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1 Introduction

Cartan geometries are a solution to the very general question: what is a geometric
structure? Riemannian geometry, conformal geometry and projective geometry are
examples of geometric situations.

The mindset is the following. A Cartan geometry should first be a manifold with
an homogenous space attached to each point. For instance in Riemannian geometry
each point has an attached Euclidean space by equipping the tangent space with the
Riemannian metric. This data is then equipped with a Cartan connection explaining
how the homogeneous spaces are infinitesimally connected.

When one has two different Cartan geometries, one can ask if they are equivalent.
For instance, when are two Riemannian manifold isometric or at least locally isometric?
This is a deep question known under the general name of the equivalence problem. In
Riemannian geometry, the differential system g =∑

dx2
i asks wether the space is locally

euclidean. It is the case if, and only if, a curvature tensor vanishes. Cartan geometries
give a similar procedure for all the geometries: a curvature tensor vanishes if, and only
if, the space is locally homogeneous.
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But when the curvature is not zero, the equivalence problem is harder to solve. What
is the meaning of two curvature on two different spaces being equal? Cartan’s method
for the equivalence problem is a general procedure to study and solve this problem in
many situations. An important example is given by the class of the symmetric spaces:
those are the Riemannian spaces that are not flat but have a parallel curvature tensor.
With Cartan’s method one can verify when two spaces with this property are locally
equivalent or not.

In this course, we will describe Cartan geometries and introduce the local equiva-
lence problem between geometric structures. The main global problem we will deal
with is the classification of smooth Anosov flows on a compact three manifold and,
more generally, of non-compact automorphisms groups acting on a compact manifold
preserving a contact distribution and two transverse lines contained in the contact
plane at each point of the manifold.

2 Pfaff equations and Cartan’s method

One of the basic problems in geometry is to understand the equivalence between
geometric objects. For instance, given two Riemannian manifolds when are they locally
or globally isometric? The main idea of Cartan’s method is to associate to a manifold with
a geometric structure another manifold (with higher dimension) where the geometric
structure is given by a parallelism of its cotangent bundle. The parallelism can be
defined in very general situations but when the geometric structure is simple enough
one can describe it by an important mathematical object which will be introduced later:
Cartan connections on principal bundles.

2.1 Frobenius theorem

A reference for this section is [Wa]. The basic theorem which is the foundation of
the theory is the existence of a local flow defined by a vector field. It is a natural
generalization of the following example.

Example 1 With mild regularity conditions (for instance C 1) a vector field on the real
line can be locally integrated. Let X = α(t) ∂∂t such a vector field. A solution of the
Cauchy problem f ′(t ) = X ( f (t )) with initial condition f (0) = x has a maximal solution
defined on an open interval (ax ,bx ) where ax or bx could be infinite.

Theorem 2.1. (local flow) Let X be a C 1 vector field on a manifold M. There exists
an open set A = { (t , x) | ax < t < bx } ⊂ R× M and a function φ : A → M (we write
φ(t , x) =φt (x)), such that

1. φ0 = I d (so, in particular, ax < 0 < bx ).

2. dφt (x)
d t = X (φt (x)).

3. φt (x), for t ∈ (ax ,bx ), is a maximal solution of the equation dγ(t )
d t = X (γ(t)) with

initial condition γ(0) = x.

We will also use the time-dependent version of the local flow. That is, for a vector
field X t (x) which depends on time defined on an open subsetΩ⊂ R×M there exists a
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local solution φt (t0, x0) to the equation

dφt (t0, x0)

d t
= X t (φt (t0, x0))

with initial condition φt0 (t0, x0) = x0.
The flow box theorem gives a local normal form for a vector field on a manifold:

Theorem 2.2. (flow box theorem) Let X be a C 1 vector field on a manifold M. For
each x ∈ M there exists an open set U ⊂ M containing x and a chart φ : U → Rn =
{(x1, · · · , xn)|xi ∈ R} such that φ(x) = 0 and φ∗(X ) = ∂

∂x1
.

Proof. The idea is to follow the flow starting from a hypersurface transverse to the vector
field at the point x. The time will be the first coordinate of a chart.

One can always choose a chart ψ : V → ψ(V ) on a neighborhood V of x so that
ψ(x) = 0 and ψ∗(X (x)) = ∂

∂x1
. Consider the hypersurface containing x defined by

ψ−1((0, x2, · · · , xn)) with (0, x2, · · · , xn) ∈ ψ(V ). The existence of the flow implies that
for a relatively compact U ⊂ V , there exists ε > 0 such that the flow is defined on
(−ε,ε)×U . Define then σ(x1, x2, · · · , xn) = φx1 (ψ−1((0, x2, · · · , xn))), the flow at time x1

starting at the point ψ−1((0, x2, · · · , xn)). On a perhaps smaller neighborhood one can
invert σ to obtain a chart satisfying the condition of the theorem. Indeed

σ∗(
∂

∂x1
(x1, · · ·xn) = d

d t
φx1 (ψ−1(0, x2, · · · , xn)) = X (φx1 (ψ−1(0, x2, · · · , xn)) = X ◦σ.

In two real dimensions, one can improve the flow box theorem to obtain that two
given vector fields can be normalized to be along coordinates of a chart:

Proposition 2.3. Let X1 and X2 be C 1 vector fields on a two dimensional manifold M
which are linearly independent at every point. For each x ∈ M there exists an open set
U ⊂ M containing x and a chart φ : U → R2 = {(x1, x2)|xi ∈ R} such that φ(x) = 0 and
φ∗(X1) ∈ 〈 ∂

∂x1
〉 and φ∗(X2) ∈ 〈 ∂

∂x2
〉.

Proof. We may suppose that there is a chart ψ : V →ψ(V ) on a neighborhood V of x
so that ψ(x) = 0 and ψ∗(X1(x)) = ∂

∂x1
and ψ∗(X2(x)) = ∂

∂x2
. The proof of the previous

theorem shows that there exists a neighborhood U of x such that each point y ∈ U
is in a unique integral line of X1 passing through a point ψ−1(0, x2(y)) and a unique
integral line of X2 passing through a point ψ−1(x1(y),0). The map φ : U → R2 defined by
y → (x1(y), x2(y)) is C 1 with dφ(x) = I d . This defines a coordinate chart in perhaps a
smaller neighborhood.

Distributions on a manifold, that is, subbundles of the tangent bundle are exam-
ples of geometric structures. In the following, for simplicity sake, we assume that a
distribution D ⊂ T M is of constant rank.

Definition 2.4. Let D be a distribution on a manifold M. We say that a submanifold
φ : N → M is an integral manifold of D if dφ(Tx N ) ⊂ D(φ(x)) for all x ∈ N .

An important problem is to give conditions so that the dimension of the integral
manifold coincides with the rank of the distribution. Essentially, the condition says that
the vector fields in the distribution form a Lie algebra:
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Definition 2.5. We say a distribution D generated by vector fields {X1, · · · , Xn} defined on
an open set U of a manifold is involutive if for all i and j , [Xi , X j ] is a vector field in the
distribution.

We can state now the main theorem of this section.

Theorem 2.6. Let M be an m-dimensional manifold and D a C 1 distribution of rank
n. Then D is involutive if and only if for every x ∈ M there exists a coordinate chart
(x1, · · · , xm) such that D is generated by ∂

∂xi
, for 1 ≤ i ≤ n.

