
Complexity of Borel sets in product spaces

Dominique LECOMTE

These talks will be in the context of Descriptive Set Theory, where we study the topological complexity
of definable subsets of Polish spaces, i.e., of separable and completely metrizable spaces, even if some
people now consider the non separable case. Actual products of Polish spaces will be of particular interest
for us, and we will denote themΠi∈d Xi, where the number of factorsd is anydimension making sense
in the context of Descriptive Set Theory. In particular, we will have2≤d≤ω since for example2ω1 is not
metrizable. We are looking for dichotomy results of the following form, quite standard in Descriptive Set
Theory: a set is either simple, or more complicated than a typical example. The theory in product spaces is
strongly related to the theory in dimension one, even if it is much more complicated. We will come back to
this, but we first recall some “dimension one” results.

1 Some results in dimension one

The most classical hierarchy of topological complexity is theBorel hierarchy:

Σ0
1 =open sets Σ0

2 =Fσ sets . . . Σ0
ω =(

⋃
n<ω Π0

n)σ . . .

∆0
1 =clopen sets ∆0

2 =Σ0
2 ∩Π0

2 . . . ∆0
ω =Σ0

ω ∩Π0
ω . . . ∆1

1 =Borel sets

Π0
1 =closed sets Π0

2 =Gδ sets . . . Π0
ω =Σ̌0

ω . . .

A classical instance of the process we described is Hurewicz’s Theorem, stating that a Borel subsetB of a
Polish space is notΠ0

2 exactly when there is a copy of the Cantor space on whichB is homeomorphic to
the rationals. This result has been generalized to all Baire classes. We state this generalization in two parts:

Part 1. The reduction theorem (see [Lo-SR1]):

Theorem 1.1 (Louveau-Saint Raymond) Let1 ≤ ξ < ω1, C ∈ Σ0
ξ(2

ω), X a Polish space, andA0, A1

disjoint analytic subsets ofX. Then one of the following holds:

(a) The setA0 is separable fromA1 by aΠ0
ξ set.

(b) There isu : 2ω→X continuous withC⊆u−1(A0) and2ω\C⊆u−1(A1) (if ξ≥3, then we can haveu
one-to-one).

If moreover we assume thatC is not separable from2ω\C by aΠ0
ξ set, then this is a dichotomy.

Part 2. There are some typical examples (see 22.4 in [K]):

Theorem 1.2 There is a concrete example of a setCξ ∈Σ0
ξ(2

ω) which is not separable from2ω \Cξ by a
Π0

ξ set, for each1≤ξ<ω1.

A consequence of these two results is the following result:

Corollary 1.3 Let 1≤ ξ <ω1. Then there is a Borel subsetCξ of 2ω such that for any Polish spaceX, for
any Borel subsetA of X, exactly one of the following holds:

(a) The setA is Π0
ξ-A is simple.

(b) There isu :2ω→X continuous withCξ =u−1(A)-A is more complicated than the typical exampleCξ.

1



So the scheme of comparison is as follows:

Cξ

2ω\Cξ

−−−−−−−−→
−−−−−−−−→

A
X\A

The notion of comparison is theWadge reduction (see 21.13 in [K]): we set, forA⊆X andB⊆Y ,

A ≤W B ⇔ ∃u :X→Y continuous withA=u−1(B).

This notion essentially makes sense inzero-dimensional spaces, i.e., in spaces having a basis of the
topology made of clopen sets, to ensure the existence of enough continuous functions. This leads to the
following definition:

Definition 1.4 Let Γ be a class of subsets of zero-dimensional Polish spaces. We say thatΓ is a Wadge
class if there is a zero-dimensional Polish spaceX0, and a Borel subsetA0 of X0 such that

Γ={u−1(A0) | u continuous}.

One can prove that the classesΣ0
ξ , Π0

ξ , and also∆0
1, are Wadge classes. So the Wadge hierarchy, given

by the inclusion of classes, essentially extends the Borel hierarchy. A. Louveau and J. Saint Raymond
extended the previous results to Wadge classes (see [Lo-SR2]). Let us give some examples of Wadge
classes that are not Borel classes.

Examples.The difference hierarchy (see 22.E in [K]).

Let η<ω1, and(Aθ)θ<η a non-decreasing sequence of subsets of some set. Then

Dη

(
(Aθ)θ<η

)
:=

⋃
θ<η, parity(θ) 6= parity(η)

Aθ\(
⋃
ζ<θ

Aζ).

ThenDη(Σ0
ξ) :=

{
Dη

(
(Aθ)θ<η

)
| (Aθ)θ<η non decreasing,Aθ ∈Σ0

ξ

}
is a Wadge class. For example,

D2(Σ0
ξ) is the class of the differences of twoΣ0

ξ sets, and the class of its complements is

Ď2(Σ0
ξ) :={A ∪B | A∈Σ0

ξ and B∈Π0
ξ}.

The difference hierarchy refines the Borel hierarchy as follows:

Σ0
ξ =D1(Σ0

ξ) D2(Σ0
ξ) . . . Dω(Σ0

ξ) . . .

