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Abstract. We study the class of analytic binary relations on Polish spaces, compared by the notions
of continuous reducibility or injective continuous reducibility. In particular, we characterize when a
locally countable Borel relation is Σ0

ξ (or Π0
ξ), when ξ ≥ 3, by providing a concrete finite antichain

basis. We give a similar characterization for arbitrary relations when ξ= 1. When ξ= 2, we provide
a concrete antichain of size continuum made of locally countable Borel relations minimal among
non-Σ0

2 (or non-Π0
2) relations. The proof of this last result allows us to strengthen a result due to

Baumgartner in topological Ramsey theory on the space of rational numbers. We prove that positive
results hold when ξ = 2 in the acyclic case. We give a general positive result in the non-necessarily
locally countable case, with another suitable acyclicity assumption. We provide a concrete finite
antichain basis for the class of uncountable analytic relations. Finally, we deduce from our positive
results some antichain basis for graphs, of small cardinality (most of the time 1 or 2).
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1 Introduction

This article presents a continuation of the work in [L5], in which the descriptive complexity of
Borel equivalence relations on Polish spaces was studied (recall that a topological space is Polish if it
is separable and completely metrizable). These relations are compared using the notion of continuous
reducibility, which is as follows. Recall that if X,Y are topological spaces and A⊆X2, B⊆Y 2,

(X,A) ≤c (Y,B)⇔ ∃f :X→Y continuous with A=(f×f)−1(B)

(we say that f reduces A to B). When the function f can be injective, we write vc instead of
≤c. Sometimes, when the space is clear for instance, we will talk about A instead of (X,A). The
motivation for considering these quasi-orders is as follows (recall that a quasi-order is a reflexive
and transitive relation). A standard way of comparing the descriptive complexity of subsets of zero-
dimensional Polish spaces is the Wadge quasi-order (see [W]; recall that a topological space is
zero-dimensional if there is a basis for its topology made of clopen, i.e., closed and open, sets). If
S,Z are zero-dimensional Polish spaces and C⊆S, D⊆Z,

(S,C) ≤W (Z,D)⇔ ∃g :S→Z continuous with C=g−1(D).

However, the pre-image of a graph by an arbitrary continuous map is not in general a graph, for in-
stance. Note that the classes of reflexive relations, irreflexive relations, symmetric relations, transitive
relations are closed under pre-images by a square map. Moreover, the class of antisymmetric relations
is closed under pre-images by the square of an injective map. This is the reason why square maps are
considered to compare graphs, equivalence relations... The most common way of comparing Borel
equivalence relations is the notion of Borel reducibility (see, for example, [G], [Ka]). However, very
early in the theory, injective continuous reducibility was considered, for instance in Silver’s theorem
(see [S]).

The most classical hierarchy of topological complexity in descriptive set theory is the one given
by the Borel classes. If Γ is a class of subsets of the metrizable spaces, then Γ̌ :={¬S | S∈Γ} is its
dual class, and ∆(Γ) :=Γ ∩ Γ̌. Recall that the Borel hierarchy is the inclusion from left to right in
the following picture:

Σ0
1=open Σ0

2=Fσ Σ0
ξ =(

⋃
η<ξ Π0

η)σ

∆0
1=clopen ∆0

2=Σ0
2 ∩Π0

2 · · · ∆0
ξ =Σ0

ξ ∩Π0
ξ · · ·

Π0
1=closed Π0

2=Gδ Π0
ξ =Σ̌0

ξ

This hierarchy is strict in uncountable Polish spaces, in which the non self-dual classes are those of
the form Σ0

ξ or Π0
ξ . In the sequel, by non self-dual Borel class, we mean exactly those classes. A class

Γ of subsets of the zero-dimensional Polish spaces is a Wadge class if there is a zero-dimensional
space Z and a subset D of Z in Γ such that a subset C of a zero-dimensional space S is in Γ exactly
when (S,C) ≤W (Z,D). The hierarchy of the Wadge classes of Borel sets, compared with the
inclusion, refines greatly the hierarchy of the non self-dual Borel classes, and is the finest hierarchy
of topological complexity considered in descriptive set theory (see [Lo-SR2]).
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We are interested in the descriptive complexity of Borel relations on Polish spaces. In order to
approach this problem, it is useful to consider invariants for the considered quasi-order. A natural
invariant for Borel reducibility has been studied, the notion of potential complexity (see, for example,
[L2], [L3], and [Lo2] for the definition). A Borel relation R on a Polish space X is potentially in a
Wadge class Γ if we can find a finer Polish topology τ onX such thatR is in Γ in the product (X, τ)2.
This is an invariant in the sense that any relation which is Borel reducible to a relation potentially in
Γ has also to be potentially in Γ. Along similar lines, any relation which is continuously reducible to
a relation in Γ has also to be in Γ.

We already mentioned the equivalence relations. A number of other interesting relations can be
considered on a Polish space X , in the descriptive set theoretic context. Let us mention

- the digraphs (which do not meet the diagonal ∆(X) :={(x, x) | x∈X} of X),
- the graphs (i.e., the symmetric digraphs),
- the oriented graphs (i.e., the antisymmetric digraphs),
- the quasi-orders, strict or not,
- the partial orders (i.e., the antisymmetric quasi-orders), strict or not.

For instance, we refer to [Lo3], [L1], [K-Ma]. For locally countable relations (i.e., relations with
countable horizontal and vertical sections), we refer to [K2] in the case of equivalence relations. An
important subclass of the class of locally countable Borel equivalence relations is the class of treeable
locally countable Borel equivalence relations, generated by an acyclic locally countable Borel graph.
More generally, the locally countable digraphs have been widely considered, not necessarily to study
equivalence relations (see [K-Ma]). All this motivates the work in the present paper, mostly devoted
to the study of the descriptive complexity of arbitrary locally countable or/and acyclic Borel relations
on Polish spaces.

We are looking for characterizations of the relations in a fixed Borel class Γ. So we will consider
the continuous and injective continuous reducibilities. In other words, we want to give answers to the
following very simple question: when is a relation Σ0

ξ (or Π0
ξ)? We are looking for characterizations

of the following form: a relation is either simple, or more complicated than a typical complex relation.
So we need to introduce, for some Borel classes Γ, examples of complex relations.

Notation. Let Γ be a non self-dual Borel class, i.e., a class of the form Σ0
ξ or Π0

ξ for some countable
ordinal ξ>0, called the rank of Γ.

If the rank of Γ is one (i.e., if Γ∈{Σ0
1,Π

0
1}), then we set K :={0}∪{2−k | k ∈ ω}⊆R, C :={0}

if Γ=Σ0
1, and C :=K\{0} if Γ=Π0

1. The particular choice of K and C provides the injectivity part
in Theorem 1.5 to come.

If the rank of Γ is at least two, then we set K := 2ω, and C ∩ Ns ∈ Γ̌(Ns)\Γ(Ns) for each
s∈2<ω, where Ns :={α∈2ω | s⊆α} is the standard basic clopen subset of 2ω associated with s (the
existence of C comes from Lemma 4.5 in [L5]). In particular, C is dense and co-dense in 2ω. We set

C :=I2 :={α∈2ω | ∃∞n∈ω α(n)=1}

if Γ=Σ0
2, and C :=Q2 :={α∈2ω | ∀∞n∈ω α(n) = 0} if Γ=Π0

2. The particular choice of K and
C provides the injectivity part in Theorems 1.3 and 1.6-1.8 to come.
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In the sequel, we will say that (K,C) is Γ-good if either the rank of Γ is at most two and (K,C)
corresponds to the particular choices just above, or the rank of Γ is at least three, K = 2ω, and
C ∩ Ns ∈ Γ̌(Ns)\Γ(Ns) for each s ∈ 2<ω. In particular, K is a metrizable compact space and
C∈ Γ̌(K)\Γ(K) if (K,C) is Γ-good.

Examples. Let Γ be a non self-dual Borel class, and (K,C) be Γ-good. In [L5], the equivalence
relation EΓ

3 on D :=2×K is defined as follows: (ε, x) EΓ
3 (η, y)⇔ (ε, x)=(η, y) ∨ (x=y∈C). The

graph GΓ
m :=EΓ

3 \∆(D), obtained from EΓ
3 by removing the diagonal, will be very important in the

sequel (the letter “m” expresses the minimality).
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The main result in [L5] is as follows. Most of our results will hold in analytic spaces and not only in
Polish spaces. Recall that a separable metrizable space is an analytic space if it is homeomorphic to
an analytic subset of a Polish space.

Theorem 1.1 Let Γ be a non self-dual Borel class of rank at least three. Then EΓ
3 is thevc-minimum

among non-Γ locally countable Borel equivalence relations on an analytic space.

In fact, this result is also valid for equivalence relations with Σ0
2 classes, i.e., Σ0

2 sections. Recall
that if (Q,≤) is a quasi-ordered class, then a basis is a subclass B of Q such that any element of Q
is ≤-above an element of B. We are looking for basis as small as possible, so in fact for antichains
(an antichain is a subclass of Q made of pairwise ≤-incomparable elements). As we will see, the
solution of our problem heavily depends on the rank of the non self-dual Borel class considered. The
next result solves our problem for the classes of rank at least three.

Theorem 1.2 (1) Let Γ be a non self-dual Borel class of rank at least three. Then there is a concrete
34 element vc and ≤c-antichain basis for the class of non-Γ locally countable Borel relations on an
analytic space.
(2) GΓ

m is the vc-minimum among non-Γ locally countable Borel graphs on an analytic space.
(3) These results also hold when Γ has rank two for relations whose sections are in ∆(Γ).

The next surprising result shows that this complexity assumption on the sections is useful for the
classes of rank two, for which any basis must have size continuum.

Theorem 1.3 Let Γ be a non self-dual Borel class of rank two. Then there is a concrete≤c-antichain
of size continuum made of locally countable Borel relations on 2ω which are ≤c and vc-minimal
among non-Γ relations on an analytic space.

Similar results hold for graphs (see Corollary 3.13 and Theorem 3.15). Our analysis of the rank
two also provides a basis for the class of non-Σ0

2 locally countable Borel relations on an analytic space
(see Theorem 2.15). The proof of Theorem 1.3 strengthens Theorem 1.1 in [B] (see also Theorem
6.31 in [T], in topological Ramsey theory on the space Q of rational numbers).
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Theorem 1.4 There is an onto coloring c : Q[2]→ ω with the property that, for any H ⊆Q homeo-
morphic to Q, there is h :Q→H , homeomorphism onto h[Q], for which c({x, y})=c

(
{h(x), h(y)}

)
if x, y∈Q. In particular, c takes all the values from ω on H [2].

Question. For the classes of rank two, we saw that any basis must have size continuum. Is there an
antichain basis?

The next result solves our problem for the classes of rank one.

Theorem 1.5 Let Γ be a non self-dual Borel class of rank one. Then there is a concrete 7360 element
≤c-antichain basis, made of relations on a countable metrizable compact space, for the class of non-
Γ relations on a first countable topological space. A similar result holds forvc, with 2 more elements
in the antichain basis.

Note that in Theorem 1.5, the fact of assuming that X is analytic or that R is locally countable
Borel does not change the result since the elements of the antichain basis satisfy these stronger as-
sumptions. The “first countable” assumption ensures that closures and sequential closures coincide.
Here again, similar results hold for graphs, with much smaller antichain basis (of cardinality ≤c-5,
vc-6 for Π0

1, and 10 for Σ0
1). We will not give the proof of Theorem 1.5 since it is elementary. We

simply describe the different antichain basis in Section 5.

Remark. Theorem 1.5 provides a finite antichain basis for the class of non-closed Borel relations
on a Polish space, for vc and ≤c. This situation is very different for the class C of non-potentially
closed Borel relations on a Polish space. Indeed, [L1] provides an antichain of size continuum made
of minimal elements of C, for any of these two quasi-orders. It also follows from [L-M] that in fact
there is no antichain basis in C, for any of these two quasi-orders again.

The works in [K-S-T], [L-M], [L-Z], [L4] and also [C-L-M] show that an acyclicity assumption
can give positive dichotomy results (see, for example, Theorem 1.9 in [L4]). This is a way to fix our
problem with the rank two. IfA is a binary relation on a setX , thenA−1 :={(x, y)∈X2 | (y, x)∈A}.
The symmetrization of A is s(A) :=A ∪ A−1. An A-path is a finite sequence (xi)i≤n of points of
X such that (xi, xi+1)∈A if i < n. We say that A is acyclic if there is no injective A-path (xi)i≤n
with n≥2 and (xn, x0)∈A. In practice, we will consider acyclicity only for symmetric relations. We
will say that A is s-acyclic if s(A) is acyclic.

Theorem 1.6 (1) There is a concrete 34 element vc and ≤c-antichain basis for the class of non-Σ0
2

s-acyclic locally countable Borel relations on an analytic space.

(2) GΣ0
2

m is the vc-minimum among non-Σ0
2 acyclic locally countable Borel graphs on an analytic

space.

Notation. For the class Π0
2, we need some more examples since the complexity of a locally countable

relation can come from the complexity of one of its sections in this case. Let Γ be a non self-dual
Borel class of rank at least two, and (2ω,C) be Γ-good. We set S := {0∞} ∪ N1 (where N1 is the
basic clopen set {α∈2ω | α(0)=1}), and GΓ,a

m :=s({(0∞, 1α) | α∈C}).
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Theorem 1.7 (1) There is a concrete 52 element vc and ≤c-antichain basis for the class of non-Π0
2

s-acyclic locally countable Borel relations on an analytic space.

(2) {(D,GΠ0
2

m ), (S,GΠ0
2,a

m )} is a vc and ≤c-antichain basis for the class of non-Π0
2 acyclic locally

countable Borel graphs on an analytic space.

Theorems 1.6 and 1.7 are consequences of the following, which does not involve local countabil-
ity.

Theorem 1.8 Let Γ be a non self-dual Borel class of rank two.
(1) There is a concrete 76 element vc and ≤c-antichain basis for the class of non-Γ s-acyclic Borel
relations on an analytic space.
(2) {(D,GΓ

m), (S,GΓ,a
m )} is a vc and ≤c-antichain basis for the class of non-Γ acyclic Borel graphs

on an analytic space.

This result can be extended, with a suitable acyclicity assumption. In [L4], it is shown that the
containment in an s-acyclic Σ0

2 relation allows some positive reducibility results (see, for example
Theorem 4.1 in [L4]). A natural way to ensure this is to have an s-acyclic closure (recall Theorem 1.9
in [L4]). In spaces of infinite sequences like the Baire space ωω, having s-acyclic levels is sufficient
to ensure this (see Proposition 2.7 in [L4]). Moreover, there is an s-acyclic closed relation on 2ω

containing Borel relations of arbitrarily high complexity (even potential complexity), by Proposition
3.17 in [L4]. The next result unifies the classes of rank at least two.

Theorem 1.9 Let Γ be a non self-dual Borel class of rank at least two.
(1) There is a concrete 76 element vc and ≤c-antichain basis for the class of non-Γ Borel relations
on an analytic space contained in an s-acyclic Σ0

2 relation.

(2) {(D,GΓ
m), (S,GΓ,a

m )} is a vc and ≤c-antichain basis for the class of non-Γ Borel graphs on an
analytic space contained in an acyclic Σ0

2 graph.

Questions. For the classes of rank at least three, we gave finite antichain basis for small relations.
Is there an antichain basis if we do not assume smallness? If yes, is it finite? Countable? Is it true
that any basis must have size continuum? The graph

(
2ω,C2\∆(2ω)

)
shows that we cannot simply

erase the acyclicity assumptions in Theorems 1.8.(2) and 1.9.(2) (in order to see that, an argument
by contradiction provides a continuous reduction f , we use the density of C, and we discuss the
constantness of f ).

