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Introduction

This paper is a contribution to the descriptive set-theoretic study of the Borel
structure of the plane. We will employ standard notation as well as various classical
theorems, for which we suggest Kechris [3] as a reference.

Suppose that Γ is a class of subsets of Polish spaces, X and Y are Polish spaces,
and R ⊆ X×Y is Borel. We say that R is potentially Γ if there are Polish topologies
τX and τY , compatible with the underlying Borel structure of X and Y , such that
R ∈ Γ(X × Y, τX × τY ). One of the main questions underlying our work here is:

Question 1. Under what circumstances is R potentially closed?

Various answers to questions of this sort have appeared in the descriptive set-
theoretic literature over the last few years. Perhaps the best known example comes
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from the study of Borel equivalence relations. Recall that E0 is the equivalence
relation on 2N given by

αE0β ⇔ ∃n ∈ N∀m ≥ n (α(m) = β(m)).

Recall also that if E and F are Borel equivalence relations on X and Y , then a
reduction of E to F is a function π : X → Y such that

∀x1, x2 ∈ X (x1Ex2 ⇔ π(x1)Fπ(x2)),

and an embedding of E into F is an injective reduction of E to F . We write E vc F
to indicate the existence of a continuous embedding of E into F .

Theorem 2 (Harrington-Kechris-Louveau [2]). Suppose that E is a Borel
equivalence relation on a Polish space. Then exactly one of the following holds:

1. E is potentially closed;
2. E0 vc E.

A quasi-order on Q is a reflexive, transitive binary relation ≤ on Q. Suppose D ⊆
Q. We say D forms a basis for Q under ≤, or D is dense in (Q,≤), if ∀q ∈ Q∃d ∈
D (d ≤ q). Theorem 2 provides an ideal solution to the special case of Question 1
for Borel equivalence relations, as it implies that {E0} is a one-element basis for the
class of non-potentially closed Borel equivalence relations under Borel reducibility,
the de facto standard among quasi-orders on Borel equivalence relations.

A directed graph on X is an irreflexive set G ⊆ X × X. A coloring of G is a
function c : X → Z such that

∀x1, x2 ∈ X ((x1, x2) ∈ G ⇒ c(x1) 6= c(x2)).

Recall that if A ⊆ X, then a function π : A→ Y is Γ-measurable if the pre-image of
every open subset of Y under π is in Γ. The Γ-chromatic number of G, or χΓ(G), is
the least cardinal κ for which there is a Polish space Z and a Γ-measurable coloring
c : X → Z of G such that κ = |c[X]|. Let χB(G) denote the Borel chromatic number
of G. The other main question underlying our work here is:

Question 3. Under what circumstances is χB(G) ≤ ℵ0?

Questions 1 and 3 are very much connected. For example, in §5 we note that R
is potentially closed if and only if the directed graph GR on (X × Y ) \R given by

GR = {((x1, y1), (x2, y2)) : (x1, y2) ∈ R}

has countable Borel chromatic number (this is essentially due to Lecomte [6].) More-
over, if G is potentially closed, then χB(G) ≤ ℵ0, and if G \G is contained in the set
∆(X) = {(x, x) : x ∈ X}, then G is potentially closed if and only if χB(G) ≤ ℵ0.
Along similar lines, it is not difficult to see that if E is a countable Borel equivalence
relation, then E is potentially closed if and only if χB(E \∆(X)) ≤ ℵ0.
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Suppose that G is a directed graph on X and H is a directed graph on Y . A
homomorphism from G to H is a function π : X → Y such that

∀x1, x2 ∈ X ((x1, x2) ∈ G ⇒ (π(x1), π(x2)) ∈ H).

A graph is a symmetric directed graph. Fix, from this point forward, sequences
sn ∈ 2n such that ∀s ∈ 2<N ∃n ∈ N (s ⊆ sn). For each i ∈ {0, 1}, set ı = 1− i, and
let G0 denote the graph on 2N given by

G0 = {(sniα, snıα) : i ∈ {0, 1} and n ∈ N and α ∈ 2N}.

Theorem 4 (Kechris-Solecki-Todorćevič [4]). Suppose G is an analytic graph
on a Polish space. Then exactly one of the following holds:

1. χB(G) ≤ ℵ0;
2. There is a continuous homomorphism from G0 to G.

Theorem 4 provides an ideal solution to Question 3, as it implies that {G0} is
a one-element basis for the class of analytic graphs of uncountable Borel chromatic
number under Borel homomorphism, the Borel analog of the de facto standard
among quasi-orders on graphs.

We say that a set B ⊆ X is globally Baire if for every Polish space Z and every
Borel function π : Z → X, the set π−1(B) has the property of Baire. By a result of
Lusin-Sierpiński, every σ(Σ1

1) set is globally Baire (see, for example, Theorem 21.6
of Kechris [3]). Moreover, under appropriate strong set-theoretic hypotheses, the
class of globally Baire measurable sets is quite rich. For instance, under projective
determinacy, every projective set is globally Baire (see, for example, Theorem 38.17
of Kechris [3]).

As noted in §6.C of Kechris-Solecki-Todorćevič [4], Theorem 4 implies that con-
dition (1) is equivalent to the existence of a globally Baire measurable coloring
with countable range, and condition (2) is equivalent to the existence of a Baire
measurable homomorphism from G0 to G. It should be noted, however, that homo-
morphisms cannot be replaced with substantially stronger notions in the statement
of Theorem 4. Recall that a set is D2(Σ0

1) if it is the difference of two open sets.

Theorem 5 (Lecomte [6]). There is a D2(Σ0
1) graph G on 2N of uncountable

Borel chromatic number such that there is no injective Baire measurable homomor-
phism from G0 to G.

This leads us to a natural revision of Question 3. A reduction of G to H is a
function π : X → Y such that

∀x1, x2 ∈ X ((x1, x2) ∈ G ⇔ (π(x1), π(x2)) ∈ H).

An embedding of G into H is an injective reduction of G to H. We use ≤GB to denote
the quasi-order of globally Baire measurable reducibility on the class of analytic
directed graphs of uncountable Borel chromatic number. (To see that this is actually
a quasi-order, it is enough to show that the class of globally Baire measurable
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functions is closed under composition, which we do in §4.) As it should cause no
confusion, we also use vc to denote the quasi-order of continuous embeddability on
the class of analytic directed graphs of uncountable Borel chromatic number.

Question 6. Is there a simple basis for the class of analytic graphs of uncountable
Borel chromatic number under some quasi-order which lies between vc and ≤GB?

There is a similar revision of Question 1. Suppose that X1, Y1, X2, and Y2 are
Polish spaces, R1 ⊆ X1 × Y1, and R2 ⊆ X2 × Y2. A rectangular reduction of R1 to
R2 is a pair of functions (πX , πY ), where πX : X1 → X2, πY : Y1 → Y2, and

∀x1 ∈ X1 ∀y1 ∈ Y1 ((x1, y1) ∈ R1 ⇔ (πX(x1), πY (y1)) ∈ R2).

A rectangular embedding of R1 into R2 is a rectangular reduction (πX , πY ) of R1 to
R2 such that both πX and πY are injective. We use ≤rGB to denote the quasi-order
of globally Baire measurable rectangular reducibility on the class of non-potentially
closed Borel sets, and we use vrc to denote the quasi-order of continuous rectangular
embeddability on the class of non-potentially closed Borel sets.

Question 7. Is there a simple basis for the class of non-potentially closed Borel
sets under some quasi-order which lies between vrc and ≤rGB?

Among sets of sufficiently low potential complexity, this question has a positive
answer. Recall that a set is Ď2(Σ0

1) if it is the complement of a D2(Σ0
1) set, and let

≤lex denote the lexicographic ordering of 2N.

Theorem 8 (Lecomte [5]). Suppose that X and Y are Polish spaces and R ⊆
X × Y is potentially Ď2(Σ0

1). Then exactly one of the following holds:

1. R is potentially closed;
2. (2N × 2N) \∆(2N) vrc R or <lex vrc R.

Recall that an oriented graph is an antisymmetric directed graph. Louveau has
pointed out that the analog of Theorem 4 for directed graphs holds when G0 is
replaced with the oriented graph G→0 on 2N given by

G→0 = {(sn0α, sn1α) : n ∈ N and α ∈ 2N}.

As a corollary of this, one can obtain a positive answer to the analog of Question 1
for a natural weakening of continuous rectangular reducibility:

Theorem 9 (Lecomte [6]). Suppose that X and Y are Polish spaces and R ⊆
X × Y is Borel. Then exactly one of the following holds:

1. R is potentially closed;
2. There are continuous maps πX : 2N → X and πY : 2N → Y such that

∀(α, β) ∈ G→0 ((α, β) ∈ G→0 ⇔ (πX(α), πY (β)) ∈ R).
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However, the analog of this result for rectangular reducibility is false:

Theorem 10 (Lecomte [6]). There is a set of continuum-many non-potentially
closed D2(Σ0

1) subsets of 2N×2N which are pairwise incomparable and minimal with
respect to every quasi-order � which lies between vrc and ≤rGB. In particular, every
basis for the class of non-potentially closed Borel sets under � has cardinality at
least c.

Along similar lines, we have the following:

Theorem 11 (Lecomte [6]). There is a set of continuum-many D2(Σ0
1) graphs

on 2N of uncountable Borel chromatic number which are pairwise incomparable and
minimal with respect to every quasi-order � which lies between vc and ≤GB. In
particular, every basis for the class of analytic graphs of uncountable Borel chromatic
number under � has cardinality at least c.

While Theorems 10 and 11 certainly force us to think carefully about what we
mean by a “simple basis” in Questions 6 and 7, they do not rule out positive answers
to these questions, and this is really the starting point of this paper. In particular,
Theorems 10 and 11 leave open:

Question 12. Does the class of �-minimal non-potentially closed Borel sets form
a basis for the class of non-potentially closed Borel sets under �?

Question 13. Does the class of �-minimal analytic graphs of uncountable Borel
chromatic number form a basis for the class of analytic graphs of uncountable Borel
chromatic number under �?

Associated with each pair S ∈ P(
⋃
n∈N 2n × 2n) × P(

⋃
n∈N 2n × 2n) is the Kσ

directed graph GS on 2N given by

GS = {(siα, tıα) : i ∈ {0, 1} and (s, t) ∈ Si and α ∈ 2N},

where S = (S0, S1). We say that S is dense if ∀r ∈ 2<N ∃(s, t) ∈ S0 (r ⊆ s, t). As
noted in §1, if S is dense, then χB(GS) > ℵ0. Our first theorem is a weak positive
answer to a special case of Question 6:

Theorem 14. Suppose that G is an analytic directed graph on a Polish space which
admits a globally Baire measurable reduction to a locally countable analytic directed
graph on a Polish space. Then exactly one of the following holds:

1. χB(G) ≤ ℵ0;
2. There is a dense pair S such that GS vc G.

It is worth noting that our proof of Theorem 14 can be modified so as to give
a new proof of Theorem 4 which avoids the need for the techniques of effective
descriptive set theory.

While the directed graphs of the form GS are certainly simple when compared
to arbitrary analytic directed graphs, Theorem 14 still leaves much to be desired,
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as continuous embeddability of such directed graphs is already quite complicated.
One response to this criticism is that Theorem 14 easily implies much nicer results
in natural special cases. Recall that a graph G is acyclic if there is at most one
injective G-path between any two points.

Theorem 15. Suppose that G is an analytic graph on a Polish space which admits a
globally Baire measurable reduction to a locally countable analytic graph on a Polish
space, as well as a globally Baire measurable reduction to an acyclic analytic graph
on a Polish space. Then exactly one of the following holds:

1. χB(G) ≤ ℵ0;
2. G0 vc G.

This strengthens a special case of Theorem 6.6 of Kechris-Solecki-Todorćevič [4].
A similar fact holds for oriented graphs when G0 is replaced with G→0 , which can be
used to give a new proof of Theorem 28 of Lecomte [6].

We can also use Theorem 14 to extend a well known dichotomy theorem from
countable Borel equivalence relations to countable analytic equivalence relations.
Recall that a partial transversal of E is a set which intersects every equivalence
class of E in at most one point.

Theorem 16. Suppose that X is a Polish space and E is a countable analytic
equivalence relation on X. Then exactly one of the following holds:

1. X is the union of countably many Borel partial transversals of E;
2. E0 vc E.

A better response to the criticism of Theorem 14 mentioned earlier, however,
is that the real intent behind the theorem is not to provide a positive answer to
Question 6 at all, but instead to provide a means of obtaining negative answers!

In order to describe how our basis theorem can give rise to anti-basis results,
we must step back and examine a natural quasi-order that lives on P(

⋃
n∈N 2n ×

2n) × P(
⋃
n∈N 2n × 2n). Note first that the directed graphs GS have natural finite

approximations GSn on 2n, given by GS0 = ∅ and

GSn+1 = {(si, ti) : i ∈ {0, 1} and (s, t) ∈ GSn} ∪
{(si, tı) : i ∈ {0, 1} and (s, t) ∈ Si}.

An aligned function on 2<N is a function ϕ : 2<N → 2<N for which there are natural
numbers kϕi and pairs uϕi ∈ 2k

ϕ
i × 2k

ϕ
i , for each i ∈ N, such that

ϕ(∅) = ∅ and ∀n ∈ N ∀s ∈ 2n+1 (ϕ(s) = (uϕ0 )s(0) . . . (uϕn)s(n)).

As it should cause no confusion, let ≤lex also denote the lexicographic ordering of
2<N. We say that ϕ is order-preserving if ∀n ∈ N ((uϕn)0 ≤lex (uϕn)1), and we say
that ϕ is order-reversing if ∀n ∈ N ((uϕn)1 ≤lex (uϕn)0). We say that ϕ is monotonic
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if it is order-preserving or order-reversing. An aligned embedding of S into T is an
aligned function ϕ : 2<N → 2<N such that

∀n ∈ N (ϕ|2n+1 is an embedding of GSn+1 into GT
kϕ0 +···+kϕn ).

Suppose now that ≤P and ≤Q are quasi-orders on P and Q. A homomorphism
from ≤P to ≤Q is a function π : P → Q such that

∀p1, p2 ∈ P (p1 ≤P p2 ⇒ π(p1) ≤Q π(p2)).

