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• Université de Picardie, I.U.T. de l’Oise, site de Creil,
13, allée de la faı̈encerie, 60 107 Creil, France

Abstract. We provide dichotomy results characterizing when two disjoint analytic binary relations
can be separated by a countable union of Σ0

1×Σ0
ξ sets, or by a Π0

1×Π0
ξ set.

2010 Mathematics Subject Classification. Primary: 03E15, Secondary: 54H05
Keywords and phrases. Borel class, countable Borel coloring, Borel rectangle
Acknowledgments. We would like to thank the two anonymous referees for their suggestions, that improved the pre-

sentation of this paper.

1



1 Introduction

The reader should see [K] for the standard descriptive set theoretic notation and material used in
this paper. All our relations will be binary. The motivation for this work goes back to the following
so called G0-dichotomy, essentially proved in [K-S-T].

Theorem 1.1 (Kechris, Solecki, Todorčević) There is a Borel relation G0 on 2ω such that, for any
Polish space X and any analytic relation A on X , exactly one of the following holds:

(a) there is c :X→ω Borel such that c(x) 6=c(y) if (x, y)∈A (a countable Borel coloring of A),
(b) there is f :2ω→X continuous such that G0⊆(f×f)−1(A).

This result had a lot of developments since. For instance, Miller developed some techniques to
recover many dichotomy results of descriptive set theory, without using effective descriptive set theory
(see [M]). He replaces it with some versions of Theorem 1.1. In particular, he can prove Theorem 1.1
without effective descriptive set theory. In [L1], the author derives from Theorem 1.1 a dichotomy
result characterizing when two disjoint analytic sets can be separated by a countable union of Borel
rectangles. In order to state it, we give some notation that will also be useful to state our main results.
It is about partial rectangular reduction.

Notation. Let, for ε∈2 :={0, 1}, Xε, Yε be Polish spaces, and Aε, Bε be disjoint analytic subsets of
Xε×Yε. We set

(X0, Y0, A0, B0) ≤ (X1, Y1, A1, B1)⇔
∃f :X0→X1 ∃g :Y0→Y1 continuous with A0⊆(f×g)−1(A1) and B0⊆(f×g)−1(B1).

If X is a set, then the diagonal of X is ∆(X) :={(x, x) | x∈X}.

Theorem 1.2 Let X,Y be Polish spaces, and A,B be disjoint analytic subsets of X×Y . Exactly one
of the following holds:

(a) the set A can be separated from B by a countable union of Borel rectangles,
(b)
(
2ω, 2ω,∆(2ω),G0

)
≤ (X,Y,A,B).

It is easy to check that Theorem 1.1 is also an easy consequence of Theorem 1.2. This means that
the study of the countable Borel colorings is highly related to the study of countable unions of Borel
rectangles. It is natural to ask for level by level versions of these two results, with respect to the Borel
hierarchy. This work was initiated in [L-Z], where the authors prove the following.

Theorem 1.3 (Lecomte, Zelený) Let ξ∈{1, 2, 3}. Then we can find a zero-dimensional Polish space
X, and an analytic relation A on X such that for any (zero-dimensional if ξ=1) Polish space X , and
for any relation A on X , exactly one of the following holds:

(a) there is a countable ∆0
ξ-measurable coloring of A,

(b) there is f :X→X continuous such that A⊆(f×f)−1(A).

In [L-Z], the authors note that the study of countable ∆0
ξ-measurable colorings is highly related

to the study of countable unions of Σ0
ξ rectangles, since the existence of a countable ∆0

ξ-measurable
coloring of a relation A on a (zero-dimensional if ξ=1) Polish space X is equivalent to the fact that
∆(X) can be separated from A by a countable union of Σ0

ξ rectangles, by the generalized reduction
property for the class Σ0

ξ (see 22.16 in [K]). In this direction, they prove the following.
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Theorem 1.4 (Lecomte, Zelený) Let ξ ∈ {1, 2}. Then we can find zero-dimensional Polish spaces
X,Y, and disjoint analytic subsets A,B of X×Y such that for any Polish spaces X,Y , and for any
pair A,B of disjoint analytic subsets of X×Y , exactly one of the following holds:

(a) the set A can be separated from B by a (Σ0
ξ×Σ0

ξ)σ set,
(b) (X,Y,A,B) ≤ (X,Y,A,B).

In fact, we can think of a number of related problems of this kind. We can study

- the finite or bounded finite Borel colorings,
- the separation of disjoint analytic sets by a finite or bounded finite union of Borel rectangles,
- the finite, bounded finite, or infinite Borel colorings of bounded complexity,
- the separation of disjoint analytic sets by a finite, bounded finite or infinite union of Borel rectangles
of bounded complexity...

This last question has been studied in [Za] in the case of one rectangle. In [Za], the author
characterizes when two disjoint analytic sets can be separated by a Σ0

1 (or Π0
ξ when ξ≤2) rectangle.

Louveau suggested that it could be very interesting to study the non-symmetric version of the problem
to understand it better (we can also make this remark for countable unions of rectangles, which is
another motivation for Theorem 1.5 to come). Zamora noticed that the problems of the separation of
analytic sets by a Π0

1×Π0
2 set and by a (Σ0

1×Σ0
2)σ set are very much related (he derives a dichotomy

for the rectangles from a dichotomy for the countable unions of rectangles). His technique cannot be
extended to higher levels. However, the relation just mentioned is much stronger than in [Za], as we
will see. The main results in this paper generalize these two Zamora results, and are, hopefully, steps
towards the generalization of Theorem 1.4, and then Theorem 1.3. The first one is about countable
unions of rectangles of the form Σ0

1×Σ0
ξ .

Theorem 1.5 Let ξ≥1 be a countable ordinal. Then there are zero-dimensional Polish spaces X,Y,
and disjoint analytic subsets A,B of X×Y such that for any Polish spaces X,Y , and for any pair
A,B of disjoint analytic subsets of X×Y , exactly one of the following holds:

(a) the set A can be separated from B by a (Σ0
1×Σ0

ξ)σ set,
(b) (X,Y,A,B) ≤ (X,Y,A,B).

The second one is about rectangles of the form Π0
1×Π0

ξ .

