Cours 3
Propontion: $\left(\mu_{j}\right)_{j \in \mathbb{N ^ { * }}}$ suite de polatililités eve $\left(\mathbb{R}, B_{\mathbb{R}}\right)$ Il ericte un suite de v.a.e.i $\quad\left(X_{j}\right)_{j \in N^{*}}$ sur $\left(t-1 t, B_{[0,1,}, P\right)$ C) Ebengure t_{\cdot}
X_{j} eet de lai μ_{j}
prame: O_{n} a contuit v.a.i.

$$
Y_{j}=\sum_{k=1}^{\infty} \frac{1}{2^{k}} D_{\varphi_{j}(k)}
$$

Cemer $\forall_{j} Y_{j}$ est de lai unifone sur $[0,1 L$ peuve: Om pore

$$
Y_{j \mu}=\sum_{k=1}^{n} \frac{1}{2^{k}\left(D_{\varphi, k}\right) \rightarrow D_{k} ? ~}
$$

On vera: la loi d'une somme de v.a.i ne dépend que de la loi de chaque v.a. donc la loi de Yju est la míne que la loi de

$$
z_{n}=\sum_{k=1}^{n} \frac{1}{2^{k}} D_{k} \text { déraloppernt } \begin{aligned}
& \text { deadique dem }[0,1 c
\end{aligned}
$$

On montre alou que $Z_{n} \rightarrow Z=$ idectité sue [0, 1T
Pour obtemir la loi de Y_{j} :

$$
Y_{j}=\lim _{h \rightarrow \infty} Y_{j, n} \quad \text { (croisscnte) }
$$

$$
\begin{aligned}
\Rightarrow P\left(Y_{j} \leqslant y\right) & =\lim _{n \rightarrow \infty} P\left(Y_{n} \leqslant y\right) \\
& =\lim _{n \rightarrow \infty} P\left(Z_{n} \leqslant y\right) \\
& =P(Z \leqslant y)=y \\
& (\text { car } z=\text { idenentité })
\end{aligned}
$$

lame: (Simplation d'me v.a)
Soit Y v.a.ir de loi uniforne sur $[0,1]$
On fite une fonction de répactition $F: M P \rightarrow[0,1]$
On deffinit la prendo-imerse
$\forall t \quad C(t)=\inf \{x \mid F(x) \geqslant t\}$
Alor $G(y)$ adnet F come fouction de répartition.

Exemple:

preane: On olverve que par défirition

$$
F(x) \geqslant t \quad \Longleftrightarrow x \geqslant G(t)
$$

$$
\Rightarrow \forall x \in \mathbb{R} \quad P(G(y) \leqslant x)=P(y \leqslant F(x))=F(x)
$$

donc $F(x)$ est l fountion de reppartition
de $G(y)$.

A partin de Y_{j} on compore ave ler Fenction G_{j} obteme par lemer à partir der lois μ_{i} :
$\sigma_{j}\left(Y_{j}\right)$ et le loi μ_{j} et sont indípendanter
9.4 Sormer de variabler al'átoiver indépendantes. Sorent μ et ν mesuren de prababilités sur \mathbb{R}^{d}

Definition (Produit de courolution de dasp metureer) $\mu * \nu$ et la meure image de $\mu \otimes \nu$ l'application $(x, y) \xrightarrow{s} x+y$
Renarque : $\forall \varphi: \mathbb{R}^{d} \longrightarrow \mathbb{R}_{+}$mesurable

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}^{v} \varphi(z \mid \mu * \nu(d z) & =\int_{\text {deffantion }} \varphi(x+y) \mu \otimes v(d x d y) \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \varphi(x+y) \mu(d x) \nu(d y)
\end{aligned}
$$

$$
\text { par Fulini-lonmulli }=\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}^{\varphi(x+y)} \mu(d x)\right)^{\nu(d y)} \text {. }
$$

Proporition Soient X, Y v.ce. i' à valuwr daun R^{d}
i) La loi de $X+Y$) et $P_{X} * P_{Y}$