Proof. The case n = 1 is precisely the content of the flow-box theorem. The idea of the
proof for n > 1 is to linearize one of the generating vector fields around x and then chose
a hyperplane transversal to this field at x to obtain a distribution of rank n −1 on it and
then use induction.

Let us start with generating vector fields ( ∂
∂x1

, X2, · · · , Xn) where we linearized the
first field in a coordinate system (x1, y2, · · · ym) which we can suppose centred at 0. Here,
in order to simplify notations we write ∂

∂x1
for the vector field on the manifold defined

by the corresponding vector field in the chart. The distribution D induces a distribution
D ′ of rank n −1 on the codimension one submanifold N passing through 0 defined by
x1 = 0: the distribution D ′ is generated by

X ′
i = Xi −Xi (x1)

∂

∂x1

for 2 ≤ i ≤ n. Indeed, these vectors are tangent to the transverse submanifold because
X ′

i (x1) = 0. One proves that this distribution is an involutive distribution (exercise). Here,
for simplicity, we suppose that n = 2 and therefore the induced distribution is generated
by a vector field in N . Using the flow-box theorem again, there exists a neighborhood
of 0 in N with coordinates (w2, · · · , wm) such that X ′

2 = ∂
∂w2

. We claim the adapted
coordinates on a neighborhood of 0 in M are

(x1, · · · , xm) = (x1, w2 ◦π, · · · , wm ◦π)

whereπ is the projection to N along the orbits of ∂
∂x1

(in coordinates we haveπ(x1, y2, · · · ym) =
(y2, · · · ym)). First observe that, for i > 1, X ′

2(xi ) = X ′
2(wi◦π(x1, y2, · · · ym)) = X ′

2(wi (y2, · · · ym))
and therefore by definition of the coordinate chart in N , at points in N we have X ′

2(xi ) =
0 for i > 2 along N . We need to show that X ′

2(xi ) = 0, for i > 2, at all points in a whole
neighborhood of the origin. For that sake we compute

∂

∂x1
X ′

2(xi ) = X ′
2
∂xi

∂x1
+ [

∂

∂x1
, X ′

2](xi )

which, because the distribution is involutive, can be written as

∂

∂x1
X ′

2(xi ) = X ′
2
∂xi

∂x1
+a1

∂

∂x1
(xi )+a2X ′

2(xi ),

for two functions a1 and a2. The first two terms in the right side are clearly null. We
obtain then the differential equation

∂

∂x1
X ′

2(xi ) = a2X ′
2(xi ).

For each i > 2, this is a first order ordinary differential equation with initial condi-
tion X ′

2(xi ) = 0 at a point (0, x2, · · ·xm). By unicity, X ′
2(xi ) = 0 for all (x1, x2, · · ·xm) in a

neighborhood of the origin.
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We proved then that a distribution is involutive if and only if for each y ∈ M there
exists an integral manifold of maximal dimension equal to the rank of the distribution
passing through y . In local coordinates defined by Frobenius theorem the integral
manifolds are given locally by (x1, · · · , xn) → (x1, · · · , xn , x0

n+1, · · ·x0
m), where x0

i , for n <
i ≤ m, are constants. In fact, one can prove that there exists a unique maximal connected
integral manifold passing through y (see [Wa]).

2.2 Differential ideals and the equivalence problem

2.2.1 Differential ideals and Frobenius theorem

We will work with smooth forms. Let M be an n-dimensional manifold andΩ∗(M) be
the set of sections of the space ΛT∗M , the graded algebra of the exterior powers of the
cotangent bundle. The spaceΩ∗(M) is the space of all the differential forms of M .

Definition 2.7. A differential ideal I ⊂Ω∗(M) is an homogeneous ideal for the exterior
algebra which is closed under exterior derivative.

Here, homogeneous ideal means that if α ∈ I and α=α0 +·· ·+αp is its decomposi-
tion with αi ∈Ωi (M) for 0 ≤ i ≤ p then αi ∈ I for all i .

The (algebraic) ideal generated in Ω∗(M) generated by a 1-form θ is given by all
multiples of this form by functions on the manifold. The differential ideal generated
by a 1-form θ consists of all combinations of θ and dθ. Ideals of this type are studied
in Pfaff’s problem. A simple case is the ideal generated by a unique closed form. A
particular description of this ideal, which is simply all multiples of the closed form, is
obtained invoking Poincaré’s lemma.

Lemma 2.8. For any closed (p +1)-form α there exits locally a p-form β such that

α= dβ.

Definition 2.9. If I is a differential ideal, an integral submanifold is an immersion
φ : N → M such that φ∗ω= 0 for any ω ∈ I .

Note If α is a 1-form that annihilates a distribution then since

dα(X ,Y ) = X (α(Y ))−Y (α(X ))−α([X ,Y ]) (1)

the ideal generated by suchα is closed under the exterior derivative if, and only if, [X ,Y ]
belongs also to the distribution.

The most natural example of ideals inΩ∗(M) arises as the ideal ID of forms which
annihilate a distribution D .

There is a correspondence between the distribution D and the ideal ID . If the
distribution is given by k fields, we chose a coordinate system such that at a fixed
point d x1, · · · ,d xk restricted to the distribution are independent. They will be clearly
independent on a neighborhood. One can write, restricted to the distribution, for k+1 ≤
j ≤ n, d x j =∑k

i=1 c j
i d xi . Therefore one gets n −k independent forms d x j −∑k

i=1 c j
i d xi

vanishing on the distribution.
The ideal ID is a differential ideal if, and only, if the distribution is involutive and

Frobenius theorem is stated in this language as the following.1

1See F. Warner, Foundations of differentiable manifolds and Lie groups.
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Theorem 2.10 (Frobenius). Let I be a differential ideal locally (algebraically) generated
by (n −p) independent 1-forms. Then, for each x ∈ M, there exists a unique maximal (of
dimension p) connected integral manifold of I passing through x.

In fact, it suffices that the 1-forms in the statement be of regularity C 1.

Example 1 If the ideal is generated by a single 1-form θ, then being a differential ideal
means that dθ = θ∧ω, for ω a 1-form. (Hence dθ∧θ = 0.) The extreme opposite is the
case of a contact form θ which satisfies dθ∧θ 6= 0 at every point.

Exercise Prove that if θ(x) 6= 0 and θ∧dθ = 0 then, at a neighborhood of x, there exists
a 1-form such that dθ = θ∧α.

Example 2 If the ideal is generated by the 1-form dy −p dx and dp −F (x, y, p)dx in
R3 we obtain one dimensional integral submanifolds which correspond to solutions of
a second order differential equation.

Example 3 A partial differential equation of the form

F (xi ,u,
∂

∂xi
) = 0

with certain regularity conditions, can be translated into the problem of finding integral
submanifolds to the ideal generated by du−pi dxi restricted to the submanifold defined
by the function F (xi ,u, pi ) = 0 in R2n+1.

Exercise Consider M = Rn ×Rm with coordinates (x1, · · · , xn , y1, · · · , ym) and a differ-
ential ideal I generated by

ωi =∑
j

ai
j (x1, · · · , ym)d x j ( for 1 ≤ i ≤ N ), d y1, · · · ,d ym ,

where ai
j are functions on M . Show that the differential ideal is algebraically generated

by these 1-forms if and only if, for each fixed (y1, · · · , ym) ∈ Rm , the differential ideal
generated by the forms ωi restricted to Rn × {(y1, · · · , ym)} is algebraically generated.

An important situation which gives rise to involutive distributions is given in the
following definition.

