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Quantum ergodicity states that for quantum systems with ergodic classical
flow, almost all high-frequency eigenfunctions are equidistributed in phase-space.
Quantum unique ergodicity corresponds to equidistribution of all high-frequency
eigenfunctions. The main examples are given by compact Riemannian manifolds
.X; g/ with ergodic geodesic flows, where one considers eigenfunctions of the
Laplacian �g associated to the metric, and negatively curved metrics are the
typical models for ergodic geodesic flows.

The first results in this direction are due to Shnirelman [12], and later by
Zelditch [13] and Colin de Verdière [6], who proved quantum ergodicity for
closed manifolds with ergodic geodesic flows. In the case of manifolds with
boundary, similar results were shown by Gérard and Leichtnam [9] and Zelditch
and Zworski [16].

In this work, we consider instead non-compact manifolds, and the first exam-
ples one has in mind are surfaces with finite volume. In general, non-compactness
often produces an essential spectrum for the Laplacian, and this is indeed the case
for the simplest model of finite volume surfaces, namely hyperbolic surfaces re-
alised as quotients �nH2 of the hyperbolic plane by Fuchsian subgroups with a
finite index. In this setting, there is however a way to get rid of this essential spec-
trum by a simple modification of the Laplacian, that is called pseudo-Laplacian,
introduced by Colin de Verdière [3, 4]. This operator was very useful for obtaining
a meromorphic extension of the Eisenstein series and the resolvent of the Lapla-
cian, with important generalisation to the higher rank case by Müller [11]. In this
case of hyperbolic surfaces with cusps, Zelditch’s approach [14] gave additional
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results about the equidistribution of Eisenstein series and cusp forms (eigenfunc-
tions corresponding to the embedding eigenvalues). That result has been recently
generalised by Bonthonneau and Zelditch [2] to variable curvature and all dimen-
sions. The strongest quantum ergodicity result was proved in the case of arithmetic
surfaces by Lindenstrauss (see [10] and the references given there for earlier con-
tributions).

The problem of quantum ergodicity for the eigenfunctions of the pseudo-
Laplacian was first proposed by S. Zelditch [15]. This pseudo-Laplacian, that
we will denote �c , is defined as an unbounded operator on L2 with domain Dc,
and it has discrete spectrum. Here, Oph will denote a semiclassical quantization
for symbols that are compactly supported in space, see Section 1. Our main result
is the following quantum ergodicity statement for this operator:

Theorem 0.1. Let X be a Riemannian surface with a finite number of constant

curvature hyperbolic cusps such that the geodesic flow on S�X is ergodic. Let

uj 2 Dc be an orthonormal family of eigenfunctions of �c � 1
4

with eigenvalues

�2
0 < �

2
1 � �2

2 � � � � , covering all the eigenvalues of�c � 1
4

except a finite number

of non-positive ones. Let a 2 S0.T �X/ be compactly supported in space.

Then, as � ! 1, we have

1

N.�/

X

�j ��

ˇ

ˇ

ˇ

ˇ

hOphj
.a/uj ; uj i �

Z

S�X

a

ˇ

ˇ

ˇ

ˇ

2

�! 0;

where N.�/ D j¹j W�j � �ºj and hj D ��1
j .

For a precise review of the geometry of the considered Riemannian manifolds,
we refer to Section 1.1, while the definition of the pseudo-Laplacian will be
given in Section 1.2. There are very natural examples of such manifolds given
by negatively curved surfaces with finite volume and hyperbolic cusps.

Let us make several remarks about the Theorem. First, by a standard argument
(see for instance [17, Section 15.5]) Theorem 0.1 implies that

hOp.a/uj ; uj i �!

Z

S�X

a

for a sequence of density one, when a has compact support. Moreover, since we
are only interested in quantizing symbols with a compact support in the space
variable, we can use a standard quantization procedure, see for instance [17,
Section 14.2]. That means however that the estimates are not uniform far in the
cusp.
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In the same geometric setting, we also mention that there are other works by
Dyatlov [8] and Bonthonneau [1] on the microlocal limits of non-L2 eigenfunc-
tions of the Laplacian but with complex eigenvalues, where one instead get a sort
of “quantum unique ergodicity.”

For simplicity, the proof will be presented in the case where there is one cusp,
the argument being the same with several cusps. The method of proof follows the
scheme from [16] and has two steps.

1) A pointwise “ellipticity bound” that states that the eigenfunctions are mi-
crolocalized on the cosphere bundle. This implies that in the limit � ! 1,

M.a; �/2 WD
1

N.�/

X

�j ��

ˇ

ˇ

ˇ

ˇ

hOphj
.a/uj ; uj i �

Z

S�X

a

ˇ

ˇ

ˇ

ˇ

2

is controlled by kajS�X k2
L2 .

2) Taking a symbol with average zero, we propagate it by the geodesic flow to
get a new symbol that is small on the cosphere bundle (by theL2 ergodic theorem).
We prove, using a “flow invariance” result, that this does not modify M.a; �/.

We stress that working with a pseudo-Laplacian entails new difficulties that
are not apparent in the compact setting. For the first step, since we are working
with a pseudo-Laplacian, the pointwise ellipticity bound (and the subsequent
microlocalization) works only outside the singular circle, and we need to prove
that the needed correction is small enough. This requires a precise control of the
eigenfunctions of the pseudo-Laplacian.

For the second step, it is important to notice that the eigenfunctions we are
interested in are not eigenfunctions of the propagator we are using for the proof.
We are able to prove that M.a; �/ does not change much when replacing a by
a ı ˆt if ˆt is the geodesic flow, but we have to assume that the symbol a is
supported quite far away from the singular circle. Since the admissible support
has full measure, the L2 control of lim supM.a; �/ we still get at step 1 leads to
the same result.

Finally, in a compact manifold, M.1; �/ is defined and easily shown to vanish,
which is the last step of the proof of the main theorem of [16]. Since we only use
symbols with a compact support in space, we cannot use this argument. Our proof
has a third step which consists in finding symbols a with average close to 1 such
that lim supM.a; �/ is arbitrarily close to zero. For that purpose, we shall prove
that the modes of the eigenfunctions of the pseudo-Laplacian are microlocalized
in the cusp.
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1. Preliminaries

1.1. Notations. We let X be a Riemannian surface with one hyperbolic cusp,
i.e. a cusp with constant curvature. This means that X can be split into two parts,
X D X0 [ X1, where X1 is a compact Riemannian surface with boundary, and
X0 D .c0;1/r�.R=Z/� with metric dr2Ce�2rd�2. Using the notation �drC�d�
for cotangent vectors in X0, the Hamiltonian induced by the metric in the cusp is
given by

p.r; � I �; �/ D �2 C e2r�2:

In X0, my function u 2 L2
loc.X0/ can be expanded into Fourier series in the �

variable:
u.r; �/ D

X

n2Z

un.r/e
2i�n� ;

where the un are inL2
loc..c0;1/I e�rdr/. The metric induces a natural measure�,

called Liouville measure, on the unit cotangent bundle S�X and for simplicity we
shall normalize it so that it is a probability measure. The projection T �X ! X

on the base will be denoted by � . Finally, C > 0 will denote a generic constant
that is independent of the parameters we consider (except when indicated), and
that will change from line to line.