En panticalier, si' ' \bar{x} ect de deminte' p_{x} et Y de eut de de itité densité la con alournourion $x+y$ ent
ii) $L a$ Fonction coracterristique de $x+y$ est

$$
\Phi_{x+y}(\xi)=\Phi_{x}(\xi) \Phi_{y}(\xi)
$$

(de façon équiralaute: si μ et v sont deay mesuren de polacalilités seer \mathbb{R}^{d}

$$
\widehat{\mu * v}=\hat{\mu} * \hat{v}
$$

iii) si X et Y sant dam L^{2} alon

$$
\begin{aligned}
K_{x+y} & =K_{x}+K_{y} \\
\text { our } K_{x} & =\left(\operatorname{cov}\left(x_{i}, x_{j}\right)\right)
\end{aligned}
$$

En particulier si $d=1$

$$
(\operatorname{cov}(x, x)=\operatorname{var}(x))
$$

d'oun $\operatorname{var}(x+y)=\operatorname{var}(x)+\operatorname{var}(y)$
preve: i) On suppore x, y v.a.i

$$
\Leftrightarrow P_{(x, y)}=P_{x} \otimes P_{y}
$$

Ruppel: supporom $f: \mathbb{R}^{d} \not \mathbb{R}^{d} \longrightarrow \mathbb{R}_{+}$menwalle

$$
\mathbb{E}[f]=1, f(x, y) P_{(x u)}(d x d y)
$$

$$
x, y \text { indépendenter }=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}{ }^{f}(x, y) P_{x}(d x) P_{y}(d y)
$$

alon

$$
\begin{aligned}
& \text { alow } \mathbb{E}[\varphi(x+y)]=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \varphi(x+y) P_{x}(d x) P_{y}(d y) \\
& \text { por définition }
\end{aligned}=\int_{\mathbb{R}^{d}} \varphi(z) P_{x} * P_{y}(d z) \quad \text {. }
$$

Si de pleur $\begin{array}{ccc}X & \text { ent de denntéé } & p_{x} \\ Y & \text { a } & p_{y}\end{array}$

$$
\mathbb{E}[\varphi(x+y)]=\int_{\mathbb{R}^{\alpha}} \int_{\mathbb{R}^{d}} e(x+y) p_{x}^{(x)} d x p_{y}(y) d y
$$

changement de variable $x+y=z \Rightarrow x=z-y$

$$
\begin{aligned}
F-T & =\int_{\mathbb{R} d} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e(z) p_{x}(z-y) d z p_{y}(y) d y \\
\int_{\mathbb{R}^{d}} \varphi(z) & \underbrace{\left.\int_{\mathbb{R}^{d}}^{p_{x}(z-y) p_{y}(y) d y}\right)}_{p_{x}^{*} p_{y} \text { at }} d z
\end{aligned}
$$ la demité de $x+y$.

Obrever que la comolution et bien definie car P_{x} et P_{Y} sont dam L^{\prime}.
ii) Par définition:

$$
\Phi_{x+y}(\xi)=\mathbb{E}\left[e^{i \xi(x+y)}\right]
$$

$$
\text { par F.-T. } \quad \begin{aligned}
& =\mathbb{E}\left[e^{13 x}\right] \mid E\left[e^{3 y}\right] \\
& =\phi_{x}(\xi) \phi_{y}(\xi)
\end{aligned}
$$

iii) Mutrice de covariance:

$$
x=\left(x_{1}, \ldots, x_{d}\right) \quad y=\left(y_{1}, \ldots, y_{d}\right)
$$

indépendanter $\Rightarrow \operatorname{cov}\left(x_{i}, y_{j}\right)=0 \quad \forall i, j$
par défimition: $\left(\cos \left(x_{i}+y_{i}, x_{j}+y_{j}\right)\right)$ ect le matrice de covariance de

$$
=\left(\cos \left(x_{i}, x_{j}\right)+\operatorname{cov}\left(y_{i}, y_{j}\right)\right)
$$

d'our

$$
k_{x+y}=k_{x}+k_{y}
$$

Problime: Tromer la lai d'ue same d'in gund nounbre de v.a. i.
On notera sownent $S_{n}=x_{1}+\cdots+X_{n}$
la some de u variabler aléatoins
Thérèn (loi faible de grands woubres) Soit $\left(X_{n}\right)_{n \geqslant 1}$ une xuite de v.a.r.i de même loi. Si $\left[E\left[X_{1}^{2}\right]<\infty\right.$ alon