Theorems 1.2, 1.3-1.4, 1.6-1.9 are proved in Sections 2, 3, 4 respectively. In Section 6, we close
this study of vc by providing an antichain basis for the class of uncountable analytic relations on a
Hausdorff topological space, which gives a perfect set theorem for binary relations. We extend the
notation GΓ

m,G
Γ,a
m to the class Γ={∅}.
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Theorem 1.10 (1) There is a concrete 13 element vc-antichain basis for the class of uncountable
analytic relations on a Hausdorff topological space.

(2) {(D,G{∅}m ), (S,G{∅},am ), (2ω, 6=)} is a vc-antichain basis for the class of uncountable analytic
graphs on a Hausdorff topological space.

As (2ω, 6=) is not acyclic, we recover the basis met in Theorems 1.8.(2) and 1.9.(2) in the acyclic
case. Also, (S,G{∅},am ) and (2ω, 6=) are not locally countable. In conclusion, [L5] and the present
study show that, when our finite antichain basis exist, they are small in the cases of equivalence
relations and graphs.

We saw that there is no antichain basis in the class of non-potentially closed Borel relations on
a Polish space. However, it follows from the main results in [L2] and [L3] that this problem can be
fixed if we allow partial reductions, on a closed relation (which in fact is suitable for any non self-dual
Borel class). This solution involves the following quasi-order, less considered than vc and ≤c. Let
X , Y be topological spaces, and A0, A1⊆X2 (resp., B0, B1⊆Y 2) be disjoint. Then we set

(X,A0, A1) ≤ (Y,B0, B1)⇔ ∃f :X→Y continuous with ∀ε∈2 Aε⊆(f×f)−1(Bε).

A similar result holds here, for the Borel classes instead of the potential Borel classes. We define
OΓ
m :=

{(
(0, x), (1, x)

)
| x∈C

}
. Note that GΓ

m=s(OΓ
m).

Theorem 1.11 Let Γ be a non self-dual Borel class.
(1) Let X be an analytic space, and R be a Borel relation on X . Exactly one of the following holds:

(a) the relation R is a Γ subset of X2,

(b) (D,OΓ
m,O

{∅}
m \OΓ

m) ≤ (X,R,X2\R).

(2) A similar statement holds for graphs, with (GΓ
m,G

{∅}
m \GΓ

m) instead of (OΓ
m,O

{∅}
m \OΓ

m).

This last result can be extended to any non self-dual Wadge class of Borel sets. Note that there is
no injectivity in Theorem 1.11. For instance, if (D,GΓ

m,G
{∅}
m \GΓ

m) ≤ (S,GΓ,a
m ,S2\GΓ,a

m ) with an
injective witness f , then we can find ε∈2 and l∈ω such that f(ε, 1lα)(0)=0 and thus f(ε, 1lα)=0∞

for any α∈2ω, contradicting the injectivity of f .

2 The general case

2.1 Preliminary results

We first extend Lemma 4.1 in [L5].

Lemma 2.1 Let Γ be a class of sets closed under continuous pre-images, Y,Z be topological spaces,
and R,S be a relation on Y, Z respectively.

(a) If R is in Γ, then the sections of R are also in Γ.
(b) If S has vertical (resp., horizontal) sections in Γ and (Y,R) ≤c (Z, S), then the vertical

(resp., horizontal) sections of R are also in Γ.
(c) If S has countable vertical (resp., horizontal) sections and (Y,R) vc (Z, S), then the vertical

(resp., horizontal) sections of R are also countable.
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Proof. (a) comes from the fact that if y ∈ Y , then the maps iy : y′ 7→ (y, y′), jy : y′ 7→ (y′, y) are
continuous and satisfy Ry = i−1y (R), Ry = j−1y (R). The statements (b), (c) come from the facts that
Ry=f−1(Sf(y)), Ry=f−1(Sf(y)). �

We now extend Theorem 4.3 in [L5].

Notation. Let R be a relation on D. We set, for ε, η∈2, Rε,η :=
{

(α, β)∈K2 |
(
(ε, α), (η, β)

)
∈R
}

.

Theorem 2.2 Let Γ be a non self-dual Borel class of rank at least two, (2ω,C) be Γ-good, X be an
analytic space, and R be a Borel relation on X . Exactly one of the following holds:

(1) the relation R is a Γ subset of X2,
(2) one of the following holds:

(a) the relation R has at least one section not in Γ,
(b) there is a relation R on 2ω such that R ∩∆(2ω)=∆(C) and (2ω,R) vc (X,R),
(c) there is a relation R on D such that R0,1 ∩∆(2ω)=∆(C) and (D,R) vc (X,R).

Proof. We first note that (1) and (2) cannot hold simultaneously. Indeed, we argue by contradiction,
which successively implies that R has sections in Γ by Lemma 2.1.(a), R ∈ Γ

(
(2ω)2

)
, R ∈ Γ(D2),

and R ∩∆(2ω)∈Γ
(
∆(2ω)

)
, R0,1 ∩∆(2ω)∈Γ

(
∆(2ω)

)
. Thus C∈ Γ(2ω), which is absurd.

Assume now that (1) and (2).(a) do not hold. Theorem 1.9 in [L5] gives an f :=(f0, f1) :2ω→X2

continuous with injective coordinates such that C=f−1(R).

Case 1. f [¬C]⊆∆(X).

Note that f [2ω] ⊆ ∆(X), by the choice of C, which implies that f0 = f1. We next define
R :=(f0×f0)−1(R). Note that R ∩∆(2ω)=∆(C) and (2ω,R) vc (X,R), with witness f0.

Case 2. f [¬C] 6⊆∆(X).

We may assume that f0 and f1 have disjoint ranges, by the choice of C. We define g :D→X by
g(ε, α) := fε(α). Note that g is injective continuous,

{(
(0, α), (1, α)

)
| α∈C

}
⊆ (g×g)−1(R) and{(

(0, α), (1, α)
)
| α /∈C

}
⊆(g×g)−1(¬R). It remains to set R :=(g×g)−1(R). �

The following property is crucial in the sequel, as well as in [L5]. It is strongly related to condition
(2) in Theorem 2.2.

Definition 2.3 Let f :K→K be a function, and C⊆K. We say that f preserves C if C=f−1(C).

Lemma 2.4 Let f :K→K be a function, C⊆K, and R be a relation on K with R ∩∆(K)=∆(C).
Then the following are equivalent:

(1) f preserves C.
(2) (f×f)−1(R) ∩∆(K)=∆(C).

Proof. We just apply the definitions. �

Finally, we will make a strong use of the following result (see page 433 in [Lo-SR1]). When ξ=2,
this result strengthens Hurewicz’s theorem characterizing when a Borel subset of a Polish space is Σ0

2

(see 21.18 in [K1]). Indeed, B does not have to be the complement of A in what follows, which will
be used several times. Moreover, this allows applications in analytic spaces.
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Theorem 2.5 (Louveau-Saint Raymond) Let ξ ≥ 1 be a countable ordinal, (K,C) be Σ0
ξ-good (or

simply C∈Π0
ξ(2

ω)\Σ0
ξ(2

ω) if ξ≥ 3), X be a Polish space, and A,B be disjoint analytic subsets of
X . Then exactly one of the following holds:

(a) the set A is separable from B by a Σ0
ξ set,

(b) we can find an injective continuous f :K→X such that C⊆f−1(A) and ¬C⊆f−1(B).

A first consequence of this is Theorem 1.11 (these two results extend to the non self-dual Wadge
classes of Borel sets, see Theorem 5.2 in [Lo-SR2]).

Proof of Theorem 1.11. (1) As C /∈Γ, OΓ
m is not separable from O{∅}m \OΓ

m by a set in Γ, and (a),
(b) cannot hold simultaneously. So assume that (a) does not hold. As X is separable metrizable, we
may assume that X is a subset of the Polish space [0, 1]ω (see 4.14 in [K1]). Note that the analytic set
R is not separable from the analytic set X2\R by a Γ subset of ([0, 1]ω)2. Theorem 2.5 provides a
continuous h :K→ ([0, 1]ω)2 such that C⊆h−1(R) and ¬C⊆h−1(X2\R). Note that h takes values
in X2. We define f :D→X by f(ε, x) :=h(x)(ε). Note that f is continuous. Moreover,(

(0, x), (1, x)
)
∈OΓ

m ⇔ x∈C⇔ h(x)=
(
h(x)(0), h(x)(1)

)
∈R⇔

(
f(0, x), f(1, x)

)
∈R,

which implies that (b) holds.

(2) We just have to consider the symmetrizations of the relations appearing in (1). �

2.2 Simplifications for the rank two

We will see that, for classes of rank two, the basic examples are contained in ∆(2ω) ∪ Q2
2. The

next proof is the first of our two proofs using effective descriptive set theory (see also Theorem 4.6).

Lemma 2.6 Let R be a Borel relation on I2 whose sections are separable from Q2 by a Σ0
2 set. Then

we can find a sequence (Rn)n∈ω of relations closed in I2×2ω and 2ω×I2, as well as f : 2ω→ 2ω

injective continuous preserving Q2 such that (f×f)−1(R)⊆
⋃
n∈ω Rn.

Proof. In order to simplify the notation, we assume that R is a ∆1
1 relation on 2ω. Recall that we can

find Π 1
1 sets W ⊆ 2ω×ω and C⊆ 2ω×ω×2ω such that ∆1

1(α)(2ω) = {Cα,n | (α, n)∈W} for each
α ∈ 2ω and {(α, n, β) ∈ 2ω×ω×2ω | (α, n) ∈W ∧ (α, n, β) /∈C} is a Π 1

1 subset of 2ω×ω×2ω

(see Section 2 in [Lo1]). Intuitively, Wα is the set of codes for the ∆1
1(α) subsets of 2ω. We set

W2 := {(α, n)∈W | Cα,n is a Π0
2 ∩∆1

1(α) subset of 2ω}. Intuitively, (W2)α is the set of codes for
the Π0

2 ∩∆1
1(α) subsets of 2ω. By Section 2 in [Lo1], the set W2 is Π 1

1 . We set

P := {(α, n)∈2ω×ω | (α, n)∈W2 ∧Rα⊆¬Cα,n⊆I2}.

Note that P is Π 1
1 . Moreover, for each α∈I2, there is an n∈ω such that (α, n)∈P , by Theorem 2.B’

in [Lo1]. The ∆-selection principle provides a ∆1
1-recursive map f : 2ω→ω such that

(
α, f(α)

)
∈P

if α∈I2 (see 4B.5 in [Mo]). We set B :=
{

(α, β)∈I2×2ω |
(
α, f(α), β

)
/∈C
}

. Note that B is a ∆1
1

set with vertical sections in Σ0
2, and Rα⊆Bα⊆ I2 for each α∈ I2. Theorem 3.6 in [Lo1] provides a

finer Polish topology τ on 2ω such that B∈Σ0
2

(
(2ω, τ)×2ω

)
. Note that the identity map from (2ω, τ)

into 2ω is a continuous bijection. By 15.2 in [K1], it is a Borel isomorphism.
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By 11.5 in [K1], its inverse is Baire measurable. By 8.38 in [K1], there is a dense Gδ subset G of
2ω on which τ coincides with the usual topology on 2ω. In particular, B ∩ (G×2ω)∈Σ0

2(G×2ω) and
we may assume that G⊆I2. Note that G is not separable from Q2 by a set in Σ0

2, by Baire’s theorem.
Theorem 2.5 provides g : 2ω→ 2ω injective continuous such that I2 ⊆ g−1(G) and Q2 ⊆ g−1(Q2).
Note that (g×g)−1(B) is Σ0

2 in I2×2ω and contained in I22 . So, replacing B with (g×g)−1(B) if
necessary, we may assume thatR is contained in a Borel setB which is Σ0

2 in I2×2ω and contained in
I22 . Similarly, we may assume thatR is contained in a Borel setD which is Σ0

2 in 2ω×I2 and contained
in I22 . Let (Bp)p∈ω, (Dq)q∈ω be sequences of closed relations on 2ω with B=

⋃
p∈ω Bp ∩ (I2×2ω),

D =
⋃
q∈ω Dq ∩ (2ω×I2) respectively. We set Rp,q :=Bp ∩ Dq ∩ I22 . Note that Rp,q is closed in

I2×2ω and 2ω×I2 since, for example, Rp,q := Bp ∩ Dq ∩ (I2×2ω) = Bp ∩ Dq ∩ (2ω×I2), and
R⊆

⋃
p,q∈ω Rp,q. �

Notation. We define a well-order≤l of order type ω on 2<ω by s≤l t⇔ |s|< |t| ∨ (|s|= |t| ∧ s≤lex t)
and, as usual for linear orders, set s <l t ⇔ s ≤l t ∧ s 6= t. Let b : (ω,≤) → (2<ω,≤l) be the
increasing bijection, αn+1 := b(n)10∞, α0 := 0∞. Note that Q2 = {αn | n ∈ ω}. We then set
Q :={∅} ∪ {u1 | u∈2<ω}. Note that Q2={t0∞ | t∈Q}.

Definition 2.7 A Cantor set with dense finites is a copy C of 2ω in 2ω such that Q2 ∩C is dense in
C.

Note that ifC is a Cantor set with dense finites, thenQ2∩C is countable dense, and also co-dense,
in C, which implies that Q2 ∩ C is Σ0

2 and not Π0
2 in C, by Baire’s theorem.

Conventions. In the rest of Sections 2 and 3, we will perform a number of Cantor-like constructions.
The following will always hold. We fix a Cantor set with dense finites C, and we want to construct
f : 2ω → C injective continuous preserving Q2. We inductively construct a sequence (nt)t∈2<ω

of positive natural numbers, and a sequence (Ut)t∈2<ω of basic clopen subsets of C, satisfying the
following conditions.

(1) Utε⊆Ut
(2) αnt ∈Ut
(3) diam(Ut)≤2−|t|

(4) Ut0 ∩ Ut1=∅
(5) nt0=nt
(6) Ut1 ∩ {αn | n≤|t|}=∅

Assume that this is done. Using (1)-(3), we define f : 2ω → C by {f(β)} :=
⋂
n∈ω Uβ|n, and f

is injective continuous by (4). If t ∈ Q and α = t0∞, then f(α) = αnt by (5), which implies that
Q2 ⊆ f−1(Q2). Condition (6) ensures that I2 ⊆ f−1(I2), which implies that f preserves Q2. For
the first step of the induction, we choose n∅ ≥ 1 in such a way that αn∅ ∈ C, and a basic clopen
neighbourhood U∅ of αn∅ . Condition (5) defines nt0. It will also be convenient to set st :=b(nt−1)1.

The next result is in the style of the Mycielski-Kuratowski Theorem (see 19.1 in [K1]).

Lemma 2.8 Let (Rn)n∈ω be a sequence of relations on I2 which are closed in I2×2ω and in 2ω×I2.
Then there is f : 2ω→ 2ω injective continuous preserving Q2 such that

(
f(α), f(β)

)
/∈
⋃
n∈ω Rn if

α 6=β∈I2.
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Proof. We ensure (1)-(6) with C=2ω and

(7) (Us1×Utε) ∩ (
⋃
n≤l

Rn)=∅ if s 6= t∈2l

Assume that this is done. If α 6=β∈I2, then we can find l with α|l 6=β|l, and a strictly increasing se-
quence (lk)k∈ω of natural numbers bigger than l such that α(lk)=1 for each k. Condition (7) ensures
that Uα|(lk+1)×Uβ|(lk+1) does not meet

⋃
n≤lk Rn, which implies that

(
f(α), f(β)

)
/∈
⋃
n∈ω Rn.

So it is enough to prove that the construction is possible. We first set n∅ := 1 and U∅ := 2ω.
We choose n1 ≥ 1 such that αn1 6= αn0 , and U0, U1 disjoint with diameter at most 2−1 such that
αnε ∈Uε⊆2ω\{α0}. Assume that (nt)|t|≤l and (Ut)|t|≤l satisfying (1)-(7) have been constructed for
some l≥1, which is the case for l=1. We set F :={αnt | t∈2l} ∪ {αn | n≤ l} and L :=

⋃
n≤l Rn.