Theorem 1.6 Let ξ≥1 be a countable ordinal. Then there are zero-dimensional Polish spaces X,Y,
and disjoint analytic subsets A,B of X×Y such that for any Polish spaces X,Y , and for any pair
A,B of disjoint analytic subsets of X×Y , exactly one of the following holds:

(a) the set A can be separated from B by a Π0
1×Π0

ξ set,
(b) (X,Y,A,B) ≤ (X,Y,A,B).

One of our key tools to prove these two results is the representation theorem for Borel sets by
Debs and Saint Raymond. A classical result of Lusin-Souslin asserts that any Borel subset B of a
Polish space is the bijective continuous image of a closed subset of the Baire space (see 13.7 in [K]).
There is a level by level version of this result due to Kuratowski: the Baire class of the inverse map
of the bijection is essentially equal to the Borel rank of B (see Theorem 1 in [Ku]).
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The representation theorem for Borel sets by Debs and Saint Raymond refines this Kuratowski
result (see Theorem I-6.6 in [D-SR]). We will state it and recall the material needed to state it in the
next section. Initially, the representation theorem had three applications in [D-SR]: a theorem about
continuous liftings, another one about compact covering maps, and a new proof (involving games
as in the original paper) of the Louveau-Saint Raymond dichotomy characterizing when two disjoint
analytic sets can be separated by a Σ0

ξ (or Π0
ξ) set (see page 433 in [Lo-SR]). In [L3] and [L4], the

representation theorem is used to prove a dichotomy about potential Wadge classes. Its proof provides
another new proof of the Louveau-Saint Raymond theorem which does not involve games.

A very remarkable phenomenon happens in the present paper. In the applications just mentioned,
the representation theorem was used only inside the proofs. Here, the representation theorem is used
not only in the proofs of Theorems 1.5 and 1.6, but also to define the minimal objects X,Y,A,B.
We believe that the minimal objects cannot be that simple for higher levels. Moreover, Theorem 1.4
provides an extension of Theorem 1.5 to countable unions of Σ0

2 rectangles. It is possible to prove
such an extension using the representation theorem. However, we could not prove further extensions,
leaving the general case of countable unions of rectangles of the form Σ0

η×Σ0
ξ , or just Σ0

ξ×Σ0
ξ , open

for future work.

The organization of the paper is as follows. In Section 2, we recall the material about represen-
tation needed here, as well as some lemmas from [L3], and we give some effective facts needed to
prove our main results. We prove Theorem 1.5 in Section 3, and Theorem 1.6 in Section 4.

2 Preliminaries

2.1 Representation of Borel sets

The following definition can be found in [D-SR].

Definition 2.1.1 (Debs-Saint Raymond) A partial order relation R on 2<ω is a tree relation if, for
s∈2<ω,

(a) ∅ R s (i.e., ∅ is the R-minimum element),
(b) the set PR(s) := {t∈ 2<ω | t R s} is finite and linearly ordered by R (hR(s) will denote the

number of strict R-predecessors of s, so that hR(s)=Card
(
PR(s)

)
−1).

A basic exemple of a tree relation is given by the extension relation ⊆.
• Let R be a tree relation. An R-branch is a ⊆-maximal subset of 2<ω linearly ordered by R. We
denote by [R] the set of all infinite R-branches. For instance, if α∈2ω, then the strictly ⊆-increasing
sequence h(α) of all initial segments of α is an infinite ⊆-branch.

We equip (2<ω)ω with the product of the discrete topology on 2<ω. If R is a tree relation, then the
space [R]⊆(2<ω)ω is equipped with the topology induced by that of (2<ω)ω, and is a Polish space. A
basic clopen set is of the form NR

s :=
{
γ∈ [R] | γ

(
hR(s)

)
=s
}

, where s∈2<ω. The map h :2ω→ [⊆]
just defined in the last paragraph is a homeomorphism.
• Let R, S be tree relations with R⊆S (quite often, the big relation S will be the extension relation).
The canonical map Π : [R] → [S] is defined by Π(γ) := the unique S-branch containing γ. The
canonical map is continuous.
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• Let S be a tree relation. We say that R⊆S is distinguished in S if

∀s, t, u∈2<ω
s S t S u

s R u

 ⇒ s R t.

The idea is that if s is a good position when viewed from u, then s was already a good position when
viewed from t.
•We now iterate the notion of distinction.Let η<ω1. A family (Rρ)ρ≤η of tree relations is a resolution
family if

(a) Rρ+1 is a distinguished subtree of Rρ, for each ρ<η.
(b) Rλ=

⋂
ρ<λ R

ρ, for each limit ordinal λ≤η.

Before stating the representation theorem of Borel sets, we now give an idea of the objects it
can provide. As mentioned in the introduction, it can be used to prove one of the initial cases of
the Louveau-Saint Raymond dichotomy, characterizing when two disjoint analytic subsets A and
B of a Polish space X can be separated by a Σ0

2 set, and due to Hurewicz. Let P∞ be the Π0
2

set of the infinite binary sequences with infinitely many ones. The Hurewicz theorem says that the
separation is not possible exactly when there is f : 2ω→X continuous sending P∞ into A and ¬P∞
into B. We construct finite approximations of the map f . If we look at an initial segment of some
α ∈ 2ω, we have to guess where α will be, in P∞ or not. If the initial segment seems to indicate
that α will be in P∞, then we will take the associated approximation of f(α) in A. Otherwise, we
will take the associated approximation of f(α) in B. For instance, an initial segment finishing with
a one seems to indicate that α will be in P∞, and an initial segment finishing with a zero seems
to indicate that α will not be in P∞. A first approach is to consider the initial segments of α in
O :={s∈2<ω | s 6=∅ ⇒ s(|s|−1)=1}. If there are infinitely many of them, then α is in P∞, and we
consider only them. Otherwise, we consider them (just in case we have to change our mind about the
final position of α), and then all the initial segments after the last one. In other words, we extracted
a subsequence of the sequence h(α) of the initial segments of α. One can check that the relation R
defined by s R u ⇔ s⊆ u ∧

(
s∈O ∨ ∀s⊆ t ⊆ u t /∈O

)
is a tree relation distinguished in ⊆, the

canonical map Π: [R]→ [⊆] is a continuous bijection with Σ0
2-measurable inverse, and Π−1(h[P∞])

is the closed subset of [R] made of the sequences with all members in O. The representation theorem
of Borel sets can provide such objects, it extracts good subsequences.

The representation theorem of Borel sets is as follows in the successor case (see Theorems I-6.6
and I-3.8 in [D-SR]).