In the special case that π[P ] is dense in (Q,≤Q), it follows that π sends bases for
P under ≤P to bases for Q under ≤Q. In §1, we note that the map S 7→ GS is a
homomorphism from monotonic aligned embeddability to continuous embeddability.
Theorem 14 therefore amounts to the fact that the image of the set of dense pairs
under this homomorphism is dense in the appropriate class of analytic directed
graphs under vc. We actually obtain much more information from this point of
view, however, as it gives explicit means of transforming bases for the set of dense
pairs under monotonic aligned embeddability into bases for the appropriate class of
analytic directed graphs under vc.

Unfortunately, homomorphisms are seldom sufficient to transfer anti-basis the-
orems from (P,≤P ) to (Q,≤Q). Suppose that vQ is a quasi-order on Q which is
contained in ≤Q. A basis embedding of ≤P into (vQ,≤Q) is a homomorphism from
≤P to vQ with the additional property that

∀p1, p2 ∈ P ∀q ≤Q π(p1), π(p2)∃p ∈ P (p ≤P p1, p2 and π(p) vQ q).

We say that a set A ⊆ P is a weak antichain if

∀p1, p2 ∈ A (p1 6= p2 ⇒ p1 6≤P p2),

and we say that a set A ⊆ P is a strong antichain if

∀p1, p2 ∈ A (p1 6= p2 ⇒ ∀p ∈ A (p 6≤P p1 or p 6≤P p2)).

As noted in §5, basis embeddings send strong antichains to sets which are strong
antichains with respect to every quasi-order which lies between vQ and ≤Q. As the
existence of strong antichains of cardinality κ rules out the existence of bases of
cardinality strictly less than κ, this is one example of the fashion in which basis
embeddings can be used to transfer anti-basis results from ≤P to all quasi-orders
which lie between vQ and ≤Q.

Associated with each set A ∈ P(2<N)×P(2<N) is the directed graph GA = GSA ,
where SA ∈ P(

⋃
n∈N 2n × 2n)× P(

⋃
n∈N 2n × 2n) is given by

(SA)i = {(s, s) : s ∈ Ai}.

We say that A is dense if ∀r ∈ 2<N ∃s ∈ A0 (r ⊆ s). If A is dense, then so too is
SA, so χB(GA) > ℵ0, thus GA is not potentially closed.

There are two main advantages in restricting our attention to the sets of the
form SA. First, it is easy to see that GA \ GA ⊆ ∆(2N), thus the directed graphs of
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this form are D2(Σ0
1). Second, the restriction of aligned embeddability to the sets

of the form SA takes a significantly simpler form on P(2<N) × P(2<N). A nicely
aligned function on 2<N is a function ψ : 2<N → 2<N for which there are natural
numbers kψi and sequences uψi ∈ 2k

ψ
i , for each i ∈ N, as well as a sequence αψ ∈ 2N

such that for all n ∈ N and s ∈ 2n,

ψ(s) = uψ0 |s(0)− αψ(0)| . . . uψn−1|s(n− 1)− αψ(n− 1)|uψn .

We say that ψ is order-preserving if αψ = 0∞, and ψ is order-reversing if αψ = 1∞.
We say that ψ is monotonic if it is order-preserving or order-reversing. An aligned
embedding of A into B is a nicely aligned function ψ : 2<N → 2<N such that

∀i ∈ {0, 1} ∀s ∈ 2<N (s ∈ Ai ⇔ ψ(s) ∈ Bi).

Theorem 17. The map A 7→ GA is a basis embedding of monotonic aligned em-
beddability on the set of dense pairs into (vrc ,≤rGB).

Theorem 18. The map A 7→ GA is a basis embedding of monotonic aligned em-
beddability on the set of dense pairs into (vc,≤GB).

The upshot of Theorems 17 and 18 is that we can obtain negative solutions
to Questions 6 and 7 by studying monotonic aligned embeddability on P(2<N) ×
P(2<N). By combining this observation with purely combinatorial arguments, we
obtain strong negative answers to Questions 12 and 13:

Theorem 19. There is a non-potentially closed D2(Σ0
1) set S ⊆ 2N× 2N such that

for all Borel sets R ≤rGB S, exactly one of the following holds:

1. R is potentially closed;
2. There is a strong ≤rGB-antichain of continuum-many D2(Σ0

1) subsets of 2N× 2N

which are vrc-below R.

In particular, if � is a quasi-order which lies between vrc and ≤rGB, then no weak
�-antichain is a basis for the class of non-potentially closed Borel sets under �,
thus the class of �-minimal sets is not a basis for the class of non-potentially closed
Borel sets under �.

Theorem 20. There is a D2(Σ0
1) graph H on 2N of uncountable Borel chromatic

number such that for all analytic G ≤GB H, exactly one of the following holds:

1. χB(G) ≤ ℵ0;
2. There is a strong ≤GB-antichain of continuum-many D2(Σ0

1) graphs on 2N which
are vc-below G.

In particular, if � is a quasi-order which lies between vc and ≤GB, then no weak �-
antichain is a basis for the class of analytic graphs of uncountable Borel chromatic
number under �, thus the class of �-minimal graphs is not a basis for the class of
analytic graphs of uncountable Borel chromatic number under �.
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The organization of the paper is as follows. In §1, we establish various basic
properties of the directed graphs of the form GS . In §2, we prove a technical di-
chotomy theorem for locally countable Borel directed graphs which lies at the heart
of all of our results. In §3, we establish some straightforward generalizations of
classical descriptive set-theoretic facts which can be used to generalize our tech-
nical dichotomy theorem, first to locally countable analytic directed graphs, and
then to analytic directed graphs which admit globally Baire measurable reductions
into locally countable analytic directed graphs. In §4, we obtain Theorem 14 as a
corollary, and use this to prove Theorem 15 and its oriented analog. Here we also
give the new proof of Theorem 28 of Lecomte [6] mentioned earlier, as well as the
proof of Theorem 16. In §5, we establish Theorems 17 and 18. In §6, we turn our
attention to the family of locally countable directed graphs which were considered
in Lecomte [6]. These can be described as the directed graphs of the form GA, where
A ∈ P(2<N) × P(2<N) satisfies a natural homogeneity condition. Using these, we
obtain new proofs of Theorems 10 and 11. We also show that if we restrict our
attention below the directed graphs of this form, then the minimal sets do form a
basis, thus we must look elsewhere in order to obtain Theorems 19 and 20. We do
this in §7.

1. Basic properties of the directed graphs of the form GS

We say that a set B ⊆ X is G-discrete if G ∩ (B ×B) = ∅. Note that χΓ(G) ≤ ℵ0 if
and only if X can be partitioned into countably many G-discrete sets in Γ. It follows
that if Γ is closed under complements and finite intersections, then χΓ(G) ≤ ℵ0 if
and only if X is the union of countably many G-discrete sets in Γ. Let BP denote
the class of all subsets of Polish spaces which have the property of Baire.

Proposition 1.1. Suppose that S is a dense pair and C ⊆ 2N is non-meager and
has the property of Baire. Then χBP(GS ∩ (C × C)) > ℵ0.

Proof. It is enough to show that no non-meager set B ⊆ 2N with the property of
Baire is GS-discrete. Towards this end, fix r ∈ 2<N such that B is comeager in the
basic clopen set Nr = {α ∈ 2N : r ⊆ α}, and fix (s, t) ∈ S0 such that r ⊆ s, t. Then
there are comeagerly many α ∈ 2N such that s0α, t1α ∈ B. As (s0α, t1α) ∈ GS , it
follows that B is not GS-discrete.

The symmetrization of G is G±1 = {(x, y) : (x, y) ∈ G or (y, x) ∈ G}. We say
that G is acyclic if G±1 is acyclic. Let EG denote the smallest equivalence relation
containing G. We say that a (directed) graph G is a (directed) graphing of E if
E = EG . In case G is acyclic, we say that G is a (directed) treeing of E.

Definition 1.2. Let S0 denote the element of P(
⋃
n∈N 2n× 2n)×P(

⋃
n∈N 2n× 2n)

given by (S0)0 = (S0)1 = {(sn, sn) : n ∈ N}.
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Definition 1.3. Let S→0 denote the element of P(
⋃
n∈N 2n×2n)×P(

⋃
n∈N 2n×2n)

given by (S→0 )0 = {(sn, sn) : n ∈ N} and (S→0 )1 = ∅.

Note that G0 = GS0
0 and G→0 = GS→0 .

Proposition 1.4. G→0 is a directed treeing of E0.

Proof. As G0 is the symmetrization of G→0 , it is enough to show that G0 is a treeing
of E0. It is clear that G0 ⊆ E0, thus EG0 ⊆ E0. To see that E0 ⊆ EG0 , note first that
each of the graphs GS0

n is a tree, by a straightforward inductive argument. Suppose
now that αE0β, and fix n ∈ N such that ∀m ≥ n (α(m) = β(m)). As α|n and β|n
are GS0

n -connected, it follows that αEG0β.
It only remains to verify that G0 is acyclic, or equivalently, that if k ≥ 2 and

〈α0, α1, . . . , αk〉 is an injective path through G0, then (α0, αk) 6∈ G0. Towards this
end, fix n ∈ N sufficiently large that ∀i, j ≤ k ∀m ≥ n (αi(m) = αj(m)). Then
〈α0|n, α1|n, . . . , αk|n〉 is an injective path through GS0

n . As GS0
n is a tree, it follows

that (α0|n, αk|n) /∈ GS0
n , thus (α0, αk) /∈ G0.

We say that S is strongly dense if ∀n ∈ N ((sn, sn) ∈ S0).

Proposition 1.5. Suppose that S is strongly dense and GS is an acyclic graph.
Then S = S0.

Proof. The fact that S is strongly dense ensures that (S0)0 ⊆ S0, and the fact
that GS is symmetric ensures that S0 = S1, so (S0)1 ⊆ S1, thus G0 ⊆ GS . Observe
now that if i ∈ {0, 1} and (s, t) ∈ Si \ (S0)i, then 〈si0∞, tı0∞〉 is a path through
GS \ G0. As Proposition 1.4 ensures that there is a path from si0∞ to tı0∞ through
G0, it follows that GS is not acyclic.

Proposition 1.6. Suppose that S is strongly dense and GS is an acyclic oriented
graph. Then S = S→0 .

Proof. The fact that S is strongly dense ensures that (S→0 )0 ⊆ S0, thus G→0 ⊆ GS ,
and the fact that GS is antisymmetric ensures that S0∩S1 = ∅, thus (S→0 )0∩S1 = ∅.
Observe now that if i ∈ {0, 1} and (s, t) ∈ Si \ (S→0 )i, then 〈si0∞, tı0∞〉 is a path
through GS \ G0. As Proposition 1.4 ensures that there is a path from si0∞ to tı0∞

through G0, it follows that GS is not acyclic.

Along similar lines, we have the following:

Proposition 1.7. Suppose that S is strongly dense and GS∪∆(2N) is an equivalence
relation. Then S0 = S1 =

⋃
n∈N 2n × 2n.

Proof. As S is strongly dense, it follows from Proposition 1.4 that E0 = GS∪∆(2N).
Given s, t ∈ 2n and i ∈ {0, 1}, the fact that si0∞E0tı0∞ ensures that (s, t) ∈ Si,
and the proposition follows.
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Given an aligned function ϕ : 2<N → 2<N, define ϕ : 2N → 2N by

ϕ(α) = (uϕ0 )α(0)(u
ϕ
1 )α(1) . . . .

Proposition 1.8. Suppose that ϕ is an aligned embedding of S into T . Then ϕ is
a continuous embedding of GS into GT .

Proof. It is clear that ϕ is an aligned embedding of E0 into E0. To see that ϕ is
an embedding of GS into GT , it only remains to verify that if αE0β, then (α, β) ∈
GS ⇔ (ϕ(α), ϕ(β)) ∈ GT . Towards this end, fix a positive natural number n with
the property that ∀m ≥ n (α(m) = β(m)), and observe that

(α, β) ∈ GS ⇔ (α|n, β|n) ∈ GSn
⇔ (ϕ(α|n), ϕ(β|n)) ∈ GTkϕ0 +···+kϕn−1

⇔ (ϕ(α), ϕ(β)) ∈ GT .

As a consequence, we say that π : 2N → 2N is an (order-preserving, order-
reversing, or monotonic) aligned embedding of GS into GT if it is of the form ϕ, for
some (order-preserving, order-reversing, or monotonic) aligned embedding ϕ of S
into T .

Proposition 1.9. The map S 7→ GS is a homomorphism from aligned embeddability
into continuous embeddability.

Proof. This is a direct consequence of Proposition 1.8.

2. A dichotomy for locally countable Borel directed graphs

We begin this section by introducing a natural generalization of the notion of chro-
matic number. Suppose that G = 〈Gi〉i∈I is a sequence of directed graphs on X. A
coloring of G is a function c : X → Z such that

∀z ∈ Z ∃i ∈ I (c−1(z) is Gi-discrete).

The Borel chromatic number of G, or χB(G), is the least cardinal κ for which there
is a Polish space Z and a Borel coloring c : X → Z of G such that |c[X]| = κ.
Observe that if G = 〈G〉, then χB(G) = χB(G).

We say that a set B ⊆ X is G-discrete if there exists i ∈ I such that B is
Gi-discrete. Note that χB(G) ≤ ℵ0 if and only if X is the union of countably many
G-discrete Borel sets.

Proposition 2.1. Suppose that X is a Polish space and G = 〈Gi〉i∈I is a countable
sequence of analytic directed graphs on X. Then every G-discrete analytic set is
contained in a G-discrete Borel set.
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Proof. Simply note that if Z is a Polish space and A ⊆ Z×X is Σ1
1, then for each

z ∈ Z, the set Az is G-discrete if and only if

∃i ∈ I ∀x, y ∈ X (x /∈ Az or y /∈ Az or (x, y) /∈ Gi),

so the set {z ∈ Z : Az is G-discrete} is Π1
1, thus the proposition follows from the

first reflection theorem (see, for example, Theorem 35.10 of Kechris [3]).

Proposition 2.2. Suppose that X and Y are Polish spaces, G is a locally countable
Borel directed graph on X of uncountable Borel chromatic number, H is a directed
graph on Y , and π : X → Y is a Borel reduction of G to H. Then there is a Borel
set B ⊆ X such that χB(G|B) > ℵ0 and π|B is injective.