$$
\frac{1}{n} S_{n} \xrightarrow[n \rightarrow m]{L^{2}} \mathbb{E}\left[x_{1}\right]
$$

$$
\begin{aligned}
& \operatorname{lE}\left[\frac{1}{n} S_{n}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[X_{i}\right] \\
& \mathbb{E}\left[\left(\frac{S_{n}}{n}-\mathbb{E}\left[x_{i}\right]\right)^{2}\right] \xrightarrow{?} 0 \\
& \frac{1}{n^{2}} \operatorname{var}\left(S_{n}\right)
\end{aligned}
$$

mais par indépendance $\operatorname{var}\left(\delta_{n}\right)=\sum_{k=1}^{n} \operatorname{var}\left(X_{k}\right)$

$$
=n \operatorname{var}\left(X_{1}\right)
$$

$$
\begin{aligned}
\mathbb{E}\left[\left(\frac{\delta_{u}}{u}-\mathbb{E}\left[x_{1}\right]\right)^{2}\right. & =\frac{1}{u^{2}} u \operatorname{var}\left(x_{1}\right) \\
& \rightarrow 0
\end{aligned}
$$

Remarquer: (1) La prewe montre que le théorème est vacie arec le hyotheser:

$$
\begin{aligned}
& \text { - } \mathbb{E}\left[x_{i}\right]=\mathbb{E}\left[x_{1}\right] \quad \forall i \\
& \text { - } \mathbb{E}\left[x_{i}^{2}\right]<\infty \\
& \cdot \operatorname{cov}\left(x_{i}, x_{j}\right)=0 \quad \forall i, j
\end{aligned}
$$

(2) loi faible: converguce L^{P} loi forte: converguce P.S.

Proporition $\left(X_{n}\right)_{n \geqslant 1}$ v.a.r.i. de mine loi t.q. $\mathbb{E}\left[X_{1}^{4}\right]<\infty<$ hppothise bate $10 \ldots$
$r+$ war

$$
{\underset{n}{n}}_{S_{n \rightarrow \infty}^{p, s}} \mid E\left[x_{1}\right]
$$

preve: On suypere, sam perte de géménalité,
que $\quad \mathbb{E}\left[x_{1}\right]=0$

$$
\mathbb{E}\left[\left(\frac{S_{n}}{n}\right)^{4}\right] \stackrel{\text { liméwrité }}{=} \frac{\sqrt{\frac{1}{n^{4}} \sum_{\substack{, i_{2}, i_{3}, i_{n}}}\left[E\left[x_{i_{1}} x_{i_{2}} x_{i_{3}} x_{i,}\right]\right.}}{\{1, \ldots, n\}}
$$

Par regroupement de paquets on oltient dans la somne que les termer oì $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ et de cardinalite' au plur $\underline{\underline{2}}$
Exemple: On sait que x_{1}, x_{2}, x_{3} sont

$$
\begin{array}{r}
\Rightarrow x_{1},\left(x_{2}, x_{3}\right) \quad \text { indépendauts } \\
\Rightarrow x_{1}, x_{2}^{2} x_{3} \quad \text { indépendarts } \\
\Rightarrow \mathbb{E}\left[x_{1} \cdot\left(x_{2}^{2} x_{3}\right)\right]=\mathbb{E}\left[x_{1}\right] \mathbb{E}\left[x_{2}^{2} x_{3}\right] \\
=
\end{array}
$$

$$
\mathbb{E}\left[\left(\frac{S_{n}}{n}\right)^{4}\right]=\frac{1}{n^{4}}\left(n \mathbb{E}\left[x_{1}^{4}\right]+c_{n} \mathbb{E}\left[x_{1}^{2} x_{2}^{2}\right]\right)
$$

our $\begin{array}{r}c_{n}=\frac{4!}{2!2!}\binom{n}{2} \\ \longrightarrow \frac{n(n-1)}{2} \\ x_{1} x_{1} x_{2} x_{2}\end{array}$