Theorem 2.1.2 (Debs-Saint Raymond) Let η be a countable ordinal, and P be a Π0
η+1 subset of [⊆].

Then there is a resolution family (Rρ)ρ≤η such that
(a) R0=⊆,
(b) the canonical map Π:[Rη]→ [R0] is a continuous bijection with Σ0

η+1-measurable inverse,

(c) the set Π−1(P ) is a closed subset of [Rη].

For the limit case, in order to control the complexity of Π−1, we need some more definition that
can be found in [D-SR].
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Definition 2.1.3 (Debs-Saint Raymond) Let ξ be an infinite limit countable ordinal. We say that a
resolution family (Rρ)ρ≤ξ with R0=⊆ is uniform if

∀k∈ω ∃ξk<ξ ∀s, t∈2<ω
(

min
(
hRξ(s), hRξ(t)

)
≤k ∧ s Rξ

k
t
)
⇒ s Rξ t.

Note that if ξk satisfies this formula, then so does any η with ξk≤η<ξ since Rη⊆Rξk . In the sequel,
ξk will be the least ξ′ with 1≤ξ′<ξ satisfying this formula with respect to k.

The representation theorem of Borel sets is as follows in the limit case (see Theorems I-6.6 and
I-4.1 in [D-SR]).

Theorem 2.1.4 (Debs-Saint Raymond) Let ξ be an infinite limit countable ordinal, and P be a Π0
ξ

subset of [⊆]. Then there is a uniform resolution family (Rρ)ρ≤ξ such that
(a) R0=⊆,
(b) the canonical map Π:[Rξ]→ [R0] is a continuous bijection with Σ0

ξ-measurable inverse,

(c) the set Π−1(P ) is a closed subset of [Rξ].

We will use the following extension of the property of distinction (see Lemma 2.6 in [L3]).

Lemma 2.1.5 Let η < ω1, (Rρ)ρ≤η be a resolution family, and ρ < η. Assume that s, t, u ∈ 2<ω,
s R0 t Rρ u and s Rρ u. Then s Rρ t. If moreover s Rρ+1 u, then s Rρ+1 t.

Notation. Let η<ω1, (Rρ)ρ≤η be a resolution family with R0=⊆, s∈2<ω, and ρ≤η. We define

sρ :=

{
∅ if s=∅,
s|max{l< |s| | s|l Rρ s} if s 6=∅.

The sequence sρ is actually the immediate predecessor of s with respect to Rρ. Lemmas 2.6 and
2.7 in [L3] allow us to define ξs1 := sup{ρ ≤ η | s0 ⊆ sρ} and, inductively on i ≥ 1 with ξsi < η,
ξsi+1 := sup{ρ≤ η | sξsi+1⊆ sρ}. These lemmas imply the existence of a natural number n≥ 1 such
that {sξsi | 1≤ i≤n} is an enumeration of {sρ | ρ≤ η}. Moreover, (ξsi )1≤i≤n is strictly increasing,
ξsn = η, (sξ

s
i )1≤i≤n is strictly ⊆-decreasing, and sξ

s
1 ⊆ s. If s 6= ∅ and 1≤ i<n, then sξ

s
i+1 Rξ

s
i+1 sξ

s
i

and sξ
s
i+1 $ sξ

s
i . These last properties will be useful to establish the topological properties that we

need (see Lemma 2.2.1).

2.2 Topologies

The reader should see [Mo] for the basic notions of effective descriptive set theory.

Notation. Let S be a recursively presented Polish space.

(1) The Gandy-Harrington topology on S is generated by the Σ 1
1 subsets of S, and is denoted ΣS .

Recall the following facts about ΣS (see [L2]).
- ΣS is finer than the initial topology of S.

- We set ΩS := {s∈S | ωs1 =ωCK
1 }. Then ΩS is a Σ 1

1 subset of S and is dense in (S,ΣS).
- W ∩ ΩS is a clopen subset of (ΩS ,ΣS), for each Σ 1

1 subset W of S.
- (ΩS ,ΣS) is a zero-dimensional Polish space. So we fix a complete compatible metric on (ΩS ,ΣS).
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(2) We call T1 the usual topology on S, and Tη is the topology generated by the Σ 1
1 ∩Π0

<η subsets of

S if 2≤η<ωCK
1 (see Definition 1.5 in [Lo]).

The next topological result is essentially Lemma 2.4 and the claim in the proof of Theorem 2.9 in
[L3]. In our Cantor-like constructions of the functions desired in Theorems 1.5.(b) and 1.6.(b), it is
enough to construct the finite approximations associated with the immediate predecessors of a given
finite binary sequence, for all the relevant ordinals (in fact finitely many of them, those given after
Lemma 2.1.5). The next lemma makes this possible.

Lemma 2.2.1 Let S be a recursively presented Polish space, and 1≤η<ωCK
1 .

(a) (Louveau) Fix a Σ 1
1 subset A of S. Then ATη is Π0

η, Σ 1
1 , and Tη+1-open.

(b) Let p≥1 be a natural number, (ηi)1≤i≤p be a strictly increasing sequence of ordinals between
1 and η, (Si)1≤i≤p be a sequence of Σ 1

1 subsets of S, and O be a Σ 0
1 subset of S. Assume that

Si⊆Si+1
Tηi+1 if 1≤ i<p. Then Sp ∩

⋂
1≤i<p Si

Tηi ∩O is T1-dense in S1
T1 ∩O.

(c) Let (Rρ)ρ≤η be a resolution family with R0 =⊆, s be a nonempty finite binary sequence, Ssρ
be a Σ 1

1 subset of S (for 1≤ ρ≤ η), E be a Σ 1
1 subset of S, and O be a Σ 0

1 subset of S. We assume
that Ssη ⊆E

Tη+1 and St ⊆ Su
Tρ if u Rρ t$ s and 1≤ ρ≤ η. Then Ssη ∩

⋂
1≤ρ<η Ssρ

Tρ ∩ O and

E ∩
⋂

1≤ρ≤η Ssρ
Tρ ∩O are T1-dense in Ss1

T1 ∩O.

Proof. (a) See Lemma 1.7 in [Lo].