Π0
ξ =Ď1(Σ0

ξ) Ď2(Σ0
ξ) . . . Ďω(Σ0

ξ) . . .
∆0

ξ+1

The class⊕ξ<λ Π0
ξ (for λ limit) is the class of sets of the form

⋃
n An, whereAn∈

⋃
ξ<λ Π0

ξ and there is
a partition(Xn) of the space into∆0

1 sets withAn⊆Xn.

2 Complexity and comparison in products

Our goal is to extend 1.1-1.3 to higher dimensions. In the second talk, we will extend Theorem 1.2.
In the third talk, we will extend Theorem 1.1 and Corollary 1.3. In this talk, we will give some basic
definitions and results, and we will see that the situation in products is much more complicated than the
one in dimension one. But we first have to give some motivation, and to define a notion of complexity and
a notion of comparison in products. The last two things are actually very much related. The motivation
comes from the theory of Borel (or analytic) equivalence relations, widely studied during the last decades.
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The usual notion of comparison between two Borel equivalence relationsE ⊆ X2 and F ⊆Y 2 on
Polish spaces is theBorel reducibility quasi-order (recall that a quasi-order is a reflexive and transitive
relation):

E ≤B F ⇔ ∃u :X→Y Borel withE =(u×u)−1(F )

This means thatX/E embeds intoY/F in a “Borel” way. The scheme is the same as before. Note that
this makes sense even ifE, F are not equivalence relations. A. Louveau studied this quasi-order on other
structures than equivalence relations (partial orders, quasi-orders). The notion of complexity that we will
consider is a natural invariant for≤B . To introduce it, recall the following fact (see 13.5 in [K]):

Theorem 2.1 (Kuratowski) LetX be a Polish space, and(Bn) a sequence of Borel subsets ofX. Then
there is a finer zero-dimensional Polish topology onX (and thus having the same Borel sets) making the
Bn’s clopen.

Assume thatu is a witness forE ≤B F , and letσ be a finer zero-dimensional Polish topology onX
makingu continuous. IfF is in some Wadge classΓ, thenE ∈Γ

(
(X, σ)2

)
. This motivates the following

definition (see [Lo]):

Definition 2.2 (Louveau) Let(Xi)i∈d be a sequence of Polish spaces,A a Borel subset ofΠi∈d Xi, andΓ
a Borel class or a Wadge class. We say thatA is potentially in Γ

(
denotedA∈pot(Γ)

)
iff for eachi∈d

there is a finer zero-dimensional Polish topologyσi onXi such thatA∈Γ
(
Πi∈d (Xi, σi)

)
.

This is an invariant for≤B : if F is pot(Γ) andE ≤B F , thenE is pot(Γ) too. This is the notion of
complexity in products that we will study. Note that this notion depends only on the Borel structure of the
Xi’s, and not on their topology. Theorem 2.1 shows that any Borel subset of a Polish space can be made
clopen by refining the Polish topology. This is not the case with potential complexity (see [L1]):

Theorem 2.3 LetΓ be a Wadge class. Then there isA∈Γ
(
(ωω)2

)
such thatA /∈pot(Γ′) if Γ′ ⊂6= Γ is a

Wadge class.

For example, ifΓ is not self-dual, then there isA ∈ Γ
(
(ωω)2

)
which is not pot(Γ̌) (take a universal

set). The simplest example is the diagonal∆(2ω) :={(α, α) | α∈2ω}, which is closed, but not potentially
open since it is not a countable union of Borel rectangles. So this notion of complexity makes sense for
product topologies. Using this notion, A. Louveau proved that the collection ofΣ0

ξ equivalence relations is
not cofinal for≤B , and deduces from this the non existence of a maximum Borel equivalence relation for
≤B . For equivalence relations again, we have the following result (see [H-K-Lo]):

Theorem 2.4 (Harrington-Kechris-Louveau) LetX be a Polish space,E a Borel equivalence relation on
X, andE0 :={(α, β)∈(2ω)2 | ∃n∈ω ∀m≥n α(m)=β(m)}. Then exactly one of the following holds:

(a) The relationE is pot(Π0
1).

(b) E0 ≤B E (with u continuous and one-to-one).

The following result is proved in [Hj-K-Lo]:

Theorem 2.5 (Hjorth-Kechris-Louveau) The potential Wadge classes of Borel equivalence relations in-
duced by Borel actions of closed subgroups of the symmetric group are the following:∆0

1, Π0
1, Σ0

2, Π0
n,

D2(Π0
n) (n≥3),⊕ξ<λ Π0

ξ , Π0
λ, Σ0

λ+1, Π0
λ+n, D2(Π0

λ+n) (λ limit, n≥2).

We want to extend Theorem 2.4 to arbitrary Borel sets in products. To do this, we introduce the rectan-
gular version of≤B : if A⊆X0×X1 andB⊆Y0×Y1, then

A ≤r
B B ⇔ ∀i∈2 ∃ui :Xi→Yi Borel withA=(u0×u1)−1(B).
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The following result is proved in [L1]:

Theorem 2.6 Let L0 := {(α, β) ∈ (2ω)2 | α <lex β}, Y0, Y1 be Polish spaces, andB a pot
(
Ď2(Σ0

1)
)

subset ofY0×Y1. Then exactly one of the following holds:

(a) The setA is pot(Π0
1).

