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1 Introduction

This paper is a contribution to the study of the interactions between descriptive set theory
and theoretical computer science. These interactions have already been the subject of many
studies, see for instance [18, 33, 21, 31, 27, 25, 30, 6, 29, 7, 11, 9, 5].

In particular, the theory of automata reading infinite words, which is closely related to
infinite games, is now a rich theory which is used for the specification and verification of
non-terminating systems, see [12, 25]. The space ΣN of infinite words over a finite alphabet
Σ being equipped with the usual Cantor topology, a natural way to study the complexity of
ω-languages accepted by various kinds of automata is to study their topological complexity,
and particularly to locate them with regard to the Borel and the projective hierarchies.

However, as noticed in [26] by Schwarz and Staiger and in [15] by Hoffmann and Staiger,
it turned out that for several purposes some other topologies on a space ΣN are useful, for
instance for studying fragments of first-order logic over infinite words or for a topological
characterisation of random infinite words (see also [14]). In particular, Schwarz and Staiger
studied four topologies on the space ΣN of infinite words over a finite alphabet Σ which
are all related to automata, and refine the Cantor topology on ΣN: the Büchi topology, the
automatic topology, the alphabetic topology, and the strong alphabetic topology.

Recall that a topological space is Polish iff it is separable, i.e. contains a countable dense
subset, and its topology is induced by a complete metric. Classical descriptive set theory
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70:2 Polishness of some topologies related to automata

is about the topological complexity of definable subsets of Polish topological spaces, as well
as the study of hierarchies of complexity (see [16, 25] for basic notions). The analytic sets,
which are the projections of Borel sets, are of particular importance. Similar hierarchies of
complexity are studied in effective descriptive set theory, which is based on the theory of
recursive functions (see [24] for basic notions). The effective analytic subsets of the Cantor
space (2N, τC) are highly related to theoretical computer science, in the sense that they
coincide with the sets recognized by some special kind of Turing machines (see [32]).

In [26], Schwarz and Staiger prove that the Büchi topology, which is generated by the
regular ω-languages, is metrizable. It is separable, by definition, because there are only
countably many regular ω-languages. It remains to see that it is completely metrizable to
see that it is Polish. This is one of the main results proved in this paper.

We now give some more details about the topologies studied by Schwarz and Staiger in
[26] that we investigate in this paper. Let Σ be a finite alphabet with at least two symbols.
We will consider the topology τδ on ΣN generated by the set Bδ of sets accepted by an
unambiguous Büchi Turing machine. Let Σ∗ be the set of finite sequences of elements of Σ.
The following topologies on ΣN, related to automata, are considered in [26].

the Büchi topology τB , generated by the set BB of ω-regular languages,
the automatic topology τA, generated by the set BA of τC-closed ω-regular languages
(this topology is remarkable because all τC-closed ω-regular languages are accepted by
deterministic Büchi automata),
the alphabetic topology τα, generated by the set Bα of sets of the form Bw,A := {wσ | σ ∈
AN}, where w ∈ Σ∗ and A ⊆ Σ (this topology is useful for investigations in restricted
first-order theories for infinite words),
the strong alphabetic topology τs, generated by the set Bs of sets of the form

Sw,A := {wσ | σ ∈ AN ∧ ∀a ∈ A ∀k ∈ N ∃i ≥ k σ(i) = a},

where w ∈ Σ∗ and A ⊆ Σ (this topology is derived from τα, and considered in [4],
together with τα).

In [26], Schwarz and Staiger prove that these topologies are metrizable. We improve this
result:

I Theorem 1. Let z ∈ {C, δ,B,A, α, s}. Then τz is Polish.

From this result, it is already possible to infer many properties of the space ΣN, where Σ is
a finite alphabet, equipped with the Büchi topology. In particular, we first get some results
about the σ-algebra generated by the ω-regular languages. It is stratified in a hierarchy
of length ω1 (the first uncountable ordinal) and there are universal sets at each level of
this hierarchy. Notice that this σ-algebra coincides with the σ-algebra of Borel sets for the
Cantor topology, and that a set is Borel for the Cantor topology if and only if it is Borel for
the Büchi topology, but the levels of the Borel hierarchy differ for the two topologies. For
instance an ω-regular set which is non-Π0

2 for the Cantor topology is clopen (i.e., ∆0
1) for

the Büchi topology. Therefore the results about the existence of universal sets at each level
of the σ-algebra generated by the ω-regular languages are really new and interesting. We
derive many other properties from the polishness of the Büchi topology.

2 Background

We first recall the notions required to understand fully the introduction and the sequel (see
for example [25, 31, 16, 24]).
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2.1 Theoretical computer science
A Büchi automaton is a tuple A = (Q,Σ, δ, Qi, Qf ), where Σ is the input alphabet, Q is the
finite state set, δ is the transition relation, Qi and Qf are the sets of initial and final states.
The transition relation δ is a subset of Q× Σ×Q.

A run on some sequence σ ∈ ΣN is a sequence (qn)i∈N ∈ QN of states such that q0 is
initial (q0 ∈ Qi) and (qi, σ(i), qi+1) is a transition in δ for each i ≥ 0. It is accepting if it
visits infinitely often final states, that is, qi ∈ Qf for infinitely many i. An input sequence σ
is accepted if there exists an accepting run on α. The set of accepted inputs is denoted L(A).
A set of infinite words is called ω-regular if it is equal to L(A) for some automaton A.

A Büchi automaton is actually similar to a classical finite automaton. A finite word w
of length n is accepted by an automaton A if there is sequence (qi)i≤n of n+ 1 states such
that q0 is initial (q0 ∈ Qi), qn is final (qn ∈ Qf ) and (qi, σ(i), qi+1) is a transition in δ for
each 0 ≤ i < n. The set of accepted finite words is denoted by U(A). A set of finite words
is called regular if it is equal to U(A) for some automaton A.