(b) Let D be a Σ 0
1 subset of S meeting S1

T1 ∩ O. Then S1 ∩ D ∩ O 6= ∅, which proves the desired
property for p=1. Then we argue inductively on p. So assume that the property is proved for p. Note
that Sp⊆Sp+1

Tηp+1 , and Sp ∩
⋂

1≤i<p Si
Tηi ∩D ∩O 6=∅, by induction assumption. Thus

Sp+1
Tηp+1 ∩

⋂
1≤i≤p

Si
Tηi ∩D ∩O 6=∅.

As
⋂

1≤i≤p Si
Tηi ∩D ∩O is Tηp+1-open, Sp+1 ∩

⋂
1≤i≤p Si

Tηi ∩D ∩O 6=∅.

(c) We use the notation after Lemma 2.1.5. We enumerate {ξsi | ξsi ≥ 1} in an increasing way by
{ηsi | 1≤ i≤ p}, which means that we forget ξs1 if it is 0. As η≥ 1, p≥ 1. Note that sη

s
i+1 $ sη

s
i if

1≤ i<p. We set Si :=S
sη
s
i
, for 1≤ i≤p. Note that Si⊆Si+1

Tηs
i
+1 if 1≤ i<p since sη

s
i+1 Rη

s
i+1 sη

s
i .

Thus Ssη ∩
⋂
ηsi<η

S
sη
s
i

Tηs
i ∩ O and E ∩

⋂
ηsi≤η

S
sη
s
i

Tηs
i ∩ O are T1-dense in Ss1

T1 ∩ O, by (b)
and since sη

s
1 = s1. But if 1 ≤ ρ ≤ η, then there is 1 ≤ i ≤ p with sρ = sη

s
i . And ρ ≤ ηsi since

sη
s
i+1 $ sη

s
i if 1≤ i < p. Thus we are done since Ssη ∩

⋂
1≤ρ<η Ssρ

Tρ
=Ssη ∩

⋂
ηsi<η

S
sη
s
i

Tηs
i and⋂

1≤ρ≤η Ssρ
Tρ

=
⋂
ηsi≤η

S
sη
s
i

Tηs
i . �

2.3 Some general effective facts

Lemma 2.3.1 Let 1 ≤ η, ξ < ωCK
1 , X,Y be recursively presented Polish spaces, A be a Σ 1

1 ∩ Σ0
η

subset of X , B be a Σ 1
1 ∩Σ0

ξ subset of Y , and C be a Σ 1
1 subset of X×Y disjoint from A×B. Then

we can find a ∆1
1 ∩Σ0

η set A′ and a ∆1
1 ∩Σ0

ξ set B′ such that A′×B′ separates A×B from C. This
also holds for the multiplicative classes.
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Proof. We argue as in the proof of Lemma 2.2 in [L-Z]. �

We now give a product version of Lemma 2.2.1.(a).

Notation. Let Y be a recursively presented Polish space. Recall the existence of Π 1
1 sets W ⊆ω and

C⊆ω×Y such that ∆1
1(Y )={Cn | n∈W} and {(n, y)∈ω×Y | n∈W ∧ y /∈Cn} is a Π 1

1 subset
of ω×Y (see Theorem 3.3.1 in [H-K-Lo]). Intuitively, W is the set of codes for the ∆1

1 subsets of Y .
We set, for 1≤ξ<ωCK

1 ,

Wξ :={n∈W | Cn is a Π0
ξ ∩∆1

1 subset of Y }.

By Proposition 1.4 and Theorem 1.A in [Lo], the set W<ξ :=
⋃

1≤η<ξ Wη is Π 1
1 . The sets Wξ and

W<ξ are the sets of codes for the Π0
ξ ∩∆1

1 and Π0
<ξ ∩∆1

1 subsets of Y respectively.

Lemma 2.3.2 Let 1≤ ξ<ωCK
1 , X,Y be recursively presented Polish spaces, and B be a Σ 1

1 subset
of X×Y . Then BT1×Tξ is Σ 1

1 .

Proof. Assume first that ξ = 1. Let
(
N(X,m)

)
m∈ω and

(
N(Y, n)

)
n∈ω be effective basis for the

topology of X and Y , respectively. Then (x, y) /∈BT1×T1 is equivalent to

∃m,n∈ω x∈N(X,m) ∧ y∈N(Y, n) ∧
∀(x′, y′)∈X×Y

(
x′ /∈N(X,m) ∨ y′ /∈N(Y, n) ∨ (x′, y′) /∈B

)
,

which shows that BT1×T1 is Σ 1
1 .

Assume now that ξ≥2. If (x, y) /∈BT1×Tξ , then we can find m∈ω and a Σ 1
1 ∩Π0

<ξ subset S of
Y such that (x, y)∈N(X,m)×S⊆¬B. In particular, S is contained in the Π 1

1 set

P :={y∈Y | ∀x∈N(X,m) (x, y) /∈B}.

Theorems 1.A and 1.B in [Lo] provide a ∆1
1 ∩Π0

<ξ subset D of Y separating S from ¬P . This gives

n∈W<ξ such that Cn separates S from ¬P . Thus (x, y) /∈BT1×Tξ is equivalent to

∃m∈ω ∃n∈W<ξ x∈N(X,m) ∧ y∈Cn ∧
∀(x′, y′)∈X×Y

(
x′ /∈N(X,m) ∨ (n∈W ∧ y′ /∈Cn) ∨ (x′, y′) /∈B

)
,

which shows that BT1×Tξ is Σ 1
1 . �

Theorem 2.3.3 Let 1 ≤ η, ξ < ωCK
1 , X,Y be recursively presented Polish spaces, and A,B be

disjoint Σ 1
1 subsets of X×Y . We assume that A is separable from B by a (Σ0

η×Σ0
ξ)σ set. Then A is

separable from B by a ∆1
1 ∩
(
(∆1

1 ∩Σ0
η)×(∆1

1 ∩Σ0
ξ)
)
σ

set.

Proof. We argue as in the proof of Theorem 2.3 in [L-Z]. �

The next result is similar to Theorem 2.5 in [L-Z].
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Theorem 2.3.4 Let 1 ≤ η, ξ < ωCK
1 , X,Y be recursively presented Polish spaces, and A,B be

disjoint Σ 1
1 subsets of X×Y . The following are equivalent:

(a) the set A cannot be separated from B by a (Σ0
η×Σ0

ξ)σ set.

(b) the set A cannot be separated from B by a ∆1
1 ∩ (Σ0

η×Σ0
ξ)σ set.

(c) the set A cannot be separated from B by a Σ0
1(Tη×Tξ) set.