As a Riemannian surface, X has a positive Laplacian, which we denote as �.

1.2. Definition of the pseudo-Laplacian

Definition 1.1. Let c > c0. Let us denote L2
0;c (resp. H 1

0;c) the space of all
u 2 L2.X/ (resp. u 2 H 1.X/) such that u0.r/ D 0 for every r � c. The pseudo-
Laplacian�c is the unbounded non-negative self-adjoint operator onL2

0;c defined
using the Friedrichs method by the quadratic form

q.u/ D

Z

X

jrguj2gdvg for all u 2 H 1
0;c:

The Riemannian measure dvg and the gradient are with respect to g.
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We note that the spaces L2
0;c and H 1

0;c are closed vector subspaces of L2.X/,
and H 1.X/. The circle r D c in X0 will be referred to as the singular circle.

The following results are proved in [5, Theorem 2].

Proposition 1.2. The operator �c is an unbounded, non-negative, self-adjoint

operator with compact resolvent and discrete spectrum.

We will denote .uj /j an orthonormal family of eigenfunctions with positive
eigenvalues of �c � 5

18
, that is, �cuj D

�

�2
j C 1

4

�

uj , where .�j /j is a positive,
non-decreasing sequence going to C1 such that �0 � 1

6
. Note that the orthog-

onal of Span¹uj ; j � 0º in L2
0;c is a finite-dimensional space that possesses an

orthonormal basis of eigenfunctions of �c. We will denote, for each j � 0,
hj D ��1

j .
Note that we extend �c as an unbounded self-adjoint operator from L2 to L2

with compact resolvent by declaring that �cv D 0 whenever v 2 L2.X/ has
support in ¹r � cº and v does only depend on r .

1.3. Review of semiclassical analysis. We shall use the following semiclassical
quantization procedure, which is similar to [17, Chapter 14.2]: we fix a locally
finite cover by countably many relatively compact open sets Ui of X , i � 0,
with diffeomorphisms 'i WUi ! Vi , where the Vi � R

2 are open sets, and
take a partition of unity .�2

i /i associated with it. A compactly supported symbol
a 2 Sm

comp.X/ is a smooth function a 2 C1.T �X/ whose support projects to X
into a compact set and satisfying uniform bounds

j@˛
x@

ˇ

�
a.x; �/j � C˛;ˇ h�im�jˇ j

for all multi-indices ˛; ˇ. Then for any symbol a 2 Sm
comp.X/ with compact space

support, and h > 0, we define

Oph.a/ WD
X

i

�i.'i /
�..'i /�a/

w.x; hD/.'i/��i :

where

� .'i /�a is the symbol defined on T �Vi D Vi � R
2 by composing a with the

enhanced symplectomorphism '�1
i WT �Vi ! T �Ui ;

� for f WUi ! C and x 2 Vi ,

.'i /�f .x/ D
f ı '�1

i .x/

j detd'�1
i

.x/'i j1=2
I



1604 E. Studnia

� for f WVi ! C and x 2 Ui ,

.'i /
�f .x/ D j detdx'i j

1=2.f ı 'i .x//:

When Ui \ �.supp.a// D ; (which always happen but for a finite number
of i), i does not contribute to the sum, because ..'i /�a/ D 0. In any case,
.'i /�a 2 Sm

loc.Vi/.
The specific choice of the partition of unity is not important, because the

difference between two different such quantizations is then an O.h/L2!L2 for any
S0

comp.X/ symbol. We shall thus make the following choices:

� V0 D V1 D .c � 2"; c C 2"/ � .0; 1/;

� U0 D .c � 2"; c C 2"/ � .0; 1/ � .c0;1/ � R=Z and '0 is the identity;

� U1 D .c � 2"; c C 2"/ �
�

�1
2
;C1

2

�

� .c0;1/ � R=Z and '1 is a shift in the
second coordinate only;

� �0 ı '�1
0 D �1 ı '�1

1 ;

� for every i � 2, �i D 0 in ¹c � " � r � c C "º;

� every Vi is convex (so that we can apply verbatim the formula for Weyl
quantization given that we have partitions on unity).

With this procedure most of the useful properties (about composition, Lie
brackets, L2 operators bounds for S0 quantized symbols) hold: the proofs from
[17, Chapters 14, 15] still apply when the symbols are compactly supported in X ,
however the constants depend on the size of the supports. We notice, however, that
this quantization has an exact duality property (because our pull-backs and push-
forwards are actually acting on half-densities and therefore are L2-isometries)
and, applying [17, Theorem 4.3], an exact identity Oph.a/u D au if a is a S0

symbol depending only on the space variables. Moreover, this procedure also
behaves reasonably well with respect to the Laplacian: if  is a smooth compactly
supported function on X , then Oph. .x/j�j

2/ is h2 .x/� up to higher-order
terms (that is, an OL2!H �1.h/ operator, with the constant depending only on  ).

Finally, this quantization has the following exact trace formula:

Proposition 1.3. Let a 2 C1
c .T �X/. Then Oph.a/ is trace class and

TrL2!L2 .Oph.a// D
1

.2�h/2

Z

T �X

a.x; �/ dxd�:

Proof. Let i � 0 and let us consider Ai D �i .'i /
�..'i /�a/

w.x; hD/.'i /��i .
Let I D .'i /�WL2.Ui / ! L2.Vi / be the isometry previously defined (with
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inverse .'i /
�), R be the natural restriction L2.X/ ! L2.Ui /, �0

i D �i ı '�1
i 2

C1
c .Vi/, ai D ..'i /�/a, so that Ai D R�I�.�0

ia
w
i .x; hD/�

0
i/IR. Thus Ai is trace

class if �0
ia

w
i .x; hD/�

0
i is trace class, and these operators have the same trace.

Now �0
ia

w
i .x; hD/�

0
i WL

2.Vi / ! L2.Vi / is a kernel operator with smooth
compactly supported kernel .x; y/ 7! �0

i .x/�
0
i .y/ Oai

�

xCy
2
; x � y

�

, where Oai

is the inverse Fourier transform of ai with respect to its second variable. Its
trace is the same as that of the operator A0

i WL
2.R2/ ! L2.R2/ with the same

(smooth, compactly supported) kernel (meaning that one operator is trace class
iff the other is, and if so, their traces are equal). By [7, (9.3)], A0

i is trace
class with trace

R

R2 �
0.x/2 Oai .x; 0/dx D .2�h/�2

R

R4 �
0
i .x/

2ai .x; �/dxd� D

.2�h/�2
R

T �Ui
�2

i .x/a.x; �/dxd� because the variable change a 7! ai is induced
by a symplectomorphism. To conclude, we note that Ai D 0 when Ui does
not meet the support of a (which occurs every time but finitely many) and that
P

i �
2
i D 1. �

2. Estimates on the singular circle

2.1. Riemannian Laplacian of the eigenfunctions. In this section, we study
the family

�

���2
j � 1

4

�

uj . We will denote by ıc the Lebesgue measure with total
mass 1 on the circle r D c of the cusp of X .