Let us recall that the ω-power of a set U of finite words is defined by

Uω = {σ ∈ ΣN | ∃ (wi)i∈N ∈ UN s.t. σ = w0w1w2 · · · }.

The ω-powers play a crucial role in the characterization of ω-regular languages (see [1]):

I Theorem 2 (Büchi). Let Σ be a finite alphabet, and L ⊆ ΣN. The following statements
are equivalent:
1. L is ω-regular,
2. there are 2n regular languages (Ui)i<n and (Vi)i<n such that L =

⋃
i<n UiV

ω
i .

The closure properties of the class of ω-regular languages mentioned in the introduction
are the following (see [25] and [26]). If Σ is a set and w ∈ Σ∗, then w defines the usual
basic clopen set Nw := {σ ∈ ΣN | w is a prefix of σ} of the Cantor topology τC (so BC :=
{∅} ∪ {Nw | w ∈ Σ∗} is a basis for τC).

I Theorem 3 (Büchi). The class of ω-regular languages contains the usual basic clopen sets
and is closed under finite unions and intersections, taking complements, and projections.

We now turn to the study of Turing machines (see [3, 31]).
A Büchi Turing machine is a tuple M = (Σ, Q,Γ, δ, q0, Qf ), where Σ and Γ are the

input and tape alphabets satisfying Σ ⊆ Γ, Q is the finite state set, δ is the transition
relation, q0 is the initial state and Qf is the set of final states. The relation δ is a subset of
(Q× Γ)× (Q× Γ× {−1, 0, 1}).

A configuration ofM is a triple (q, γ, j) where q ∈ Q is the current state, γ ∈ ΓN is the
content of the tape and the non-negative integer j ∈ N is the position of the head on the
tape.

Two configurations (q, γ, j) and (q′, γ′, j′) ofM are consecutive if there exists a transition
(q, a, q′, b, d) ∈ δ such that the following conditions are met:
1. γ(j) = a, γ′(j) = b and γ(i) = γ′(i) for each i 6= j. This means that the symbol a is

the replaced by symbol b at position j and that all other symbols on the tape remain
unchanged.

2. the two positions j and j′ satisfy the equality j′ = j + d.

A run of the machineM on some input σ ∈ ΣN is a sequence (pi, γi, ji)i∈N of consecutive
configurations such that p0 = q0, γ0 = σ and j0 = 0. It is complete if the head visits all
positions of the tape. This means that for each integer N , the exists an integer i such that

CSL 2017



70:4 Polishness of some topologies related to automata

ji ≥ N . The run is accepting if it visits infinitely often final states, that is, pi ∈ Qf for
infinitely many integers i. The ω-language accepted byM is the set of inputs σ such that
there exists an accepting and complete run on σ.

Notice that other accepting conditions have been considered for the acceptance of infinite
words by Turing machines, like the 1’ or Muller ones (the latter one was firstly called 3-
acceptance), see [3, 31]. Moreover several types of required behaviour on the input tape
have been considered in the literature, see [32, 10, 8].

A Büchi automaton A is in fact a Büchi Turing machine whose head only move forwards.
This means that each of its transition has the form (p, a, q, b, d) where d = 1. Note that the
written symbol b does not matter since each position of the tape is just visited once and the
symbol b is never read.

2.2 Descriptive set theory
Classical descriptive set theory takes place in Polish topological spaces.
We first recall that if d is a distance on a set X, and (xn)n∈N is a sequence of elements of
X, then the sequence (xn)n∈N is called a Cauchy sequence if

∀k ∈ N ∃N ∈ N ∀p, p′ ≥ N d(xp, xp′) <
1
2k .

In a topological space X whose topology is induced by a distance d, the distance d and the
metric space (X, d) are said to be complete if every Cauchy sequence in X is convergent.

I Definition 2.1. A topological space X is a Polish space if it is
1. separable (there is a countable dense sequence (xn) in X),
2. completely metrizable (there is a complete distance d on X which is compatible with the

topology of X).

Effective descriptive set theory is based on the notion of recursive function. A function
from Nk to Nl is said to be recursive if it is total and computable. By extension, a relation
is called recursive if its characteristic function is recursive.

I Definition 2.2. A recursive presentation of a Polish space X is a pair
(
(xn)n∈N, d

)
such

that
1. (xn)n∈N is dense in X,
2. d is a compatible complete distance on X such that the following relations P and Q are

recursive:

P (i, j,m, k) ⇐⇒ d(xi, xj) ≤
m

k + 1 ,

Q(i, j,m, k) ⇐⇒ d(xi, xj) <
m

k + 1 .

A Polish space X is recursively presented if there is a recursive presentation of it.
Note that the formula (p, q) 7→ 2p(2q+ 1)− 1 defines a recursive bijection N2 → N. One

can check that the coordinates of the inverse map are also recursive. They will be denoted
n 7→ (n)0 and n 7→ (n)1 in the sequel. These maps will help us to define some of the basic
effective classes.

I Definition 2.3. Let
(
(xn)n∈N, d

)
be a recursive presentation of a Polish space X.

1. We fix a countable basis of X: B(X,n) is the open ball Bd(x(n)0 ,
((n)1)0

((n)1)1+1 ).
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2. A subset S of X is semirecursive, or effectively open (denoted S ∈ Σ0
1) if

S =
⋃
n∈N

B(X, f(n)),

for some recursive function f .
3. A subset S of X is effectively closed (denoted S ∈ Π 0

1 ) if its complement ¬S is semire-
cursive.

4. One can check that a product of two recursively presented Polish spaces has a recursive
presentation, and that the Baire space NN has a recursive presentation. A subset S of X
is effectively analytic (denoted S ∈ Σ1

1 ) if there is a Π 0
1 subset C of X × NN such that

S = π0[C] := {x ∈ X | ∃α ∈ NN (x, α) ∈ C}.

5. A subset S of X is effectively co-analytic (denoted S ∈ Π 1
1 ) if its complement ¬S is

effectively analytic, and effectively Borel if it is in Σ1
1 and Π 1

1 (denoted S ∈ ∆1
1).