(b)¬∆(2ω)≤r
B B or L0≤r

B B (with ui continuous and one-to-one).

The classĎ2(Σ0
1) is the limit level: things become much more complicated at the dual levelD2(Σ0

1)
(see [L5]):

Theorem 2.7 (a) There is a perfect≤r
B-antichain(Aα)α∈2ω ⊆D2(Σ0

1)
(
(2ω)2

)
such that for anyα∈ 2ω,

Aα is≤r
B-minimal among∆1

1\pot(Π0
1) sets.

(b) There is a perfect≤B-antichain made of sets≤B-minimal amongΓ∩∆1
1 \ pot(Π0

1), whereΓ is one of
the following classes:

- Graphs (i.e., irreflexive and symmetric relations).

- Oriented graphs (i.e., irreflexive and antisymmetric relations).

- Quasi-orders (i.e., reflexive and transitive relations).

- Partial orders (i.e., reflexive, antisymmetric and transitive relations).

In other words, the case of equivalence relations, for which we have Theorem 2.4, is very specific.
This theorem says, among other things, that the mixture between symmetry and transitivity is very strong.
Theorem 2.7 shows that the classical notions of reduction (on the whole product) do not work, at least at
the first level. So we must find another notion of comparison.

3 Some typical examples in products

We just saw that a reduction on the whole product is not possible. The idea to get the good notion of
comparison is to keep product functions, but the reduction will hold only on a subset of the product. For the
non self-dual Borel classes, the reduction will hold on a closed set independent of the classes, that can be
seen as the set of branches of some tree. We now describe the properties of the tree ensuring the possibility
of the reduction. This tree has to be small enough since we cannot have a reduction on the whole product.
But as the same time it has to be big enough to ensure the existence of complicated sets in the set of its
branches. We first describe the notions of smallness. The following definition is basic (see 2.1 in [K]):

Definition 3.1 LetS be a set. Atree onS is a setT of finite sequences of elements ofS such that

∀s, t∈S<ω (s⊆ t and t∈T ) ⇒ s∈T.

A branch of T is an infinite sequenceα∈Sω such thatα|n∈T for each integern. The set of branches of
T is denoteddT e.

Notation. If X is a set, then~x :=(xi)i∈d is an arbitrary element ofX d. If T ⊆X d, then we denote byGT

the graph with set of verticesT , and with set of edges{
{~x, ~y}⊆ T | ~x 6=~y and ∃i∈d xi =yi

}
.

Definition 3.2 (a) We say thatT is one-sided if the following holds:

∀~x, ~y∈T ∀i, j∈d
(

(~x 6=~y and xi =yi and xj =yj) ⇒ i=j
)
.

(b) We say thatT is almost acyclic if for everyGT -cycle(
−→
xn)n≤L there arei∈d andk<m<n<L such

thatxk
i =xm

i =xn
i .

(c) We say that a treeT on dd is a tree with finite one-sided almost acyclic levels if, for each integer
l, the setT l :=T ∩ (dd)l⊆(dd)l≡(dl)d is finite, one-sided and almost acyclic.
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Now we can state the generalization of Theorem 1.2:

Theorem 3.3 There are concrete examples of a treeTd with finite one-sided almost acyclic levels, together
with, for each non self-dual Wadge classΓ and for each1≤ξ<ω1,

(1) Some setSd
Γ∈Γ(dTde) which is not separable fromdTde\Sd

Γ by a pot(Γ̌) set.

(2) Some disjoint setsS0
ξ , S1

ξ∈Σ0
ξ(dTde) such thatS0

ξ is not separable fromS1
ξ by a pot(∆0

ξ) set.

Notation. Let ϕ :ω→ω2 be the natural bijection. More precisely, we set, forq∈ω,

M(q) :=max{m∈ω/Σk≤m k≤q}.

Then we defineϕ(q) =
(
(q)0, (q)1

)
:=

(
M(q)−q+(Σk≤M(q) k), q−(Σk≤M(q) k)

)
. One can check that

<i, j >:=ϕ−1(i, j)=(Σk≤i+j k)+j. More concretely, we get

ϕ[ω]={(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), . . .}.

Definition 3.4 We say thatE⊆
⋃

l∈ω (dl)d is aneffective frame if

(a) ∀l∈ω ∃!(si
l)i∈d∈E∩(dl)d.

(b) ∀p, q, r∈ω ∀t∈d<ω ∃N ∈ω (si
qit0

N )i∈d∈E, (|s0
q0t0N |−1)0 =p and

(
(|s0

q0t0N |−1)1
)
0
=r.

(c) ∀l>0 ∃q<l ∃t∈d<ω ∀i∈d si
l =si

qit.

(d) The mapl 7→(si
l)i∈d can be coded by a recursive map fromω into ωd.

We will callTd thetree on dd associated with an effective frame E ={(si
l)i∈d | l∈ω}:

Td :=
{
~s∈(dd)<ω | (∀i∈d si =∅) or

(
∃l∈ω ∃t∈d<ω ∀i∈d si =si

lit and∀n< |s0| s0(n)≤n
)}

.

