated byΣ 1
1 (N d) ∩Π0

<ξ(τ1). We have
Σ0

1(τξ)⊆Σ0
ξ(τ1), so thatΠ0

1(τξ)⊆Π0
ξ(τ1). These topologies are similar to the ones considered in

[Lo2] (see Definition 1.5). IfA⊆N d and1≤ξ<ωCK
1 , then we will writeA

ξ
instead ofA

τξ .
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• We set pot(Π0
0) := {Πi∈d Ai | Ai ∈ ∆1

1(N ), andAi = N for almost everyi ∈ d}. We also set
W :=WN d

andC :=CN
d

(see Lemma 4.2.1). We will define precisely, forξ<ω1,{
(β, γ)∈N×W | β codes a pot(Π0

ξ) set andCγ is the set coded byβ
}
.

The way we will do it is not the simplest possible (we can in fact forgetβ, and work withγ ∈ ω
instead ofγ ∈N , see [L7]). We do it this way to start to give the flavor of what is going on with the
Wadge classes.

• In order to do this, we set

V0 :=

{
(mβ, γ)∈N×W | ∀i<m (β)i∈WN ∧ γ∈∆1

1(mβ)∧ m=d ∧ Cγ =Πi<m CN(β)i
if d<ω

Cγ =
(
Πi<m CN(β)i

)
×N ω if d=ω

}
.

We define an inductive operatorF overN×N (see [C]) as follows:

F(A) :=A ∪ V0 ∪
{
(β, γ)∈N×W | γ∈∆1

1(β)∧
∃δ∈∆1

1(β) ∀n∈ω
(
(β)n, (δ)n

)
∈A ∧ ¬Cγ =

⋃
n∈ω C(δ)n

}
.

ThenF is clearly aΠ 1
1 monotone inductive operator. We set, for any ordinalξ, Vξ := Fξ (which is

coherent with the definition ofV0). We also setV<ξ :=
⋃

η<ξ Vη. The effective version of Theorem
4.1, which is the precise version of Theorem 1.11 for the Borel classes, is as follows:

Theorem 4.2.2 Let Td be a tree with∆1
1 suitable levels,1≤ ξ < ωCK

1 , andA0, A1 be disjointΣ 1
1

subsets ofN d.

(1) Assume thatS ∈Σ0
ξ(dTde) is not separable fromdTde\S by a pot(Π0

ξ) set. Then the following
are equivalent:

(a) The setA0 is not separable fromA1 by a pot(Π0
ξ) set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot(Π0

ξ) set.

(c)¬
(
∃(β, γ)∈(∆1

1×∆1
1) ∩ Vξ A0⊆Cγ⊆¬A1

)
.

(d) The setA0 is not separable fromA1 by aΠ0
ξ(τ1) set.

(e)A0
ξ ∩A1 6=∅.

(f) The inequality
(
(dω)i∈d, S, dTde\S

)
≤
(
(N )i∈d, A0, A1

)
holds.

(2) The setsVξ andV<ξ areΠ 1
1 .
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(3) Assume thatS0, S1∈Σ0
ξ(dTde) are disjoint and not separable by a pot(∆0

ξ) set. Then the follow-
ing are equivalent:

(a) The setA0 is not separable fromA1 by a pot(∆0
ξ) set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot(∆0

ξ) set.

(c)¬
(
∃(β, γ), (β′, γ′)∈(∆1

1×∆1
1) ∩ Vξ Cγ′ =¬Cγ and A0⊆Cγ⊆¬A1

)
.

(d) The setA0 is not separable fromA1 by a∆0
ξ(τ1) set.

(e)A0
ξ ∩A1

ξ 6=∅.
(f) The inequality

(
(dω)i∈d, S0, S1

)
≤
(
(N )i∈d, A0, A1

)
holds.

The proofs of Theorems 4.1 and 4.2.2 will be by induction onξ. This appears in the statement of
the following lemma.

Lemma 4.2.3 (1) The setV0 is Π 1
1 .

(2) Let1≤ξ<ωCK
1 . We assume that Theorem 4.2.2 is proved forη<ξ.

(a) The setV<ξ is Π 1
1 .

(b) FixA∈Σ 1
1 (N d). ThenA

ξ∈Σ 1
1

(
N d).

(c) Letn≥ 1, 1≤ ξ1<ξ2< . . .< ξn≤ ξ, andS1, . . ., Sn beΣ 1
1 sets. Assume thatSi⊆Si+1

ξi+1
for

1≤ i<n. ThenSn ∩
⋂

1≤i<n Si
ξi is τ1-dense inS1

1
.

Proof. (1) The setV0 is clearlyΠ 1
1 .

(2).(a) The proof is contained in the proof of Theorem 4.1 in [L7]. It is a consequence of Lemma 4.8
in [C].

(b) The proof is essentially the proof of Lemma 2.2.2.(a) in [L7].

(c) The proof is essentially the proof of Lemma 2.2.2.(b) in [L7]. �

Lemma 4.2.4 Let S, T ∈ Σ 1
1 (N d) be such thatS is τ1-dense inT , (Xi)i∈d be a sequence ofΣ 1

1

subsets ofN such thatXi =N if i≥ i0. ThenS ∩ (Πi∈d Xi) is τ1-dense inT ∩ (Πi∈d Xi).

Proof. Let (∆i)i∈d be a sequence of∆1
1 subsets ofN such that∆i = N if i ≥ j0 ≥ i0, and also

T ∩ (Πi∈d Ii) 6= ∅, whereIi := Xi ∩ ∆i. We have to see thatS ∩ (Πi∈d Ii) 6= ∅. We argue by
contradiction. This gives a sequence(Di)i∈d of ∆1

1 subsets ofN such thatIi ⊆ Di if i ∈ d, and
S ∩ (Πi∈d Di)=∅, by j0 applications of the separation theorem. ButT ∩ (Πi∈d Di) 6=∅, andDi =N
if i≥j0. SoS ∩ (Πi∈d Di) 6=∅, by τ1-density ofS in T , which is absurd. �

4.3 Representation of Borel sets

Now we come to the representation theorem for Borel sets obtained by G. Debs and J. Saint
Raymond (see [D-SR]). It is a refinement of the classical Lusin theorem asserting that any Borel set
in a Polish space is the bijective continuous image of a closed subset of the Baire space. The material
in this subsection can be found in Subsection 2.3 of [L7], but we recall most of it since it will be used
iteratively in the case of the Wadge classes. The following definition can be found in [D-SR].
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Definition 4.3.1 (Debs-Saint Raymond) Letc be a countable set. A partial order relationR on c<ω

is a tree relation if, for any t∈c<ω,

(a) ∅ R t,

(b) the setPR(t) :={s∈c<ω | s R t} is finite and linearly ordered byR.

For instance, the non strict extension relation⊆ is a tree relation.

• LetR be a tree relation. AR-branch is a⊆-maximal subset ofc<ω linearly ordered byR. We
denote by[R] the set of all infiniteR-branches.

We equip(c<ω)ω with the product of the discrete topology onc<ω. If R is a tree relation, then the
space[R]⊆ (c<ω)ω is equipped with the topology induced by that of(c<ω)ω. The maph : cω → [⊆]
defined byh(γ) :=(γ|j)j∈ω is a homeomorphism.

• LetR, S be tree relations withR⊆S. Thecanonical map Π:[R]→ [S] is defined by

Π(B) := the uniqueS-branch containingB.

• LetS be a tree relation. We say thatR⊆S is distinguished in S if

∀s, t, u∈c<ω s S t S u
s R u

}
⇒ s R t.

For example, letC be a closed subset ofcω, and define

s R t ⇔ s⊆ t ∧Ns ∩ C 6=∅.

ThenR is distinguished in⊆.

• Letη<ω1. A family(Rρ)ρ≤η of tree relations is aresolution family if

(a)Rρ+1 is a distinguished subtree ofRρ, for all ρ<η.

(b)Rλ =
⋂

ρ<λ Rρ, for all limit λ≤η.

We will use the following extension of the property of distinction:

Lemma 4.3.2 Let η <ω1, (Rρ)ρ≤η be a resolution family, andρ<η. Assume thats R0 t Rρ u and
s Rρ+1 u. Thens Rρ+1 t.

Notation. Let η <ω1, (Rρ)ρ≤η be a resolution family such thatR0 is a subrelation of⊆, ρ≤ η and
v∈c<ω\{∅}. We setvρ :=v |max{r< |v| | v|r Rρ v}. We enumerate{vρ | ρ≤η} by{vξi | 1≤ i≤n},
where1≤ n∈ω andξ1<. . .<ξn =η. We can writevξn $ vξn−1 $ . . .$ vξ2 $ vξ1 $ v. By Lemma
4.3.2 we havevξi+1 Rξi+1 vξi for any1≤ i<n.

Lemma 4.3.3 Letη<ω1, (Rρ)ρ≤η be a resolution family such thatR0 is a subrelation of⊆, v be in
c<ω\{∅} and1≤ i<n.

(a) We setηi :={ρ≤η | vξi⊆vρ}. Thenηi is a successor ordinal.

(b) We may assume thatvξi+1 $vξi .

The following result is a part of Theorem I-6.6 in [D-SR].
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Theorem 4.3.4 (Debs-Saint Raymond) Letη<ω1, R be a tree relation, and(In)n∈ω be a sequence
of Π0

η+1 subsets of[R]. Then there is a resolution family(Rρ)ρ≤η with

(a)R0 = R,

(b) the canonical mapΠ:[Rη]→ [R] is a continuous bijection,

(c) the setΠ−1(In) is a closed subset of[Rη] for each natural numbern.

Now we come to the actual proof of Theorem 4.1.

4.4 Proof of Theorem 4.1

The next result is essentially Theorem 2.4.1 in [L7]. But we give its proof since it is the basis for
further generalizations.

Theorem 4.4.1 Let Td be a tree with∆1
1 suitable levels,ξ < ωCK

1 be a successor ordinal,S be in
Σ0

ξ(dTde), andA0, A1 be disjointΣ 1
1 subsets ofN d. We assume that Theorem 4.2.2 is proved for

η<ξ. Then one of the following holds:

(a)A0
ξ ∩A1 =∅.

(b) The inequality
(
(Π′′

i dTde)i∈d, S, dTde\S
)
≤
(
(N )i∈d, A0, A1

)
holds.

Proof. Fix η<ωCK
1 with ξ=η+1.

• Recall the finite setscl defined at the end of the proof of Proposition 2.2 (we only used the fact
that Td has finite levels to see that they are finite). Using the notation of Definition 4.3.1, we put
c :=

⋃
l∈ω cl, so thatc is countable. The setI :=h[dTde\S] is aΠ0

η+1 subset of[⊆]. Theorem 4.3.4

provides a resolution family. We putD :=
{
~s∈Td | ~s=~∅ ∨ ∃B∈Π−1(I) ~s∈B

}
.

• Assume thatA0
ξ ∩A1 is not empty. Recall that(ΩX ,ΣX) is a Polish space (see the notation at the

beginning of Section 4.2). We fix a complete metricdX on (ΩX ,ΣX).

• We construct

- (αi
s)i∈d,s∈Π′′i Td

⊆N ,

- (Oi
s)i≤|s|,i∈d,s∈Π′′i Td

⊆Σ 1
1 (N ),

- (U~s)~s∈Td
⊆Σ 1

1 (N d).
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We want these objects to satisfy the following conditions.

(1) αi
s∈Oi

s⊆ΩN ∧ (αi
si

)i∈d∈U~s⊆ΩN d

(2) Oi
sq⊆Oi

s

(3) diamdN (Oi
s)≤2−|s| ∧ diamdNd

(U~s)≤2−|~s|

(4) U~s ⊆A0
ξ ∩A1 if ~s∈D

(5) U~s ⊆A0 if ~s /∈D

(6)
(
1≤ρ≤η ∧ ~s Rρ ~t

)
⇒ U~t ⊆U~s

ρ

(7)
(
(~s,~t∈D ∨ ~s,~t /∈D) ∧ ~s Rη ~t

)
⇒ U~t ⊆U~s

• Let us prove that this construction is sufficient to get the theorem.

- Fix ~β ∈ dTde. Then we can define(jk)k∈ω :=(j
~β
k )k∈ω by Π−1

(
(~β|j)j∈ω

)
=(~β|jk)k∈ω, with the

inequalitiesjk<jk+1. In particular,~β|jk Rη ~β|jk+1. Note that

~β /∈S ⇔ h(~β)=(~β|j)j∈ω∈I ⇔ (~β|jk)k∈ω∈Π−1(I) ⇔ ∀k≥k0 :=0 ~β|jk∈D

sinceΠ−1(I) is a closed subset of[Rη]. Similarly, ~β∈S is equivalent to the existence ofk0∈ω such
that~β|jk /∈D for anyk≥k0.

This implies that(U~β|jk
)k≥k0 is a decreasing sequence of nonempty clopen subsets of the space

(ΩN d ,ΣN d) whosedN d-diameters tend to zero, and we can define{F (~β)} :=
⋂

k≥k0
U~β|jk

⊆ΩN d .

Note thatF (~β) is the limit of
(
(αi

βi|jk
)i∈d

)
k∈ω

.

- Now let γ ∈ Π′′
i dTde, and~β ∈ dTde such thatβi = γ. We setfi(γ) := Fi(~β). This defines a map

fi :Π′′
i dTde→N .

Note thatfi(γ) is the limit of (αi
γ|j)j∈ω. Indeed,fi(γ) is the limit of (αi

γ|jk
)k∈ω. If j ≥ i, then

αi
γ|j ∈O

i
γ|j , and the sequence(Oi

γ|j)j≥i is decreasing. Fixε> 0, k≥ i such that2−k <ε. Then we

get, if j≥k, dN
(
fi(γ), αi

γ|j
)
≤diamdN (Oi

γ|j)≤2−j ≤2−k<ε. In particular,fi(γ) does not depend

on the choice of~β. This also proves thatfi is continuous onΠ′′
i dTde.

- Note thatFi(~β) is the limit of some subsequence of(αi
βi|j)j∈ω, by continuity of the projections.

ThusFi(~β)=fi(βi), andF (~β)=(Πi∈d fi)(~β). This implies that the inclusionsS⊆(Πi∈d fi)−1(A0)
anddTde\S⊆(Πi∈d fi)−1(A1) hold.

• So let us prove that the construction is possible.
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- Let (αi
∅)i∈d∈A0

ξ∩A1∩ΩN d , which is nonempty sinceA0
ξ∩A1 6=∅ isΣ 1

1 , by Lemma 4.2.3.(2).(b).
Then we choose aΣ 1

1 subsetU~∅ of N d, with dN d-diameter at most1, such that

(αi
∅)i∈d∈U~∅⊆A0

ξ ∩A1 ∩ ΩN d .

We choose aΣ 1
1 subsetO0

∅ of N , with dN -diameter at most1, with α0
∅∈O

0
∅⊆ΩN , which is possible

sinceΩN d ⊆ Ωd
N . Assume that(αi

s)|s|≤l, (Oi
s)|s|≤l and(U~s)|~s|≤l satisfying conditions (1)-(7) have

been constructed, which is the case forl=0.

- Let v :=
−→
tm∈Td ∩ (dl+1)d. Note thatvη ∈D if vη ∈D is not equivalent tov∈D (see the notation

before Lemma 4.3.3).

- The conclusions in the assertions (a) and (b) of the following claim do not really depend on their
respective assumptions, but we will use these assertions later in this form. We defineXi := Oi

ti if
i≤ l, andN if i>l.

Claim. Assume thatη>0.

(a) The setA0 ∩
⋂

1≤ρ≤η Uvρ
ρ ∩ (Πi∈d Xi) is τ1-dense inUv1

1 ∩ (Πi∈d Xi) if vη∈D andv /∈D.

(b) The setUvη ∩
⋂

1≤ρ<η Uvρ
ρ∩(Πi∈d Xi) is τ1-dense inUv1

1∩(Πi∈d Xi) if vη, v∈D or vη, v /∈D.

Indeed, let us forgetΠi∈d Xi for the moment. We may assume thatvξi+1 $ vξi if 1≤ i < n, by

Lemma 4.3.3. We setSi :=Uvξi , when1≤ξi≤η. Asvξi+1 Rξi+1 vξi , we can writeSi⊆Si+1
ξi+1

, for

1≤ξi<η, by induction assumption. Ifvη∈D andv /∈D, thenSn⊆A0
η+1

. ThusA0∩
⋂

1≤ξi≤η Uvξi

ξi

andUvη ∩
⋂

1≤ξi<η Uvξi

ξi areτ1-dense inUv1
1
, by Lemma 4.2.3.(2).(c).

But if 1≤ρ≤η, then there is1≤ i≤n with vρ =vξi . And ρ≤ξi sincevξi+1 $vξi if 1≤ i<n. We

are done since
⋂

1≤ρ≤η Uvρ
ρ =
⋂

1≤ξi≤η Uvξi

ξi andUvη ∩
⋂

1≤ρ<η Uvρ
ρ =Uvη ∩

⋂
1≤ξi<η Uvξi

ξi .
The claim now comes from Lemma 4.2.4. �

- LetX :=dl+1. The mapΘ:X d→Σ 1
1 (N d) is defined onT l+1 by

Θ(v) :=


A0 ∩

⋂
1≤ρ≤η Uvρ

ρ ∩ (Πi∈d Xi) ∩ ΩN d if vη∈D ∧ v /∈D,

Uvη ∩
⋂

1≤ρ<η Uvρ
ρ ∩ (Πi∈d Xi) if vη, v∈D ∨ vη, v /∈D.

By the claim,Θ(v) is τ1-dense inUv1
1 ∩ (Πi∈d Xi) if η>0. As v1⊆~t⊆v andR1 is distinguished in

⊆ we getv1 R1 ~t andU~t ⊆Uv1
1
, by induction assumption. Therefore

U~t
1 ∩ (Πi∈d Xi)⊆Uv1

1 ∩ (Πi∈d Xi)⊆Θ(v),

and(αi
ti)i∈d ∈ U~t ∩ (Πi∈d Xi)⊆Θ(v) (even ifη = 0). ThereforeΘ admits aπ-selector onT l+1.

Indeed, we define, for anyi∈d, θi :X →N by θi(timi) :=αi
ti if ti∈Π′′

i Td, 0∞ otherwise.
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- As Td is a tree with∆1
1 suitable levels, we can apply Lemma 4.1.3. ThusΘ admits aπ-selectorθ on

T l+1. We set, fors∈Πi[T l+1], αi
s :=θi(s).

- We chooseΣ 1
1 setsUv with dN d-diameter at most2−l−1 such thatθ(v)∈Uv⊆Θ(v) if v∈T l+1.

- Finally, we choose theOi
sq ’s. We first prove thatαi

sq∈Oi
s if sq∈Πi[T l+1], i∈d andi≤ l.

Let v :=
−→
tm∈T l+1 such thatsq= timi. Thenαi

sq =θi(sq)=θi(timi). As θ(v)∈Θ(v) andi≤ l,
αi

sq∈Oi
ti =O

i
s.

Now we can define theOi
sq ’s. If sq∈Πi[T l+1], then we choose aΣ 1

1 setOi
sq, with dN -diameter

at most2−l−1, such that

αi
sq∈Oi

sq⊆
{
Oi

s if i≤ l,
ΩN otherwise.

- This finishes the proof since~u Rρ v and ~u 6=v ⇒ ~u Rρ vρ Rρ v, by Lemma 4.3.2. �

Now we come to the ambiguous classes.

Theorem 4.4.2 LetTd be a tree with∆1
1 suitable levels,ξ <ωCK

1 be a successor ordinal,S0, S1 be
in Σ0

ξ(dTde) disjoint, andA0, A1 be disjointΣ 1
1 subsets ofN d. We assume that Theorem 4.2.2 is

proved forη<ξ. Then one of the following holds:

(a)A0
ξ ∩A1

ξ =∅.
(b) The inequality

(
(Π′′

i dTde)i∈d, S0, S1

)
≤
(
(N )i∈d, A0, A1

)
holds.

Proof. Let us indicate the differences with the proof of Theorem 4.4.1. Assume thatA0
ξ ∩ A1

ξ 6= ∅.
We setIε :=h[dTde\Sε], so thatIε is aΠ0

ξ subset of[⊆]. We also set, forε∈2,

D1
ε :=

{
~s∈Td | ~s=~∅ ∨ ∃B∈Π−1(Iε) ~s∈B

}
,

andD0
ε :=Td\D1

ε . We set, forθ0, θ1∈2,Dθ0,θ1 :=Dθ0
0 ∩Dθ1

1 . For example,~∅∈D1,1.

• Conditions (4), (5), and (7) become the following:

(4) U~s ⊆A0
ξ ∩A1

ξ
if ~s∈D1,1

(5) U~s ⊆Aε if ~s∈Dε,1−ε

(7) (~s,~t∈Dε,1−ε ∧ ~s Rη ~t ) ⇒ U~t ⊆U~s

• Fix ~α ∈ dTde. There are(θ0, θ1) ∈ 22 and k0 ∈ ω such that~α|jk ∈ Dθ0,θ1 if k ≥ k0. Thus
Sε⊆(Πi∈d fi)−1(Aε).

• Let (αi
∅)i∈d∈A0

ξ ∩A1
ξ ∩ΩN d , which is nonempty sinceA0

ξ ∩A1
ξ 6=∅ is Σ 1

1 . We chooseU~∅ with

(αi
∅)i∈d∈U~∅⊆A0

ξ ∩A1
ξ ∩ ΩN d .
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• The statement of the claim is now as follows:

Claim. Assume thatη>0.

(a)Aε ∩
⋂

1≤ρ≤η Uvρ
ρ ∩ (Πi∈d Xi) is τ1-dense inUv1

1 ∩ (Πi∈d Xi) if vη /∈Dε,1−ε andv∈Dε,1−ε.

(b)Uvη ∩
⋂

1≤ρ<η Uvρ
ρ ∩ (Πi∈d Xi) is τ1-dense inUv1

1 ∩ (Πi∈d Xi) otherwise.

The point is thatvη∈D1,1 if vη /∈Dε,1−ε sincevη∈Dθ0,θ1 with ε≤θ0 and1−ε≤θ1.

• In the same fashion,Θ(v) is now defined as follows:

Θ(v) :=


Aε ∩

⋂
1≤ρ≤η Uvρ

ρ ∩ (Πi∈d Xi) ∩ ΩN d if vη /∈Dε,1−ε ∧ v∈Dε,1−ε,

Uvη ∩
⋂

1≤ρ<η Uvρ
ρ ∩ (Πi∈d Xi) otherwise.

We conclude as in the proof of Theorem 4.4.1. �

Now we come to the limit case. We need some more definitions that can be found in [D-SR].

Definition 4.4.3 (Debs-Saint Raymond) LetR be a tree relation onc<ω. If t∈c<ω, thenhR(t) is the
number of strictR-predecessors oft. ThushR(t)=Card

(
PR(t)

)
−1.

Let ξ<ω1 be an infinite limit ordinal. We say that a resolution family(Rρ)ρ≤ξ is uniform if

∀k∈ω ∃ηk<ξ ∀s, t∈c<ω
(
min
(
hRξ(s), hRξ(t)

)
≤k ∧ s Rηk t

)
⇒ s Rξ t.

We may (and will) assume thatηk≥2.

The following result is a part of Theorem I-6.6 in [D-SR].

Theorem 4.4.4 (Debs-Saint Raymond) Letξ < ω1 be an infinite limit ordinal,R be a tree relation,
and(In)n∈ω be a sequence ofΠ0

ξ subsets of[R]. Then there is a uniform resolution family(Rρ)ρ≤ξ

with

(a)R0 = R,

(b) the canonical mapΠ:[Rξ]→ [R] is a continuous bijection,

(c) the setΠ−1(In) is a closed subset of[Rξ] for each natural numbern.

Here again, the next result is essentially in [L7] (see Theorem 2.4.4).

Theorem 4.4.5 Let Td be a tree with∆1
1 suitable levels,ξ < ωCK

1 be an infinite limit ordinal,S be
in Σ0

ξ(dTde), andA0, A1 be disjointΣ 1
1 subsets ofN d. We assume that Theorem 4.2.2 is proved for

η<ξ. Then one of the following holds:

(a)A0
ξ ∩A1 =∅.

(b) The inequality
(
(Π′′

i dTde)i∈d, S, dTde\S
)
≤
(
(N )i∈d, A0, A1

)
holds.
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Proof. Let us indicate the differences with the proof of Theorem 4.4.1.

• The setI :=h[dTde\S] is in Π0
ξ([⊆]). Theorem 4.4.4 provides a uniform resolution family.

• If ~t∈c<ω then we setη(~t ) :=max{ηh
Rξ (~s)+1 | ~s ⊆~t }. Note thatη(~s )≤η(~t ) if ~s ⊆~t.

• Conditions (6) and (7) become

(6) (1≤ρ≤η
(
~s
)
∧ ~s Rρ ~t ) ⇒ U~t ⊆U~s

ρ

(7)
(
(~s,~t∈D ∨ ~s,~t /∈D) ∧ ~s Rξ ~t

)
⇒ U~t ⊆U~s

Claim 1. Assume thatvρ 6=vξ. Thenρ+1≤η(vρ+1).

We argue by contradiction. Note thatρ+1>ρ≥η(vρ+1)≥ηh
Rξ (vξ)+1 =ηh

Rξ (v). As vρ Rρ v, we

getvρ Rξ v, and alsovρ =vξ, which is absurd. �

Note thatξn−1<ξn−1+1≤η(vξn−1+1)≤η(v). This implies thatvη(v) =vξ.

Claim 2. (a) The setA0 ∩
⋂

1≤ρ≤η(v) Uvρ
ρ ∩ (Πi∈d Xi) is τ1-dense inUv1

1 ∩ (Πi∈d Xi) if vη ∈D
andv /∈D.