6. We will also use the following relativized classes: if X, Y are recursively presented Polish
spaces and y ∈ Y , then we say that A ⊆ X is in Σ1

1 (y) if there is S ∈ Σ1
1 (Y ×X) such

that A = Sy := {x ∈ X | (y, x) ∈ S}. The class Π 1
1 (y) is defined similarly. We also set

∆1
1(y) := Σ1

1 (y) ∩Π 1
1 (y).

The crucial link between the effective classes and the classical corresponding classes is as
follows: the class of analytic (resp., co-analytic, Borel) subsets of Y is equal to

⋃
α∈NN Σ1

1 (α)
(resp.,

⋃
α∈NN Π 1

1 (α),
⋃
α∈NN ∆1

1(α)). This allows to use effective descriptive set theory to
prove results of classical type. In the sequel, when we consider an effective class in some ΣN

with Σ finite, we will always use a fixed recursive presentation associated with the Cantor
topology. The following result is proved in [32], see also [8]:

I Theorem 4. Let Σ be a finite alphabet, and L ⊆ ΣN. The following statements are
equivalent:
1. L = L(M) for some Büchi Turing machineM,
2. L ∈ Σ1

1 .

We now recall the Choquet game played by two players on a topological space X. Players
1 and 2 play alternatively. At each turn i, Player 1 plays by choosing an open subset Ui
and a point xi ∈ Ui such that Ui ⊆ Vi−1, where Vi−1 has been chosen by Player 2 at the
previous turn. Player 2, plays by choosing an open subset Vi such that xi ∈ Vi and Vi ⊆ Ui.
Player 2 wins the game if

⋂
i∈N Vi 6= ∅. We now recall some classical notions of topology.

I Definition 2.4. A topological space X is said to be
T1 if every singleton of X is closed,
regular if for every point of X and every open neighborhood U of x, there is an open
neighborhood V of x with V ⊆ U ,
second countable if its topology has a countable basis,
zero-dimensional if there is a basis made of clopen sets,
strong Choquet if X is not empty and Player 2 has a winning strategy in the Choquet
game.

Note that every zero-dimensional space is regular. The following result is 8.18 in [16].

I Theorem 5 (Choquet). A nonempty, second countable topological space is Polish if and
only if it is T1, regular, and strong Choquet.

CSL 2017



70:6 Polishness of some topologies related to automata

LetX be a nonempty recursively presented Polish space. The Gandy-Harrington topology
on X is generated by the Σ1

1 subsets of X, and denoted ΣX . By Theorem 4, this topology
is also related to automata and Turing machines. As there are some effectively analytic sets
whose complement is not analytic, the Gandy-Harrington topology is not metrizable (in fact
not regular) in general (see [3E.9] in [24]). In particular, it is not Polish.

3 Proof of the main result

The proof of Theorem 1 is organized as follows. We provide below four properties which
ensure that a given topological space is strong Choquet. Then we use Theorem 5 to prove
that the considered spaces are indeed Polish.

Let Σ be a countable alphabet. The set ΣN is equipped with the product topology of
the discrete topology on Σ, unless another topology is specified. This topology is induced
by a natural metric, called the prefix metric which is defined as follows. For σ 6= σ′ ∈ ΣN,
the distance d is given by

d(σ, σ′) = 2−r where r = min{n | σ(n) 6= σ′(n)}.

When Σ is finite this topology is the classical Cantor topology. When Σ is countably
infinite the topological space is homeomorphic to the Baire space NN.

Let Σ and Γ be two alphabets. The function which maps each pair (σ, γ) ∈ ΣN × ΓN to
the element (σ(0), γ(0)), (σ(1), γ(1)), . . . of (Σ× Γ)N is a homeomorphism between ΣN × ΓN

and (Σ× Γ)N allowing us to identify these two spaces.
If Σ is a set, σ ∈ ΣN and l ∈ N, then σ|l is the prefix of σ of length l.
We set 2 := {0, 1} and P∞ := {α ∈ 2N | ∀k ∈ N ∃i ≥ k α(i) = 1}. This latter

set is simply the set of infinite words over the alphabet 2 := {0, 1} having infinitely many
symbols 1.

We will work in the spaces of the form ΣN, where Σ is a finite set with at least two
elements. We will fix a topology τΣ on ΣN, and a basis BΣ for τΣ. We consider the following
properties of the family (τΣ,BΣ)Σ, using the previous identification:

(P1) BΣ contains the usual basic clopen sets Nw,
(P2) BΣ is closed under finite unions and intersections,
(P3) BΣ is closed under projections, in the sense that if Γ is a finite set with at least two
elements and L ∈ BΣ×Γ, then π0[L] ∈ BΣ,
(P4) for each L ∈ BΣ there is a closed subset C of ΣN × P∞ (i.e. C is the intersection of
a closed subset of the Cantor space ΣN × 2N with ΣN × P∞) which is in BΣ×2, and such
that L = π0[C].

I Theorem 6. Assume that the family (τΣ,BΣ)Σ satisfies the properties (P1)-(P4). Then
the topologies τΣ are strong Choquet.

Proof. We first describe a strategy τ for Player 2. Player 1 first plays σ0 ∈ ΣN and a τΣ-
open neighborhood U0 of σ0. Let L0 in BΣ with σ0 ∈ L0 ⊆ U0. Property (P4) gives C0 with
L0 = π0[C0]. This gives α0 ∈ P∞ such that (σ0, α0) ∈ C0. We choose l00 ∈ N big enough to
ensure that if s0

0 := α0|l00, then s0
0 has at least a coordinate equal to 1. We set w0 := σ0|1

and V0 := π0[C0 ∩ (Nw0 × Ns0
0
)]. By properties (P1)-(P3), V0 is in BΣ and thus τΣ-open.