Proof. Set A = {x ∈ X : Gx ∪ Gx 6= ∅}. Since G is locally countable, the Lusin-
Novikov uniformization theorem (see, for example, Theorem 18.10 of Kechris [3])
implies that A is Borel. It then follows that χB(G|A) > ℵ0.

Lemma 2.3. π|A is countable-to-one.

Proof. As G is locally countable, it is enough to show that

∀x1, x2 ∈ A (π(x1) = π(x2)⇒ x1EGx2).

Towards this end, suppose that x1, x2 ∈ A and π(x1) = π(x2), fix x′i ∈ Gxi∪Gxi , and
observe that (π(xi), π(x′i)) ∈ H±1, so (π(x1), π(x′2)) ∈ H±1, thus (x1, x

′
2) ∈ G±1. As

(x2, x
′
2) ∈ G±1, it follows that x1EGx2.

Lemma 2.3 and the Lusin-Novikov uniformization theorem imply that there are
Borel sets An ⊆ A such that A =

⋃
n∈N An and ∀n ∈ N (π|An is injective). Fix

n ∈ N such that χB(G|An) > ℵ0, and set B = An.

We are now ready for the main result of this section:

Theorem 2.4. Suppose that X is a Polish space, G is a locally countable Borel
directed graph on X, F is a finite subset of P(

⋃
n∈N 2n × 2n) × P(

⋃
n∈N 2n × 2n),

and πT : X → 2N is a Borel reduction of G to GT , for each T ∈ F . Then exactly
one of the following holds:

1. χB(G) ≤ ℵ0;
2. There is a strongly dense pair S and a continuous embedding π : 2N → X of GS

into G such that πT ◦ π is a monotonic aligned embedding of GS into GT , for
each T ∈ F .

Proof. Proposition 1.1 implies that (1) and (2) are mutually exclusive, since color-
ings can be pulled back through homomorphisms. It is therefore sufficient to prove
¬(1) ⇒ (2). Towards this end, suppose that χB(G) > ℵ0. By repeatedly applying
Proposition 2.2, we can assume that each of the functions πT is injective. Fix a Borel
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linear order ≤ on X. Since the union of finitely many directed graphs of countable
Borel chromatic number has countable Borel chromatic number, it follows that after
replacing ≤ with ≥ if necessary, there is a sequence σ ∈ 2F such that the Borel
oriented graph

H = {(x, y) ∈ G : x ≤ y and ∀T ∈ F (σ(T ) = 0⇔ πT (x) ≤lex π
T (y))}

has uncountable Borel chromatic number.
By Theorem 1 of Feldman-Moore [1], there is a countable group G of Borel

automorphisms of X such that EG =
⋃
g∈G graph(g). Fix an increasing sequence of

finite symmetric neighborhoods H0 ⊆ H1 ⊆ · · · ⊆ G of 1G such that G =
⋃
n∈N Hn.

Let Fn denote the equivalence relation on 2N given by

αFnβ ⇔ ∀m ≥ n (α(m) = β(m)).

By standard change of topology results (see, for example, §13 of Kechris [3]), we
can assume that X is a zero-dimensional Polish space, G acts on X by home-
omorphisms, and for all g, h ∈ G, T ∈ F , s ∈ 2<N, and n ∈ N, the sets
{x ∈ X : (g · x, h · x) ∈ G}, {x ∈ X : πT (x)FnπT (g · x)}, and {x ∈ X : s ⊆ πT (x)}
are clopen.

We will recursively find clopen sets An ⊆ X, gn ∈ G, Sn ∈ P(2n× 2n)×P(2n×
2n), kn ∈ N, and πTn : 2n → 2k0+···+kn−1 , for each T ∈ F . From these, we define
Borel automorphisms hs : X → X by

hs · x =

{
x if s = ∅,

g
s(0)
0 . . . g

s(n)
n · x if s ∈ 2n+1.

From these, we define sequences Hn = 〈Hs〉s∈2n , where Hs is the Borel oriented
graph on An given by

Hs = {(x, y) ∈ An ×An : (hs · x, hs · y) ∈ H}.

We begin by setting A0 = X and πT0 (∅) = ∅, for each T ∈ F . Suppose now
that we have found 〈(Am, 〈πTm〉T∈F )〉m≤n and 〈(gm, Sm, km)〉m<n which satisfy the
following conditions:

(a) ∀m ≤ n (χB(Hm) > ℵ0);
(b) ∀m < n ((sm, sm) ∈ (Sm)0);
(c) ∀m < n (Am+1 ⊆ Am ∩ g−1

m (Am));
(d) ∀m < n∀x ∈ Am+1 ∀s, t ∈ 2m ∀i ∈ {0, 1}

((s, t) ∈ (Sm)i ⇔ (hsgim · x, htgım · x) ∈ G);
(e) ∀m < n∀x ∈ Am+1 ∀T ∈ F (πT (x)Fk0+···+kmπ

T (gm · x));
(f) ∀m ≤ n ∀x ∈ Am ∀s ∈ 2m ∀T ∈ F (πTm(s) ⊆ πT (hs · x));
(g) ∀m < n∀T ∈ F (σ(T ) = 0⇔ πTm+1(sm0) ≤lex π

T
m+1(sm1));

(h) ∀m < n∀s, t ∈ 2m ∀h ∈ Hm (hhs[Am+1] ∩ htgm[Am+1] = ∅);
(i) ∀m < n ∀s ∈ 2m+1 (diam(hs[Am+1]) ≤ 1/(m+ 1)).
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Let P denote the set of tuples p = (gp, Sp, kp, 〈πTp 〉T∈F ) in the set

G× (P(2n × 2n)× P(2n × 2n))× N× ((2k0+···+kn−1+kp)2n+1
)F ,

where (sn, sn) ∈ (Sp)0. For each p ∈ P, let Ap denote the set of x such that:

(c′) x ∈ An ∩ g−1
p (An);

(d′) ∀s, t ∈ 2n ∀i ∈ {0, 1} ((s, t) ∈ (Sp)i ⇔ (hsgip · x, htgıp · x) ∈ G);
(e′) ∀T ∈ F (πT (x)Fk0+···+kn−1+kpπ

T (gp · x));
(f′) ∀s ∈ 2n ∀i ∈ {0, 1} ∀T ∈ F (πTp (si) ⊆ πT (hsgip · x));
(g′) ∀T ∈ F (σ(T ) = 0⇔ πTp (sn0) ≤lex π

T
p (sn1));

(h′) ∀s, t ∈ 2n ∀h ∈ Hn (gp · x 6= h−1
t hhs · x).

Note that the first five conditions are clopen and the sixth is open, so that each of
the sets Ap is open. For each p ∈ P, set Hp = 〈Hps〉s∈2n+1 , where

Hpsi = {(x, y) ∈ Ap ×Ap : (hsgip · x, hsgip · y) ∈ H},

for each s ∈ 2n and i ∈ {0, 1}.

Lemma 2.5. There exists p ∈ P such that χB(Hp) > ℵ0.

Proof. Suppose, towards a contradiction, that for each p ∈ P there are Hp-discrete
Borel sets Bp,k ⊆ X, for k ∈ N, such that Ap =

⋃
k∈N Bp,k. For each p ∈ P and

k ∈ N, fix ip,k ∈ {0, 1} such that gip,kp [Bp,k] is Hn-discrete. Define

A = An \
⋃

p∈P,k∈N
g
ip,k
p [Bp,k].

Then χB(Hn|A) > ℵ0. Let Kn denote the graph on X consisting of pairs (x, y) of
distinct elements of X such that

∃s, t ∈ 2n ∃h ∈ Hn (h−1
t hhs · x = y).

Then Kn has bounded vertex degree, and therefore finite Borel chromatic number
(by Proposition 4.5 of Kechris-Solecki-Todorćevič [4]), so there is a Kn-discrete Borel
set A′ ⊆ A such that χB(Hn|A′) > ℵ0.

Fix x, y ∈ A′ such that (hsn · x, hsn · y) ∈ H. Then there exists gp ∈ G such that
gp · x = y, so that condition (c′) holds. Let

(Sp)i = {(s, t) ∈ 2n × 2n : (hsgip · x, htgıp · x) ∈ G},

so that (sn, sn) ∈ (Sp)0 and condition (d′) holds. Fix kp ∈ N such that

∀T ∈ F (πT (x)Fk0+···+kn−1+kpπ
T (y)),

so that (e′) holds. For each T ∈ F , define πTp : 2n+1 → 2k0+···+kn−1+kp by

πTp (si) = πT (hsgip · x)|(k0 + · · ·+ kn−1 + kp),

so that condition (f′) holds. The fact that (hsn ·x, hsn ·y) ∈ H ensures that condition
(g′) holds, and the fact that A′ is Kn-discrete implies that condition (h′) holds. Then



April 11, 2009 0:7 uncountablebasis

Basis theorems for non-potentially closed sets and graphs of uncountable Borel chromatic number 15

p = (gp, Sp, kp, 〈πTp 〉T∈F ) is in P, so there exists k ∈ N such that at least one of x, y
is in g

ip,k
p [Bp,k], which contradicts the definition of A.

By Lemma 2.5, there exists p ∈ P such that χB(Hp) > ℵ0. Set

gn = gp, Sn = Sp, kn = kp and πTn+1 = πTp .

Fix a cover of Ap by countably many clopen sets Ui ⊆ Ap such that:

(h′′) ∀i ∈ N ∀s, t ∈ 2n ∀h ∈ Hn (hhs[Ui] ∩ htgn[Ui] = ∅);
(i′′) ∀i ∈ N ∀s ∈ 2n+1 (diam(hs[Ui]) ≤ 1/(n+ 1)).

Fix i ∈ N such that χB(Hp|Ui) > ℵ0, and set An+1 = Ui. As χB(Hn+1) =
χB(Hp|Ui), it follows that the analogs of conditions (a) – (i) hold at n+ 1.

This completes the recursive construction. Set Si =
⋃
n∈N(Sn)i. Conditions (c)

and (i) ensure that, for each α ∈ 2N, the sets hα|0[A0], hα|1[A1], . . . are decreasing
and of vanishing diameter, and since they are clopen, they therefore have singleton
intersection. Define π : 2N → X by

π(α) = the unique element of
⋂
n∈N

hα|n[An].

It follows from conditions (h) and (i) that π is a continuous injection.

Lemma 2.6. Suppose that n ∈ N, s ∈ 2n, and α ∈ 2N. Then π(sα) = hs · π(0nα).

Proof. Simply observe that

{π(sα)} =
⋂
i≥n

h(sα)|i[Ai]

=
⋂
i≥0

hsh0n(α|i)[Ai+n]

= hs

⋂
i≥0

h0n(α|i)[Ai+n]


= hs

⋂
i≥n

h(0nα)|i[Ai]


= {hs · π(0nα)},

thus π(sα) = hs · π(0nα).

Lemma 2.7. Suppose that αE0β. Then (α, β) ∈ GS ⇔ (π(α), π(β)) ∈ G.

Proof. Fix n ∈ N maximal such that α(n) 6= β(n), let s = α|n and t = β|n, set
i = α(n), and fix γ ∈ 2N such that α = siγ and β = tıγ. Lemma 2.6 ensures that
π(α) = π(siγ) = hsi · π(0n+1γ) and π(β) = π(tıγ) = htı · π(0n+1γ), and since



April 11, 2009 0:7 uncountablebasis

16 Dominique Lecomte and Benjamin D. Miller

π(0n+1γ) ∈ An+1, condition (d) then ensures that (α, β) ∈ GS ⇔ (s, t) ∈ (Sn)i ⇔
(π(α), π(β)) ∈ G.

Lemma 2.8. Suppose that (α, β) /∈ E0. Then (π(α), π(β)) /∈ EG.

Proof. It is enough to check that if α, β ∈ 2N and α(n) 6= β(n), then there is no
h ∈ Hn such that h · π(α) = π(β). Suppose, towards a contradiction, that there
is such an h. As Hn is symmetric, we can assume that α(n) = 0 and β(n) = 1.
Set s = α|n and t = β|n, and fix γ, δ ∈ 2N such that α = s0γ and β = t1δ.
Lemma 2.6 ensures that π(α) = hs · π(0n+1γ) and π(β) = htgn · π(0n+1δ). As
π(0n+1γ), π(0n+1δ) ∈ An+1, it follows that π(β) ∈ hhs[An+1] ∩ htgn[An+1], which
contradicts condition (h).

Lemma 2.9. ∀α ∈ 2N (πTn (α|n) ⊆ πT ◦ π(α)).

Proof. Suppose that α ∈ 2N and n ∈ N, fix x ∈ An such that π(α) = hα|n · x, and
observe that πTn (α|n) ⊆ πT (hα|n · x), by condition (f).

Lemmas 2.7 and 2.8 easily imply that π is an embedding of GS into G, so it only
remains to show that if T ∈ F , then πT ◦ π is a monotonic aligned embedding of
GS into GT . Towards this end, note that if n ∈ N and i ∈ {0, 1}, then πTn (sn) ⊆
πTn+1(sni), by Lemma 2.9. It follows that there is a unique pair un ∈ 2kn × 2kn such
that πTn+1(sni) = πTn (sn)(un)i, for each i ∈ {0, 1}.

Lemma 2.10. ∀n ∈ N ((un)0 6= (un)1).

Proof. Fix n ∈ N and set x = π(sn00∞) and y = π(sn10∞). As π is injective, it
follows that x 6= y. As πT is injective, it follows that πT (x) 6= πT (y). Lemma 2.9 and
condition (e) then imply that there exists α ∈ 2N such that πT (x) = πTn (sn)(un)0α

and πT (y) = πTn (sn)(un)1α, thus (un)0 6= (un)1.

Lemma 2.11. ∀n ∈ N ∀s ∈ 2n ∀i ∈ {0, 1} (πTn+1(si) = πTn (s)(un)i).

Proof. Since πTn+1(sni) = πTn (sn)(un)i, Lemmas 2.6 and 2.9 imply that

πTn (s) ⊆ πTn+1(si) ⊆ πT ◦ π(si0∞) = πT (hsgin · π(0∞)),

and condition (e) ensures that πT (hsgin · π(0∞))Fk0+···+kn−1π
T (hsng

i
n · π(0∞)), it

follows that πTn+1(si) = πTn (s)(un)i.