(b) The setUvξ ∩
⋂

1≤ρ<η(v) Uvρ
ρ ∩ (Πi∈d Xi) is τ1-dense inUv1

1 ∩ (Πi∈d Xi) if vξ, v ∈ D or

vξ, v /∈D.

Indeed, we setSi :=Uvξi , for 1≤ ξi≤ ξ. By Claim 1 we can apply Lemma 4.2.3.(2).(c) and we
are done. �

• The mapΘ:X d→Σ 1
1 (N d) is defined onT l+1 by

Θ(v) :=


A0 ∩

⋂
1≤ρ≤η(v) Uvρ

ρ ∩ (Πi∈d Xi) ∩ ΩN d if vη∈D ∧ v /∈D,

Uvξ∩
⋂

1≤ρ<η(v) Uvρ
ρ∩(Πi∈d Xi) if vξ, v∈D ∨ vξ, v /∈D.

We conclude as in the proof of Theorem 4.4.1, using the facts thatηk≥1 andη(.) is increasing. �

Now we come to the ambiguous classes.

Theorem 4.4.6 LetT be a tree with∆1
1 suitable levels,ξ <ωCK

1 be an infinite limit ordinal,S0, S1

be inΣ0
ξ(dTde) disjoint, andA0, A1 be disjointΣ 1

1 subsets ofN d. We assume that Theorem 4.2.2 is
proved forη<ξ. Then one of the following holds:

(a)A0
ξ ∩A1

ξ =∅.
(b) The inequality

(
(Π′′

i dTde)i∈d, S0, S1

)
≤
(
(N )i∈d, A0, A1

)
holds.
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Proof. Let us indicate the differences with the proofs of Theorems 4.4.1, 4.4.2 and 4.4.5.

• The setIε :=h[dTde\Sε] is in Π0
ξ([⊆]).

• The statement of Claim 2 is now as follows.

Claim 2. (a)Aε ∩
⋂

1≤ρ≤η(v) Uvρ
ρ ∩ (Πi∈d Xi) is τ1-dense inUv1

1 ∩ (Πi∈d Xi) if vξ /∈Dε,1−ε and
v∈Dε,1−ε.

(b)Uvξ ∩
⋂

1≤ρ<η(v) Uvρ
ρ ∩ (Πi∈d Xi) is τ1-dense inUv1

1 ∩ (Πi∈d Xi) otherwise.

• In the same fashion,Θ(v) is now defined as follows:

Θ(v) :=


Aε ∩

⋂
1≤ρ≤η(v) Uvρ

ρ ∩ (Πi∈d Xi) ∩ ΩN d if vξ /∈Dε,1−ε ∧ v∈Dε,1−ε,

Uvξ ∩
⋂

1≤ρ<η(v) Uvρ
ρ ∩ (Πi∈d Xi) otherwise.

We conclude as in the proof of Theorem 4.4.5. �

Lemma 4.4.7 Let Γ be a Wadge class of Borel sets. Then the class of pot(Γ) sets is closed under
pre-images by products of continuous maps.

Proof. Assume thatA∈ pot(Γ), A⊆Πi∈d Yi, andfi :Xi→Yi is continuous. Letτi be a finer zero-
dimensional Polish topology onYi such thatA∈Γ

(
Πi∈d (Yi, τi)

)
. Asfi :Xi→(Yi, τi) is Borel, there

is a finer zero-dimensional Polish topologyσi onXi such thatfi : (Xi, σi)→ (Yi, τi) is continuous.
Thus(Πi∈d fi)−1(A)∈Γ

(
Πi∈d (Xi, σi)

)
and(Πi∈d fi)−1(A)∈pot(Γ). �

Proof of Theorem 4.1 forξ, assuming that Theorem 4.2.2 is proved forη<ξ.

(1) We assume that (a) does not hold. This implies that theXi’s are not empty.

- We first prove that we may assume thatXi =N for eachi∈d.

By 13.5 in [K], there is a finer zero-dimensional Polish topologyτi onXi, and, by 7.8 in [K],
(Xi, τi) is homeomorphic to a closed subsetKi of N , via a mapϕi. By 2.8 in [K], there is a contin-
uous retractionri :N →Ki. LetA′ε be the intersection ofΠi∈d Ki with the pre-image ofAε by the
functionΠi∈d (ϕ−1

i ◦ ri). ThenA′0 andA′1 are disjoint analytic subsets ofN d. Moreover,A′0 is not
separable fromA′1 by a pot(Π0

ξ) set, since otherwise (a) would hold.

This givesgi :dω→N continuous withS⊆ (Πi∈d gi)−1(A′0) anddTde\S⊆ (Πi∈d gi)−1(A′1). It
remains to setfi(α) :=(ϕ−1

i ◦ ri ◦ gi)(α) if α∈dω.

- To simplify the notation, we may assume thatTd has∆1
1 levels, ξ < ωCK

1 andA0, A1 are in

Σ 1
1 (N d). Notice thatA0

ξ ∩A1 is not empty, since otherwiseA0 would be separable fromA1 by a set
in Π0

1(τξ)⊆Π0
ξ(τ1)⊆ pot(Π0

ξ) set, which is absurd. So (b) holds, by Theorems 4.4.1 and 4.4.5 (as
Π′′

i dTde is compact, we just have to compose with continuous retractions to get functions defined on
dω). So (a) or (b) holds.
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If P ∈pot(Π0
ξ) separatesA0 fromA1 and (b) holds, thenS⊆(Πi∈d fi)−1(P )⊆¬(dTde\S). This

implies thatS is separable fromdTde\S by a pot(Π0
ξ) set, by Lemma 4.4.7.

(2) We argue as in the proof of (1). Here we considerA0
ξ ∩ A1

ξ
, and we apply Theorems 4.4.2 and

4.4.6. This finishes the proof. �

Proof of Theorem 4.2.2.We assume that Theorem 4.1 is proved forξ, and that Theorem 4.2.2 is
proved forη<ξ.

(1) By Lemma 4.2.3,V0 andV<ξ areΠ 1
1 .

(a)⇒ (b) and (a)⇒ (d) are clear since∆N is Polish.

(b)⇒ (c) We argue by contradiction. Asγ∈∆1
1 we getCγ∈∆1

1. If (β, γ)∈V<ξ, thenCγ ∈pot(Π0
<ξ),

which is absurd. If(β, γ)∈V0, thenCγ ∈pot(Π0
0)⊆pot(Π0

ξ), which is absurd. If(β, γ) /∈V<ξ ∪ V0,
then we getδ ∈∆1

1 (see the definition ofF before Theorem 4.2.2). As
(
(β)n, (δ)n

)
∈ V<ξ, we get

C(δ)n
∈pot(Π0

<ξ). Now the equality¬Cγ =
⋃

n∈ω C(δ)n
implies thatCγ ∈pot(Π0

ξ), which is absurd.

(d)⇒ (e) This comes from the proof of Theorem 4.1.(1).

(e)⇒ (f) This comes from Theorems 4.4.1 and 4.4.5.

(f) ⇒ (a) This comes from Theorem 4.1.(1).

(c)⇒ (e) We argue by contradiction, so thatA0
ξ

separatesA0 fromA1.

If ξ = 1, then for each~δ ∈ A1 there is(β̃, γ̃) ∈ (∆1
1×∆1

1) ∩ V0 such that~δ ∈ Cγ̃ ⊆ ¬A0. The
first reflection theorem givesβ, δ ∈ ∆1

1 such that
(
(β)n, (δ)n

)
∈ V0 for each natural numbern and

A1⊆U :=
⋃

n∈ω C(δ)n
⊆¬A0. We chooseγ∈∆1

1 ∩W with ¬Cγ =U , and(β, γ) contradicts (c).

If ξ ≥ 2, then by induction assumption and the first reflection theorem there areβ, δ ∈∆1
1 with(

(β)n, (δ)n

)
∈V<ξ andC(δ)n

⊆¬A0, for each natural numbern, andA1⊆U :=
⋃

n C(δ)n
. ButU is

∆1
1 ∩ pot(Σ0

ξ) and separatesA1 from A0. So letγ ∈∆1
1 ∩W with ¬Cγ =U . Note that(β, γ)∈ Vξ

andCγ separatesA0 fromA1, which is absurd.

(2) It is clear thatVξ is Π 1
1 .

(3) We argue as in the proof of (1), except for the implication (c)⇒ (e) (for the implication (e)⇒ (f)
we use Theorems 4.4.2 and 4.4.6).

(c) ⇒ (e) We argue by contradiction. By 4D.2 in [M], there areW ∈Π 1
1 (ω) and a partial function

d :ω→N , Π 1
1 -recursive onW , such thatd′′W is the set of∆1

1 points ofN . We define

ΠAε :=
{
n∈ω | (n)0, (n)1∈W ∧

(
d
(
(n)0

)
,d
(
(n)1

))
∈V<ξ ∧ Cd((n)1) ∩Aε =∅

}
.

ThenΠAε ∈ Π 1
1 and∀~β ∈ N d ∃n ∈ ΠA0 ∪ ΠA1

~β ∈ Cd((n)1) sinceA0
ξ ∩ A1

ξ = ∅ (we use the
induction assumption). By the first reflection theorem there isD∈∆1

1(ω) such thatD⊆ΠA0 ∪ ΠA1

and∀~β∈N d ∃n∈D ~β∈Cd((n)1).
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As Π 1
1 has the reduction property, we can findΠ′

Aε
∈ Π 1

1 disjoint such thatΠ′
Aε
⊆ ΠAε and

Π′
A0
∪Π′

A1
=ΠA0 ∪ΠA1 . We set∆:=

⋃
n∈D∩Π′A1

Cd((n)1)\(
⋃

q<n Cd((q)1)). Then

¬∆=
⋃

n∈D∩Π′A0

CN
d

d((n)1)\(
⋃
q<n

CN
d

d((q)1)),

which proves that∆∈∆1
1∩pot(∆0

ξ), and separatesA0 fromA1. Let (β, γ), (β′, γ′)∈(∆1
1×∆1

1)∩Vξ

with ∆=Cγ and¬∆=Cγ′ . Then we get a contradiction with (c). �

Remarks.The assertions 4.2.3.(2).(a) and 4.2.3.(2).(b) admit uniform versions in the following sense.
By 3E.2, 3F.6 and 3H.1 in [M], there isS :N×N→N recursive such that for any recursively presented
Polish spaceX there is a universal setUX ∈Π 1

1 (N d) satisfying the following properties:

- Π1
1(X)={UX

α | α∈N},
- Π 1

1 (X)={UX
α | α∈N recursive},

- (α, β, x)∈UN×X ⇔
(
S(α, β), x

)
∈UX .

We setU :=UN d
. The following relations areΠ 1

1 :

Q(α, β, γ) ⇔ α∈WO∧ (β, γ)∈V|α|,
R(α, β, ~δ )⇔ α∈∆1

1 ∩WO∧ |α|≥1 ∧ ~δ /∈¬Uβ
|α|
.

Indeed, this comes from the proof of Lemma 4.2.3.

• One can give simpler examplesS0,S1 for which Corollary 4.2 holds whenΓ=Π0
1. Indeed, recall

the mapbω defined before Lemma 2.3. As|bω(n)|≤n for each natural numbern, we can define the
sequencesω

n :=bω(n)0n−|bω(n)|. We setS1 :=S0\S0, where

S0 :=
{(

0sω
n0γ, ..., 0sω

nnγ, (n+1)sω
n(n+1)γ, (n+1)sω

n(n+2)γ, ...
)
| (n, γ)∈ω×N

}
(we do not really needTω whenΓ=Π0

1). Note thatS0 =(Πi∈d fi)−1(A0) ∩ S0 if (b) holds. Let us
denote this byS0 ≤ A0 (≤ is a quasi-order, by continuity of thefi’s).

• The fact thatTd has finite levels was used to give a proof of Corollary 4.2 as simple as possible. The
treeTd has finite levels whend<ω, and not always whend=ω. This is one of the main new points
in the case of the infinite dimension. Let us dwell more deeply into this.

(a) We saw in the proof of Proposition 2.2 that the treedT generated by an effective frame is a tree
with one-sided almost acyclic levels. As before Lemma 2.6, we can define

C1S :={~α∈dωT e | S(α0∆α1)∈C1},

which is not separable fromdωT e\C1S by a potentially closed set, since otherwiseSC1 would be
separable fromdTωe\SC1 by a potentially closed set, which would contradict Lemmas 2.6 and 3.4.

But A0 := {01+n(1+n)∞ | n ∈ ω} ⊆ N is not potentially closed since0∞ ∈ A0 \A0 and
the topology onω is discrete. And one can prove, in a straightforward way, thatC1S 6≤ A0 and
A0 6≤ C1S. This proves that the finiteness of the levels ofTd is useful. But we will see that it is not
necessary.
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(b) We defineo :{s∈2<ω | 0 6⊆s}→ω<ω such that|o(s)|= |s| by

o(10n010n1 ...10nl) :=01+n0(1+n0)1+n1 ...
(
(1+n0)+...+(1+nl−1)

)1+nl .

In other words, we can writeo(s)(i)= i if s(i)=1, ando(s)(i)= o(s)(i−1) if s(i)=0. Note thato
is an injective homomorphism, in the sense thato(s)⊆ o(t) if s⊆ t. This implies that we can extend
o to a continuous map from the basic clopen setN1 intoN by the formulao(α) :=supm∈ω o(α|m).

We setFω :=
{
(miαi)i∈ω ∈ N ω | ~α ∈ dωT e ∧ ∀i ∈ ω mi = o(α0∆α1)(i)

}
, and we put

SCξ
:= {(miαi)i∈ω ∈Fω | S(α0∆α1)∈Cξ}. One can takeSξ = SCξ

, and the proof is much more

complicated than the one we gave. But the tree associated withSCξ
=Fω is{~∅} ∪ {(misi)i∈ω∈N<ω | (mi)i∈ω∈o[N1] ∧ ~s∈ωT ∧ ∀i< |~s | mi =o(s0∆s1)(i)

}
,

and has infinite levels. This proves that the finiteness of the levels of the tree associated withSξ is not
necessary.

(c) In [L8], an extension to any dimension of the Kechris-Solecki-Todorčevíc dichotomy for analytic
graphs is proved. In [L5], it is proved that Corollary 4.2 is a consequence of the Kechris-Solecki-
Todořcevíc dichotomy whenΓ = Π0

1. This works as well whend < ω, but not whend= ω. More
specifically, letG := {α∈N | ∀m∈ω ∃n≥m sω

n0⊆α} andAω := {(sω
niγ)i∈ω | n∈ω ∧ γ ∈N}.

Then the extension of the Kechris-Solecki-Todorčevíc dichotomy to the cased=ω works with the set
Gω ∩ Aω (see [L8]). But one can prove the following result:

Theorem 4.4.8 LetX be a recursively presented Polish space,σX be the topology onXω generated
by {Πi∈ω Ci | C ∈∆1

1(ω×X)}, andA be a∆1
1 subset ofXω. Then exactly one of the following

holds:

(a)A
σX \A=∅.

(b) Gω ∩ Aω ≤ A.

In particular,Gω ∩ Aω 6≤ A0 and we cannot takeS1 =Gω ∩ Aω.

5 The proof of Theorem 1.9

5.1 Some one-dimensional material

The material in this subsection can be found in [Lo-SR1] or [Lo-SR2]. However, we need to make
some changes for our purpose. Moreover some proofs are left to the reader in these papers. These are
the reasons why we will give some proofs. The following definition can be found in [Lo-SR2] (see
Definition 1.5).

Definition 5.1.1 Let1≤ξ<ω1, andΓ, Γ′ be two classes of sets. Then

A∈Sξ(Γ,Γ′) ⇔ A=
⋃
p≥1

(Ap ∩ Cp) ∪

B\⋃
p≥1

Cp

 ,

whereAp∈Γ,B∈Γ′, and(Cp)p≥1 is a sequence of pairwise disjointΣ0
ξ sets.
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Now we come to the definition of thesecond type descriptions of the non self-dual Wadge
classes of Borel sets, which are elements ofωω

1 (we sometimes identifyωω
1 with (ωω

1 )ω). This defini-
tion can also be found in [Lo-SR2] (see Definition 1.6).

Definition 5.1.2 The relations “u is a second type description” and “ u describes Γ” (written
u∈D andΓu =Γ - ambiguously) are the least relations satisfying the following properties.

(a) If u=0∞, thenu∈D andΓu ={∅}.
(b) If u=ξ_1_v, with v∈D andv(0)=ξ, thenu∈D andΓu = Γ̌v.

(c) If u = ξ_2_< up > satisfiesξ ≥ 1, up ∈ D, and up(0) ≥ ξ or up(0) = 0, thenu ∈ D and
Γu =Sξ(

⋃
p≥1 Γup ,Γu0).

Remark. If A∈Sξ(
⋃

p≥1 Γup ,Γu0), thenA has a decomposition as in Definition 5.1.1, andAp is in⋃
p≥1 Γup . But we may assume thatAp∈Γu(p)0+1

, using the fact thatCp may be empty if necessary.
This remark will be useful in the sequel, since it specifies the class ofAp.

The following result can be found in [Lo-SR2] (see Section 3).

Theorem 5.1.3 Let Γ be a non self-dual Wadge class of Borel sets. Then there isu ∈ D such that
Γ(N )=Γu(N ). Conversely,

Γu :={f−1(A) | f :X→N continuous∧X zero-dimensional Polish∧A∈Γu(N )}

is a non self-dual Wadge class of Borel sets ifu∈D.

If η≤ ξ < ω1, thenξ−η is the unique ordinalθ with η+θ= ξ. The following definition can be
found in [Lo-SR2] (see Definition 1.9).

Definition 5.1.4 Letη<ω1 andu∈D. We defineuη∈D as follows.

(a) If u(0)=0, thenuη :=u.

(b) If u=ξ1v, with ξ≥1, thenuη :=
(
1+η+(ξ−1)

)
1vη.

(c) If u=ξ2 <up>, with ξ≥1, thenuη :=
(
1+η+(ξ−1)

)
2 < (up)η >.

The following result can be found in [Lo-SR2] (see Proposition 1.10).

Proposition 5.1.5 (a) If f : N → N is Σ0
1+η-measurable, andA ∈ Γu(N ) for someu ∈ D, then

f−1(A)∈Γuη .

(b) The setD is the least subsetD⊆D such that0∞ ∈D, u(0)1u∈D if u ∈D, 12 < up >∈D if
up ∈D for anyp∈ω, anduη∈D if u ∈D (for anyη<ω1).

Recall the definition of an independentη-function (see Definition 3.3).

Example. Let τ : ω→ ω be one-to-one (in [Lo-SR2], just before Lemma 2.5, the authors consider
increasing maps. In this paper, we work with this weaker property). We defineτ̃ : C → C by the
formula τ̃(α) := α ◦ τ . The mapτ̃ is an independent0-function (with witnessπ defined by the
formulaπ(k)=τ−1(k) if k is in the range ofτ , 0 otherwise). We now describe an important example
of this situation.
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Example.Let n be a natural number, andS be the shift map (see the notation before Definition 2.5).
ThenSn is an independent0-function. Indeed, if we setτn(m) :=m+n, thenSn = τ̃n, by induction
onn. In particular, IdC=S0 is an independent0-function.

The next result is essentially Lemma 2.5 in [Lo-SR2], which is given without proof. This is the
reason why we give the details here.

Lemma 5.1.6 Let τ : ω→ ω be one-to-one, andζ be an independentη-function. Theñτ ◦ ζ is an
independentη-function.

Proof. Let π be the map associated withζ. We defineπ′ : ω→ ω by π′(k) := τ−1
(
π(k)

)
if π(k)

is in the range ofτ , 0 otherwise, so thatπ′(k) =m if π(k) = τ(m). If m is a natural number, then
(τ̃ ◦ ζ)(α)(m)=ζ(α)

(
τ(m)

)
depends only of the values ofα onπ−1

(
{τ(m)}

)
⊆(π′)−1({m}).

If ξ = 0 (resp.,ξ = θ+1, ξ = supm∈ω θm), thenZm = {α ∈ C | ζ(α)
(
τ(m)

)
= 1} is ∆0

1-
complete (resp.,Π0

1+θ-strategically complete,Π0
1+θτ(m)

-strategically complete). We are done since
ξ=supp≥1 θτ(mp) if ξ is a limit ordinal (τ is one-to-one). �

After Definition 3.3, we saw thatρη is an independentη-function. We will actually prove more.
In fact, we prove a result which is essentially Theorem 2.4.(b) in [Lo-SR2].

Theorem 5.1.7 Let η, ξ < ω1, andζ be an independentξ-function. Thenρη ◦ ζ is an independent
(ξ+η)-function.

Proof. Assume thatε∈2 andζε :C→C is equipped withπε such thatζε(α)(m) depends only on the
values ofα on (πε)−1({m}). ThenD := (ζ0 ◦ ζ1)(α)(m) depends only on the values ofζ1(α) on
(π0)−1({m}). ThusD depends only on the values ofα on (π1)−1

(
(π0)−1({m})

)
. This implies that

if we setπ :=π0 ◦ π1, thenD depends only on the values ofα onπ−1({m}).

• We argue by induction onη. The result is clear forη = 0. So assume thatη = θ+1, so that
ρη ◦ ζ=ρ ◦ ρθ ◦ ζ. The induction assumption implies thatρθ ◦ ζ is an independent(ξ+θ)-function.
The fact thatρ is an independent1-function and the previous point prove the existence ofπη such that
(ρη ◦ ζ)(α)(m) depends only on the values ofα onπ−1

η ({m}).

We setAn := {α∈C | (ρθ ◦ ζ)(α)(< m,n >) = 1}. Let us prove that
⋂

n∈ω ¬An is Π0
1+ξ+θ-

strategically complete.

Assume first thatξ+θ 6=0. Asρθ ◦ζ is an independent(ξ+θ)-function,An is Π0
1+θn

-strategically
complete, for someθn<ξ+θ satisfyingθn+1=ξ+θ if ξ+θ is a successor ordinal, supn∈ω θn =ξ+θ
if ξ+θ is a limit ordinal. Note thatξ+θ = supn∈ω (θn +1). As ρθ ◦ ζ is an independent(ξ+θ)-
function, there isπθ such that(ρθ ◦ ζ)(α)(q) depends only on the values ofα onπ−1

θ ({q}). We set
π(α)(k) :=

(
πθ(α)

)
1
, so that the fact thatα∈An depends only on the values ofα onπ−1({n}). By

Lemma 3.7 in [Lo-SR1],
⋂

n∈ω ¬An is Π0
1+ξ+θ-strategically complete.
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Assume now thatξ+ θ = 0. ThenAn := {α ∈ C | ζ(α)(< m,n >) = 1} is ∆0
1-complete

sinceζ is an independent0-function. LetB be a closed subset ofN , (Bn)n∈ω be a sequence of
clopen subsets withB =

⋂
n∈ω Bn, andgn : N → C be continuous withBn = g−1

n (¬An). As
ζ is an independent0-function, there isπζ such thatζ(α)(q) depends only on the values ofα on
π−1

ζ ({q}). We setπ(α)(k) :=
(
πρ(α)

)
1
, so that the fact thatα∈An depends only on the values of

α onπ−1({n}). We defineg :N →C by g(β)(k) := gπ(k)(β)(k), so thatg is continuous. Moreover,
β ∈Bn ⇔ gn(β) /∈An ⇔ g(β) /∈An since the fact thatα∈An depends only on the values ofα on
π−1({n}). ThusB= g−1(

⋂
n∈ω ¬An) and

⋂
n∈ω ¬An is Π0

1-complete. Therefore
⋂

n∈ω ¬An is
Π0

1+ξ+θ-strategically complete.

Now note that⋂
n∈ω ¬An={α∈C | ∀n∈ω (ρθ ◦ ζ)(α)(< m,n >)=0}

={α∈C | (ρ ◦ ρθ ◦ ζ)(α)(m)=1}={α∈C | (ρη ◦ ζ)(α)(m)=1}.

Thus{α∈C | (ρη ◦ ζ)(α)(m)=1} is Π0
1+ξ+θ-strategically complete for eachm, andξ+η=ξ+θ+1,

so thatρη ◦ ζ is an independent(ξ+η)-function.

• Assume now thatη is a limit ordinal. In the definition ofρη we fixed a sequence(ηm)m∈ω ⊆ η of
successor ordinals withΣm∈ω ηm = η. As ρηm is an independentηm-function, we getπη

m : ω→ ω.
We defineπm,m+1 :ω→ω by πm,m+1(k) := k if k<m, πη

m(k−m)+m if k≥m. Let us check that
ρ(m,m+1)(α)(i) depends only on the values ofα onπ−1

m,m+1({i}). It is clearly the case ifi<m. So
assume thati≥m. Note thatπm,m+1(k)= i if k∈ (πη

m)−1({i−m})+m, and we are done. Now the
first point of this proof givesπ0,m+1 :ω→ω such thatρ(0,m+1)(α)(i) depends only on the values of
α on π−1

0,m+1({i}). We will check thatρη(α)(m) := ρ(0,m+1)(α)(m) depends only on the values of

α onEm :=π−1
0,m+1({m}) ∩

⋂
l<m π−1

0,l+1(¬(l+1)). We actually prove something stronger: for any

natural numberk, ρ(0,m+1)(α)(k+m) depends only on the values ofα on

π−1
0,m+1({k+m}) ∩

⋂
l<m

π−1
0,l+1(¬(l+1)).

We argue by induction onm. Form=0, the result is clear. Assume that the result is true form. Note
thatρ(0,m+2)(α)(k+m+1) depends only on the values ofα onπ−1

0,m+2({k+m+1}). But

ρ(0,m+2)(α)(k+m+1)=ρ(m+1,m+2)
(
ρ(0,m+1)(α)

)
(k+m+1)=ρηm+1

(
Sm+1

(
ρ(0,m+1)(α)

))
(k),

and we are done sinceρ(0,m+2)(α)(k+m+1) depends only on the values ofSm+1
(
ρ(0,m+1)(α)

)
,

which depends only on the values ofα onπ−1
0,m+1(¬(m+1)) ∩

⋂
l<m π−1

0,l+1(¬(l+1)).