Claim. Let U,U0, · · · , Um be nonempty open subsets of 2ω, γi ∈ Q2 ∩ Ui, for each i ≤m, and F
be a finite subset of Q2 containing {γi | i≤m}. Then we can find γ ∈Q2 ∩ U and clopen subsets
V, V0, · · · , Vm of 2ω with diameter at most 2−l−1 such that γ∈V ⊆U \(F ∪ V0), γi∈Vi⊆Ui and(

(V ×Vi) ∪ (Vi×V )
)
∩ L=∅

for each i≤m.

Indeed, fix i≤m. Note that I2×{γi}⊆I2×Q2 and L⊆I22 are disjoint closed subsets of the zero-
dimensional space I2×2ω. This gives a clopen subset iC of I2×2ω with I2×{γi}⊆ iC⊆¬L (see 22.16
in [K1]). So for each β∈I2 we can find a clopen subset i,βO of I2 and a clopen subset i,βD of 2ω such
that (β, γi)∈ i,βO×i,βD⊆ iC and i,βD⊆Ui. As I2=

⋃
β∈I2 i,βO, we can find a sequence (βp)p∈ω of

points of I2 with the property that I2 =
⋃
p∈ω i,βpO. We set i,pO := i,βpO\(

⋃
q<p i,βqO). Note that

(i,pO)p∈ω is a partition of I2 into clopen sets. We set i,pD := i,βpD. Note that i,pO×i,pD⊆ iC. Let
i,pW be an open subset of 2ω with i,pO=I2 ∩ i,pW . By 22.16 in [K1], there is a sequence (i,pU)p∈ω
of pairwise disjoint open subsets of 2ω such that i,pU⊆ i,pW and

⋃
p∈ω i,pU=

⋃
p∈ω i,pW . Note that

i,pO=I2 ∩ i,pU .

Similarly, let Ci be a clopen subset of 2ω×I2 with {γi}×I2⊆Ci⊆¬L, (Oi,q)q∈ω be a partition
of I2 into clopen sets, (Di,q)q∈ω be a sequence of clopen subsets of 2ω, and (Ui,q)q∈ω be a sequence
of pairwise disjoint open subsets of 2ω such that Di,q×Oi,q⊆Ci, γi∈Di,q⊆Ui and Oi,q=I2 ∩ Ui,q.
Now pick β∈I2 ∩ U , pi∈ω with β∈ i,piO, and qi∈ω with β∈Oi,qi . We set

U ′ :=U ∩
⋂
i≤m

(i,piU ∩ Ui,qi)\F.

As U ′ is an open subset of 2ω containing β, we can choose γ∈Q2 ∩ U ′, and a clopen subset V of 2ω

with diameter at most 2−l−1 such that γ∈V ⊆U ′. If i≤m, then we choose a clopen neighbourhood
Vi of γi with diameter at most 2−l−1 such that Vi ⊆ i,piD ∩ Di,qi . As γ 6= γ0, we can ensure that
V does not meet V0. For example, note that (I2 ∩ V )×Vi ⊆ (I2 ∩ i,piU)× i,piD ⊆ iC ⊆ ¬L since
I2 ∩ i,piU= i,piO. �

We put a linear order on the set 2l of binary sequences of length l, which implies that 2l is
enumerated injectively by {tj | j<2l}. Let j<2l. Note that (5) defines ntj0.
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We construct, by induction on j < 2l, ntj1, and sequences (U jt0)t∈2l , (U jti1)i≤j of clopen subsets
of 2ω satisfying the following:

(a) U j+1
t0 ⊆U

j
t0⊆Ut ∧ U

j+1
ti1
⊆U jti1⊆Uti

(b) αnt ∈U
j
t0 ∧ αnti1

∈U jti1
(c) diam(U jt0), diam(U jti1)≤2−l−1

(d) U jtj0 ∩ U
j
tj1

=∅
(e) U jtj1 ∩ F =∅
(f)

((
U jtj1×(U jt0 ∪ U

j
ti1

)
)
∪
(
(U jt0 ∪ U

j
ti1

)×U jtj1
))
∩ L=∅ if i<j

In order to do this, we first apply the claim to U := Ut0 and a family (γi)i≤m of elements of Q2

enumerating {αnt | t ∈ 2l} in such a way that γ0 = αnt0
. The corresponding family of open sets

enumerates {Ut | t ∈ 2l}. The claim provides αnt01
∈Q2 ∩ Ut0 and clopen subsets U0

t01
, U0

t0 of 2ω

with diameter at most 2−l−1 such that αnt01
∈U0

t01
⊆Ut0\(F ∪ U0

t00
), αnt ∈U0

t0⊆Ut and(
(U0

t01×U
0
t0) ∪ (U0

t0×U0
t01)
)
∩ L=∅

for each t∈ 2l. Assume then that j<2l−1 and (ntk1)k≤j , (Ukt0)t∈2l,k≤j and (Ukti1)i≤k≤j satisfying
(a)-(f) have been constructed, which is the case for j=0.

We now apply the claim to U :=Utj+1 and a family (γi)i≤m of elements of Q2 enumerating
{αnt | t∈ 2l} ∪ {αnti1

| i≤ j} in such a way that γ0 = αntj+1
. The corresponding family of open

sets enumerates {U jt0 | t∈2l} ∪ {U jti1 | i≤j}. The claim provides αntj+11
∈Q2 ∩ Utj+1 and clopen

subsets U j+1
tj+11

, U j+1
t0 , U j+1

ti1
of 2ω of diameter at most 2−l−1 with the properties that αntj+11

is in

U j+1
tj+11

⊆Utj+1\(F ∪ U
j+1
tj+10

), αnt ∈U
j+1
t0 ⊆U

j
t0, αnti1

∈U j+1
ti1
⊆U jti1 and, when i≤j,((

U j+1
tj+11
×(U j+1

t0 ∪ U j+1
ti1

)
)
∪
(
(U j+1

t0 ∪ U j+1
ti1

)×U j+1
tj+11

))
∩ L=∅.

It remains to set Utε :=U2l−1
tε . �

Corollary 2.9 Let R be a locally countable Borel relation on 2ω. Then we can find f : 2ω → 2ω

injective continuous preserving Q2 such that R′ :=(f×f)−1(R)⊆∆(2ω) ∪Q2
2.

Proof. As Q2 is countable and R is locally countable, the set C :=
⋃
α∈Q2

(Rα ∪ Rα) is countable.
We set G :=I2\C. Note that G⊆I2 is a non-meager subset of 2ω having the Baire property. Lemma
7.2 in [L5] provides f : 2ω → 2ω injective continuous such that f [I2] ⊆ G and f [Q2] ⊆ Q2. This
proves that we may assume that R ∩

(
(I2×Q2) ∪ (Q2×I2)

)
=∅. By Lemma 2.6 applied to R ∩ I22 ,

we may assume that there is a sequence (Rn)n∈ω of relations closed in I2×2ω and 2ω×I2 such that
R ∩ I22 ⊆

⋃
n∈ω Rn. It remains to apply Lemma 2.8. �

Corollary 2.9 leads to the following.

Definition 2.10 Let Γ be a non self-dual Borel class of rank two, and (2ω,C) be Γ-good. A relation
R on 2ω is diagonally complex if it it satisfies the following:

(1)R∩∆(2ω)=∆(C),
(2)R⊆∆(C) ∪Q2

2.

Note that a diagonally complex relation is not in Γ by (1), and locally countable Borel by (2).
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Notation. We set, for any digraph D on Q, RD := ∆(C) ∪ {(s0∞, t0∞) | (s, t)∈D}. Note that any
diagonally complex relation is of the formRD, for some digraph D on Q.

In our future Cantor-like constructions, the definition of nt1 will be by induction on ≤l, except
where indicated. Corollary 2.9 simplifies the structure of the locally countable Borel relations on 2ω.
Some further simplification is possible when the sections are nowhere dense.

Lemma 2.11 Let R be a relation on 2ω with nowhere dense sections. Then there is f : 2ω → 2ω

injective continuous preserving Q2 such that
(
f(α), f(β)

)
/∈R if α 6=β∈Q2.

Proof. We ensure (1)-(6) with C=2ω and

(7) (αns , αnt), (αnt , αns) /∈R if t∈Q ∧ s∈2|t| ∧ s<lex t

Assume that this is done. If α 6= β ∈ Q2, then, without loss of generality, α <lex β and there are
initial segments s, t of α, β respectively satisfying the assumption in (7). Condition (7) ensures that(
f(α), f(β)

)
/∈R.

So it is enough to prove that the construction is possible. We first set n∅ := 1 and U∅ := 2ω.
Assume that (nt)|t|≤l and (Ut)|t|≤l satisfying (1)-(7) have been constructed, which is the case for
l=0. Fix t∈2l. We choose nt1≥1 such that

αnt1 ∈Ut\({αnt} ∪ {αn | n≤ l} ∪
⋃

s∈2l+1,s<lext1

Rαns
∪Rαns ),

which exists sinceR has nowhere dense sections. We then choose a clopen neighbourhood with small
diameter Utε of αntε contained in Ut, ensuring (4) and (6). �

Corollary 2.12 LetR be a diagonally complex relation.

(1) IfR has nowhere dense sections, then (2ω,R∅) vc (2ω,R).

(2) If Q2
2\R has nowhere dense sections, then (2ω,R6=) vc (2ω,R).

Proof. Lemma 2.11 gives f : 2ω→ 2ω injective continuous preserving Q2 such that
(
f(α), f(β)

)
is

not inR (resp., inR) if α 6=β∈Q2. Note that (f×f)−1(R)=R∅ (resp., (f×f)−1(R)=R6=). �

Theorem 1.2 provides a basis. Theorem 2.15 to come provides another one, and is a consequence
of Corollary 2.9.

Notation. Let Γ be a non self-dual Borel class of rank at least two, and (2ω,C) be Γ-good. We set
S0 :=C, S1 :=∅, S2 :=2ω\C, S3 :=2ω. The next result motivates the introduction of these sets.

Lemma 2.13 Let Γ be a non self-dual Borel class of rank at least two, (2ω,C) be Γ-good, and B be
a Borel subset of 2ω. Then we can find j ∈4 and f : 2ω→2ω injective continuous preserving C such
that f−1(B)=Sj .

Proof. Note that since C ∈ Γ̌(2ω)\Γ(2ω), either C\B is not separable from ¬C by a set in Γ, or
C ∩ B is not separable from ¬C by a set in Γ, because Γ is closed under finite unions. Assume, for
example, that the first case occurs.
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Similarly, either C\B is not separable from (¬C) ∩ (¬B) by a set in Γ, or C\B is not separable
from (¬C) ∩ B by a set in Γ, because Γ is closed under finite intersections. This shows that one of
the following cases occurs:

- C\B is not separable from (¬C) ∩ (¬B) by a set in Γ,
- C\B is not separable from (¬C) ∩B by a set in Γ,
- C ∩B is not separable from (¬C) ∩ (¬B) by a set in Γ,
- C ∩B is not separable from (¬C) ∩B by a set in Γ.

Assume, for example, that we are in the first of these four cases. By Theorem 2.5, there is
f : 2ω→ 2ω injective continuous such that C⊆ f−1(C\B) and ¬C⊆ f−1

(
(¬C) ∩ (¬B)

)
. In this

case, f−1(B) = ∅ = S1. In the other cases, f−1(B) = S2, S0, S3, respectively. So we proved that
f−1(B)=Sj for some j∈4. �

Corollary 2.14 Let Γ be a non self-dual Borel class of rank at least two, (2ω,C) be Γ-good, and
R be a Borel relation on D. Then there is f : 2ω→ 2ω injective continuous preserving C such that
(f×f)−1(Rε,η) ∩∆(2ω)∈{∆(Sj) | j≤3} for each ε, η∈2.

Proof. We set, for ε, η ∈ 2, Eε,η := {α∈ 2ω | (α, α)∈Rε,η}. Note that Eε,η is a Borel subset of 2ω

and Rε,η ∩∆(2ω)=∆(Eε,η). Now fix ε, η∈2. Lemma 2.13 provides j∈4 and g : 2ω→2ω injective
continuous preserving C such that (g×g)−1(Eε,η)=Sj . We just have to apply this for each ε, η∈2.�

Theorem 2.15 Let Γ be a non self-dual Borel class of rank two, (2ω,C) be Γ-good,X be an analytic
space, and R be a locally countable Borel relation on X whose sections are in Γ. Exactly one of the
following holds.

(1) the relation R is a Γ subset of X2,

(2) one of the following holds:

(a) there is a diagonally complex relation R on 2ω such that (2ω,R) vc (X,R),

(b) there is a relation R on D such that, for each ε, η∈2, if Rε,η ∩∆(2ω)=∆(Eε,η), then

(i) E0,1=C=S0, E1,0∈{Sj | j≤3}, and Eε,ε∈{Sj | 1≤j≤3},
(ii) Rε,η⊆∆(Eε,η) ∪Q2

2 (in particular, R0,1 is diagonally complex),

and (D,R) vc (X,R).

Proof. By Theorem 2.2, (1) and (2) cannot hold simutaneously. Assume that (1) does not hold. By
Theorem 2.2 again, one of the following holds.

(a) There is a relation R on 2ω such that R ∩∆(2ω) = ∆(C) and (2ω,R) vc (X,R). By Corollary
2.9 we may assume that R⊆∆(2ω) ∪Q2

2, which implies that R is a diagonally complex relation.

(b) There is a relation R′ on D such that R′0,1 ∩ ∆(2ω) = ∆(C) and (D,R′) vc (X,R). Note that
R′ε,η is a locally countable Borel relation on 2ω, for each ε, η∈2. Corollary 2.9 provides g′ : 2ω→2ω

injective continuous preserving C such that (g′× g′)−1(
⋃
ε,η∈2 R′ε,η) ⊆ ∆(2ω) ∪ Q2

2. We define
h : D→ D by h(ε, α) :=

(
ε, g′(α)

)
and set R = (h×h)−1(R′). Note that Rε,η ⊆∆(2ω) ∪ Q2

2. By
Corollary 2.14, we may assume that Rε,η ∩ ∆(2ω) ∈ {∆(Sj) | j ≤ 3}. We are done since we are
reduced to Case (a) if Rε,ε ∩∆(2ω)=∆(C). �
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2.3 Proof of Theorem 1.2

We now introduce a first antichain basis.

Notation. Let Γ be a non self-dual Borel class of rank at least two, and (2ω,C) be Γ-good. We set

P :=
{
t∈4(2

2) | t(0, 0), t(1, 1) 6=0 ∧ t(0, 1)=0 ∧
(
t(1, 0)=0⇒ t(0, 0)≤ t(1, 1)

)}
and, for t ∈ P , RΓ

t :=
{(

(ε, x), (η, x)
)
∈ D2 | x ∈ St(ε,η)

}
. We order 22 lexicographically, which

implies that, for example, EΓ
3 =RΓ

3,0,0,3. Note that GΓ
m=RΓ

1,0,0,1. Finally,

AΓ :=
{(

2ω,∆(C)
)}
∪ {(D,RΓ

t ) | t∈P}.

Note that the sections of the elements ofAΓ have cardinality at most two, and are in particular closed.

Lemma 2.16 Let Γ be a non self-dual Borel class of rank at least two. Then AΓ is a 34 element
≤c-antichain.

Proof. Let (X,R) 6= (X′,R′) in AΓ. We argue by contradiction, which gives f :X→X′ continuous.
Assume first that (X,R), (X′,R′) are of the form (D,RΓ

t ), (D,RΓ
t′) respectively, which implies that

f(ε, α) is of the form
(
f0(ε, α), f1(ε, α)

)
∈2×2ω.