Definition 2.11. Let I be a differential ideal. The characteristic distribution is defined by

D I (x) = { v ∈ Tx M | ιv Ix ⊂ Ix }.

We say that the differential ideal is non-singular if the distribution is of constant rank.

Here Ix is the ideal inΛ∗
x M obtained by evaluating all elements of I at x.
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Example In the particular case of a differential ideal generated by only one closed
2-form α it is given by

D = { v ∈ T M | ιvα= 0 }.

We can now state Cartan’s result on the integrability of the characteristic distribu-
tions.

Lemma 2.12. The characteristic distribution of a non-singular differential ideal is an
involutive distribution.

Proof. Let I be a differential ideal. Clearly, from Cartan’s formula

LX = d ◦ ιX + ιX ◦d ,

we obtain that if X is characteristic then LX I ⊂ I . Suppose now that X and Y are two
vector fields. We have (see Proposition 3.10, pg. 35, in [KoN])

LX ιY − ιY LX = ι[X ,Y ] .

Again, this formula clearly shows that if X and Y are characteristic then [X ,Y ] is charac-
teristic.

2.2.2 The equivalence problem

The equivalence problem in its simplest form is the following. Let M1 and M2 be
manifolds of the same dimension n and {ωi

1} and {ωi
2} be coframe sections, that is, n

independent 1-forms (at every point of the manifold). Does there exist a diffeomorphism

ψ : M1 → M2 such that ψ∗ωi
2 =ωi

1 ? (2)

To answer to that question Cartan used the graph method. The idea is to find the
map ψ by its graph in M1 ×M2. The graph is obtained as an integral submanifold of a
differential ideal.

Theorem 2.13. Let M1 and M2 be manifolds and π1,π2 the projections of M1 ×M2 onto
M1 and M2 respectively. Let (ωi

2)1≤i≤n be a basis of 1-forms of M2 and (ωi
1)1≤i≤n be a

family of forms M1 respectively. If the ideal of forms on M1 ×M2 generated by

π∗
1 (ωi

1)−π∗
2 (ωi

2) (3)

is a differential ideal then, for each pair (x, y) ∈ M1 ×M2, there exists a map φ : U → M2,
defined on a neighborhood of x, such that φ(x) = y and

φ∗(ωi
2) =ωi

1. (4)

Proof. The generating 1-forms are linearly independent because ωi
2 are linearly in-

dependent. By Frobenius theorem, there exists a unique maximal submanifold G of
dimension n containing a point (x, y) ∈ M1×M2 which is an integral submanifold of the
differential ideal.

We show now that the submanifold is locally a graph. Consider a vector (v1, v2) ∈
TG ⊂ TM1 ×TM2. If (π1)∗(v1, v2) = 0 then v1 = 0 and therefore

π∗
1 (ωi

1)(v1, v2) =ωi
1((π1)∗(v1, v2)) = 0
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which implies (because G is an integral submanifold of the ideal) that π∗
2ω

i
2(v1, v2) = 0.

We conclude that v2 = 0. Therefore T(x,y)G is isomorphic to Tm1 M1 and π1 is a local
diffeomorphism.

Let F : U →G be a local inverse of π1. We have that F (m) = (m,φ(m)) for a certain
function φ : U → M2(that is φ = π2 ◦F ). Moreover, as π∗

1 (ωi
1)−π∗

2 (ωi
2) = 0 on G , we

obtain F∗(π∗
1 (ωi

1)−π∗
2 (ωi

2)) = 0 and therefore ωi
1 =φ∗(ωi

2).

Remark In the theorem, if (ωi
1)1≤i≤n generates T∗M1 then φ is an immersion. If

furthermore the dimension of M1 is n then the map φ is a local diffeomorphism.

Example One special case occurs if we suppose that the coframes in M1 and M2 both
verify the same differential equation with constant coefficients:

dωi = c i
j kω

j ∧ωk , (5)

with c i
j k constant numbers shared by both M1 and M2. Here we use Einstein convention

of sum of repeated indices. Then, observe that

d
(
π∗

1ω
i
1 −π∗

2ω
i
2

)
=π∗

1 (dωi
1)−π∗

2 (dωi
2) (6)

=π∗
1

(
c i

j kω
j
1 ∧ωk

1

)
−π∗

2

(
c i

j kω
j
2 ∧ωk

2

)
(7)

= c i
j k

(
π∗

1 (ω j
1 ∧ωk

1 )−π∗
2 (ω j

2 ∧ωk
2 )

)
(8)

= c i
j k

((
π∗

1ω
j
1 −π∗

2ω
j
2

)
∧π∗

1ω
k
1 −π∗

2ω
j
2 ∧

(
π∗

2ω
k
2 −π∗

1ω
k
1

))
(9)

so that the ideal is differential and M1 and M2 are hence locally equivalent.
The case of Lie groups is particularly important. With any left-invariant frame (Xi )

and its coframe (ωi ) we get structure constants c i
j k verifying the preceding condition:

dωi = c i
j kω

j ∧ωk . (10)

A basis of 1-forms (ωi ) on a manifold M is called a parallelism of M . An automor-
phism of a parallelism (ωi ) defined over a manifold M is a diffeomorphism φ : M → M
such that φ∗ωi =ωi . From unicity in the theorem above we obtain the following corol-
lary.

Corollary 2.14. Any automorphism of a parallelism with a fixed point is the identity.

In particular this gives credit to the fact that the dimension of the group of auto-
morphisms, if it is a Lie group, is at most the dimension of the manifold. We will prove
latter that the automorphism group is a Lie group for many geometric structures and
this gives a way to compute the maximal dimension of the automorphism group of a
geometry. The idea is to construct, from the geometric data, another manifold with a
canonical parallelism. The dimension of that manifold gives the dimension of the group
of automorphisms. In Cartan geometries, this canonical parallelism is called a Cartan
connexion.

Observe that an automorphism of a parallelism is an isometry of the manifold
equipped with the Riemannian metric defined by imposing that the coframe (ωi ) is
orthonormal.
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A parallelism on M defined by a coframe (ωi ) can also be described by a map
ω : TM → Rn which is an isomorphism restricted to the tangent space at any point. We
note then (M ,ω) a manifold equipped with an Rn-valued 1-form defining a parallelism.
One can define a ’constant’ vector field associated to X ∈ Rn as the vector field on M
X̃ (x) =ω−1(X ). For each sufficiently small X ∈ Rn we define an exponential map

exp(x, X ) =φ1(x),

where φ1(x) is the flow of X̃ computed at the time 1. The differential of the exponential
map at the origin is the identity and therefore at each point x ∈ M , exp(x, ·) : U → M is a
diffeomorphism between a neighborhood of the origin and its image.

Exercise Let gk ∈ Aut(M ,ω) be a sequence of automorphisms of M equipped with a
parallelism ω : T M → Rn such that there exists x ∈ M such that gk (x) converges. Then
gk converges to an automorphism in the compact-open topology.

Definition 2.15. A Killing field of (M ,ω) is a vector field X on M such that its flow consists
of elements of the automorphism group.

The definition is equivalent to the condition that LXω
i = 0 for all i .

2.3 Pfaff problem

Consider a differential ideal on a manifold generated by a 1-form, say θ. One is interested
in giving a normal form for θ by choosing appropriate coordinates.

Pfaff’s problem is the problem of finding integral manifolds of a system θ = 0 where
θ is a 1-form. Here one can multiply the 1-form by a nowhere zero function and the
solutions will be the same. In other terms, one is interested in finding a coordinate chart
where the form has a simple normal form up to a scalar function. The classification of
normal forms is simpler if we impose a constant rank condition on dθ.