As theEm’s are pairwise disjoint, we can define a mapπη :ω→ω by πη(k) :=m if k∈Em, and
0 if k /∈

⋃
m∈ω Em. Now it is clear thatρη(α)(m) depends only on the values ofα on (πη)−1({m}).

The first point of this proof givesπη :ω→ω such that(ρη ◦ ζ)(α)(m) depends only on the values of
α onπ−1

η ({m}).
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Let ξm such thatηm :=ξm+1, andθm :=ξ+Σl<m ηl+ξm, so thatθm<ξ+η and supp≥1 θmp =ξ+η
for any one-to-one sequence(mp)p≥1 of natural numbers. It remains to see that

Zm :={α∈C | (ρη ◦ ζ)(α)(m)=1}

is Π0
1+θm

-strategically complete for any natural numberm.

Let us check thatSm ◦ρ(0,m+1) =ρηm ◦ ◦l<m (S ◦ρηm−l−1) for any natural numberm. We argue
by induction onm. Form= 0, the property is clear sinceρ(0,1) = ρη0 . Assume that the property is
true form. Then

Sm+1 ◦ ρ(0,m+2)=ρηm+1 ◦ Sm+1 ◦ ρ(0,m+1) =ρηm+1 ◦ S ◦ Sm ◦ ρ(0,m+1)

=ρηm+1 ◦ S ◦ ρηm ◦ ◦l<m (S ◦ ρηm−l−1)=ρηm+1 ◦ ◦l≤m (S ◦ ρηm−l)

since in the last induction we proved thatSm+1 ◦ ρ(0,m+2) =ρηm+1 ◦ Sm+1 ◦ ρ(0,m+1). Thus

Zm={α∈C | ρ(0,m+1)
(
ζ(α)

)
(m)=1}={α∈C | (Sm ◦ ρ(0,m+1) ◦ ζ)(α)(0)=1}

={α∈C |
(
ρηm ◦ ◦l<m (S ◦ ρηm−l−1) ◦ ζ

)
(α)(0)=1}.

So it is enough to see thatζm :=ρηm ◦ ◦l<m (S ◦ ρηm−l−1) ◦ ζ is an independent(θm+1)-function.

We argue by induction onm. Form=0, we are done sinceρη0 ◦ ζ is by induction assumption an
independent(ξ+η0)-function, andξ+η0 = ξ+ξ0+1 = θ0+1. Assume that the property is true for
m. Thenζm+1 =ρηm+1 ◦ S ◦ ζm. By induction assumption,ζm is an independent(θm+1)-function.
By Lemma 5.1.6 and the example just before it,S ◦ ζm is also an independent(θm+1)-function. By
induction assumption,ζm+1 is an independent(θm+1+ηm+1)-function, and

θm+1+ηm+1 =ξ+Σl<m ηl+ξm+1+ηm+1 =ξ+Σl≤m ηl+ξm+1+1=θm+1+1.

This finishes the proof. �

5.2 Some complicated sets

Now we come to the existence of complicated sets, as in the statement of Theorem 1.9. Their
construction is based on Theorem 2.7 in [Lo-SR2] that we now change. The main problem is that we
want to ensure the ccs conditions in Lemma 2.6. In order to do this, we modify the definition of the
mapsτi in Lemma 2.11 in [Lo-SR2].

Notation. Let i be a natural number. We defineτi :ω→ω by

τi(k) :=


< 0, k > if i=0,

<< i, (k)0 >, (k)1 > if i≥1,

so thatτi is one-to-one. This allows us to define, for anyα∈C, αi := τ̃i(α). If s∈F := (ω\{0})<ω,
then we set̃τs := τ̃s(0) ◦ ... ◦ τ̃s(|s|−1).
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Lemma 5.2.1 Let Γ be a non self-dual Wadge class of Borel sets, andH be aΓ-strategically com-
plete set. Then the following hold.

(a) The set̃τi−1(H) is Γ-strategically complete for any natural numberi.

(b) Assume thatτ : ω→ ω is one-to-one with the property that the fact thatα ∈H depends only on
α ◦ τ . ThenM :={α ◦ τ | α∈H} is Γ-strategically complete.

Proof. (a) As τ̃i is continuous,τ̃i−1(H) ∈ Γ(C). We define a continuous mapfτi : C → C by
fτi(α)(m) := α

(
τ−1
i (m)

)
if m is in the range ofτi, 0 otherwise. Note that̃τi

(
fτi(α)

)
= α, so

thatH=f−1
τi

(
τ̃i
−1(H)

)
. This implies that̃τi−1(H) is Γ-strategically complete.

(b) As in (a), we consider the continuous mapfτ , so thatτ̃
(
fτ (β)

)
= β for eachβ ∈ C. Here again

f−1
τ (H) ∈ Γ(C). Let β ∈M, which givesα ∈H with β = α ◦ τ . As fτ (β) ◦ τ = τ̃

(
fτ (β)

)
= β,

we getfτ (β) ◦ τ = α ◦ τ , andfτ (β)∈H by the assumption onH. Conversely, iffτ (β)∈H, then
β= τ̃

(
fτ (β)

)
=fτ (β) ◦ τ ∈M. ThusM=f−1

τ (H), andM∈Γ(C).

If α∈H, thenτ̃(α)=α ◦ τ ∈M. Conversely, assume thatτ̃(α)∈M. Then there isβ ∈H with
β ◦ τ=α ◦ τ . The assumption onH implies thatα∈H. ThusH= τ̃−1(M) andM is Γ-strategically
complete. �

Lemma 5.2.2 LetΓ be a Wadge class of Borel sets, andA⊆C. ThenA∈Γ(C) if and only if there is
B∈Γ(N ) withA=B ∩ C.

Proof.⇒ Let r :N→C be a continuous retraction. We just have to setB :=r−1(A).

⇐ Let i :C→N be the canonical injection. ThenA= i−1(B)∈Γ(C). �

This lemma shows that the notationΓu in Theorem 5.1.3 will not create any trouble, since it is
equivalent to the one in Definition 5.1.2.

Notation. The following notation can essentially be found in [Lo-SR2] (after Lemma 2.5). LetR be
the least set of functions fromC into itself which contains the functionsρη, the functions̃τi for i≥1,
and is closed under composition. By Lemma 5.1.6 and Theorem 5.1.7, eachζ ∈R is an independent
η-function for someη called theorder o(ρ) of ρ.

Definition 5.2.3 Letu∈D. A setH⊆C is strongly u-strategically complete if, for eachζ ∈R of
orderη, ζ−1(H) is Γuη -strategically complete and ccs.

Theorem 5.2.4 Letu∈D. Then there exists a stronglyu-strategically complete setHu. In particular,
Hu is Γu-complete and ccs.

Proof. We will check that the setsHu given by Theorem 2.7 in [Lo-SR2] essentially work, even if we
change them.

The construction is by induction onu∈D. Let us say thatu is nice if it satisfies the conclusion
of the theorem. By Proposition 5.1.5, it is enough to prove that0∞ is nice, thatu(0)1u is nice ifu is
nice, thatuη is nice ifu is nice andη<ω1, and that12 < up > is nice if theup’s are nice.

• We setH0∞ :=∅, which is clearly strongly0∞-strategically complete.
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• Assume thatu is nice. We setHu(0)1u :=¬Hu. Note thatHu(0)1u is stronglyu(0)1u-strategically
complete. Indeed, ifu(0)=0, thenΓ(u(0)1u)η =Γu(0)1u = Γ̌u = Γ̌uη . If u(0)≥1, then

Γ(u(0)1u)η =Γ(1+η+(u(0)−1))1uη = Γ̌uη

sinceuη(0)=1+η+
(
u(0)−1

)
.

• Assume thatu is nice andη < ω1. We setHuη := (ρη)−1(Hu). Note thatHuη is stronglyuη-
strategically complete. Indeed, letζ ∈ R be of orderξ. Then ζ−1(Huη) = (ρη ◦ ζ)−1(Hu) is
Γuξ+η -strategically complete and compatible with comeager sets sinceu is nice andρη ◦ ζ is inR of
orderξ+η. It remains to notice that(uη)ξ =uξ+η, which is clear by induction onu and by definition
of the ordinal subtraction.

• Assume that theup’s are nice. We setvn :=u(n)0+1 and

α∈H12<up> ⇔


α0 =0∞ ∧ α1∈Hu0

∨
∃m∈ω α0(m)=1 ∧ ∀l<m α0(l)=0 ∧ α(m)0+2∈Hv(m)0+2

.

- Recall thatΓ12<up> =S1(
⋃

p≥1 Γup ,Γu0). We setK0 := {α∈C | α1 ∈Hu0}= τ̃1
−1(Hu0), and,

for n≥2,

Kn :={α∈C | αn∈Hvn}= τ̃n−1(Hvn),

Cn :={α∈C | ∃m∈ω α0(m)=1 ∧ ∀l<m α0(l)=0 ∧ (m)0+2=n}.

Note that(Cn)n≥2 is a sequence of pairwise disjoint open sets, andK0 ∈ Γu0 , Kn ∈ Γvn if n ≥ 2
by Lemma 5.2.1.(a). Moreover,H12<up> =

⋃
n≥2 (Kn ∩ Cn) ∪ (K0\

⋃
n≥2 Cn)∈Γ12<up>(C), by

Lemma 5.2.2 and the reduction property for the class of the open sets (see 22.16 in [K]).

- Let ζ ∈ R be of orderη. Thenζ−1(H12<up>) ∈ Γ(12<up>)η(C), by Proposition 5.1.5.(a) and a
retraction argument in the style of the proof of Lemma 5.2.2. Letπ be associated withζ, e0 :ω→ω
be a one-to-one enumeration ofπ−1

(
Ran(τ1)

)
, and, forn≥2, en :ω→ω be a one-to-one enumeration

of π−1
(
Ran(τn)

)
anden :ω→ω be a one-to-one enumeration of

π−1
({
j∈Ran(τ0) |

(
τ−1
0 (j)

)
0
+2=n

})
.

As τi is one-to-one, Ran(τi) is infinite, andπ−1
(
Ran(τi)

)
is also infinite sinceπ is onto. This

proves the existence of theen’s and of theen’s. Note that the Ran(τi)’s are pairwise disjoint since
0=< 0, 0 >. This implies that the elements of{Ran(en) | n 6=1} ∪ {Ran(en) | n≥ 2} are pairwise
disjoint.

- Note that the fact thatα∈Ln :=ζ−1(Kn) depends only onα ◦ en if n 6=1. We set, forn 6=1,

Mn :={α ◦ en | α∈Ln}.

Note thatζ−1(K0) = ζ−1
(
τ̃1
−1(Hu0)

)
= (τ̃1 ◦ ζ)−1(Hu0) is Γuη

0
-strategically complete sinceu0 is

nice andτ̃1 ◦ ζ is in R of orderη. Similarly, ζ−1(Kn) is Γvη
n
-strategically complete ifn ≥ 2. By

Lemma 5.2.1.(b),M0 is Γuη
0
-strategically complete, andMn is Γvη

n
-strategically complete ifn≥2.
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- We set, forn≥2, Dn :={α ◦ en | ∃m∈ω ζ(α)0(m)=1 and (m)0+2=n}. Let us prove thatDn

is Σ0
1+η-strategically complete.

Note first that{α ∈ C | f(α) 6= 0∞} is Σ0
1+η-strategically complete iff is an independentη-

function. Indeed, using the notation of Definition 3.3, we can write

{α∈C | f(α)=0∞}=
⋂

m∈ω

¬ Zm.

Moreover, the fact thatα∈Zm depends only of the values ofα onπ−1
f ({m}).

Assume first thatη≥1. As f is an independentη-function,Zm is Π0
1+θm

-strategically complete,
for someθm <η satisfyingθm+1 = η if η is a successor ordinal, and supm∈ω θm = η if η is a limit
ordinal. Note thatη = supm∈ω (θm +1). By Lemma 3.7 in [Lo-SR1],{α ∈ C | f(α) = 0∞} is
Π0

1+η-strategically complete.

Assume now thatη = 0. As in the proof of Theorem 5.1.7 we see that{α ∈ C | f(α) = 0∞} is
Π0

1+η-strategically complete.

Now we come back to theDn’s. We defineτ : ω → ω by τ(k) := < n−2, k >, so thatτ is
one-to-one and Ran(τ) = {m ∈ ω | (m)0 = n−2}. As ζ is an independentη-function, τ̃0 ◦ ζ and
τ̃ ◦ τ̃0 ◦ ζ are also independentη-functions, by Lemma 5.1.6. The previous point shows that

P :={α∈C | (τ̃ ◦ τ̃0 ◦ ζ)(α) 6=0∞}

is Σ0
1+η-strategically complete. Note that

P ={α∈C | ∃k∈ω τ̃
(
(τ̃0 ◦ ζ)(α)

)
(k)=1}={α∈C | ∃k∈ω (τ̃0 ◦ ζ)(α)

(
τ(k)

)
=1}

={α∈C | ∃m∈ω (τ̃0 ◦ ζ)(α)(m)=1 and (m)0+2=n},

and the fact thatα ∈ P depends only onα ◦ en. By Lemma 5.2.1.(b),Dn is Σ0
1+η-strategically

complete.

- LetM ∈Γ(12<up>)η(N ), sayM=
⋃

n≥2 (Mn ∩Dn)∪ (M0\
⋃

n≥2 Dn), withDn∈Σ0
1+η pairwise

disjoint,M0∈Γuη
0
, and without loss of generalityMn∈Γvη

n
. Then Player 2 has a winning strategyσn

inG(Mn,Mn) (for anyn 6=1), and a winning strategyρn inG(Dn,Dn) (for anyn≥2). Then Player
2 plays inG

(
M, ζ−1(Hu12<up>)

)
againstβ by playing his strategiesσn, ρn at the right places (the

ranges ofen anden respectively) against this sameβ, independently, and by playing0 out of these
ranges. The result is someα such thatα ◦ en wins againstβ in G(Mn,Mn) andα ◦ en wins against
β in G(Dn,Dn). This wins, sinceα∈ ζ−1(Kn) exactly whenβ ∈Mn, andζ(α)0 takes value1 on
somem with (m)0+2=n exactly whenβ∈Dn. But as theDn’s are pairwise disjoint, there is at most
onen in {(m)0+2 | ζ(α)0(m)=1}, andα∈ζ−1(Cn) exactly whenβ∈Dn. Thusζ−1(H12<up>) is
Γ(12<up>)η -strategically complete.

- It remains to see thatζ−1(H12<up>) is ccs. So letα0 ∈ dω andF : C → (dω)d−1 satisfying the
conclusion of Lemma 2.4.(b).
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◦ LetN ≥ 1 andM ∈ω. Thenζ(α)N ∈HuM ⇔ (τ̃N ◦ ζ)(α)∈HuM ⇔ α∈ (τ̃N ◦ ζ)−1(HuM ). As
N≥1, τ̃N ◦ ζ is inR, and(τ̃N ◦ ζ)−1(HuM ) is ccs sinceuM is nice. Thusζ(α)N ∈HuM if and only

if ζ
(
S
(
α0∆F0(α)

))
N
∈HuM .

◦ Recall the notation before Lemma 2.4. We defineq :ω<ω\{∅}→ω as follows:

q(t) :=


t(0) if |t|=1,

< t(|t|−1), q(t−) > if |t|≥2.

◦ Let us prove that̃τs(α)(n)=α(< q
(
(n)0s

)
, (n)1 >) for anys∈F .

We argue by induction on|s|. So assume that the result is proved for|s|≤ l, which is the case for
l=0. Assume that|s|= l+1. We get

τ̃s(α)(n)= τ̃s|l
(

˜τs(l)(α)
)
(n)= ˜τs(l)(α)(<q

(
(n)0(s|l)

)
,(n)1>)=α

(
τs(l)(<q

(
(n)0(s|l)

)
,(n)1>)

)
=α
(〈
<s(l), q

(
(n)0(s|l)

)
>, (n)1

〉)
=α(<q

(
(n)0s

)
, (n)1>).

◦ Let us prove that(ρ ◦ τ̃s)(α)=(ρ ◦ τ̃s)
(
S
(
α0∆F0(α)

))
for anys∈F and anyα∈C. This comes

from the following equivalences:

(ρ ◦ τ̃s)(α)(n)=0 ⇔ ∃m∈ω τ̃s(α)(< n,m >)=1 ⇔ ∃m∈ω α(< q(ns),m >)=1

⇔ ∃k∈ω S
(
α0∆F0(α)

)
(< q(ns), k >)=1

⇔ (ρ ◦ τ̃s)
(
S
(
α0∆F0(α)

))
(n)=0.

◦ Let us prove that(ρη ◦ τ̃s)(α)= (ρη ◦ τ̃s)
(
S
(
α0∆F0(α)

))
for any1≤ η<ω1, anys∈F and any

α∈C.

We argue by induction onη. Forη=1, this comes from the previous point. Ifθ≥1 andη=θ+1,
then this comes from the fact thatρη =ρ ◦ ρθ. If η is a limit ordinal andm is a natural number, then

(ρη ◦ τ̃s)(α)(m)

= ρη
(
τ̃s(α)

)
(m)=ρ(0,m+1)

(
τ̃s(α)

)
(m)

= (ρ(m,m+1) ◦ ... ◦ ρ(1,2))
(
ρ(0,1)

(
τ̃s(α)

))
(m)=(ρ(m,m+1) ◦ ... ◦ ρ(1,2))

(
ρθ0
(
τ̃s(α)

))
(m)

= (ρ(m,m+1) ◦ ... ◦ ρ(1,2))

(
ρθ0

(
τ̃s

(
S
(
α0∆F0(α)

))))
(m)=(ρη ◦ τ̃s)

(
S
(
α0∆F0(α)

))
(m).
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◦ Note thatζ(α)0 =0∞ ⇔ α∈(τ̃0 ◦ ζ)−1({0∞}). Let us prove that(τ̃0 ◦ ζ)−1({0∞}) is ccs.

We can writeζ=◦j≤l ζ
j , wherel is a natural number and eachζj is either of the formρη, or one

of the τ̃i’s for i≥1. By the previous point, we may assume that that eachζj is eitherρ0 = IdC , or one
of the τ̃i’s for i≥1. So there iss∈F such thatζ= τ̃s. Note that

α /∈(τ̃0 ◦ ζ)−1({0∞})⇔ ∃m∈ω (τ̃0 ◦ ζ)(α)(m)=1 ⇔ ∃m∈ω ζ(α)
(
τ0(m)

)
=1

⇔ ∃m∈ω τ̃s(α)(< 0,m >)=1 ⇔ ∃m∈ω α(< q(0s),m >)=1

⇔ ∃m∈ω α
(
p(q(0s),m)

)
=1

⇔ ∃k∈ω S
(
α0∆F0(α)

)(
p(q(0s), k)

)
=1

⇔ S
(
α0∆F0(α)

)
/∈(τ̃0 ◦ ζ)−1({0∞}).

Thusζ(α)0 =0∞ ⇔ ζ
(
S
(
α0∆F0(α)

))
0
=0∞.

◦ It remains to see that ifζ(α)0 6=0∞ andmα is minimal withζ(α)0(mα)=1, then

(mα)0 =(mS(α0∆F0(α)))0.

As in the previous point we may assume that there iss∈F such thatζ= τ̃s. The computations of the
previous point show thatζ(α)0(m)=α(< q(0s),m >) for each natural numberm. Note that

nα :=<q(0s),mα>=min{n∈ω | α(n)=1 ∧ (n)0 =q(0s)}

since<q(0s), .> is increasing, and, similarly,

<q(0s),mS(α0∆F0(α))>=min{m∈ω | S
(
α0∆F0(α)

)
(m)=1 ∧ (m)0 =q(0s)}.

AsBα is a bijection satisfying(n)0 =
(
Bα(n)

)
0
,

Bα[{n∈ω | α(n)=1 ∧ (n)0 =q(0s)}]={m∈ω | S
(
α0∆F0(α)

)
(m)=1 ∧ (m)0 =q(0s)}.

AsBα is increasing,Bα(nα)=<q(0s),mS(α0∆F0(α))>. Thus

(mS(α0∆F0(α)))0 =
((
Bα(nα)

)
1

)
0
=
(
(nα)1

)
0
=(mα)0

and we are done. �

Corollary 5.2.5 Let Γ be a non self-dual Wadge class of Borel sets. Then there isC⊆ C which is
Γ-complete and ccs.

Proof. By Theorem 5.1.3 there isu∈D such thatΓ(N )=Γu(N ). By Theorem 5.2.4 there isHu⊆C
which is stronglyΓu-strategically complete. It is clear thatC :=Hu is suitable. �

Now we can prove Theorem 1.9.(1). But we need some more material to prove Theorem 1.9.(2).
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Definition 5.2.6 (a) A setU⊆C is strongly ccs if τ̃−1
s (U) is ccs for anys∈F .

(b) LetΓ be a Wadge class of Borel sets, andU0,U1∈Γ(C) be disjoint. We say that(U0,U1) is com-
plete for pairs of disjointΓ sets if for any pair(A0, A1) of disjoint sets inΓ(N ) there isf :N→C
continuous such thatAε = f−1(Uε) for anyε∈ 2. Similarly, we can define the notion of a sequence
(Up)p≥1 complete for sequences of pairwise disjointΓ sets.

Lemma 5.2.7 (a) There is(U0,U1) complete for pairs of disjointΣ0
1 sets withUε strongly ccs, and

such that for anys∈F there is a pair(O0, O1) of ccsΣ0
1 sets reducing(

τ̃−1
1s1(U0 ∪U1), τ̃−1

1s2(U0 ∪U1)
)
.

(b) There is(Up)p≥1 complete for sequences of pairwise disjointΣ0
1 sets withUp strongly ccs, and

such that for anys∈F there is a sequence(Oε
p)ε∈2,p≥1 of ccsΣ0

1 sets reducing(
τ̃−1
s(ε+1)(Up)

)
ε∈2,p≥1

.

Proof. (a) Recall the definition ofH1 after Definition 3.3:H1 := {0∞}. We saw thatH1 ∈Π0
1(C)

and isΠ0
1-complete. We setU :=¬H1, so thatU is Σ0

1-complete. Let(A0, A1) be a pair of disjoint
Σ0

1 subsets ofN . As U is complete there aref0, f1 :N →C continuous such thatAε = f−1
ε (U) for

eachε∈2. We definef :N→C by

f(α)
(〈
< ε+1, (k)0 >, (k)1

〉)
:=
{
fε(α)(k) if ε∈2,
0 otherwise,

so thatf is continuous andfε = τ̃ε+1 ◦ f . Now Aε = f−1
(
τ̃−1
ε+1(U)

)
and

(
τ̃−1
1 (U), τ̃−1

2 (U)
)

is
complete for pairs ofΣ0

1 sets (not necessarily disjoint). Note that

τ̃−1
ε+1(U) =

{
α∈C | ∃k∈ω α

(〈
< ε+1, (k)0 >, (k)1

〉)
=1
}

=
{
α∈C | ∃N ∈ω

(
(N)0

)
0
=ε+1 ∧ α(N)=1

}
.

We setVε :=
{
α∈C | ∃N ∈ω

(
(N)0

)
0
=ε+1∧α(N)=1∧∀l<N

((
(l)0
)
0
/∈{1, 2}∨α(l)=0

)}
.

Note thatVi∈Σ0
1 and(V0,V1) reduces

(
τ̃−1
1 (U), τ̃−1

2 (U)
)
. Thus

α∈Aε ⇔ f(α)∈ τ̃−1
ε+1(U) ⇔ f(α)∈ τ̃−1

ε+1(U)\τ̃−1
2−ε(U) ⇔ f(α)∈Vε

and(V0,V1) is complete for pairs of disjointΣ0
1 sets. Recall the definition ofτ0 before Lemma 5.2.1.

We setUε := τ̃−1
0 (Vε), which defines a pair of disjointΣ0

1 sets. Nowg(α):=< α,α, ... > defines

g :C→C continuous. Note thatα∈Aε ⇔ f(α)∈Vε ⇔ τ̃0

(
g
(
f(α)

))
∈Vε ⇔ g

(
f(α)

)
∈Uε, which

shows that(U0,U1) is complete for pairs of disjointΣ0
1 sets.

Fix s∈F . The proof of Theorem 5.2.4 shows thatτ̃s(α)(n)=α
(
<q
(
(n)0s), (n)1>

)
. Thus

τ̃−1
s (Uε)=

{
α∈C | ∃N ∈ω

(
(N)0

)
0
=ε+1 ∧ α(<q(0s), N >)=1 ∧

∀l<N
((

(l)0
)
0
/∈{1, 2} ∨ α(<q(0s), l>)=0

)}
.
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Thus

τ̃−1
s (Uε)=

{
α∈C | ∃M ∈ω

((
(M)1

)
0

)
0
=ε+1 ∧ (M)0 =q(0s) ∧ α(M)=1 ∧

∀l<M
(((

(l)1
)
0

)
0
/∈{1, 2} ∨ (l)0 6=q(0s) ∨ α(l)=0

)}
.

Recall the conclusion of Lemma 2.4.(b). The bijectionBα induces an increasing bijection between{
M ∈ω |

((
(M)1

)
0

)
0
∈{1, 2} ∧ (M)0 =q(0s) ∧ α(M)=1

}
and{

K∈ω |
((

(K)1
)
0

)
0
∈{1, 2} ∧ (K)0 =q(0s) ∧ S

(
α0∆F (α)

)
(K)=1

}
since(M)0 =

(
Bα(M)

)
0

and
(
(M)1

)
0
=
((
Bα(M)

)
1

)
0
. A second application of this shows that

τ̃−1
s (Uε) is ccs. ThusUε is strongly ccs. Note that

τ̃−1
1s(ε+1)(U0 ∪U1)=

{
α∈C | ∃M ∈ω

((
(M)1

)
0

)
0
∈{1, 2} ∧ (M)0 =q

(
01s(ε+1)

)
∧ α(M)=1

}
.