Suppose now that T ∈ F , and observe that if n ∈ N and s, t ∈ 2n, then

(s, t) ∈ GSn ⇔ (s0∞, t0∞) ∈ GS

⇔ (π(s0∞), π(t0∞)) ∈ G
⇔ (πT ◦ π(s0∞), πT ◦ π(t0∞)) ∈ GT

⇔ (πTn (s), πTn (t)) ∈ GTk0+···+kn−1
,
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thus πT ◦ π is an aligned embedding of GS into GT . Condition (g) ensures that if
σ(T ) = 0, then πT ◦ π is order-preserving, and if σ(T ) = 1, then πT ◦ π is order-
reversing. In either case, it follows that πT ◦π is monotonic, and this completes the
proof of the theorem.

3. Generalizations

In this section, we will establish a generalization of Theorem 2.4. First, however, we
must generalize some basic descriptive set-theoretic facts.

Proposition 3.1. Suppose that X and Y are Polish spaces, ϕ : X → Y is a Borel
function, and A ⊆ X has the property of Baire. Then there is a Borel set B ⊆ X

such that B ⊆ A, A \B is meager, and ϕ[B] is Borel.

Proof. Define an equivalence relation E on X by x1Ex2 ⇔ ϕ(x1) = ϕ(x2). A
selector for E is a function s : X → X such that

∀x ∈ X (xEs(x)) and ∀x1, x2 ∈ X (x1Ex2 ⇒ s(x1) = s(x2)).

A partial transversal of E is a set which intersects every E-class in at most one
point. The E-saturation of B ⊆ X is given by

[B]E = {x ∈ X : ∃y ∈ B (xEy)},

and we say that B ⊆ X is E-invariant if B = [B]E .
As A has the property of Baire, there is a Borel set C ⊆ A such that A \ C

is meager. By the Jankov-von Neumann uniformization theorem (see, for example,
Theorem 18.1 of Kechris [3]), there is a σ(Σ1

1)-measurable function ψ : ϕ[C] → C

such that ∀y ∈ ϕ[C] (y = ϕ◦ψ(y)). Then s = ψ◦ϕ|C is a σ(Σ1
1)-measurable selector

for E|C. Fix a Borel set D ⊆ C such that C \D is meager and s|D is Borel. Then
the set s[D] is an analytic partial transversal of E|C. As the property of being a
partial transversal of E|C is Π1

1 on Σ1
1, the first reflection theorem implies that

there is a Borel partial transversal B′ ⊇ s[D] of E|C. By Souslin’s Theorem (see,
for example, Theorem 14.11 of Kechris [3]), the set

B = [B′]E|C
= {x ∈ C : ∃y ∈ B′ (xEy)}
= {x ∈ C : ∃!y ∈ B′ (xEy)}

is Borel. Observe that B ⊆ C ⊆ A. As D ⊆ B, it follows that A\B ⊆ (A\C)∪(C\D)
is meager, and the Lusin-Souslin theorem (see, for example, Theorem 15.1 of Kechris
[3]) ensures that ϕ[B] = ϕ[B′] is Borel.

Proposition 3.2. Suppose that X and Y are Polish spaces, C ⊆ X is a comeager
Borel set, π : C → Y is a Borel function, and A ⊆ Y is globally Baire. Then there
is a comeager Borel set D ⊆ C such that A ∩ π[D] and π[D] are Borel.
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Proof. Fix y0 ∈ Y and define π̂ : X → Y by

π̂(x) =
{
π(x) if x ∈ C,
y0 otherwise.

Set A′ = Y \ A, and observe that both π̂−1(A) and π̂−1(A′) have the property of
Baire. By Proposition 3.1, there are Borel sets B ⊆ π̂−1(A) and B′ ⊆ π̂−1(A′) such
that π̂−1(A) \ B, π̂−1(A′) \ B′ are meager and π̂[B], π̂[B′] are Borel. Then the set
D′ = B ∪B′ is comeager, and both A ∩ π̂[D′] = π̂[B] and π̂[D′] = π̂[B] ∪ π̂[B′] are
Borel. It follows that the set D = C ∩D′ is comeager, and since A ∩ π[D] \ {y0} =
A ∩ π̂[D′] \ {y0} and π[D] \ {y0} = π̂[D′] \ {y0}, it follows that A ∩ π[D] and π[D]
are Borel.

Proposition 3.3. Suppose that X, Y , and Z are Polish spaces, C ⊆ X is a comea-
ger Borel set, π : C → Y is Borel, A ⊆ Y , ϕ : A→ Z is globally Baire measurable,
and π[C] ⊆ A. Then there is a Borel set B ⊆ Y such that B ⊆ A, π−1(B) is
comeager, and ϕ|B is Borel.

Proof. Fix an open basis 〈Un〉n∈N for Z. For each n ∈ N, the set ϕ−1(Un) is globally
Baire, so Proposition 3.2 ensures that there is a comeager Borel set Cn ⊆ C such
that ϕ−1(Un) ∩ π[Cn] and π[Cn] are Borel. Then the set B =

⋂
n∈N π[Cn] is Borel,

as is each set of the form ϕ−1(Un) ∩ B, thus ϕ|B is Borel. As
⋂
n∈N Cn ⊆ π−1(B),

it follows that π−1(B) is comeager.

Proposition 3.4. Suppose that X, Y , and Z are Polish spaces and ψ : X → Y and
ϕ : Y → Z are globally Baire measurable. Then ϕ ◦ ψ is globally Baire measurable.

Proof. We must show that if W is a Polish space, π : W → X is Borel, and U ⊆ Z
is open, then the set (ϕ ◦ ψ ◦ π)−1(U) has the property of Baire. Towards this end,
note first that by Proposition 3.3, there is a Borel set A ⊆ X such that π−1(A) is
comeager and ψ|A is Borel. By another application of Proposition 3.3, there is a
Borel set B ⊆ Y such that the set C = (ψ ◦ π|π−1(A))−1(B) is comeager and ϕ|B
is Borel, thus ϕ ◦ψ ◦ π|C is Borel. It follows that (ϕ ◦ψ ◦ π)−1(U) is the union of a
Borel set with a meager set, and therefore has the property of Baire.

Proposition 3.5. Suppose that X, Y , and Z are Polish spaces, π : Z → X is
Borel, and R ⊆ X × Y is an analytic set with countable vertical sections. Then
there is a Borel set B ⊆ X such that π−1(B) is comeager and R∩ (B×Y ) is Borel.

Proof. By a result of Lusin (see, for example, Exercise 35.13 of Kechris [3]), there
are Borel functions fn : X → Y such that R ⊆

⋃
n∈N graph(fn). For each n ∈ N,

define An ⊆ X by

An = {x ∈ X : (x, fn(x)) ∈ R}.
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By Proposition 3.2, there are comeager Borel sets Cn ⊆ Z such that An ∩ π[Cn]
and π[Cn] are Borel. Then the set B =

⋂
n∈N π[Cn] is Borel, as is R ∩ (B × Y ) =⋃

n∈N graph(fn|(An ∩B)). As
⋂
n∈N Cn ⊆ π−1(B), it follows that π−1(B) is comea-

ger, which completes the proof of the proposition.

Remark 3.6. Our assumption that R has countable vertical sections cannot be
entirely removed. To see this, set X = Y = Z = R and π = id, fix a co-analytic
set A ⊆ R which is not analytic, define R′ = {(x, y) ∈ X × Y : x + y ∈ A}, and
observe that the set R = (X × Y ) \ R′ is analytic. If C ⊆ X and D ⊆ Y are
comeager, then for each z ∈ A, there exists (x, y) ∈ C×D such that z = x+y, thus
A = {x + y : (x, y) ∈ R′ ∩ (C ×D)}. It follows that if R ∩ (C ×D) is co-analytic,
then A is analytic, a contradiction.

We are now ready to return to Borel chromatic numbers.

Proposition 3.7. Suppose that X is a Polish space and G is a locally countable
analytic directed graph on X of uncountable Borel chromatic number. Then there is
a Borel set B ⊆ X such that χB(G|B) > ℵ0 and G|B is Borel.

Proof. By the directed analog of Theorem 6.3 of Kechris-Solecki-Todorčević [4],
there is a continuous homomorphism π : 2N → X from G→0 to G. By Proposition 3.5,
there is a Borel set B ⊆ X such that π−1(B) is comeager and G∩(B×X) is Borel. It
follows that G|B is Borel, and Proposition 1.1 ensures that χB(G→0 |π−1(B)) > ℵ0,
thus χB(G|B) > ℵ0.

Proposition 3.8. Suppose that X and Y are Polish spaces, G is an analytic directed
graph on X, A ⊆ X is analytic, χB(G ∩ (A× A)) > ℵ0, and ϕ : A→ Y is globally
Baire measurable. Then there is a Borel set B ⊆ X such that B ⊆ A, χB(G|B) > ℵ0,
and ϕ|B is Borel.

Proof. By the directed analog of Theorem 6.3 of Kechris-Solecki-Todorčević [4],
there is a continuous homomorphism π : 2N → X from G→0 to G ∩ (A × A).
Then π[2N] ⊆ A, so Proposition 3.3 implies that there is a Borel set B ⊆ X

such that π−1(B) is comeager and ϕ|B is Borel, and Proposition 1.1 ensures that
χB(G→0 |π−1(B)) > ℵ0, thus χB(G|B) > ℵ0.

Proposition 3.9. Suppose that X and Y are Polish spaces, G and H are analytic
directed graphs on X and Y of uncountable Borel chromatic number, and π : X → Y

is a globally Baire measurable reduction of G to H. Then there is a Borel set B ⊆ Y
such that H|B is a directed graph of uncountable Borel chromatic number which
admits a Borel embedding into G.

Proof. By Proposition 3.8, there is a Borel set A ⊆ X such that χB(G|A) > ℵ0

and π|A is Borel. By the Jankov-von Neumann uniformization theorem, there is a
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σ(Σ1
1)-measurable function ϕ : π[A]→ A such that

∀y ∈ π[A] (π ◦ ϕ(y) = y).

By Proposition 3.8, there is a Borel set B ⊆ π[A] such that χB(H|B) > ℵ0 and ϕ|B
is Borel, and it is clear that ϕ|B is an embedding of H|B into G.

We are now ready to prove the promised generalization of Theorem 2.4:

Theorem 3.10. Suppose that X is a Polish space, G is an analytic directed graph
on X which admits a globally Baire measurable reduction into a locally countable
analytic directed graph on a Polish space, F is a finite subset of P(

⋃
n∈N 2n× 2n)×

P(
⋃
n∈N 2n × 2n), and πT : X → 2N is a globally Baire measurable reduction of G

to GT , for each T ∈ F . Then exactly one of the following holds:

1. χB(G) ≤ ℵ0;
2. There is a strongly dense pair S and a continuous embedding π : 2N → X of GS

into G such that πT ◦ π is a monotonic aligned embedding of GS into GT , for
each T ∈ F .

Proof. It is again sufficient to show ¬(1) ⇒ (2). By Proposition 3.9, there is a
locally countable analytic directed graph H on a Polish space Y such that χB(H) >
ℵ0, as well as a Borel embedding ϕ of H into G. By Proposition 3.7, there is a Borel
set B ⊆ Y such that χB(H|B) > ℵ0 and H|B is Borel. As each function of the
form πT ◦ ϕ|B is globally Baire measurable, it follows from |F| many applications
of Proposition 3.8 that there is a Borel set C ⊆ B such that χB(H|C) > ℵ0 and the
functions of the form πT ◦ ϕ|C, for T ∈ F , are Borel. Fix a Polish topology on C,
compatible with its underlying Borel structure, with respect to which ϕ|C and the
functions of the form πT ◦ ϕ|C, for T ∈ F , are continuous. By Theorem 2.4, there
is a strongly dense pair S and a continuous embedding ψ : 2N → C of GS into H|C
such that (πT ◦ ϕ|C) ◦ ψ is a monotonic aligned embedding of GS into GT , for each
T ∈ F , and it follows that the function π = (ϕ|C) ◦ ψ is as desired.

4. Basis theorems

In this section, we derive several basis results from Theorem 3.10.

Theorem 4.1. Suppose that X is a Polish space and G is an analytic directed graph
on X which admits a globally Baire measurable reduction to a locally countable
analytic directed graph on a Polish space. Then exactly one of the following holds:

1. χB(G) ≤ ℵ0;
2. There is a strongly dense pair S such that GS vc G.

Proof. This is a direct consequence of Theorem 3.10.
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Theorem 4.2. Suppose that X is a Polish space and G is an analytic graph on X

which admits a globally Baire measurable reduction to a locally countable analytic
graph on a Polish space, as well as a globally Baire measurable reduction to an
acyclic analytic graph on a Polish space. Then exactly one of the following holds:

1. χB(G) ≤ ℵ0;
2. G0 vc G.

Proof. It is again enough to show that ¬(1) ⇒ (2). By Proposition 3.9 and stan-
dard change of topology results, there is an acyclic analytic graph H vc G of un-
countable Borel chromatic number. Theorem 4.1 then implies that there is a strongly
dense pair S such that GS vc H. Then GS is an acyclic graph, so Proposition 1.5
implies that S = S0, and the theorem follows.

Theorem 4.3. Suppose that X is a Polish space and G is an analytic oriented graph
on X which admits a globally Baire measurable reduction to a locally countable
analytic oriented graph on a Polish space, as well as a globally Baire measurable
reduction to an acyclic analytic oriented graph on a Polish space. Then exactly one
of the following holds:

1. χB(G) ≤ ℵ0;
2. G→0 vc G.

Proof. It is once more enough to show that ¬(1) ⇒ (2). By Proposition 3.9 and
standard change of topology results, there is an acyclic analytic oriented graph
H vc G of uncountable Borel chromatic number. Theorem 4.1 then implies that
there is a strongly dense pair S such that GS vc H. Then GS is an acyclic oriented
graph, so Proposition 1.6 implies that S = S→0 , and the theorem follows.

Next we give a new proof of Theorem 28 of Lecomte [6]:

Theorem 4.4. Suppose that X is a non-empty Polish space and G is a directed
graph on X of the form

⋃
n∈N graph(fn), where:

1. f0, f1, . . . are partial homeomorphisms with open domains and ranges;
2. ∆(X) ⊆ G;
3. For each n ∈ N, s ∈ Nn+1 such that ∀i < n (s(i) 6= s(i + 1)), t ∈ Zn+1, and

non-empty open set U ⊆ X, there is a non-empty open set V ⊆ U such that f ts|V
is fixed-point free, where f ts = f

t(0)
s(0) . . . f

t(n)
s(n).