The uniqueness condition in (a) and Condition (c) ensure thatTd is small enough, and also the almost
acyclicity. The definition ofTd ensures thatTd has finite levels. The existence condition in (a) and Con-
dition (b) ensure thatTd is big enough. More specifically, if(X, τ) is a Polish space andσ a finer Polish
topology onX, then there is a denseGδ subset of(X, τ) on whichτ andσ coincide. The first part of
Condition (b) ensures the possibility to get inside products of denseGδ sets. The typical examples are build
using the examples due to A. Louveau and J. Saint Raymond that we mentioned earlier. Conditions on
verticals are involved, and the second part of Condition (b) gives a control on the choice of verticals. The
very last part of Condition (b) is not necessary to get typical examples for the Borel classes, but is useful to
get typical examples for the non self-dual Wadge classes of Borel sets.

Proposition 3.5 The treeTd associated with an effective frame is a tree with finite one-sided almost acyclic
levels.

Example. (a) Note first that there is a concrete example of a bijectionbd :ω→d<ω with |bd(n)|≤n:

• If d < ω, thenbd(0) := ∅ is the sequence of length0, bd(1) :=< 0 >, ..., bd(d) :=< d−1 > are the
sequences of length1 in the lexicographical ordering, and so on.

• If d = ω, then let(pn)n∈ω be the sequence of prime numbers, andI : ω<ω → ω defined byI(∅) := 1,
andI(s) :=p

s(0)+1
0 ...p

s(|s|−1)+1
|s|−1 if s 6=∅. Note thatI is one-to-one, so that there is an increasing bijection

ı :Seq:=I[ω<ω]→ω. We setbω :=(ı ◦ I)−1 :ω→ω<ω.

(b) We now give a concrete example of an effective frame. Fixi∈d. We setsi
0 =∅, and

si
l+1 :=si

(((l)1)1)0
i bd

(((
(l)1

)
1

)
1

)
0l−(((l)1)1)0−|bd((((l)1)1)1)|.
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Now we want to get some typical examples inside the set of branches of the previous tree. The idea is
to reduce the problem to a problem a dimension one. So let us describe the examples due to A. Louveau
and J. Saint Raymond that we mentioned earlier.

Notation. A. Louveau and J. Saint Raymond introduced in [Lo-SR1] the following mapρ0 :2ω→2ω:

ρ0(ε)(i) :=
{

1 if ε(<i, j >)=0, for eachj∈ω,
0 otherwise.

They also proved thatCn+1 :=¬(ρn
0 )−1({0∞}) is Σ0

n+1\Π0
n+1 for each integern.

• The mapS :2ω→2ω is the shift map:S(α)(m) :=α(m+1).

• The map∆:(dω)2→2ω is the symmetric difference. So, form∈ω,

∆(α, β)(m) :=(α∆β)(m)=1 ⇔ α(m) 6=β(m).

• Let Td be the tree associated with an effective frame, andC⊆2ω. We put

Sd
C :=

{
~α∈dTde | S(α0∆α1)∈C

}
.

Fix 1≤ ξ < ω. ThenSd
Cξ
∈Σ0

ξ(dTde) and one can prove thatSd
Cξ

is not separable fromdTde\Sd
Cξ

by a
pot(Π0

ξ) set.

Let us go deeper into the proof of this.

Notation. We definep :ω<ω\{∅}→ω. We definep(s) by induction on|s|=n+1:

p(s) :=

 s(0) if n=0,

<p(s|n), s(n)> otherwise.

Lemma 3.6 LetTd be the tree associated with an effective frame and, for eachi∈d, Gi a denseGδ subset
of Π′′

i dTde. Then there areα0∈G0 andF :2ω→Π0<i<d Gi continuous such that, forα∈2ω,

(a)
(
α0, F (α)

)
∈dTde.

(b) For eachs∈ω<ω, and eachm∈ω,

(i) α
(
p(sm)

)
=1 ⇒ ∃m′∈ω S

(
α0∆F0(α)

)(
p(sm′)

)
=1.

(ii) S
(
α0∆F0(α)

)(
p(sm)

)
=1 ⇒ ∃m′∈ω α

(
p(sm′)

)
=1.

If moreovers=∅ andα∈2ω, then there is an increasing bijection

Bα :{m∈ω | α(m)=1}→{m′∈ω | S
(
α0∆F0(α)

)
(m′)=1}

such that(m)0 =
(
Bα(m)

)
0

and
(
(m)1

)
0
=

((
Bα(m)

)
1

)
0

if α(m)=1.

Now we come to the general condition to get some typical examples as in the statement of Theorem
3.3. Recall thatω−1:=ω.

Definition 3.7 We say thatC⊆2ω is compatible with comeager sets if

α∈C ⇔ S
(
α0∆F0(α)

)
∈C,

for eachα0∈dω andF :2ω→(dω)d−1 satisfying the conclusion of Lemma 3.6.(b).
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Recall that∆(Γ) :=Γ ∩ Γ̌.

Lemma 3.8 LetTd be the tree associated with an effective frame, andΓ a non self-dual Wadge class.