(d) A ∩BTη×Tξ 6=∅.

Proof. Theorem 2.3.3 implies that (a) is indeed equivalent to (b), and actually to the fact thatA cannot
be separated from B by a ∆1

1 ∩
(
(∆1

1 ∩Σ0
η)×(∆1

1 ∩Σ0
ξ)
)
σ

set. By Theorem 1.A in [Lo], a ∆1
1 ∩Σ0

ξ

set is a countable union of ∆1
1 ∩Π0

<ξ sets, and thus Tξ-open, if ξ≥2. Therefore (c) implies (a), and
the converse is clear. It is also clear that (c) and (d) are equivalent. �

The following result is Lemma 3.3 in [Za], and is a consequence of Theorem 2.3.4.

Theorem 2.3.5 Let 1 ≤ ξ, η < ωCK
1 , X,Y be recursively presented Polish spaces, and A,B be

disjoint Σ 1
1 subsets of X×Y . The following are equivalent:

(a) The set A cannot be separated from B by a Π0
η×Π0

ξ set.

(b) B ∩ (projX [A]
Tη×projY [A]

Tξ
) 6=∅.

3 Countable unions of Σ0
1×Σ0

ξ sets

Let Q be a Π0
ξ subset of 2ω which is not Σ0

ξ . Then P :=h[Q] is a Π0
ξ subset of [⊆] which is not

Σ0
ξ since h is a homeomorphism.

(A) The successor case

Assume that ξ= η+1 is a countable ordinal. Theorem 2.1.2 gives a resolution family (Rρ)ρ≤η.
We set X :=[Rη], Y :=[⊆], A :={(β, α)∈X×Y | Π(β)=α∈P} and

B :={(β, α)∈X×Y | Π(β)=α /∈P}.

The sets A and B are the diagonals of P and ¬P respectively, viewed in X×Y. Note that X and Y
are zero-dimensional Polish spaces, A is a closed subset of X×Y, and B is a difference of two closed
subsets of X×Y, disjoint from A.

Lemma 3.1 The set A is not separable from B by a (Σ0
1×Σ0

ξ)σ subset of X×Y.

Proof. We argue by contradiction, which gives a sequence (On)n∈ω of open subsets of [Rη] and a
sequence (Sn)n∈ω of Σ0

ξ subsets of [⊆] such that A ⊆
⋃
n∈ω On×Sn ⊆ ¬B. This implies that

P =
⋃
n∈ω Π[On] ∩ Sn. As Π−1 is Σ0

ξ-measurable, Π[On] and P are Σ0
ξ subsets of [⊆], which is

absurd. �
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One of the key ideas of the proof of Theorem 1.5 is as follows. Since we work with rectangles,
it is natural to consider projections. The representation theorem, applied on the left side to define
our mimimum objects, will lead us to consider a lot of predecessors on the right side in the key
Condition (5) to come (making the construction possible), and also closures of projections for some
corresponding topologies. The projection associated with the smallest predecessor allows only to
consider one topology on the left. This the the reason why we have the class of open sets in the left
factor in the statement.

Proof of Theorem 1.5. The exactly part comes from Lemma 3.1. Assume that (a) does not hold. In
order to simplify the notation, we will asume that ξ <ωCK

1 , X and Y are recursively presented and
A,B are Σ 1

1 , so that N := A ∩ BT1×Tξ is a nonempty (by Theorem 2.3.4) Σ 1
1 (by Lemma 2.3.2)

subset of X×Y .

We set I :={s∈2<ω | NRη
s ∩ Π−1(P ) 6=∅}. The set I is essentially the tree associated with the

closed set Π−1(P ). It will determine if the finite approximation of f×g associated with s is contained
in N⊆A or B. As P is not empty, ∅∈I. We construct, for s∈2<ω,

- a point xs of X and a Σ 0
1 subset Xs of X ,

- a point ys of Y and a Σ 0
1 subset Ys of Y ,

- a Σ 1
1 subset Ss of X×Y .

We want these objects to satisfy the following conditions:

(1)


Xt⊆Xs if s Rη t ∧ s 6= t

Yt⊆Ys if s R0 t ∧ s 6= t
St⊆Ss if s Rη t ∧ (s, t∈I ∨ s, t /∈I)

(2) xs∈Xs ∧ ys∈Ys ∧ (xs, ys)∈Ss⊆(Xs×Ys) ∩ ΩX×Y

(3) diam(Xs), diam(Ys), diamGH(Ss)≤2−|s|

(4) Ss⊆
{
N if s∈I
B if s /∈I

(5) projY [St]⊆projY [Ss]
Tρ if s Rρ t ∧ 1≤ρ≤η

Assume that this is done. Let β∈X. Note that β(k) Rη β(k+1) for each k∈ω. By (1),

Xβ(k+1)⊆Xβ(k).

Thus (Xβ(k))k∈ω is a decreasing sequence of nonempty closed subsets ofX with vanishing diameters.
We define {f(β)} :=

⋂
k∈ω Xβ(k)=

⋂
k∈ω Xβ(k), so that f(β)= limk→∞ xβ(k) and f is continuous.

Now let α∈Y. By (1), Yα(k+1)⊆Yα(k). Thus (Yα(k))k∈ω is a decreasing sequence of nonempty
closed subsets of Y with vanishing diameters. We define {g(α)} :=

⋂
k∈ω Yα(k)=

⋂
k∈ω Yα(k), so

that g(α)= limk→∞ yα(k) and g :Y→Y is continuous.
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Let (β, α) ∈ A. Note that β(k) ∈ I for each k ∈ ω. By (1)-(4), (Sβ(k))k∈ω is a decreas-
ing sequence of nonempty clopen subsets of N ∩ ΩX×Y with vanishing GH-diameters. We set
{F (β)} :=

⋂
k∈ω Sβ(k). Note that (xβ(k), yβ(k))k∈ω converges to F (β) for ΣX×Y , and thus for the

usual topology onX×Y . As
(
β(k)

)
k∈ω is a subsequence of

(
α(k)

)
k∈ω,

(
f(β), g(α)

)
=F (β), which

is therefore in N⊆A, showing that A⊆(f×g)−1(A).