Then G→0 vc G.

Proof. Let Sn = {(s, t) ∈ Nn+1 × Zn+1 : ∀i < n (s(i) 6= s(i + 1))}, and set
S =

⋃
n∈N Sn. Condition (3) ensures that for each (s, t) ∈ S, the set

M(s,t) = {x ∈ X : x = f ts(x)}
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is meager, thus so too is the set M =
⋃

(s,t)∈SM(s,t). Let E = EG . As each fn sends
meager sets to meager sets, it follows that the E-saturation of M is also meager,
thus C = X \ [M ]E is an E-invariant comeager Borel set.

Lemma 4.5. G|C is oriented.

Proof. Suppose, towards a contradiction, that there exist x, y ∈ C such that
(x, y), (y, x) ∈ G|C, and fix m,n ∈ N such that x = fm(y) and y = fn(x). If m = n,
then set s = 〈m〉 = 〈n〉 and t = 〈2〉. Otherwise, set s = 〈m,n〉 and t = 〈1, 1〉. In
either case, it follows that (s, t) ∈ S and x = f ts(x), a contradiction.

Lemma 4.6. G|C is acyclic.

Proof. Suppose, towards a contradiction, that G|C is not acyclic, and fix n ∈ N
least for which there exists s ∈ Nn+1, t ∈ Zn+1, and x ∈ C such that x = f ts(x).
The minimality of n ensures that (s, t) ∈ S, a contradiction.

Lemma 4.7. χB(G|C) > ℵ0.

Proof. It is enough to check that no non-meager Borel set B ⊆ X is G-discrete.
Towards this end, fix a non-empty open set U ⊆ X such that B ∩ U is comeager
in U , and fix x ∈ U . As (x, x) ∈ G, there exists n ∈ N and y ∈ dom(fn) ∩ U such
that fn(y) ∈ U , so that the set V = dom(fn) ∩ U ∩ f−1

n (U) is non-empty. As B is
comeager in both V and fn(V ), it follows that B ∩ f−1

n (B) is non-empty, so B is
not G-discrete.

Theorem 4.3 implies that there is a continuous embedding π of G→0 into G∩(C×
C). As π[2N] ⊆ C, it follows that π is a continuous embedding of G→0 into G.

We close this section with a basis result for equivalence relations:

Theorem 4.8. Suppose that X is a Polish space and E is a countable analytic
equivalence relation on X. Then exactly one of the following holds:

1. X is the union of countably many Borel partial transversals of E;
2. E0 vc E.

Proof. It is clear that condition (1) is equivalent to

1′. χB(E \∆(X)) ≤ ℵ0,

and condition (2) is equivalent to

2′. E0 \∆(2N) vc E \∆(X).
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Define S by S0 = S1 =
⋃
n∈N 2n × 2n. Then GS = E0 \ ∆(2N), thus χB(E0 \

∆(2N)) = χB(GS) > ℵ0, by Proposition 1.1. As colorings can be pulled-back through
homomorphisms, it follows that conditions (1′) and (2′) are mutually exclusive. To
see that ¬(1′)⇒ (2′), observe that if (1′) fails, then Theorem 4.1 implies that there is
a strongly dense pair T such that GT vc E\∆(X). Then GT∪∆(2N) is an equivalence
relation, so Proposition 1.7 ensures that S = T , thus E0 \∆(2N) vc E \∆(X).

5. Basis embeddings

In this section, we will show that the map A 7→ GA is a basis embedding. We begin
with some connections between our notions of aligned embeddability:

Proposition 5.1. Suppose that there is an aligned embedding of S into SA. Then
there exists B such that S = SB.

Proof. It is enough to show that ∀i ∈ {0, 1} ∀(s, t) ∈ Si (s = t). Towards this
end, suppose that ϕ is an aligned embedding of S into SA, and for each n ∈ N, let
GAn = GSAn . Observe that if (s, t) ∈ Si ∩ (2n × 2n), then (si, tı) ∈ GSn+1, thus

(ϕ(si), ϕ(tı)) ∈ GAkϕ0 +···+kϕn .

Fix j < kϕ0 + · · ·+ kϕn with (ϕ(s)(uϕn)i|j, ϕ(t)(uϕn)ı|j) ∈ (SA)0 ∪ (SA)1 and

∀k > j ([ϕ(s)(uϕn)i](k) = [ϕ(t)(uϕn)ı](k)).

As (uϕn)i 6= (uϕn)ı, it follows that j ≥ kϕ0 + · · · + kϕn−1, and since (SA)0 ∪ (SA)1 ⊆
∆(2<N), this implies that ϕ(s) = ϕ(t), thus s = t.

Proposition 5.2. Suppose that there is a monotonic aligned embedding of A into
B. Then there is a monotonic aligned embedding of SA into SB.

Proof. Suppose that ψ : 2<N → 2<N is an order-preserving aligned embedding of
A into B, and let ϕ : 2<N → 2<N be the order-preserving aligned function given by
(uϕn)i = uψn i. Given distinct sequences s, t ∈ 2n+1, fix m < n + 1 largest such that
s(m) 6= t(m), set i = s(m), and observe that

(s, t) ∈ GAn+1 ⇔ (s|m, t|m) ∈ (SA)i

⇔ s|m = t|m and s|m ∈ Ai

⇔ ψ(s|m) = ψ(t|m) and ψ(s|m) ∈ Bi

⇔ (ψ(s|m), ψ(t|m)) ∈ (SB)i

⇔ (ϕ(s), ϕ(t)) ∈ GBkϕ0 +···+kϕn ,

thus ϕ is an order-preserving aligned embedding of SA into SB . The case that ψ is
order-reversing is handled similarly, with (uϕn)i = uψn ı.
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Proposition 5.3. Suppose that A0 contains sequences of every length and there is
a monotonic aligned embedding of SA into SB. Then there is a monotonic aligned
embedding of A into B.

Proof. Fix an order-preserving aligned embedding ϕ of SA into SB .

Lemma 5.4. For all n, there is a unique kn with [(uϕn)0](kn) 6= [(uϕn)1](kn).

Proof. Fix s ∈ A0 ∩ 2n. Then (s0, s1) ∈ GAn+1, thus

(ϕ(s0), ϕ(s1)) ∈ GBkϕ0 +···+kϕn .

Fix a positive integer j < kϕ0 +· · ·+kϕn such that (ϕ(s)(uϕn)0|j, ϕ(s)(uϕn)1|j) ∈ SB and
∀k > j ([ϕ(s)(uϕn)0](k) = [ϕ(s)(uϕn)1](k)), and observe that kn = j−(kϕ0 +· · ·+kϕn−1)
is as desired.

Let ψ be the order-preserving nicely aligned function obtained by setting uψ0 =
(uϕ0 )0|k0 = (uϕ0 )1|k0 and letting uψn+1 be the concatenation of (uϕn)0|(kn, kϕn) =
(uϕn)1|(kn, kϕn) with (uϕn+1)0|kn+1 = (uϕn+1)1|kn+1. If s ∈ 2n, then

s ∈ Ai ⇔ (si, sı) ∈ GAn+1

⇔ (ϕ(si), ϕ(sı)) ∈ GBkϕ0 +···+kϕn

⇔ ψ(s) ∈ Bi,

thus ψ is an order-preserving aligned embedding of A into B. The case that ϕ is
order-reversing is handled similarly.

We are now prepared for our first basis embeddability result:

Theorem 5.5. The map A 7→ GA is a basis embedding of monotonic aligned em-
beddability on the set of dense pairs into (vc,≤GB).

Proof. By Proposition 1.9, the map S 7→ GS is a homomorphism from monotonic
aligned embeddability into vc, so it only remains to show that if A and B are dense
and G ≤GB GA,GB is an analytic graph of uncountable Borel chromatic number,
then there is a dense pair C which admits monotonic aligned embeddings into A

and B and for which GC vc G. Towards this end, observe that by Theorem 3.10,
there is a strongly dense pair S which admits monotonic aligned embeddings into
SA and SB and for which GS vc G. By Proposition 5.1, there exists C such that
S = SC . As S is strongly dense, it follows that C is dense and contains sequences
of every length, thus Proposition 5.3 implies that there are monotonically aligned
embeddings of C into A and B.

We next note some connections between non-potentially closed sets and graphs
of uncountable Borel chromatic number:



April 11, 2009 0:7 uncountablebasis

Basis theorems for non-potentially closed sets and graphs of uncountable Borel chromatic number 25

Proposition 5.6. Suppose that X is a Polish space and G is a directed graph on
X which is potentially closed. Then χB(G) ≤ ℵ0.

Proof. Fix sequences 〈An〉n∈N and 〈Bn〉n∈N of Borel subsets of X such that

(X ×X) \ G =
⋃
n∈N

An ×Bn.

Set Cn = An ∩ Bn, and observe that ∆(X) ⊆
⋃
n∈N Cn × Cn, thus X =

⋃
n∈N Cn.

As each Cn is G-discrete, it follows that χB(G) ≤ ℵ0.

Proposition 5.7. Suppose that X is a Polish space and G is a directed graph on
X such that G \ G ⊆ ∆(X). Then the following are equivalent:

1. G is potentially closed;
2. χB(G) ≤ ℵ0.

Proof. By Proposition 5.6, it is enough to show (2) ⇒ (1). Towards this end,
suppose that χB(G) ≤ ℵ0, and fix a sequence 〈Bn〉n∈N of G-discrete Borel sets
which cover X, as well as an open basis 〈Un〉n∈N for X, and set

S = {(m,n) ∈ N× N : G ∩ (Um × Un) = ∅}.

Our assumption that G \ G ⊆ ∆(X) ensures that if (x, y) /∈ G ∪∆(X), then there
exists (m,n) ∈ S such that (x, y) ∈ Um × Un, and it follows that

(X ×X) \ G =
⋃
n∈N

Bn ×Bn ∪
⋃

(m,n)∈S

Um × Un,

thus G is potentially closed.

Proposition 5.8 (Lecomte [6]). Suppose that X and Y are Polish spaces and
R ⊆ X × Y is Borel. Then the following are equivalent:

1. R is potentially closed;
2. χB(GR) ≤ ℵ0.

Proof. To see (1) ⇒ (2), suppose that there are Borel sets An ⊆ X and Bn ⊆ Y

such that (X×Y )\R =
⋃
n∈N An×Bn, and observe that the function which assigns

to each pair (x, y) ∈ (X × Y ) \R the least n such that (x, y) ∈ An ×Bn is a Borel
coloring of GR.

To see (2)⇒ (1), suppose that c : (X×Y )\R→ N is a Borel coloring of GR, and
observe that if (x, y) ∈ projX [c−1(n)] × projY [c−1(n)], then there exists (x′, y′) ∈
X×Y such that c(x, y′) = c(x′, y) = n, thus (x, y) /∈ R. The first reflection theorem
then implies that there are Borel sets An ⊇ projX [c−1(n)] and Bn ⊇ projY [c−1(n)]
such that R ∩ (An × Bn) = ∅, and it follows that (X × Y ) \ R =

⋃
n∈N An × Bn,

thus R is potentially closed.
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Next we have an analog of Proposition 3.8 for rectangular reductions:

Proposition 5.9. Suppose that X1, Y1, X2, and Y2 are Polish spaces, R ⊆ X1×Y1

is a non-potentially closed Borel set, and ϕX : X1 → X2 and ϕY : Y1 → Y2 are
globally Baire measurable. Then there are Borel sets A ⊆ X1 and B ⊆ Y1 such that
R|(A×B) is not potentially closed and both ϕX |A and ϕY |B are Borel.

Proof. Proposition 5.8 implies that χB(GR) > ℵ0. By the directed analog of Theo-
rem 6.3 of Kechris-Solecki-Todorčević [4], there is a Borel homomorphism (πX , πY )
from G→0 to GR. By Proposition 3.3, there are Borel sets A ⊆ X1 and B ⊆ Y1 such
that π−1

X (A) and π−1
Y (B) are comeager and both ϕX |A and ϕY |B are Borel. As the

set C = π−1
X (A)∩π−1

Y (B) is comeager, Proposition 1.1 ensures that χB(G→0 |C) > ℵ0,
so χB(GR|(A×B)) > ℵ0, thus R|(A×B) is not potentially closed.

We also need the following two technical observations:

Proposition 5.10. Suppose that X and Y are Polish spaces, R is a subset of X×X
such that ∆(X) ⊆ R\R, S is a subset of Y ×Y such that S\S ⊆ ∆(Y ), and (π1, π2)
is a continuous rectangular reduction of R to S. Then π1 = π2.

Proof. Simply observe that for each x ∈ X, the point (x, x) is in R \ R, so the
point (π1(x), π2(x)) is in S \ S, thus π1(x) = π2(x).

Proposition 5.11. Suppose that X is a Polish space, G is an analytic directed
graph on X, A,B ⊆ X are analytic sets, C = A ∩ B, and χB(G ∩ (C × C)) ≤ ℵ0.
Then χB(G ∩ (A×B)) ≤ ℵ0.

Proof. Fix a Borel coloring c : X → N of G ∩ (C × C), and define d : X →
N× {0, 1} × {0, 1} by

d(x) = (c(x), χA(x), χB(x)).

Then d is a σ(Σ1
1)-measurable coloring of G ∩ (A × B), thus the directed analogs

of the remarks from the first paragraph of §6.C of Kechris-Solecki-Todorčević [4]
imply that χB(G ∩ (A×B)) ≤ ℵ0.

We are now ready to prove a basis theorem for non-potentially closed sets which
lie below directed graphs of the form GA:

Theorem 5.12. Suppose that X and Y are Polish spaces, R ⊆ X × Y is Borel,
and there is a pair A such that R ≤rGB GA. Then exactly one of the following holds:

1. R is potentially closed;
2. There is a dense pair B such that GB vrc R.
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Proof. To see that (1) and (2) are mutually exclusive, observe that if both condi-
tions (1) and (2) hold, then GB is potentially closed, which is ruled out by Propo-
sitions 1.1 and 5.6. To see ¬(1) ⇒ (2), suppose that R is not potentially closed,
and fix a globally Baire measurable rectangular reduction (πX , πY ) from R to GA.
By Proposition 5.9 and standard change of topology results, we can assume that
(πX , πY ) is continuous.

By Theorem 9 of Lecomte [6], there are continuous functions ϕX : 2N → X and
ϕY : 2N → Y such that

∀(α, β) ∈ G→0 ((α, β) ∈ G→0 ⇔ (ϕX(α), ϕY (β)) ∈ R).

