Examen: Introduction aux surfaces de Riemann

Exercice. Soit S une surface de Riemann (connexe et) compacte de genre 2.

1. Prenons une base $\{\omega_1, \omega_2\}$ de l'espace des 1-formes holomorphes de S. Montrer que l'application $\varphi_K: S \to \mathbb{C}P^1$ donnée par $\varphi_K(p) = [\omega_1(p), \omega_2(p)]$ est un revêtement à deux feuillets.

On cherche maintenant à montrer que tout revêtement à deux feuillets s'obtient de cette forme. Prenons un tel revêtement $\pi: S \to \mathbb{C}P^1$.

- 2. Combien de points de ramification a π ?
- 3. Montrer que (S, π) est la surface de Riemann associée à $w^2 P(z) \in \mathcal{M}(\mathbb{C}P^1)[w]$ où P(z) est un polynôme monique de degré 5 ou 6 et de racines distinctes.
- 4. En regardant $S \setminus \pi^{-1}(\infty)$ comme une partie de \mathbb{C}^2 , combiner les 1-formes dz et dw et les fonctions z et w sur S pour trouver deux 1-formes holomorphes ω_1 , ω_2 linéairement indépendantes sur S telles que π soit l'application φ_K ci-dessus associée à la base $\{\omega_1, \omega_2\}$.

Finalement, on cherche à montrer que Aut(S) est fini.

- 5. Montrer que si $\tilde{\pi}: S \to \mathbb{C}P^1$ est un autre revêtement à deux feuillets, il existe un biholomorphisme $F: \mathbb{C}P^1 \to \mathbb{C}P^1$ tel que $F \circ \pi = \tilde{\pi}$.
- 6. En déduire que le groupe d'automorphismes de S (biholomorphismes de S vers S) est fini.

Exercice. Soit X la surface de Riemann compacte associée à l'équation

$$y^3 = (x - a_1) \cdots (x - a_{3n})$$

au-dessus de $\mathbb{C}P^1$ où les $a_i \in \mathbb{C}$ sont distincts deux à deux.

- 1. On note $x: X \to \mathbb{C}P^1$ la projection et $y: X \to \mathbb{C}P^1$ la solution méromorphe de l'équation. Quel est le cardinal de $x^{-1}(a_i)$? Celui de $x^{-1}(\infty)$? Déterminer le degré de x.
- 2. Quel est le genre de la surface?
- 3. On note $\alpha_i = x^{-1}(a_i)$ et $\{p_1, p_2, p_3\} = x^{-1}(\infty)$. Calculer le diviseur div(y).
- 4. Calculer le diviseur de la forme méromorphe dx. En déduire que la forme

$$\frac{dx}{y^2}$$

est holomorphe sur X.

- 5. Quelle est la dimension de l'espace des formes holomorphes sur X?
- 6. Exhiber une base de formes holomorphes.
- 7. On considère la courbe algébrique définie par homogénisation de l'équation ci-dessus, i.e.

$$V = \{ [x, y, z] \in \mathbb{C}P^2 \mid y^3 z^{3n-3} = (x - a_1 z) \cdots (x - a_{3n} z) \}.$$

Montrer que V a, au plus, un seul point singulier : p = [0, 1, 0] (déterminer n pour lequel la courbe est lisse).

8. Soit L la droite projective définie par y = 0 et

$$\pi: \mathbb{C}P^2 \setminus \{[0,1,0]\} \to L,$$

la projection définie par $\pi([x,y,z])=[x,0,z].$ Montrer que $\pi_{|V\setminus\{p\}}$ est un revêtement ramifié sur $L\smallsetminus[0,0,1].$

9. Quelle est la relation entre X et V?

Exercice. L'objectif est d'établir l'existence d'une base *normale* pour les formes différentielles holomorphes et d'en déduire les *relations bilinéaires de Riemann*.