Let (β, α)∈B. As Π−1(P ) is a closed subset of [Rη], there is k0∈ω such that β(k) /∈I whenever
k≥k0. By (1)-(4), (Sβ(k))k≥k0 is a decreasing sequence of nonempty clopen subsets of B ∩ ΩX×Y
with vanishing GH-diameters, and we define {G(β)} :=

⋂
k≥k0 Sβ(k). Note that (xβ(k), yβ(k))k∈ω

converges toG(β). So
(
f(β), g(α)

)
=G(β), which is therefore inB, showing that B⊆(f×g)−1(B).

Let us prove that the construction is possible. Let (x∅, y∅)∈N ∩ ΩX×Y , X∅, Y∅ be Σ 0
1 sets with

diameter at most 1 such that (x∅, y∅)∈X∅×Y∅, and S∅ be a Σ 1
1 subset of X×Y with GH-diameter

at most 1 and (x∅, y∅)∈S∅⊆N ∩ (X∅×Y∅) ∩ ΩX×Y . Assume that our objects satisfying (1)-(5) are
constructed up to the length l, which is the case for l=0. So let s∈2l+1.

Claim The set projY [Ssη ] ∩
⋂

1≤ρ<η projY [Ssρ ]
Tρ ∩ Ys0 is T1-dense in projY [Ss1 ] ∩ Ys0 if η≥1.

Indeed, we apply Lemma 2.2.1.(c) to E :=Y and O :=Ys0 . �

Note that s1⊆s0$s and s1 R1 s0, so that projY [Ss0 ]⊆projY [Ss1 ]. Thus ys0 ∈projY [Ss1 ] ∩ Ys0 .

This shows that I :=projY [Ssη ] ∩
⋂

1≤ρ<η projY [Ssρ ]
Tρ ∩ Ys0 is not empty, even if η=0.

Case 1 s /∈I

1.1 If sη /∈ I, then we choose ys ∈ I , xs ∈Xsη with (xs, ys)∈ Ssη , Σ 0
1 sets Xs, Ys with diameter at

most 2−l−1 such that (xs, ys)∈Xs×Ys ⊆Xs×Ys ⊆Xsη×Ys0 , and a Σ 1
1 subset Ss of X×Y with

GH-diameter at most 2−l−1 such that (xs, ys)∈Ss⊆Ssη ∩
(
Xs×(

⋂
1≤ρ<η projY [Ssρ ]

Tρ ∩ Ys)
)
. If

t Rη s and s 6= t, then t R0 sη Rη s, so that t Rη sη, by Lemma 2.1.5. This implies that Xs⊆Xt and
projY [Ssη ]⊆projY [St]

Tη . Thus projY [Ss]⊆projY [St]
Tη . If moreover t /∈I, then sη /∈I since t Rη sη.

Thus Ssη⊆St and Ss⊆St. Similarly, Ys⊆Yt if t R0 s and s 6= t (this is simpler). If 1≤ρ<η, t Rρ s
and s 6= t, then t Rρ sρ, projY [Ssρ ]⊆projY [St]

Tρ and projY [Ss]⊆projY [St]
Tρ .

1.2 If sη∈I, then we choose y∈I , and x∈Xsη with (x, y)∈Ssη . Note that

(x, y)∈BT1×Tξ ∩
(
Xsη×(

⋂
1≤ρ≤η

projY [Ssρ ]
Tρ ∩ Ys0)

)
.

This gives (xs, ys)∈B ∩
(
Xsη×(

⋂
1≤ρ≤η projY [Ssρ ]

Tρ ∩ Ys0)
)
∩ΩX×Y . We choose Σ 0

1 sets Xs, Ys

with diameter at most 2−l−1 such that (xs, ys)∈Xs×Ys⊆Xs×Ys⊆Xsη×Ys0 , and a Σ 1
1 subset Ss

of X×Y with GH-diameter at most 2−l−1 such that

(xs, ys)∈Ss⊆B ∩
(
Xs×(

⋂
1≤ρ≤η

projY [Ssρ ]
Tρ ∩ Ys)

)
∩ ΩX×Y .

As above, we check that these objects are as required.
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Case 2 s∈I

Note that sη∈I. We argue as in 1.1. �

(B) The limit case

Assume that ξ is an infinite limit ordinal. We indicate the differences with the successor case.
Theorem 2.1.4 gives a uniform resolution family (Rρ)ρ≤ξ. We set X :=[Rξ], Y :=[⊆],

A :={(γ, β)∈X×Y | Π(γ)=β∈P},

and B :={(γ, β)∈X×Y | Π(γ)=β /∈P}.

Proof of Theorem 1.5. This time, I := {s ∈ 2<ω | NRξ
s ∩ Π−1(P ) 6= ∅}. If s ∈ 2<ω, then we set

ks := max{hRξ(t) | t ⊆ s}, and let ξ(s) be the ordinal ξk(s) given by the definition of a uniform
resolution family. If t, t′⊆s and t Rξ(s) t′, then t Rξ t′. Note that 1≤ξ(t)≤ξ(s) if t⊆s.

Conditions (1) and (5) become

(1′)


Xt⊆Xs if s Rξ t ∧ s 6= t

Yt⊆Ys if s R0 t ∧ s 6= t
St⊆Ss if s Rξ t ∧ (s, t∈I ∨ s, t /∈I)

(5′) projY [St]⊆projY [Ss]
Tρ if s Rρ t ∧ 1≤ρ≤ξ(s)

As sξ(s) Rξ(s) s, sξ(s) Rξ s and sξ(s)⊆sξ. As sξ⊆sξk(s) =sξ(s), we get sξ(s)=sξ.

Claim The set projY [Ssξ ] ∩
⋂

1≤ρ<ξ(s) projY [Ssρ ]
Tρ ∩ Ys0 is T1-dense in projY [Ss1 ]

T1 ∩ Ys0 .

We conclude as in the successor case, using the fact that ξ(.) is increasing. �

4 Π0
1×Π0

ξ sets

We consider P as in Section 3.

(A) The successor case

Assume that ξ= η+1 is a countable ordinal. Theorem 2.1.2 gives a resolution family (Rρ)ρ≤η.
We set X :=[Rη]⊕Π−1(¬P ), Y :=[⊆]⊕Π−1(¬P ),

A :=
{(

(0, β), (1, γ)
)
∈X×Y | β=γ

}
∪
{(

(1, γ), (0, α)
)
∈X×Y | Π(γ)=α

}
and B :=

{(
(0, β), (0, α)

)
∈X×Y | Π(β) =α∈P

}
. Note that X and Y are zero-dimensional Polish

spaces, A is a closed subset of X×Y, and B is a closed subset of X×Y disjoint from A.