We can actually give a direct proof of this: Proposition 5.8 implies that χB(GR) >
ℵ0, so the directed analog of Theorem 6.3 of Kechris-Solecki-Todorčević [4] ensures
that there is a continuous homomorphism ϕ = (ϕX , ϕY ) from G→0 to GR, thus ϕX
and ϕY are as desired.

It follows that GA ∩ (πX ◦ ϕX [2N] × πY ◦ ϕY [2N]) is not potentially closed. As
the sets πX ◦ ϕX [2N] and πY ◦ ϕY [2N] are compact, Proposition 5.7 implies that
χB(GA ∩ (πX ◦ ϕX [2N]× πY ◦ ϕY [2N])) > ℵ0. Define C ⊆ 2N by

C = πX ◦ ϕX [2N] ∩ πY ◦ ϕY [2N],

and observe that χB(GA|C) > ℵ0, by Proposition 5.11. The Jankov-von Neumann
uniformization theorem implies that there are σ(Σ1

1)-measurable functions ψX :
C → X and ψY : C → Y such that

∀α ∈ C (α = πX ◦ ψX(α) = πY ◦ ψY (α)).

By Proposition 3.8, there is a Borel set D ⊆ C such that χB(GA|D) > ℵ0 and both
ψX |D and ψY |D are Borel. Fix a Polish topology on D, compatible with the Borel
structure that it inherits from 2N, in which ψX |D and ψY |D are continuous. By
Theorem 3.10, there is a strongly dense pair S which admits a monotonic aligned
embedding into SA and for which there is a continuous embedding π of GS into
GA|D. By Proposition 5.1, there is a pair B such that S = SB . As S is dense, it
follows that so too is B, and (ψX ◦π, ψY ◦π) is a continuous rectangular embedding
of GB into R.

As a consequence, we obtain our second basis embedding result:

Theorem 5.13. The map A 7→ GA is a basis embedding of monotonic aligned
embeddability on the set of dense pairs into (vrc ,≤rGB).

Proof. By Proposition 1.9, the map S 7→ GS is a homomorphism from monotonic
aligned embeddability into vrc , so it only remains to show that if A and B are dense,
R ⊆ X × Y is a non-potentially closed Borel set, and R ≤rGB GA,GB , then there
is a dense pair D which admits monotonic aligned embeddings into A and B and
for which GD vrc R. Towards this end, fix globally Baire measurable rectangular
reductions (πAX , π

A
Y ) and (πBX , π

B
Y ) of R into GA and GB . By Proposition 5.9 and
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standard change of topology results, we can assume that these maps are continuous.
By Theorem 5.12, there is a continuous rectangular embedding (ϕX , ϕY ) of GC into
R, for some dense pair C. Proposition 5.10 then implies that πAX ◦ ϕX = πAY ◦ ϕY
and πBX ◦ ϕX = πBY ◦ ϕY , thus the maps ψA = πAX ◦ ϕX and ψB = πBX ◦ ϕX are
continuous reductions of GC to GA and GB . Theorem 3.10 now implies that there
is a continuous embedding ψ of GS into GC and monotonic aligned embeddings of
S into SA and SB , for some strongly dense pair S. Then (ϕX ◦ ψ,ϕY ◦ ψ) is a
continuous rectangular embedding of GS into R. By Proposition 5.1, there is a pair
D such that S = SD. As S is strongly dense, it follows that D is dense and contains
sequences of every length, thus Proposition 5.3 implies that there are monotonic
aligned embeddings of D into A and B.

We close this section with some simple properties of basis embeddings:

Proposition 5.14. Suppose that π : P → Q is a basis embedding of ≤P into
(vQ,≤Q) and � is a quasi-order which lies between vQ and ≤Q.

1. If p is ≤P -minimal, then π(p) is �-minimal.
2. If A is a strong ≤P -antichain, then π[A] is a strong �-antichain.

Proof. To see (1), suppose that p is ≤P -minimal and q � π(p). Then there exists
r ≤P p such that π(r) vQ q. The �-minimality of p implies that p ≤P r, and it
follows that π(p) vQ π(r) vQ q, thus π(p) � q.

To see (2), observe that if A is a strong ≤P -antichain, p1, p2 ∈ A, π(p1) 6= π(p2),
and q ≤Q π(p1), π(p2), then there exists p ≤P p1, p2, a contradiction.

6. Homogeneous pairs

For each x ∈
∏
n∈N 2n+1 ×

∏
n∈N 2n+1, define Ax ∈ P(2<N)× P(2<N) by

(Ax)i = {s ∈ 2<N : |supp(s)| ∈ supp(xi(|s|))}.

Proposition 6.1. Suppose that there is a monotonic aligned embedding of A into
Ax. Then there exists y such that A = Ay.

Proof. Suppose that ψ is an order-preserving aligned embedding of A into Ax,
define y ∈

∏
n∈N 2n+1 ×

∏
n∈N 2n+1 by

[yi(n)](k) = [xi(n+ kψ0 + · · ·+ kψn )](k + |supp(uψ0 )|+ · · ·+ |supp(uψn)|),
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and observe that if s ∈ 2n and i ∈ {0, 1}, then

s ∈ Ai ⇔ ψ(s) ∈ (Ax)i

⇔ |supp(ψ(s))| ∈ supp(xi(|ψ(s)|))
⇔ |supp(s)|+ |supp(uψ0 )|+ · · ·+ |supp(uψn)| ∈

supp(xi(n+ kψ0 + · · ·+ kψn ))

⇔ |supp(s)| ∈ supp(yi(|s|))
⇔ s ∈ (Ay)i,

thus A = Ay. Similarly, if ψ is order-reversing, define

[yi(n)](k) = [xi(n+ kψ0 + · · ·+ kψn )]((n− k) + |supp(uψ0 )|+ · · ·+ |supp(uψn)|),

and observe that if s ∈ 2n and i ∈ {0, 1}, then

s ∈ Ai ⇔ ψ(s) ∈ (Ax)i

⇔ |supp(ψ(s))| ∈ supp(xi(|ψ(s)|))
⇔ (n− |supp(s)|) + |supp(uψ0 )|+ · · ·+ |supp(uψn)| ∈

supp(xi(n+ kψ0 + · · ·+ kψn ))

⇔ |supp(s)| ∈ supp(yi(|s|))
⇔ s ∈ (Ay)i,

thus A = Ay.

We say that x is dense if ∀j ∈ N ∃n ∈ N (supp(x0(n)) ∩ [j, n − j]) 6= ∅). This
holds, for example, if [x0(n)](bn/2c) = 1, for infinitely many n ∈ N.

Proposition 6.2. x is dense if and only if Ax is dense.

Proof. To see (⇒), we must show that if x is dense and r ∈ 2<N, then there exists
s ∈ (Ax)0 such that r ⊆ s. Towards this end, note that the density of x ensures that
there exists n ∈ N and k ∈ supp(x0(n))∩[|r|, n−|r|]. Then k−|supp(r)| ≥ 0 and n−
|r|−(k−|supp(r)|) ≥ |supp(r)| ≥ 0, and k = |supp(r1k−|supp(r)|0n−|r|−(k−|supp(r)|))|
is in supp(x0(n)), thus s = r1k−|supp(r)|0n−|r|−(k−|supp(r)|) is in (Ax)0.

To see (⇐), we must show that if Ax is dense and j ∈ N, then there exists n ∈ N
such that supp(x0(n))∩ [j, n− j] 6= ∅. Fix s ∈ (Ax)0 such that 0j1j ⊆ s, put n = |s|
and k = |supp(s)|, and observe that k ∈ supp(x0(n)) ∩ [j, n− j].

We say that a function ξ : N → N × N is aligned if ξ0(n) ≤ ξ1(n), ξ0(n) ≤
ξ0(n + 1), and ξ0(n + 1) − ξ0(n) < ξ1(n + 1) − ξ1(n), for all n ∈ N. Such a map is
an order-preserving aligned embedding of x into y if

∀n ∈ N ∀i ∈ {0, 1} ∀k ≤ n ([xi(n)](k) = [yi(ξ1(n))](ξ0(n) + k)),

and such a map is an order-reversing aligned embedding of x into y if

∀n ∈ N∀i ∈ {0, 1} ∀k ≤ n ([xi(n)](k) = [yi(ξ1(n))](ξ0(n) + (n− k))).
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A monotonic aligned embedding of x into y is a function ξ : N → N × N which
is either an order-preserving aligned embedding of x into y or an order-reversing
aligned embedding of x into y.

Proposition 6.3. There is a monotonic aligned embedding of x into y if and only
if there is a monotonic aligned embedding of Ax into Ay.

Proof. To see (⇒), suppose that ξ : N → N × N is an order-preserving aligned
embedding of x into y. Set uψ0 = 1ξ0(0)0ξ1(0)−ξ0(0) and

uψn+1 = 1ξ0(n+1)−ξ0(n)0(ξ1(n+1)−ξ1(n))−(ξ0(n+1)−ξ0(n))−1.

Let ψ denote the corresponding order-preserving aligned function, and note that if
s ∈ 2n and i ∈ {0, 1}, then |supp(ψ(s))| = ξ0(n) + |supp(s)| and |ψ(s)| = ξ1(n), so

s ∈ (Ax)i ⇔ |supp(s)| ∈ supp(xi(n))

⇔ ξ0(n) + |supp(s)| ∈ supp(yi(ξ1(n)))

⇔ |supp(ψ(s))| ∈ supp(yi(|ψ(s)|))
⇔ ψ(s) ∈ (Ay)i,

thus ψ is an aligned embedding of Ax into Ay.
Similarly, if ξ is order-reversing, define uψn as before, let ψ denote the corre-

sponding order-reversing aligned function, and note that if s ∈ 2n and i ∈ {0, 1},
then |supp(ψ(s))| = ξ0(n) + (n− |supp(s)|) and |ψ(s)| = ξ1(n), so

s ∈ (Ax)i ⇔ |supp(s)| ∈ supp(xi(n))

⇔ ξ0(n) + (n− |supp(s)|) ∈ supp(yi(ξ1(n)))

⇔ |supp(ψ(s))| ∈ supp(yi(|ψ(s)|))
⇔ ψ(s) ∈ (Ay)i,

thus ψ is an aligned embedding of Ax into Ay.
To see (⇐), suppose that ψ is a monotonic aligned embedding of Ax into Ay,

and define an aligned function ξ : N→ N× N by setting

ξ(n) = (|supp(uψ0 )|+ · · ·+ |supp(uψn)|, n+ kψ0 + · · ·+ kψn ).

If ψ is order-preserving and k ≤ n, then

k ∈ supp(xi(n)) ⇔ 1k0n−k ∈ (Ax)i

⇔ ψ(1k0n−k) ∈ (Ay)i

⇔ |supp(ψ(1k0n−k))| ∈ supp(yi(|ψ(1k0n−k)|))
⇔ ξ0(n) + k ∈ supp(yi(ξ1(n))),

thus ξ is an order-preserving aligned embedding of x into y.
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Similarly, if ψ is order-reversing and k ≤ n, then

k ∈ supp(xi(n)) ⇔ 1k0n−k ∈ (Ax)i

⇔ ψ(1k0n−k) ∈ (Ay)i

⇔ |supp(ψ(1k0n−k))| ∈ supp(yi(|ψ(1k0n−k)|))
⇔ ξ0(n) + (n− k) ∈ supp(yi(ξ1(n))),

thus ξ is an order-reversing aligned embedding of x into y.

Given s ∈ 2m+1 × 2m+1 and j ≤ k ≤ m, we use s|[j, k] to denote the pair in
2(k−j)+1 × 2(k−j)+1 given by

(s|[j, k])i(l) = si(j + l).

We say that t occurs in s (at position j), or t v s, if t = s|[j, k], for some k ∈ N.
We use x(n) as shorthand for the pair (x0(n), x1(n)). We say that s occurs in x,
or s v x, if s v x(n), for some n ∈ N. We say that s occurs recurrently in x if
∀j ∈ N∃n ∈ N (s v x(n)|[j, n− j]).

Proposition 6.4. Suppose that x(n) occurs recurrently in y, for all n ∈ N. Then
there is an order-preserving aligned embedding of x into y.

Proof. It is enough to find ξ(n) ∈ N× N, for all n ∈ N, such that:

1. ∀m < n (ξ0(m) ≤ ξ0(m+ 1));
2. ∀m < n (ξ0(m+ 1)− ξ0(m) < ξ1(m+ 1)− ξ1(m));
3. x(n) occurs in y(ξ1(n)) at position ξ0(n).

Suppose that we have found ξ(m), for all m < n. Fix j > maxm<n ξ1(m). As x(n)
occurs recurrently in y, there exists ξ1(n) ∈ N such that x(n) v y(ξ1(n))|[j, ξ1(n)−j].
Fix ξ0(n) ∈ [j, ξ1(n) − j] such that x(n) occurs in y(ξ1(n)) at position ξ0(n), so
that condition (3) holds. To see that conditions (1) and (2) hold, suppose that
m = n − 1 is non-negative, and observe that ξ0(m) ≤ ξ1(m) < j ≤ ξ0(m + 1) and
ξ0(m+ 1)− ξ0(m) ≤ ξ0(m+ 1) ≤ ξ1(m+ 1)− j < ξ1(m+ 1)− ξ1(m).

We say that s is avoidable in x if for all j ∈ N there exist k, l, n ∈ N such that
s 6v x(n)|[k, l] and supp(x0(n)) ∩ [k + j, l − j] 6= ∅.

Proposition 6.5. Suppose that s is avoidable in x. Then there is a dense sequence
y such that s 6v y and there is an order-preserving aligned embedding of y into x.

Proof. It is clearly sufficient to recursively construct y(n) ∈ 2n+1 × 2n+1 and
ξ(n) ∈ N× N, for all n ∈ N, such that:

1. ∀m < n (ξ0(m) ≤ ξ0(m+ 1));
2. ∀m < n (ξ0(m+ 1)− ξ0(m) < ξ1(m+ 1)− ξ1(m));
3. y(n) occurs in x(ξ1(n)) at position ξ0(n);
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4. [y0(n)](bn/2c) = 1;
5. s 6v y(n).