On considère une surface de Riemann S_g de genre g obtenue par recollement des arêtes d'un polygone P fermé de 4g côtés $\tilde{a}_i, \tilde{b}_i, \tilde{a}_i^{-1}, \tilde{b}_i^{-1}$, avec $1 \leq i \leq g$. Les arêtes définissent dans la surface des courbes fermées notées a_i et b_i avec $1 \leq i \leq g$. Observer que l'intérieur de P est identifié à un ouvert dense dans S_g et son bord à la réunion des 2g courbes. Soit ω une 1-forme définie sur S_g . Les $p\'{e}riodes$ de ω sont les nombres

$$A_i(\omega) = \int_{a_i} \omega$$
 et $B_i(\omega) = \int_{b_i} \omega$.

- 1. (le cas q = 1)
 - (a) On considère le sous-groupe Γ_{τ} de $Aut(\mathbb{C})$ engendré par les translations par 1 et τ (avec Im $\tau > 0$). Montrer que la forme différentielle dz est bien définie dans le quotient $T_{\tau} = \Gamma_{\tau} \setminus \mathbb{C}$.
 - (b) Les segments [0,1] et $[0,\tau]$ dans $\mathbb C$ définissent deux courbes fermées qu'on notera a et b sur T_{τ} . Calculer

$$A = \int_a dz$$
 et $B = \int_b dz$.

2. Soit ω une 1-forme fermée définie sur S_g . Montrer que, si z_0 est un point à l'intérieur de P, alors

$$\varphi(z) = \int_{z_0}^z \omega$$

est bien définie pour tout $z \in P$, et que $d\varphi = \omega$. Observer, par contre, que φ n'est pas définie sur S_g car elle peut avoir des valeurs différentes sur des arêtes identifiées.

3. Montrer que si $z \in \tilde{a}_i$ est identifié à $z' \in \tilde{a}_i^{-1}$ alors

$$\varphi(z) - \varphi(z') = -\int_{b_i} \omega.$$

Analoguement, si $z \in \tilde{b}_i$ est identifié à $z' \in \tilde{b}_i^{-1}$ alors

$$\varphi(z) - \varphi(z') = \int_{a_i} \omega.$$

4. Montrer que si ω_1 et ω_2 sont deux formes fermées, alors

$$\int_{S_q} \omega_1 \wedge \omega_2 = \int_P \omega_1 \wedge \omega_2 = \int_{\partial P} \varphi \omega_2$$

où
$$\varphi(z) = \int_{z_0}^z \omega_1$$
.

5. En conclure que

$$\int_{S_g} \omega_1 \wedge \omega_2 = \sum_{i=1}^g \left(A_i(\omega_1) B_i(\omega_2) - B_i(\omega_1) A_i(\omega_2) \right).$$

- 6. Supposons que ω est une 1-forme holomorphe sur S_g . Ecrivant la forme locale $\omega = f dz$ on définit $\bar{\omega}$ comme la 1-forme $\bar{\omega} = \overline{f} d\overline{z}$. Montrer que ω et $\bar{\omega}$ sont fermées. Ecrire en coordonnées locales la forme $\omega \wedge \bar{\omega}$.
- 7. En déduire que si ω est une 1-forme holomorphe non nulle,

$$\operatorname{Im}\left(\sum_{i=1}^{g} A_i(\omega)\bar{B}_i(\omega)\right) < 0.$$

- 8. Montrer, en utilisant la question précédente, que si ω est une forme holomorphe telle que $A_i(\omega) = \int_{a_i} \omega = 0$ pour $1 \le i \le g$ alors $\omega = 0$.
- 9. En déduire que si ω_j , $1 \leq j \leq g$, est une base de formes holomorphes alors la matrice

$$A_{ij} = \int_{a_j} \omega_i$$

est inversible.

10. Conclure qu'il existe une base de formes holomorphes satisfaisant

$$\int_{a_i} \omega_j = \delta_{ij}.$$

On dit que cette base est normale.

11. (Relations bilinéaires de Riemann) Montrer que si ω_j , $1 \leq j \leq g$ est une base normale de formes holomorphes d'une surface S_g alors la matrice

$$B_{ij} = \int_{b_j} \omega_i$$

est symetrique et Im $B_{ij} > 0$ (la matrice dont les coefficients sont Im B_{ij} est définie positive).