Lemma 4.1 The set A is not separable from B by a Π0
1×Π0

ξ subset of X×Y.
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Proof. Let C be a closed subset of X and S be a Π0
ξ subset of Y with A ⊆ C ×S. Note that

C ∩ ({0}×[Rη])={0}×C ′ for some closed subset C ′ of [Rη]. Similarly, S ∩ ({0}×[⊆])={0}×S′
for some Π0

ξ subset S′ of [⊆]. Let α ∈ [⊆]\P , and β := γ := Π−1(α). Then
(
(0, β), (1, γ)

)
∈ A,

so that β ∈ C ′ and α ∈ Π[C ′]. Similarly,
(
(1, γ), (0, α)

)
∈ A, so that α ∈ S′. This shows that

[⊆]\P ⊆Π[C ′] ∩ S′. As P is not Σ0
ξ , there is α∈Π[C ′] ∩ S′ ∩ P , and

(
(0, β), (0, α)

)
∈B ∩ (C×S)

if β :=Π−1(α). �

Proof of Theorem 1.6. The exactly part comes from Lemma 4.1. Assume that (a) does not hold.
In order to simplify the notation, we will assume that ξ < ωCK

1 , X and Y are recursively presented

and A,B are Σ 1
1 , so that N :=B ∩ (projX [A]×projY [A]

Tξ
) is a nonempty Σ 1

1 subset of X×Y , by
Theorem 2.3.5.

We set I := {s∈ 2<ω | NRη
s ∩ Π−1(P ) 6= ∅}. As P is not empty, ∅∈I. We define, for t∈ 2<ω,

tc∈2 by tc :=χ¬I(t). We construct

- a point xε,s of X and a Σ 0
1 subset Xε,s of X , when (ε, s)∈({0}×2<ω) ∪

(
{1}×(¬I)

)
,

- a point yε,s of Y and a Σ 0
1 subset Yε,s of Y , when (ε, s)∈({0}×2<ω) ∪

(
{1}×(¬I)

)
,

- a Σ 1
1 subset Sε,ε′,s of X×Y , when (ε, ε′, s)∈22×2<ω, (ε 6=ε′ ∧ s /∈I) or (ε=ε′=0 ∧ s∈I).

We want these objects to satisfy the following conditions:

(1)


Xε,t⊆Xε,s if s Rη t ∧ s 6= t

Y0,t⊆Y0,s if s R0 t ∧ s 6= t

Y1,t⊆Y1,s if s Rη t ∧ s 6= t
Sε,ε′,t⊆Sε,ε′,s if s Rη t

(2) xε,s∈Xε,s ∧ yε,s∈Yε,s ∧ (xε,s, yε′,s)∈Sε,ε′,s⊆(Xε,s×Yε′,s) ∩ ΩX×Y

(3) diam(Xε,s), diam(Yε,s), diamGH(Sε,ε′,s)≤2−|s|

(4) Sε,ε′,s⊆
{
N if s∈I
A if s /∈I

(5) projY [Stc,0,t]⊆projY [Ssc,0,s]
Tρ if s Rρ t ∧ 1≤ρ≤η

Assume that this is done. Let (0, γ) ∈ X. Note that γ(k) Rη γ(k+ 1) for each k ∈ ω. By (1),
X0,γ(k+1) ⊆X0,γ(k). Thus (X0,γ(k))k∈ω is a decreasing sequence of nonempty closed subsets of X
with vanishing diameters. We define {f(0, γ)} :=

⋂
k∈ω X0,γ(k)=

⋂
k∈ω X0,γ(k), so that

f(0, γ)= limk→∞ x0,γ(k)

and f is continuous on {0}× [Rη]. Now let (1, γ) ∈ X. Note that moreover that there is kγ ∈ ω
minimal such that γ(k) /∈I if k≥ kγ . We define f(1, γ) similarly, using (X1,γ(k))k≥kγ . Note that f
is continuous on {1}×Π−1(¬P) since kγ′ =kγ if γ′∈NRη

γ(kγ)
.
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Now let (0, α) ∈Y. By (1), Y0,α(k+1) ⊆ Y0,α(k). Thus (Y0,α(k))k∈ω is a decreasing sequence of
nonempty closed subsets of Y with vanishing diameters. We define

{g(0, α)} :=
⋂
k∈ω

Y0,α(k)=
⋂
k∈ω

Y0,α(k),

so that g(0, α)= limk→∞ y0,α(k). We define g(1, γ) like f(1, γ), so that g :Y→Y is continuous.

Assume that
(
(0, γ), (1, γ)

)
∈ A. As Π−1(P ) is a closed subset of [Rη], there is k0 ∈ ω such

that γ(k) /∈ I if k ≥ k0. By (1)-(4), (S0,1,γ(k))k≥k0 is a decreasing sequence of nonempty clopen
subsets of A ∩ ΩX×Y with vanishing GH-diameters. We set {F (γ)} :=

⋂
k≥k0 S0,1,γ(k). Note that

(x0,γ(k), y1,γ(k))k∈ω converges to F (γ) for ΣX×Y , and thus for the usual topology on X×Y . So(
f(0, γ), g(1, γ)

)
=F (γ), which is therefore in A. If now

(
(1, γ), (0, α)

)
∈A, then we argue simi-

larly, showing that A⊆(f×g)−1(A).

Let
(
(0, γ), (0, α)

)
∈ B. Note that γ(k) ∈ I for each k ∈ ω. By (1)-(4), (S0,0,γ(k))k∈ω is

a decreasing sequence of nonempty clopen subsets of N ∩ ΩX×Y with vanishing GH-diameters,
and we define {G(γ)} :=

⋂
k∈ω S0,0,γ(k). Note that (x0,γ(k), y0,γ(k))k∈ω converges to G(γ). So(

f(0, γ), g(0, α)
)

=G(γ), which is therefore in N⊆B, showing that B⊆(f×g)−1(B).

Let us prove that the construction is possible. Let (x0,∅, y0,∅)∈N ∩ ΩX×Y , X0,∅, Y0,∅ be Σ 0
1 sets

with diameter at most 1 such that (x0,∅, y0,∅)∈X0,∅×Y0,∅, and S0,0,∅ be a Σ 1
1 subset of X×Y with

GH-diameter at most 1 and (x0,∅, y0,∅)∈S0,0,∅⊆N ∩ (X0,∅×Y0,∅)∩ΩX×Y . Assume that our objects
satisfying (1)-(5) are constructed up to the length l, which is the case for l=0. So let s∈2l+1.