$$
\begin{aligned}
& x_{1} x_{2} x_{1} x_{2} \\
& x_{1} x_{2} x_{2} x_{1} \\
& \mathbb{I}=\left[\left(\frac{S_{n}}{n}\right)^{4}\right] \leqslant \frac{\text { courtante }}{n^{2}} \text {. } \\
& \text { donc } \sum_{n=1}^{\infty} \operatorname{IE}\left[\left(\frac{S_{n}}{n}\right)^{4}\right]<\infty \text { ! } \\
& \Rightarrow \mathbb{E}\left[\sum_{n=1}^{\infty}\left(\frac{S_{u}}{n}\right)^{4}\right]<\infty \\
& \text { d'où } \quad \sum_{n=1}^{\infty}\left(\frac{S_{n}}{n}\right)^{4}<\infty \quad \text { p.s }
\end{aligned}
$$

On couclut que

$$
\frac{S_{u}}{n} \longrightarrow 0 \text { p.s. }
$$

Cowblaire : Soit $\left(A_{n}\right)_{n \geqslant 1}$ une suite d'érénements indépendants de même prolubilité

Alon

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{A_{i}} \xrightarrow[n \rightarrow \infty]{\text { p.s. }} P\left(A_{i}\right)
$$

Interpretation de $P\left(A_{1}\right)$: la mogenue ou fréquence d'apparition d'un évémement quiand on répète une eppérience un grand nombre de fois.
(le résultat de lieppérimce menéro i)
prene: On vérifie lar hypothiser due théò̀ne precédent pour le ${ }_{V, a .} \mathbb{1}_{A_{i}}$:

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{1}_{A_{i}}\right]=P\left(A_{i}\right)=P\left(A_{1}\right) \\
& \mathbb{E}\left[\mathbb{1}_{A_{1}}^{4}\right]=\mathbb{E}\left[\mathbb{1}_{A_{1}}\right]<\infty \\
\Rightarrow & \frac{1}{n} \sum_{i=1}^{4} \mathbb{1}_{A_{i}} \xrightarrow[u \rightarrow \infty]{P \cdot S} P\left(A_{1}\right)
\end{aligned}
$$

Applicition au dévéloppement dyadique:
On rapelle gre

$$
\begin{array}{r}
\forall \omega \in[0,1] \quad \omega=\sum_{k=1}^{\infty} \frac{X_{k}(\omega)}{2^{k}} \text { ò̀ } \\
\quad X_{k} \text { v.a.i } \\
\text { de míne loi }
\end{array}
$$

Soit $p \geqslant 1$ fithé. On regroupe par paquets:

$$
\begin{aligned}
& Y_{1}=\left(x_{1}, \ldots, x_{p}\right) \\
& Y_{2}=\left(x_{p+1}, \ldots, x_{2 p}\right)
\end{aligned}
$$

sont v.ai.i de mène loi.
On couridìre ler énemenents indépendants

$$
A_{n}=\left\{Y_{n}=\left(c_{1}, \ldots, c_{p}\right)\right\}
$$

Par le crollaire:

$$
\frac{1}{n} \sum_{i=1} \|_{A_{i}} \xrightarrow[n \rightarrow \infty]{r \cdot>} P\left(A_{i}\right)=\frac{1}{2^{p}}
$$

(calculé la semaine domínes
On utilise le mème argunent pour ler variabler $Y_{1}=\left(X_{l}, \ldots, x_{l+p-1}\right)$

$$
Y_{2}=\left(X_{l+2 p}, \ldots, X_{l+3 p-1}\right)
$$

et on oltient $A_{n}=\left\{Y_{n}=\left(c, \ldots, i_{p}\right)\right\}$

$$
\frac{1}{n} \sum_{i=1}^{n} \|_{A_{i}} \xrightarrow[n \rightarrow-\infty]{P . S .} P\left(A_{i}\right)=\frac{1}{2 P}
$$