We set

Oε :=
{
α∈C | ∃M ∈ω

((
(M)1

)
0

)
0
∈{1, 2} ∧ (M)0 =q

(
01s(ε+1)

)
∧ α(M)=1 ∧

∀l<M
(((

(l)1
)
0

)
0
/∈{1, 2} ∨ (l)0 /∈{q(01s1), q(01s2)} ∨ α(l)=0

)}
.

This defines a pair ofΣ0
1 sets reducing

(
τ̃−1
1s1(U0 ∪U1), τ̃−1

1s2(U0 ∪U1)
)
. We check that they are ccs

as before.

(b) The proof is completely similar to that of (a). �

The following result is a consequence of Theorem 1.9 and Lemmas 1.11, 1.23 in [Lo1], and also
of Theorem 3 in [Lo-SR3]:

Theorem 5.2.8 LetΓ be a self-dual Wadge class of Borel sets. Then there is a non self-dual Wadge
class of Borel setsΓ′ such thatΓ(N ) = ∆(Γ′)(N ), Γ′ does not have the separation property, and
one of the following holds:

(1) There isu∈D such that

Γ′(N )=
{

(A0 ∩ C0) ∪ (A1 ∩ C1) | A0,¬A1∈Γu(N ) ∧ C0, C1∈Σ0
1(N ) ∧ C0 ∩ C1 =∅

}
.

(2) There is
(
(u′)p

)
p≥1

∈Dω such that
(
Γ(u′)p

(N )
)
p≥1

is strictly increasing and

Γ′(N )=
{ ⋃

p≥1

(Ap ∩ Cp) | Ap∈Γ(u′)p
(N ) ∧ Cp∈Σ0

1(N ) ∧ Cp ∩ Cq =∅ if p 6=q
}
.

Lemma 5.2.9 LetΓ′ be as in the statement of Theorem 5.2.8. Then there areC0,C1∈Γ′(C) disjoint,
ccs, and not separable by a∆(Γ′) set.
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Proof. (1) Lemma 5.2.7.(a) gives(U0,U1) complete for pairs of disjointΣ0
1 sets withUε strongly

ccs, and such that for anys∈F there is a pair(O0, O1) of ccsΣ0
1 sets reducing the pair(

τ̃−1
1s1(U0 ∪U1), τ̃−1

1s2(U0 ∪U1)
)
.

Theorem 5.2.4 givesHu⊆C which isΓu-complete and strongly ccs. We set

H :=
(
τ̃−1
2 (Hu) ∩ τ̃−1

1 (U0)
)
∪
(
τ̃−1
3 (¬Hu) ∩ τ̃−1

1 (U1)
)

and, forε∈ 2, Eε := τ̃−1
ε+1(H). Finally, we setCε := (Oε ∩ Eε) ∪ (O1−ε\E1−ε), where(O0, O1) is

associated withs :=∅.

• We set, forε, j∈2,Aε
0 := τ̃−1

2(ε+1)(Hu),Aε
1 := τ̃−1

3(ε+1)(¬Hu), F ε
j := τ̃−1

1(ε+1)(Uj), so that

Eε =(Aε
0 ∩ F ε

0 ) ∪ (Aε
1 ∩ F ε

1 ).

Note that

Cε =(Aε
0 ∩ F ε

0 ∩Oε) ∪ (Aε
1 ∩ F ε

1 ∩Oε) ∪ (¬A1−ε
0 ∩ F 1−ε

0 ∩O1−ε) ∪ (¬A1−ε
1 ∩ F 1−ε

1 ∩O1−ε)

=
((

(Aε
0 ∩ F ε

0 ∩Oε) ∪ (¬A1−ε
1 ∩ F 1−ε

1 ∩O1−ε)
)
∩
(
(F ε

0 ∩Oε) ∪ (F 1−ε
1 ∩O1−ε)

))
∪

((
(Aε

1 ∩ F ε
1 ∩Oε) ∪ (¬A1−ε

0 ∩ F 1−ε
0 ∩O1−ε)

)
∩
(
(F ε

1 ∩Oε) ∪ (F 1−ε
0 ∩O1−ε)

))
,

and thatF ε
0 ∩Oε, F

1−ε
1 ∩O1−ε, F ε

1 ∩Oε, F
1−ε
0 ∩O1−ε are pairwise disjoint open subsets ofC. By

Lemma 5.2.2 and the reduction property forΣ0
1 we can writeCε as the intersection ofC with((

(Aε
0∩Oε

0)∪(¬A1−ε
1 ∩O1−ε

1 )
)
∩(Oε

0∪O1−ε
1 )

)
∪
((

(Aε
1∩Oε

1)∪(¬A1−ε
0 ∩O1−ε

0 )
)
∩(Oε

1∪O1−ε
0 )

)
,

whereAε
0,¬Aε

1∈Γu(N ) andOε
j are four pairwise disjoint open subsets ofN . By Lemma 1.4.(b) in

[Lo1], (Aε
0∩Oε

0)∪ (¬A1−ε
1 ∩O1−ε

1 ),¬
(
(Aε

1∩Oε
1)∪ (¬A1−ε

0 ∩O1−ε
0 )

)
∈Γu(N ), so thatCε∈Γ′(C),

by Lemma 5.2.2 again.

• It is clear thatC0 andC1 are disjoint and ccs.

• Assume, towards a contradiction, thatD ∈∆(Γ′) separatesC0 from C1. LetD0, D1 ∈Γ′(N ) be
disjoint. AsH is complete there arefε : N → C continuous such thatDε = f−1

ε (H). We define
f :N→C by

f(α)
(〈
<ε+1, (k)0>, (k)1

〉)
:=
{
fε(α)(k) if ε∈2,
0 otherwise,

so that
(
f(α)

)
ε+1

=fε(α). Thenf is continuous andDε =f−1(Eε). Note thatEε\E1−ε⊆Cε. This

implies thatα∈D0 ⇔ f(α)∈E0 ⇔ f(α)∈E0\E1 ⇒ f(α)∈C0⊆D. Similarly,D1⊆f−1(¬D),
and f−1(D) ∈ ∆(Γ′)(N ) separatesD0 from D1. ThusΓ′ has the separation property, which is
absurd.

(2) Lemma 5.2.7.(b) gives(Up)p≥1 complete for sequences of pairwise disjointΣ0
1 sets withUp

strongly ccs, and such that for anys ∈ F there is a sequence(Oε
p)ε∈2,p≥1 of ccsΣ0

1 sets reducing(
τ̃−1
s(ε+1)(Up)

)
ε∈2,p≥1

. Theorem 5.2.4 givesH(u′)p
⊆ C which isΓ(u′)p

-complete and strongly ccs.

We setH :=
⋃

p≥1

(
τ̃−1
2p (H(u′)p

) ∩ τ̃−1
1 (Up)

)
and, forε∈2, Eε := τ̃−1

ε+1(H).
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We also setAε
p := τ̃−1

(2p)(ε+1)(H(u′)p
), F ε

p := τ̃−1
1(ε+1)(Up), so thatEε =

⋃
p≥1 (Aε

p ∩ F ε
p ). Finally,

we setCε :=(Aε
1 ∩Oε

1)∪
⋃

p≥1

(
(O1−ε

p \A1−ε
p )∪ (Aε

p+1 ∩Oε
p+1)

)
, where(Oε

p)ε∈2,p≥1 is associated
with s :=1.

Note thatCε ∈Γ′(C) since
(
Γ(u′)p

(N )
)
p≥1

is strictly increasing, using again Lemma 5.2.2, the

generalized reduction property forΣ0
1 (see 22.16 in [K]), and Lemma 1.4.(b) in [Lo1]. Here again,

Eε\E1−ε⊆Cε and we conclude as in (1). �

Proof of Theorem 1.9.It is clear that Proposition 2.2, Lemmas 2.3, 2.6, Corollary 5.2.5, Lemma
5.2.9 and Theorem 3.1 imply Theorem 1.9, if we setS :=SC andSε :=SCε . �

6 The proof of Theorem 1.10

We first introduce an operator in the spirit ofF defined before Theorem 4.2.2, in dimension one.
Another important difference to notice is the following. In Theorem 4.2.2, (f) for example,S is in a
boldface class, whileA0 andA1 are in a lightface class. The same phenomenon will hold in the case
of Wadge classes, and in the new operator we introduce we have boldface conditions (for example,
we do not askδ to be∆1

1(β)). We code the Borel classes, and define an operatorG onN×N to do
it. Recall the definition of Seq before Lemma 2.3. We set

W0 :=
{

(nβ, γ)∈N×WN |
(
n∈Seq∧ CNγ =

{
α∈N | I−1(n)⊆α

})
∨
(
n /∈Seq∧ CNγ =∅

)}
,

G(A) :=A ∪W0 ∪
{

(β, γ)∈N×WN | ∃δ∈N ∀n∈ω
(
(β)n, (δ)n

)
∈A ∧ ¬CNγ =

⋃
n∈ω

CN(δ)n

}
.

In the sequel, we will considerG<ξ :=
⋃

η<ξ Gη.

Lemma 6.1 Let 1≤ ξ < ω1 andB ⊆N . ThenB ∈Π0
ξ if and only if there is(β, γ) ∈Gξ such that

CNγ =B.

Proof. Note first thatB=Ns := {α∈N | s⊆α} for somes∈ω<ω or B= ∅ if and only if there is
(β, γ)∈W0 =G0 with CNγ =B. Then

B∈Π0
1 ⇔ ∃(sn)n∈ω∈(ω<ω)ω ¬B=

⋃
n∈ω Nsn ∨ ¬B=∅

⇔ ∃β, δ∈N ∀n∈ω
(
(β)n, (δ)n

)
∈G0 ∧ ¬B=

⋃
n∈ω CN(δ)n

⇔ ∃(β, γ)∈G1 CNγ =B.

Assume now that the result is proved for1≤η<ξ≥2. Note that

B∈Π0
ξ ⇔ ∃(Bn)n∈ω∈(Π0

<ξ)
ω ¬B=

⋃
n∈ω Bn

⇔ ∃β, δ∈N ∀n∈ω
(
(β)n, (δ)n

)
∈G<ξ ∧ ¬B=

⋃
n∈ω CN(δ)n

⇔ ∃(β, γ)∈Gξ CNγ =B.

This finishes the proof. �
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We now define aΠ 1
1 coding ofD (recall Definition 5.1.2).

Notation. If α∈N andj, p, q ∈ω, then we will denote(α)2+j by jα, and(α)2+<p,q> by p,qα. We
define an inductive operatorH overN as follows:

H(D) :=D ∪
{
α∈N | ∀n∈ω (α)n∈WO∧ |(α)n|=0

}
∪{

α∈N | ∀n∈ω (α)n∈WO∧ (α)0 =(α)2 ∧ |(α)1|=1∧ < jα >∈D
}
∪{

α∈N | ∀n∈ω (α)n∈WO∧ |(α)0|≥1 ∧ |(α)1|=2 ∧
∀p∈ω < p,qα >∈D ∧

(
|p,0α|≥|(α)0| ∨ |p,0α|=0

)}
.

ThenH is aΠ 1
1 monotone inductive operator, by 4A.2 in [M].

By 7C.1 in [M] we getH∞ :=
⋃

ξ Hξ =H(H∞)=
⋂
{D⊆N | H(D)⊆D}. An easy induction on

ξ shows thatH∞⊆
{
α∈N | ∀n∈ω (α)n∈WO

}
, so that the coding functionc, partially defined by

c(α) :=
(
|(α)n|

)
n∈ω

, is defined onH∞.

Lemma 6.2 The setH∞ is aΠ 1
1 coding ofD, which means thatH∞∈Π 1

1 (N ) andc[H∞]=D.

Proof. We first prove thatH∞∈Π 1
1 (N ) (see 7C in [M] for that). We define a set relationϕ(α,D) on

N by ϕ(α,D) ⇔ α∈H(D). As H is monotone,ϕ is operative. IfQ∈Π 1
1 (Z×N ), then the relation

ϕ(α, {β ∈N | (z, β) ∈Q}) is in Π 1
1 . Thusϕ is Π 1

1 on Π 1
1 . By 7C.8 in [M], ϕ∞(α) is in Π 1

1 and
H∞∈Π 1

1 (N ).

Let βε∈WO such that|βε|= ε, for ε∈ 3. Then< β0 | n∈ω >∈H0⊆H∞, so that0∞∈ c[H∞].
Let v ∈ c[H∞], α ∈ H∞ with v = c(α). Then< (α)0, β1, (α)0, (α)1, ... >∈ H(H∞) = H∞, so that
v(0)1v=c

(
<(α)0, β1, (α)0, (α)1, ...>

)
∈c[H∞].

Now let ξ≥1, up∈c[H∞] such thatup(0)≥ξ or up(0)=0, for eachp∈ω. Chooseα∈WO with
|α|= ξ, andαp ∈H∞ with up = c(αp). Then< α, β2, (α(0)0)(0)1 , (α

(1)0)(1)1 , ... >∈H(H∞) = H∞,
so thatξ2 < up >=c

(
< α, β2, (α(0)0)(0)1 , (α

(1)0)(1)1 , ... >
)
∈c[H∞]. ThusD⊆c[H∞].

Assume now thatE ⊆ωω
1 satisfies the following properties:

(a)0∞∈E .

(b) v∈E ⇒ v(0)1v∈E .

(c)
(
ξ≥1 ∧ ∀p∈ω

(
up∈E ∧ (up(0)≥ξ ∨ up(0)=0)

))
⇒ ξ2 < up >∈E .

We setD :={α∈N | ∀n∈ω (α)n∈WO∧ c(α)∈E}. It remains to see thatH(D)⊆D. Indeed,
this will imply thatH∞⊆D, c[H∞]⊆c[D]⊆E andc[H∞]⊆D.

As 0∞ ∈ E , we get
{
α∈N | ∀n∈ ω (α)n ∈WO∧ |(α)n|= 0

}
⊆D. Assume that(α)n ∈WO

for eachn∈ω, that(α)0 =(α)2, |(α)1|=1 and< jα >∈D. Thenv :=
(
|jα|

)
∈E , and|(α)2|1v∈E .

Thusc(α)∈E andα∈D.

Assume now that(α)n ∈ WO for any natural numbern, |(α)0| ≥ 1, |(α)1| = 2, < p,qα >∈ D,
and |p,0α| ≥ |(α)0| or |p,0α| = 0 for any p ∈ ω. We setξ := |(α)0|. Thenup :=

(
|p,qα|

)
∈ E , and

ξ2 < up >∈E . Thusc(α)∈E andα∈D. �
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Note that just like Definition 5.1.2, the definition ofH is cut into three cases, that we will meet
again later on:|(α)1| = 0 (or, equivalently,|(α)n| = 0 for each natural numbern), |(α)1| = 1 or
|(α)1|=2.

Even if “u∈D” is the least relation satisfying some conditions, some simplifications are possible.
For example,Γ01010∞ = Γ0∞ . Some other simplifications are possible, and some of them will sim-
plify the notation later on. This will lead to the notion of a normalized code of a description. To define
it, we need to associate a tree with a code of a description. The idea is to describe the construction
of a set inΓu using simpler and simpler sets, until we reach the simplest set, namely the empty set.
More specifically, we defineT :H∞→{trees onω×H∞} as follows. Letα∈Hξ\H<ξ. We set

T(α) :=



{∅} ∪ {<(0, α)>} if |(α)1|=0,

{∅} ∪
{
(0, α)_s | s∈T(< jα>)

}
if |(α)1|=1,

{∅} ∪
{
(0, α)_s | s∈T(<0,qα>)

}
∪⋃

p≥1

{
(p, α)_s | s∈T(< (p)0+1,qα>)

}
if |(α)1|=2.

An easy induction onη shows thatT(α) is always a countable well-founded tree (the first coordinate
of (p, α) ensures the well-foundedness). A sequences∈T(α) is said to bemaximal if s⊆ t∈T(α)
implies thats= t. Note that

∣∣(s1(|s|−1)
)
1

∣∣=0 if s is maximal. We denote byMα the set of maximal
sequences ofT(α).

Definition 6.3 We say thatα∈H∞ is normalized if the following holds:(
s∈Mα ∧ i< |s| ∧

∣∣(s1(i))1∣∣=1
)
⇒ i= |s|−2.

This means that in a maximal sequences of T(α),
∣∣(s1(i))1∣∣ is2, then possibly1 once, and finally

0 once. The next lemma says that we can always assume thatα is normalized. It is based on the fact
thatŠξ(Γ,Γ′)=Sξ(Γ̌, Γ̌′).

Lemma 6.4 Letα∈H∞. Then there isγ∈H∞ normalized with(γ)0 =(α)0 andΓc(γ) =Γc(α).

Proof. Assume thatα∈Hξ\H<ξ. We argue by induction onξ.

Case 1.|(α)1|=0.

We just setγ :=α since
∣∣(s1(i))1∣∣=0.

Case 2.|(α)1|=1.

•We first defineN :H∞→H∞ as follows. We ensure that
(
N(β)

)
0
=(β)0 andΓc(N(β)) = Γ̌c(β). Let

β1∈WO with |β1|=1. We set

N(β) :=


<(β)0, β1, (β)0, (β)1, (β)2, ...> if |(β)1|=0,
< jβ> if |(β)1|=1,

<(β)0, (β)1,
((
N(< (i)0,qβ >)

)
(i)1

)
i∈ω

> if |(β)1|=2,

and one easily checks thatN is defined and suitable.
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• As < jα >∈ H<ξ, the induction assumption givesδ ∈ H∞ normalized satisfying the equalities
(δ)0 =(α)2 =(α)0 andΓc(δ) =Γc(<jα>). In particular,Γc(α) = Γ̌c(<jα>) = Γ̌c(δ) =Γc(N(δ)). So we
have to findγ∈H∞ normalized with(γ)0 =(δ)0 andΓc(γ) =Γc(N(δ)). Assume thatδ is in Hη\H<η.
We argue by induction onη.

Subcase 1.|(δ)1|≤1.

We just setγ :=N(δ).

Subcase 2.|(δ)1|=2.

Note that< p,qδ> is normalized since(0, δ)_s∈Mδ (resp.,(p, δ)_s∈Mδ) if s∈M0,qδ (resp.,
s∈M

(p)0+1,qδ andp≥1). The induction assumption gives<p,qγ>∈H∞ normalized withp,0γ=p,0δ
andΓc(<p,qγ>) =Γc(N(<p,qδ>)). We set(γ)i :=(δ)i if i∈2 and we are done.

Case 3.|(α)1|=2.

The induction assumption gives<p,qγ>∈H∞ normalized satisfyingp,0γ=p,0α and

Γc(<p,qγ>) =Γc(<p,qα>).

We set(γ)i :=(α)i if i∈2 and we are done. �

UsingG, we will now code the non self-dual Wadge classes of Borel sets, and define an operator
I onN 3 to do it. We set

I(A) :=A ∪
{

(α,mβ, γ)∈N 2×WN | ∀n∈ω (α)n∈WO∧

(
∀n∈ω |(α)n|=0 ∧m=0 ∧ CNγ =∅

)
∨

(
|(α)1|=1 ∧ (α)0 =(α)2 ∧m=1 ∧ ∃δ∈N (< jα >, β, δ)∈A ∧ CNγ =¬CNδ

)
∨

(
|(α)1|=2 ∧ |(α)0|≥1 ∧ ∀p∈ω

(
|p,0α|≥|(α)0| ∨ |p,0α|=0

)
∧

m=2 ∧ ∃δ∈N (< 0,qα >, (β)0, (δ)0)∈A ∧

∀p≥1
(
< (p)0+1,qα>,

(
(β)p

)
0
,
(
(δ)p

)
0

)
∈A ∧

((
(β)p

)
1
,
(
(δ)p

)
1

)
∈G|(α)0| ∧

∀p 6=q≥1 CN((δ)p)1
∪ CN((δ)q)1

=N ∧

CNγ =
⋃

p≥1 (CN((δ)p)0
\CN((δ)p)1

) ∪ (CN(δ)0 ∩
⋂

p≥1 C
N
((δ)p)1

)
)}

.
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Lemma 6.5 Let ξ be an ordinal.

(a) Assume that(α,mβ, γ)∈Iξ. Thenα∈Hξ.

(b) Letα ∈Hξ andB ⊆N . ThenB ∈ Γc(α) if and only if there arem ∈ ω andβ, γ ∈N such that
(α,mβ, γ)∈Iξ andCNγ =B.

Proof. (a) We argue by induction onξ. So letα ∈ Iξ \I<ξ. We may assume that|(α)1| ≥ 1. If
|(α)1| = 1, then(< jα >, β, δ) ∈ I<ξ for someδ, and< jα >∈ H<ξ, by induction assumption, so
we are done. If|(α)1|=2, then(< 0,qα >, (β)0, (δ)0),

(
< (p)0+1,qα >,

(
(β)p

)
0
,
(
(δ)p

)
0

)
∈I<ξ for

someδ, and< p,qα >∈H<ξ, by induction assumption, for any natural numberp.

(b)⇒ We argue by induction onξ, and we may assume thatα /∈H<ξ.

Case 1.|(α)1|=0.

Note thatc(α)=0∞ andB= ∅. We setm := 0, β := 0∞, and we chooseγ ∈WN with CNγ = ∅.
Then(α, β, γ)∈I0⊆Iξ.

Case 2.|(α)1|=1.

Note that< jα >∈H<ξ, and¬B∈Γc(<jα>). The induction assumption givesβ, δ∈N such that
(< jα >, β, δ)∈I<ξ andCNδ =¬B. We setm :=1 and chooseγ∈WN with CNγ =¬CNδ .

Case 3.|(α)1|=2.

Note that< p,qα >∈H<ξ for any natural numberp. We can write

B=
⋃
p≥1

(Ap ∩ Cp) ∪ (D\
⋃
p≥1

Cp),

where(Cp)p≥1 is a sequence of pairwise disjointΣ0
|(α)0| sets,D∈Γc(<0,qα>) and

Ap∈Γc(<(p)0+1,qα>).

Lemma 6.1 gives
((

(β)p

)
1
,
(
(δ)p

)
1

)
∈G|(α)0| such thatCN((δ)p)1

=¬CNp . The induction assumption

gives(β)0, (δ)0∈N such that(< 0,qα>, (β)0, (δ)0)∈I<ξ andCN(δ)0 =D, and
(
(β)p

)
0
,
(
(δ)p

)
0
∈N

such that
(
< (p)0+1,qα >,

(
(β)p

)
0
,
(
(δ)p

)
0

)
∈ I<ξ andCN((δ)p)0

= Ap. We setm := 2 and choose

γ∈WN with CNγ =
⋃

p≥1 (CN((δ)p)0
\CN((δ)p)1

) ∪ (CN(δ)0 ∩
⋂

p≥1 C
N
((δ)p)1

).

⇐ We argue by induction onξ, and we may assume that(α,mβ, γ) /∈I<ξ.

Case 1.|(α)1|=0.

Note thatB=CNγ =∅∈Γ0∞ =Γc(α).

Case 2.|(α)1|=1.

Note that there isδ such that(< jα>, β, δ) ∈ I<ξ andCNγ = ¬CNδ , which implies thatB is in
Γ̌c(<jα>) =Γc(α).
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Case 3.|(α)1|=2.

Let δ be a witness for the fact that(α,mβ, γ)∈Iξ. As

(< 0,qα >, (β)0, (δ)0),
(
< (p)0+1,qα >,

(
(β)p

)
0
,
(
(δ)p

)
0

)
∈I<ξ,

the setCN(δ)0 is in Γc(<0,qα>) andCN((δ)p)0
is in Γc(<(p)0+1,qα>), by induction assumption. As((

(β)p

)
1
,
(
(δ)p

)
1

)
∈G|(α)0|,

CN((δ)p)1
∈Π0

|(α)0|, by Lemma 6.1. ThusB∈S|(α)0|(
⋃

p≥1 Γc(<p,qα>),Γc(<0,qα>))=Γc(α). �

Remark. We will also consider the operatorJ defined just likeI, except that

- we replace(WN , CN ) with (W,C) (we work inN d instead ofN ),

- we replace the condition of the form(β̃, γ̃) ∈G|(α)0| with
(
(α)0, β̃, γ̃

)
∈Q (see the remark at the

end of Section 4 for the definition ofQ),

- we askβ, γ, δ to be∆1
1(α), so thatJ is aΠ 1

1 monotone inductive operator.

To prove Theorem 1.10, we will consider some tuples~v :=(α, a0, a1, b0, b1, r), whereα∈H∞ is
a (normalized in practice) code for a descriptionu= c(α). We will inductively define them through
an inductive operator overN 6 calledK. The definition ofK is in the spirit of that ofI. We will use
the good universal setU for Π 1

1 defined after the proof of Theorem 4.2.2, at the end of Section 4, and
the following lemma.

Lemma 6.6 There is a recursive mapA :N 2→N such thatUA(α,r) =U(r)0 ∪
⋃

p≥1 ¬¬U(r)p

|α|
if

α∈∆1
1 ∩WO and|α|≥1.

Proof. Note first thatP :={(β,~δ)∈N×N d | (β)0∈∆1
1 ∩WO∧ |(β)0|≥1 ∧

~δ∈U((β)1)0 ∪
⋃

p≥1 ¬¬U((β)1)p

|(β)0|}

is a Π 1
1 set, by the remark definingR at the end of Section 4. This givesγ ∈ N recursive with

P =UN×N d

γ . Letα∈∆1
1 ∩WO with |α|≥1, andr∈N . Then

~δ∈U(r)0 ∪
⋃

p≥1 ¬¬U(r)p

|α|⇔ (< α, r, r, ... >, ~δ )∈P
⇔ (γ,< α, r, r, ... >, ~δ )∈UN×N d

⇔
(
S(γ,< α, r, r, ... >), ~δ

)
∈U .