Let us prove that f0(0, α) 6=f0(1, α) if α∈C. We argue by contradiction, which gives l∈ω such
that f0(0, β) = f0(1, β) =: ε if β ∈Nα|l, by the continuity of f0. This also gives continuous maps
gη :Nα|l→2ω such that f1(η, β)=gη(β) if β∈Nα|l. If β∈C ∩Nα|l, then

(
(0, β), (1, β)

)
∈R, which

implies that
(
f(0, β), f(1, β)

)
=
((
ε, g0(β)

)
, (ε, g1(β)

))
∈ R′, g0(β) = g1(β) and g0 = g1 =: g by

the continuity of g0, g1. Note that there is j ∈{1, 2, 3} such that C ∩ Nα|l = g−1(Sj) ∩ Nα|l, which
contradicts the choice of C.

Fix α∈C. Note that there is l∈ω such that ε0 :=f0(0, β) 6=f0(1, β) if β∈Nα|l, by the continuity
of f0. There are gη :Nα|l→ 2ω continuous such that f1(η, β) = gη(β) if β ∈Nα|l. If β∈C ∩Nα|l,

then
(
(0, β), (1, β)

)
∈R, which implies that

(
f(0, β), f(1, β)

)
=
((
ε0, g0(β)

)
, (1−ε0, g1(β)

))
∈R′,

g0(β)=g1(β) and g0=g1=:g by the continuity of g0, g1. Note that

C ∩Nα|l=g−1(St′(ε0,1−ε0)) ∩Nα|l,

which implies that t′(ε0, 1−ε0)=0 by the choice of C and C ∩Nα|l=g−1(C) ∩Nα|l. If ε0=0, then

St(ε,η) ∩Nα|l=g−1(St′(ε,η)) ∩Nα|l=St′(ε,η) ∩Nα|l

for ε, η∈2, which implies that t= t′ by the choice of C. Thus ε0=1 and

St(ε,η) ∩Nα|l=g−1(St′(1−ε,1−η)) ∩Nα|l=St′(1−ε,1−η) ∩Nα|l

for ε, η ∈ 2, which implies that t(ε, η) = t′(1−ε, 1−η) if ε, η ∈ 2, by the choice of C. In particular,
note that t′(1, 0)= t(0, 1)=0= t′(0, 1)= t(1, 0), t′(0, 0), t′(1, 1) 6=0,

t(1, 1)= t′(0, 0)≤ t′(1, 1)= t(0, 0),

t(0, 0), t(1, 1) 6=0 and t′(1, 1)= t(0, 0)≤ t(1, 1)= t′(0, 0), which implies that t= t′ again.
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We now have to consider
(
2ω,∆(C)

)
. Assume first that

(
2ω,∆(C)

)
≤c (D,RΓ

t ), with (D,Rt) in
AΓ and witness f . Let α∈C. Then we can find ε0∈2 with f0(α)=ε0, and l∈ω such that f0(β)=ε0
if β ∈Nα|l, by the continuity of f0. Note that C ∩ Nα|l = f−11 (St(ε0,ε0)) ∩ Nα|l, which implies that
t(ε0, ε0)=0 by the choice of C, which contradicts the definition of AΓ.

Assume now that (D,RΓ
t ) ≤c

(
2ω,∆(C)

)
, with (D,Rt) in AΓ and witness f . Let α∈C. Then(

(0, α), (1, α)
)
∈RΓ

t , which implies that f(0, α) = f(1, α)∈C. Then g(β) := f(0, β) = f(1, β) for
each β∈2ω, by the choice of C. We set, for ε, η∈2, Rε,η :=

{
(α, β)∈2ω×2ω |

(
(ε, α), (η, β)

)
∈RΓ

t

}
.

Note that
(α, β)∈Rε,η ⇔

(
g(α), g(β)

)
∈∆(C),

which implies that R0,0=R0,1, which contradicts the definition of AΓ. �

The next result provides the basis part of Theorem 1.2.

Lemma 2.17 Let Γ be a non self-dual Borel class of rank at least two,X be an analytic space, andR
be a locally countable Borel relation on X whose sections are in ∆(Γ). Exactly one of the following
holds:

(a) the relation R is a Γ subset of X2,
(b) there is (X,R)∈AΓ such that (X,R) vc (X,R).

Proof. By Theorem 2.2, (a) and (b) cannot hold simutaneously. Assume that (a) does not hold. By
Theorem 2.2 again, one of the following holds.

(1) There is a relation R on 2ω such that R ∩∆(2ω)=∆(C) and (2ω,R) vc (X,R). As R is locally
countable Borel, so is R by Lemma 2.1, which implies that we can apply Corollary 3.3 in [L5] if the
rank of Γ is at least three. This gives g : 2ω→ 2ω injective continuous such that g preserves C, and(
g(α), g(β)

)
/∈R if α 6= β. Note that g is a witness for the fact that

(
2ω,∆(C)

)
vc (2ω,R), which

implies that
(
2ω,∆(C)

)
vc (X,R). If the rank of Γ is two, then by Corollary 2.9 we may assume

that R⊆∆(2ω) ∪Q2
2. As the sections of R are countable and Π0

2, so are those of R. In particular, R
has nowhere dense sections. By Corollary 2.12, we may assume that R= ∆(C), which implies that,
here again,

(
2ω,∆(C)

)
vc (X,R).

(2) There is a relation R on D such that R0,1 ∩∆(2ω)=∆(C) and (D,R) vc (X,R). Note that Rε,η
is a locally countable Borel relation on 2ω. If the rank of Γ is at least three, then Corollary 3.3 in [L5]
provides g : 2ω→ 2ω injective continuous such that g preserves C, and

(
g(α), g(β)

)
/∈
⋃
ε,η∈2 Rε,η

if α 6= β. If the rank of Γ is two, then Corollary 2.9 provides g′′ : 2ω → 2ω injective continuous
preserving C such that R′′ := (g′′×g′′)−1(

⋃
ε,η∈2 Rε,η) ⊆ ∆(2ω) ∪ Q2

2. As the sections of R are
countable and Π0

2, so are those of R′′. In particular, R′′ has nowhere dense sections. By Lemma 2.11,
we may assume that R′′⊆∆(2ω). So we may assume that g exists in both cases.

We define h : D → D by h(ε, α) :=
(
ε, g(α)

)
. Note that h is injective and continuous. We

then set R′ := (h× h)−1(R). Repeating the notation above, R′ε,η ⊆ ∆(2ω) by the property of
g, and h is a witness for the fact that (D,R′) vc (D,R). This means that we may assume that
Rε,η⊆∆(2ω), for ε, η ∈ 2, and that R0,1 = ∆(C) = ∆(S0). By Corollary 2.14, we may assume that
Rε,η∈{∆(Sj) | j≤3}. Note that if Rε,ε=∆(S0) for some ε∈2, then

(
2ω,∆(C)

)
vc (X,R). So we

may assume that Rε,ε=∆(Sj) for some j∈{1, 2, 3}. Finally, (D,RΓ
i,0,0,j) vc (D,RΓ

j,0,0,i) if i>j>0
with witness (ε, α) 7→(1−ε, α). So (b) holds. �
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Proof of Theorem 1.2. For (1) and (3), we apply Lemmas 2.16 and 2.17. For (2), we use the closure
properties of vc and the fact that GΓ

m is the only graph in AΓ. �

3 Rank two

In this section, Γ is a non self-dual Borel class of rank two.

3.1 Diagonally complex relations: minimality and comparability

Up to restrictions to Cantor sets, two comparable diagonally complex relations are bi-reducible.

Lemma 3.1 Let R,R∗ be diagonally complex, and K be a Cantor set with dense finites and the
property that (K,R∗ ∩ K2) ≤c (2ω,R). Then (C,R∩ C2) vc (K,R∗ ∩K2) for some C with
dense finites.

Proof. Let f be a witness for the fact that (K,R∗ ∩K2) ≤c (2ω,R). Note that f preserves C since
R∗,R agree with ∆(C) on ∆(2ω). This implies that f is nowhere dense-to-one. Let us prove that
there is g : 2ω→K continuous such that g preserves C and f

(
g(α)

)
<lex f

(
g(β)

)
if α <lex β. We

ensure (1)-(6) with C=K and

(4) f(α)<lex f(β) if α∈Ut0 and β∈Ut1

Assume that this is done. If α<lexβ, then Condition (4) ensures that f
(
g(α)

)
<lex f

(
g(β)

)
.

So it is enough to prove that the construction is possible. We set U∅ :=K. Assume that (nt)|t|≤l
and (Ut)|t|≤l satisfying (1)-(6) have been constructed, which is the case for l = 0. Fix t ∈ 2l. Note
that αnt is in Ut ∩Q2, which implies that f(αnt)∈Q2. This gives s∈2<ω such that f(αnt) = s0∞.
In particular, there is a clopen neighbourhood N ⊆ Ut of αnt such that f(β) ∈ Ns if β ∈ N . We
choose nt1≥ 1 such that αnt1 ∈N \

(
{αn | n≤ l} ∪ f−1

(
{f(αnt)}

))
, which is possible since f is

nowhere dense-to-one. Note that f(αnt)<lex f(αnt1). It remains to choose a small enough clopen
neighbourhood Utε of αntε to finish the construction, using the continuity of f .

Note then that f|g[2ω ] is a homeomorphism onto C̃ :=f
[
g[2ω]

]
. Moreover,(

g(α), g(β)
)
∈R∗ ⇔

(
f
(
g(α)

)
, f
(
g(β)

))
∈R,

which implies that f−1|g[2ω ] is a witness for the fact that (C̃,R∩ C̃2) vc (K,R∗ ∩K2), andR∩ C̃2 is

not in Γ since the map α 7→
(
f
(
g(α)

)
, f
(
g(α)

))
reduces C toR∩ C̃2. Thus C̃ ∩ C is not separable

from C̃\C by a Γ set. Using the Hurewicz theorem, we get m :2ω→ C̃ injective continuous such that
C=m−1(C). It remains to set C :=m[2ω]. �

The minimality of diagonally complex relations can be seen on restrictions to Cantor sets.

Lemma 3.2 Let R be a diagonally complex relation, X be an analytic space, and R be a non-Π0
2

relation on X such that (X,R) ≤c (2ω,R), with witness f . Then there is g : 2ω → X injective
continuous such that Q2=g−1

(
f−1(Q2)

)
.
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Proof. Note that R=∆(S) ∪ (R ∩Q2
2), where S= I2 if Γ=Σ0

2, and S=∅ if Γ=Π0
2. As Q2

2\R is
countable, it is a Σ0

2 subset of Q2
2, andR∩Q2

2 is a Π0
2 subset of Q2

2, which provides G∈Π0
2(2

ω×2ω)
such thatR∩Q2

2=G∩Q2
2. As R=(f×f)−1(R)=(f×f)−1

(
∆(S)

)
∪
(
(f×f)−1(G)∩ f−1(Q2)

2
)
,

f−1(Q2) is not Π0
2. Theorem 2.5 provides g as desired. �

Corollary 3.3 Let R be a diagonally complex relation, X be an analytic space, and R be a non-Γ
relation on X with (X,R) ≤c (2ω,R). Then there is a Cantor set C with dense finites such that
(C,R∩ C2) vc (X,R).

Proof. Assume first that Γ=Π0
2, and let f be a witness for the fact that (X,R) ≤c (2ω,R). Lemma

3.2 provides g : 2ω → X injective continuous with the property that Q2 = g−1
(
f−1(Q2)

)
. We set

R′ :=(g×g)−1(R). Note that, for each α∈2ω,

(α, α)∈R′ ⇔
(
g(α), g(α)

)
∈R⇔

(
f
(
g(α)

)
, f
(
g(α)

))
∈R ⇔ f

(
g(α)

)
∈Q2 ⇔ α∈Q2.

In other words,R′ ∩∆(2ω)=∆(Q2). This argument also shows thatR′⊆Q2
2. In other words,R′ is

diagonally complex, (2ω,R′) vc (X,R) and (2ω,R′) ≤c (2ω,R). Lemma 3.1 provides a Cantor set
C with dense finites such that (C,R∩ C2) vc (2ω,R′).

Assume now that Γ = Σ0
2. As R is diagonally complex, the vertical sections of R are in Σ0

2,
which implies that the vertical sections of R are also in Σ0

2. By Theorem 2.2, one of the following
holds:

(1) there is a relation R∗ on 2ω such that R∗ ∩∆(2ω)=∆(I2) and (2ω,R∗) vc (X,R).
(2) there is a relation R∗ on D such that D∞ :=

{(
(0, α), (1, α)

)
| α∈I2

}
⊆R∗,

Df :=
{(

(0, α), (1, α)
)
| α∈Q2

}
⊆¬R∗

and (D,R∗) vc (X,R). We set D :=D∞ ∪Df .

Assume that (2) holds, which gives f :D→2ω continuous such that R∗=(f×f)−1(R). Note that

- (f×f)[D∞]⊆R is not separable from (f×f)[Df ] by a Σ0
2 set,

- I∞ :=(f×f)[D∞] ∩∆(2ω) is not separable from (f×f)[Df ] by a Σ0
2 set sinceR\∆(2ω)⊆Q2

2 is
Σ0

2,
- I∞ is not separable from If :=(f×f)[Df ] ∩∆(2ω) by a Σ0

2 set,
- R∞ :=D ∩ (f×f)−1(I∞) is not separable from Rf :=D ∩ (f×f)−1(If ) by a Σ0

2 set (otherwise
R∞⊆S⊆¬Rf and I∞ is separable from If by the Kσ set (f×f)[S ∩D]),
- C∞ :=

{
α∈ 2ω|

(
(0, α), (1, α)

)
∈R∞

}
is not separable from Cf :=

{
α∈2ω|

(
(0, α), (1, α)

)
∈Rf

}
by a Σ0

2 set.

Theorem 2.5 provides g : 2ω→ 2ω injective continuous with I2 ⊆ g−1(C∞) and Q2⊆g−1(Cf ).
We define a map c :2ω→{0}×2ω by c(α) :=

(
0, g(α)

)
, and set c′ :=f ◦c,

R′ :=(c′×c′)−1(R)=(c×c)−1(R∗).

As c is injective continuous, R′ is a Borel relation on 2ω and (2ω,R′) vc (D,R∗), (X,R). If α∈ I2,
then

((
0, g(α)

)
,
(
1, g(α)

))
∈R∞, and

(
f
(
0, g(α)

)
, f
(
1, g(α)

))
∈I∞⊆∆(2ω).
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This implies that
(
f
(
0, g(α)

)
, f
(
0, g(α)

))
∈ R and (α, α) ∈ R′. Similarly, if α ∈ Q2, then

(α, α) /∈ R′. Thus R′ ∩ ∆(2ω) = ∆(I2), and R′ is a witness for the fact that (1) also holds. So (1)
holds in any case.

This implies that (2ω,R∗) ≤c (2ω,R), with witness f ′. By Lemma 2.4, f ′ preserves Q2. In
particular, R∗ ∩

(
(Q2×I2) ∪ (I2×Q2)

)
= ∅ since R is diagonally complex. Note that R∗ has Σ0

2

sections since so does R. This implies that R∗ ∩ I22 is a Borel relation on I2 whose sections are
separable from Q2 by a Σ0

2 set. Lemmas 2.6 and 2.8 provide g′ : 2ω → 2ω injective continuous
preserving Q2 such that (g′×g′)−1(R∗ ∩ I22 )⊆∆(I2). Thus we may assume that R∗ is diagonally
complex. We now apply Lemma 3.1. �

A consequence of Lemma 3.1 is a characterisation of the minimality of diagonally complex rela-
tions.

Corollary 3.4 LetR be a diagonally complex relation. The following are equivalent:
(a)R is ≤c and vc-minimal among non-Γ relations on an analytic space,
(b) (2ω,R) vc (C,R∩ C2) if C is a Cantor set with dense finites.