Definition 2.16. We say a 2-form α is of rank p at x ∈ M if αp (x) = 0 and αp+1(x) = 0.

We recall also that the rank of a skew-symmetric bilinear formΩ defined on a vector
space V is given by half the dimension of the subspace { ιvΩ } ⊂ V ∗ . It has a normal
form given by

e1 ∧e2 +·· ·+e2p−1 ∧e2p ,

in a particular basis (e1, · · · ,en) of V .

Theorem 2.17. If ω is a 1-form such that dω is of constant rank p around a point x ∈ M
one can find coordinates (x1, · · · , xn−p , y1, · · · yp ) and a function S on a perhaps smaller
neighborhood, such that

ω= dS +x1 dy1 +x2 dy2 +·· ·xp dyp .

Proof. We define the characteristic distribution of the differential ideal I generated by
dω with constant rank p. It is given by

D = { v ∈ T M | ιv dω= 0 }.

Observe also that, in this case, the characteristic distribution has dimension n −2p,
where n is the dimension of the manifold M . By Frobenius theorem, on a neighborhood
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of each point, there exists a coordinate chart u1, · · · ,un−1, y1 such that the integral
manifolds are given locally by (u1, · · · ,un−2p ) → (u1, · · · ,un−2p ,un−2p+1, · · · ,un , y1) (with
fixed last coordinates). Therefore, by the definition of the characteristic distribution, the
2-form dω may be written in terms of the 2p independent generators dxn−2p+1, · · · ,dy1.

Indeed, the vector fields ∂
∂xi

for 1 ≤ i ≤ n − 2p are in the kernel of dω. We want a
coordinate system which simplifies the expression of the form dω.

We will first find a foliation of codimension p of a coordinate chart such that the
restriction of dω to each leaf is null proving the following lemma.

Lemma 2.18. There exists a coordinate system (z1, · · · , zn−p , y1, · · · , yp ) such thatφ∗(dω) =
0 for each embedding φ : (z1, · · · , zn−p ) → (z1, · · · , zn−p , y1, · · · , yp ) with fixed y1, · · · , yp .

Proof. Consider the embedding ι : (u1, · · · ,un−1) → (u1, · · · ,un−1, y1), where y1 is fixed.
The pullback of dω, ι∗(dω), has rank p −1 as the last coordinate is fixed. The character-
istic distribution defined by the differential system ι∗(dω) is involutive. By a previous
exercise, the characteristic distribution of the differential system generated by ι∗(dω)
(viewed in the neighborhood by taking its pullback by the projection map) and dy1

is also involutive. The distribution has dimension n −2p +1. Therefore one can find
coordinates (w1, · · · , wn−2p , wn−2p+1, · · · , wn−2, y2, y1) such that ι∗(dω) is expressed in
terms of the differentials of wn−2p+2, · · · , wn−2, y2, y1. One can repeat this argument
until fixing exactly p coordinates to obtain (z1, · · · , zn−p , y1, · · · , yp ) such that φ∗(dω) = 0
for each embedding φ : (z1, · · · , zn−p ) → (z1, · · · , zn−p , y1, · · · , yp ).

We also want a coordinate system which simplifies the expression of the form
ω. In order to do so we will use Poincaré’s lemma to pass from dω to ω. We obtain
that ι∗(ω) = d f which can be written as ι∗(ω−dF ) = 0 for a function F defined on a
neighborhood of the origin. In other words, one can write

ω−dF = f1 dy1 +·· ·+ fp dyp ,

where fi are functions on the neighborhood.
Now, from (dω)p 6= 0 we obtain that d f1 ∧dy1 ∧·· ·∧d fp ∧dyp 6= 0. This implies that

one can choose a coordinate system (x1, · · · , xn−p , y1, · · · , yp ) such that

ω= dF +x1 dy1 +·· ·+xp dyp .

An imediate consequence of this result is the normal form for symplectic forms.

Theorem 2.19. Le Ω be a closed two form of constant rank p. Then there exists local
coordinates such that

Ω= d x1 ∧d y1 +·· ·+d xp ∧d yp .

Proof. By Poincaré’s theorem one can write locally Ω= dω. We apply then the previous
theorem to ω and differentiate back.

The final normal form result known as Darboux’s theorem finds normal coordinates
for a 1-form satisfying a regularity condition.

Theorem 2.20. 1. Suppose θ is a 1-form such that dθ has constant rank r at each
point and such that θ∧(dθ)r = 0. Then, there exists local coordinates (x1, · · · , xn−r , y1, · · · , yr )
such that

θ = x1d y1 +·· ·xr d yr .

10



2. Suppose θ is a 1-form such that dθ has constant rank r at each point and such that
θ∧(dθ)r 6= 0 at every point. Then, there exists local coordinates (x1, · · · , xn−r , y1, · · · , yr )
such that

θ = x1d y1 +·· ·xr d yr +d xr+1.

Example 1 If θ is a contact form, that is θ∧ (dθ)n 6= 0 at every point (where the dimen-
sion of M is 2n +1) then one can write locally (in coordinates (x1, · · · , xn+1, y1, · · · , yn))

θ = x1d y1 +·· ·xnd yn +d xn+1.

2.4 Global problems

Let M be a closed manifold and let ξ be a contact distribution. Darboux’s theorem says
that there are no local invariants of that structure. We will prove a more general form of
Darboux’s theorem in the case of contact structures and that any deformation of the
contact structure is equivalent to itself. This is a rigidity theorem of contact structures
and shows that different contact structures on a given manifold are far apart. Two
manifolds equipped with contact structures are called contactomorphic if there exists a
diffeomorphism between them which sends one distribution to the other.

Let ψt be an isotopy (a differentiable family of diffeomorphisms with ψ0 = I d ) of a
manifold M and let X t be the time-dependent vector field on M defined by X t◦ψt = ψ̇(t ).
That means that ψt is the flow of X t .

The fundamental theorem for global results is the completeness theorem of flows
on a compact manifold:

Theorem 2.21. On a closed manifold the flow of a vector field (time-dependent or not)
exists for all times.

Recall the definition of the Lie derivative LXω = d
d t ψ

∗
t ω|t=0 (where ψt is the flow

generated by X , that is, X = ψ̇|t=0 and ψ0 = I d) and Cartan’s formula

LXω= ι(X )dω+d ι(X )ω.

Lemma 2.22. Let ωt be a time-dependent family of differential forms on M. Then

d

d t

(
ψ∗

t ωt
)=ψ∗

t

(
ω̇t +LX tωt

)
.

Proof. If ωt is a function then the formula is valid:

d

d t

(
ψ∗

t ωt
)= d

d t

(
ωt (ψt )

)= ω̇t (ψt )+ωt (ψ̇t ) =ψ∗
t

(
ω̇t +LX tωt

)
.

If ωt is a 1-form then
d

d t

(
ψ∗

t ωt
)= lim

h→0

ψ∗
t+hωt+h −ψ∗

t ωt

h

= lim
h→0

ψ∗
t+hωt+h −ψ∗

t+hωt +ψ∗
t+hωt −ψ∗

t ωt

h

= lim
h→0

ψ∗
t+hωt+h −ψ∗

t+hωt

h
+ lim

h→0

ψ∗
t+hωt −ψ∗

t ωt

h
=ψ∗

t

(
ω̇t +LX tωt

)
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The following theorem contains, as a special case, Darboux’s local form theorem for
contact structures.