(1) Assume thatC∈Γ\Γ̌ is compatible with comeager sets. ThenSd
C ∈Γ(dTde) is a Borel subset of(dω)d,

and is not separable fromdTde\Sd
C by a pot(Γ̌) set.

(2) Assume thatC0, C1∈Γ are disjoint, compatible with comeager sets, and thatC0 is not separable from
C1 by a∆(Γ) set. ThenSd

C0 , Sd
C1 ∈Γ(dTde) are disjoint Borel subsets of(dω)d, andSd

C0 is not separable
fromSd

C1 by a pot
(
∆(Γ)

)
set.

4 The reduction theorem in products

Let us state the generalizations of 1.1 and 1.3:

Theorem 4.1 Let Td be a tree with finite one-sided almost acyclic levels,1≤ ξ <ω1, (Xi)i∈d a sequence
of Polish spaces, andA0, A1 disjoint analytic subsets ofΠi∈d Xi.

(1) (Debs-Lecomte whend=2) LetS∈Σ0
ξ(dTde). Then one of the following holds:

(a) The setA0 is separable fromA1 by a pot(Π0
ξ) set.

(b) For eachi ∈ d there isui : dω → Xi continuous such that the equalitiesS ⊆ (Πi∈d ui)−1(A0) and
dTde\S⊆(Πi∈d ui)−1(A1) hold.

If we moreover assume thatS is not separable fromdTde\S by a pot(Π0
ξ) set, then this is a dichotomy.

(2) LetS0, S1∈Σ0
ξ(dTde) disjoint. Then one of the following holds:

(a) The setA0 is separable fromA1 by a pot(∆0
ξ) set.

(b) For eachi∈d there isui :dω→Xi continuous such thatSε⊆(Πi∈d ui)−1(Aε) for eachε∈2.

If we moreover assume thatS0 is not separable fromS1 by a pot(∆0
ξ) set, then this is a dichotomy.

Note that we can deduce Theorem 1.1 from the proof of Theorem 4.1, without game theory. Theorem
4.1 is the version of Theorem 1.1 for products.

Corollary 4.2 Let Γ be a Borel class. Then there are Borel subsetsS0
Γ, S1

Γ of (dω)d such that for any
sequence of Polish spaces(Xi)i∈d, and for any disjoint analytic subsetsA0, A1 of Πi∈d Xi, exactly one of
the following holds:

(a) The setA0 is separable fromA1 by a pot(Γ) set.

(b) For eachi∈d there isui :dω→Xi continuous such thatSε
Γ⊆(Πi∈d ui)−1(Aε) for eachε∈2.

Concerning the non self-dual Borel classes whend = 2, this corollary has initially been shown by D.
Lecomte whenξ is a successor ordinal. Then G. Debs proved it whenξ is a limit ordinal. Note that Theorem
4.1 and Corollary 4.2 can be extended to the difference hierarchy. One can prove that a reduction on the
whole product is not possible, for acyclicity reasons:

Theorem 4.3 In Corollary 4.2,

(a) (Debs, see [L7]) We cannot replaceS1
Γ with¬S0

Γ.

(b) (Debs) We can ensure that theui’s are one-to-one whenξ≥3 andd=2.

(c) We can ensure that(Πi∈d ui)|dTde is one-to-one whenξ≥3, for anyd.

However, we can replaceS1
Γ with S0

Γ\S0
Γ if Γ is not self-dual.
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So the good scheme of comparison is

(dω)d S0
Γ

S1
Γ

−−−−−−−−→

−−−−−−−−→

A0

A1

Πi∈d Xi

One of the important tools to prove Theorem 4.1 is the representation theorem for Borel sets by G. Debs
and J. Saint Raymond (see [D-SR]). It specifies the classical result by Lusin and Souslin asserting that any
Borel set in a Polish space is the bijective continuous image of a closed subset of the Baire space (see 13.7
in [K]). We now give some material from [D-SR].

Definition 4.4 (Debs-Saint Raymond) Letc be a countable set. A partial order relationR on c<ω is a
tree relation if, for t∈c<ω,

(a) ∅ R t.

(b) The setPR(t) :={s∈c<ω | s R t} is finite and linearly ordered byR.

For instance, the non strict extension relation⊆ is a tree relation.

• LetR be a tree relation. AnR-branch is an⊆-maximal subset ofc<ω linearly ordered byR. We denote
by [R] the set of all infiniteR-branches.

We equip(c<ω)ω with the product of the discrete topology onc<ω. If R is a tree relation, then the space
[R]⊆ (c<ω)ω is equipped with the topology induced by that of(c<ω)ω. The maph : cω → [⊆] defined by
h(γ) :=(γ|j)j∈ω is an homeomorphism.

• LetR, S be tree relations withR⊆S. Thecanonical map Π:[R]→ [S] is defined by

Π(B) := the uniqueS-branch containingB.

• LetS be a tree relation. We say thatR⊆S is distinguished in S if

∀s, t, u∈c<ω s S t S u
s R u

}
⇒ s R t.

For example, letC be a closed subset ofcω, and define

s R t ⇔ s⊆ t and Nt ∩ C 6=∅.

ThenR is distinguished in⊆. In this case, the distinction expresses the fact that “when we leave the closed
set, it is for ever”.