Acenri $\forall \ell$

$$
\begin{aligned}
& \frac{1}{n} \mathbb{F}\left\{j \leqslant n \mid X_{j p+l}(\omega)\right.=c_{1}, \ldots, X_{(j+1 p p+1}(\omega)=i p \\
& \longrightarrow \frac{1}{2^{p}}
\end{aligned}
$$

condurion:

$$
\begin{gathered}
\frac{1}{n} \#\left\{k \leqslant n \mid X_{k+1}(w)=i, \ldots, X_{k+p}(w)=c_{p}\right\} \\
n \rightarrow \infty \downarrow p . s \\
\frac{1}{2^{p}}
\end{gathered}
$$

i.e. la fréquence d'apparition d'm bloc de longueur p de 0 et 1 et égale à $\frac{1}{2 p}$.

Semi-grouper de courolution

$$
I=\mathbb{N}^{\operatorname{N}} \text { on } \mathbb{R}^{+}
$$

Définition: Soit $\left(\mu_{+}\right)_{t \in I}$ me fouille de menurer de probalidité's sur \mathbb{R}^{d}. On dit que $\left(\mu_{+}\right)_{t \in I}$ est un semi-geoupe de condrolution si

$$
\begin{aligned}
& \text { i) } \mu_{0}=\delta_{0} \\
& \text { ii) } \mu_{++s}=\mu_{+} * \mu_{s} \quad \forall t, s \in I
\end{aligned}
$$

Remarque: si μ_{+}est la loi de X_{t} et $\forall t, s \in I \quad X_{+}$et $X_{\text {s }}$ sont indé. pendanter alon la loi de

$$
x_{t}+x_{s} \text { est } \mu_{++s}=\mu_{+}^{*} \mu_{s} \text {. }
$$

lemes: $\left(\mu_{+}\right)_{t \in I}$ est un seni-gooupe de comoratution si $\exists \varphi: \mathbb{R} \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& t \cdot q \cdot\left(* \mid \hat{\mu}_{+}(\xi)=(\varphi(\xi))^{+} \quad \forall t \in I=\mathbb{N}\right. \\
& \text { oun }\left(* * \mid \hat{\mu}_{+}(\xi)=e^{-t \varphi(\xi) \quad \forall t \in I=\mathbb{R}_{+} .}\right.
\end{aligned}
$$

preave: On sait que

$$
\bar{\mu}_{+}^{*} \bar{\mu}_{+}{ }^{\prime}=\hat{\mu}_{+} * \hat{\mu}_{+}
$$

par deifinition $\left(\mu_{+}\right)_{+\in I}$ ent semi-grappe de conolution ssi

$$
\begin{aligned}
& {\widehat{\mu}+\mu_{+}^{*}}^{\mu_{+}} \mu_{++t^{\prime}} \quad \forall t, t^{\prime} \in I \\
& \text { ssi } \hat{\mu_{+}^{*}} \hat{\mu}_{+}=\mu_{++t^{\prime}} \quad *
\end{aligned}
$$

On vérifie mainterant que (*) et $(* *)$ satisfant la conditiou *

$$
(\varphi(\xi))^{+} \cdot(\varphi(\xi))^{t^{\prime}}=\varphi(\xi)^{t_{+} t^{\prime}} \ldots
$$

Exemples(1) $\forall n \mu_{n}$ de loi binômiale $B(n, p)$ our $p \in[0,1]: P\left(X_{n}=k\right)=C_{n}^{k} p^{k}(1-p)^{n-k}$

$$
\begin{aligned}
\hat{\mu}_{n}(\xi) & =\int e^{i 3 x} d P_{x}(d x) \\
& =\sum_{k=0}^{n} \underbrace{e^{i \xi k} C_{n}^{k}} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} C_{n}^{k}\left(e^{i \xi} p\right)^{k}(1-p)^{n-k} \\
& =\left(e^{i \xi} p+(1-p)\right)^{n} \\
C(\xi) & =e^{i 3} p+1-p
\end{aligned}
$$