Proof. (a)⇒ (b) As Q2 ∩ C is dense in C,R∩∆(C) andR∩ C2 are not in Γ. As

(C,R∩ C2) vc (2ω,R)

and (a) holds, (b) holds.

(b) ⇒ (a) Let X be an analytic space and R be a non-Γ relation on X with (X,R) ≤c (2ω,R).
Corollary 3.3 provides a Cantor setC with dense finites and the property that (C,R∩ C2) vc (X,R).
By (b), (2ω,R) vc (X,R). �

Another consequence of Lemma 3.1 is about the comparison of minimal diagonally complex
relations.

Notation. IfR,R′ are relation on 2ω, then we set

(2ω,R′) ≡c (2ω,R)⇔ (2ω,R′) vc (2ω,R) ∧ (2ω,R) vc (2ω,R′).

Corollary 3.5 LetR,R′ be diagonally complex relations, ≤c and vc-minimal among among non-Γ
relations on an analytic space, with (2ω,R) ≤c (2ω,R′). Then (2ω,R′) ≡c (2ω,R).

Proof. Lemma 3.1 provides a Cantor set with dense finites C such that (C,R′ ∩C2) vc (2ω,R). By
Corollary 3.4, (2ω,R′) vc (2ω,R). An application of this fact implies that (2ω,R) vc (2ω,R′). �

3.2 Proof of Theorems 1.3 and 1.4

We now introduce our antichain of size continuum.

Notation. We define i : Q2→ ω as follows. We want to ensure that i(z, t) = i(sz, st), where st is
defined before Lemma 2.8. The definition of i is partly inspired by the oscillation map osc defined
in [T] after Theorem 6.33 as follows. The elements of 2<ω are identified with finite subsets of ω,
through the characteristic function.
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The oscillation between z and t describes the behaviours of the symmetric difference z∆t. The
equivalence relation ∼zt is defined on z∆t by

j ∼zt k ⇔ [min(j, k),max(j, k)] ∩ (z\t)=∅ ∨ [min(j, k),max(j, k)] ∩ (t\z)=∅.

Then osc(z, t) := |z∆t/∼zt|. For i, we work on z∪ t instead of z∆t, and the definition depends more
heavily on the initial segments of z and t, in particular on their lexicographic ordering. If z∈2<ω\{∅},
then we set z− :=z|max{l< |z| | z|l∈Q}. We also set, for ι∈{<,>},

⊥ι:={(z, t)∈Q2 | ∃i<min(|z|, |t|) z|i= t|i ∧ z(i) ι t(i)}.

The definition of i(z, t) is by induction on max(|z|, |t|). We set

i(z, t) :=



0 if z= t,
i(z, t−) if |z|< |t−| ∨

(
|z|= |t−| ∧ (z, t−)∈⊥<

)
,

i(z, t−)+1 if (|z|< |t| ∧ |z|> |t−|) ∨
(
|z|= |t−| ∧ (z, t−) /∈⊥<

)
,

i(z−, t) if |t|< |z−| ∨
(
|t|= |z−| ∧ (t, z−)∈⊥<

)
,

i(z−, t)+1 if (|t|< |z| ∧ |t|> |z−|) ∨
(
|t|= |z−| ∧ (t, z−) /∈⊥<

)
,

i(z−, t−)+1 if |z|= |t|∧
(
(|z−|< |t−|∧t−<lex z

−)∨(|t−|< |z−|∧z−<lex t
−)
)
,

i(z−, t−)+2 if |z|= |t|∧
(
(|z−|< |t−|∧z−<lex t

−)∨(|t−|< |z−|∧t−<lex z
−)∨

(|z−|= |t−|∧z− 6= t−)
)
.

Note that i(z, t)= i(t, z) if z, t∈Q.

Lemma 3.6 Let (st)t∈2<ω be a sequence of elements of Q with

(a) |sz|< |st| if z<l t are in Q
(b) st$st1 if t is in 2<ω

Then i(z, t)= i(sz, st) if z, t∈Q.

Proof. We argue by induction on max(|z|, |t|). As i(z, t) = i(t, z) if z, t ∈Q, we may assume that
z<l t. In particular, t 6=∅ is of the form t′1, and st−=st′$st′1 =st since nt−=nt′ . We go through
the cases of the definition of i.

If |z|< |t−|, then |sz|< |st− |≤
∣∣(st)−∣∣ since st−$st, and

i(z, t)= i(z, t−)= i(sz, st−)= · · ·= i
(
sz, (st)

−)= i(sz, st).

If |z|= |t−| and (z, t−)∈⊥<, then |sz|< |st− |≤|(st)−| again and we conclude as above.

If |z|< |t| and |z|> |t−|, then |sz|< |st| and |sz|> |st− |. Let s∈Q with s⊆st and |sz|< |s| be of
minimal length. Note that i(z, t)= i(z, t−)+1= i(sz, st−)+1= i(sz, s)= i(sz, st).

If |z|= |t−| and (z, t−) /∈⊥<, then either z= t−, or (z, t−)∈⊥>, which implies that

i(z, t)= i(z, t−)+1= i(sz, st−)+1= · · ·= i
(
sz, (st)

−)= i(sz, st).

If |z|= |t|, |t−|< |z−| and z−<lex t
−, then |st− |< |sz− |< |sz|< |st|,

i(z, t)= i(z−, t−)+1= i(sz− , st−)+1= i(sz, st−)+1= i(sz, st).
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If |z|= |t|, |z−|< |t−| and z−<lex t
−, then |sz− |< |st− |< |sz|< |st|,

i(z, t)= i(z−, t−)+2= i(sz− , st−)+2= i(sz, st−)+1= i(sz, st).

If |z|= |t|, |z−|= |t−| and z− 6= t−, then (z−, t−)∈⊥<, |sz− |< |st− |< |sz|< |st|, and we conclude as
above. Thus i(z, t)= i(sz, st) in any case, as desired. �

The next result is the key lemma to prove Theorems 1.3 and 1.4.

Lemma 3.7 Let H ⊆ Q2 be homeomorphic to Q2. Then there is f : 2ω → 2ω injective continuous
satisfying the following properties:

(i) f [Q2]⊆H; in particular, for each t∈Q there is nt≥1 with f(t0∞)=st0
∞,

(ii) f [I2]⊆I2,

(iii) i(z, t)= i(sz, st) if z, t∈Q.

Proof. We ensure (1)-(6) with C :=H , that Ut is of the form Nzt ∩ C, and

(2) αnt ∈Nzt ∩H if t is in 2<ω

(4) zt0<lex zt1 and |zt0|= |zt1| if t is in 2<ω

(7) |sz|< |st| if z<l t are in Q
(8) st$st1 if t is in 2<ω

(9) i(z, t)= i(sz, st) if z, t∈Q

It is enough to prove that the construction is possible. We choose n∅ ≥ 1 with s∅0∞ ∈H , and
set z∅ :=s∅. Assume that (nt)|t|≤l and (zt)|t|≤l satisfying (1)-(9) have been constructed, which is the
case for l=0.

Fix t ∈ 2l. As αnt ∈ Ut = Nzt ∩ C, zt ⊆ st0∞. We choose s ⊆ st0∞ extending zt and st, in
such a way that Ns ∩ ({αn | n ≤ l}\{αnt}) = ∅ and |sz| < |s| if z <l t1. Let nt1 ≥ 1 such that
αnt1 ∈Ns ∩H\{αnt}, which is possible by density of H in the perfect space C. We set zt1=st1 and
zt0 =αnt ||zt1|. Note that (1) holds. (2) holds by definition. By our extensions, (3) holds. (4) holds
because of the choice of s and nt1. (5)-(8) hold by construction. By Lemma 3.6, (9) holds. �

Proof of Theorem 1.4. We may replace Q with its topological copy Q2. We set, for z, t ∈ Q,
c({z0∞, t0∞}) := i(z, t), which is well-defined by symmetry of i. As i

(
(10)k0∞, (01)k0∞

)
= 2k

and i
(
(01)k0∞, (10)k+10∞

)
=2k+1, c is onto. If H⊆Q2 is homeomorphic to Q2, then Lemma 3.7

provides f :2ω→2ω. We set h :=f|Q2
. If z, t∈Q, then

c
(
{h(z0∞), h(t0∞)}

)
=c({sz0∞, st0∞})= i(sz, st)= i(z, t)=c({z0∞, t0∞}).

In particular, c takes all the values from ω on H [2]. �

Notation. We now set, when (2ω,C) is Γ-good and β∈2ω,

Rβ :=∆(C) ∪
⋃

β(p)=1

{(z0∞, t0∞) | z 6= t∈Q ∧ i(z, t)=p}.

Note that Rβ is symmetric.
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Corollary 3.8 Let β ∈ 2ω. Then Rβ is ≤c and vc-minimal among non-Γ relations on an analytic
space.

Proof. Note that Rβ is a diagonally complex relation, and therefore not in Γ. Let C be a Cantor set
with dense finites. By Corollary 3.4, it is enough to see that the inequality (2ω,Rβ) vc (C,Rβ ∩C2)
holds. We apply Lemma 3.7 to H :=C ∩Q2. As C is a Cantor set with dense finites, H is nonempty,
countable, metrizable, dense-in-itself, and therefore homeomorphic to Q2 (see 7.12 in [K]). Lemma
3.7 provides a witness f :2ω→2ω for the fact that (2ω,Rβ) vc (C,Rβ ∩ C2). �

Lemma 3.9 The family (Rβ)β∈N0 is a ≤c-antichain.

Proof. Assume that β, β′ ∈ N0 and (2ω,Rβ) ≤c (2ω,Rβ′), with witness f . By Lemma 2.4, f
preserves C.

Claim. Let u0∈2<ω. Then we can find u′0∈Q and u1, u′1∈Q\{∅} such that f(u00
∞) =u′00

∞ and
f(u0u10

∞)=u′0u
′
10
∞.

Indeed, let u′0 ∈ Q with f(u00
∞) = u′00

∞. We can find a sequence (βk)k∈ω of points of I2
converging to u00∞. As f preserves C, f(u00

∞) 6=f(βk), and we can find (nk)k∈ω stricly increasing
such that αnk

|k=βk|k and f(u00
∞) 6=f(αnk

), which implies that (αnk
)k∈ω is a sequence of points

different from u00
∞ converging to u00∞. Let vk, v′k ∈Q with αnk

=vk0
∞ and f(αnk

) =v′k0
∞. We

may assume that u0$ vk. As f is continuous, we may assume that f(αnk
)∈Nu′0

for each k, which
implies that u′0$v′k. It remains to choose u1, u′1∈Q\{∅} such that v1=u0u1 and v′1=u′0u

′
1. �

Assume that t0, · · · , t2k+2∈2<ω are not initial segments of 0∞. Then

(t0t10
|t2| · · · t2k−10|t2k|t2k+10

∞, t00
|t1|t2 · · · 0|t2k+1|t2k+20

∞)

is in {(z0∞, t0∞) | z 6= t∈Q ∧ i(z, t)=2k+2}. Similarly,

(t00
|t1|t2 · · · 0|t2k−1|t2k0

∞, t0t10
|t2| · · · t2k−10|t2k|t2k+10

∞)

is in {(z0∞, t0∞) | z 6= t∈Q ∧ i(z, t) = 2k+1}. We first apply the claim to u0 := t0 ∈Q, which
gives t′0 ∈Q and t1, t′1 ∈Q\{∅} with the properties that f(t00

∞) = t′00
∞ and f(t0t10

∞) = t′0t
′
10
∞.

The continuity of f provides k1 ≥ |t1| such that f [Nt00k1
] ⊆ N

t′00
|t′1|

. We next apply the claim to

u0 := t00
k1 , which gives t̃2, t̃′2 in Q\{∅} such that f(t00

k1 t̃20
∞) = t′0t̃

′
20
∞. Note that 0|t

′
1|⊆ t̃′2. We

set t2 :=0k1−|t1|t̃2 and t′2 := t̃′2−0|t
′
1|. Note that t2, t′2 are not initial segments of 0∞ and

f(t00
|t1|t20

∞)= t′00
|t′1|t′20

∞.

This argument shows that we can find sequences of finite binary sequences (tj)j∈ω and (t′j)j∈ω which

are not initial segments of 0∞ and satisfy f(t00
|t1|t2 · · · 0|t2k−1|t2k0

∞) = t′00
|t′1|t′2 · · · 0

|t′2k−1|t′2k0
∞

and f(t0t10
|t2| · · · t2k−10|t2k|t2k+10

∞) = t′0t
′
10
|t′2| · · · t′2k−10|t

′
2k|t′2k+10

∞ for each k ∈ ω. By the
remark after the claim, β=β′. �

Proof of Theorem 1.3. We apply Corollary 3.8 and Lemma 3.9. �

Theorem 1.3 shows that if ≤ is in {≤c,vc}, then the class of non-Π0
2 countable relations on

analytic spaces, equipped with ≤, contains antichains of size continuum made of minimal relations.
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3.3 Graphs

Theorem 1.3 shows that, for the classes of rank two, any basis must have size continuum. It is
natural to ask whether it is also the case for graphs. We will see that it is indeed the case.

Notation. We define, for β ∈ 2ω, Gβ := s
({(

(0, α), (1, γ)
)
∈D2 | (α, γ)∈Rβ

})
. Note that Gβ is a

locally countable graph.

Lemma 3.10 Let Γ :=Σ0
2, (2ω,C) be Γ-good, β∈2ω, and R be a relation on D with the properties

that R0,1 ∩ ∆(2ω) = ∆(C) and (D,R) vc (D,Gβ). Then (2ω,Rβ) vc (2ω,R0,1) with witness h
having the property that (R0,0 ∪ R1,1) ∩ h[2ω]2=∅.

Proof. Let f be a witness for the fact that (D,R) vc (D,Gβ).

We set, for ε ∈ 2, Xε := {z ∈ D | f0(z) = ε}, which defines a partition of D into clopen sets.
The definition of Gβ shows that R⊆ (X0×X1) ∪ (X1×X0). If α0∈C, then

(
(0, α0), (1, α0)

)
∈R,

which gives ε0∈ 2 and l∈ω such that (0, α)∈Xε0 and (1, α)∈X1−ε0 if α∈Nα0|l. This shows that

R ∩ (2×Nα0|l)
2 ⊆ s

({(
(ε0, α), (1−ε0, γ)

)
| α, γ ∈ 2ω

})
. Note that Rε,η is a relation on 2ω. As

R0,1 ∩∆(2ω)=∆(C), R0,1 is not in Γ. Moreover, by symmetry of Rβ ,

(α, γ)∈R0,1 ⇔
(
(0, α), (1, γ)

)
∈R⇔

(
f(0, α), f(1, γ)

)
∈Gβ ⇔

(
f1(0, α), f1(1, γ)

)
∈Rβ

if α∈Nα0|l.

Claim. f1(0, α)=f1(1, α) if α∈C ∩Nα0|l.

Indeed, note that α ∈ C ⇔
(
(0, α), (1, α)

)
∈ R ⇔

(
f1(0, α), f1(1, α)

)
∈ Rβ if α∈Nα0|l. We

argue by contradiction, which gives α0∈C ∩Nα0|l, t∈ 2<ω, η∈ 2 and l′≥ l with the properties that
f1(0, α)∈Ntη and f1(1, α)∈Nt(1−η) if α∈Nα0|l′ . In particular,

C ∩Nα0|l′=
{
α∈Nα0|l′ |

(
f1(0, α), f1(1, α)

)
∈Rβ ∩ (Ntη×Nt(1−η))

}
,

which shows that C ∩Nα0|l′ ∈Γ=Σ0
2 since Rβ\∆(2ω) is countable, contradicting the choice of C.�

By the claim, continuity of f and density of C, f1(0, α) = f1(1, α) if α∈Nα0|l. This shows that
(Nα0|l,R0,1 ∩N2

α0|l) ≤c (2ω,Rβ). By the proof of Corollary 3.4 and Corollary 3.8,

(2ω,Rβ) vc (Nα0|l,R0,1 ∩N2
α0|l),

and we are done. �

Lemma 3.11 Let Γ := Σ0
2, (2ω,C) be Γ-good, and β ∈ 2ω. Then Gβ is vc-minimal among non-Γ

relations on an analytic space.