Moreover, σ0 ∈ V0 ⊆ L0 ⊆ U0, so that Player 2 respects the rules of the game if he plays V0.
Now Player 1 plays σ1 ∈ V0 and a τΣ-open neighborhood U1 of σ1 contained in V0.

Let L1 in BΣ with σ1 ∈ L1 ⊆ U1. Property (P4) gives C1 with L1 = π0[C1]. This gives
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α1 ∈ P∞ such that (σ1, α1) ∈ C1. We choose l10 ∈ N big enough to ensure that if s1
0 :=

α1|l10, then s1
0 has at least one coordinate equal to 1. As σ1 ∈ V0, there is α′0 ∈ P∞

such that (σ1, α
′
0) ∈ C0 ∩ (Nw0 × Ns0

0
). We choose l01 > l00 big enough to ensure that

if s0
1 := α′0|l01, then s0

1 has at least two coordinates equal to 1. We set w1 := σ1|2 and
V1 := π0[C0 ∩ (Nw1 ×Ns0

1
)] ∩ π0[C1 ∩ (Nw0 ×Ns1

0
)]. Here again, V1 is τΣ-open. Moreover,

σ1 ∈ V1 ⊆ U1 and Player 2 can play V1.
Next, Player 1 plays σ2 ∈ V1 and a τΣ-open neighborhood U2 of σ2 contained in V1.

Let L2 in BΣ with σ2 ∈ L2 ⊆ U2. Property (P4) gives C2 with L2 = π0[C2]. This gives
α2 ∈ P∞ such that (σ2, α2) ∈ C2. We choose l20 ∈ N big enough to ensure that if s2

0 :=
α2|l20, then s2

0 has at least one coordinate equal to 1. As σ2 ∈ V1, there is α′1 ∈ P∞
such that (σ2, α

′
1) ∈ C1 ∩ (Nw0 × Ns1

0
). We choose l11 > l10 big enough to ensure that if

s1
1 := α′1|l11, then s1

1 has at least two coordinates equal to 1. As σ2 ∈ V1, there is α′′0 ∈ P∞
such that (σ2, α

′′
0) ∈ C0 ∩ (Nw1 × Ns0

1
). We choose l02 > l01 big enough to ensure that if

s0
2 := α′′0 |l02, then s0

2 has at least three coordinates equal to 1. We set w2 := σ2|3 and
V2 := π0[C0 ∩ (Nw2 ×Ns0

2
)] ∩ π0[C1 ∩ (Nw1 ×Ns1

1
)] ∩ π0[C2 ∩ (Nw0 ×Ns2

0
)]. Here again, V2

is τΣ-open. Moreover, σ2 ∈ V2 ⊆ U2 and Player 2 can play V2.
If we go on like this, we build wl ∈ Σl+1 and snl ∈ 2∗ such that w0 ⊆ w1 ⊆ ... and

sn0 $ sn1 $ ... This allows us to define σ := liml→∞ wl ∈ ΣN and, for each n ∈ N, αn :=
liml→∞ snl ∈ 2N. Note that αn ∈ P∞ since snl has at least l + 1 coordinates equal to 1. As
(σ, αn) is the limit of (wl, snl ) as l goes to infinity and Nwl

×Nsn
l
meets Cn (which is closed

in ΣN × P∞), (σ, αn) ∈ Cn. Thus

σ ∈
⋂
n∈N

π0[Cn] =
⋂
n∈N

Ln ⊆
⋂
n∈N

Un ⊆
⋂
n∈N

Vn,

so that τ is winning for Player 2. J

3.1 The Gandy-Harrington topology
We have already mentioned that the Gandy-Harrington topology is not Polish in general.
However, it is almost Polish as it fulfills the four properties (P1)-(P4).

Let Σ be a finite alphabet with at least two elements and let X be the space ΣN equipped
with the topology τΣ := ΣX generated by the family BΣ of Σ1

1 subsets of X. Note that the
assumption of Theorem 6 are satisfied. Indeed, (P1)-(P3) come from 3E.2 in [24]. For (P4),
let F be a Π 0

1 subset of X × NN such that L = π0[F ]. Let ϕ be the function from NN to
2N defined by ϕ(β) = 0β(0)10β(1)1 . . .. Note that ϕ is a homeomorphism from NN onto P∞,
and recursive (which means that the relation ϕ(β) ∈ N(2N, n) is semirecursive in β and n).
This implies that C := (Id×ϕ)[F ] is suitable (see 3E.2 in [24]).

Note that τΣ is second countable since there are only countably many Σ1
1 subsets of X

(see 3F.6 in [24]), T1 since it is finer than the usual topology by the property (P1), and
strong Choquet by Theorem 6.

One can show that there is a dense basic open subset ΩX of (X, τΣ) such that S ∩ ΩX
is a clopen subset of (ΩX , τΣ) for each Σ1

1 subset S of X (see [19]). In particular, (ΩX , τΣ)
is zero-dimensional, and regular. As it is, just like (X, τΣ), second countable, T1 and and
strong Choquet, (ΩX , τΣ) is a Polish space, by Theorem 5.

3.2 The Büchi topology
Let Σ be a finite alphabet with at least two symbols, and X be the space ΣN equipped with
the Büchi topology τB generated by the family BB of ω-regular languages in X. Theorem

CSL 2017
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29 in [26] shows that τB is metrizable. We now give a distance which is compatible with τB .
This metric was used in [14] (Theorem 2 and Lemma 21 and several corollaries following
Lemma 21). A similar argument for subword metrics is in [[15], Section 4]. If A is a Büchi
automaton, then we denote |A| the number of states of A. We say that a Büchi automaton
separates x and y iff(

x ∈ L(A) ∧ y /∈L(A)
)
∨
(
y ∈ L(A) ∧ x /∈L(A)

)
.

The distance δ on ΣN is then defined as follows: for x, y ∈ ΣN, δ(x, y) =
{

0 if x = y,
2−n if x 6= y,

where n := min{|A| | A is a Büchi automaton which separates x and y}. We now describe
some properties of the map δ. This is the occasion to illustrate the notion of complete
metric.