RHtN.. 0..1.P....
$(\prec) \vee 1 \geqslant v \mu_{t}$ wor ar larsion de parcinètre t :

$$
P_{t}\left(x_{t}=k\right)=\frac{t^{k} e^{-t}}{k!}
$$

Alow

$$
\begin{aligned}
\tilde{\mu}(\xi) & =\int e^{i \xi x} P_{t}(d x) \\
& =\sum_{k=0}^{\infty} e^{i \xi k} \frac{t^{k} e^{-t}}{k!} \\
& =e^{-t} e^{t e^{i \xi}} \\
& =e^{-t\left(1-e^{i s}\right)} \\
C e(\xi) & =\left(1-e^{i \xi}\right)
\end{aligned}
$$

(3) μ_{+}et de loi gaunsiemer

$$
\begin{array}{r}
\mathcal{N}(0, t) \\
\hat{\mu}_{+}(\xi)=e^{-\frac{t^{2}}{2}}
\end{array}
$$

enercice

- si X e Y v.a.i suivent der bois de Poisson de parasètre λ et λ^{\prime} alon $X+Y$ scint une loi de Paisson de paranètre $\lambda+\lambda^{\prime}$
va.i
- si X et y $V_{\text {sont }}$ de lais gaurniemun $N\left(m, \sigma^{2}\right)$ et $N\left(m, \sigma^{\prime 2}\right)$ alon $X+Y$ suit ene loi $\sqrt{ }\left(m_{n+m}, \sigma^{2}+\sigma^{2}\right)$. epervice.

Chapitre 10: Convergence de variables aleátoises.

- loi de grands nombrer (Forte)
- théorime ceutral limite.

Soient (Ω, \notin, P) un expace de probalilité et $\left(X_{n}\right)_{n \geqslant 1}$ we suite de v.a. à valeur dan \mathbb{R}^{d}. X v.a.

Défimition (1) $X_{n} \xrightarrow[n \rightarrow \infty]{p . s} X$ si

$$
\begin{aligned}
& P\left(\left\{\omega \in \Omega \mid \lim _{h \rightarrow \infty} x_{h}(\omega)=x(\omega)\right\}\right)=1 \\
& \quad L^{P} x
\end{aligned}
$$

si $\quad \lim _{n \rightarrow \infty} P\left(\left|x_{n}-x\right|^{p}\right)=0$
(3) comeryence en probabilité

$$
\begin{array}{cc}
X_{n} \xrightarrow[n \rightarrow \infty]{(P)} X \quad \text { si } \\
\forall \varepsilon>0 & P\left(\left|x_{n}-x\right|>\varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{array}
$$

Proporition: Si $X_{n} \xrightarrow[n \rightarrow \infty]{p . S_{x}} X$ alor

$$
X_{n} \xrightarrow[n \rightarrow \infty]{(P)} X
$$

preme: $\forall \varepsilon>0$ on définit

$$
\Omega_{n}^{\varepsilon}=\left\{\omega \in \Omega\left|\sup _{k \geqslant n}\right| X_{n}(\omega)-X(\omega) \mid>\varepsilon\right\}
$$

- On observe que $\Omega_{n+1} \subset \Omega_{n}$
(i.e. la suite est décorissante)
- Anuri $X_{n} \xrightarrow[n \rightarrow \infty]{p . s} X \Rightarrow P\left(\bigcap_{n \geqslant 1}^{\cap \Omega_{n}}\right)=0$ donc $\lim _{n \rightarrow \infty} P\left(\Omega_{n}\right)=0$
- On obsere qua $\left\{\omega\left|\left|x_{n}(\omega)-x(\omega)\right|>\varepsilon^{\varepsilon} c \Omega_{n}\right.\right.$ donc $P\left(\left|X_{n}(\omega)-X(\omega)\right|>\varepsilon\right) \leqslant P\left(\Omega_{n}\right)$

$$
\begin{gathered}
\Rightarrow \lim _{n \rightarrow \infty} P\left(\left|x_{n}-x\right|>\varepsilon\right)=0 \\
\Rightarrow X_{n} \xrightarrow[n \rightarrow \infty]{(P \mid} x
\end{gathered}
$$

La réciproque ut haure
Exemple 1: Sait $\left(X_{n}\right)_{n \geqslant 1}^{\frac{\text { v.a.i. }}{}}$ t.q.