• Letη<ω1. A family(R(ρ))ρ≤η of tree relations is aresolution family if

(a) R(ρ+1) is a distinguished subtree ofR(ρ), for all ρ<η.

(b) R(λ) =
⋂

ρ<λ R(ρ), for all limit λ≤η.

Theorem 4.5 (Debs-Saint Raymond) Letη < ω1, R a tree relation,(In)n∈ω a sequence ofΠ0
η+1 subsets

of [R]. Then there is a resolution family(R(ρ))ρ≤η with

(a) R(0) = R.

(b) The canonical mapΠ:[R(η)]→ [R] is a continuous bijection.

(c) The setΠ−1(In) is a closed subset of[R(η)] for each integern.
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Another important tool is Effective Descriptive Set Theory (see [M] for the basic notions, and also
Section 5). Of particular importance are the following topologies:

Notation. Let X be a recursively presented Polish spaceX.

• The topology∆X onX is generated by∆1
1(X).

• TheGandy-Harrington topology ΣX onX is generated byΣ 1
1 (X).

Theorem 4.6 LetX be a recursively presented Polish spaceX.

(a) (Louveau, see [Lo]) The topology∆X is Polish.

(b) (Gandy, see [S]) The setΩX :={x∈X | ωx
1 =ωCK

1 } is a dense basic open set forΣX .

(c) (see [L8]) The topologyΣX is non metrizable in general. But(ΩX ,ΣX) is a zero-dimensional Polish
space. In fact, the intersection ofΩX with anyΣ 1

1 subset ofX is a clopen subset of(ΩX ,ΣX).

Notation. We setτ1 := (∆ωω )d. If 2 ≤ ξ < ωCK
1 , then we denote byτξ the topology generated by

Σ 1
1

(
(ωω)d

)
∩Π0

<ξ(τ1). We haveΣ0
1(τξ)⊆Σ0

ξ(τ1), so thatΠ0
1(τξ)⊆Π0

ξ(τ1).

Key idea of the proof of Theorem 4.1.(1) whenξ=η+1<ωCK
1 , Xi =ωω and Aε∈Σ 1

1 .

• We haveE :=θ[dTde\S] is Π0
η+1([⊆]). Theorem 4.5 provides a resolution family. We put

D :={~s∈Td | ∃B∈Π−1(E) ~s∈B}.

• We assume that (a) is not satisfied, so thatA0
τξ ∩ A1 is not empty. We fix a complete metricd (resp., a

metricδ) on (Ω(ωω)d ,Σ(ωω)d) (resp.,ωω equipped with its usual topology).

• We construct(xi
s)i∈d,s∈Π′′

i Td
⊆ωω, (U~s)~s∈Td

⊆Σ 1
1

(
(ωω)d

)
with

(1) (xi
si

)∈U~s⊆Ω(ωω)d .

(2) diamd(U~s)≤2−|~s|, δ(xi
s, x

i
sε)≤2−|s|.

(3) U~s⊆A0
τξ ∩A1 if ~s∈D.

(4) U~s⊆A0 if ~s /∈D.

(5) (1≤ρ≤η and~s R(ρ) ~t) ⇒ U~t⊆U~s
τρ

.

(6)
(
(~s∈D ⇔ ~t∈D

)
and~s R(η) ~t

)
⇒ U~t⊆U~s.

All the conditions but (5) are quite natural to get (b), and they are sufficient. But to ensure that the con-
struction is possible, we need an additional condition, namely (5). This is the key idea: there is a deep link
between the smaller and smaller relationsR(ρ) on one side, and the smaller and smaller closuresU~s

τρ on
the other side.

Proof of ¬(a)⇒ (b) in Corollary 4.2 when d=2, Γ=Π0
1, Xi =ωω and Aε∈Σ 1

1 .

Let S :={~α∈dT2e | S(α0) 6= S(α1)}. We want to findu0 andu1 continuous withS⊆(u0×u1)−1(A0)
andS\S⊆(u0×u1)−1(A1).

One proves thatA0
τ1 ∈Σ 1

1

(
(ωω)2

)
. We assume that (a) is not satisfied, so thatN := A0

τ1 ∩ A1 is a
nonemptyΣ 1

1 subset of(ωω)2. The key property is the following:

∀U, V ∈Σ 1
1

(
N ∩ (U×V ) 6=∅ ⇒ A0 ∩ (U×V ) 6=∅

)
.

Indeed,A0 ∩ (U×V )=∅ implies the existence ofU ′, V ′∈∆1
1 with A0 ∩ (U ′×V ′)=∅, U⊆U ′ andV ⊆V ′

by the separation theorem. So we getN ∩ (U×V )⊆N ∩ (U ′×V ′)⊆A0
τ1 \A0

τ1 , which is absurd.
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We define, for~s=(s0, s1)∈T2,

(s0, s1)∗ :=


(s0, s1) if |~s|≤1 or(

|~s|≥2 and S(s0)(|~s|−2) 6=S(s1)(|~s|−2) and S(s0)|(|~s|−2)=S(s1)|(|~s|−2)
)
,

(s0, s1)|(|~s|−1) otherwise.