The following lemma is an easy application of Stokes’s theorem.

Lemma 2.1. Let ' be a smooth function onX such that '.r; �/ D Q'.r/ in the cusp

on r > c � " for some 0 < " < c � c0, where Q'W .c0;1/ ! C is smooth. Assume

that Q'.c/ D 0, then �.1r�c'/ D 1r�c�' � e�c Q'0.c/ıc.

Now, we can write the Laplacian of uj as a function of its zero mode.

Corollary 2.2. For j � 0 and hj D ��1
j , we have .uj /0.r/ D j̨ e

r=2 sin r�c
hj

for

some j̨ 2 R in the region c0 < r � c, it vanishes when r � c, and

�

� � �2
j �

1

4

�

uj D Qj ıc ;

where Qj D Ce�c=2 j̨

hj
.

Proof. On ¹c0 < r < cº, .uj / is an eigenfunction of the positive Riemannian
Laplacian�with eigenvalue�2

j C 1
4
. In our coordinates,� D �@2

r C@r �e2r@2
�
. On

the zero Fourier mode of uj , @� acts as 0, thus .�@2
r C@r/.uj /0 D

�

�j C 1
4

�2
.uj /0.
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Setting .uj /0.r/ D v0.r/e
r=2 yields �@2

rv0 D �2
j v0. The boundary condition

.uj /0.c/ D 0 then gives the formula for .uj /0.
From the proof of Theorem 4 in [5],

u0
j WD uj C 1r�c j̨ e

r=2 sin
r � c

hj

is a non-L2 eigenfunction of the positive Laplacian with eigenvalue �2
j C 1

4
.

Therefore, using lemma 2.1,

.� ��c/uj D
�

� � �2
j �

1

4

�

uj

D
�

� � �2
j �

1

4

�

.uj � u0
j /

D � j̨

�

� � �2
j �

1

4

��

1r�ce
r=2 sin

r � c

hj

�

D Ce�c=2 j̨

hj

ıc :

This completes the proof. �

To estimate the�uj , we need an adequate description of the constants j̨ from
Corollary 2.2.

Proposition 2.3. There exists a smooth compactly supported function Q� on X ,

and a sequence .Ij /j �0 such that

Ij j̨ D huj ; Q�i

(it is the L2 inner product) for every j � 0 and

Ij D �hj C O.h1
j /:

Proof. Let � be any smooth compactly supported function on R such that

� � D 0 on
�

� 1; c0Cc
2

�

;

� �.c/ D 1;

� for every p � 1, �.2p/.c/ D 0.

Let Q�.r; �/ D er=2�.r/ (and Q� is zero outside the cusp), such that Q� is well-defined
on X , smooth, compactly supported. Now, since Q� has no non-zero �-Fourier
mode, using its support property and the nature of the hyperbolic metric, we know
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that huj ; Q�i D j̨ Ij , where

Ij D

c
Z

.c0Cc/=2

�.r/ sin
r � c

hj

dr

D

c
Z

�1

�.r/ sin
r � c

hj

dr

D �hj C hj

c
Z

�1

�0.r/ cos
r � c

hj

:

Set �1.r/ D �.r C c/. There exists �2 2 C1
c .RIR/ such that �2.r/ D �0

1.r/ if
r � 0 and �2.r/ D �0

1.�r/ if r � 0 (recall that all derivatives of odd order of �0
1

vanish at 0). Then

2.Ij C hj / D hj

0
Z

�1

�2.r/e
ir=hjdr C hj

1
Z

0

�2.r/e
ir=hjdr

D hj .F�2/
� 1

hj

�

D O.h1
j /

and we are done. �

Corollary 2.4. We have
X

j

jQj j2h4
j < 1:

Proof. Since hj � �Ij as j goes to infinity, and since Qj D F j̨ .hj /
�1

for some constant F , we find that jQj j2h4
j is positive and is equivalent to

jF j2˛2
j I

2
j D jF j2huj ; Q�i2 (with the above notations). Now, since the .uj /j form

an orthonormal family in L2,

X

j

huj ; Q�i2 � k Q�k2
L2 < 1;

which proves the claim. �

2.2. Pseudo-differential operators acting on ıc . Following up on the previous
subsection, we have:
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Proposition 2.5. Let a 2 S�2
comp.X/ with �.supp.a// � ¹c�" < r < cC"º. Then,

for some C > 0 not depending on a, for every 1 > h > 0,

k Oph.a/ıck2
L2 �

C

h

Z

R=Z

Z

R

jaj2.c; �; �; 0/d�d� C Ckak2
S�2;

where k � kS�2 is some S�2 seminorm (in every estimate of that kind in the

following, the seminorm will have to be universal).

Lemma 2.6. Let a 2 S�2
comp.R

2/, with �.supp.a// � .c � "; c C "/ � .0; 1/. Let

�WR ! R be smooth and zero outside .0; 1/. Let h�; 'i D
R 1

0
�.�/'.c; �/d� .

Then, for some constant C > 0 depending only on seminorms of �,

kaw.x; hD/�k2
L2 �

C

h

Z

0<�<1
�2R

ja.c; �; �; 0/j2j�.�/j2 d�d� C Ckak2
S�2

Proof. We may assume that a is compactly supported, if we find out that C does
not depend on the support of a. A computation gives

.2h�/4kaw.x; hD/�k2
L2

D

1
Z

0

Z

R

Z

R6

�.�/�.�0/a
�r C c

2
;
� C �

2
; �; �

�

Na
�r C c

2
;
� C �0

2
; � 0; �0

�

� exp
� i

h

�

.r � c/.� � � 0/C �.� � �0/

C .�0�0 � ��/
�

�

drd�d�0d�d�0d� 0d�d�

WD

1
Z

0

Z

R

I.h; �; �/d�d�

Let '�;� .r; �
0; �; �0; �; �0/ D .r � c/.� � � 0/ C �.� � �0/ C .�0�0 � ��/. The

gradient of '�;� vanishes only when � 0 D �, � D �0 D 0, �0 D � D � , r D c. At
that point, the Hessian matrix of '�;� is

0

B

B

B

B

B

B

B

@

0 �1 0 0 0 0

�1 0 0 0 0 0

0 0 0 0 �1 0

0 0 0 0 0 1

0 0 �1 0 0 0

0 0 0 1 0 0

1

C

C

C

C

C

C

C

A

;
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so it has full rank and we see from the stationary phase method (say, [17, Theo-
rem 3.16]), that for some constants F; C ,

jI.h; �; �/ � Fh3ja.c; �; �; 0/�.�/j2j � Ch4
kak2

S�2

1C j�j2
:

The conclusion is easily drawn from this. �

Now let us prove proposition 2.5:

Proof. Let  be a smooth function on X such that  D 1 on ¹2jr � cj < "º,
and with support in ¹jr � cj < "º. Then write a D a.1 �  / C a . The
support �.supp.a.1 �  /// is at distance at least "

2
from ¹r D cº. Therefore,

k Oph.a.1 �  //ıck2
L2 � Ckak2

S�2 , for some universal constant C > 0. Now,
apply lemma 2.6 to the explicit quantization (as explained in Section 1.2) of a 
(where the only non-vanishing terms are for the charts 0 and 1). �

3. Ellipticity and variance bound

In this section, we complete what we have called in the introduction the first step
of the proof. We use the results of the former section, as well as an ellipticity
estimate similar to the one from [16], to prove that the microlocalization of the
eigenfunctions on the energy surface still holds, albeit on average only.