We just have to setA(α, r) :=S(γ,< α, r, r, ... >). �

We are now ready to defineK (recall the remark definingQ at the end of Section 4).
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The operatorK is defined as follows (recall the definition ofH):

K(A) :=A ∪
{

(α, a0, a1, b0, b1, r)∈
(
N ∩∆1

1(α)
)6 | ∀n∈ω (α)n∈WO∧(

∀n∈ω |(α)n|=0 ∧ Ua0 ∪ Ua1 =N d ∧ (b0, b1)=(a0, a1) ∧ r=a1

)
∨(

|(α)1|=1 ∧ (α)0 =(α)2 ∧ (< jα >, a0, a1, b0, b1, a1)∈A ∧ r=a0

)
∨(

|(α)1|=2 ∧ |(α)0|≥1 ∧ ∀p∈ω
(
|p,0α|≥|(α)0| ∨ |p,0α|=0

)
∧

∃c0, c1, s∈∆1
1(α)

(
< 0,qα >, a0, a1, (c0)0, (c1)0, (s)0

)
∈A ∧

∀p≥1
(
< (p)0+1,qα >, a0, a1, (c0)p, (c1)p, (s)p

)
∈A ∧

∀i∈2 bi =A
(
(α)0, < ai, (s)1, (s)2, ... >

)
∧

∃d0, d1∈∆1
1(α) (< 0,qα >, b0, b1, d0, d1, r)∈A

)}
.

ThenK is aΠ 1
1 monotone inductive operator.

Remark. Let ξ be an ordinal, and~v := (α, a0, a1, b0, b1, r) ∈ Kξ. An induction onξ shows the
following properties.

- ¬Ua0 ∩ ¬Ua1 =∅.
- Bi :=¬Ubi

⊆Ai :=¬Uai for anyi∈2. In particular,B0 ∩B1 =∅.
- b0, b1, r are completely determined by(α, a0, a1). This is the reason why we will sometimes identify
bi =bi(α, a0, a1)'bi(u, a0, a1) andr=r(α, a0, a1)'r(u, a0, a1).
- If ¬Uai⊆¬Ua′i

for anyi∈2, then¬Ubi
⊆¬Ub′i

for anyi∈2 and¬Ur(α,a0,a1)⊆¬Ur(α,a′0,a′1).

- There isi∈2 such that¬Ur⊆¬Uai .

Lemma 6.7 (a) Letξ be an ordinal,α∈∆1
1, and(α,mβ, γ)∈Jξ. Thenα∈Hξ and the setCγ is in

∆1
1 ∩ Γc(α)(τ1).

(b) Letα∈∆1
1 ∩H∞ normalized, anda0, a1∈∆1

1 withA0 ∩A1 =∅. Then there areb0, b1, r∈N such
that (α, a0, a1, b0, b1, r)∈K∞.

Proof. (a) We argue as in the proof of Lemmas 6.5.(a) and 6.5.(b)⇐. The only thing to notice is that
in the case|(α)1|= 2,

(
(α)0,

(
(β)p

)
1
,
(
(δ)p

)
1

)
∈Q. Proposition 2.2, Lemma 2.3 and Theorem 3.1

give a treeTd with ∆1
1 suitable levels andS∈Σ0

|(α)0|(dTde) which is not separable fromdTde\S by a

pot(Π0
|(α)0|) set. Asα∈∆1

1, |(α)0|<ωCK
1 and Theorem 4.2.2 implies thatC((δ)p)1 is in Π0

|(α)0|(τ1).
ThusCγ∈Γc(α)(τ1).

(b) Let ξ be an ordinal withα∈Hξ. Here again we argue by induction onξ. So assume thatα /∈H<ξ.

Case 1.|(α)1|=0.

Let bi :=ai andr :=a1. Then(α, a0, a1, b0, b1, r)∈K0⊆K∞.
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Case 2.|(α)1|=1.

As< jα >∈H<ξ, the induction assumption gives(b0, b1, s) with

(< jα >, a0, a1, b0, b1, s)∈K∞.

As α is normalized,|jα|=0 for anyj, ands=a1. We setr :=a0. Then

(α, a0, a1, b0, b1, r)∈K(K∞)=K∞.

Case 3.|(α)1|=2.

As< p,qα >∈H<ξ, the induction assumption gives(ap
0, a

p
1, r

p) with(
< 0,qα >, a0, a1, a

0
0, a

0
1, r

0
)
∈K∞,

and(< (p)0+1,qα >, a0, a1, a
p
0, a

p
1, r

p) ∈ K∞, for anyp≥ 1. As in the proof of Lemma 6.2 we see
thatK∞ ∈Π 1

1 . By ∆1
1-selection, we may assume that the sequences(ap

0), (ap
1) and(rp) are∆1

1. In
particular, there isci∈∆1

1 with (ci)p =ap
i . We set(s)p :=rp, and

bi :=A
(
(α)0, < ai, (s)1, (s)2, ... >

)
.

The induction assumption givesd0, d1, r such that(< 0,qα >, b0, b1, d0, d1, r) ∈ K∞. We are done
since(α, a0, a1, b0, b1, r)∈K∞. �

The next lemma is the crucial separation lemma.

Lemma 6.8 Let ~v := (α, a0, a1, b0, b1, r) ∈ K∞ with α ∈ ∆1
1 normalized anda0, a1 ∈ ∆1

1, Σ in
Σ 1

1 (N d) with (¬Ur) ∩ Σ=∅. Then there arem∈ω andβ, γ∈N such that(α,mβ, γ)∈J∞ andCγ

separatesA1 ∩Σ fromA0 ∩Σ. In particular,A1 ∩Σ is separable fromA0 ∩Σ by a∆1
1 ∩ Γc(α)(τ1)

set.

Proof. The last assertion comes from Lemma 6.7.(a). Letη be an ordinal with~v ∈Kη. We argue by
induction onη. So assume that~v∈Kη\K<η.

Case 1.|(α)1|=0.

We setm :=0, β :=0∞, and chooseγ∈∆1
1 ∩W with Cγ =∅. We are done since∅=A1 ∩ Σ.

Case 2.|(α)1|=1.

As α is normalized,|jα|= 0 for any j. We setm := 1, β := 0∞, and chooseγ ∈∆1
1 ∩W with

Cγ =N d. Thenδ∈∆1
1 ∩W with Cδ =∅ is a witness for the fact that(α,mβ, γ)∈J∞. We are done

sincer=a0.

Case 3.|(α)1|=2.

There arec0, c1, s ∈ ∆1
1 with

(
< (p)0+1,qα >, a0, a1, (c0)p, (c1)p, (s)p

)
∈ K<η, for anyp ≥ 1,

and, for anyi ∈ 2, bi = A
(
(α)0, < ai, (s)1, (s)2, ... >

)
. Moreover, there ared0, d1 ∈ ∆1

1 with
(< 0,qα >, b0, b1, d0, d1, r)∈K<η.

By Lemma 6.7.(a), one of the goals is to buildCγ ∈Γc(α)(τ1). The proof of Lemma 6.7.(a) shows
thatΓc(α) =S|(α)0|(

⋃
p≥1 Γc(<p,qα>),Γc(<0,qα>)). This means that we want to find some sequences

(Cp)p≥1, (Sp)p≥1 andB such thatCγ =
⋃

p≥1 (Sp ∩ Cp) ∪ (B\
⋃

p≥1 Cp).
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- Let us constructB.

The induction assumption givesβ0, γ0∈N such that(< 0,qα >, β
0, γ0)∈J∞ andCγ0 separates

A1 ∩ Σ fromA0 ∩ Σ. We setB :=Cγ0 .

- Let us construct theCp’s.

We setξ := |(α)0|. Note thatbi =Ai ∩
⋂

p≥1 ¬U(s)p

ξ
. This implies that

U :=
(
Cγ0 ∩A0 ∩ Σ

)
∪
(
¬Cγ0 ∩A1 ∩ Σ

)
⊆
⋃
p≥1

¬¬U(s)p

ξ
.

As in the proof of Lemma 6.6 we see that the relation “~δ /∈¬U(s)p

|(α)0|” is Π 1
1 in (p, α, s, ~δ). By ∆1

1-

selection there is a∆1
1-recursive mapf :N d→ω such thatf(~δ)≥1 for any~δ∈N d and~δ /∈¬U(s)

f(~δ)

ξ

for any~δ∈U .

In particular, for any~δ ∈ U there isP ∈Σ 1
1 ∩Π0

<ξ(τ1) such that~δ ∈ P ⊆U(s)
f(~δ)

. Now P and

¬U(s)
f(~δ)

are disjointΣ 1
1 sets, separable by aΠ0

<ξ(τ1) set. Asα ∈ ∆1
1, 1 ≤ |(α)0| < ωCK

1 . As in

the proof of Lemma 6.7.(a) we getTd andS. Theorem 4.2.2 gives(β′, γ′)∈ (∆1
1×∆1

1) ∩ V<ξ with
P ⊆Cγ′⊆U(s)

f(~δ)
.

By Lemma 4.2.3.(2).(a) the relation “(β′, γ′) is in (∆1
1×∆1

1) ∩ V<ξ” is Π 1
1 , so there is a∆1

1-
recursive mapg :N d→ω×(N×N ) such that

∀~δ∈U g0(~δ)=f(~δ) ∧ g1(~δ)∈(∆1
1×∆1

1) ∩ V<ξ ∧ ~δ∈C(g1(~δ))1
⊆U(s)

f(~δ)
,

by ∆1
1-selection. In particular, theΣ 1

1 setg[U ] is a subset of{(
p, (β′, γ′)

)
∈ω×

(
(∆1

1×∆1
1) ∩ V<ξ

)
| Cγ′⊆U(s)p

}
,

which isΠ 1
1 and countable. The separation theorem givesD ∈∆1

1 between these two sets. AsD is

countable, there areN, β̃, γ̃ ∈∆1
1 with D =

{(
N(q),

(
(β̃)q, (γ̃)q

))
| q ∈ ω

}
. Now we can define

Cp :=
⋃

q∈ω,N(q)=p C(γ̃)q
\(
⋃

r<q C(γ̃)r
).

- We now study the properties of theCp’s. We can say that

◦ The relation “~δ∈Cp” is ∆1
1 in (p, ~δ).

◦ TheCp’s are pairwise disjoint.

◦ Cp∈Σ0
ξ(τ1) sinceC(γ̃)q

∈Π0
<ξ(τ1)⊆∆0

ξ(τ1), by Theorem 4.2.2.

◦ We setE :={(p, ~δ)∈ω×N d | ∃q∈ω N(q)=p ∧ ~δ∈C(γ̃)q
}, so thatE∈∆1

1 andEp∈Σ0
1(τξ)

for anyp≥1. Note thatCp⊆Ep.

◦
⋃

p≥1 Cp =
⋃

p≥1 Ep.

◦ Ep separatesU ∩ f−1({p}) from ¬U(s)p
. In particular,U is a subset of the∆1

1 set
⋃

p≥1 Cp.

Moreover,
⋂

p≥1 ¬U(s)p

ξ⊆¬(
⋃

p≥1 Ep).
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- The induction assumption gives, for anyp≥ 1, βp, γp with (< (p)0+1,qα >, βp, γp)∈ J∞ andCγp

separatesA1∩Ep fromA0∩Ep. As in the proof of Lemma 6.7.(b) we may assume that the sequences
(βp) and(γp) are∆1

1. By ∆1
1-selection again there is a∆1

1-recursive maph : ω→N×N such that
h(p)∈(∆1

1×∆1
1)∩Vξ andCh1(p) =¬Cp for anyp≥1. We set

(
(β)p

)
1
:=h0(p) and

(
(δ)p

)
1
:=h1(p),

so that
(
(α)0,

(
(β)p

)
1
,
(
(δ)p

)
1

)
∈Q for anyp≥1.

We setm :=2, (β)0 :=β0, and
(
(β)p

)
0
:=βp if p≥1, so thatβ is completely defined. Similarly,

we define(δ)0 := γ0, and
(
(δ)p

)
0

:= γp if p ≥ 1. Finally, we chooseγ ∈ ∆1
1 ∩ W such that

Cγ =
⋃

p≥1 (Cγp\Ch1(p))∪ (C(δ)0 ∩
⋂

p≥1 Ch1(p)), so that(α,mβ, γ)∈J∞ andCγ separatesA1∩Σ
fromA0 ∩ Σ. �

The next result is the actual (effective) content of Theorem 1.10.(1). It is also the version of
Theorem 4.4.1 for the non self-dual Wadge classes of Borel sets. Letjd : (dω)d→N be a continuous
embedding (for example we can embed(dω)d intoN d in the obvious way, and then use a bijection
betweenN d andN ).

Theorem 6.9 Let Td be a tree with∆1
1 suitable levels,α in ∆1

1 normalized,β, γ in N such that
(α, β, γ)∈I∞, S := j−1

d (CNγ ) ∩ dTde, anda0, a1, b0, b1, r∈N with ~v := (α, a0, a1, b0, b1, r)∈K∞.
Then one of the following holds:

(a)¬Ur =∅.
(b) The inequality

(
(Π′′

i dTde)i∈d, S, dTde\S
)
≤
(
(N )i∈d, A0, A1

)
holds.

Now we can state the version of Theorem 4.2.2 for the non self-dual Wadge classes of Borel sets.

Theorem 6.10 Let Td be a tree with∆1
1 suitable levels,α in ∆1

1 normalized,β, γ in N such that
(α, β, γ)∈I∞, S := j−1

d (CNγ ) ∩ dTde, anda0, a1, b0, b1, r∈N with ~v := (α, a0, a1, b0, b1, r)∈K∞.
We assume thatS is not separable fromdTde\S by a pot(Γ̌c(α)) set. Then the following are equivalent:

(a) The setA0 is not separable fromA1 by a pot(Γ̌c(α)) set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot(Γ̌c(α)) set.

(c)¬
(
∃β′, γ′∈N such that(α, β′, γ′)∈J∞ andA1⊆Cγ′⊆¬A0

)
.

(d) The setA0 is not separable fromA1 by aΓ̌c(α)(τ1) set.

(e)¬Ur 6=∅.
(f) The inequality

(
(dω)i∈d, S, dTde\S

)
≤
(
(N )i∈d, A0, A1

)
holds.

Proof. (a)⇒ (b) and (a)⇒ (d) are clear since∆N is Polish.

(b)⇒ (c) This comes from Lemma 6.7.(a).

(b)⇒ (e), (c)⇒ (e) and (d)⇒ (e) This comes from Lemma 6.8.

(e)⇒ (f) This comes from Theorem 6.9 (asΠ′′
i dTde is compact, we just have to compose with con-

tinuous retractions to get functions defined ondω).

(f) ⇒ (a) If P ∈pot(Γ̌c(α)) separatesA0 fromA1 and (f) holds, thenS⊆(Πi∈d fi)−1(P )⊆¬(dTde\S).
This implies thatS is separable fromdTde\S by a pot(Γ̌c(α)) set, by Lemma 4.4.7. But this contradicts
the assumption onS. �
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Proof of Theorem 1.10.(1).Note first that (a) and (b) cannot hold simultaneously, as in the proof of
Theorem 6.10.

We assume that (a) does not hold. This implies that theXi’s are not empty, since otherwise
A0 =A1 =∅, and∅∈ Γ̌ unlessΓ={∅}. As in the proof of Theorem 4.1, we may assume thatXi =N
for eachi ∈ d, by Lemma 4.4.7. By Theorem 5.1.3 there isu ∈ D with Γ(N ) = Γu(N ). If E is a
zero-dimensional Polish space, then we also haveΓ(E) = Γu(E), by Theorem 4.1.3 in [Lo-SR2].
It follows that pot(Γ) = pot(Γu). By Lemmas 6.2 and 6.4 we may assume that there isα ∈ H∞

normalized withc(α)=u.

By Theorem 4.1.3 in [Lo-SR2] there isB ∈ Γ(N ) with S = j−1
d (B) ∩ dTde. To simplify the

notation, we may assume thatTd has∆1
1 levels,α ∈ ∆1

1, andA0, A1 ∈ Σ 1
1 (N d). By Lemma 6.5

there areβ, γ ∈ N such that(α, β, γ) ∈ I∞ andCNγ = B. Lemma 6.7.(b) givesb0, b1, r with
(α, a0, a1, b0, b1, r)∈K∞. Lemma 6.8 implies that¬Ur 6=∅. So (b) holds, by Theorem 6.10. �

The sequel is devoted to the proof of Theorem 6.9. We have to introduce a lot of objects before we
can do it. We will create some paragraphs to describe these objects. We start with a general notion.
The idea is that, given a setS in Γc(α)(dTde), and with the help of the treeT(α), we will keep all the
Σ0

ξ (or equivalentlyΠ0
ξ , if we pass to complements) sets used to buildS in mind. We will represent

theseΠ0
ξ sets, on most sequencess of T(α), by induction on|s|, applying the Debs-Saint Raymond

theorem. At each induction step, someΠ0
ξ sets of the level become closed, but we also partially

simplify theΠ0
ξ sets to come. This is the reason why the ordinal subtraction is involved (recall the

definition of the ordinal subtraction after Theorem 5.1.3).

Definition 6.11 LetX be a set,A⊆X, B be a countable family of subsets ofX, andΓ be a Borel
class. We say thatA∈Γ(B) if A∈Γ(X, τ) for any topologyτ onX containingB.

Proposition 6.12 LetX be a topological space.

(a) LetA⊆X, B be a countable family of open subsets ofX, andΓ be a Borel class. ThenA∈Γ(X)
if A∈Γ(B).
(b) LetY be a set,B⊆Y , f :X→Y be a bijection,B be a countable family of subsets ofY , andΓ
be a Borel class. Thenf−1(B)∈Γ({f−1(D) | D∈B}) if B∈Γ(B).
(c) Let 1 ≤ η ≤ ξ andA ∈ Π0

ξ(X). We assume thatX is metrizable. Then there isB ⊆ Π0
η(X)

countable such thatA∈Π0
1+(ξ−η)(B̌), whereB̌ :={¬B | B∈B}.

In practice,X will be the metrizable space[R], for some tree relationR, andf will be the
canonical map given by the Debs-Saint Raymond theorem.

Proof. (a) The topologyτ is simply the topology ofX.

(b) Let τ be a topology onX containing{f−1(D) | D ∈ B}. Thenσ := {f [A] | A ∈ τ} is a
topology onY containingB. ThusB∈Γ(Y, σ) sinceB∈Γ(B). Thereforef−1(B)∈Γ(X, τ) since
f : (X, τ)→(Y, σ) is continuous.
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(c) We argue by induction onξ−η. The result is clear ifξ−η= 0. So assume thatξ−η≥ 1. Write
A=

⋂
n∈ω ¬An, whereηn<ξ andAn∈Π0

ηn
(X). AsX is metrizable, we may assume thatη≤ ηn.

The induction assumption givesBn⊆Π0
η(X) countable such thatAn ∈Π0

1+(ηn−η)(B̌n). It remains
to setB :=

⋃
n∈ω Bn. �

(A) The witnesses

Notation. We first define a map producing witnesses for the fact that~v ∈ K∞. More precisely, we
define a mapV :K∞→K∞ ∪ (K∞)ω. Let~v := (α, a0, a1, b0, b1, r)∈Kξ\K<ξ. If |(α)1|=0, then we
setV(~v) :=~v. If |(α)1|=1, then, using the definition ofK, we set

V(~v) :=(< jα >, a0, a1, b0, b1, a1).

Note thatV(~v)∈K<ξ. If |(α)1|=2, then we set

V(~v)(p) :=


(
<0,qα>, a0, a1, (c0)0, (c1)0, (s)0

)
if p=0,(

< (p)0+1,qα>, a0, a1, (c0)p, (c1)p, (s)p

)
if p≥1.

Here again,V(~v)(p)∈K<ξ.

Similarly, we define a mapW producing witnesses for the fact that~w∈I∞. Moreover, we keep
δ in mind. More precisely, we define a mapW : I∞ → I∞ ∪ (N ×I∞) ∪

(
N × (I∞)ω

)
. Let

~w := (α,mβ, γ) be in Iξ \I<ξ. If |(α)1| = 0, then we setW(~w) := ~w. If |(α)1| = 1, then, using
the definition ofI and choosingδ, we setW(~w) :=

(
δ, (< jα >, β, δ)

)
. If |(α)1|= 2, then we set

W(~w) :=
(
δ,Y(~w)

)
, where

Y(~w)(p) :=


(
<0,qα>, (β)0, (δ)0

)
if p=0,(

< (p)0+1,qα>,
(
(β)p

)
0
,
(
(δ)p

)
0

)
if p≥1.

(B) The trees associated with the codes for the non self-dual Wadge classes of Borel sets

• Recall the definition ofT(α) after Lemma 6.2. Similarly, we defineT :I∞→{trees onω×I∞} as
follows. Let ~w :=(α, β, γ)∈Iξ\I<ξ. We set

T(~w) :=


{∅} ∪ {<(0, ~w)>} if |(α)1|=0,
{∅} ∪

{
(0, ~w)_s | s∈T

(
Y(~w)

)}
if |(α)1|=1,

{∅} ∪
⋃

p∈ω

{
(p, ~w)_s | s∈T

(
Y(~w)(p)

)}
if |(α)1|=2.

Here againT(~w) is a countable well founded tree containing the sequence< (0, ~w) >. The set of
maximal sequences inT(~w) isM~w :={s∈T(~w) | ∀t∈T(~w) s⊆ t⇒ s= t}.

• Fix ~w :=(α, β, γ)∈I∞ with α ∈ ∆1
1 normalized. In the sequel, it will be convenient to set, for

s∈T(~w)\M~w,

s1(|s|) :=


~w if s=∅,
Y
(
s1(|s|−1)

)
if s 6=∅ ∧

∣∣(s1(|s|−1)(0)
)
1

∣∣=1,
Y
(
s1(|s|−1)

)(
s0(|s|−1)

)
if s 6=∅ ∧

∣∣(s1(|s|−1)(0)
)
1

∣∣=2.
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• Let s∈T(~w). We setBs :={i< |s| | |
(
s1(i)(0)

)
1
|=2}. Asα is normalized,Bs is a natural number.

Note thatBs≤|s|. If moreovers∈T(~w)\M~w, then we setCs :={i≤|s| | |
(
s1(i)(0)

)
1
|=2}.

• The ordinals|(α)0|, for α∈∆1
1 ∩ H∞, will be of particular importance in the sequel. We define a

functionZ :T(~w)\M~w→(ωCK
1 )<ω satisfying|Z(s)|= |s|+1. The sequences codes someΠ0

ξ sets,
and the role ofZ(s) is to give theseξ’s. We setZ(s)(i) :=

∣∣(s1(i)(0)
)
0

∣∣ if i≤ |s|. We can easily
check the following properties ofZ(s):

- Z(s)(i) depends only ons|i.
- Z(s)⊆Z(t) if s⊆ t.
- Z(s)(i+1)≥Z(s)(i) orZ(s)(i+1)=0 if i< |s|.
- Z(s)(i+1)=0 if Z(s)(i)=0 andi< |s|.
-
(
Z(s)(i)

)
i∈Cs

is an increasing sequence of recursive ordinals different from zero.

(C) The resolution families

• Fix ~w :=(α, β, γ)∈I∞ with α∈∆1
1 normalized, andp≥1. We set

Q~w
p :=

{
N if |(α)1|≤1,
CN((W0(~w))p)1

if |(α)1|=2.

Note thatQ~w
p ∈Π0

|(α)0|(N ) if |(α)1|=2, by Lemma 6.1.

• Recall the finite setscl⊆dd defined at the end of the proof of Proposition 2.2 (we only used the fact
thatTd has finite levels to see that they are finite). We putc :=

⋃
l∈ω cl, so thatc is countable. This

will be the countable setc mentioned in Definition 4.3.1.

• Recall the embeddingjd defined before Theorem 6.9. We setP ~w
p :=h[j−1

d (Q~w
p ) ∩ cω], so that the

unionP ~w
p ∪ P ~w

q =[⊆] if p 6=q≥1. Moreover,Ps1(i)
p ∈Π0

Z(s)(i)([⊆]) if s∈T(~w)\M~w andi∈Cs.

• If T is a tree ands∈T , thenTs :={t∈T | s⊆ t}.

• Fix ~w :=(α, β, γ)∈I∞ with α∈∆1
1 normalized and|(α)1|=2. We say thats∈T(~w) is extendable

if there ist ∈ T(~w)s such that|s|<Bt (which implies thats /∈M~w). We will construct, for eachs
extendable, a resolution family(Rρ

s)ρ≤ηs . We construct simultaneously some ordinalsξs andθs. If θ
is an ordinal, then we set

θ∗ :=
{
η if θ=η+1,
θ otherwise

(this is what appears in the Debs-Saint Raymond theorem). The following will hold:ηs = θ∗s ,
ξs =Z(s)(|s|) and

θs :=
{
ξs =Z(s)(0)= |(α)0| if s=∅,
1+(ξs−ξs−) if s 6=∅.
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We want the resolution family to satisfy the following conditions.

- The family(Rρ
s)ρ≤ηs is uniform if θs is a limit ordinal.

- R0
∅=⊆, andR

ηs−
s− =R0

s if s 6=∅.
- Πs : [Rηs

s ]→ [R0
s] is a continuous bijection.

- We setsΠ:=Πs|0 ◦Πs|1 ◦ ... ◦Πs. ThensΠ−1(Ps1(|s|)
p )∈Π0

1([R
ηs
s ]) if p≥1.