We construct sequences(xi
s)i∈2,s∈Π′′

i T2⊆ωω and(U~s)~s∈T2⊆Σ 1
1

(
(ωω)2

)
with

(1) (x0
s0

, x1
s1

) ∈ U~s⊆U~s∗⊆Ω(ωω)2 .
(2) diamd(U~s)≤2−|~s|.
(3) U~s⊆N if |~s|=0 or S(s0)=S(s1).
(4) U~s⊆A0 if S(s0) 6=S(s1).

•Assume that this construction is achieved. Then
(
(x0

α0|n, x1
α1|n)

)
n

is a Cauchy sequence in(Ω(ωω)2 , d) for
each~α∈dT2e. So that we can defineF (~α) as the limit of it, and a functionF :dT2e→Ω(ωω)2 . Notice that
d
(
(x0

0α|n, x1
1α|n), F (0α, 1α)

)
≤ 2−n, so thatF|dT2e\S is continuous. We putui(jα) := Πi

(
F (0α, 1α)

)
.

This defines continuous maps. Notice thatui(jα) is the limit of (xi
iα|n)n∈ω, by continuity of the first

projection.

If ~α∈S, thenS(α0|n) 6=S(α1|n) if n is big enough. In this case,(x0
α0|n, x1

α1|n)∈A0∩Ω(ωω)2 which is

a closed subset of(ΩX×Y , d), so thatF (~α)∈A0. But Πi

(
F (~α)

)
is the limit of (xi

αi|n)n∈ω, and isui(αi).
Thus

(
u0(α0), u1(α1)

)
=F (~α)∈A0. Now if α∈2ω then

(
u0(0α), u1(1α)

)
=F (0α, 1α)∈N ⊆A1. This

proves thatS\S⊆dT2e\S⊆(u0×u1)−1(A1).

• So let us show that the construction is possible. Let(x0
∅, x

1
∅)∈N ∩ Ω(ωω)2 . Then we chooseU~∅ ∈ Σ 1

1

with diameter at most2−1 such that(x0
∅, x

1
∅) ∈ U~∅ ⊆ N ∩ Ω(ωω)2 . Then we setxi

i := xi
∅, U(0,1) := U~∅.

Assume that(xi
s)|s|≤l and(U~s)|~s|≤l satisfying Conditions (1)-(4) have been constructed, which is the case

for l ≤ 1. If S(s0
l ) 6= S(s1

l ), then we setxi
sε := xi

s, and we simply reduce the diameters of theU~s’s. So
assume thatS(s0

l )=S(s1
l ). We put, fori∈2,

Ui :={xi
si

l
∈ωω | ∃(xi

s)s∈Π′′
i T2∩2l\{si

l}⊆ωω ∃(x1−i
s )s∈Π′′

1−iT2∩2l ⊆ωω ∀~s∈T2 ∩ (2l)2 (x0
s0

, x1
s1

)∈U~s}.

The setsUi areΣ 1
1 , and(x0

s0
l
, x1

s1
l
)∈U0×U1. In particular,A0 ∩ (U0×U1) is not empty andΣ 1

1 , so we can

find (x0
s0

l 0
, x1

s1
l 1

)∈A0∩ (U0×U1)∩Ω(ωω)2 . We choose witnesses(xi
si)s∈Π′′

i T2∩2l\{si
l}, (x

1−i
si )s∈Π′′

1−iT2∩2p

for the fact thatxi
si

li
∈ Ui. Then we chooseU(s0ε0,s1ε1) ∈ Σ 1

1 with diameter at most2−l−1 such that

(x0
s0ε0

, x1
s1ε1

) is in U(s0ε0,s1ε1)⊆U~s if ε0 =ε1, and(x0
s0

l 0
, x1

s1
l 1

)∈U(s0
l 0,s1

l 1)⊆A0 ∩ Ω(ωω)2 . �

5 Appendix: Effective Descriptive Set Theory

Effective Descriptive Set Theory is based on the notion of recursive function. This theory allows us to
prove some results of classical type. For some of them, we do not know any proof of classical type. The
material in this section can be found in [M], except where indicated.
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Definition 5.1 Let ω := N. The class ofrecursive functions is the smallest class of functions from a
spaceωk into ω (k≥1) such that

- The constant functions are recursive:∀k≥1 ∀n∈ω Ck
n(x)=n (x :=(x1, . . . , xk)∈ωk).

- The projections are recursive:∀k≥1, 1≤ i≤k, P k
i (x)=xi.

- The successor function is recursive:S(n) :=n+1.

- The class is closed under composition: ifg :ωm→ω, hi :ωk→ω (1≤ i≤m) are recursive, thenf defined
byf(x) :=g

(
h1(x), . . . , hm(x)

)
is recursive.

- The class is closed under recursion: ifg : ωk →ω, h : ωk+2→ ω are recursive,f : ωk+1→ω defined by
f(0, x) :=g(x) andf(n+1, x) :=h(f(n, x), n, x) is recursive (k may be0).

- The class is closed under minimalization: ifg :ωk+1→ω is recursive, and if∀x∈ωk ∃n g(x, n)=0, then
f defined byf(x) :=min{n∈ω | g(x, n)=0} is recursive.