I Proposition 3.1. 1. the map δ defines a distance on ΣN,
2. the distance δ is compatible with τB,
3. the distance δ is not complete.

Proof. 1. If x, y ∈ ΣN, then δ(x, y) = δ(y, x), by definition of δ. Let x, y, z ∈ ΣN, and
assume that δ(x, y) + δ(y, z) < δ(x, z) = 2−n. Then δ(x, y) < 2−n and δ(y, z) < 2−n hold.
In particular, if A is a Büchi automaton with n states then it does not separate x and y and
similarly it does not separate y and z. Thus either x, y, z ∈ L(A) or x, y, z /∈ L(A). This
implies that the Büchi automaton A does not separate x and z. But this holds for every
Büchi automaton with n states and then δ(x, z) < 2−n. This leads to a contradiction and
thus δ(x, z) ≤ δ(x, y) + δ(y, z) for all x, y, z ∈ ΣN. This shows that δ is a distance on ΣN.

2. Recall that an open set for this topology is a union of ω-languages accepted by Büchi
automata. Let then L(A) be an ω-language accepted by a Büchi automaton A having n
states, and x ∈ L(A). We now show that the open ball B(x, 2−(n+1)) with center x and δ-
radius 2−(n+1) is a subset of L(A). Indeed, if δ(x, y) < 2−(n+1) < 2−n, then x and y cannot
be separated by any Büchi automaton with n states, and thus y ∈ L(A). This shows that
L(A) (and therefore any open set for τB) is open for the topology induced by the distance
δ. Conversely, let B(x, r) be an open ball for the distance δ, where r > 0 is a positive
real. It is clear from the definition of the distance δ that we may only consider the case
r = 2−n for some natural number n. Then y ∈ B(x, 2−n) if and only if x and y cannot be
separated by any Büchi automaton with p ≤ n states. Therefore the open ball B(x, 2−n) is
the intersection of the regular ω-languages L(Ai) for Büchi automata Ai having p ≤ n states
and such that x ∈ L(Ai) and of the regular ω-languages ΣN\L(Bi) for Büchi automata Bi
having p ≤ n states and such that x /∈L(Bi). The class of regular ω-languages being closed
under complementation and finite intersection, the open ball B(x, 2−n) is actually a regular
ω-language and thus an open set for τB .

3. Without loss of generality, we set Σ = {0, 1} and we consider, for a natural number
n ≥ 1, the ω-word Xn = 0n! · 1 · 0ω over the alphabet {0, 1} having only one symbol 1 after
n! symbols 0, where n! := n × (n − 1) × · · · × 2 × 1. Let now m > n > k and A be a
Büchi automaton with k states. Using a classical pumping argument, we can see that the
automaton A cannot separate Xn and Xm. Indeed, assume first that Xn ∈ L(A). Then,
when reading the first k symbols 0 of Xn, the automaton enters at least twice in a same
state q. This implies that there is a sequence of symbols 0 of length p ≤ k which can be
added several times to the word Xn so that the resulting word will still be accepted by A.
Formally, any word 0n!+lp · 1 · 0ω, for a natural number l ≥ 1, will be accepted by A. In
particular m! = n! × (n + 1) × · · · × m = n! + n! ×

((
(n + 1) × · · ·× m

)
− 1
)

is of this
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form and thus Xm ∈ L(A). A very similar pumping argument shows that if Xm ∈ L(A),
then Xn ∈ L(A). This shows that δ(Xn, Xm) < 2−k and finally that the sequence (Xn) is a
Cauchy sequence for the distance δ. On the other hand if this sequence was converging to an
ω-word x then x should be the word 0ω because τB is finer than τC . But 0ω is an ultimately
periodic word and thus it is an isolated point for τB . This would lead to a contradiction,
and thus the distance δ is not complete because the sequence (Xn) is a Cauchy sequence
which is not convergent. J

Proposition 3.1 gives a motivation for deriving Theorem 1 from Theorem 6. Note that
the assumption of Theorem 6 are satisfied. Indeed, (P1)-(P3) come from Theorem 3. We
now check (P4).

I Lemma 3.2. Let Σ be a finite set with at least two elements, and L ⊆ ΣN be an ω-regular
language. Then there is a closed subset C of ΣN × P∞, which is ω-regular as a subset of
(Σ× 2)N identified with ΣN × 2N, and such that L = π0[C].

Proof. Let A = (Σ, Q, δ,Qi, Qf ) be a Büchi automaton and let L = L(A) be its set of
accepted words. Let χf be the characteristic function of the final states. It maps each
state q to 1 if q ∈ Qf and to 0 otherwise. The function χf is extended to QN by setting
α = χf ((qn)n∈N) where α(n) = χf (qn). Note that a run ρ of A is accepting if and only if
χf (ρ) ∈ P∞.

Let C be the subset of ΣN × P∞ defined by

C :=
{

(σ, α) ∈ ΣN × P∞ | ∃ρ run of A on σ s. t. α = χf (ρ)
}
.

By definition of C, L = π0[C]. Let K be the subset of ΣN × 2N ×QN be defined by

K :=
{

(σ, α, ρ) ∈ ΣN × 2N ×QN | ρ is a run of A on σ s. t. α = χf (ρ)
}
.

Since K is compact as a closed subset of a compact space and C = πΣN×2N [K]∩ (ΣN×P∞),
the subset C is a closed subset of ΣN × P∞. It remains to show that C is indeed ω-regular.
Let ∆ be defined by

∆ :=
{(
p, (a, ε), q

)
∈ Q× (Σ× 2)×Q | (p, a, q) ∈ δ ∧ (ε = 1 ⇐⇒ p ∈ Qf )

}
.