Definition 3.1. We define, for any symbol a 2 S0
comp.X/ and for any h > 0, � > 0,

N.�/ WD j¹j; �j � �ºj; (1)

Y.a; h/ WD h

s

X

h=2�hj �2h

k Ophj
.a/uj k2

L2; (2)

M.a; �/ WD

p

1

N.�/

X

j; �j ��

ˇ

ˇ

ˇ

ˇ

hOphj
.a/uj ; uj i �

Z

S�X

a

ˇ

ˇ

ˇ

ˇ

2

: (3)

Remark. The boundM.aC b; t/ � M.a; t/CM.b; t/ holds, and similarly for Y .

Let us mention the following very important result:

Proposition 3.2 (Weyl law for Pseudo-Laplacians). There is a constant C > 0

such that N.�/ � C�2 as � ! 1. As a consequence, there are C1 > 0; C2 > 0

such that for all h > 0 small

C1h
�2 � j¹j 2 NI h=2 � hj � 2hºj � C2h

�2:
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Proof. Actually,N.�/ is, up to some additive constant, the number of eigenvalues
of�c that are not greater than �2 C 1

4
. The result is then proved in [5, Theorem 6].

�

3.1. Ellipticity in the mean

Lemma 3.3. Let a 2 S0
comp.X/ be a symbol and assume that ajS�X D 0. Then

k Ophj
.a/uj k2

L2 � C jQj j2h3
j

Z

R=Z

Z

R

ja.c; �; �; 0/j2

.j�j2 � 1/2
d�d� C O.h2

j /; (4)

where the constant in the O.h2
j / depends only on some S0 seminorms of a and on

�.supp.a//, C is universal and Qj is the constant of Corollary 2.2.

Proof. Write
a.x; �/ D b.x; �/.�.x/.j�j2 � 1//;

where a and b have same (compact) space support and b is S�2, � is a smooth
compactly supported function onX that is 1 on the support of a and on the singular
circle. Then Ophj

.a/ D Ophj
.b/�.x/.h2

j� � 1/ C O.hj /, the O referring to
L2 ! L2 operator norm, and the constant depends only on S0 seminorms of

a and on �.supp.a//. From corollary 2.2, .h2
j� � 1/uj D Qjh

2
j ıc C

h2
j

4
uj . Thus

Ophj
.a/uj D Qjh

2
j Ophj

.b/ıc C OL2.hj /.
Let  be a smooth function on X that is 1 everywhere, except on the set

¹c � " < r < c C "º, and that is zero on ¹2jr � cj < "º. Then

Ophj
.a/uj D Qjh

2
j Ophj

.b /ıc CQjh
2
j Ophj

.b.1�  //ıc C OL2.hj /;

with the O.hj / depending only on S0 seminorms of a and �.supp.a//, yielding

k Ophj
.a/uj k2

L2 � 2jQj j2h4
j k Ophj

.b.1�  //ıck2
L2

C 4jQj j2h4
j k Ophj

.b /ıck2
L2 C OL2.h2

j /:

The wave front set of ıc is ¹r D c; � D 0º, which does not meet the phase space
support of b . Thus Ophj

.b /ıc is a smooth OL2.hj / function. The constant
depends only on S�2 seminorms of b , �.supp.b // and "=2, a lower bound
on the distance between supp.b / and the wave front set of ıc: so, in the end, it
depends only on �.supp.a// and some S0 seminorms of a. Finally, Proposition
2.5 gives us the upper bound

k Oph.b.1 �  //ıck2
L2 �

C

hj

Z

R=Z

Z

R

jb.1 �  /j2.c; �; �; 0/d�d� C Ckak2
S�2;
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and we conclude by saying that .jQj j2h4
j /j , being a `1 sequence because of

Corollary 2.4, is bounded by a constant depending only on X and c. �

Proposition 3.4 (ellipticity in the mean). Let aj 2 S0
comp.X/ for every j � 0 and

assume that
S

j .�.supp.aj /// � K for some fixed compact set K � X and that

the family is bounded in S0. Assume that for each j , .aj /jS�X D 0. Then

h2
X

h=2�hj �2h

k Ophj
.aj /uj k2

L2 � Ch sup¹kaj k2
S0º C O.h2/;

where k � kS0 is some S0 seminorm, C is universal, and the constant in the O.h2
j /

depends only on K and sup¹kaj k2
S0º.

Proof. Let I be the supremum over j � 0 of the

C

Z

R=Z

Z

R

jaj .c; �; �; 0/j
2

.j�j2 � 1/2
d�d�;

where C is the constant in (4) and K is the constant in the O.h2
j / of (4), which

depends only on K and sup kaj k2
S0 for some S0 seminorm. Then, using Weyl’s

law and corollary 2.4,

h2
X

h=2�hj �2h

k Ophj
.aj /uj k2

L2 � h
X

h=2�hj �2h

Œ2I jQj j2h4
j C 2Kh3� � 2hC 0I CK 0h2;

and we conclude by considering that for some suitable k � kS0 , I � sup¹kaj k2
S0º.

�

3.2. Bound on the variance. In this section, we shall prove some bounds on the
variance M.a; �/ defined in Definition 3.1.

Lemma 3.5. Let b 2 C1
c .T �X/. Then, there is some universal constant C such

that for all h > 0 small

h2
X

j

k Oph.b/uj k2
L2 � C

Z

T �X

jbj2 C O.h/:

Proof. We write

h2
X

j

k Oph.b/uj k2
L2 � h2k Oph.b/k

2
HS D h2 Tr.Oph.b/

� Oph.b//

D h2 Tr.Oph.jbj2 C fh//;
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where fh are smooth functions such that supp fh � supp b is compact, and
kfhkSp D O.h/ for each p 2 Z. Here HS means the Hilbert–Schmidt norm.
We finally apply the trace formula of Proposition 1.3. �

Proposition 3.6. Let a 2 S0
comp.X/. There is a universal constant C such that for

all h > 0 small,

Y.a; h/2 � C

Z

S�M

jaj2 C O.h/;

where Y is defined in Definition 3.1 by (2).