Theorem 2.23 (Local structure around a compact). Let M be a manifold and N ⊂ M a
smooth compact submanifold. Suppose ξ0 and ξ1 are (co-oriented) contact structures
on M which coincide on N ( or more generaly ξ0 ∩T N = ξ1 ∩T N ). Then there exists a
neighborhood of N and an isotopy ψt defined over that neighborhood such that ψ0 = I d
and ψ1(ξ0) = ξ1 with ψt |N = I d.

Proof. Suppose ξ0 and ξ1 are given by the 1-forms α0 and α1 respectively which we
assume to coincide on N . A weaker condition is that α0|T M =α1|T M . Define the 1-form

αt = (1− t )α0 + tα1

which is clearly contact in a neighborhood of N by compactness. Moreover, at every
point of N , αt =α0 when restricted to T N .

We define the isotopy as the flow defined by the time-dependent vector field vt =
ht Rt + yt where yt is horizontal with respect to αt , that is αt (yt ) = 0.

We need ψ∗
t αt = ftα0 for all t ∈ [0,1]. By the lemma

d

d t

(
ψ∗

t αt
)=ψ∗

t (α̇t + ι(vt )dαt +d ι(vt )αt ) .

The equation is satisfied if and only if

α̇t + ι(vt )dαt +d ι(vt )αt = ḟt

ft
◦ψ−1

t .αt .

Evaluating at Rt we obtain

α̇t (Rt )+dht (Rt ) = ḟt

ft
◦ψ−1

t =µt .

We have for every t , α̇t |T N = 0. For a given function ht µt is determined and by the
previous equation d ι(vt )αt is determined which in turn determines yt .

We want vt = 0 on N . For that sake we impose the condition

α̇t +dht = 0

along N . As α̇t |T N = 0 we can also impose ht = 0 on N and that condition is compatible
with the previous equation.

Theorem 2.24 (Gray). Let ξt be a smooth family of contact structures on a closed mani-
fold. Then there exists an isotopy ψt such that ψ0 = I d and ψ1(ξ0) = ξ1.

Proof. Let αt be a smooth family of forms corresponding to ξt . We need to find a family
of of diffeomorphisms ψt such that ψ∗

t αt = ftα0. Let vt be the vector field generating
the isotopy. By Lemma 2.4, this is equivalent to

d

d t

(
ψ∗

t αt
)= ḟtα0 = ḟt

ft
ψ∗

t αt =ψ∗
t (α̇t + ι(vt )dαt +d ι(vt )αt ) .

So that a necessary and sufficient condition for the existence of the isotopy is that

α̇t + ι(vt )dαt +d ι(vt )αt = ḟt

ft
◦ψ−1

t .αt

12



We impose that vt is horizontal, that is, αt (vt ) = 0. We obtain the condition

α̇t + ι(vt )dαt = ḟt

ft
◦ψ−1

t .αt . (11)

If Rt is the Reeb vector field for αt we have

α̇t (Rt ) = ḟt

ft
◦ψ−1

t ,

Therefore the function ḟt
ft
◦ψ−1

t is determined by the family αt . Going back to equation
11 the vector vt is determined as the form dαt , restricted to the distribution, is non-
degenerate. As the manifold is closed the vector field vt can be integrated to obtain an
isotopy ψt .

3 Lie groups and homogenous spaces

3.1 Lie groups and Lie algebras

We start with the definition of a Lie group. General references for this section are [Wa;
Kn; Il; Sharpe].

Definition 3.1. A Lie group is a group G that is also a differential manifold and such that
the operations of multiplication and inversion are smooth. That is, the maps G ×G →G
and G →G given by (x, y) 7→ x y and x 7→ x−1 are smooth.

Definition 3.2. A homomorphism H →G of Lie groups is a group homomorphism which
is a smooth map. The automorphism group of H is the group of bijective homomorphisms
of H into H.

Note that if we ignore continuity in the definition of homomorphisms of Lie groups
one might obtain a much larger set.

To each Lie group is associated a Lie algebra which can be thought as the space of
tangent vectors at the identity of the group.

Definition 3.3. A Lie algebra g over R is a real vector space of finite dimension equipped
with a bilinear map

[·, ·] : g×g→ g, (12)

satisfying, for any x, y, z ∈ g the anti-commutativity property [x, y] = −[y, x] and the
Jacobi identity:

[z, [x, y]] = [[z, x], y][x, [z, y]]. (13)

Definition 3.4. A homomorphism α : h→ g between Lie algebras is a homomorphism of
vector spaces preserving the Lie bracket, that is, α([X ,Y ]) = [α(X ),α(Y )] for all X ,Y ∈ h.
The automorphism group of h is the group of bijective homomorphisms of h into h.

Let G be a Lie group. If a ∈ G is fixed, then one can consider the translations
La(g ) = ag and Ra(g ) = g a called left and right multiplication respectively.

Definition 3.5. A vector field X on a Lie group G is left invariant if, for any a ∈ G,
(La)∗(X ) = X . Similarly, it is right invariant if (Ra)∗(X ) = X .

13



Note that this condition means (La)∗(X (g )) = X (ag ).
An important consequence of this definition is that left (or right) invariant vector

fields are determined by their value at the identity of the group and the Lie bracket of
two invariant vector fields is again invariant. Therefore the set of left invariant vector
fields forms a Lie algebra that can be identified to the tangent space of the group at the
identity.

Definition 3.6. The Lie algebra of a Lie group G is the set

g= {
X ∈C∞(TG)

∣∣∀a ∈G , (La)∗(X ) = X
}

(14)

of left invariant vector fields on G equipped with the bilinear map given by the bracket
between vector fields.

A subgroup H ⊂G which is a Lie group and such that the inclusion map is smooth
is a called a Lie subgroup. Imposing that the inclusion is an embedding is equivalent
to assuming that the subgroup is closed as a subspace of G (this result is called the
closed-subgroup theorem or Cartan theorem).

The relation between Lie algebra homomorphisms and Lie group homomorphisms
is described by the following Theorem. Its proof is an application of Cartan’s method.

Theorem 3.7. Let H and G be Lie groups andφ : H →G a smooth homomorphism. Then
dφe : h→ g is a homomorphism. Conversely, if α : h→ g is a homomorphism and H is
simply connected, then there exists a unique smooth homomorphismφ : H →G such that
α= dφe .

Corollary 3.8. The automorphism group of a simply connected Lie group is isomorphic
to the automorphism group of its Lie algebra.

Exercice What is the group of automorphism of R? One has to distinguish the auto-
morphisms of Lie group from the automorphisms of the group without the differential
structure.

Examples

1. The additive group Rn . The automorphism group coincides with linear isomor-
phisms of Rn , that is to say GL(n,R). But note that the full group of group au-
tomorphisms (not necessarily continuous) of the group Rn contains non-linear
maps.

2. The set of matrices with determinant one SL(n,R) and the usual product of matri-
ces as group law.

3. Let G be a Lie group, N ⊂G be a normal subgroup and K ⊂G a subgroup satisfying
N ∩K = {e} and G = N K . (This last condition means that g ∈ G can always be
written as nk with n ∈ N and k ∈ K .) With these conditions, we say that G is the
semidirect product of K and N and write G = N oK . Observe that if g1 = n1k1

and g2 = n2k2 then g1g2 = n1(k1n2k−1
1 )k1k2.