This allows us to define a Büchi automaton by A′ := (Σ× 2, Q,∆, Qi, Qf ). Note that

(σ, α) ∈ L(A′) ⇔ ∃(si)i∈N ∈ QN (
s0 ∈ Qi ∧ ∀i ∈ N (si,

(
σ(i), α(i)

)
, si+1) ∈ ∆

)
∧

∀k ∈ N ∃i ≥ k si ∈ Qf
⇔ α ∈ P∞ ∧ ∃(si)i∈N ∈ QN (

s0 ∈ Qi ∧ ∀i ∈ N (si, σ(i), si+1) ∈ δ ∧
(α(i) = 1⇔ si ∈ Qf )

)
⇔ (σ, α) ∈ C.

Thus C = L(A′) is ω-regular. J

I Corollary 3.3. Let Σ be a finite set with at least two elements. Then the Büchi topology
τB is zero-dimensional and Polish.

Proof. As there are only countably many possible automata (up to identifications), BB is
countable. This shows that τB is second countable. It is T1 since it is finer than the usual
topology by the property (P1), and strong Choquet by Theorem 6. Moreover, it is zero-
dimensional since the class of ω-regular languages is closed under taking complements (see
Theorem 3). It remains to apply Theorem 5. J
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3.3 The other topologies

Proof of the main result. It is well known that (ΣN, τC) is metrizable and compact, and
thus Polish.
• By Theorem 3.4 in [23], the implication (iii)⇒ (i), ∆1

1(ΣN) is a basis for a zero-dimensional
Polish topology on ΣN. Recall that a Büchi Turing machine is unambiguous if every ω-
word σ ∈ ΣN has at most one accepting run. By Theorem 3.6 in [8], a subset of ΣN is ∆1

1 if
and only if it is accepted by an unambiguous Büchi Turing machine. Therefore Bδ = ∆1

1(ΣN)
is a basis for the zero-dimensional Polish topology τδ.
• Corollary 3.3 gives the result for the Büchi topology.
• Let (X, τ) be a Polish space, and (Cn)n∈N be a sequence of closed subsets of (X, τ). By
13.2 in [16], the topology τn generated by τ ∪ {Cn} is Polish. By 13.3 in [16], the topology
τ∞ generated by

⋃
n∈N τn is Polish. Thus the topology generated by τ ∪ {Cn | n ∈ N},

which is τ∞, is Polish. This shows that the automatic topology and the alphabetic topology
are Polish since they refine the usual product topology on ΣN.
• Note that Sw,A is a Gδ subset of ΣN, and thus a Polish subspace of ΣN, by 3.11 in [16].
Note also that ΣN =

⋃
∅6=A⊆Σ S∅,A ∪

⋃
∅6=A$Σ,w∈Σ∗,b∈Σ\A Swb,A, and that this union is

disjoint. As all the sets in this union are open for the strong alphabetic topology, they are
also clopen for this topology. This shows that this topology is the countable sum of its
restrictions to the sets in this union. As the strong alphabetic topology coincides with the
usual topology on each of these sets, it is Polish, by 3.3 in [16]. J

4 Consequences for our topologies

4.1 Consequences not directly related to the polishness, concerning
isolated points

Notation. If z ∈ {C, δ,B,A, α, s}, then the space (ΣN, τz) is denoted Sz. The set of
ultimately periodic ω-words on Σ is denoted Ult :=

{
u·vω | u, v ∈ Σ∗\{∅}

}
, and P := ΣN\Ult.

(1) As noted in [26], Ult is the set of isolated points of SB and SA (recall that a point σ ∈ ΣN

is isolated if {σ} is an open set). Indeed, each singleton {u ·vω} formed by an ultimately
periodic ω-word is an ω-regular language, and thus each ultimately periodic ω-word is an
isolated point of SA. Conversely, if {σ} is τB-open, then it is ω-regular and then the ω-word
σ is ultimately periodic (because any countable ω-regular language contains only ultimately
periodic ω-words, see [1, 25, 31]).
(2) Every nonempty ω-regular set contains an ultimately periodic ω-word, [1, 25, 31]. In
particular, the set Ult of isolated points of SB and SA is dense , and a subset of SB or SA
is dense if and only if it contains Ult.
(3) Let X be a topological space in which the set I of isolated points is dense, for example
SB by (2).

(a) A subset of X is nowhere dense (i.e., its closure has empty interior) if and only if it is
meager (i.e., it is a countable union of nowhere dense sets). indeed, a meager set does not
meet I.
(b) Recall that a subset L of a topological space Y has the Baire property if there is an open
subset O of Y such that the symmetric difference L∆O := (L\O) ∪ (O\L) is meager. This
is equivalent to say that L = G ∪M , where G is Gδ (i.e. a countable intersection of open
sets) and M is meager (see 8.23 in [16]). Every subset of X has the Baire property (which
is very uncommon, see for exemple 8.24 in [16]). Indeed, we can even say that every subset
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of X can be written L = O ∪N , where O is open and N is nowhere dense (O is L ∩ I, and
N is L\I).
(c) Recall that a topological space is a Baire space if the intersection of countably many
dense open sets is dense. By the Baire category theorem, every completely metrizable space
is Baire. The space X is Baire in a very strong way: the intersection of any family of dense
sets is dense, since a subset of X is dense if and only if it contains I. This is very unusual,
since for example we can find two disjoint countable dense sets in R.
(d) A consequence of (b), (c) and 8.38 in [16] is that any map from X into a second countable
Polish space is continuous on a dense Gδ subset of X. Note that if X is SB or SA, then any
map from X into a topological space is continuous on the dense open set Ult of ultimately
periodic ω-words.
(e) There is a strong version of the Kuratowski-Ulam theorem (see 8.41 in [16]): assume
that X and Y are topological spaces in which the set of isolated points is dense. Then this
property also holds in the product X × Y , so that a subset of X × Y is meager if and only
if it contains no isolated point, which is also equivalent to the fact that for each isolated
point x ∈ X (resp., y ∈ Y ), the vertical (resp., horizontal) section at x (resp., y) contains
no isolated point. An interesting example is the case of an infinitary rational relation
R(A) ⊆ ΣN × ΓN accepted by a 2-tape Büchi automaton A which may be synchronous
or asynchronous. Indeed if ΣN × ΓN is equipped with the product topology of the Büchi
topologies on ΣN and ΓN then a non-empty rational relation is always non-meager. This
follows easily from the fact that Dom

(
R(A)

)
= {x ∈ ΣN | ∃y ∈ ΓN (x, y) ∈ R(A)} is

a regular ω-language. Thus Dom
(
R(A)

)
contains an ultimately periodic word x and then

{y ∈ ΓN | (x, y) ∈ R(A)} is also a non-empty regular ω-language and so it contains also an
ultimately periodic word y.