Proof. Let us denote f� .x; �/ D f .x; ��/ for any � > 0 and any symbol f . Let
b 2 C1

c .T
�X/ be such that b.x; �/ D �.j�j/a

�

x; �
j�j

�

, where � 2 C1
c ..0;1// is

non-negative and such that � D 1 on Œ2=5; 5=2�. From Proposition 3.4 (with the
symbols a � b), we get Y.a � b; h/ D O.h1=2/, so

Y.a; h/2 � 2Y.b; h/2 C O.h1=2/2 D 2Y.b; h/2 C O.h/:

So we may focus on Y.b; h/.
Now, since Oph� .f / D Oph.f� / (because of the quantization procedure), let

us denote �j D hj=h. Then,

Y.b; h/2 D h2
X

h=2�hj �2h

k Oph.b�j
/uj k2

L2

� 2h2
X

h=2�hj �2h

k Ophj
.b � b1=�j

/uj k2
L2 C 2h2

X

h=2�hj �2h

k Oph.b/uj k2
L2 :

Since
Z

T �X

jbj2 � C

Z

S�X

jaj2;

by the previous lemma, it is enough to prove that

h2
X

h=2�hj �2h

k Ophj
.b � b1=�j

/uj k2
L2 D O.h/:

Now, since 1=2 � �j � 2, the b�b1=�j
are bounded in S0, have a uniform support

in space �.supp.b � b1=�j
// � �.supp.a//, vanish on ¹4=5 < j�j < 5=4º � S�X ,

the result follows from Proposition 3.4. �

Proposition 3.7 (variance bound). If a 2 S0
comp.X/, then for some universal

constant C , as � ! 1,

M.a; �/2 � C

Z

S�X

jaj2 C O.��1/



Quantum ergodicity for pseudo-Laplacians 1613

Proof. Let h D 1=.2�/. Let

I WD

Z

S�X

jaj2;

let C;K > 0 denote the constants from Proposition 3.6, C being as in the
proposition, andK being the constant from theO.h/ (for large enoughh, Y.a; h/ D

0 so K exists; however, K depends on a). We get

N.�/M.a; �/2 D
X

�j ��

ˇ

ˇ

ˇ

ˇ

hOphj
.a/uj ; uj i �

Z

S�X

a

ˇ

ˇ

ˇ

ˇ

2

�
X

�j ��

2

ˇ

ˇ

ˇ

ˇ

Z

S�X

a

ˇ

ˇ

ˇ

ˇ

2

C 2jhOphj
.a/uj ; uj ij2

�
X

�j ��

2I C 2k Ophj
.a/uj k2

L2

by Cauchy–Schwarz (since S�X has measure 1)

D 2N.�/I C 2
X

hj �2h

k Ophj
.a/uj k2

L2

Now, we split the hj � 2h into intervals of Ik D 4kh
�

1
2
; 2

�

for k � 1. As the hj

decrease, there is a maximal k0 such that Ik0
contains some hj .

By definition of Y and by Proposition 3.6,

X

hj 2Ik

k Ophj
.a/uj k2

L2 D
Y.a; 4kh/2

.4kh/2
� 16�kh�2CI C 16�kh�24khK:

It follows
X

hj �2h

k Ophj
.a/uj k2

L2 � CIh�2
X

1�k�k0

16�k CKh�1
X

1�k�k0

4�k

� CIh�2 CKh�1 D 4CI�2 C 2K�;

thus N.�/M.a; �/2 � 2.N.�/ C 4C�2/I C 4K�. We conclude using again
Proposition 3.2. �

4. Egorov theorem

This section deals with step 2: similarly to [16], we want to prove that propagating
some symbol a through the geodesic flow does not changeM.a; �/ too much. The
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main difference here is the fact that the operator we study (the pseudo-Laplacian)
is not the generator of the propagator we use. From a geometric point of view,
we solve this by requiring that our symbols have a support far from the singular
circle.

The main result of this section is proposition 4.4, which gives a precise state-
ment about the idea above.

4.1. A good set for propagation. We define

†T D ¹.z; �/ 2 T �X W for all jt j � T;ˆt .z; �/ … T �X0 \ ¹� D 0ºº;

where ˆt is the geodesic flow on T �X and X0 the region where the coordinate �
is defined in the cusp.

Proposition 4.1. †T is an open set of full measure.

Proof. The flowˆW .t; .z; �// 2 Œ�T; T ��T �X 7! ˆt .z; �/ is continuous, thus the
inverse image of the closed set S D ¹� 2 T �X; � 2 T �X0 \ ¹� D 0ºº is closed.
As Œ�T; T � is compact, the projection pW Œ�T; T � � T �X ! T �X is closed, so
ST D p.ˆ�1.S// is a closed subset of T �X . Therefore †T D T �XnST is an
open subset of T �X . It remains to prove the “full measure” part: one easily notes
that

†T D
\

jr j�T;r2Q

ˆ�r .T �Xn.T �X0 \ ¹� D 0º//:

Now, T �X0 \ ¹� D 0º has null measure, thus its complement has full measure,
and so has ˆr.T �Xn.T �X0 \ ¹� D 0º// becauseˆr is a diffeomorphism. �

4.2. Flow invariance of the eigenfunctions

Lemma 4.2. Let T > 0, let a 2 C1
c .T �X/ with supp.a/ � †T . Then there exists

some constant C > 0, depending only on a and T , such that for every j � 0, and

every 0 � t � T ,

jhOphj
.a/uj ; uj i � hOphj

.a ıˆt /uj ; uj ij � Chj :

Proof. Let P WD .h2
j� � 1/; then we have

Puj D h2
jQj ıc C

h2
j

4
uj ;

and ıc is H�1 (see the beginning of Section 2.1 for the definition) and .h2
jQj /j is

in `2.N/ (Proposition 2.4) hence bounded by D.
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Let sj .t / WD hOphj
.a ıˆt /uj ; uj i; every sj is smooth, and

@tsj .t / D hOphj
.¹p; a ıˆt º/uj ; uj i

D � ih�1
j hŒP;Ophj

.a ıˆt /�uj ; uj i C ihj hR.hj ; t /uj ; uj i

D
�i

hj

hP Ophj
.a ıˆt /uj ; uj i �

�i

hj

hOphj
.a ıˆt /Puj ; uj i

C hj hR.hj ; t /uj ; uj i

D U � V CW:

In this computation, for every 0 � t � T , R.h; t/ 2 ‰�1
h

.X/ is a pseudodifferen-
tial operator satisfying

sup¹kR.h; t/kL2!L2 I 0 < h < h0; 0 � t � T º < 1:

Therefore jW j � C1hj .

Next, we get

jV j D
ˇ

ˇ

ˇ

1

hj

hOphj
.a ıˆt /Puj ; uj i

ˇ

ˇ

ˇ

� hj jQj hOphj
.a ıˆt /ıc ; uj ij C

hj

4
jhOphj

.a/uj ; uj ij:

Let us notice that WFh.ıc/ � ¹r D c; � D 0º, whereas WFh.Oph.a ı ˆt // �

ˆ�t .†T / is at positive distance from ¹� D 0º (uniformly in jt j � T ). Therefore,
k Ophj

.a ı ˆt /ıckL2 � C 0
j .t /h

2
j , where .C 0

j .t //j;0�t�T is bounded by B1 > 0,
so that .h2

jQjC
0

j .t //j �1;0�t�T is bounded by B2 D B1D > 0. Thus for some
constant B > 0 depending only on a and T , jV j � Bhj .