Suppose that we have found y(m) and ξ(m), for all m < n. Fix j > n +
maxm<n ξ1(m). As s is avoidable in x, there exist k, l, ξ1(n) ∈ N such that
s 6v x(ξ1(n))|[k, l] and supp(x0(ξ1(n))) ∩ [k + j, l − j] 6= ∅. Then there exists
ξ0(n) ∈ [k + j − n, l − j] such that

[x0(ξ1(n))](ξ0(n) + bn/2c) = 1.

Set y(n) = x(ξ1(n))|[ξ0(n), ξ0(n) + n], so that conditions (3), (4), and (5) hold.
To see that conditions (1) and (2) hold, suppose that m = n − 1 is non-negative,
and observe that ξ0(m) ≤ ξ1(m) < j − n ≤ ξ0(m + 1) and ξ0(m + 1) − ξ0(m) ≤
ξ0(m+ 1) ≤ l − j < ξ1(m+ 1)− ξ1(m).

Next we connect the notions of recurrent occurrence and unavoidability:

Proposition 6.6. Suppose that x is dense and s is unavoidable in x. Then s occurs
recurrently in x.

Proof. As s is unavoidable in x, there exists j′ ∈ N such that

∀k, l, n ∈ N (supp(x0(n)) ∩ [k + j′, l − j′] 6= ∅ ⇒ s v x(n)|[k, l]).

Given j ∈ N, set j′′ = j + j′. The density of x ensures the existence of n ∈ N such
that supp(x0(n)) ∩ [j′′, n− j′′] 6= ∅. Set k = j and l = n− j. Then j′′ = k + j′ and
n− j′′ = l− j′. As supp(x0(n))∩ [k+ j′, l− j′] 6= ∅, it follows that s v x(n)|[k, l] =
x(n)|[j, n− j], thus s occurs recurrently in x.

These notions are essentially preserved under monotonic aligned embeddings:

Proposition 6.7. Suppose that there is an order-preserving aligned embedding of
y into x.

1. If s occurs recurrently in y, then s occurs recurrently in x.
2. If s is avoidable in y, then s is avoidable in x.

Proof. To see (1), suppose that s occurs recurrently in y, and observe that if j ∈ N,
then there exists n′ ∈ N such that s v y(n′)|[j, n′− j]. Then there exists n ∈ N such
that y(n′) v x(n), so s v y(n′)|[j, n′− j] v x(n)|[j, n− j], thus s occurs recurrently
in x.

To see (2), suppose that s is avoidable in y, and observe that if j ∈ N, then there
exist k′, l′, n′ ∈ N such that s 6v y(n′)|[k′, l′] and supp(y0(n′)) ∩ [k′ + j, l′ − j] 6= ∅.
Then there exist k, l, n ∈ N such that y(n′)|[k′, l′] = x(n)|[k, l], so s 6v x(n)|[k, l] and
supp(x0(n)) ∩ [k + j, l − j] 6= ∅, thus s is avoidable in x.

For each s ∈ 2n × 2n, define s̃ ∈ 2n × 2n by s̃i(k) = si(n− k − 1).
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Proposition 6.8. Suppose that there is an order-reversing aligned embedding of y
into x.

1. If s occurs recurrently in y, then s̃ occurs recurrently in x.
2. If s is avoidable in y, then s̃ is avoidable in x.

Proof. This follows exactly as in the proof of Proposition 6.7.

Define x̃ by [x̃i(n)](k) = [xi(n)](n− k).

Proposition 6.9. Suppose that x is dense. Then the following are equivalent:

1. ∀n ∈ N (x(n) is unavoidable in x);
2. x is a minimal dense pair under monotonic aligned embeddability.

Proof. To see (1) ⇒ (2), suppose that y is a dense pair. If there is an order-
preserving aligned embedding of y into x, then Proposition 6.7 implies that each
x(n) is unavoidable in y, Proposition 6.6 ensures that each x(n) occurs recurrently in
y, and Proposition 6.4 ensures that there is an order-preserving aligned embedding
of x into y. Similarly, if there is an order-reversing aligned embedding of y into x,
then Proposition 6.8 implies that each x̃(n) is unavoidable in y, Proposition 6.6
ensures that each x̃(n) occurs recurrently in y, and Proposition 6.4 ensures that
there is an order-preserving aligned embedding of x̃ into y, thus there is an order-
reversing aligned embedding of x into y.

To see (2) ⇒ (1) suppose, towards a contradiction, that x is a minimal dense
pair under monotonic aligned embeddability, and there exists n ∈ N such that x(n)
is avoidable in x. By Proposition 6.5, there is a dense pair y such that x(n) 6v y

and there is an order-preserving aligned embedding of y into x. As the minimality
of x implies that there is a monotonic aligned embedding of x into y, it follows that
there is an order-reversing aligned embedding of x into y, since otherwise we would
have that x(n) v y, a contradiction. Proposition 6.8 then implies that that x̃(n) is
avoidable in y, thus Proposition 6.5 implies that there is a dense sequence z such
that x̃(n) 6v z and there is an order-preserving aligned embedding of z into y. The
minimality of x implies that there is a monotonic aligned embedding of x into z,
and it follows that either x(n) v z or x̃(n) v z, the desired contradiction.

Associated with each pair x is the graph Gx = GAx . For each α ∈ 2N, define
xα ∈

∏
n∈N 2n+1 ×

∏
n∈N 2n+1 by

[x0
α(n)](l) = [x1

α(n)](l) =
{

1 if ∃i ∈ supp(α) (l ≡ 22i (mod 22i+1)),
0 otherwise.

The graphs of the form Gxα are essentially the same as those in the pairwise incom-
patible family of minimal non-potentially closed analytic sets in Lecomte [6]. We
will now establish a few simple combinatorial facts which culminate in a new proof
of Theorem 6 of Lecomte [6].
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Proposition 6.10. Suppose that α 6= 0∞. Then xα is dense.

Proof. Fix i ∈ supp(α). Given j ∈ N, set n = 2j + 22i+1 and fix l ∈ [j, n− j] such
that l ≡ 22i (mod 22i+1). Then [x0

α(n)](l) = 1, thus supp(x0
α(n)) ∩ [j, n− j] 6= ∅.

Proposition 6.11. ∀n ∈ N (xα(n) is unavoidable in xα).

Proof. Given n ∈ N, fix m ∈ N sufficiently large that n < 22m. Put j′ = 22m and
suppose that k′, l′, n′ ∈ N and supp(x0(n′)) ∩ [k′ + j′, l′ − j′] 6= ∅. Then |l′ − k′| ≥
22m+1. Fix j ∈ [k′, k′ + 22m] such that j ≡ 0 (mod 22m). If l ≤ n, then

[x0
α(n)](l) = 1 ⇔ ∃i ∈ supp(α) (l ≡ 22i (mod 22i+1))

⇔ ∃i ∈ supp(α|m) (l ≡ 22i (mod 22i+1))

⇔ ∃i ∈ supp(α|m) (j + l ≡ 22i (mod 22i+1))

⇔ ∃i ∈ supp(α) (j + l ≡ 22i (mod 22i+1))

⇔ [x0
α(n′)](j + l) = 1,

so xα(n) occurs in xα(n′) at position j, thus xα(n) v xα(n′)|[k′, l′].

As a corollary, we obtain:

Proposition 6.12. Suppose that α 6= 0∞. Then xα is a minimal dense pair under
monotonic aligned embeddability.

Proof. This follows from Propositions 6.9, 6.10, and 6.11.

By employing a variant of the above arguments, one can show that each xα is
minimal among all pairs (not just the dense ones). We will have no need for this
strengthening, however.

Proposition 6.13. Suppose that J ⊆ {0, . . . , n} is an interval of cardinality 22m.
Then 0 ≤ |supp(x0

α(n)) ∩ J | −
∑
i∈supp(α|m) 22m−2i−1 ≤ 1.

Proof. Fix j0 ∈ J such that j0 ≡ 0 (mod 22m). If j ∈ J \ {j0}, then

[x0
α(n)](j) = 1⇔ ∃i ∈ supp(α) (j ≡ 22i (mod 22i+1))

⇔ ∃i ∈ supp(α|m) (j ≡ 22i (mod 22i+1)),

thus |supp(x0
α(n)) ∩ (J \ {j0})| =

∑
i∈supp(α|m) 22m−2i−1.

As a corollary, we obtain:

Proposition 6.14. Suppose that α 6= β. Then there is no monotonic aligned em-
bedding of xα into xβ.
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Proof. Fix m ∈ N such that α|m 6= β|m. Then∣∣∣∣∣∣
∑

i∈supp(α|m)

22m−2i−1 −
∑

i∈supp(β|m)

22m−2i−1

∣∣∣∣∣∣ ≥ 2,

so Proposition 6.13 implies that neither xα(22m) nor x̃α(22m) occurs in xβ , thus
there is no monotonic aligned embedding of xα into xβ .

We say that x is symmetric if x0 = x1.

Proposition 6.15. There is an antichain of continuum-many symmetric minimal
dense pairs under monotonic aligned embeddability.

Proof. Propositions 6.12 and 6.14 imply that {xα}α6=0∞ is as desired.

Using this, we can now give our new proof of Theorem 6 of Lecomte [6]:

Theorem 6.16. There is a set of continuum-many non-potentially closed D2(Σ0
1)

subsets of 2N × 2N which are pairwise incomparable and minimal with respect to
every quasi-order � which lies between vrc and ≤rGB. In particular, every basis for
the class of non-potentially closed Borel sets under � has cardinality at least c.

Proof. There is an antichain F ⊆
∏
n∈N 2n+1 ×

∏
n∈N 2n+1 of continuum-many

minimal dense pairs under monotonic aligned embeddability, by Proposition 6.15.
Propositions 6.1, 6.2, and 6.3 imply that {Ax : x ∈ F} is a pairwise incompara-
ble family of continuum-many minimal dense pairs under monotonic aligned em-
beddability, and Theorem 5.13 and Proposition 5.14 then imply that the family
{Gx : x ∈ F} is as desired.

Along similar lines, we have the following:

Theorem 6.17 (Lecomte [6]). There is a set of continuum-many D2(Σ0
1) graphs

on 2N of uncountable Borel chromatic number which are pairwise incomparable and
minimal with respect to every quasi-order � which lies between vc and ≤GB. In
particular, every basis for the class of analytic graphs of uncountable Borel chromatic
number under � has cardinality at least c.

Proof. There is an antichain F ⊆
∏
n∈N 2n+1 ×

∏
n∈N 2n+1 of continuum-many

symmetric minimal dense pairs under monotonic aligned embeddability, by Propo-
sition 6.15. Propositions 6.1, 6.2, and 6.3 imply that {Ax : x ∈ F} is a pairwise in-
comparable family of continuum-many minimal dense pairs under monotonic aligned
embeddability, and Theorem 5.5 and Proposition 5.14 then imply that the family
{Gx : x ∈ F} is as desired.

Remark 6.18. Define x→ by (x→)0 = x0 and (x→)1 = 〈0n+1〉n∈N. The analog of
Theorem 6.17 for oriented graphs can be easily obtained by using (xα)→ in place
of xα.
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We next turn our attention to a basis theorem:

Proposition 6.19. Suppose that x is dense. Then there is a monotonic aligned
embedding of y into x, for some y which is a minimal dense pair under monotonic
aligned embeddability.

Proof. Fix an enumeration t0, t1, . . . of
⋃
n∈N 2n × 2n and set x0 = x. Given xk, if

tk is avoidable in xk, then Proposition 6.5 ensures that there is a dense sequence
xk+1 such that tk 6v xk+1 and there is an order-preserving aligned embedding of
xk+1 into xk. If tk is unavoidable in xk, then set xk+1 = xk.

For each n ∈ N, fix kn ∈ N such that

∀s ∈ 2n+1 × 2n+1 (s occurs in xkn ⇔ s is unavoidable in xkn),

and fix y(n) ∈ 2n+1× 2n+1 such that y0(bn/2c) = 1 and y(n) v xkn . It is clear that
y is dense.

Lemma 6.20. There is an order-preserving aligned embedding of y into xk.

Proof. For each n ∈ N, set ln = max(k, kn). As there is an order-preserving aligned
embedding of xln into xkn , Proposition 6.7 ensures that y(n) is unavoidable in xln .
Proposition 6.6 then implies that y(n) occurs recurrently in xln . Appealing once
more to the fact that there is an order-preserving aligned embedding of xln into
xk, Proposition 6.7 implies that y(n) occurs recurrently in xk, and Proposition 6.4
implies that there is an order-preserving aligned embedding of y into xk.

In particular, Lemma 6.20 implies that there is an order-preserving aligned em-
bedding of y into x. It remains to show that y is a minimal dense pair under
monotonic aligned embeddability. By Proposition 6.9, it is enough to show that
y(n) is unavoidable in y, for each n ∈ N. As y(n) v xkn , it follows that y(n) is
unavoidable in xkn , thus y(n) is unavoidable in y, by Proposition 6.7.

As a corollary, we obtain the following:

Theorem 6.21. Suppose that X and Y are Polish spaces, R ⊆ X × Y , and there
is a pair x such that R ≤rGB Gx. Then exactly one of the following holds:

1. R is potentially closed;
2. There is a dense pair y such that Gy vrc R and Gy is minimal with respect to

every quasi-order which lies between vrc and ≤rGB.

Proof. It is enough to show ¬(1) ⇒ (2). By Theorem 5.13, there is a dense pair
A which admits a monotonic aligned embedding into Ax and for which GA vrc R.
Proposition 6.1 implies that there exists z such that A = Az, and Proposition 6.2
ensures that z is dense. By Proposition 6.19, there is a monotonic aligned embedding
of y into z, for some y which is a minimal dense pair under monotonic aligned
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embeddability. Then Gy vc Gz, by Propositions 1.9, 5.2, and 6.3, thus Gy vrc R.
Propositions 6.1, 6.2, and 6.3 imply that Ay is a minimal dense pair under monotonic
aligned embeddability, and Theorem 5.13 and Proposition 5.14 imply that Gy is
minimal with respect to every quasi-order which lies between vrc and ≤rGB.

Along similar lines, we have the following:

Theorem 6.22. Suppose that G is an analytic directed graph on a Polish space and
there is a pair x such that G ≤GB Gx. Then exactly one of the following holds:

1. χB(G) ≤ ℵ0;
2. There is a dense pair y such that Gy vc G and Gy is minimal with respect to

every quasi-order which lies between vc and ≤GB.