- sΠ−1(Pt1(j+1)
p )∈Π0

1+(Z(t)(j+1)−ξs)
([Rηs

s ]) if p≥1, t∈T(~w)s\M~w and|s|<j+1∈Ct.

• The construction is by induction on|s|. Assume thats= ∅, p≥ 1, t∈T(~w)\M~w andj+1∈Ct.

Proposition 6.12.(c) givesBt,j
p ⊆Π0

θ∅
([⊆]) countable such thatPt1(j+1)

p ∈Π0
1+(Z(t)(j+1)−θ∅)

(B̌t,j
p ).

This implies thatu∅ := {P ~w
p | p ≥ 1} ∪

⋃
p≥1,t∈T(~w)\M~w,j+1∈Ct

Bt,j
p is countable and made of

Π0
θ∅

([⊆]) sets. Theorems 4.3.4 and 4.4.4 give a family(Rρ
∅)ρ≤η∅ , uniform if θ∅ is a limit ordinal,

such that

- R0
∅=⊆,

- Π∅ : [R
η∅
∅ ]→ [R0

∅] is a continuous bijection,

- Π−1
∅ (Q)∈Π0

1([R
η∅
∅ ]) for eachQ∈u∅.

This family is suitable, by Proposition 6.12.

• Assume now thats 6=∅ is extendable, and that the construction is done for the strict predecessors of
s. Note thats−Π−1(Ps1(|s|)

p )∈Π0
θs

([Rηs−
s− ]). Assume thatp≥1, t∈T(~w)s\M~w and|s|<j+1∈Ct.

Then Proposition 6.12.(c) gives a countable familyCt,j
p ⊆Π0

θs
([Rηs−

s− ]) such thats−Π−1(Pt1(j+1)
p ) is

in Π0
1+(Z(t)(j+1)−ξs)

(Čt,j
p ). This implies that

us :={s−Π−1(Ps1(|s|)
p ) | p≥1} ∪

⋃
p≥1,t∈T(~w)s\M~w,|s|<j+1∈Ct

Ct,j
p

is countable and made ofΠ0
θs

([Rηs−
s− ]) sets. Theorems 4.3.4 and 4.4.4 give a resolution family

(Rρ
s)ρ≤ηs , uniform if θs is a limit ordinal, such that

- R0
s =Rηs−

s− ,

- Πs : [Rηs
s ]→ [R0

s] is a continuous bijection,

- Π−1
s (Q)∈Π0

1([R
ηs
s ]) for eachQ∈us.

This family is suitable, by Proposition 6.12. This completes the construction of the families.

(D) The subsets ofTd

We now build some subsets ofTd that will play the role thatD andTd\D played in the proof of
Theorem 4.4.1. Fix~w := (α, β, γ) ∈ I∞ with α ∈∆1

1 normalized and|(α)1|= 2. We will define a
family of subsets ofTd as follows. Assume thats∈T(~w) is extendable.
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We set, forq≥1,

P0(s) :=
{
~s∈Td | ~s=~∅ ∨ ∀p≥1 ∃Bp∈ sΠ−1(Ps1(|s|)

p ) ~s∈Bp

}
,

Pq(s) :=
{
~s∈Td | ~s 6=~∅ ∧ ∀Bq∈ sΠ−1(Ps1(|s|)

q ) ~s /∈Bq ∧

∀p∈ω\{0, q} ∃Bp∈ sΠ−1(Ps1(|s|)
p ) ~s∈Bp

}
.

Note that thePq(s)’s are pairwise disjoint. We set, fors∈T(~w) andi≤|s|, Ii,s :=
⋂

j<i Ps(j)(0)(s|j).
If i= |s|, then we writeIs instead ofIi,s. The next lemma associates to each~t∈Td a sequences(~t )
in T(~w) specifying in whichPq(s)’s the sequence~t is.

Proposition 6.13 Let ~w := (α, β, γ)∈I∞ with α∈∆1
1 normalized and|(α)1|=2, and~t∈Td. Then

there arel∈ω ands(~t )∈T(~w) of lengthl satisfying the following statements.

(a)~t∈Is(~t ).

(b) If s(~t ) is extendable byt, then~t /∈Pt(l)(0)(t|l).

Proof. We actually construct, forj ∈ ω, a sequencesj ∈ T(~w). We will havesj ⊆ sj+1, |sj |= j if
j≤ l, sj = sl if j > l, and~t∈Isj . At the end,s(~t ) will be sl. The definition ofsj is by induction on
j. Assume that(sk)k≤j are constructed and satisfy these properties, which is the case forj=0. We
may assume that|sj |=j.

If sj is not extendable or~t /∈ B for eachB ∈ [R
ηsj
sj ], then we setsj+1 := sj . If ~t ∈ B for some

B∈ [R
ηsj
sj ], then there is a unique natural numberq such that~t∈Pq(sj) since

sjΠ
−1(P(sj)1(j)

p ) ∪ sjΠ
−1(P(sj)1(j)

q )=[R
ηsj
sj ]

if p 6=q≥1. We will have|sj+1|=j+1, andsj+1(j)(0) :=q. Moreover,

sj+1(j)(1) :=
{
~w if j=0,
Y
(
sj(j−1)(1)

)(
sj(j−1)(0)

)
if j≥1.

This completes the construction of thesj ’s, and they are inT(~w). The well-foundedness ofT(~w)
proves the existence ofl, ands(~t ) is suitable. �

Notation. Proposition 6.13 associatess(~t ) ∈ T(~w) to ~t ∈ Td. Under the same conditions, we can
associateS(~t )∈M~w to~t. In order to do this, we need the following lemma:

Lemma 6.14 Let ~w := (α, β, γ)∈ I∞ with α∈∆1
1 normalized and|(α)1|= 2, ands∈T(~w). Then

there isS∈M~w extendings such thatS0(i)=0 if |s|≤ i< |S|.

Proof. If s=∅, then we setS(0) :=(0, ~w). If W
(
S1(i)

)
6=S1(i), then we set

S(i+1):=


(
0,Y

(
S(i)

))
if Y

(
S(i)

)
∈I∞,

(
0,Y

(
S(i)

)
(0)
)

if Y
(
S(i)

)
∈(I∞)ω.

By induction, we see thatS|(i+1)∈T(~w) for eachi< |S|, which proves that the length ofS is finite
sinceT(~w) is well-founded. ThusS∈M~w.
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If s 6=∅, thenS(|s|−1) is defined. We argue similarly. The only thing to change is that

S(|s|) :=
(
0,Y

(
s(|s|−1)

)(
s0(|s|−1)

))
if W

(
s1(|s|−1)

)
6=s1(|s|−1) andY

(
s(|s|−1)

)
∈(I∞)ω. �

We now associate a maximal extensionS(~t ) of s(~t ) to any~t in Td.

Remark. There isS(~∅)∈M~w with
(
S(~∅)

)
0
(i)=0 if i< |S(~∅)|. Note thats(~∅)⊆S(~∅). If ~∅ 6=~t∈Td,

then we defineS(~t ) by induction on|~t|:

- If s(~t )=∅, then~t 6=∅ since~∅∈P0(∅), andS(~t ) :=S(~t
η∅
∅ ).

- If s(~t ) 6=∅ and~t
ηs(~t )−

s(~t )−
∈Is(~t ), thenS(~t ) :=S(~t

ηs(~t )−

s(~t )−
).

- If s(~t ) 6=∅ and~t
ηs(~t )−

s(~t )−
/∈Is(~t ), thenS(~t ) is the extension ofs(~t ) given by Lemma 6.14 applied to

s :=s(~t ).

Note thatS(~t )∈M~w and is an extension ofs(~t ), by induction on|~t|. This comes from the fact
thats(~t )⊆s(~t

ηs(~t )−

s(~t )−
) in the second case.

(E) The tuples

We now keep the tuples(α, a0, a1, b0, b1, r) along the elements ofT(~w) in mind, using the witness
mapV. Fix ~w := (α, β, γ)∈ I∞ and~v := (α, a0, a1, b0, b1, r)∈K∞. In the sequel, we will say that
(~w,~v ) is standard if α∈∆1

1 is normalized and|(α)1|=2. Assume that(~w,~v ) is standard. We will
define a mapV :T(~w)→ (K∞)<ω such that|V (s)|= |s|, V s,i := (V s,i

j )j≤5 :=V (s)(i) depends only
ons|i as follows. We set, fori< |s|,

V s,i :=


~v if i=0,
V(V s,i−1) if i≥1 ∧ |(V s,i−1

0 )1|≤1,
V(V s,i−1)

(
s0(i−1)

)
if i≥1 ∧ |(V s,i−1

0 )1|=2.

Lemma 6.15 Let (~w,~v ) be standard,s ∈ T(~w), and i < |s|. ThenV s,i
0 = s1(i)(0). In particular,

s /∈M~w andi≤|s| imply thatZ(s)(i)= |(V s,i
0 )0|.

Proof. The last assertion clearly comes from the first one. The proof is by induction oni. The
assertion is clear fori=0 sinceV s,0

0 =s1(0)(0)=α. Assume that it holds fori< |s|−1.

• If i /∈Bs, then|(V s,i
0 )1|= |

(
s1(i)(0)

)
1
|=1. Thus

V s,i+1
0 =V(V s,i)(0)=< jV

s,i
0 >=< js1(i)(0)>=s1(i+1)(0).

• If i∈Bs, then|(V s,i
0 )1|= |

(
s1(i)(0)

)
1
|=2. If moreovers0(i)=0, then

V s,i+1
0 =<0,qV

s,i
0 >=<0,qs1(i)(0)>=s1(i+1)(0).

The argument is similar ifs0(i)≥1. �
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The next lemma is a preparation for Lemma 6.21, which is the crucial step for proving a version
of the claim in the proof of Theorem 4.4.1 for the non self-dual Wadge classes of Borel sets.

Lemma 6.16 Let (~w,~v ) be standard,t∈T(~w), andi∈Bt.

(a) If t0(i)=0, then¬U
V t,i
5
⊆¬U

V t,i+1
5

.

(b) The inclusion¬U
V t,i
5
⊆¬U

V t,i+1
5

ξt|i holds.

Proof. (a) Note thatV t,i+1 = V(V t,i)(0), by Lemma 6.15. ThusV t,i+1
5 = V(V t,i)(0)(5) = (s)0 for

somes for which¬U
V t,i
5
⊆¬U(s)0 , by the 2nd and the 4th remarks after the definition ofK.

(b) We may assume thatt0(i)≥ 1, so thatV t,i+1
5 =(s)t0(i), and¬U

V t,i
5
⊆¬U

V t,i+1
5

|(V t,i
0 )0| by the 5th

remark after the definition ofK and the definition ofA. We are done, by Lemma 6.15. �

(F) The sequences of natural numbers

Let s∈T(~w). We have to keep the natural numberss0(i) in mind. We will consider an ordering
of these finite sequences of natural numbers that will help us to prove the claim we just mentioned.

Notation. Fix (~w,~v ) standard ands, u∈T(~w).

• If s andu are not compatible, then we denotes∧u :=s|i=u|i, wherei is minimal withs(i) 6=u(i).
Note that|s ∧ u|∈Bs.

• We defineO(s)∈ω|s|: we setO(s)(i) :=s0(i).

• We also define a partial order onω<ω as follows:

O v P ⇔ O=P ∨ ∃i<min(|O|, |P |)
(
O|i=P |i ∧O(i)=0<P (i)

)
.

Lemma 6.17 Let (~w,~v ) be standard ands, u ∈ T(~w) be incompatible. We assume that~s is in
I|s∧u|+1,s, ~t∈I|s∧u|+1,u and~s R

ηs||s∧u|
s||s∧u|

~t. ThenO(s) v O(u).

Proof. As s(|s ∧ u|) 6=u(|s ∧ u|) ands1(|s ∧ u|)=u1(|s ∧ u|), s0(|s ∧ u|) 6=u0(|s ∧ u|). Recall the
definition of thePq(s)’s. Note the following facts. Assume thati∈Bs and~s R

ηs|i
s|i

~t.

- If s0(i)=0 and~t∈P0(s|i), then~s∈P0(s|i) too.

- If s0(i)≥1 and~t∈Ps0(i)(s|i), then~s∈P0(s|i) ∪ Ps0(i)(s|i).

These facts imply thats0(|s ∧ u|)=0<u0(|s ∧ u|). ThereforeO(s) v O(u). �

(G) The ranges

The goal of this paragraph is to define the analytic setsr
(
S(~t )

)
that will containU~t in the proof

of Theorem 6.9. They will play the role thatA0
ξ ∩ A1 andA0 played in the proof of Theorem 4.4.1

(see Conditions (4)-(5)).
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Notation. Fix (~w,~v ) standard ands∈T(~w)\{∅}. We set

is :=
{
|s|−1 if ∀j< |s| s0(j)≥1,
min{i< |s| | s0(i)=0} otherwise,

Is :=
{
|s|−1 if s0(|s|−1)≥1,
min{i< |s| | ∀j≥ i s0(j)=0} otherwise.

Note thatis ≤ Is ≤Bs. We associatebs,i0 , bs,i1 , rs,i ∈N with eachis ≤ i < |s|. The definition is by
induction oni. We setbs,i

s

ε :=bε(V
s,is

0 , a0, a1), rs,is :=r(V s,is

0 , a0, a1)=V s,is

5 . Then

bs,i+1
ε :=

{
bs,iε if s0(i+1)≥1,
bε(V

s,i+1
0 , bs,i0 , bs,i1 ) if s0(i+1)=0,

rs,i+1 :=
{
rs,i if s0(i+1)≥1,
r(V s,i+1

0 , bs,i0 , bs,i1 ) if s0(i+1)=0.

Therange of s is r(s) :=¬Urs,Is .

Lemma 6.18 Assume that(~w,~v ) is standard,s∈T(~w)\{∅}, andis≤ i<Bs−1 satisfiess0(i)=0.
Thenrs,i =rs,i+1.

Proof. We may assume thats0(i+1)=0. Assume first thati= is. Then

rs,is =r(V s,is

0 , a0, a1)
=r
(
V(V s,is)(0)(0), b0(V

s,is

0 , a0, a1), b1(V
s,is

0 , a0, a1)
)

=r
(
V(V s,is)

(
s0(is)

)
(0), b0(V

s,is

0 , a0, a1), b1(V
s,is

0 , a0, a1)
)

=r
(
V s,is+1

0 , b0(V
s,is

0 , a0, a1), b1(V
s,is

0 , a0, a1)
)

=r(V s,is+1
0 , bs,i

s

0 , bs,i
s

1 )
=rs,is+1.

The argument is similar ifi>is. �

Lemma 6.19 Let (~w,~v ) be standard. Then there isS(~∅) ∈ M~w such that~∅ ∈ I
B

S(~∅),S(~∅) and

¬Ur⊆r
(
S(~∅)

)
.

Proof. We sets :=S(~∅). We already saw thats∈M~w, ~∅∈IBs,s, ands0(i)=0 for eachi< |s| after
Lemma 6.14. Note thatis =Is =0. Thus

¬Ur =¬U
V s,0
5

=¬U
V s,is

5
=¬Urs,is =¬Urs,Is =r(s).

This finishes the proof. �

The role of the next objects is to determine whether we go to theA0 side or theA1 side in the
proof of Theorem 6.9.

Notation. Let ~w := (α, β, γ) ∈ I∞ with α ∈ ∆1
1 normalized and|(α)1| = 2, ands ∈M~w. We set

εs :=0 if Bs< |s|−1, εs :=1 otherwise, i.e., ifBs = |s|−1.
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Lemma 6.20 Let (~w,~v ) be standard ands∈M~w. Thenr(s)⊆¬Uaεs
.

Proof. Note first that¬U
bs,i
ε
⊆¬Uaε , by induction oni and the 2nd remark after the definition ofK.

This implies that¬Urs,Is ⊆ ¬U
r(V s,Is

0 ,a0,a1)
= ¬U

V s,Is

5
, by the 4th remark after the definition ofK.

Thusr(s) =¬Urs,Is ⊆¬U
V s,Is

5
. Lemma 6.16 implies that¬U

V s,Is

5
⊆¬U

V s,Bs
5

. But V s,Bs
5 = aεs , by

Lemma 6.15. �

The next lemma is crucial for proving the claim mentioned before Lemma 6.16.

Lemma 6.21 Let (~w,~v ) be standard, ands, t ∈ T(~w) with O(s) 6= O(t) andO(s) v O(t). Then

r(s)⊆r(t)ξs||s∧t| .

Proof. We can writeO(s) := 0j0m0...0jl−1ml−10jl , with l, ji ∈ ω, andmi ≥ 1. Similarly, we write
O(t) := 0k0n0...0kq−1nq−10kq . The assumption implies thatq ≥ 1, and also the existence ofp < q
with (ji,mi)=(ki, ni) if i<p andkj<jp. Lemma 6.14 shows the existence oflp+1≥1 andu∈M~w

with O(u) = 0k0n0...0kp−1np−10kpnp0lp+1 if p < q−1. If p = q−1, then we setu := t. Note that
O(s) 6=O(u),O(s) v O(u), andO(u) v O(t). Moreover,O(u) 6=O(t) and|s∧ t|= |s∧ u|< |t∧ u|
if p < q−1. It is enough to prove thatr(s) ⊆ r(u)

ξs||s∧u| . This means that we may assume that
(ji,mi) = (ki, ni) if i < q−1 andkq−1 < jq−1. ThusIt≥ 1, |s ∧ t|= It−1, s|(It−1) = t|(It−1),
s0(It−1)=0<t0(It−1) andis≤It−1.

Case 1.is =Is andit =It.

Note thatr(s)=¬Urs,Is =¬Urs,is =¬U
V s,is

5
=¬U

V t,Is

5
. Lemma 6.16 implies that

r(s)=¬U
V t,Is

5
⊆¬U

V t,It−1
5

⊆¬U
V t,It

5

ξt|(It−1) =r(t)
ξs||s∧t|

.

Case 2.is =Is andit<It.

Note thatis = it<It−1. Lemma 6.18 implies thatr(s)=¬Urs,Is =¬Urs,It−1 . Thus

r(s)=¬U
r(V s,It−1

0 ,bs,It−2
0 ,bs,It−2

1 )
=¬U

r(V t,It−1
0 ,bt,It−2

0 ,bt,It−2
1 )

=¬U
r(V t,It−1

0 ,bt,It−1
0 ,bt,It−1

1 )
⊆¬U

r(V t,It

0 ,bt,It−1
0 ,bt,It−1

1 )

ξt|(It−1) =r(t)
ξs||s∧t| ,

by Lemma 6.16.

Case 3.is<Is<It.

We argue as in Case 2.

Case 4.is<Is andIt≤Is, which implies thatIt<Is.

The 5th remark after the definition ofK gives ε ∈ 2 with r(s) = ¬Urs,Is ⊆ ¬U
bs,Is−1
ε

. Thus
r(s)⊆¬U

bs,Is−1
ε

⊆ ...⊆¬U
bs,It−1
ε

.
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If It≥2, then

¬U
bs,It−1
ε

=¬U
aε(V

t,It−1
0 ,bt,It−2

0 ,bt,It−2
1 )

⊆¬U
r(V t,It

0 ,bt,It−2
0 ,bt,It−2

1 )

ξs||s∧t|

=¬U
r(V t,It

0 ,bt,It−1
0 ,bt,It−1

1 )

ξs||s∧t| =r(t)
ξs||s∧t|

.

Otherwise,It = 1, is = 0, it = It and¬U
bs,0
ε

=¬U
aε(V

t,0
0 ,a0,a1)

⊆¬U
r(V t,1

0 ,a0,a1)

ξs||s∧t| = r(t)
ξs||s∧t| .

This finishes the proof. �

(H) The maximal sequences

We now associate a maximal sequence to a pair(~β, ~w) with ~β ∈dTde. Its construction is similar
to that of thes(~t )’s, but is about infinite sequences instead of finite ones.

• Let ~w := (α, β, γ) ∈ I∞ with α ∈ ∆1
1 normalized and|(α)1| = 2, and~β ∈ dTde. We will define

s(~β, ~w)∈M~w. Recall the definition ofQ~w
p . We set, fors∈M~w andi∈Bs,

Es
i :=

{⋂
p≥1 Q

s(i)(1)
p if s(i)(0)=0,

¬Qs(i)(1)
s(i)(0) if s(i)(0)≥1.

We defines(~β, ~w) in such a way thatjd(~β) ∈
⋂

i∈B
s(~β,~w)

E
s(~β,~w)
i . Let ξ be an ordinal such that

~w∈Iξ\I<ξ. The definition ofs(~β, ~w) is by induction onξ.

Case 1.|(α)1|=0.

We sets(~β, ~w) :=<(0, ~w)>.

Case 2.|(α)1|=1.

We sets(~β, ~w) :=(0, ~w)_s
(
~β,Y(~w)

)
.

Case 3.|(α)1|=2.

We sets(~β, ~w) :=

{
(0, ~w)_s

(
~β,Y(~w)(0)

)
if jd(~β)∈

⋂
p≥1 Q~w

p ,

(p, ~w)_s
(
~β,Y(~w)(p)

)
if jd(~β) /∈Q~w

p ∧ p≥1.

• We set(~β|jk)k∈ω :=
s(~β,~w)|(B

s(~β,~w)
−1)

Π−1
(
h(~β)

)
.

Recall the definition ofεs before Lemma 6.20.

Lemma 6.22 Let ~w :=(α, β, γ)∈I∞ with α∈∆1
1 normalized and|(α)1|=2, and~β∈dTde.

(a) There isk0∈ω such that~β|jk ∈IB
s(~β,~w)

,s(~β,~w)
if k≥k0. In this case, the sequences(~β|jk) given

by Proposition 6.13 iss(~β, ~w)|B
s(~β,~w)

, and is not extendable.

(b) The sequencejd(~β) is inCNγ if and only ifε
s(~β,~w)

=0.
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Proof. We sets :=s(~β, ~w) for simplicity.

(a) In order to definek0, we will define, fori<Bs, ki
0∈ω, and we will setk0 :=max{ki

0 | i<Bs}. In
order to do this, we set(~β|ji

k)k∈ω := s|iΠ−1
(
h(~β)

)
, so that(~β|ji+1

k )k∈ω is a subsequence of(~β|ji
k)k∈ω

if i<Bs−1. By the choice of theEs
i ’s we get, fori<Bs,

h(~β) ∈

{⋂
p≥1 P

s1(i)
p if s0(i)=0,

¬Ps1(i)
s0(i) if s0(i)≥1,

(~β|ji
k)k∈ω ∈

{⋂
p≥1 s|iΠ−1(Ps1(i)

p ) if s0(i)=0,

¬s|iΠ−1(Ps1(i)
s0(i) ) if s0(i)≥1.

Note the existence ofBi
p in s|iΠ−1(Ps1(i)

p ) such that~β|ji
k∈Bi

p if s0(i)=0, k∈ω andp≥1. If s0(i)≥1

andp∈ω\{0, s0(i)}, then(~β|ji
k)k∈ω ∈ s|iΠ−1(Ps1(i)

p ) sincePs1(i)
p ∪ Ps1(i)

s0(i) = [⊆]. This implies the

existence ofBi
p∈ s|iΠ−1(Ps1(i)

p ) such that~β|ji
k ∈Bi

p if k∈ω. As s|iΠ−1(Ps1(i)
s0(i) )∈Π0

1([R
ηs|i
s|i ]), there

is ki
0≥ 1 such that~β|ji

k /∈Bi
s0(i) if s0(i)≥ 1, Bi

s0(i) ∈ s|iΠ−1(Ps1(i)
s0(i) ) andk≥ ki

0. This defineski
0 and

k0. It remains to check that~β|jk ∈Ps(i)(0)(s|i) if i <Bs andk≥ k0. This comes from the fact that

jk = jBs−1
k = ji

K(k) for someK(k)≥k≥k0≥ki
0. The last assertion comes from the construction of

s(~t ).

(b) We define, fori< |s|, εis∈2. The definition is by induction oni. We first setε0s :=1. Thenεi+1
s :=0

if |s|−i−2 /∈Bs, εi+1
s := εis otherwise. Note thatεs = ε

|s|−1
s (εs is defined before Lemma 6.20). We

have to see thatjd(~β) is in CNs1(0)(2) if and only if ε|s|−1
s = 0. We prove the following stronger fact:

jd(~β)∈CNs1(|s|−i−1)(2) is equivalent toεis = 0 if i < |s|. Here again we argue by induction oni. The

result is clear fori=0 sinceCNs1(|s|−1)(2) =∅. So assume that the result is true fori< |s|−1.

If |s|−i−2 /∈Bs, then we are done sinceεi+1
s = 1−εis andCNs1(|s|−i−2)(2) =¬CNs1(|s|−i−1)(2). If

|s|−i−2∈Bs, thenεi+1
s =εis and

CNs1(|s|−i−2)(2) =
⋃

p≥1 (CN((W0(s1(|s|−i−2)))p)0
\CN((W0(s1(|s|−i−2)))p)1

)∪

(CN(W0(s1(|s|−i−2)))0
∩
⋂

p≥1 C
N
((W0(s1(|s|−i−2)))p)1

).

If s0(|s|−i−2)=0, thenjd(~β)∈
⋂

p≥1 Q
s1(|s|−i−2)
p =

⋂
p≥1 C

N
((W0(s1(|s|−i−2)))p)1

. We can say

that jd(~β)∈CNs1(|s|−i−2)(2) is equivalent tojd(~β)∈CN(W0(s1(|s|−i−2)))0
=CNs1(|s|−i−1)(2), and we are

done by induction assumption. We argue similarly whens0(|s|−i−2)≥1. �

Remark. Recall the definition of an extendable sequence at the beginning of the construction of
the resolution families. Ifs is not extendable, thens admits a unique extensionM(s) in M~w. In
particular, in Lemma 6.22.(a),M

(
s(~β|jk)

)
= s(~β, ~w)=S(~β|jk). In Lemma 6.19,s(~∅)= s|Bs is not

extendable andM
(
s(~∅)

)
=S(~∅).
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Notation. Recall the construction of the resolution families, and also the proof of Theorem 4.4.5,
especially the definition ofη(~t ). If θs is a limit ordinal, then we consider some ordinalsηs(~t )’s, as

in the proof of Theorem 4.4.5. We setρ(s,~s ) :=
{
ηs if θs is a successor ordinal,
ηs(~s ) if θs is a limit ordinal.