Finally, using our quantization procedure’s characteristics,

ihjU D hP Ophj
.a ıˆt /uj ; uj i

D huj ; Ophj
.a ıˆt /�Puj i

D huj ; Ophj
. Na ıˆt /Puj i;

so the same argument as forV can be used to get jihjU j � B 0h2
j hence jU j � B 0hj .

So we have j@t sj .t /j � .C1 C B C B 0/hj D Ahj uniformly in 0 � t � T , where
clearly C1; B; B

0 depend only on a and T . This yields jsj .t / � sj .0/j � AT hj

when integrating. �
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A direct consequence is the following:

Corollary 4.3. Let T > 0, let a 2 C1
c .T �X/ with supp.a/ � †T . There exists

some constant C > 0 such that for every j � 0,

jhOphj
.a � haiT /uj ; uj ij � Chj

with haiT WD 1
T

R T

0 a ıˆtdt .

An easy argument then yields (taking into account the fact that a � haiT has
average zero):

Proposition 4.4. Let T > 0, let a 2 C1
c .T �X/ with supp.a/ � †T . Then, as

� ! 1, M.a � haiT ; �/ ! 0.

5. Analysis far in the cusp

If we joined the main results of Sections 3 and 4, we would be able to prove the
main theorem for symbols with average zero. This will be done in section 6.

But if we want to prove the main theorem for general symbols in S0
comp.X/,

we have to find some symbols with non-zero average for which the result holds.
A direct proof turns out to be difficult: so we will exhibit symbols s with average
arbitrarily close to some non-zero constant and such that lim sup�!1 M.s; �/ is
arbitrarily close to 0.

Before, we need to introduce some cutoff functions: let us set some R > ec0 ,
and �R be a smooth nondecreasing function such that

�R.r/ D 1 on ŒRC 1;1/; �R.r/ D 0 on .�1; R�: (5)

Let �RWX ! Œ0I 1� be a smooth function that is zero outside the cusp and such
that if r > c0; � 2 R=Z, �R.r; �/ D �R.r/. Note that 1 � �4

R 2 C1
c .X/.

We will show the following:

Proposition 5.1. There exists a universal constant C > 0 such that for any

R > ec,

lim sup
�!1

M.1 � �8
R; �/ � Ce�R=4:

Our first step is to understand where the mass of the uj is localized.
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Let us write, for every j � 0; r > c0; � 2 R=Z,

uj .r; �/ D er=2
X

k2Z

vj;k.r/e
2ik�� :

This is similar to the expansion of uj as a Fourier series in � , but the coefficients
were renormalized, so that

R

�2R=Z juj j2 dvg D
P

k2Z jvj;k j2.r/ dr . Note that by
definition of the pseudo-Laplacian, for r > c, vj;0.r/ D 0.

Let �1 be a smooth nondecreasing function such that �1 D 0 on .�1; 0�, and
�1 D 1 on Œ1;1/. We will now denote �h;k.r/ D �1.� ln 2jkjh� � r C R=2/.
This function is going to be used to weaken the growth of the function .2�kh/2e2r ,
which is not a symbol: indeed, �h;k.r/ D 0 as soon as .2�hk/2e2r � eR.

Let �2 be a smooth non-negative compactly supported function such that
�2 D 1 on Œ�3; 3�, and �2 D 0 outside .�4; 4/, and j�2j � 1.

We first have the following straightforward formula: for u 2 H 1.X/, in the
cusp,

jrguj2g .r; �/ D j.@ru/.r; �/j
2 C e2r j.@�u/.r; �/j

2:

Corollary 5.2. For j � 0, the following bounds hold true:

X

k2Z

.2�k/2
1

Z

c0

e2r jvj;kj2.r/ dr � �2
j C

1

4
; (6)

X

k2Z

1
Z

c0

jvj;kj2.r/ dr � 1; (7)

X

k2Z

1
Z

c0

jv0
j;kj2.r/ dr � 2�2

j C 1 (8)

Proof. For the bound (6), we estimate

�2
j C

1

4
D huj ; �cuj i D kruj k2

L2

�

Z

r>c0

jrguj j2g dvg

�

Z

r>c0

� Z

R=Z

e2r j@�uj .r; �/j
2d�

�

e�rdr

�
X

k2Z

.2k�/2
Z

r>c0

e2r jvj;k j2.r/ dr;
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because of the normalization of vj;k. The bound (7) is a direct consequence of the
fact that kuj k2

L2 D 1. As for (8), note that in the cusp,

.@ruj /.r; �/ D er=2
X

k2Z

�1

2
vj;k C v0

j;k

�

e2ik�� ;

so

�2
j C

1

4
�

1
Z

c0

Z

R=Z

e�r j@ruj .r; �/j
2 d�dr �

X

k2Z

1
Z

c0

ˇ

ˇ

ˇ

vj;k

2
C v0

j;k

ˇ

ˇ

ˇ

2

dr

�
X

k2Z

1
Z

c0

�1

2
jv0

j;kj2 �
ˇ

ˇ

ˇ

vj;k

2

ˇ

ˇ

ˇ

2�

dr �
1

2

X

k2Z

1
Z

c0

jv0
j;kj2.r/ dr �

1

4

and the proof is complete. �

Let now h > 0 be very small, and � D h�1. Let !2
j D .h�j /

2, for every j such
that h=2 � hj � 2h (we say that j is in the range): then, !j is between 1=2 and 2.

Lemma 5.3. In the cusp region r > c0,

.�h2@2
r � !2

j C .2kh�/2e2r /vj;k D 0:

We can therefore extend vj;k as a smooth function of the whole real line with the

same properties.