4.2 Consequences of the polishness

4.2.1 Consequences related to Cantor-Bendixson Theorem
We consider our topologies on ΣN, where Σ is a finite set with at least two elements. We
give a (non exhaustive) list of results. We often refer to [16] when classical descriptive set
theory is involved. The reader may read this book to see many other results.
(4).(a) The union P ∪Ult is the Cantor-Bendixson decomposition of SB and SA (see 6.4 in
[16]). This means that P is perfect (i.e., closed without isolated points) and Ult is countable
open. Let us check that P is perfect. We argue by contradiction, so that we can find σ ∈ P
and an ω-regular language L such that {σ} = L\Ult. Note that L ⊆ {σ} ∪Ult is countable.
But a countable regular ω-language contains only ultimately periodic words (see [25]), and
thus L ⊆ Ult, which is absurd.
(b) The closed subspace (P, τB) of SB is homeomorphic to the Baire space NN. Indeed, it
is not empty since Ult is countable and ΣN is not, zero-dimensional and Polish as a closed
subspace of the zero-dimensional Polish space SB . By 7.7 in [16], it is enough to prove that
every compact subset of (P, τB) has empty interior. We argue by contradiction, which gives
a compact set K. Note that there is an ω-regular language L such that P ∩L is a nonempty
compact subset of K, so that we may assume that K = P ∩L. Theorem 2 gives (Ui)i<n and
(Vi)i<n with L =

⋃
i<n Ui ·V ωi . On the other hand, L is not countable since every countable

regular ω-language contains only ultimately periodic words and K = P ∩ L is non-empty.
Thus n > 0 and, for example, U0V

ω
0 is not countable.

This implies that we can find v0, v1 ∈ V0 which are not powers of the same word. Indeed,
we argue by contradiction. Let v0 ∈ V0 \ {∅}, and v ∈ Σ∗ of minimal length such that v0 is
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a power of v. We can find w0, w1, ... ∈ V0\{∅} such that σ := w0w1... 6= vω. Fix a natural
number i. Then wi and v0 are powers of the same word w. By Corollary 6.2.5 in [22], v and
w are powers of the same word u, and v0 too. By minimality, u = v, and wi is a power of
v. Thus σ = vω, which is absurd.

Let u0 ∈ U0, and L′ := {u0}·{v0, v1}ω. Note that P∩L′ is a τB-closed subset ofK, so that
it is τB-compact. As the identity map from (P ∩L′, τB) onto (P ∩L′, τC), (where τC is the
Cantor topology), is continuous, P ∩L′ is also τC-compact. But the map α 7→u0vα(0)vα(1) . . .

is a homeomorphism from the Cantor space onto L′, by Corollaries 6.2.5 and 6.2.6 in [22].
Thus P ∩ L′ = L′\Ult is a dense closed subset of L′. Thus P ∩ L′ = L′, which is absurd
since u0 · vω0 ∈ L′\P .
(c) By (b) and 7.9 in [16], for each Polish space Y , we can find a τB-closed set F ⊆ P (an
intersection of ω-regular sets) and a continuous bijection from F onto Y . In particular, if Y
is not empty, then there is a continuous surjection from P onto Y extending the previous
bijection. By 7.15 in [16], if moreover Y is perfect, then there is a continuous bijection from
P onto Y .
(d) A consequence of (b), Corollary 3.3, and 7.10 in [16], is that the space SB is not Kσ

(i.e., countable union of compact sets).

4.2.2 Consequences related to Borel sets
(5).(a) The σ-algebra Az generated by Bz is exactly the σ-algebra of Borel subsets of SC
(generated by the open subsets of SC). Indeed, the identity map from Sz onto SC is a
continuous bijection. By 15.2 in [16], the inverse map is Borel, so that the two Borel
structures coincide. It remains to note that the σ-algebra generated by Bz is exactly the
σ-algebra of Borel subsets of Sz.
(b) We can define a natural hierarchy in Az: let Σz1 := (Bz)σ be the set of countable
unions of elements of Bz, and, inductively on 1 ≤ ξ < ω1, Πz

ξ := {¬L | L ∈ Σzξ} and
Σzξ := (

⋃
η<ξ Πz

η)σ. This hierarchy is actually the Borel hierarchy in the family of Borel
subsets of Sz, in the sense that Σzξ = Σ0

ξ(Sz) and Πz
ξ = Π0

ξ(Sz) (see 11.B in [16]; we will
also consider ∆z

ξ := Σzξ ∩ Πz
ξ = ∆0

ξ(Sz) and Π0
0(Sz) := Bz). By the main result and 22.4

in [16], this hierarchy is strict and of length ω1 (the first uncountable ordinal). This comes
from the existence of universal sets for these classes (see 22.3 in [16]).

Recall that a subset U of 2N ×ΣN is universal for a class Γ of subsets of ΣN if it is in Γ
and the Γ subsets of ΣN coincide with the vertical sections Ux = {y ∈ ΣN | (x, y) ∈ U} of U .