The next lemma is the final preparation for proving the claim mentioned before Lemme 6.16.

Lemma 6.23 Let ~w := (α, β, γ)∈I∞ with α∈∆1
1 normalized and|(α)1|=2, s∈T(~w), andi<Bs.

Then
(
Σj≤i ρ(s|j, v)

)
+1≤ξs|i.

Proof. We argue by induction oni. Note first thatρ(s|0, v)+1≤θs|0 =ξs|0. Then, inductively,(
Σj≤i+1 ρ(s|j, v)

)
+1 ≤

(
Σj≤i ρ(s|j, v)

)
+θs|(i+1)

≤
(
Σj≤i ρ(s|j, v)

)
+1+(ξs|(i+1)−ξs|i)

≤ξs|i+(ξs|(i+1)−ξs|i)
≤ξs|(i+1)

This finishes the proof. �

Proof of Theorem 6.9.Let ξ be an ordinal with~w :=(α, β, γ)∈Iξ. We argue by induction onξ. So
assume that~w∈Iξ\I<ξ.

Case 1.|(α)1|=0.

Lemma 6.5 implies thatCNγ ∈Γc(α) =Γ0∞ = {∅}, so thatS= ∅. Note also thatr=a1. Assume
that (a) does not hold. ThenA1 6=∅, so it contains some~α. We just have to setfi(βi) :=αi.

Case 2.|(α)1|=1.

The fact that~w ∈ Iξ givesδ ∈N with (< jα >, β, δ)∈ I<ξ andCNγ =¬CNδ (see the definition
of I). Asα is normalized,CNδ =∅, so thatS=dTde. Note also thatr=a0. Assume that (a) does not
hold. ThenA0 6=∅, and we argue as in Case 1.

Case 3.|(α)1|=2.

Assume that (a) does not hold. We construct(αi
s)i∈d,s∈Π′′i Td

, (Oi
s)i≤|s|,i∈d,s∈Π′′i Td

, (U~s)~s∈Td
, as

in the proof of Theorems 4.4.1 and 4.4.5.
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We want these objects to satisfy the following conditions.

(1) αi
s∈Oi

s⊆ΩN ∧ (αi
si

)i∈d∈U~s ⊆ΩN d ,

(2) Oi
sq⊆Oi

s,

(3) diamdN (Oi
s)≤2−|s| ∧ diamdNd

(U~s)≤2−|~s|,

(4) ~t∈Td ⇒ U~t ⊆r
(
S(~t )

)
,

(5)

 ~s,~t∈
⋂

j<i,ηs|j≥1 Ps0(j)(s|j)
1≤ρ≤ρ(s|i, ~s)

~s Rρ
s|i
~t

 ⇒ U~t ⊆U~s
(Σj<i ρ(s|j,~s))+ρ

,

(6)
(
~s∈Is(~t ) ∧ ~s R

ηs(~t )−

s(~t )−
~t
)
⇒ U~t ⊆U~s.

• Let us prove that this construction is sufficient to get the theorem.

- Fix ~β ∈ dTde and setσ := s(~β, ~w). Lemma 6.22 givesk0 ∈ ω such that~β|jk ∈ IBσ ,σ for each
k ≥ k0. Proposition 6.13 givess(~β|jk) ∈ T(~w) with ~β|jk ∈ Is(~β|jk)

, and Lemma 6.22.(a) implies

that s(~β|jk) = σ|Bσ. This implies that(U~β|jk
)k≥k0 is decreasing since~β|jk R

ησ|(Bσ−1)

σ|(Bσ−1)
~β|jk+1 for

each natural numberk, by Condition (6). As in the proof of Theorem 4.4.1 we defineF (~β) andfi

continuous withF (~β)=(Πi∈d fi)(~β). Note thatS⊆(Πi∈d fi)−1(A0) anddTde\S⊆(Πi∈d fi)−1(A1),
by Lemmas 6.20 and 6.22, sincer(σ)⊆Aεσ .

• So let us prove that the construction is possible.

- As¬Ur is nonempty andΣ 1
1 , we can choose(αi

∅)i∈d∈¬Ur ∩ΩN d . Then we choose aΣ 1
1 subsetU~∅

of N d, with dN d-diameter at most1, such that(αi
∅)i∈d ∈U~∅⊆¬Ur ∩ ΩN d . We choose aΣ 1

1 subset

O0
∅ of ΩN , with dN -diameter at most1, with α0

∅ ∈ O
0
∅ ⊆ ΩN , which is possible sinceΩN d ⊆ Ωd

N .
Assume that(αi

s)|s|≤l, (Oi
s)|s|≤l and(U~s)|s0|≤l satisfying conditions (1)-(6) have been constructed,

which is the case forl=0 by Lemma 6.19.

- Let v :=
−→
tm∈Td ∩ (dl+1)d. We defineXi :=Oi

ti if i≤ l, andN if i>l.

Claim. Assume thats∈T(~w), i<Bs, v
ηs|i
s|i , v∈Ii,s, andi0≤ i is minimal withηs|i0≥1.

(a) The set

U
v

ρ(s|i,v)
s|i

∩
⋂

1≤ρ<ρ(s|i,v) Uvρ
s|i

(Σj<i ρ(s|j,v))+ρ

∩
⋂

j<i

⋂
1≤ρ≤ρ(s|j,v) Uvρ

s|j

(Σk<j ρ(s|k,v))+ρ ∩ (Πi∈d Xi)

is τ1-dense inUv1
s|i0

1 ∩ (Πi∈d Xi).
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(b) Assume moreover thatu ∈ T(~w), s and u are incompatible,i := |s ∧ u|, v ∈ Pu0(i)(u|i), and

v
ηs|i
s|i ∈Ps0(i)(s|i). Thenr

(
S(v)

)
∩
⋂

j≤i

⋂
1≤ρ≤ρ(s|j,v) Uvρ

s|j

(Σk<j ρ(s|k,v))+ρ ∩ (Πi∈d Xi) is τ1-dense

in Uv1
s|i0

1 ∩ (Πi∈d Xi).

(a) Assume first thati0 =0. Note thatvρ+1
∅ Rρ+1

∅ vρ
∅ R

ρ
∅ v if 1≤ρ<ρ(∅, v), by Lemma 4.3.2. As in the

proof of Claim 2 in Theorem 4.4.5, this implies thatUvρ
∅
⊆U

vρ+1
∅

ρ+1
. By assumption,v

ηs|i
s|i , v∈Ii,s.

Note thatvρ
s|(j+1) ∈ Ps0(k)(s|k) if k ≤ j < i andρ≤ ηs|(j+1). Indeed, this comes from the fact that

v
ηs|i
s|i R

ηs|k
s|k vρ

s|(j+1) R
ηs|k
s|k v. As in the proof of Claim 2 in Theorem 4.4.5 again, this implies that

Uvρ
s|(j+1)

⊆ U
vρ+1

s|(j+1)

(Σk<j+1 ρ(s|k,v))+ρ+1
if ρ < ρ(s|(j+1), v). Note thatv0

s|(j+1) = v
ηs|j
s|j = v

ρ(s|j,v)
s|j .

This implies the result. We argue similarly ifi0>0.

(b) By (a) and Lemma 6.22, it is enough to see thatU := U
v

ρ(s|i,v)
s|i

⊆ r
(
S(v)

)ξs|i
. The induction

assumption implies thatU ⊆ r
(
S(v

ηs|i
s|i )

)
. So let us prove thatr

(
S(v

ηs|i
s|i )

)
⊆ r
(
S(v)

)ξs|i
. Note that

s|(i+1) ⊆ s(v
ηs|i
s|i ) ⊆ S(v

ηs|i
s|i ) and, similarly,u|(i+1) ⊆ S(v). Now O

(
S(v

ηs|i
s|i )

)
v O

(
S(v)

)
, by

Lemma 6.17, and the beginning of its proof shows thatO
(
S(v

ηs|i
s|i )

)
6=O

(
S(v)

)
. It remains to apply

Lemma 6.21. �

- LetX :=dl+1. The mapΨ:X d→Σ 1
1 (N d) is defined onT l+1 by

Ψ(v) :=



r
(
S(v)

)
∩
⋂

1≤ρ≤ρ(∅,v) Uvρ
∅

ρ ∩ (Πi∈d Xi) ∩ ΩN d if s(v)=∅,

U
v

ρ(s(v)−,v)

s(v)−
∩
⋂

1≤ρ<ρ(s(v)−,v) Uvρ

s(v)−

(Σj<|s(v)|−1 ρ(s|j,v))+ρ

∩
⋂

j<|s(v)|−1

⋂
1≤ρ≤ρ(s|j,v) Uvρ

s|j

(Σk<j ρ(s|k,v))+ρ ∩ (Πi∈d Xi)

if s(v) 6=∅ ∧ v
ηs(v)−

s(v)− ∈Is(v) ∧ ∃i0< |s(v)| ηs(v)|i0≥1,

r
(
S(v)

)
∩
⋂

j≤i

⋂
1≤ρ≤ρ(s(v)|j,v) Uvρ

s(v)|j

(Σk<j ρ(s(v)|k,v))+ρ ∩ (Πi∈d Xi) ∩ ΩN d

if s(v) 6=∅ ∧ v
ηs(v)−

s(v)− /∈Is(v)

∧ i< |s(v)| is maximal withv
ηs(v)|i
s(v)|i ∈Ii,s(v) ∧ ∃i0≤ i ηs(v)|i0≥1,

U~t ∩ (Πi∈d Xi) if s(v) 6=∅ ∧ v
ηs(v)−

s(v)− ∈Is(v) ∧ ∀i0< |s(v)| ηs(v)|i0 =0,

r
(
S(v)

)
∩ (Πi∈d Xi) ∩ ΩN d if s(v) 6=∅ ∧ v

ηs(v)−

s(v)− /∈Is(v)

∧ i< |s(v)| is maximal withv
ηs(v)|i
s(v)|i ∈Ii,s(v) ∧ ∀i0≤ i ηs(v)|i0 =0.

By the claim,Ψ(v) is τ1-dense inUv1
s(v)|i0

1 ∩ (Πi∈d Xi) in the second and the third cases.
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In these cases, asv1
s(v)|i0⊆~t ⊆v andR1

s(v)|i0 is distinguished inR0
s(v)|i0 =⊆, v1

s(v)|i0 R
1
s(v)|i0

~t and

U~t ⊆Uv1
s(v)|i0

1
, by induction assumption. ThereforeU~t ∩ (Πi∈d Xi)⊆Uv1

s(v)|i0

1 ∩ (Πi∈d Xi)⊆Ψ(v).
Similarly, one can prove that this also holds in the last two cases.

Let us look at the first case. Ifη∅≥1, thenU
v

ρ(∅,v)
∅

∩
⋂

1≤ρ<ρ(∅,v) Uvρ
∅

ρ ∩ (Πi∈d Xi) is τ1-dense

in Uv1
∅

1 ∩ (Πi∈d Xi), as in the claim. NowU
v

ρ(∅,v)
∅

⊆ r
(
S(vη∅

∅ )
)

= r
(
S(v)

)
and we can repeat the

previous argument sincei0 =0. If η∅=0, thenvη∅
∅ =~t,

U~t ∩ (Πi∈d Xi)⊆r
(
S(~t )

)
∩ (Πi∈d Xi)=r

(
S(v)

)
∩ (Πi∈d Xi)

and we are done.

Now we can write(αi
ti)i∈d∈U~t∩ (Πi∈d Xi)⊆Ψ(v), and we conclude as in the proof of Theorem

4.4.1. �

The rest of this section is devoted to the proof of Theorem 1.10.(2) when∆(Γ) is a Wadge class,
and also to the proof of Theorem 1.5. Recall Theorem 5.2.8. We will say thatα∈∆1

1∩H∞ is suitable
if ∆(Γc(α)) is a Wadge class and one of the following holds:

(1) There isα∈∆1
1 ∩ H∞ normalized with

Γc(α) =
{

(A0 ∩ C0) ∪ (A1 ∩ C1) | A0,¬A1∈Γc(α) ∧ C0, C1∈Σ0
1 ∧ C0 ∩ C1 =∅

}
.

(2) There isα′ ∈ ∆1
1 such that(α′)p ∈ H∞ is normalized for eachp ≥ 1,

(
Γc((α′)p)

)
p≥1

is strictly

increasing, andΓc(α) =
{⋃

p≥1 (Ap ∩ Cp) | Ap∈Γc((α′)p) ∧ Cp∈Σ0
1 ∧ Cp ∩ Cq =∅ if p 6=q

}
.

Assume thatα is suitable anda0, a1 ∈ ∆1
1 satisfyA0 ∩ A1 = ∅. Then Lemma 6.7.(b) gives

r(α, a0, a1) andr(α, a1, a0), or r
(
(α′)p, a0, a1

)
. We setR(α, a0, a1) := ¬Ur(α,a0,a1) in the same

fashion as before, and

R′(α, a0, a1) :=


R(α, a0, a1)

1 ∩R(α, a1, a0)
1

if we are in Case(1),

⋂
p≥1 R

(
(α′)p, a0, a1

)1
if we are in Case(2).

We now give the self-dual version of Lemma 6.8.

Lemma 6.24 Letα be suitable, anda0, a1∈∆1
1 such thatA0∩A1 =∅. We assume thatR′(α, a0, a1)

is empty. ThenA0 is separable fromA1 by a∆1
1 ∩∆(Γc(α))(τ1) set.

Proof. (1) AsR(α, a0, a1)
1 ∩ R(α, a1, a0)

1
= ∅, there isC ∈∆0

1(τ1) separatingR(α, a0, a1) from
R(α, a1, a0). As R(α, a0, a1) andR(α, a1, a0) areΣ 1

1 , we may assume thatC ∈∆1
1, by Theorem

4.2.2. A double application of Lemmas 6.7.(b) and 6.8 gives some setsB0, B1 ∈ ∆1
1 ∩ Γc(α)(τ1)

such thatB0 (resp.,B1) separatesA0 ∩ C (resp.,A1\C) from A1 ∩ C (resp.,A0\C). Now the set
(B0 ∩ C) ∪ (¬B1 ∩ ¬C) is suitable.
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(2) The proof is similar, but we have to use the∆1
1-selection principle. AsK∞ is Π 1

1 and the sequence

r
(
(α′)p, a0, a1

)
is ∆1

1 and completely determined by(α′)p, a0 anda1,
(
r
(
(α′)p, a0, a1

))
p≥1

is ∆1
1.

As
⋂

p≥1 R
(
(α′)p, a0, a1

)1
= ∅, there is a∆1

1-recursive mapf : N d → ω such thatf(~α) ≥ 1 and

~α /∈R
(
(α′)f(~α), a0, a1

)1
for each~α∈N d.

We setUp := f−1({p}), so thatUp andR
(
(α′)p, a0, a1

)
are disjointΣ 1

1 and separable by aτ1-
open set. By Theorem 4.2.2, there isVp∈∆1

1 ∩Σ0
1(τ1) separating them. Moreover, we may assume

that the sequence(Vp) is ∆1
1. We reduce the sequence(Vp), which gives a∆1

1-sequence(Cp) of
∆1

1∩Σ0
1(τ1) sets. Note that(Cp) is a partition ofN d into ∆0

1(τ1) sets. AsR
(
(α′)p, a0, a1

)
∩Cp =∅,

Lemma 6.8 givesβ′, γ′ ∈N such that
(
(α′)p, (β′)p, (γ′)p

)
∈J∞ andC(γ′)p

separatesA1 ∩ Cp from
A0∩Cp for eachp≥1. Moreover, we may assume thatβ′, γ′∈∆1

1. Now the set
⋃

p≥1 (¬C(γ′)p
∩Cp)

is suitable. �

We now give the self-dual version of Theorem 6.9.

Theorem 6.25 Let Td be a tree with∆1
1 suitable levels,α be suitable,βε, γε ∈ N be such that

(α, βε, γε)∈I∞, Sε :=j−1
d (CNγε

)∩dTde, anda0, a1, b0, b1, r∈N with~v :=(α, a0, a1, b0, b1, r)∈K∞.
We assume thatS0 andS1 are disjoint. Then one of the following holds:

(a)R′(α, a0, a1)=∅.
(b) The inequality

(
(Π′′

i dTde)i∈d, S0, S1

)
≤
(
(N )i∈d, A0, A1

)
holds.

Now we can state the version of Theorem 4.2.2 for the self-dual Wadge classes of Borel sets.

Theorem 6.26 Let Td be a tree with∆1
1 suitable levels,α be suitable,βε, γε ∈ N be such that

(α, βε, γε)∈I∞, Sε :=j−1
d (CNγε

)∩dTde, anda0, a1, b0, b1, r∈N with~v :=(α, a0, a1, b0, b1, r)∈K∞.
We assume thatS0, S1 are disjoint and not separable by a pot

(
∆(Γc(α))

)
set. Then the following are

equivalent:

(a) The setA0 is not separable fromA1 by a pot
(
∆(Γc(α))

)
set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot

(
∆(Γc(α))

)
set.

(c) The setA0 is not separable fromA1 by a∆(Γc(α))(τ1) set.

(d)R′(α, a0, a1) 6=∅.
(e) The inequality

(
(dω)i∈d, S0, S1

)
≤
(
(N )i∈d, A0, A1

)
holds.

Proof. We argue as in the proof of Theorem 6.10, using Lemma 6.24 (resp., Theorem 6.25) instead
of Lemma 6.8 (resp., Theorem 6.9). �

Proof of Theorem 1.10.(2).We argue as in the proof of Theorem 1.8.(1). Theorem 5.2.8 givesu
or
(
(u′)p

)
p≥1

. The equalities in Theorem 5.2.8 hold inN , and also in any zero-dimensional Polish
space (we argue as in Lemma 5.2.2 to see it). Using Definition 5.1.2, we can buildu∈D with Γ=Γu.
Lemmas 6.2 and 6.4 giveα∈H∞ normalized withΓc(α) =Γu, andα∈H∞ (resp.,α′∈H∞ such that
(α′)p is) normalized withΓu =Γc(α) (resp.,Γ(u′)p

=Γc((α′)p)).

By Theorem 4.1.3 in [Lo-SR2] there isBε∈Γ(N ) with Sε =j−1
d (Bε)∩dTde. In order to simplify

the notation, we may assume thatTd has∆1
1 levels,α, as well asα (or α′), are∆1

1, andA0, A1 are
Σ 1

1 .
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By Lemma 6.5 there areβε, γε ∈ N such that(α, βε, γε) ∈ I∞ andCNγε
= Bε. Lemma 6.7.(b)

givesb0, b1, r with (α, a0, a1, b0, b1, r) ∈ K∞. Lemma 6.24 implies thatR′(α, a0, a1) 6= ∅. So (b)
holds, by Theorem 6.26. �

Proof of Theorem 6.25.(1) Let Cε
ε′ ∈ Σ0

1(dTde), Aε
0 ∈ Γc(α)(dTde), Aε

1 ∈ Γ̌c(α)(dTde) such that
Sε =(Aε

0 ∩ Cε
0) ∪ (Aε

1 ∩ Cε
1). We reduce(C0

0 , C
0
1 , C

1
0 , C

1
1 ). This gives a family(O0

0, O
0
1, O

1
0, O

1
1) of

open subsets ofdTde. Note thatSε⊆T ε :=(Aε
0∩Oε

0)∪(Aε
1∩Oε

1)∪(¬A1−ε
0 ∩O1−ε

0 )∪(¬A1−ε
1 ∩O1−ε

1 ).
We will in fact ensure that

(
(Π′′

i dTde)i∈d, T
0, T 1

)
≤
(
(N )i∈d, A0, A1

)
if (a) does not hold, which

will be enough.

Subcase 1.|(α)0|=0.

We setoε
ε′ :=h[dTde\Oε

ε′ ], so thatoε
ε′ ∈Π0

1([⊆]). We also set

D :={~s∈Td | ~s=~∅ ∨ ∀(ε, ε′)∈22 ∃B∈oε
ε′ ~s∈B},

Dε
ε′ :={~s∈Td | ~s 6=~∅ ∧ ∀B∈oε

ε′ ~s /∈B ∧ ∀(ε′′, ε′′′)∈22\{(ε, ε′)} ∃B∈oε′′
ε′′′ ~s∈B},

so that(D,D0
0, D

0
1, D

1
0, D

1
1) is a partition ofTd. The proof is very similar to the proof of Theorem

4.4.2 whenξ=1. The changes to make in the conditions (1)-(7) are as follows:

(4) U~s ⊆R′(α, a0, a1)=A0
1 ∩A1

1
if ~s∈D,

(5) U~s ⊆A0 if ~s∈D0
1 ∪D1

0,

(6) U~s ⊆A1 if ~s∈D0
0 ∪D1

1,

(7) (~s,~t∈D ∨ ~s,~t∈Dε
ε′) ⇒ U~t ⊆U~s.

We conclude as in the proof of Theorem 4.4.2.

Subcase 2.|(α)0|≥1.

We will have the same kind of construction as in the proof of Theorem 6.9. As long as~t∈D, the
inclusionU~t ⊆R′(α, a0, a1) will hold. If ~t∈Dε

ε′ , then all the extensions of~t will stay inDε
ε′ , and we

will copy the construction in the proof of Theorem 6.9, since inside the clopen set defined by~t we
want to reduce a pair(S̃0, S̃1) to (A0, A1).

As Aε
0 ∈ Γc(α)(dTde), there isBε

0 ∈ Γc(α)(N ) with Aε
0 = j−1

d (Bε
0) ∩ dTde. As α ∈ ∆1

1 ∩ H∞,
Lemma 6.5.(b) givesβε

0, γ
ε
0 ∈ N such that(α, βε

0, γ
ε
0) ∈ I∞ andCNγε

0
= Bε

0. Similarly, there are

βε
1, γ

ε
1∈N such that(α, βε

1, γ
ε
1)∈I∞ andAε

1 =j−1
d (¬CNγε

1
) ∩ dTde.

We can associate to any(ε, ε′)∈ 22 the objects we met before, among which the functionZε,ε′ ,
the ordinalsηε,ε′

s , the resolution families(Rρ
ε,ε′,s)ρ≤ηε,ε′

s
, and the ordinalsρ(ε, ε′, s, ~s ).
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Instead of considering the setPq(s), we will considerP ε,ε′
q (s) ∩ Dε

ε′ . If ~t ∈ Dε
ε′ , then we set

~w(~t ) := ~wε
ε′ . This allows us to defines(~t )∈T

(
~w(~t )

)
andS(~t )∈M~w(~t). We also set

~v(~t ) :=
{

(α, a0, a1, b0, b1, r) if ~t∈D0
0 ∪D1

1,
(α, a1, a0, b0, b1, r) if ~t∈D0

1 ∪D1
0.

The other modifications to make in the conditions (1)-(6) are as follows. In condition (4), we ask for
the inclusionU~t ⊆R

(
S(~t )

)
only if ~t /∈D. If ~t∈D, then we want thatU~t ⊆R′(α, a0, a1). Condition

(6) was described when~s,~t∈Dε
ε′ . If ~s,~t∈D, then we also want thatU~t ⊆U~s.

The sequenceF (~β) is defined ifβ ∈ C0
0 ∪ C0

1 ∪ C1
0 ∪ C1

1 . If β /∈ C0
0 ∪ C0

1 ∪ C1
0 ∪ C1

1 , then
~β|k ∈D for each natural numberk, andF (~β) is also defined. The definition of~v(~t ) ensures that
T ε⊆(Πi∈d fi)−1(Aε).

The definition ofΨ(v) is done ifv /∈D. If v ∈D, then we simply setΨ(v) :=U~t ∩ (Πi∈d Xi).
Then we conclude as in the proof of Theorem 6.9.

(2) LetCε
p ∈Σ0

1(dTde) andAε
p∈Γc((α′)p)(dTde) be such thatSε =

⋃
p≥1 (Aε

p ∩ Cε
p). We reduce the

family (C0
1 , C

0
2 , ..., C

1
1 , C

1
2 , ...). This gives a family(O0

1, O
0
2, ..., O

1
1, O

1
2, ...) of open subsets ofdTde.

Note thatSε⊆T ε :=(Aε
1 ∩Oε

1)∪
⋃

p≥1

(
(¬A1−ε

p ∩O1−ε
p )∪ (Aε

p+1 ∩Oε
p+1)

)
. We will in fact ensure

that
(
(Π′′

i dTde)i∈d, T
0, T 1

)
≤
(
(N )i∈d, A0, A1

)
if (a) does not hold, which will be enough.

The proof is similar. We can assume that
∣∣((α′)p

)
0

∣∣≥ 1 for eachp≥ 1, since(Γc((α′)p))p≥1 is
strictly increasing. So there is no Subcase 1. We set

~v(~t ) :=

{
(α, a0, a1, b0, b1, r) if ~t∈

⋃
p≥1 D

0
p,

(α, a1, a0, b0, b1, r) if ~t∈
⋃

p≥1 D
1
p.

We conclude as in Case 1. �

It remains to prove Theorem 1.5.

Proof of Theorem 1.5.Theorem 1.3 givesS0, S1⊆N0×N1.

Case 1.C= graphs.