This will not be used in the paper, but one can notice that with the substitution
w.r/ D vj;k.2k�e

r/, the differential equation becomes x2w00.x/ C xw0.x/ C

.�2
j � x2/w.x/ D 0, thus making w a solution of the modified Bessel differential

equation with pure imaginary parameter.
The following lemma means that microlocally, the mass of vj;k is concentrated

near the curve �2 C .2kh�/2e2r D !2
j :

Lemma 5.4. There exists a constant CR depending only onR (and not on h) such

that for every j in the range, for every 1 � jkj � 3�,

k Oph..1� �2/.�/�
2
R.r/�h;k.r/

2/.�Rvj;k/k
2
L2

� CRh
2kvj;kk2

L2.c0;1/
C CRh

4kv0
j;kk2

L2.c0;1/
:

Proof. Let us denote here

f
.1/

j;k
WD Oph.�R.r/�h;k.r/.�

2 � !2
j C .2kh�/2e2r//.�Rvj;k/

D �R.r/�h;k.r/.�2h
2�0

R.r/v
0
j;k � h2�00

R.r/vj;k/;
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and

fj;k WD Oph

�

�R.r/�h;k.r/
1� �2.�/

�2 � !2
j C .2kh�/2e2r

�

f
.1/

j;k
:

Using [17, Theorem 4.23], (inside the symbol, when .2jkjh�/er > eR=2, the �h;k

factor makes everything vanish; moreover, when j�j < 3, the 1� �2 factor makes
everything vanish as well, so that the denominator of the symbol in the definition
of fj;k is always bounded below by 5, so all relevant S0 seminorms are bounded
uniformly in j , k, h, as long as h � jkjh � 3 and j is in the range) we may write,
for some constantKR > 0 depending only on R:







1

h2
fj;k







2

L2
D

1

h4





 Oph

�

�R.r/�h;k.r/
1 � �2.�/

�2 � !2
j C .2hk�/2e2r

�

f
.1/

j;k







2

L2

�
1

h4





 Oph

�

�R.r/�h;k.r/
1 � �2.�/

�2 � !2
j C .2hk�/2e2r

�





2

L2!L2
kf

.1/

j;k
k2

� KR.kvj;kk2
L2..c0;1/

C kv0
j;kk2

L2..c0;1//
/:

Now, when h is small, 1 � jkj � 3�, j is in the range, the symbols

a� WD �R.r/�h;k.r/
1� �2.�/

�2 � !2
j C .2kh�/2e2r

;

aC WD �R.r/�k;h.r/.�
2 � !2

j C .2kh�/2e2r /;

a� WD a�aC

are bounded by a constant depending only onR in respectively the class of symbols
S.h�i�2/, S0.h�i2/, S.1/ (using the notation of [17, Section 4.4.1]), thus by [17,
Theorems 4.18, 4.23] we have k Oph.a�/Oph.aC/� Oph.a�/kL2!L2 � CRh, for
some constant CR > 0 depending only on R. Therefore, we get that for some
constant CR > 0 depending only on R,

k Oph.a�/.�Rvj;k/k
2
L2 � 2CRh

2k�Rvj;kk2
L2 C 2kfj;kk2

L2

� CR.h
2kvj;kk2

L2.c0;C1/
C h4kv0

j;kk2
L2.c0;C1/

/: �

Corollary 5.5. There exists a constant CR depending only on R such that, when

j is in the range and h is small,

X

1�jkj�3�

k�R.r/Oph..1� �2/.�/�
2
R.r/�

2
h;k.r//.�Rvj;k/k

2
L2 � CRh

2:
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Proof. It is a consequence of the previous lemma and of Corollary 5.2, more
precisely estimates (7) and (8). �

The following result is the main property of localization we were aiming at. It
tells us that each �4

Ruj is localized along his lowest modes in the cusp, and each
of these modes is microlocalized in a compact zone that depends very little on j :
that is, vj;k is microlocalized in the zone j�j � 4, R � r � R=2� ln 2hjkj� .

Let us first define the operator Ah;k WD Oph.�2.�/�
2
R.r/�h;k.r/

2/.

Proposition 5.6. Let j � 0 be in the range. For some universal constant C > 0,

and some constant CR > 0 depending only on R > c,

k�4
Ruj k2

L2 � 4
X

1�jkj�3�

k�R.r/Ah;k.�Rvj;k/k
2
L2 C Ce�R C CRh

2:

We split the proof in several steps.

Lemma 5.7. Let j � 0 be in the range. Then

X

jkj>3�

k�4
Rvj;kk2

L2 � e�2R:

Proof. Using (6), we obtain the sequence of inequalities

X

jkj>3�

k�4
Rvj;kk2

L2 �
1

36

X

jkj>3�

e�2R .2k�/
2

�2

1
Z

R

e2r jvj;kj2 dr

�
1

36e2R�2

X

k2Z

.2�k/2
1

Z

c0

e2r jvj;kj2 dr

� e�2R
�2

j C 1
4

36�2
� e�2R

which proves the claim. �

Lemma 5.8. Let j � 0 be in the range. Then the following holds true:

X

1�jkj�3�

k�4
R.1� �2

h;k/vj;kk2
L2 � 40e�R C 3h2:



Quantum ergodicity for pseudo-Laplacians 1621

Proof. Using again (6), if bk is the maximum of R=2 � 1� ln 2�jkjh and c0,

X

1�jkj�3�

k�4
R.1 � �2

h;k/vj;kk2
L2 �

X

1�jkj�3�

1
Z

bk

jvj;kj2.r/ dr

�
X

1�jkj�3�

1
Z

bk

e�R.2e�kh/2e2r jvj;k j2.r/ dr

� e2h2e�R
X

k2Z

.2�k/2
1

Z

c0

e2r jvj;kj2.r/ dr

� 40e�R C
1

4
e2�Rh2 � 40e�R C 3h2

which proves the claim. �

Now, we can prove Proposition 5.6:

Proof of Proposition 5.6. One easily sees that

k�4
Ruj k2

L2 D
X

jkj�1

1
Z

R

�R.r/
8jvj;kj2.r/ dr �

X

jkj�1

k�4
Rvj;kk2

L2 :

Now, we split the sum between the jkj > 3�, the sum of which is not greater than
e�2R (Lemma 5.7), and the 1 � jkj � 3�. Moreover, if 1 � jkj � 3�,

k�4
Rvj;kk2

L2 � 2k�4
R.1� �2

h;k/vj;kk2
L2 C 2k�4

R�
2
h;kvj;kk2

L2 :

From Lemma 5.8 we see that the first term contributes at most 6h2 C 80e�R, so
we have to bound the second term. Now,

2k�4
R�

2
h;kvj;kk2

L2 � 4k�RAh;k.�Rvj;k/k
2
L2

C 4k�R Oph..1� �2.�//�
2
h;k.r/�R.r/

2/.�Rvj;k/k
2
L2 :

We saw from Corollary 5.5 that the second term is at most CRh
2, where CR > 0

depends only on R, and this ends the proof. �

Now, we turn the pointwise localization estimate we have on the �4
Ruj into an

average estimate on j . Thanks to Hilbert–Schmidt norm estimates (operators will
always be considered as from the relevant L2 spaces into themselves) we obtain
significantly better results.
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Let us define the operator A0
h;k

WD Ah;k�R, then let

Aw.r; �/ WD �R.r/e
r=2

X

1�jkj�3�

.Ah;k.�Rwk//.r/e
2ik��

for every r > c0; � 2 R=Z, where w.r; �/ D er=2
P

k2Z wk.r/e
2ik�� .