An example is given by the affine linear group Aff(Rn) = RnoGL(n,R). Given an
affine transformation T acting on the affine plane Rn , the choice of a base point
0 ∈ Rn allows to write

T (x) = c + f (x) (15)

14



with c ∈ Rn and f ∈ GL(n,R). This decomposition is unique. Hence Aff(Rn) =
Rn GL(n,R). Note that the change of the base point from 0 ∈ Rn to ζ ∈ Rn translates
to:

ζ+T (x −ζ) = ζ+ (c − f (ζ))+ f (x) (16)

therefore the linear part f of T is independent of the choice of the base point, but
the translational part depends on it.

The composition of two transformations T1,T2 is given by:

T1(T2(x)) = c1 + f1(c2 + f2(x)) = (c1 + f1(c2))+ f1 f2(x) (17)

and it proves that Aff(Rn) is indeed the semidirect product RnoGL(n,R).

Note that a convenient representation of the affine group into GL(n+1,R) is given
by

(c, f ) 7→
(

f c
0 1

)
. (18)

4. Semidirect products G = NoK are in correspondance with split exact sequences

1 → N →G → K → 1 (19)

and in the case of the affine group, we have indeed

0 → Rn → Aff(Rn) → GL(n,R) → 1 (20)

with the last morphism being independent of the choice of a base point and
therefore is indeed restricted to the identity on GL(n,R).

5. The three dimensional Heisenberg group Heis(3) is defined as

Heis(3) =


1 x z
0 1 y
0 0 1

∣∣∣∣∣∣ (x, y, z) ∈ R3

 (21)

The group law is again the matrix product and is described by1 x z
0 1 y
0 0 1

1 x ′ z ′
0 1 y ′
0 0 1

=
1 x +x ′ z + z ′+x · y ′

0 1 y + y ′
0 0 1

 (22)

Another description of the same group is given by C×R with the group law

(x + i y, z) · (x ′+ i y ′, z ′) =
(
(x +x ′)+ i (y + y ′), z + z ′+ 1

2
(x y ′− y x ′)

)
. (23)

Both descriptions are compatible. One can start with the Lie algebra:

heis(3) =


0 x z
0 0 y
0 0 0

 . (24)
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The exponential of an element is

exp

0 x z
0 0 y
0 0 0

=
1 x z + 1

2 x y
0 1 y
0 0 1

 . (25)

Therefore exp: heis(3) → Heis(3) is a diffeomorphism. The group law defines a
group structure on the Lie algebra by taking the logarithm: For X ,Y ∈ heis(3)
define

X ·Y = log(exp(X )exp(Y )) = X +Y + 1

2
[X ,Y ] (26)

and this law on heis(3):0 x z
0 0 y
0 0 0

 ·
0 x ′ z ′

0 0 y ′
0 0 0

=
0 x +x ′ z + z ′+ 1

2 (x y ′− y x ′)
0 0 y + y ′
0 0 0

 (27)

gives the second description.

In the case of the Heisenberg group (which is diffeomorphic to R3) one can use
the group operation on the Lie algebra to determine the automorphisms.

Proposition 3.9. The automorphism group of Heis(3) (described by coordinates
(x + i y, t ) = (z, t ) ∈ C×R) is generated by the following transformations.

(a) Transformations (z, t ) 7→ (A(z), t ) where A : C → C is symplectic with respect
to the form Im(zz ′) = x y ′− y x ′.

(b) Dilations (z, t ) 7→ (az, a2t ), with a ∈ R∗+.

(c) Conjugations by a translation (a + i b,c) ∈ Heis(3): (x + i y, t) 7→ (x + i y, t +
ay −bx).

(d) The inversion map (z, t ) 7→ (z,−t ).

Proof. We decompose an automorphism φ : Heis(3) → Heis(3) by decomposing
its derivative dφe : heis(3) → heis(3). With a linear automorphism dφe , we can
write dφe (x+i y, t ) = (A(x, y, t ), at +bx+c y), where A a linear transformation and
a,b,c three real numbers.

We note that an automorphism has to preserve the center of the group: if ζ is
in the center, then 0 = dφe [ζ, ·] = [dφeζ,dφe ·] = [dφeζ, ·]. Therefore A can not
depend on t . (The center of heis(3) is exactly (0, t ).)

From (A(x, y), at+bx+c y) one can compose with the conjugation by a translation
such that dφe becomes (A(x, y), at ). (Choose the translation (−c + i b,0).)

Next, if a is negative then we compose with an inversion. We obtain (A′(x, y), |a|t )
with A′ that is either A or A. Then we can compose by a dilatation by λ=p|a|−1

so that we obtain (λA′(x, y), t ).

Now, because t is fixed, λA′ must be a symplectic transformation of C.

Note Hilbert’s 5th problem deals with the question of to what extent a topological
group has a differential structure. This problem has many interpretations. One of
the most important of them was solved by Gleason, Montgomery-Zippin and Yamabe
among other contributions: every connected locally compact topological group without
small subgroups (a neighborhood of the identity does not contain a subgroup other than
the trivial subgroup) is a Lie group.
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3.1.1 The Maurer-Cartan form

Given a Lie group G and its Lie algebra g, one might wonder how g controls the full
tangent space TG . Since G is a group, we can always translate TeG to any Tg G by doing
a left translation Lg or a right translation Rg . We choose to identify any tangent space
Tg G with the left translation (Lg )∗TeG . This identification defines a map TG →G ×g
which is encoded by the Maurer-Cartan form.

Definition 3.10. The (left) Maurer-Cartan form on a Lie group G is the g-valued 1-form
θ defined by

∀Xg ∈ Tg G , θ(Xg ) = (Lg )−1
∗ (Xg ) ∈ g. (28)

Note Let X be a vector field on G , then θ(X ) = v is constant, if and only if, X is left-
invariant and X (g ) = (Lg )∗v . Choosing a basis of g defines a parallelism of G .

Cartan’s formula is also valid for vector valued 1-forms. That is, for any 1-form
α : T M →V with values on a vector space V , we have

dα(X ,Y ) = X (α(Y ))−Y (α(X ))−α([X ,Y ]). (29)

Proposition 3.11 (Structural equation). For any X ,Y ∈ Tg G,

dθ(X ,Y )+ [θ(X ),θ(Y )] = 0. (30)

Proof. We can evaluate dθ(X ,Y ) by assuming that X ,Y are extended by left-invariant
vector fields X ∗ and Y ∗. For any left-invariant vector field X ∗, the image by the Maurer-
Cartan form is constant on X ∗(g ) for any g ∈ G . Therefore X ∗(θ(Y ∗)) and Y ∗(θ(X ∗))
are both zero. Moreover, since X ∗,Y ∗ are left-invariant, so is [X ∗,Y ∗] and therefore
θ([X ∗,Y ∗]) = [θ(X ),θ(Y )].

Maurer-Cartan form in coordinates The choice of a basis (e1, . . . ,en) of g allows us to
write θ = (θ1, . . . ,θn) by duality. With Xi the left-invariant vector field verifying θ(Xi ) = ei ,
we can determine the structure coefficients:

[Xi , X j ] =∑
k

ck
i j Xk . (31)

The structural equation becomes:

dθk (X ,Y ) =−∑
i< j

ck
i jθ

i ∧θ j . (32)

The Maurer Cartan form is then
θ =∑

i
θi ei .