We setRε := Sε ∪ (Sε)−1. As R0 ∪ R1 = S0 ∪ S1 ∪ (S0 ∪ S1)−1, R0,R0 ∪ R1 ∈C. LetX be a
Polish space andR be a Borel subset ofX2 in C. If (a) and (b) hold, thenR0 is separable fromR1

by a pot(Γ) setS. ThusS0 = R0 ∩ (N0×N1) is separable fromS1 = R1 ∩ (N0×N1) by S, which
is absurd. So assume thatR is not in pot(Γ). Theorem 1.3 givesf0, f1 :C→X continuous such that
S0⊆(f0×f1)−1(R) andS1⊆(f0×f1)−1(¬R). We setf(iα) :=fi(iα), so thatf is continuous. Note
thatS0⊆(f×f)−1(R), so thatR0⊆(f×f)−1(R). Similarly,R1⊆(f×f)−1(¬R).

Case 2.C= oriented graphs.

We setRε :=Sε, and argue as in Case 1.

Case 3.C= quasi orders orC= partial orders.

We setR0 :=S0 ∪∆(C), R1 :=S1, and argue as in Case 1. �
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7 Injectivity complements

In the introduction, we saw that G. Debs proved that we can have thefi’s one-to-one in Theorem
1.3 whend=2, Γ∈{Π0

ξ ,Σ
0
ξ} andξ≥3.

• This cannot be extended to higher dimensions, even if we replace(dω)d with Πi∈d Pi, wherePi is
a sequence of Polish spaces.

Indeed, we argue by contradiction. Recall the proof of Theorem 3.1. We saw that there isCξ in
Σ0

ξ(C)\Π0
ξ such thatSξ :={~α∈dT3e | S(α0∆α1)∈Cξ} is not separable fromdT3e\Sξ by a pot(Π0

ξ)
set. We set

B0 :={~α∈3ω×3ω×1 | S(α0∆α1)∈Cξ},
B1 :={~α∈3ω×1×3ω | S(α0∆α2)∈Cξ},
B2 :={~α∈1×3ω×3ω | S(α1∆α2)∈Cξ}.

LetO :3ω→1. As Sξ :=(Id3ω×Id3ω×O)−1(B0)∩dT3e,B0 /∈pot(Π0
ξ). Similarly,B1, B2 /∈pot(Π0

ξ).
This implies that thePi’s have cardinality at most one, andS0∈∆0

1. ThusS0 is separable fromS1 by
a pot(Π0

ξ) set, which is absurd.

• If d = ω, Γ = Π0
ξ andξ ≥ 3, then we cannot ensure that at least two of thefi’s are one-to-one.

Indeed, we argue by contradiction again. ConsiderXi :=ω, andBξ ∈Σ0
ξ(N )\Π0

ξ . ThenBξ is not
pot(Π0

ξ) since the topology onω is discrete. This implies that two of thePi’s at least are countable,
sayP0, P1 for example. Consider nowA0 :=Sξ andA1 :=dTωe\Sξ. Then(fi◦Πi)[S0] is countable for
eachi∈2. ThusC :=(Πi∈d fi)[S0]⊆Sξ⊆dTωe is countable since an element ofdTωe is completely
determined by two of its coordinates. ThusC ∈pot(Σ0

2)⊆pot(Π0
ξ). Therefore(Πi∈d fi)−1(C) is a

pot(Π0
ξ) set separatingS0 from S1, which is absurd.

• However, ifΓ ∈ {Π0
ξ ,Σ

0
ξ ,∆

0
ξ} andξ ≥ 3, then we can ensure that(Πi∈d fi)|S0∪S1

is one-to-one,
using G. Debs’s proof and some additional arguments. This remains true ifΓ=Γu is a non self-dual
Wadge class of Borel sets withu(0)≥3. This leads to the following notation. Let(Pi)i∈d, (Xi)i∈d be
sequences of Polish spaces, andS0, S1 (resp.,A0, A1) be disjoint analytic subsets ofΠi∈d Pi (resp.,
Πi∈d Xi). Then(
(Pi)i∈d, S0, S1

)
v
(
(Xi)i∈d, A0, A1

)
⇔ ∀i∈d ∃fi :Pi→Xi continuous such that

(Πi∈d fi)|S0∪S1
is one-to-one and∀ε∈2 Sε⊆(Πi∈d fi)−1(Aε).

Theorem 7.1 There is no tuple
(
(Pi)i∈2, S0, S1), where thePi’s are Polish spaces andS0, S1 disjoint

analytic subsets ofΠi∈2 Pi, such that for any tuple
(
(Xi)i∈2, A0, A1

)
of the same type exactly one of

the following holds:

(a) The setA0 is separable fromA1 by a pot(Π0
1) set.

(b) The inequality
(
(Pi)i∈2, S0, S1

)
v
(
(Xi)i∈2, A0, A1

)
holds.

One can prove this result with the Borel digraphA0 :=
⋃

n∈ω Gr(gn|C\M ) considered in [L5]
(see Section 3), which has countable vertical sections but is not locally countable. We give here
another proof which moreover shows that we cannot hope for a positive result, even ifA0 is locally
countable. This has to be noticed, since the locally countable sets have been considered a lot during
the last decades.

72



Lemma 7.2 LetΓ be a Borel class, and
(
(Pi)i∈2, S0, S1) be as in the statement of Theorem 7.1 such

thatS0 is not separable fromS1 by a pot(Γ) set. ThenS0 ∩ (Π′′
0S1×Π′′

1S1) is not separable fromS1

by a pot(Γ) set. Moreover,S0 is not separable fromS1 ∩ (Π′′
0S0×Π′′

1S0) by a pot(Γ) set.

Proof. We prove the first assertion by contradiction, which givesP ∈ pot(Γ). The first reflection
theorem gives Borel setsB0, B1 such thatΠ′′

i S1⊆Bi andS0 ∩ (B0×B1)⊆P . Now

S0⊆P ∪ (¬B0×P1) ∪ (P0×¬B1)⊆¬S1,

which contradicts the fact thatS0 is not separable fromS1 by a pot(Γ) set.

We prove the second assertion using the first one (we pass to complements). �

Lemma 7.3 Let
(
(Pi)i∈2, S0, S1) and

(
(Xi)i∈2, A0, A1

)
be as in the statement of Theorem 7.1 such

that
(
(Pi)i∈2, S0, S1

)
v
(
(Xi)i∈2, A0, A1

)
, (fi)i∈2 be witnesses for this inequality, andε∈2 be such

thatAε is Borel locally countable. Thenfi|Π′′i Sε
is countable-to-one for anyi ∈ 2 andSε is locally

countable.

Proof. The inequality
(
(Pi)i∈2, S0, S1

)
v
(
(Xi)i∈2, A0, A1

)
givesfi :Pi→Xi continuous such that

(Πi∈2 fi)|S0∪S1
is one-to-one, and alsoSε⊆(Πi∈2 fi)−1(Aε) for eachε∈2.

• By the Lusin-Novikov theorem and Lemma 2.4.(a) in [L2] we can find Borel one-to-one partial
functionsbn with Borel domain such thatAε =

⋃
n∈ω Gr(bn). We setRn :=Sε∩(Πi∈2 fi)−1

(
Gr(bn)

)
.

Let us prove thatfi|Π′′i Rn
is one-to-one for eachi∈2.

Assume for example thati=0. Let z 6= z′ ∈Π′′
0Rn, andy, y′ ∈P1 such that(z, y), (z′, y′)∈Rn.

As (z, y) 6=(z′, y′),
(
f0(z), f1(y)

)
6=
(
f0(z′), f1(y′)

)
. But bn

(
f0(z)

)
=f1(y), bn

(
f0(z′)

)
=f1(y′), so

thatf0(z) 6=f0(z′) sincebn is a partial function. Ifi=1, then we use the fact thatbn is one-to-one to
see thatfi|Π′′i Rn

is also one-to-one.

• This proves thatfi|Π′′i Sε
is countable-to-one sinceSε =

⋃
n∈ω Rn.

• Now Sε is locally countable sinceSε⊆ (Πi∈2 fi|Π′′i Sε
)−1(Aε), Aε is locally countable andfi|Π′′i Sε

is countable-to-one for anyi∈2. �

Lemma 7.4 LetY be a Polish space,B be a Borel subset ofY and(fn)n∈ω be a sequence of Borel
partial functions from a Borel subset ofB intoB. We assume thatF :=

⋃
n∈ω Gr(fn) is disjoint from

∆(B), but not separable from∆(B) by a pot(Π0
1) set. Then there are natural numbersn < p and

y∈B such thatfn(y) andfn

(
fp(y)

)
are defined.

Proof. We may assume thatY is recursively presented andB,F and thefn’s are∆1
1. We put

V :=
⋃
{D∈∆1

1(Y ) | D2 ∩ F has finite vertical sections}.

ThenV ∈Π 1
1 (Y ).
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Case 1.V =Y .

We can find a sequence(Dn)n∈ω of ∆1
1 subsets ofY such thatY =

⋃
n∈ω Dn andD2

n ∩ F has
finite vertical sections. By Theorem 3.6 in [Lo2],D2

n∩F is pot(Π0
1), so thatD2

n\F is pot(Σ0
1). Thus

∆(B)⊆
⋃

n∈ω D2
n\F ⊆¬F and∆(B) is separable fromF by a pot(Σ0

1) set, which is absurd.

Case 2.V 6=Y .

The first reflection theorem proves that for each nonemptyΣ 1
1 subsetS of Y contained in¬V

there isy∈S such that(S2 ∩ F )y is infinite. So there is a natural numbern such that(Y \V )2 meets
Gr(fn). In particular,S := (Y \V ) ∩ f−1

n (Y \V ) is a nonemptyΣ 1
1 subset ofY , which givesy ∈S

such that(S2 ∩F )y is infinite. This proves the existence ofp>n such that
(
y, fp(y)

)
∈S2. Note that

y∈B sinceY \B⊆V . Now it is clear thatn, p andy are suitable. �

Lemma 7.5 LetY0, Y1 be Polish spaces,Bε be a Borel subset ofYε (for ε∈2), i :B0→B1 be a Borel
isomorphism,(cn)n∈ω be a sequence of Borel partial one-to-one functions with Borel domain from
Y0 into Y1, andC :=

⋃
n∈ω Gr(cn). We assume thatC ∩ (B0×B1) is disjoint from Gr(i), but not

separable from Gr(i) by a pot(Π0
1) set. Then there are natural numbersn< p andy ∈ Y0 such that

(ic−1
n cp)(y) and(ic−1

n i)(y) are defined and different.

Proof. We setdn :=cn|B0∩c−1
n (B1), so thatC ∩ (B0×B1)=

⋃
n∈ω Gr(dn). We also set

en :=dn ◦ i−1

|i[B0∩c−1
n (B1)]

,

so thaten is a Borel one-to-one partial function with Borel domain. Now we consider the pre-images
∆(B1)=(i−1×IdB1)

−1
(
Gr(i)

)
and Gr(en)=(i−1×IdB1)

−1
(
Gr(dn)

)
. Note thatE :=

⋃
n∈ω Gr(en)

is not separable from∆(B1) by a pot(Π0
1) set. This implies that

⋃
n∈ω Gr(e−1

n ) is not separable from
∆(B1) by a pot(Π0

1) set.

By Lemma 7.4 there aren < p and z ∈ B1 such that(en)−1(z) and e−1
n

(
e−1
p (z)

)
are de-

fined. We sety := d−1
p (z), so that(id−1

n dp)(y) and (id−1
n i)(y) are defined and equal respectively

to (ic−1
n cp)(y) and(ic−1

n i)(y). Now note thatz 6= e−1
p (z) for eachz in the range ofep. This implies

that(ic−1
n cp)(y) 6=(ic−1

n i)(y). �

Lemma 7.6 Let i be a continuous open partial function fromC into C with open domain,(cn)n∈ω be
a sequence of such functions, andUε :=

⋃
n∈ω Gr(c2n+ε) (for ε∈ 2). We assume thatU0 is disjoint

from U1 ∪ Gr(i), but ∅ 6= Gr(i) ⊆ U0 ∩ U1. ThenU0 is not separable fromU1 by a pot(∆0
1) set,

andU0 is not separable from Gr(i) by a pot(Π0
1) set. If moreover the Dom(cn)’s are dense, then

U0 ∩ (
⋂

n∈ω Dom(cn)×C) is not separable fromU1 ∩ (
⋂

n∈ω Dom(cn)×C) by a pot(∆0
1) set.

Proof. We argue by contradiction, which givesP ∈ pot(∆0
1). Let Gi be a denseGδ subset ofC

such thatP ∩ (G0×G1) ∈ ∆0
1(G0×G1). The proof of Lemma 3.5 in [L1] shows the inclusion

Gr(i)⊆Gr(i) ∩ (G0×G1), and similarly withcn. Thus

Gr(i)⊆U0 ∩ U1 ∩ (G0×G1)⊆U0 ∩ (G0×G1) ∩ U1 ∩ (G0×G1) ∩ (G0×G1)
⊆
(
P ∩ (G0×G1)

)
\
(
P ∩ (G0×G1)

)
=∅,

which is absurd. The last assertion follows since we may assume thatG0 ⊆
⋂

n∈ω Dom(cn). The
proof of the second assertion is similar and simpler. �
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Lemma 7.7 There is a tuple
(
(Yi)i∈2, B0, B1

)
such that

(a) Y0 andY1 are Polish spaces.

(b)B0 =
⋃

n∈ω Gr(cn)⊆Πi∈2 Yi, for some Borel one-to-one partial functionscn with Borel domain.

(c)B1 =Gr(i), for some Borel functioni :Y0→Y1.

(d)B0 is disjoint fromB1, but not separable fromB1 by a pot(Π0
1) set.

(e) We setCε :=
(⋃

n∈ω Gr(c2n+ε)
)
∩ (
⋂

n∈ω Dom(cn)×Y1), for ε∈2. ThenC0 is disjoint fromC1,
but not separable fromC1 by a pot(∆0

1) set, andC0 ∩ C1 ∩ (
⋂

n∈ω Dom(cn)×Y1)⊆Gr(i).
(f) The equality(ic−1

n cp)(y)=(ic−1
n i)(y) holds as soon as the two members of the equality are defined

andn<p.

Proof. We setYi :=C andi(α)(k) :=α(2k).

• We first build an increasing sequence(Sn)n∈ω of co-infinite subsets ofω, a sequence(ψn)n∈ω of
bijections withψn :¬Sn �¬2Sn, and a sequence(hn)n∈ω of homeomorphisms fromC onto itself.
We do it by induction onn. We setS0 :=∅, ψ0 := Idω andh0 := IdC . Assume that(Sq)q≤n, (ψq)q≤n

and(hq)q≤n are constructed, which is the case forn=0. We define a mapϕn :ω→ω by

ϕn(k) :=


ψ−1

n (k) if k /∈2Sn,

k
2 if k∈2Sn.

Note thatϕn is a bijection. We setSn+1 := ϕn[2ω] ∪ (n+1), which is co-infinite. The sequence
(Sn)n∈ω is increasing sinceSn =ϕn[2Sn]⊆Sn+1. As Sn+1 is co-infinite we can build the bijection
ψn+1 :¬Sn+1→¬2Sn+1 in such a way thatψn+1(k) 6=ψq(k) for infinitely manyk /∈Sn+1, for any
q≤n. We set

hn+1(α)(k) :=


i(α)(k) if k∈Sn+1,

α
(
ψn+1(k)

)
if k /∈Sn+1.

As hn+1 permutes the coordinates, it is an homeomorphism.

• We setDn := {α ∈ C | i(α) 6= hn(α) ∧ ∀q < n hn(α) 6= hq(α)}, so thatDn is an open subset of
C. We setcn :=hn|Dn

, so thatcn is an homeomorphism fromDn onto its open range,B0 is disjoint
fromB1, andC0 is disjoint fromC1.

Let us prove thatDn is dense for any natural numbern. Note that

D0 ={α∈C | ∃k∈ω α(2k) 6=α(k)},

which is clearly dense. NowDn+1 contains

{α∈C | ∃k /∈Sn+1 α(2k) 6=α
(
ψn+1(k)

)
} ∩

⋂
q<n

{α∈C | ∃k /∈Sn+1 α
(
ψn+1(k)

)
6=α
(
ψq(k)

)
}.

The set{α∈C | ∃k /∈Sn+1 α(2k) 6=α
(
ψn+1(k)

)
} is open dense since the odd natural numbers are in

ψn+1[¬Sn+1]. The set{α∈C | ∃k /∈Sn+1 α
(
ψn+1(k)

)
6=α
(
ψq(k)

)
} is open dense by construction

of ψn+1. This proves thatDn+1 is dense.
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• Note that Gr(i)⊆C0 ∩ C1 sincei(α)|n= hn(α)|n, Dn is dense andi is continuous. Lemma 7.6
proves the non-separation assertions. Note also thatC0 ∩ C1 ∩ (

⋂
n∈ω Dom(cn)×C)⊆Gr(i) since

i(α)|n=hn(α)|n andcn is continuous.

• Now it is enough to prove thatih−1
n hp = ih−1

n i if n<p. Note that

h−1
n (β)(j) :=


β(k) if j=2k∈2Sn,

β
(
ψ−1

n (j)
)

if j /∈2Sn.

Thus

(ih−1
n i)(α)(k)= i

(
(h−1

n i)(α)
)
(k)=(h−1

n i)(α)(2k)=


i(α)(k) if k∈Sn,

i(α)
(
ψ−1

n (2k)
)

if k /∈Sn.

Similarly,

(ih−1
n hp)(α)(k)=


hp(α)(k) if k∈Sn,

hp(α)
(
ψ−1

n (2k)
)

if k /∈Sn.

Note thatSn ⊆ Sp. Thus(ih−1
n hp)(α)(k) = (ih−1

n i)(α)(k) if k ∈ Sn. If k /∈ Sn, then2k /∈ 2Sn and
ϕn(2k)=ψ−1

n (2k)∈Sn+1⊆Sp. Thus

(ih−1
n hp)(α)(k)=hp(α)

(
ψ−1

n (2k)
)
= i(α)

(
ψ−1

n (2k)
)
=(ih−1

n i)(α)(k).

This finishes the proof. �

Proof of Theorem 7.1.We argue by contradiction. Note thatS0 is not separable fromS1 by a pot(Π0
1)

set since (b) holds. By Lemma 7.2 we may assume thatS1⊆Π′′
0S0×Π′′

1S0.

• Recall the digraphA1 in [L5], that we will callA0. If we takeXi := C andA1 := ∆(C), then by
Corollary 12 in [L5],A0 is Borel locally countable, not pot(Π0

1), andA1 =A0\A0. It follows thatA0

is not separable fromA1 by a pot(Π0
1) setQ, since otherwise we would haveA0 =Q∩A0∈pot(Π0

1).
This implies that

(
(Xi)i∈2, A0, A1

)
satisfies condition (b) in Theorem 7.1. By Lemma 7.3,fi|Π′′i S0

is
countable-to-one for anyi∈2 andS0 is locally countable.

• Lemma 7.7 gives a tuple
(
(Yi)i∈2, B0, B1

)
. Note that

(
(Yi)i∈2, B0, B1

)
satisfies condition (b) in

Theorem 7.1, which givesgi : Pi → Yi. Lemma 7.3 implies thatgi|Π′′i S0
is countable-to-one for any

i∈2. The first reflection theorem gives a Borel setOi⊇Π′′
i S0 such thatfi|Oi

andgi|Oi
are countable-

to-one, for anyi∈2. By Lemma 2.4.(a) in [L2] we can find a partition(Oi
n)n∈ω of Oi into Borel sets

such thatfi|Oi
n

andgi|Oi
n

are one-to-one, for anyi∈2.

• We setRε := (Πi∈2 fi|Oi
)−1(Aε) ∩ (Πi∈2 gi)−1(Bε), for anyε ∈ 2, so thatRε is a Borel subset

of Πi∈2 Pi containingSε. In particular,R0 is not separable fromR1 by a pot(Π0
1) set. We choose

natural numbersn0 andn1 such thatR0 ∩ (Πi∈2 O
i
ni

) is not separable fromR1 ∩ (Πi∈2 O
i
ni

) by a
pot(Π0

1) set. We setDε := (Πi∈2 fi)[Rε ∩ (Πi∈2 O
i
ni

)], so thatD0 is a Borel subset ofA0 which is
not separable fromD1 by a pot(Π0

1) set.
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Note thatD1 is a Borel subset ofA1 =∆(C). In particular, there is a Borel subsetD of C such that
D1 =∆(D). By Lemma 7.2,D0 ∩D2 is not separable fromD1 by a pot(Π0

1) set. Lethi :D→Yi be
defined byhi(α) :=(gi◦fi

−1)(α). Thenhi is Borel, one-to-one, andDε∩D2⊆Aε∩(Πi∈2 hi)−1(Bε).

• Note that(Πi∈2 hi)[∆(D)] is a Borel subset ofB1, which proves the existence of a Borel subsetB
of Y0 such that(Πi∈2 hi)[∆(D)]=Gr(i|B). If y 6=z∈B, then

(
y, i(y)

)
=
(
h0(α), h1(α)

)
and(

z, i(z)
)
=
(
h0(β), h1(β)

)
for someα 6=β∈D. Ash1 is one-to-one we geti(y) 6= i(z), i|B is one-to-one andi′′B is Borel.

As D0 ∩ D2 ⊆ (Πi∈2 hi)−1(B0) andD1 ⊆ (Πi∈2 hi)−1
(
Gr(i|B)

)
, B0 is not separable from

Gr(i|B) by a pot(Π0
1) set. By Lemma 7.2,B0∩ (B×i′′B) is not separable from Gr(i|B) by a pot(Π0

1)
set.

• By Lemma 7.5 applied toC0 :=B andC1 := i′′B there aren<p andy∈Y0 such that(ic−1
n cp)(y)

and(ic−1
n i)(y) are defined and different, which contradicts Lemma 7.7.(f). �

Remark. We recover the algebraic relation “gn =gn ◦ gp if n<p” that was already present in Section
3 in [L5] mentioned just after the statement of Theorem 7.1.

Theorem 7.8 There is no tuple
(
(Pi)i∈2, S0, S1), where thePi’s are Polish spaces andS0, S1 disjoint

analytic subsets ofΠi∈2 Pi, such that for any tuple
(
(Xi)i∈2, A0, A1

)
of the same type exactly one of

the following holds:

(a) The setA0 is separable fromA1 by a pot(∆0
1) set.

(b) The inequality
(
(Pi)i∈2, S0, S1

)
v
(
(Xi)i∈2, A0, A1

)
holds.

Proof. Let us indicate the differences with the proof of Theorem 7.1. This time,S0 is not separable
from S1 by a pot(∆0

1) set.

• Note thatA0 =
⋃

n∈ω Gr(Hn), whereHn :Nsn0→Nsn1 is a partial homeomorphism with clopen
domain and range. The crucial properties of(sn)n∈ω⊆2<ω is that it is dense and|sn|=n. We can eas-
ily ensure this in such a way that(s2n)n∈ω and(s2n+1)n∈ω are dense. We setUε :=

⋃
n∈ω Gr(H2n+ε).

The previous remark implies that∆(C)=Uε\Uε. By Lemma 7.6,U0 is not separable fromU1 by a
pot(∆0

1) set. So here againfi|Π′′i S0
is countable-to-one for anyi∈2, andS0, S1 are locally countable

by Lemma 7.3.

• Lemma 7.7 gives a tuple
((⋂

n∈ω Gr(cn), C
)
, C0, C1

)
. Note that

((⋂
n∈ω Gr(cn), C

)
, C0, C1

)
satisfies condition (b) in Theorem 7.8.

• We change the topology onC into a finer Polish topologyτ so that the setsf ′′i O
i
ni

become clopen
and the mapsfi

−1
|Oi

ni

become continuous. Now

D0
τ2

∩D1
τ2

⊆U0 ∩ U1 =
(
U0 ∪∆(C)

)
∩
(
U1 ∪∆(C)

)
=∆(C).

So there is a Borel subsetD of C such thatD0
τ2

∩D1
τ2

=∆(D), andD⊆
⋂

i∈2 f
′′
i O

i
ni

.
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• Let us prove thatD0 ∩D2 is not separable fromD1 ∩D2 by a pot(∆0
1) set.

We argue by contradiction, which givesP ∈ pot(∆0
1) such thatD0 ∩ D2 ⊆ P ⊆D2 \D1. The

setsD0
τ2

∩ (¬D×C) andD1
τ2

∩ (¬D×C) are disjoint, pot(Π0
1), so that they are separable by∆l in

pot(∆0
1). Similarly, there is∆r∈pot(∆0

1) which separatesD0
τ2

∩ (C×¬D) fromD1
τ2

∩ (C×¬D).
Now we can write

D0⊆P ∪
(
D0 ∩ (¬D×C)

)
∪
(
D0 ∩ (C×¬D)

)
⊆P ∪

(
∆l ∩ (¬D×C)

)
∪
(
∆r ∩ (C×¬D)

)
⊆¬D1,

which is absurd sinceP ∪
(
∆l ∩ (¬D×C)

)
∪
(
∆r ∩ (C×¬D)

)
∈pot(∆0

1).

• Let us prove thatD0 ∩D2 is not separable from∆(D) by a pot(Π0
1) set.

We argue by contradiction, which givesQ∈pot(Π0
1) such thatD0 ∩D2⊆Q⊆D2\∆(D). The

setsQ and∆(D) are disjoint, pot(Π0
1), so that there isR in pot(∆0

1) such thatQ⊆R⊆D2\∆(D).

The setsD0
τ2

∩ R andD1
τ2

∩ R are disjoint, pot(Π0
1), so that there isS in pot(∆0

1) such that

D0
τ2

∩ R⊆S⊆R\D1
τ2

. But S separatesD0 ∩D2 fromD1 ∩D2, which contradicts the previous
point.

• Note that(Πi∈2 hi)[∆(D)]⊆C0 ∩C1 ∩ (
⋂

n∈ω Dom(cn)×C)⊆Gr(i). We conclude as in the proof
of Theorem 7.1. �
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