Claim The set projY [Ssηc ,0,sη ]∩
⋂

1≤ρ<η projY [Ssρc ,0,sρ ]
Tρ∩Y0,s0 is T1-dense in projY [Ss1c ,0,s1 ]∩Y0,s0

if η≥1.

As in the proof of Theorem 1.5, we infer that

I :=projY [Ssηc ,0,sη ] ∩
⋂

1≤ρ<η
projY [Ssρc ,0,sρ ]

Tρ ∩ Y0,s0

is not empty.

Case 1 s /∈I

1.1 sη /∈I

Note that sηc = 1. We choose y0,s ∈ I , x1,s ∈X1,sη with (x1,s, y0,s)∈ S1,0,sη , Σ 0
1 sets X1,s, Y0,s

with diameter at most 2−l−1 such that (x1,s, y0,s)∈X1,s×Y0,s⊆X1,s×Y0,s⊆X1,sη×Y0,s0 , and a Σ 1
1

subset S1,0,s of X×Y with GH-diameter at most 2−l−1 such that

(x1,s, y0,s)∈S1,0,s⊆S1,0,sη ∩
(
X1,s×(

⋂
1≤ρ<η

projY [Ssρc ,0,sρ ]
Tρ ∩ Y0,s)

)
.

As in the proof of Theorem 1.5, we check that these objects are as required.
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We also set (x0,s, y1,s) := (x0,sη , y1,sη), choose Σ 0
1 sets X0,s, Y1,s with diameter at most 2−l−1

such that (x0,s, y1,s)∈X0,s×Y1,s⊆X0,s×Y1,s⊆X0,sη×Y1,sη , and a Σ 1
1 subset S0,1,s of X×Y with

GH-diameter at most 2−l−1 such that (x0,s, y1,s)∈S0,1,s⊆S0,1,sη ∩ (X0,s×Y1,s).

1.2 sη∈I

We choose y∈I , and x∈X with (x, y)∈S0,0,sη . Note that

y∈projY [A]
Tξ ∩

⋂
1≤ρ≤η

projY [Ssρc ,0,sρ ]
Tρ ∩ Y0,s0 .

This gives y′∈projY [A] ∩
⋂

1≤ρ≤η projY [Ssρc ,0,sρ ]
Tρ ∩ Y0,s0 , x′∈X with

(x′, y′)∈A ∩
(
X×(

⋂
1≤ρ≤η

projY [Ssρc ,0,sρ ]
Tρ ∩ Y0,s0)

)
,

and also (x1,s, y0,s)∈A ∩
(
X×(

⋂
1≤ρ≤η projY [Ssρc ,0,sρ ]

Tρ ∩ Y0,s0)
)
∩ ΩX×Y . We choose Σ 0

1 sets
X1,s, Y0,s with diameter at most 2−l−1 such that

(x1,s, y0,s)∈X1,s×Y0,s⊆X1,s×Y0,s⊆X×Y0,s0 ,

and a Σ 1
1 subset S1,0,s of X×Y with GH-diameter at most 2−l−1 such that

(x1,s, y0,s)∈S1,0,s⊆A ∩
(
X1,s×(

⋂
1≤ρ≤η

projY [Ssρc ,0,sρ ]
Tρ ∩ Y0,s)

)
∩ ΩX×Y .

If t Rη s and s 6= t, then t ⊆ sη Rη s, t Rη sη and t ∈ I. Thus X1,t and S1,0,t do not have to be
considered. As in the proof of Theorem 1.5, Y0,s⊆Y0,t if t R0 s and s 6= t, and Condition (5) holds.

Note also that (x0,sη , y0,sη) ∈ S0,0,sη , so that x0,sη ∈ projX [A] ∩ X0,sη . This gives a point x′ of
projX [A]∩X0,sη , and y′∈Y with (x′, y′)∈A∩(X0,sη×Y ), and (x0,s, y1,s)∈A∩(X0,sη×Y )∩ΩX×Y .
We choose Σ 0

1 sets X0,s, Y1,s with diameter at most 2−l−1 such that

(x0,s, y1,s)∈X0,s×Y1,s⊆X0,s×Y1,s⊆X0,sη×Y ,

and a Σ 1
1 subset S0,1,s of X×Y with GH-diameter at most 2−l−1 such that

(x0,s, y1,s)∈S0,1,s⊆A ∩ (X0,s×Y0,s) ∩ ΩX×Y .

Here also, Y1,t and S0,1,t do not have to be considered. As in the proof of Theorem 1.5, X0,s⊆X0,t

if t Rη s and s 6= t, and Condition (5) is without object.

Case 2 s∈I

Note that sη∈I. We argue as in the first part of 1.1 to construct x0,s, y0,s, X0,s, Y0,s and S0,0,s.�
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(B) The limit case

Assume that ξ is an infinite limit ordinal. We indicate the differences with the successor case.
Theorem 2.1.4 gives a uniform resolution family (Rρ)ρ≤ξ. We set X :=[Rξ]⊕Π−1(¬P ),

Y :=[⊆]⊕Π−1(¬P ),

A :=
{(

(0, β), (1, γ)
)
∈X×Y | β=γ

}
∪
{(

(1, γ), (0, α)
)
∈X×Y | Π(γ)=α

}
and

B :=
{(

(0, β), (0, α)
)
∈X×Y | Π(β)=α∈P

}
.

Proof of Theorem 1.6. Conditions (1) and (5) become

(1′)


Xε,t⊆Xε,s if s Rξ t ∧ s 6= t

Y0,t⊆Y0,s if s R0 t ∧ s 6= t

Y1,t⊆Y1,s if s Rξ t ∧ s 6= t
Sε,ε′,t⊆Sε,ε′,s if s Rξ t

(5′) projY [Stc,0,t]⊆projY [Ssc,0,s]
Tρ if s Rρ t ∧ 1≤ρ≤ξ(s)

Claim The set projY [S
sξc ,0,sξ

] ∩
⋂

1≤ρ<ξ(s) projY [Ssρc ,0,sρ ]
Tρ ∩ Y0,s0 is T1-dense in

projY [Ss1c ,0,s1 ]
T1 ∩ Y0,s0 .

We conclude as in the successor case. �
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