Note Here we use a convention which might be different in some cases (see [KoN] pg.
28) and is sometimes the cause of a factor of 1

2 in the formula. In fact we define

θ1 ∧θ2(X ,Y ) = θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X ) (33)

in contrast with

θ1 ∧θ2(X ,Y ) = 1

2

(
θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X )

)
. (34)
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Example Consider the group SO(2) ⊂ GL(2,R). This group is parametrized as follows:

g (φ) =
(
cosφ −sinφ
sinφ cosφ

)
(35)

In that coordinate, we obtain

dgφ =
(−sinφ −cosφ

cosφ −sinφ

)
dφ (36)

The Lie algebra is one dimensional and is generated by(
0 −1
1 0

)
. (37)

The Maurer-Cartan form translates dgφ for any φ to dg0 by a left translation. There-
fore it is given by

θφ = g (φ)−1 dgφ (38)

=
(
cosφ −sinφ
sinφ cosφ

)−1 (−sinφ −cosφ
cosφ −sinφ

)
dφ (39)

=
(
0 −1
1 0

)
dφ. (40)

Matrix groups If G ⊂ GL(n,R) is a matrix group with Lie algebra g ⊂ Mn×n one can
write the Maurer-Cartan form at g ∈G and it is given by θg = g−1 dg .

Here we interpret dg as the differential of the embedding of G into the space of
matrices Mn×n . In coordinates, if gi j is the embedding, one has θg = g−1

i k dgk j , which is
a g-valued 1-form.

Vector space valued forms The Maurer-Cartan form is an example of vector space
valued form. We define the wedge product of a V1-valued 1-form θ1 and a V2-valued
1-form θ2 to be the V1 ⊗V2-valued form

θ1 ∧θ2(X ,Y ) = θ1(X )⊗θ2(Y )−θ1(Y )⊗θ2(X ). (41)

If there exists a bilinear map [·, ·] : V ×V →V we note the composition of ∧ (for 1-forms)
and [·, ·] by

[θ1 ∧θ2](X ,Y ) := [θ1(X ),θ2(Y )]− [θ1(Y ),θ2(X )]. (42)

Observe then that [θ(X ),θ(Y )] = 1
2 [θ∧θ](X ,Y ).

Exercice (g-valued n-forms) Writing, in general, θn for a g-valued n-form we may
define the exterior derivative and the product of two forms accordingly. Prove the
following formulae:

1. [θp ∧θq ] = (−1)pq [θq ∧θp ],

2. (−1)pr [[θp ∧θq ]∧θr ]+ (−1)qr [[θr ∧θp ]∧θq ]+ (−1)qp [[θq ∧θr ]∧θp ].

Moreover,
d[θp ∧θq ] = [dθp ∧θq ]+ (−1)pq+1[θp ∧dθq ]. (43)
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Darboux derivatives

A Maurer-Cartan form allows the computation of Darboux derivatives.

Definition 3.12. If f : M →G is smooth and if θ is the Maurer-Cartan form of G then the
Darboux derivative of f is:

f ∗θ = θ ◦ f∗. (44)

Example In Rn the Darboux derivative is in a sense closer to the usual derivative than
the differential. Indeed, recall that if f : Rp → Rn is smooth, then

∀(x, v) ∈ TRn , f∗(x, v) = ( f (x),d fx (v)). (45)

The maps f∗ and d f depend on the base point. But with the Darboux derivative one
identifies all tangent spaces to the tangent space at the origin:

f ∗θ(x, v) = θ( f (x),d fx (v)) = T− f (x)∗(d fx (v)) ∈ T0(Rn) (46)

where T− f (x) is the translation T− f (x)(z) = z − f (x).

Theorem 3.13. Let G be a Lie group with Lie algebra g and M a submanifold of G.
Suppose there exists a g-valued 1-form φ defined on M satisfying the Maurer-Cartan
formula dφ+ 1

2 [φ∧φ] = 0. Then for any m ∈ M there exists a map f : U → G defined
on a neighbourhood of m such that φ = f ∗θ where θ is the Maurer-Cartan form of G.
Moreover if f ′ : U →G is another map satisfying this condition f ′ = Lh ◦ f for a certain
h ∈G.

Proof. We consider, in the product M ×G , the Lie algebra valued form

ω=π∗
1 (φ)−π∗

2 (θ),

where π1 and π2 are the projections of the product on each of the factors. Let I be the
ideal generated by the components ωi

j of ω. This is a differential ideal because

2dω= 2(π∗
1 (dφ)−π∗

2 (dθ)) =−π∗
1 ([φ∧φ])+π∗

2 ([θ∧θ])

=−[(π∗
1φ−π∗

2θ)∧π∗
1φ]− [π∗

2θ∧ (π∗
1φ−π∗

2θ)]

and we invoke the previous theorem to conclude the existence of the map f : U →G .
A submanifold passing through another point (m0,hg ) is clearly given by (m,h f (m))

and by unicity this implies that f ′ = Lh ◦ f .

The exponential map

One parameter subgroups of a group G are defined by elements of the Lie algebra. For
any X ∈ g one defines a homomorphism

expX : R →G , (47)

which is the unique homomorphism satisfying exp∗
X θ = X .

Definition 3.14. The exponential map exp: g→G is defined by

exp(X ) = expX (1). (48)
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Although exp has several properties analogous to the real exponential, due to the
non-commutativity, one has a more complicated formula for the product of two expo-
nentials (it is the Baker-Campbell-Hausdorff formula which is only valid locally):

exp(X )exp(Y ) = exp

(
X +Y + 1

2
[X ,Y ]+·· ·

)
. (49)

If φ : H →G is a group homomorphism one has

exp◦dφe =φ◦expe . (50)

Lemma 3.15. Let X ∗ be a left-invariant vector field corresponding to an element X ∈ g.
Then its flow is given as the right multiplication by the exponential map Rexp(t X ).

Proof. Since X ∗ is left-invariant, so must be its flow. Therefore the integral curve at
g ∈G is given by Lg exp(t X ) = Rexp(t X )g . Hence the flow is given by Rexp(t X ).

3.1.2 The adjoint representation

An action of a Lie group G on a manifold induces a representation of the group on
the automorphism group of the tangent space of a fixed point of the action. For, let
φ : G × M → M be an action with a fixed point G · p = p at p ∈ M . Then for every
g ∈ G , define φg : M → M (φg (x) = φ(g , x)) and then the automorphism ρ(g ) = φg |p :

Tp M → Tp . One then verifies that the map ρ : G → Aut (Tp M) defined by ρ(g ) = ρg is a
representation.

In particular the adjoint action G ×G → G defined by (g ,h) 7→ g hg−1 induces the
representation Ad: G → Aut(TeG) (observe that Aut(TeG) is isomorphic to GL(n,R) with
n = dimR G). For g ∈G , Adg is the automorphism

Adg (X ) = d(h 7→ g hg−1)e (X ) = (Lg )∗(Rg−1 )∗X (51)

The adjoint representation is also exactly what we need to compare the Maurer-
Cartan form θ defined by left-invariance with the action by right translations.