- $P\left(X_{n}=0\right)=1-\frac{1}{\sqrt{n}} P\left(x_{n}=n\right)=\frac{1}{\sqrt{n}}$
- $X(\omega)=0 \quad \forall \omega$

On calcule:

$$
\begin{gathered}
P\left(\left|X_{n}-X\right|>\varepsilon\right)=P\left(X_{n}=n\right)=\frac{1}{\sqrt{n}} \rightarrow 0 \\
X_{n} \xrightarrow[n \rightarrow \infty]{(P)} X \\
X_{n} \xrightarrow[n \rightarrow \infty]{\text { P.s. }} X \text { ? non }
\end{gathered}
$$

On a i) $\sum_{n \geqslant 1} P\left(X_{n}=0\right)=\sum_{n \geqslant 1}\left(1-\frac{1}{\sqrt{n}}\right)=\infty$
ii) $\sum P\left(X_{n}=1\right)=\sum_{n \geqslant 1} \frac{1}{\sqrt{n}}=\infty$

Boel-Cantelli:
i) P.S. $\#\left\{n\left\{X_{n}(w)=0\right\}\right.$ et infini
ii) P.S. \#\{n| $n n(\omega) \geqslant 1\}$ est infimi
$\Rightarrow x_{n} \xrightarrow{P \&} X \quad$ contrudition.

$$
y \leftrightarrow \infty
$$

Exemple (2) $\Omega=[1,2]$
si $2^{k} \leqslant n<2^{k+1}$ on définit

$$
X_{n}(t)=\mathbb{U}_{\left[\frac{n}{2^{2}}, \frac{n+1}{2^{2}}\right]}
$$

$$
\begin{aligned}
& x_{1}(t)=1 \|_{[1,2]} \\
& x_{2}(t)=1_{\left[1, \frac{3}{2}\right]} \\
& \left.x_{3}(t)=\mathbb{1 1}_{\left[\frac{3}{2}\right.}, 2\right] \\
& X(\omega)=0 \\
& P\left(\left|X_{n}-x\right|>\varepsilon\right)=P\left(X_{n}>\varepsilon\right)=\frac{1}{2} \\
& \text { si } 2^{k} \leq n \leq 2^{k+1} \\
& \Rightarrow \quad X_{n} \xrightarrow{(P)} 0
\end{aligned}
$$

mais

Propaition: $S_{i} X_{n} \xrightarrow[n \rightarrow \infty]{(P)} X$ Alow il existe unc suite estraite

$$
X_{n_{k}} \xrightarrow[n \rightarrow \infty]{P \cdot S .} X
$$

Remarque: $X_{n} \xrightarrow[n \rightarrow \infty]{p . s} X$ si et senlimet

$$
\rightarrow \quad \forall \varepsilon>0 \quad P\left(\bigcup_{N \geqslant 0} \bigcap_{k \geqslant N}\left\{\left|x_{k}-x\right| \leqslant \varepsilon\right\}\right)=1
$$

reawe: Par hypothise

$$
P\left(\left|x-x_{n}\right|>\varepsilon\right) \xrightarrow[n \rightarrow+\infty]{ } 0
$$

i.e. $\forall k \quad \exists_{n k}$ t.q. si $n \geqslant n_{k}$

$$
P\left(\left|x-x_{n}\right|>\frac{1}{k}\right) \leqslant \frac{1}{2^{k}} \frac{\delta}{\varepsilon}
$$

On oltient que $\sum_{k=1}^{\infty} P\left(\left|x-x_{n_{2}}\right|>\frac{1}{k}\right)$ conerge
Boel Cantelli:

$$
P\left(\bigcup_{N \geqslant 1} \bigcup_{k \geqslant N}\left\{\left|x-x_{n_{k}}\right|>\frac{1}{k}\right\}\right)=0
$$

i.e.

$$
\begin{gathered}
P\left(\bigcup_{N \geqslant 1} \bigcap_{k \geqslant N}\left\{\left|x-x_{n_{n}}\right|<\frac{1}{k}\right\}\right)=1 \\
\Rightarrow \lim _{n \rightarrow \infty} X_{n_{n}}=X
\end{gathered}
$$