Proof. Let X be an analytic space, and R be a non-Γ relation on X with (X,R) vc (D,Gβ). As Gβ

has sections in Γ=Σ0
2, R too. By Theorem 2.2, one of the following holds:

(1) there is a relation R on 2ω such that R ∩∆(2ω)=∆(C) and (2ω,R) vc (X,R),
(2) there is a relation R on D such that R0,1 ∩∆(2ω)=∆(C) and (D,R) vc (X,R).
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As Gβ is a digraph, R and R are digraphs too. So (1) cannot hold. By Lemma 3.10,

(2ω,Rβ) vc (2ω,R0,1),

with witness h having the property that (R0,0 ∪ R1,1) ∩ h[2ω]2 = ∅. We define k : D → D by
k(ε, α) :=

(
ε, h(α)

)
. Note that k is injective, continuous, and(

(0, α), (1, γ)
)
∈Gβ ⇔

(
h(α), h(γ)

)
∈R0,1 ⇔

(
k(0, α), k(1, γ)

)
∈R,

showing that (D,Gβ) vc (X,R) as desired. �

Lemma 3.12 Let Γ :=Σ0
2, and (2ω,C) be Γ-good. Then (Gβ)β∈N0 is a vc-antichain.

Proof. Let β, β′∈N0. Assume that (D,Gβ) vc (D,Gβ′). Lemma 3.10 shows that

(2ω,Rβ′) vc
(
2ω, (Gβ)0,1

)
=(2ω,Rβ),

which implies that β=β′ by Lemma 3.9. �

Corollary 3.13 There is a concrete vc-antichain of size continuum made of locally countable Borel
graphs on D which are vc-minimal among non-Σ0

2 graphs on an analytic space.

Proof. We apply Lemmas 3.11 and 3.12. �

We now turn to the study of the class Π0
2.

Lemma 3.14 Assume that Γ=Π0
2 and β∈N0\{0∞}. Then Rβ has a non-Π0

2 section.

Proof. We argue by contradiction, which implies that Rβ has nowhere dense sections since it is
locally countable. By Corollary 2.12,

(
2ω,∆(C)

)
vc (2ω,Rβ). Note that (2ω,Rβ) vc

(
2ω,∆(C)

)
by Theorem 1.2 and Corollary 3.5, which contradicts the injectivity since β∈N0\{0∞}. �

Remark. Lemma 3.14 shows that a locally countable relation can have a non-Π0
2 section, and there-

fore be non-Π0
2 because of that. This is not the case for the class Σ0

2. This is the reason why we
cannot argue for the class Π0

2 as we did in Corollary 3.13 for the class Σ0
2. More precisely, note that

GΠ0
2,a

m is a (locally) countable graph with a non-Π0
2 section. Moreover, (S,GΠ0

2,a
m ) vc (D,Gβ) for

any β∈N0\{0∞}. Indeed, Lemma 3.14 gives α0∈2ω such that (Rβ)α0 is not Π0
2 since Rβ is symmet-

ric. By the Hurewicz theorem, there is g : 2ω→2ω injective continuous such that Q2 =g−1
(
(Rβ)α0

)
.

We define f :S→D by f(0∞) :=(0, α0) and f(1α) :=
(
1, g(α)

)
. Note that f is injective continuous

and

(εα, ηγ)∈GΠ0
2,a

m ⇔ (ε=0 ∧ α=0∞ ∧ η=1 ∧ γ∈Q2) ∨ (ε=1 ∧ α∈Q2 ∧ η=0 ∧ γ=0∞)

⇔
((
f(εα), f(ηγ)

)
=
(

(0, α0),
(
1, g(γ)

))
∧
(
α0, g(γ)

)
∈Rβ

)
∨((

f(εα), f(ηγ)
)

=
((

1, g(α)
)
, (0, α0)

)
∧
(
α0, g(α)

)
∈Rβ

)
⇔
(
f(εα), f(ηγ)

)
∈Gβ.

So we need to find other examples for the class Π0
2.
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Theorem 3.15 There is a concrete vc-antichain of size continuum made of locally countable Borel
graphs on 2ω which are vc-minimal among non-Π0

2 graphs on an analytic space.

Proof. We set, for β∈N0\{0∞}, Hβ :=Rβ\∆(2ω). As Rβ is symmetric, Hβ is a graph. In particular,
we can speak of proj[Hβ]. By Lemma 3.14, Rβ has a non-Π0

2 section. A consequence of this is that Hβ

is not Π0
2. LetX be an analytic space andR be a non-Π0

2 relation onX with (X,R)vc (2ω,Hβ), with

witness f . By the injectivity of f , we get
(
X,R ∪ (f×f)−1

(
∆(C)

))
vc (2ω,Rβ). As ∆(C)∈Σ0

2

is disjoint from Hβ , R ∪ (f ×f)−1
(
∆(C)

)
is not Π0

2. By Corollary 3.8 and the injectivity of f ,

(2ω,Rβ) vc
(
X,R ∪ (f×f)−1

(
∆(C)

))
. By the injectivity of f again, (2ω,Hβ) vc (X,R), show-

ing the minimality of Hβ .

Assume now that β, β′∈N0\{0∞} and (2ω,Hβ) vc (2ω,Hβ′), with witness f .

Claim. Let u0 ∈ 2<ω with u00∞ ∈ proj[Hβ]. Then we can find u′0 ∈Q and u1, u′1 ∈Q\{∅} such that
f(u00

∞)=u′00
∞, u0u10∞∈proj[Hβ] and f(u0u10

∞)=u′0u
′
10
∞.

Indeed, as u00∞ ∈ proj[Hβ], there is γ such that (u00
∞, γ) is in Hβ , and

(
f(u00

∞), f(γ)
)

is
therefore in Hβ′ . In particular, f(u00

∞) ∈Q2 and there is u′0 ∈Q with f(u00
∞) = u′00

∞. As f is
continuous, there is k0 such that f [Nu00k0

]⊆Nu′0
.

Let us prove that proj[Hβ] is dense in 2ω. Let s∈2<ω, and p := 2k+ε≥1 with β(p) = 1. We set
(z, t) :=

(
s1(10)k+ε1, s1(01)k

)
. Note that z 6= t∈Q, i(z, t)=p, (z0∞, t0∞)∈Hβ ∩N2

s and proj[Hβ]
meets Ns as desired.

Let α ∈ proj[Hβ] ∩ Nu00k01
, and δ such that (α, δ) is in Hβ . Then

(
f(α), f(δ)

)
is in Hβ′ , and

f(α) ∈Q2 ∩ Nu′0
\{u′00∞} by injectivity of f . This gives u1, u′1 ∈Q\{∅} with α = u0u10

∞ and
f(α)=u′0u

′
10
∞. �

The end of the proof is now similar to that of Lemma 3.9. Let us indicate the differences. We first
apply the claim to u0 := t0 ∈Q such that t00∞ ∈ proj[Hβ], which gives t′0 ∈Q and t1, t′1 ∈Q\{∅}
such that f(t00

∞)= t′00
∞, t0t10∞∈proj[Hβ] and f(t0t10

∞)= t′0t
′
10
∞. The continuity of f provides

k1≥|t1| such that f [Nt00k1
]⊆N

t′00
|t′1|

. We next apply the claim to u0 := t00
k1 , which gives t̃2, t̃′2 in

Q\{∅} such that t00k1 t̃20∞∈proj[Hβ] and f(t00
k1 t̃20

∞)= t′0t̃
′
20
∞. This provides sequences (tj)j∈ω

and (t′j)j∈ω as in the proof of Lemma 3.9. By the remark after the claim in the proof of Lemma 3.9,
β=β′. �

4 Acyclicity

Remark. Assume that β ∈ N0 \{0∞}. Then Rβ is not s-acyclic. Indeed, (0∞, 10∞, 120∞) is an
s(Rβ)-cycle if β(1)=1, (10∞, 010∞, 0210∞) is an s(Rβ)-cycle if β(2)=1,

(101k+10∞, 1k+30∞, 0101k0∞)

is an s(Rβ)-cycle if β(2k+3) = 1, and (010120(110)k0∞, 10103(102)k0∞, 010212(101)k0∞) is an
s(Rβ)-cycle if β(2k+4)=1. We will see that Theorem 1.2 can be extended, under a suitable acyclicity
assumption. We need to introduce new examples.
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Notation. Let Γ be a non self-dual Borel class of rank at least two, and (2ω,C) be Γ-good. We set
A :=

{
t∈4(2

2) | t(0, 0)∈2 ∧
(
t(0, 1)=0 ∨ t(1, 0)=0

)
∧ t(1, 1) 6=0

}
. We then set, for t∈A,

RΓ,a
t :={(0∞, 0∞) | t(0, 0)=1} ∪ {(0∞, 1α) | α∈St(0,1)} ∪ {(1α, 0∞) | α∈St(1,0)} ∪

{(1α, 1α) | α∈St(1,1)}.

Note that GΓ,a
m =RΓ,a

0,0,0,1. Finally BΓ :=
{

(S,RΓ,a
t ) | t∈A

}
.

Lemma 4.1 Let Γ be a non self-dual Borel class of rank at least two. Then AΓ ∪ BΓ is a 76 element
≤c-antichain.

Proof. Assume that t, t′∈A and RΓ,a
t is ≤c-below RΓ,a

t′ with witness f :S→S. If RΓ,a
t′ is symmetric,

then RΓ,a
t is too, and t′ is of the form (ε, 0, 0, ε′). As RΓ,a

t ,RΓ,a
t′ have only one vertical section

not in Γ, f(0∞) = 0∞, f(1, α)(0) = 1 by the choice of C, and the function f1(1, .) defined by
1f1(1, α) = f(1α) preserves C. Thus t= t′. So we may assume that RΓ,a

t′ is not symmetric, i.e., t′

is of the form (ε, ε′, ε′′, ε′′′) with ε′ 6= ε′′, and ε′= 0 or ε′′= 0. If, for example, ε′ 6= 0, then RΓ,a
t′ has

vertical sections in Γ, as well as RΓ,a
t , which implies that t is of the form (η, η′, 0, η′′′) with η′ 6= 0.

Note that RΓ,a
t ,RΓ,a

t′ have only one horizontal section not in Γ, f(0∞) = 0∞, f(1, α)(0) = 1 by the
choice of C, and f1(1, .) preserves C. Thus t= t′, even if ε′′ 6=0.

As the elements of BΓ have a section not in Γ and the elements of AΓ have closed sections, an
element of BΓ is not≤c-below an element ofAΓ. By Theorem 1.2, it remains to see that an element R
of AΓ is not ≤c-below an element RΓ,a

t of BΓ. We argue by contradiction, which provides f :2ω→S
or f : D→ S. In the first case, note first that f(α)(0) = 1, since otherwise f(β)(0) = 0 if β is in
a clopen neighbourhood C of α. If β 6= γ ∈ C ∩ C, then f(β) = f(γ) = 0∞, which implies that
(0∞, 0∞)∈RΓ,a

t and (β, γ)∈∆(C), which is absurd. This shows that ∆(C)∈Γ since (RΓ,a
t )1,1∈Γ,

which is absurd. In the second case, note first that f(0, α)(0) = 1, since otherwise f(0, β)(0) = 0 if
β is in a clopen neighbourhood C of α. We may assume that there is ε0 ∈ 2 with the property that
f(1, β)(0) = ε0 if β ∈C. If β 6=γ ∈C ∩ C, then either ε0 = 0,

(
f(0, β), f(1, γ)

)
= (0∞, 0∞)∈RΓ,a

t

and
(
(0, β), (1, γ)

)
∈R, or ε0 = 1,

(
f(0, β), f(1, β)

)
,
(
f(0, γ), f(1, γ)

)
∈RΓ,a

t , f(1, β), f(1, γ) are
in {1α | α ∈ C},

(
f(0, β), f(1, γ)

)
∈ RΓ,a

t and
(
(0, β), (1, γ)

)
∈ R, which is absurd. Similarly,

f(1, α)(0)=1. This shows that R0,1∈Γ since (RΓ
t )1,1∈Γ, which is absurd. �

We now study the rank two case.

Lemma 4.2 Let R be an s-acyclic Borel relation on I2. Then we can find a sequence (Rn)n∈ω of
relations closed in I2×2ω and 2ω×I2, as well as f :2ω→2ω injective continuous preserving Q2 such
that (f×f)−1(R)⊆

⋃
n∈ω Rn.

Proof. Assume first that Rα0 is not separable from Q2 by a set in Σ0
2, for some α0∈I2. Theorem 2.5

provides h : 2ω→2ω\{α0} injective continuous such that I2⊆h−1(Rα0) and Q2⊆h−1(Q2). We set
R′ :=(h×h)−1(R). If α, β, γ∈I2 are pairwise distinct and β, γ∈R′α, then

(
h(β), h(α), h(γ), α0

)
is

an s(R)-cycle, which is absurd. ThusR′ has vertical sections of cardinality at most two. So, replacing
R with R′ if necessary, we may assume that Rα is separable from Q2 by a set in Σ0

2 for each α∈2ω.
Similarly, we may assume that Rα is separable from Q2 by a set in Σ0

2 for each α∈2ω. It remains to
apply Lemma 2.6. �
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Lemma 4.3 (a) Let R be an s-acyclic subrelation of Q2
2. Then there is f : 2ω→2ω injective continu-

ous preserving Q2 such that (f×f)−1(R)⊆∆(Q2).
(b) Let R be an s-acyclic subrelation of (2×Q2)

2. Then there is f : 2ω→2ω injective continuous
preserving Q2 such that (f×f)−1(

⋃
ε,η∈2 Rε,η)⊆∆(Q2).

Proof. (a) Assume that Rα0 is not nowhere dense for some α0 ∈ Q2. This gives s ∈ 2<ω with the
property thatNs⊆Rα0 . Note thatNs∩Rα0\{α0} is not separable fromNs∩I2 by a Π0

2 set, by Baire’s
theorem. Theorem 2.5 provides h :2ω→Ns\{α0} injective continuous such that Q2⊆h−1(Rα0)
and I2 ⊆ h−1(I2). If R′ := (h×h)−1(R), α, β, γ ∈ Q2 are pairwise distinct and β, γ ∈ R′α, then(
h(β), h(α), h(γ), α0

)
is an s(R)-cycle, which is absurd. This shows that, replacing R with R′

if necessary, we may assume that R has vertical sections of cardinality at most two. In any case,
we may assume that R has nowhere dense vertical sections. Similarly, we may assume that R has
nowhere dense horizontal sections. It remains to apply Lemma 2.11.

(b) We argue similarly. Fix ε, η ∈ 2. We replace R with Rε,η. We just have to note that the cycle(
h(β), h(α), h(γ), α0

)
becomes

((
η, h(β)

)
,
(
ε, h(α)

)
,
(
η, h(γ)

)
,
(
ε, α0

))
. �

Lemma 4.4 (a) Let R be an s-acyclic Borel subrelation of (Q2× I2) ∪ (I2×Q2). Then there is
f :2ω→2ω injective continuous preserving Q2 such that (f×f)−1(R)=∅.

(b) Let R be an s-acyclic Borel subrelation of
(
(2×Q2)×(2×I2)

)
∪
(
(2×I2)×(2×Q2)

)
. Then

there is f :2ω→2ω injective continuous preserving Q2 such that (f×f)−1(
⋃
ε,η∈2 Rε,η)=∅.

