Exam: Introduction to Riemann Surfaces

Exercise 1. (Separating points on a Riemann surface) Le X be a compact Riemann surface.

- 1. Let $f: X \to \mathbb{C}P^1$ be a non-constant holomorphic function and consider a point $z \in \mathbb{C}P^1$ which is not a ramification point. Show that, if $g: X \to \mathbb{C}P^1$ is a holomorphic function that separates the points of $f^{-1}(z)$, then $\mathcal{M}(X) = \mathbb{C}(f,g)$.
- 2. Show that for any collection $\{z_1, \dots, z_n\}$ of distinct points in X and $\{w_1, \dots, w_n\}$ distinct points of \mathbb{C} , there exists a meromorphic function $g \in \mathcal{M}(X)$ such that $g(z_i) = w_i$, for all $1 \leq i \leq n$.

Exercise 2. (Sums of divisors and Clifford theorem on special divisors) Let X be a connected compact Riemann surface.

- 1. Show that if D_1 and D_2 are effective divisors on X with disjoint supports then the inequality $\ell(D_1) + \ell(D_2) 1 \le \ell(D_1 + D_2)$ holds.
- 2. Let D be a divisor on X that satisfies $\ell(D) > 0$. Show that there exists a finite set $F \subset X$ such that $L(D [p]) \subseteq L(D)$ for every $p \in X \setminus F$.
- 3. Let D be a divisor on X satisfying $n := \ell(D) > 0$ and let $U \subset X$ be any non-empty open set. Show that there exists an effective divisor D' on X and n-1 points $p_1, \ldots, p_{n-1} \in U$ such that D is linearly equivalent to $D' + [p_1] + \cdots + [p_{n-1}]$ and

$$\mathbb{C} = L(D') \subsetneq L(D' + [p_1]) \subsetneq L(D' + [p_1] + [p_2]) \subsetneq \cdots \subsetneq L(D' + [p_1] + \cdots + [p_{n-1}]).$$

- 4. Let D be a divisor on X that satisfies $\ell(D) > 0$. Show that, for every non-empty open set $U \subset X$, there exists an effective divisor \widetilde{D} on X linearly equivalent to D such that every non-constant $f \in L(\widetilde{D})$ has a pole in U.
- 5. Let D_1 and D_2 be two divisors on X that satisfy $\ell(D_1) > 0$ and $\ell(D_2) > 0$. Show that $\ell(D_1) + \ell(D_2) 1 \le \ell(D_1 + D_2)$.
- 6. (Clifford theorem on special divisors) Let D be a divisor on X satisfying $\ell(D) > 0$ and $\ell(K D) > 0$ (called a special divisor), where K is the divisor of a meromorphic one-form on X (i.e., a canonical divisor). Show that

$$\ell(D) \le 1 + \frac{\deg(D)}{2}.$$

Exercise 3. (Fermat curves) Let

$$V_n = \{ [x, y, z] \in \mathbb{C}P^2 \mid F(x, y, z) = 0 \}$$

be the projective plane curve defined by $F(x, y, z) = x^n + y^n + z^n$, $n \ge 3$. The goal of the exercise is to obtain an explicit basis of holomorphic forms on V_n .

- 1. Show that V_n is smooth.
- 2. Let L be the projective line defined by z = 0 and

$$\pi: \mathbb{C}P^2 - \{[0,0,1]\} \to L,$$

the projection defined by $\pi([x,y,z]) = [x,y,0]$. Show that $\pi_{|V_n}$ is a ramified cover of L. What is its degree?

- 3. Determine the intersection $L \cap V_n$.
- 4. Show that the branching points of π is the set $\{ [1, \zeta, 0] \mid \zeta^n = -1 \}$. Compute the ramification points of π and their multiplicities.
- 5. Determine the genus of V_n for all n > 0.
- 6. Let $\Omega^1(V_n)$ be the vector space of holomorphic forms on V_n . What is its dimension?
- 7. Compute the intersection divisors of the coordinate functions $(x, y, z) \to x, (x, y, z) \to y$ and $(x, y, z) \to z$. Show that the functions defined by restricting to V_n the quotients of the coordinates, X = x/z and Y = y/z, over $\mathbb{C}P^2$ are meromorphic functions with simple poles. Compute div(X) and div(Y).
- 8. Show that the meromorphic forms on V_n , dX et dY, satisfy

$$\frac{dX}{Y^{n-1}} = -\frac{dY}{X^{n-1}}.$$

9. Show that the forms

$$\omega_{i,j} = X^{i-1} Y^{j-1} \frac{dX}{Y^{n-1}}$$

are holomorphic at all points in V_n such that X et Y are holomorphic.

10. If $p \in V_n$ is a pole of X, show that $ord_p(dX) = -2$, and then that

$$ord_n(\omega_{i,j}) = n - 1 - i - j.$$

11. Determine a basis of holomorphic forms among the forms defined above.

Exercise 4. (A Fermat curve which is not hyperelliptique) Recall that a Riemann surface is called *hyperelliptic* if there exists a a holomorphic map of degree two into $\mathbb{C}P^1$. Let

$$V_4 = \{ [x, y, z] \in \mathbb{C}P^2 \mid x^4 + y^4 + z^4 = 0 \}.$$

In this exercise you will show that V_4 is not hyperelliptic.

From the previous exercise, assume that V_4 is a genus 3 Riemann surface, that X = x/z and Y = y/z define meromorphic functions on V_4 , and consider the following basis of holomorphic forms:

$$\omega_1 = \frac{dX}{V^3}, \quad \omega_2 = X\frac{dX}{V^3}, \quad \omega_3 = Y\frac{dX}{V^3}.$$

.

- 1. A point $p \in \Sigma$ (Σ a compact Riemann surface) is a Weierstrass point if there exists a meromorphic function with a unique pole at p of order at most g. Show that p is a Weierstrass point if and only if there exists a holomorphic form of order at least g at p.
- 2. Show that if $p \in V_4$ is such that $Y(p) \neq 0, \infty$ then X is a local coordinate. We write any holomorphic form as

$$\omega = (af_1(X) + bf_2(X) + cf_3(X))dX,$$

where $f_1(X) = \frac{1}{Y^3(X)}, f_2(X) = \frac{X}{Y^3(X)}$ et $f_3(X) = \frac{1}{Y^2(X)}$ and Y(X) is defined implicitly by the equation $X^4 + Y^4 + 1 = 0$.

3. Show that $p \in V_4$ (avec $Y(p) \neq 0, \infty$) is a Weierstrass point if and only if $\det M = 0$ where

$$M = \begin{pmatrix} f_1(X(p)) & f_2(X(p)) & f_3(X(p)) \\ f'_1(X(p)) & f'_2(X(p)) & f'_3(X(p)) \\ f''_1(X(p)) & f''_2(X(p)) & f''_3(X(p)) \end{pmatrix}$$

4. Show that

$$\det M = \frac{3X^2}{V^{16}}.$$

- 5. Show that the Weierstrass points of V_4 with $y, z \neq 0$ are of the form $[0, 1, \zeta]$ where $\zeta^4 = -1$. Compute all Weierstrass points.
- 6. Show that there exists a meromorphic function with a unique pole of order two at $p \in V_4$ (p as before with $Y(p) \neq 0, \infty$) if and only if the rank of the matrix

$$\begin{pmatrix} f_1(X(p)) & f_2(X(p)) & f_3(X(p)) \\ f'_1(X(p)) & f'_2(X(p)) & f'_3(X(p)) \end{pmatrix}$$

is equal to one.

7. Show that V_4 is not hyper-elliptic.