Note that a set is Borel for τC if and only if it is Borel for any topology τz, but the levels of
the Borel hierarchy may differ for the two topologies. For instance any singleton associated
with an ultimately constant word is not open for the Cantor topology and is actually open
for the δ, Büchi, automatic, alphabetic and strong alphabetic topologies. Therefore the
existence of universal sets for each level of the Borel hierarchy of Sz is different from the
existence of universal sets for each level of the Borel hierarchy of SC if z 6= C, and could lead
to other consequences or new applications to other domains of theoretical computer science.
(c) The Wadge theorem holds (see 22.10 in [16]): let z ∈ {δ,B}, ξ ≥ 1 be a countable ordinal.
A subset L of ΣN is in Σzξ\Πz

ξ if and only if it is in Σzξ , and for each zero-dimensional Polish
space X and any Σ0

ξ subset B of X there is f :X→Sz continuous with B = f−1(L) (we can
exchange Σzξ and Πz

ξ).
(d) The Saint Raymond theorem holds (see 35.45 in [16]): let Σ,Γ be finite sets with at least
two elements, L ⊆ ΣN × ΓN be in Az with Σz2 vertical sections. Then L =

⋃
n∈N Ln, where

Ln is in Az and has Πz
1 vertical sections.
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(e) By 4.(b) and 13.7 in [16], for each L in AB , we can find a τB-closed set F ⊆ P (an
intersection of ω-regular sets) and a continuous bijection from F onto L. In particular, if L
is not empty, then there is a continuous surjection from P onto L extending the previous
bijection.

4.2.3 Consequences related to analytic sets
(6) Recall that the analytic sets are the projections of the elements of Az. We saw in (5).(a)
that τz and τC have the same Borel sets. This implies that τz and τC have the same analytic
sets. Then the following items (a)-(d) are not new, but we cite them as interesting results
about the topology τz.
(a) The class of analytic sets contains strictly Az because of the existence of universal sets
(see 14.2 in [16]).
(b) The Lusin separation theorem holds (see 14.7 in [16]): assume that L,M ⊆ ΣN are
disjoint analytic sets. Then there is S in Az such that L ⊆ S ⊆ ¬M (we say that S
separates L from M).
(c) The Souslin theorem holds (see 14.11 in [16]): the elements of Az are exactly the analytic
sets whose complement is also analytic.
(d) By 14.13 in [16], an analytic set L has the perfect set property : either L is countable,
or L contains a copy of SC (this copy has size continuum and is compact).
(e) The parametrization theorem for Borel sets holds (see 35.5 in [16]). We say that a set
is co-analytic if its complement is analytic. We can find a co-analytic subset D of 2N, an
analytic subset S of 2N × ΣN, and a co-analytic subset P of 2N × ΣN such that the vertical
sections Sα and Pα of S and P at any point α of D are equal, and the elements of Az are
exactly the sets Sα for some α in D.

4.2.4 Consequences related to uniformization problems
(7) Let X,Y be sets, L ⊆ X×Y , and f :X→Y be a partial map. We say that f uniformizes
L if the domain of f is π0[L] and the graph of f is contained in L. In the sequel, Σ and Γ
will be finite sets with at least two elements.
(a) Recall that if L ⊆ ΣN × ΓN is an infinitary rational relation, then L can be uniformized
by a function whose graph is ω-rational (see Theorem 5 in [2]). Moreover, the inverse image
of an ω-regular language by such a function is itself ω-regular, and thus the function is
continuous for τB .
(b) The Arsenin-Kunugui theorem holds (see 18.18 in [16]): if L ⊆ ΣN×ΓN is in Az and has
Kσ vertical sections, then L can be uniformized by a function whose graph is in Az (a Kσ

set is a countable union of compact sets).
(c) Let ξ ≥ 1 be a countable ordinal. The class Σ0

ξ has the number uniformization property
: if X is a zero-dimensional Polish space and L ⊆ X × N is Σ0

ξ , then L can be uniformized
by a function whose graph is Σ0

ξ . Consequently, for z ∈ {δ,B},
- Σzξ has the generalized reduction property : if (Ln)n∈N is a sequence of Σzξ subsets of

ΣN, then there is a sequence (Bn)n∈N of pairwise disjoint Σzξ subsets of ΣN with
⋃
n∈N Bn =⋃

n∈N Ln and Bn ⊆ Ln,
- Πz

ξ has the generalized separation property : if (Ln)n∈N is a sequence of Πz
ξ subsets

of ΣN with empty intersection, then there is a sequence (Bn)n∈N of ∆z
ξ subsets of ΣN with

empty intersection and Bn⊇Ln (see 22.16 in [16]).
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Moreover,
- the class of co-analytic sets has the number uniformization property and the generalized

reduction property,
- the class of analytic sets has the generalized separation property (see 35.1 in [16]).

(d) The Novikov-Kondo theorem holds (see 36.14 in [16]): if L ⊆ ΣN × ΓN is co-analytic,
then L can be uniformized by a function whose graph is co-analytic.

5 Concluding Remarks

We have obtained in this paper new links and interactions between descriptive set theory
and theoretical computer science, showing that four topologies considered in [26] are Polish,
and providing many consequences of these results.

Notice that this paper is also motivated by the fact that the Gandy-Harrington topology,
generated by the effective analytic subsets of a recursively presented Polish space, is an
extremely powerful tool in descriptive set theory. In particular, this topology is used to prove
some results of classical type (without reference to effective descriptive set theory in their
statement). Among these results, let us mention the dichotomy theorems in [13, 17, 19, 20].
Sometimes, no other proof is known. Part of the power of this technique comes from the
nice closure properties of the class Σ1

1 of effective analytic sets (in particular the closure
under projections).

The class of ω-regular languages has even stronger closure properties. So our hope is that
the study of the Büchi topology, generated by the ω-regular languages, will help to prove
some automatic versions of known descriptive results in the context of theoretical computer
science.

From the main result, we know that there is a complete distance which is compatible
with τz. It would be interesting to have a natural complete distance compatible with τB .
We leave this as an open question for further study.
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