Proposition 5.9. There exist constants C > 0 universal, and CR > 0 depending

on R only such that

h2
X

h=2�hj �2h

k�4
Ruj k2

L2 � CRh
2 C Ce�R C 4h2

X

1�jkj�3�

kA0
k;hk2

HS:

Proof. From Proposition 5.6, we know that for any j in the range, k�4
Ruj k2 �

200e�R C CRh
2 C 4kAuj k2

L2 . So, using Weyl’s law, and the fact the .uj / are
orthonormal,

h2
X

h=2�hj �2h

k�4
Ruj k2

L2 � Ce�R C CRh
2 C 4h2kAk2

HS:

Now, let .fp/ be an orthonormal basis of L2.R;1/, let .gq/ be an orthonormal
basis of ¹f 2 L2.X/; 1r>Rf D 0º. Then the family of all er=2fp.r/e

2ik�� and
the gq , is an orthonormal basis of L2.X/. Therefore, when f is an element of this
orthonormal basis, we realize that only when f D er=2fp.r/e

2ik�� , 1 � jkj � 3�,
kAf k2 does not vanish. In that case, it will always be lower or equal than
k.�R ı Ah;k ı �R/fpk2

L2.R/
. From this, it follows that

kAk2
HS �

X

1�jkj�3�

k�R ı Ak;h ı �Rk2
HS �

X

1�jkj�3�

kA0
h;kk2

HS;

which completes the proof. �

Now, it is easy to give an upper bound on the Hilbert–Schmidt norm of the
operators, and to turn it into a complete estimate:

Proposition 5.10. The following bound holds true for 1 � jkj � 3�:

kA0
h;kk2

HS � 4.h�/�1.� ln 2jkjh� � R=2/C

Proof. Let  2 C1
c .R

2/, O be its Fourier transform with respect to its second
variable. Let T D Oph. /�R. For any f 2 L2.R/,

2h�Tf .x/ D

Z

R2

ei �.x�y/
h  

�x C y

2
; �

�

�R.y/f .y/ dyd�

D

Z

R

O 
�x C y

2
;
y � x

h

�

�R.y/f .y/ dy;
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therefore

k2h�T k2
HS D

Z

R2

ˇ

ˇ

ˇ

O 
�x C y

2
;
y � x

h

�ˇ

ˇ

ˇ

2

�2
R.y/ dxdy

�

Z

R2

ˇ

ˇ

ˇ

O 
�x C y

2
;
y � x

h

�ˇ

ˇ

ˇ

2

dxdy

� h

Z

R2

j O .x; y/j2dydx D 2h�k k2
L2 :

Now, we obtain

k�2.�/�
2
R.r/�

2
1.� ln 2jkjh� � r CR=2/k2

L2

�

Z

R2

1¹j�j�4º1¹r�Rº1¹r�R=2�ln 2jkjh�º d�dr � 8.� ln 2jkjh� �R=2/C:

This completes the proof. �

Corollary 5.11. The following estimate holds true:

4�h2
X

1�jkj�3�

kA0
k;hk2

HS � Ce�R=2 C CRh;

where C > 0 is universal and CR depends only on R.

Proof. Using Stirling’s formula, assuming that 2�heR=2 � 1 (else the sum is zero
and the bound holds), for some universal constant C ,

h�

8

X

1�jkj�3�

kA0
k;hk2

HS

�
X

1�k�3�

�

� ln 2kh� �
R

2

�C

�
X

1�k�.2�/�1�e�R=2

� ln 2kh� �R=2

� �
�e�R=2

2�
ln 2h� �

�e�R=2

2�

R

2
�

X

1�k�.2�/�1�e�R=2

ln k

�
�e�R=2

2�
ln
�e�R=2

2�
�
�e�R=2

2�
ln

��e�R=2

2�

�

C
2�e�R=2

2�
C C

�
e�R=2

h�
C
Ch

h
: �
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Corollary 5.12. For some universal constant C > 0 and some constant CR

depending only on R, one has

Y 0.�4
R; h/ WD h2

X

h=2�hj �2h

k�4
Ruj k2

L2 � Ce�R=2 C CRh:

Proof. It is a consequence of all that precedes. �

Proof of Proposition 5.1. We write

M.1 � �8
R; �/

2 D
1

N.�/

X

�j ��

ˇ

ˇ

ˇ

ˇ

hOphj
.1 � �8

R/uj ; uj i �

Z

S�X

.1 � �8
R/

ˇ

ˇ

ˇ

ˇ

2

�
1

N.�/

X

�j ��

ˇ

ˇ

ˇ

ˇ

Z

X

�8
Rjuj j2 dvg �

Z

S�X

�8
R

ˇ

ˇ

ˇ

ˇ

2

�
2

N.�/

X

�j ��

ˇ

ˇ

ˇ

ˇ

Z

X

�8
Rjuj j2 dvg

ˇ

ˇ

ˇ

ˇ

2

C 2

� Z

S�X

�8
R

�2

D
2

N.�/

X

�j ��

ˇ

ˇ

ˇ

ˇ

Z

X

�8
Rjuj j2 dvg

ˇ

ˇ

ˇ

ˇ

2

C
2

Vol.X/

� Z

X

�8
Rdvg

�2

:

The second term is lower than some Ce�2R for some constant C independent
of R, because dvg.r; �/ D e�rdrd� . The first term is not greater than

1

N.�/

X

1�4k�4h0�

22�4k�2Y 0
�

�4
R;
22k�1

�

�2

;

which by Corollary 5.12 is not greater than (using again Weyl’s law)

C

�2

X

1�4k�4h0�

Ce�R=222�4k�2 C CR2
1�2k� � Ce�R=2 C CR

1

�
:

This concludes the proof. �

6. Proof of the main theorem

Let a 2 S0
comp.X/ and assume first that

R

S�X a d� D 0. We let T > 0 and " > 0.
We may write a D a1 C a2, where a1 2 C1

c .T �X/ and satisfies supp.a1/ � †T ,
and

R

S�X ja2j2 � "2. Then, as � ! 1,

M.a; �/ � M.a1; �/C C"CO.��1/ � M.ha1iT ; �/C C"C o.1/

� M.haiT ; �/C 2C"C o.1/ � C.khaiT kL2.S�X/ C 2"/C o.1/;
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where we applied Proposition 3.7 to a2, then Proposition 4.4 to a1, then Proposi-
tion 3.7 to ha2iT and to haiT . We first take the lim sup as � ! 1, then let � go to
zero, and finally let T go to 1, and the L2-ergodic theorem proves the result.

In the general case, let a 2 S0
comp.X/ and let ˛ WD

R

S�X
a. Let us denote, for

every R > ec0 , IR WD
R

S�X
�8

R. Then IR D O.e�R/, thus, if R is large enough,
aR D a � ˛

1�IR
.1 � �8

R/ belongs to S0
comp.X/ with

Z

S�X

aR D 0:

Thus we have M.aR; �/ ! 0 as � ! 1. Now, by Proposition 5.1

lim sup
�!1

M
� ˛

1� IR

.1� �8
R/; �

�

�
C j˛j

1 � IR

e�R=4:

Thus,

lim sup
�!1

M.a; �/ �
C j˛j

1 � IR

e�R=4:

Letting R ! 1 yields M.a; �/ ! 0 and the proof of Theorem 0.1 is complete.
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