Proof. (a) By symmetry, we may assume that R⊆Q2×I2. Assume first that Rα0 is not meager for
some α0∈Q2. This gives s∈2<ω with the property that Ns ∩ Rα0 is comeager in Ns. In particular,
Ns∩Q2\{α0} is not separable fromNs∩Rα0 by a Π0

2 set, by Baire’s theorem. Theorem 2.5 provides
h :2ω→Ns\{α0} injective continuous withQ2⊆h−1(Q2) and I2⊆h−1(Rα0). IfR′ :=(h×h)−1(R),
α∈Q2, β 6=γ∈R′α, then

(
h(β), h(α), h(γ), α0

)
is an s(R)-cycle, which is absurd. This shows that,

replacing R with R′ if necessary, we may assume that R has meager vertical sections. Let F be a
meager Σ0

2 subset of 2ω containing
⋃
α∈Q2

Rα. Note that Q2 is not separable from I2\F by a Π0
2

set. Theorem 2.5 provides f :2ω→2ω injective continuous with Q2⊆f−1(Q2) and I2⊆f−1(I2\F ).
Thus (f×f)−1(R) is empty.

(b) We argue as in the proof of Lemma 4.3.(b). �

Corollary 4.5 (a) Let R be an s-acyclic Borel relation on 2ω. Then there is f : 2ω → 2ω injective
continuous preserving Q2 such that (f×f)−1(R)⊆∆(2ω).

(b) Let R be an s-acyclic Borel relation on D. Then there is f : 2ω → 2ω injective continuous
preserving Q2 such that (f×f)−1(

⋃
ε,η∈2 Rε,η)⊆∆(2ω).

Proof. (a) By Lemma 4.3, we may assume that R ∩ Q2
2 ⊆∆(2ω). By Lemma 4.4, we may assume

that R ∩
(
(Q2×I2) ∪ (I2×Q2)

)
= ∅. By Lemma 4.2, we may assume that R\∆(2ω) is contained

in the union of a sequence (Rn)n∈ω of relations on I2 which are closed in I2×2ω and in 2ω×I2. By
Lemma 2.8 applied to (Rn)n∈ω, we may assume that R ∩ I22 ⊆∆(2ω).

(b) By Lemma 4.3, we may assume that
⋃
ε,η∈2 Rε,η ∩Q2

2⊆∆(2ω). By Lemma 4.4, we may assume

that R ∩
((

(2×Q2)×(2×I2)
)
∪
(
(2×I2)×(2×Q2)

))
=∅.
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By Lemma 4.2, we may assume that (
⋃
ε,η∈2 Rε,η)\∆(2ω) is contained in the union of a sequence

(Rn)n∈ω of relations on I2 which are closed in I2×2ω and in 2ω×I2. By Lemma 2.8 applied to
(Rn)n∈ω, we may assume that

⋃
ε,η∈2 Rε,η ∩ I22 ⊆∆(2ω). �

Theorem 1.9 for classes of rank at least three is a consequence of Lemma 4.1 and the following
result since the elements of AΓ are contained in either ∆(2ω), or in

{(
(ε, x), (η, x)

)
∈D2 | x∈2ω

}
,

and the elements of BΓ are contained in ∆(S)∪ ({0∞}×N1)∪ (N1×{0∞}), which are s-acyclic and
closed on the one side, and GΓ

m and GΓ,a
m are the only graphs in AΓ ∪ BΓ on the other side. The next

proof is the last one using effective descriptive set theory.

Notation. We set, for any relation R on S, R1,1 :={(α, β)∈2ω×2ω | (1α, 1β)∈R}.

Theorem 4.6 Let Γ be a non self-dual Borel class of rank at least three, X be an analytic space, and
R be a Borel relation onX contained in an s-acyclic Borel relation with Σ0

2 vertical sections. Exactly
one of the following holds:

(a) the relation R is a Γ subset of X2,
(b) there is (X,R)∈AΓ ∪ BΓ such that (X,R) vc (X,R).

Proof. By Theorem 1.2 and since the elements of BΓ have a section not in Γ, (a) and (b) cannot hold
simultaneously. Assume that (a) does not hold. By Theorem 2.2, one of the following holds:

(1) the relation R has at least one section not in Γ,
(2) there is a relationR on 2ω such thatR∩∆(2ω)=∆(C) and (2ω,R) vc (X,R),
(3) there is a relationR on D such that R0,1 ∩∆(2ω)=∆(C) and (D,R) vc (X,R).

(1) Let x0∈X such that, for example,Rx0 is not in Γ, the other case being similar. Note thatRx0\{x0}
is not separable from X\(Rx0 ∪{x0}) by a set in Γ. Theorem 2.5 provides h :2ω→X\{x0} injective
continuous with C=h−1(Rx0). We define g :S→X by g(0∞) :=x0 and g(1α) :=h(α). Note that g
is injective continuous. Considering (g×g)−1(R) if necessary, we may assume that X=S, x0 =0∞

and Rx0 ∩ N1 = {1α | α ∈ C}. Let A be an s-acyclic Borel relation with Σ0
2 vertical sections

containing R.

For the simplicity of the notation, we assume that the rank of Γ is less than ωCK
1 , and C,A are

∆1
1. Theorem 3.5 in [Lo1] gives a sequence (Cn) of ∆1

1 relations with closed vertical sections such
that A =

⋃
n∈ω Cn. By Lemma 2.2.2 in [L5], ∆1

1 ∩ 2ω is countable and Π 1
1 , which implies that

V := 2ω \ (∆1
1 ∩ 2ω) is Σ 1

1 , disjoint from ∆1
1 ∩ 2ω, and V ∩ C is not separable from V \C by a

set in Γ. We will apply Theorem 3.2 in [L5], where the Gandy-Harrington topology Σ2ω on 2ω

generated by Σ 1
1 (2ω) is used. Let us prove that A1,1 ∩ V 2 is (Σ2ω)2-meager in V 2. It is enough to

see that (Cn)1,1 ∩ V 2 is (Σ2ω)2-nowhere dense in V 2 for each n. By Lemma 3.1 in [L5], (Cn)1,1 is
(Σ2ω)2-closed. We argue by contradiction, which gives n and nonempty Σ 1

1 subsets S, T of 2ω with
the property that S×T ⊆(Cn)1,1 ∩ V 2. By the effective perfect set Theorem (see 4.F1 in [Mo]), S, T
are uncountable. So pick x, y ∈ S and z, t∈ T pairwise different. Then (1x, 1z, 1y, 1t) is an s(A)-
cycle, which is absurd. Theorem 3.2 in [L5] provides f : 2ω→ 2ω injective continuous preserving C
with the property that

(
f(α), f(β)

)
/∈A1,1 if α 6=β.

Considering the set (f × f)−1(R) if necessary, we may assume that R1,1 ⊆ ∆(2ω). We set
E1,1 := {α ∈ 2ω | (α, α) ∈ R1,1}. Note that E1,1 is a Borel subset of 2ω and R1,1 = ∆(E1,1). By
Lemma 2.13, we may assume that E1,1=Sj for some j∈4. If j=0, then

(
2ω,∆(C)

)
vc (X,R).
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So we may assume that j 6= 0. Similarly, {α ∈ 2ω | (1α, 0∞) ∈ R}= Sj for some j ∈ 4. This
provides t∈A with (S,RΓ,a

t ) vc (X,R).

(2) We partially argue as in (1). Note thatR is Borel and contained in an s-acyclic Borel relation with
Σ0

2 vertical sections A.

This time, Cn∈∆1
1

(
(2ω)2

)
. Let us prove that Cn ∩V 2 is (Σ2ω)2-nowhere dense in V 2 for each n.

We argue by contradiction, which gives n and nonempty Σ 1
1 subsets S, T of 2ω with S×T ⊆Cn∩V 2.

Note that (x, z, y, t) is an s(A)-cycle, which is absurd. Theorem 3.2 in [L5] provides f : 2ω → 2ω

injective continuous preserving C such that
(
f(α), f(β)

)
/∈A if α 6=β.

Considering (f × f)−1(R) if necessary, we may assume that R ⊆ ∆(2ω), which means that(
2ω,∆(C)

)
vc (X,R).

(3) We partially argue as in (2).

This time, Cn ∈∆1
1(D2). Fix ε, η ∈ 2. Let us prove that (Cn)ε,η ∩ V 2 is (Σ2ω)2-nowhere dense

in V 2 for each n. We argue by contradiction, which gives n and nonempty Σ 1
1 subsets S, T of

2ω with S×T ⊆ (Cn)ε,η ∩ V 2. Note that
(
(ε, x), (η, z), (ε, y), (η, t)

)
is an s(A)-cycle, which is

absurd. Theorem 3.2 in [L5] provides f : 2ω → 2ω injective continuous preserving C such that(
f(α), f(β)

)
/∈
⋃
ε,η∈2 Aε,η if α 6=β.

Considering (f×f)−1(R) if necessary, we may assume that Rε,η ⊆∆(2ω) and R0,1 = ∆(C).
Theorem 1.2 provides (X,R)∈AΓ such that (X,R) vc (X,R).

So (b) holds in any case. �

Theorem 1.8 is an immediate consequence of the following result.

Theorem 4.7 Let Γ be a non self-dual Borel class of rank two, X be an analytic space, and R be an
s-acyclic Borel relation on X . Exactly one of the following holds:

(a) the relation R is a Γ subset of X2,

(b) there is (X,R)∈AΓ ∪ BΓ such that (X,R) vc (X,R).

Proof. We partially argue as in the proof of Theorem 4.6. For the case (1), recall that we may assume
that X = S, x0 = 0∞ and Rx0 ∩ N1 = {1α | α ∈C}. Corollary 4.5 provides f : 2ω→ 2ω injective
continuous preserving C such that

(
f(α), f(β)

)
/∈R1,1 if α 6=β. For the case (2),R is s-acyclic Borel,

and by Corollary 4.5 we may assume thatR⊆∆(2ω), which means that
(
2ω,∆(C)

)
vc (X,R). For

the case (3), by Corollary 4.5 we may assume that
⋃
ε,η∈2 Rε,η⊆∆(2ω) andR0,1=∆(C). �

Theorem 1.6 is an immediate consequence of the following result.

Corollary 4.8 LetX be an analytic space, andR be an s-acyclic Borel relation onX whose sections
are in Σ0

2. Exactly one of the following holds:

(a) the relation R is a Σ0
2 subset of X2,

(b) there is (X,R)∈AΣ0
2 such that (X,R) vc (X,R).

In particular, AΣ0
2 is a 34 element vc and ≤c-antichain basis.

Proof. We apply Theorem 4.7 and use the fact that the elements of BΓ have a section not in Γ. �
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Notation. We set

CΠ0
2 :=AΠ0

2 ∪{
(S,RΠ0

2,a
t ) | t∈4(2

2) ∧ t(0, 0), t(0, 1), t(1, 0)∈2 ∧
(
t(0, 1)=0 ∨ t(1, 0)=0

)
∧ t(1, 1) 6=0

}
.

Theorem 1.7 is an immediate consequence of the following result.

Corollary 4.9 Let X be an analytic space, and R be an s-acyclic locally countable Borel relation on
X . Exactly one of the following holds:

(a) the relation R is a Π0
2 subset of X2,

(b) there is (X,R)∈CΠ0
2 such that (X,R) vc (X,R).

Moreover, CΠ0
2 is a 52 element ≤c-antichain (and thus a vc and a ≤c-antichain basis).

Proof. We apply Theorem 4.7 and use the fact that {α∈2ω | (1α, 0∞)∈R}=Sj for some j∈2 since

R is locally countable. This provides (S,RΠ0
2,a

t ) in CΠ0
2 below (X,R). �

5 Rank one

Notation. Let K :={2−k | k∈ω} ∪ {0}, and C :={2−k | k∈ω}. We first set

S0 :={(x, y)∈K2 | x, y∈C ∧ x<y},
S1 :={(x, y)∈K2 | x=y∈C},
S2 :={(x, y)∈K2 | x, y∈C ∧ x>y},
S3 :={(x, y)∈K2 | x∈C ∧ y /∈C},
S4 :={(x, y)∈K2 | x /∈C ∧ y∈C},
S5 :={(x, y)∈K2 | x, y /∈C}.

Note that (Sj)j<6 is a partition of K2, and the vertical sections of S2 and the horizontal sections of
S0 are infinite. We setN :=

{
t∈26 |

(
t /∈16∧t(5)=0

)
∨
(
t(2)=1∧t(3)=0

)
∨
(
t(0)=1∧t(4)=0

)}
.

We first consider the class Π0
1 and set, for t∈26, RΠ0

1
K,t :=

⋃
j<6,t(j)=1 Sj . {(K,R

Π0
1

K,t) | t∈N} is a 45
element ≤c-antichain since (25−1)+24−1+(24−1−24−1−2)=45.

We next code relations having just one non-closed vertical section, with just one limit point on
this vertical section, out of the diagonal. We set

V :=
{
t∈(26)2

2 | t(0, 0)∈({0}5×2) ∧ t(0, 1)=(0, 0, 0, 0, 1, 0) ∧ t(1, 0)∈({0}3×2×{0}×2)

∧ t(1, 1) /∈N
}
,

and L :=(¬C)⊕K. We set, for t∈V ,

RΠ0
1

L,t :=
⋃

(ε,η)∈22,j<6,t(ε,η)(j)=1

{(
(ε, x), (η, y)

)
∈L2 | (x, y)∈Sj

}
.

{(L,RΠ0
1

L,t ) | t∈V } is a 152 element ≤c-antichain since 2·1·22 ·(26−45) = 152. Similarly, we code
relations having closed vertical sections, and just one non-closed horizontal section, with just one
limit point on this horizontal section, out of the diagonal.
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We set

H :=
{
t∈(26)2

2 | t(0, 0) /∈N ∧ t(0, 1)=(0, 0, 0, 1, 0, 0) ∧ t(1, 0)∈({0}4×22)\{(0, 0, 0, 0, 1, 0)}
∧ t(1, 1)∈({0}5×2)

}
,

and M :=K⊕ (¬C). We set, for t∈H ,

RΠ0
1

M,t :=
⋃

(ε,η)∈22,j<6,t(ε,η)(j)=1

{(
(ε, x), (η, y)

)
∈M2 | (x, y)∈Sj

}
.

{(M,RΠ0
1

M,t) | t∈H} is a 114 element ≤c-antichain since (26−45)·1·(22−1)·2=114. We define a set
of codes for relations on K with closed sections as follows:

C :={t∈26 | t(0)=1⇒ t(4)=1⇒ t(5)=1 ∧ t(2)=1⇒ t(3)=1⇒ t(5)=1}.

We define a set of codes for the missing relations in our antichain basis. We set

S :=
{
t∈(26)2

2 | t(0, 0), t(1, 1) /∈N ∧ t(0, 1)=(0, 1, 0, 0, 0, 0) ∧ t(1, 0)∈C ∧
t(1, 0)=(0, 1, 0, 0, 0, 0)⇒ t(0, 0)≤lex t(1, 1)

}
.

We set, for t∈S, RΠ0
1

D,t :=
⋃

(ε,η)∈22,j<6,t(ε,η)(j)=1

{(
(ε, x), (η, y)

)
∈D2 | (x, y)∈Sj

}
. Finally,

AΠ0
1 :={(K,RΠ0

1
K,t) | t∈N} ∪ {(L,R

Π0
1

L,t ) | t∈V } ∪ {(M,RΠ0
1

M,t) | t∈H} ∪ {(D,R
Π0

1
D,t) | t∈S}

is the 7360 element ≤c-antichain basis mentioned in the statement of Theorem 1.5, since

45+152+114+(26−45)2 ·1·(20−1)+
(26 − 45) · (26 − 45 + 1)

2
·12=7360.