Note that the class of recursive functions is countable.

Examples.Let (pn)n≥1 be the sequence of prime numbers. The functioni defined by

i(x) :=px1+1
1 . . . pxk+1

k

is recursive. So iscj :ω→ω defined bycj(m) :=(m)j :=xj if m= i(x) and1≤j≤k (0 otherwise).

Definition 5.2 (a) We say thatE⊆ωk is recursive if its characteristic function is recursive.

(b) We say that
(
X, (xn), d

)
(X for simple) is arecursively presented Polish space if(xn) is a dense

subsequence ofX, andd is a complete compatible distance onX such that the following sets are recursive:
{(i, j, k, l)∈ω4 | d(xi, xj)≤ k

l+1} and{(i, j, k, l)∈ω4 | d(xi, xj)< k
l+1}.

We enumerate a basis for the topology ofX as follows:B(X, n) :=B(x(n)0 ,
(n)1

(n)2+1 ).

Definition 5.3 Let X be a recursively presented Polish space. We say thatE ⊆X is semi-recursive if
there isε :ω→ω recursive such thatE =

⋃
n B

(
X, ε(n)

)
.

One proves thatE⊆ωk is recursive if and only ifE and¬E are semi-recursive.

Notation. If E ⊆ X×Y , then∃Y E := {x ∈ X | ∃y ∈ Y (x, y) ∈ E}. If Γ is a class of sets, then
∃Y Γ :={∃Y E | E∈Γ}. The Kleene classes are defined as follows, forn ≥ 1: Σ 0

1 :=semi-recursive sets,
Π 0

n := Σ̌ 0
n, Σ 0

n+1 :=∃ωΠ 0
n , ∆0

n :=Σ 0
n ∩Π 0

n , Σ 1
1 :=∃ωω

Π 0
1 , Π 1

1 := Σ̌ 1
1 , ∆1

1 :=Σ 1
1 ∩Π 1

1 .

Theorem 5.4 The classΣ 1
1 is closed under∨, ∧, ∀ω, and∃X if X is recursively presented.

The link with the Borel classes is made with the following notion of relativization. Note that the
inclusions between classes remain true for their effective counterpart.

Definition 5.5 Let Γ be a class of sets,X andY recursively presented Polish spaces, andy ∈Y . We say
thatE⊆X is in therelativized aty classΓ (y) ofΓ if there isF ∈Γ (X×Y ) withE ={x∈X | (x, y)∈F}.

We will apply this definition to the Kleene classes of the formΠ or Σ . For the classes∆, we use the
following definitions:∆0

n(y) :=Σ 0
n(y) ∩Π 0

n (y) and∆1
1(y) :=Σ 1

1 (y) ∩Π 1
1 (y).

The fundamental link with the usual classes is the following:

Theorem 5.6 LetΓ be a Kleene class. ThenΓ=
⋃

y∈ωω Γ (y).

The Polish spaces are recursively in somey-presented.
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There is an effective version of the separation theorem:

Theorem 5.7 Let X be a recursively presented Polish space, andA, A′ be two disjointΣ 1
1 subsets ofX.

Then there isB∈∆1
1 with A⊆B⊆¬A′.

One can code the Borel subsets of a recursively presented Polish space (see [H-K-Lo]):

Theorem 5.8 LetX be a recursively presented Polish space. There areWX ∈Π 1
1 (ω) andCX∈Π 1

1 (ω×X)
such that∆1

1(X)={CX
n | n∈WX} and{(n, x)∈ω×X | n∈WX and(n, x) /∈CX} areΠ 1

1 (ω×X).

Notation. Let ε∈ωω. We define a binary relation≤ε onω as follows:

m ≤ε n ⇔ ε
(
i(m,n)

)
=1

Let WO :={ε∈ωω |≤ε is a well order}. If ε∈WO, then we denote by|ε| the order type of≤ε.

Definition 5.9 We say thatε ∈ ωω is recursive if Bε := {n ∈ ω | ε ∈ B(ωω, n)} is ∆0
1. This can be

relativized: letY be a recursively presented Polish space, andy∈Y . We say thatε is recursive iny if Bε

is ∆0
1(y).

Notation. Let ωCK
1 :=sup{|ε| | ε∈WO andε is recursive}. There is a relativized version:

ωy
1 :=sup{|ε| | ε∈WO andε is recursive iny}.

6 References

[D-SR] G. Debs and J. Saint Raymond, Borel liftings of Borel sets: some decidable and undecidable
statements,Mem. Amer. Math. Soc.187, 876 (2007)
[H-K-Lo] L. A. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equiva-
lence relations,J. Amer. Math. Soc.3 (1990), 903-928
[Hj-K-Lo] G. Hjorth, A. S. Kechris and A. Louveau, Borel equivalence relations induced by actions of the
symmetric group,Ann. Pure Appl. Logic92 (1998), 63-112
[K] A. S. Kechris,Classical Descriptive Set Theory,Springer-Verlag, 1995
[L1] D. Lecomte, Classes de Wadge potentielles et théor̀emes d’uniformisation partielle,Fund. Math.143
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