
Exam : Introduction to Riemann Surfaces

Exercise 1. (Separating points on a Riemann surface) Le X be a compact Riemann surface.

1. Let f : X → CP 1 be a non-constant holomorphic function and consider a point z ∈ CP 1

which is not a ramification point. Show that, if g : X → CP 1 is a holomorphic function
that separates the points of f−1(z), then M(X) = C(f, g).

2. Show that for any collection {z1, · · · , zn} of distinct points in X and {w1, · · · , wn} distinct
points of C, there exists a meromorphic function g ∈ M(X) such that g(zi) = wi, for all
1 ≤ i ≤ n.

Exercise 2. (Sums of divisors and Clifford theorem on special divisors) Let X be a connected
compact Riemann surface.

1. Show that if D1 and D2 are effective divisors on X with disjoint supports then the inequality
ℓ(D1) + ℓ(D2)− 1 ≤ ℓ(D1 +D2) holds.

2. Let D be a divisor on X that satisfies ℓ(D) > 0. Show that there exists a finite set F ⊂ X
such that L(D − [p]) ⊊ L(D) for every p ∈ X \ F .

3. Let D be a divisor on X satisfying n := ℓ(D) > 0 and let U ⊂ X be any non-empty open
set. Show that there exists an effective divisor D′ on X and n− 1 points p1, . . . , pn−1 ∈ U
such that D is linearly equivalent to D′ + [p1] + · · ·+ [pn−1] and

C = L(D′) ⊊ L(D′ + [p1]) ⊊ L(D′ + [p1] + [p2]) ⊊ · · · ⊊ L(D′ + [p1] + · · ·+ [pn−1]).

4. Let D be a divisor on X that satisfies ℓ(D) > 0. Show that, for every non-empty open set
U ⊂ X, there exists an effective divisor D̃ on X linearly equivalent to D such that every
non-constant f ∈ L(D̃) has a pole in U .

5. Let D1 and D2 be two divisors on X that satisfy ℓ(D1) > 0 and ℓ(D2) > 0. Show that
ℓ(D1) + ℓ(D2)− 1 ≤ ℓ(D1 +D2).

6. (Clifford theorem on special divisors) Let D be a divisor on X satisfying ℓ(D) > 0 and
ℓ(K −D) > 0 (called a special divisor), where K is the divisor of a meromorphic one-form
on X (i.e., a canonical divisor). Show that

ℓ(D) ≤ 1 +
deg(D)

2
.
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Exercise 3. (Fermat curves) Let

Vn = { [x, y, z] ∈ CP 2 | F (x, y, z) = 0 }

be the projective plane curve defined by F (x, y, z) = xn+yn+zn, n ≥ 3. The goal of the exercise
is to obtain an explicit basis of holomorphic forms on Vn.

1. Show that Vn is smooth.

2. Let L be the projective line defined by z = 0 and

π : CP 2 − {[0, 0, 1]} → L,

the projection defined by π([x, y, z]) = [x, y, 0]. Show that π|Vn is a ramified cover of L.
What is its degree ?

3. Determine the intersection L ∩ Vn.

4. Show that the branching points of π is the set { [1, ζ, 0] | ζn = −1 }. Compute the ramifi-
cation points of π and their multiplicities.

5. Determine the genus of Vn for all n > 0.

6. Let Ω1(Vn) be the vector space of holomorphic forms on Vn. What is its dimension ?

7. Compute the intersection divisors of the coordinate functions (x, y, z) → x, (x, y, z) → y
and (x, y, z) → z. Show that the functions defined by restricting to Vn the quotients of the
coordinates, X = x/z and Y = y/z, over CP 2 are meromorphic functions with simple poles.
Compute div(X) and div(Y ).

8. Show that the meromorphic forms on Vn, dX et dY , satisfy

dX

Y n−1
= − dY

Xn−1
.

9. Show that the forms

ωi,j = Xi−1Y j−1 dX

Y n−1

are holomorphic at all points in Vn such that X et Y are holomorphic.

10. If p ∈ Vn is a pole of X, show that ordp(dX) = −2, and then that

ordp(ωi,j) = n− 1− i− j.

11. Determine a basis of holomorphic forms among the forms defined above.

Exercise 4. (A Fermat curve which is not hyperelliptique) Recall that a Riemann surface is
called hyperelliptic if there exists a a holomorphic map of degree two into CP 1. Let

V4 = { [x, y, z] ∈ CP 2 | x4 + y4 + z4 = 0 }.

In this exercise you will show that V4 is not hyperelliptic.
From the previous exercise,assume that V4 is a genus 3 Riemann surface, that X = x/z and

Y = y/z define meromorphic functions on V4, and consider the following basis of holomorphic
forms :

ω1 =
dX

Y 3
, ω2 = X

dX

Y 3
, ω3 = Y

dX

Y 3
.

.
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1. A point p ∈ Σ (Σ a compact Riemann surface) is a Weierstrass point if there exists a
meromorphic function with a unique pole at p of order at most g. Show that p is a Weierstrass
point if and only if there exists a holomorphic form of order at least g at p.

2. Show that if p ∈ V4 is such that Y (p) ̸= 0,∞ then X is a local coordinate. We write any
holomorphic form as

ω = (af1(X) + bf2(X) + cf3(X))dX,

where f1(X) = 1
Y 3(X)

,f2(X) = X
Y 3(X)

et f3(X) = 1
Y 2(X)

and Y (X) is defined implicitly by

the equation X4 + Y 4 + 1 = 0.

3. Show that p ∈ V4 (avec Y (p) ̸= 0,∞) is a Weierstrass point if and only if detM = 0 where

M =

 f1(X(p)) f2(X(p)) f3(X(p))
f ′
1(X(p)) f ′

2(X(p)) f ′
3(X(p))

f ′′
1 (X(p)) f ′′

2 (X(p)) f ′′
3 (X(p))


4. Show that

detM =
3X2

Y 16
.

5. Show that the Weierstrass points of V4 with y, z ̸= 0 are of the form [0, 1, ζ] where ζ4 = −1.
Compute all Weierstrass points.

6. Show that there exists a meromorphic function with a unique pole of order two at p ∈ V4

(p as before with Y (p) ̸= 0,∞) if and only if the rank of the matrix(
f1(X(p)) f2(X(p)) f3(X(p))
f ′
1(X(p)) f ′

2(X(p)) f ′
3(X(p))

)
is equal to one.

7. Show that V4 is not hyper-elliptic.
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