Proof. It is enough to show ¬(1) ⇒ (2). By Theorem 5.5, there is a dense pair
A which admits a monotonic aligned embedding into Ax and for which GA vc G.
Proposition 6.1 implies that there exists z such that A = Az, and Proposition 6.2
ensures that z is dense. By Proposition 6.19, there is a monotonic aligned embedding
of y into z, for some y which is a minimal dense pair under monotonic aligned
embeddability. Then Gy vc Gz, by Propositions 1.9, 5.2, and 6.3, thus Gy vc G.
Propositions 6.1, 6.2, and 6.3 imply that Ay is a minimal dense pair under monotonic
aligned embeddability, and Theorem 5.5 and Proposition 5.14 imply that Gy is
minimal with respect to every quasi-order which lies between vc and ≤GB.

7. The inexistence of antichain bases

Define A0 ∈ P(2<N)× P(2<N) by

(A0)0 = (A0)1 = {s ∈ 2<N : ∃i ∈ supp(s) (|supp(s)| ≡ 22i (mod 22i+1))}.

Proposition 7.1. Suppose that there is an aligned embedding of A into A0. Then
A is dense.

Proof. Suppose that ψ is an aligned embedding of A into A0. Given r ∈ 2n, set
i = |ψ(r)| = n + kψ0 + · · · + kψn and k = 1 − αψ(n), and fix s ∈ 2<N of length
22i+1 such that |supp(ψ(rks))| ≡ 22i (mod 22i+1). As [ψ(rks)](i) = 1, it follows
that ψ(rks) ∈ (A0)0, thus rks ∈ A0.

Proposition 7.2. There is at most one monotonic aligned embedding of any pair
A into A0.

Proof. Suppose that ψ is a monotonic aligned embedding of A into A0, and let
σ = αψ(0) denote the orientation of ψ. For each j ∈ {0, 1} and m,n ∈ N, let Sjmn
denote the finite set given by

Sjmn = {l < m : σnj0l1m−l ∈ A0}.
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Through a series of lemmas, we will now show that these sets encode ψ:

Lemma 7.3. The set Sσmn \ Sσmn consists of exactly those l < m such that

|supp(ψ(σnσσ0l1m−l))| ≡ 22(n+kψ0 +···+kψn ) (mod 22(n+kψ0 +···+kψn )+1),

and similarly, the set Sσmn \ Sσmn consists of exactly those l < m such that

|supp(ψ(0nσσ0l1m−l))| ≡ 22(n+1+kψ0 +···+kψn+1) (mod 22(n+1+kψ0 +···+kψn+1)+1).

Proof. If l ∈ Sσmn, then there exists i ∈ supp(ψ(σnσσ0l1m−l)) such that

|supp(ψ(σnσσ0l1m−l))| ≡ 22i (mod 22i+1).

As supp(ψ(σnσσ0l1m−l)) \ supp(ψ(σnσσ0l1m−l)) = {n+ kψ0 + · · ·+ kψn}, it follows
that i = n+ kψ0 + · · · kψn , thus

|supp(ψ(σnσσ0l1m−l))| ≡ 22(n+kψ0 +···+kψn ) (mod 22(n+kψ0 +···+kψn )+1).

Similarly, if l ∈ Sσmn, then there exists i ∈ supp(ψ(σnσσ0l1m−l)) such that

|supp(ψ(σnσσ0l1m−l))| ≡ 22i (mod 22i+1).

As supp(ψ(σnσσ0l1m−l)) \ supp(ψ(σnσσ0l1m−l)) = {n + 1 + kψ0 + · · · + kψn+1}, it
follows that i = n+ 1 + kψ0 + · · · kψn+1, thus

|supp(ψ(σnσσ0l1m−l))| ≡ 22(n+1+kψ0 +···+kψn+1) (mod 22(n+1+kψ0 +···+kψn+1)+1),

and this completes the proof of the lemma.

Lemma 7.4. ∃n ∈ N∀m ≥ n (|Sσm0| < |Sσm0|).

Proof. Simply observe that if m ≥ 22kψ0 +2, then the set of l < m such that

|supp(ψ(σσ0l1m−l))| ≡ 22(1+kψ0 +kψ1 ) (mod 22(1+kψ0 +kψ1 )+1)

is strictly smaller than the set of l < m such that

|supp(ψ(σσ0l1m−l))| ≡ 22kψ0 (mod 22kψ0 +1).

Then |Sσm0 \ Sσm0| < |Sσm0 \ Sσm0| by Lemma 7.3, so |Sσm0| < |Sσm0|.

Lemma 7.5. Suppose that k, n ∈ N. Then the following are equivalent:

1. k ≤ n+ kψ0 + · · ·+ kψn ;
2. ∀m ∈ N∀l1, l2 ∈ Sσmn \ Sσmn (l1 ≡ l2 (mod 22k)).

Proof. To see (1)⇒ (2), suppose that k ≤ n+ kψ0 + · · ·+ kψn , and observe that if
m ∈ N and l1, l2 ∈ Sσmn \ Sσmn, then Lemma 7.3 implies that

|supp(ψ(σnσσ0l11m−l1)| ≡ |supp(ψ(σnσσ0l21m−l2)| (mod 22(n+kψ0 +···+kψn )+1),

so l1 ≡ l2 (mod 22(n+kψ0 +···+kψn )+1), thus l1 ≡ l2 (mod 22k).
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To see ¬(1) ⇒ ¬(2), suppose that k > n + kψ0 + · · · + kψn , set m =
22(n+kψ0 +···+kψn )+2, and fix l1, l2 < m such that

|supp(ψ(σnσσ0l11m−l1))| ≡ 22(n+kψ0 +···+kψn ) (mod 22(n+kψ0 +···+kψn )+2)

and

|supp(ψ(σnσσ0l21m−l2))| ≡ 3 · 22(n+kψ0 +···+kψn ) (mod 22(n+kψ0 +···+kψn )+2).

Then Lemma 7.3 implies that l1, l2 ∈ Sσmn \ Sσmn and

l1 6≡ l2 (mod 22(n+kψ0 +···+kψn )+2),

thus l1 6≡ l2 (mod 22k).

Lemma 7.6. Suppose that n ∈ N and m = 22(n+kψ0 +···+kψn ). Then

0 ≤ |S0mn| −
∑

i∈supp(uψ0 0···0uψn)

m/22i+1 ≤ 1.

Proof. Fix l0 < m such that |supp(ψ(σn010l01m−l0))| ≡ 0 (mod m). Fix l < m

such that l 6= l0, set tl = σn010l1m−l, and observe that

tl ∈ A0 ⇔ ψ(tl) ∈ (A0)0

⇔ ∃i ∈ supp(ψ(tl)) (|supp(ψ(tl))| ≡ 22i (mod 22i+1))

⇔ ∃i ∈ supp(uψ0 0 . . . 0uψn) (|supp(ψ(tl))| ≡ 22i (mod 22i+1)),

thus |S0mn \ {l0}| =
∑
i∈supp(uψ0 0...0uψn)m/2

2i+1.

Suppose now that ψ′ is another monotonic aligned embedding of A into A0.
Lemma 7.4 ensures that ψ and ψ′ have the same orientation, so Lemma 7.5 ensures
that n + kψ0 + · · · + kψn = n + kψ

′

0 + · · · + kψ
′

n , for all n ∈ N, thus kψn = kψ
′

n , for all
n ∈ N. It only remains to observe that if uψn 6= uψ

′

n and m = 22(n+kψ0 +···+kψn ), then∣∣∣∣∣∣∣
∑

i∈supp(uψ0 0...0uψn)

m/22i+1 −
∑

i∈supp(uψ
′

0 0...0uψ
′

n )

m/22i+1

∣∣∣∣∣∣∣ ≥ 2,

which contradicts Lemma 7.6.

Let P denote the set of all triples (S, f, i), where S ⊆ N is co-infinite, f : S →
{0, 1}, and i ∈ {0, 1}. Define ≤ on P by

(S, f, i) ≤ (T, g, j)⇔ T ⊆ S and g = f |T.

Proposition 7.7. The restriction of monotonic aligned embeddability below A0 is
isomorphic to (P,≤).
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Proof. Given (S, f, i) ∈ P , let kS0 , k
S
1 , . . . denote the increasing enumeration of

N \ S, let ψ(S,f,i) denote the nicely aligned function given by uf0 = f |kS0 , ufn+1 =
f |(kSn , kSn+1), and αi = i∞, and define A(S,f,i) by

(A(S,f,i))0 = (A(S,f,i))1 = ψ−1
(S,f,i)((A0)0).

Suppose now that (S, f, i) ≤ (T, g, j), let i0, i1, . . . denote the increasing enu-
meration of the indices i such that kTi ∈ N \ S, and let ψ denote the nicely
aligned function given by uψ0 = |f(kT0 ) − j| . . . |f(kTi0−1) − j|, uψn+1 = |f(kTin+1) −
j| . . . |f(kTin+1−1)− j|, and αψ = |i− j|∞. If s ∈ 2n, then

ψ(s) = |f(kT0 )− j| . . . |f(kTi0−1)− j||s(0)− |i− j|| . . .
|s(n− 1)− |i− j|||f(kTin−1+1)− j| . . . |f(kTin−1)− j|.

As |k − |i− j|| = ||k − i| − j|, it follows that

ψ(T,g,j) ◦ ψ(s) = (g|kT0 )f(kT0 ) . . . f(kTi0−1)(g|(kTi0−1, k
T
i0))|s(0)− i| . . .

|s(n− 1)− i|(g|(kTin−1
, kTin−1+1))f(kTin−1+1) . . .

f(kTin−1)(g|(kTin−1, k
T
in))

= (f |kTi0)|s(0)− i| . . . |s(n− 1)− i|(f |(kTin−1
, kTin))

= ψ(S,f,i)(s),

and this implies that

s ∈ (A(S,f,i))0 ⇔ ψ(S,f,i)(s) ∈ (A0)0

⇔ ψ(T,g,j) ◦ ψ(s) ∈ (A0)0

⇔ ψ(s) ∈ (A(T,g,j))0,

thus ψ is a monotonic aligned embedding of A(S,f,i) into A(T,g,j).
Conversely, if ψ is a monotonic aligned embedding of A(S,f,i) into A(T,g,j), then

Proposition 7.2 ensures that ψ(S,f,i) = ψ(T,g,j) ◦ ψ. Suppose that n ∈ T . If n ∈
T \ S, then there exists m ∈ N such that n = kSm, in which case ψ(S,f,i)(0m0) and
ψ(S,f,i)(0m1) differ on their nth coordinate, but ψ(T,g,j)◦ψ(0m0) and ψ(T,g,j)◦ψ(0m1)
agree on their nth coordinate, a contradiction. Then n ∈ S, and since ψ(S,f,i)(0n) =
ψ(T,g,j) ◦ ψ(0n), it follows that f(n) = g(n), thus (S, f, i) ≤ (T, g, j).

In particular, it follows that the restriction of monotonic aligned embeddability
below A0 has the same properties as (P,≤P ). For example, it is homogeneous, in
the sense that it is isomorphic to its restriction to any initial segment. More central
to our concerns here is the following:

Proposition 7.8. Suppose that there is a monotonic aligned embedding of A into
A0. Then there is a strong antichain of continuum-many pairs which admit mono-
tonic aligned embeddings into A.

Proof. By Proposition 7.7, it is enough to prove the corresponding fact for (P,≤).
Towards this end, suppose that (S, f, i) ∈ P , fix an infinite, co-infinite set T ⊆ N\S,
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and observe that the set of tuples of the form (S ∪ T, g, i), where g : S ∪ T → {0, 1}
and g|S = f , is as desired.

Remark 7.9. It is worth noting that there is a more direct proof of Proposition
7.8 which does not rely upon Proposition 7.7. We have included the above proof
here in the hope that the graph GA0 becomes useful in future work, in which case
a knowledge of the restriction of monotonic aligned embeddability below A0 could
well become important.

At long last, we are now ready to prove our main results:

Theorem 7.10. Suppose that R ≤rGB GA0 is Borel. Then exactly one of the follow-
ing holds:

1. R is potentially closed;
2. There is a strong ≤rGB-antichain of continuum-many D2(Σ0

1) subsets of 2N× 2N

which are vrc-below R.

In particular, if � is a quasi-order which lies between vrc and ≤rGB, then no weak
�-antichain is a basis for the class of non-potentially closed Borel sets under �,
thus the class of �-minimal sets is not a basis for the class of non-potentially closed
Borel sets under �.

Proof. It is enough to show ¬(1)⇒ (2). By Theorem 5.13, there is a dense pair A
which admits a monotonic aligned embedding into A0 and for which GA vrc R. By
Proposition 7.8, there is a strong antichain of continuum-many dense sets Aα which
admit monotonic aligned embeddings into A. Set Rα = GAα . Propositions 1.9 and
5.2 imply that Rα vc GA, thus Rα vrc R. Propositions 1.1 and 5.6 imply that Rα
is not potentially closed, and Theorem 5.13 and Proposition 5.14 imply that these
sets form a strong ≤rGB-antichain.

Along similar lines, we have the following:

Theorem 7.11. Suppose that G ≤GB GA0 is analytic. Then exactly one of the
following holds:

1. χB(G) ≤ ℵ0;
2. There is a strong ≤GB-antichain of continuum-many D2(Σ0

1) graphs on 2N which
are vc-below G.

In particular, if � is a quasi-order which lies between vc and ≤GB, then no weak �-
antichain is a basis for the class of analytic graphs of uncountable Borel chromatic
number under �, thus the class of �-minimal graphs is not a basis for the class of
analytic graphs of uncountable Borel chromatic number under �.

Proof. It is enough to show ¬(1) ⇒ (2). By Theorem 5.5, there is a dense pair
A which admits a monotonic aligned embedding into A0 and for which GA vc G.
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By Proposition 7.8, there is a strong antichain of continuum-many dense sets Aα
which admit monotonic aligned embeddings into A. Set Gα = GAα . Propositions
1.9 and 5.2 imply that Gα vc GA, thus Gα vc G. Proposition 1.1 implies that
χB(Gα) > ℵ0, and Theorem 5.5 and Proposition 5.14 imply that these graphs form
a strong ≤GB-antichain.

Remark 7.12. Define A→ by (A→)0 = A0 and (A→)1 = ∅. The analog of Theorem
7.11 for oriented graphs can be easily obtained by using (A0)→ in place of A0.
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