We set, for j ∈ 22, Tj := {(2−2k−j(0), 2−2k−j(1)) | k ∈ ω}. We then define relations on K by

RΠ0
1

0 := T(0,1) and RΠ0
1

1 := T(0,1) ∪ T(1,0). (K,RΠ0
1

0 ), (K,RΠ0
1

1 ) are the 2 elements mentioned at the
end of the statement of Theorem 1.5. For the class Σ0

1, we simply pass to complements.

For graphs, in the case of the class Π0
1, the 5-element ≤c-antichain basis is described by the

following codes:

- (0, 0, 0, 1, 1, 0) (acyclic) , (1, 0, 1, 0, 0, 0), (1, 0, 1, 1, 1, 0)∈N ,
-
(
(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0)

)
∈V (acyclic),

-
(
(0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0)

)
∈S (acyclic).

In order to get the 6-element vc-antichain basis, we just have to add (K,RΠ0
1

1 ) (which is acyclic).
In the case of the class Σ0

1, the 10-element ≤c and vc-antichain basis is described as follows: take

- for (1, 1, 1, 0, 0, 1)∈N , ∪j<6,t(j)=0 Sj (which is acyclic),
- for

t∈
{(

(0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 0), (ε0, 1, ε0, ε1, ε1, 1)
)
∈V | (ε0, ε1) 6=(1, 0)

}
,

∪(ε,η)∈22,j<6,t(ε,η)(j)=0

{(
(ε, x), (η, y)

)
∈L2 | (x, y)∈Sj

}
(which is acyclic when (ε0, ε1)=(1, 1)),

- for

t∈
{(

(ε0, 1, ε0, ε1, ε1, 1), (0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (ε2, 1, ε2, ε3, ε3, 1)
)
∈S |

(ε0, ε1), (ε2, ε3) 6=(1, 0) ∧ (ε0, 1, ε0, ε1, ε1, 1)≤lex (ε2, 1, ε2, ε3, ε3, 1)
}

.

∪(ε,η)∈22,j<6,t(ε,η)(j)=0

{(
(ε, x), (η, y)

)
∈D2 | (x, y)∈Sj

}
.
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6 Uncountable analytic relations

Notation. We set H :=N1×{0∞}, V := {0∞}×N1, and L := H ∪ V. If A ∈ {H,V,L}, then
A+ :=A∪ {(0∞, 0∞)}. Let o :2ω→2ω be defined by o(α)(n) :=α(n) exactly when n>0. Then o is
a homeomorphism and an involution. We set

Ac :=
{(

2ω, (2ω)2
)
, (S,H), (S,V), (S,L), (S,H+), (S,V+), (S,L+),

(2ω, 6=), (2ω, <lex), (2ω,=), (2ω,≤lex),
(
2ω,Graph(o)

)
,
(
2ω,Graph(o|N0

)
)}
.

We enumerate Ac := {Ei | i≤ 12} (in the previous order). The relation E11 is closely related to the
relation G{∅}m on D := 2×2ω we met before Theorem 1.10. Indeed, the homeomorphism h : 2ω→D
defined by h(α) :=

(
α(0), (α(1), α(2), · · · )

)
is a witness for the fact that (2ω, E11) ≡c (D,G{∅}m ).

Lemma 6.1 Ac is an antichain.

Proof. Note that if (X,A) vc (Y,B) and B is in some Borel class Γ, then A is in Γ too. The second
coordinate of a member of E0-E6 (resp., E7-E8, E9-E12) is clopen (resp., open not closed, closed not
open). This proves that no member of E7-E12 is reducible to a member of E0-E6, and that the members
of E7-E8 are incomparable with the members of E9-E12. Note that the second coordinate of

- E0 and E9-E10 is reflexive.

- E1-E3, E7-E8 and E11-E12 is irreflexive.

- E0, E3, E6, E7, E9 and E11 is symmetric.

- E1-E2, E4-E5, E8-E10 and E12 is antisymmetric.

- E0-E2, E4-E5, E8-E10 and E12 is transitive.

Assume that (X,A) vc (Y,B), and that P is one of the following properties of relations: reflex-
ive, irreflexive, symmetric, antisymmetric, transitive. We already noticed that (X,A) has P if (Y,B)
does. Note also that if (X,A) has P , then there is a copy C of X in Y such that (C,B ∩ C2) has
P . This implies that the only cases to consider are the following. In all these cases, we will prove a
result of the form (Xj , Ej) 6vc (Xk, Ek), Ej 6vc Ek for short. We argue by contradiction, which gives
i :Xj→Xk injective continuous with Ej =(i×i)−1(Ek).

E1 6vc E2: i(10∞)= i(1∞)=0∞, which contradicts the injectivity of i. Similarly, E2 6vc E1, E4 is
incomparable with E5, E1 6vc E5, E2 6vc E4.

E1 6vc E4: i(0∞) = 0∞, which implies that (0∞, 0∞)∈H, which is absurd. Similarly, E2 6vc E5
and E3 6vc E6.

E1 6vc E8: for example i(10∞) <lex i(1
∞) and (10∞, 1∞) ∈ H, which is absurd. Similarly,

E2 6vc E8.

E1 6vc E12:
(
i(10∞), i(0∞)

)
= (0α, 1α),

(
i(1∞), i(0∞)

)
= (0β, 1β), which implies that α= β,

contradicting the injectivity of i. Similarly, E2 6vc E12.

E3 6vc E7: i(10∞) 6= i(1∞), which implies that (10∞, 1∞)∈L, which is absurd.

E3 6vc E11:
(
i(0∞), i(1∞)

)
,
(
i(0∞), i(10∞)

)
∈ Graph(o), which implies that i(1∞) = i(10∞),

contradicting the injectivity of i. �
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From now on, Y will be a Hausdorff topological space and B will be an uncountable analytic
relation on Y . Note that B ∩∆(Y ) is analytic.

Lemma 6.2 Assume thatB∩∆(Y ) is uncountable. Then
(
2ω, (2ω)2

)
vc (Y,B), (2ω,=) vc (Y,B)

or (2ω,≤lex) vc (Y,B).

Proof. The perfect set theorem gives j :2ω→B ∩∆(Y ) injective continuous. Note that

π :=proj0
[
j[2ω]

]
=proj1

[
j[2ω]

]
is a copy of 2ω, ∆(π) ⊆ B ∩ π2 and (π,B ∩ π2) vc (Y,B), which implies that we may assume
that Y = 2ω and ∆(2ω)⊆B ∈Σ1

1

(
(2ω)2

)
. By 19.7 in [K], there is a copy P of 2ω in 2ω such that

<lex ∩P 2⊆B or <lex ∩P 2⊆¬B. Similarly, there is a copy Q of 2ω in P such that >lex ∩Q2⊆B or
>lex ∩Q2⊆¬B.

Case 1. <lex ∩Q2⊆B and >lex ∩Q2⊆B.

Note that Q2=B ∩Q2 and
(
2ω, (2ω)2

)
vc (Y,B).

Case 2. <lex ∩Q2⊆¬B and >lex ∩Q2⊆¬B.

Note that ∆(Q)=B ∩Q2 and (2ω,=) vc (Y,B).

Case 3. <lex ∩Q2⊆B and >lex ∩Q2⊆c¬B.

Note that ≤lex ∩Q=B ∩Q2 and (2ω,≤lex) vc (Y,B).

Case 4. <lex ∩Q2⊆¬B and >lex ∩Q2⊆B.

Note that ≥lex ∩Q2 = B ∩ Q2 and (2ω,≥lex) vc (Y,B). But (2ω,≤lex) vc (2ω,≥lex), with
witness i defined by i(α)(n) :=1−α(n). Thus (2ω,≤lex) vc (Y,B). �

Lemma 6.3 Assume that there is C⊆Y countable such that B⊆ (C×Y ) ∪ (Y ×C). Then there is
1≤ i≤6 such that Ei vc (Y,B).

Proof. As B is uncountable, there is y ∈ C such that By or By is uncountable. As By and By are
analytic, there is a copy P of 2ω in Y , disjoint from C, such that P×{y}⊆B or {y}×P ⊆B.

Case 1. P×{y}⊆B.

Case 1.1. ({y}×P ) ∩B is countable.

Note that there is a copy Q of 2ω in P such that {y}×Q⊆¬B.

Case 1.1.1. (y, y) /∈B.

Note that Q×{y}=B ∩ ({y} ∪Q)2 and (S,H) vc (Y,B).

Case 1.1.2. (y, y)∈B.

Note that Q×{y} ∪ {(y, y)}=B ∩ ({y} ∪Q)2 and (S,H+) vc (Y,B).

Case 1.2. ({y}×P ) ∩B is uncountable.

Note that there is a copy Q of 2ω in P such that {y}×Q⊆B.
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Case 1.2.1. (y, y) /∈B.

Note that Q×{y} ∪ {y}×Q=B ∩ ({y} ∪Q)2 and (S,L) vc (Y,B).

Case 1.2.2. (y, y)∈B.

Note that Q×{y} ∪ {y}×Q ∪ {(y, y)}=B ∩ ({y} ∪Q)2 and (S,L+) vc (Y,B).

Case 2. {y}×P ⊆B.

Similarly, we show that E2 vc (Y,B), E3 vc (Y,B), E5 vc (Y,B) or E6 vc (Y,B). �

So from now on we will assume that B∩∆(Y ) is countable, and that there is no countable subset
C of Y such that B ⊆ (C×Y ) ∪ (Y ×C). In particular, we may assume that B is irreflexive. By
Theorem 1 and Remark 2 in [P], there are ϕ : 2ω→ Y and h : ϕ[2ω]→ Y injective continuous with
Graph(h)⊆B. As B is irreflexive, we may assume that h has disjoint domain and range. We define
i : 2ω → Y by i(0α) := ϕ(α) and i(1α) := h

(
ϕ(α)

)
. Note that i is injective continuous. We set

A := (i×i)−1(B). Note that A is an analytic digraph on 2ω, which contains Graph(o|N0
), and that

(2ω, A) vc (Y,B). So from now on we will assume that Y = 2ω, B ∈Σ1
1

(
(2ω)2

)
is a digraph, and

Graph(o|N0
)⊆B.

Lemma 6.4 Assume that B is meager. Then there is 11≤ i≤12 such that Ei vc (Y,B).

Proof. We first prove the following.

Claim. It is enough to find a Cantor subset P of N0 such that B ∩ (P ∪ o[P ])2⊆Graph(o).

Indeed, we distinguish two cases.

Case 1. Graph(o|o[P ]) ∩B is uncountable.

There is a copy Q of 2ω in o[P ] with the property that Graph(o|Q) ⊆ B, which implies that
Graph(o|Q∪o[Q]) =B ∩ (Q ∪ o[Q])2. Let ψ : 2ω→Q be a homeomorphism. We define j : 2ω→ 2ω

by the formulas j(0α) := ψ(α) and j(1α) := o
(
ψ(α)

)
. Note that j is injective continuous. Also,

Graph(o)=(j×j)−1(B), which implies that
(
2ω,Graph(o)

)
vc (Y,B).

Case 2. Graph(o|o[P ]) ∩B is countable.

There is a copy Q of 2ω in o[P ] with the property that Graph(o|Q) ⊆ ¬B, which implies that
Graph(o|o[Q]) =B ∩ (Q ∪ o[Q])2. Let ψ : 2ω→ o[Q] be a homeomorphism. We define j : 2ω→ 2ω

by the formulas j(0α) := ψ(α) and j(1α) := o
(
ψ(α)

)
. Note that j is injective continuous. Also,

Graph(o|N0
)=(j×j)−1(B), which implies that

(
2ω,Graph(o|N0

)
)
v(Y,B). �

We now give the end of the proof suggested by the anonymous referee, which simplifies the
original one. Let S : 2ω → 2ω be the shift map, defined by S(α)(n) := α(n+1). As B is meager,
so is B′ := (S×S)[B]. The Mycielski-Kuratowski theorem provides a copy Q of 2ω in 2ω such that
B′ ∩ Q2 ⊆∆(2ω) (see 19.1 in [K1]). We set P̃ := {0}×Q. Note that P is a copy of 2ω in N0 and
B ∩ (P ∪ o[P ])2⊆Graph(o) since B is a digraph. �

So we may assume that B is not meager. The Baire property of B and 19.6 in [K] give a product
of Cantor sets contained in B. This means that we may assume that N0×N1⊆B⊆¬∆(2ω).
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Proof of Theorem 1.10. (1) We distinguish several cases.

Case 1. B ∩ (N1×N0) is not meager.

By 19.6 in [K], B ∩ (N1×N0) contains a product of Cantor sets, which implies that we may
assume that (N0×N1) ∪ (N1×N0)⊆B.

Case 1.1. There is a Cantor subset of 2ω which is B-discrete. Then (S,L) vc (Y,B).

Indeed, assume for example that Q ⊆ N1 is a Cantor B-discrete set. Let h : 2ω → Q be a
homeomorphism. We define i : S→ Y by i(0∞) := 0∞ and i(1α) := h(α). Note that i is injective
continuous. Clearly L⊆(i×i)−1(B), and the converse holds sinceB is a digraph andQ isB-discrete.

Case 1.2. No Cantor subset of 2ω is B-discrete. Then (2ω, 6=) vc (Y,B) or (2ω, <lex) vc (Y,B).

Indeed, as in the proof of Lemma 6.2 there is a Cantor subset Q of 2ω with <lex ∩Q2 ⊆ B or
<lex ∩Q2⊆¬B, and >lex ∩Q2⊆B or >lex ∩Q2⊆¬B. As B is irreflexive and no Cantor subset of
2ω is B-discrete, we cannot have <lex ∩Q2⊆¬B and >lex ∩Q2⊆¬B.

Case 1.2.1. <lex ∩Q2⊆B and >lex ∩Q2⊆B.

Note that Q2\∆(Q)=B ∩Q2 and (2ω, 6=) vc (Y,B).

Case 1.2.2. <lex ∩Q2⊆B and >lex ∩Q2⊆¬B.

Note that <lex ∩Q2=B ∩Q2 and (2ω, <lex) vc (Y,B).

Case 1.2.3. <lex ∩Q2⊆¬B and >lex ∩Q⊆B.

Note that >lex ∩Q=B ∩Q and (2ω, >lex) vc (Y,B). But (2ω, <lex) vc (2ω, >lex), with witness
i defined by i(α)(n) :=1−α(n). Thus (2ω, <lex) vc (Y,B).

Case 2. B ∩ (N1×N0) is meager.

By 19.6 in [K], (¬B) ∩ (N1×N0) contains a product of Cantor sets, which implies that we may
assume that N0×N1⊆B⊆¬(N1×N0).

Case 2.1. There is a B-discrete Cantor subset of 2ω. Then (S,H) vc (Y,B) or (S,V) vc (Y,B).

Indeed, assume for example that Q⊆N0 is a Cantor B-discrete set. Then as in Case 1.1 we see
that (S,H) vc (Y,B). Similarly, if Q⊆N1 is a Cantor B-discrete set, then (S,V) vc (Y,B).

Case 2.2. No Cantor subset of 2ω is B-discrete. Then (2ω, 6=) vc (Y,B) or (2ω, <lex) vc (Y,B).

Indeed, we argue as in Case 1.2.

(2) The indicated elements are the only graphs in Ac, up to the isomorphism (ε, α) 7→εα. �
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78 (1980)
[Lo3] A. Louveau, Two Results on Borel Orders, J. Symbolic Logic 54, 3 (1989), 865-874
[Lo-SR1] A. Louveau and J. Saint Raymond, Borel classes and closed games: Wadge-type and
Hurewicz-type results, Trans. Amer. Math. Soc. 304 (1987), 431-467
[Lo-SR2] A. Louveau and J. Saint Raymond, The strength of Borel Wadge determinacy, Cabal
Seminar 81-85, Lecture Notes in Math. 1333 (1988), 1-30
[Mo] Y. N. Moschovakis, Descriptive set theory, North-Holland, 1980
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