Proposition 3.16. For any g ∈G, the Maurer-Cartan form θ verifies

R∗
g θ(X ) = Ad−1

g (θ(X )). (52)

Proof. Assume that X = (Lx )∗v . By the preceding definition, we have:

R∗
g θ(X ) = θ((Rg )∗X ) (53)

= θ((Rg )∗(Lx )∗v) (54)

= θ((Lx )∗(Rg )∗v) (55)

= θ((Rg )∗v) (56)

= (Lg )−1
∗ (Rg )∗v = Ad−1

g v. (57)

The differential of Adg at the origin g = e is denoted by ad: g→ End(TeG):

adX = dAde (X ). (58)

It is in fact given by the bracket of the Lie algebra.
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Lemma 3.17. Let X ,Y ∈ g∼= TeG. Then

dAde (X )(Y ) = adX (Y ) = [X ,Y ]. (59)

The adjoint automorphism by g ∈G fits in the following commutative diagram

g g

G G

Ad(g )

exp exp

g (·)g

(60)

and the adjoint representation satisfies

g End(g)

G Aut(g)

ad

exp exp

Ad

(61)

More generally, we have:

Proposition 3.18. The differential of the representation Ad: G → Aut(TeG) at g ∈ G
computed at the vector X ∗ = (Lg )∗X ∈ Tg G is

dAdg (X )(Y ) = Adg (adX (Y )). (62)

Proof. Writing a path through g as Lgγ(t ) withγ(0) = e and γ̇(0) = X we have AdLgγ(t )(Y ) =
Adg ◦Adγ(t )(Y ). Therefore

(dAdg (X ))(Y ) = dAdg ◦Adγ(t )

dt

∣∣∣∣
t=0

(Y ) = Adg ◦adX (Y ). (63)

Proposition 3.19. If θG is the Maurer-Cartan form, then for any function ψ with values
in G and any 1-form α with values in g,

Adψψ
∗θG =−ψ−1∗θG , (64)

d
(
Adψ(α)

)= [
−ψ−1∗θG ∧Adψ(α)

]
+Adψdα (65)

= Adψ
([
ψ∗θG ∧α]+dα

)
. (66)

3.2 Homogeneous spaces

Homogeneous spaces will be the flat model geometries. They appear naturally when
there exists a transitive action. Indeed, if G × M → M is a transitive action one can
identify M with the quotient G�Hx

where Hx is the isotropy subgroup of a chosen

element x ∈ M . A different choice g x ∈ M gives rise to the isotropy Hg x = g Hx g−1.

Definition 3.20. A homogeneous space is a differential manifold obtained by the quotient
of a Lie group G by a closed Lie subgroup H ⊂G. We note the set of left cosets g H by G�H.

The group G acts transitively on the homogeneous space G�H by left translations,
the isotropy subgroup at the identity being H .
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Note If H were not closed then the quotient G�H would not separated with the quo-
tient topology.

Examples

1. The Euclidean space.

The group of the isometries of the Euclidean space is Eucl = RnoO(n). It acts on

Rn with isotropy O(n). Therefore Rn = Eucl�O(n) as homogeneous space.

2. The hyperbolic space.

Hyperbolic space is the simply connected complete constant negative sectional
curvature Riemannian space. Its connected isometry group is SO(n,1) with
isotropy SO(n). Here SO(n,1) is the group preserving the quadratic form(

idRn 0
0 −1

)
. (67)

3. The similarity group acting on Rn .

The connected similarity group is the group Sim(Rn) = Rno (R∗+×O(n)). It is a
subgroup of the affine group Aff(Rn). Transformations of R∗+×O(n) are of the
form λP (x) with λ> 0 and P an orthogonal transformation.

The similarity group is the conformal group acting on Rn . (Each conformal
transformation has to be defined on the full space Rn .) Therefore, it consists of
the transformations of Rn which preserve angles. The isotropy at the origin is
R∗+×O(n).

4. The conformal sphere.

There are more conformal transformations than just Sim(Rn). But those are not
defined strictly on Rn but rather on the one-point compactification Sn . The
conformal sphere is the homogeneous space PO(n +1,1)/Sim(Rn).

5. The projective space.

The projective space RPn is the homogenous space GL(n +1,R)/H where

H =
{(
? ?

0 A

)∣∣∣∣ A ∈ GL(n,R)

}
. (68)

6. Flag spaces.

The projective space is an example of flag spaces. A flag is a sequence {0} ⊂V1 ⊂
·· · ⊂ Vn = Fn for any field F. For instance, the projective space FPn is the set of
lines in Fn+1.

A complete flag is a flag with dimVi = i . They are maximal in length. When F = C
we get an homogeneous space structure with the quotient

SU(n)�S(U(1)×·· ·×U(1)). (69)

7. Stiefel manifolds.

The space of orthonormal k-frames in Rn (with 0 < k < n) is the Stiefel manifold
S(k,n). It is possible to show that

S(k,n) = SO(n)�SO(n −k). (70)
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8. Every manifold is a homogeneous space.

The full group of the diffeomorphisms of a manifold is not a Lie group but might
be described by an analogous structure with infinite dimension.

The easiest situation is for a compact manifold, say M . The smooth diffeomor-
phism group Diff∞(M) has a structure of a Fréchet Lie group which is homeomor-
phic to the space of smooth vector fields. The group Diff∞(M) acts transitively
on M . Therefore, any manifold can be considered as a homogeneous space
Diff∞(M)/H , where H is the isotropy at a point in M , that is to say, the set of
diffeomorphisms fixing the point. We will not deal with infinite dimension Lie
groups.

Construction à la Cartan We can reproduce how Cartan described the construction
of the Maurer-Cartan form at the early stages of the theory. In fact, we here describe the
main technique of the moving frame (repère mobile) that Cartan attributes to Darboux.

Consider the affine space R3. At any point m ∈ R3, associate a frame (e1,e2,e3) base
at m. The map (e1,e2,e3) should be smooth depending on m.

The infinitesimal change of m by δm can be expressed by:

δm =ω1e1 +ω2e2 +ω3e3. (71)

It gives a 1-form with values in R3.
The infinitesimal change of a base vector ei by δei can be described by the image of

an infinitesimal matrix acting on (e1,e2,e3):

δei =ω1
i e1 +ω2

i e2 +ω3
i e3 (72)

and this furnishes a 1-form with values in gl(3).
Those four 1-forms θ = (δe1,δe2,δe3,δm) compose the Maurer-Cartan form of the

affine space.

3.2.1 The tangent space

With a homogeneous space G�H the tangent space can be described infinitesimally and
the action of G (on the left) can be measured.

At eH , the tangent space is naturally isomorphic to g�h as linear spaces. Therefore,

the tangent bundle of the homogenous spaces TG�H can be seen as a quotient of the
trivial bundle

G ×H g�h. (73)

The quotient will be by the right action of H :

(g , v) ·h ∼ (g h,Ad(h)−1v). (74)

Note that at the isotropy H ⊂G , the action of h ∈ H on a point pH is hpH = hph−1H
and therefore H acts on TeH

G�H by Ad(h).

Proposition 3.21. There exists a canonical isomorphism

TG�H
∼=G ×H g�h. (75)
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Proof. Let π : G →G�H be the quotient map. Let φ : G ×g�h→ TG�H be defined by

φ(g , v) = (g H ,π∗(Lg )∗v). (76)

We prove that this map is well defined in the quotient by the right action of H . Note that
π∗(Rh)∗ =π since π◦Rh =π and π∗(Lg )∗ = (Lg )∗π∗.

φ((g , v) ·h) =φ(g h,Ad(h)−1v) (77)

= (g hH ,π∗(Lg h)∗ Ad(h)−1v) (78)

= (g H , (Lg )∗π∗(Rh)∗v) (79)

= (g H , (Lg )∗π∗v) =φ(g , v) (80)

We can check that this morphism is injective at every point. If φ(g , v) = (g H ,0) then
π∗v = 0 and therefore v ∈ h. It is surjective by dimensionality.

3.2.2 Effective pairs

It is important to keep track of both groups G and H and not only their quotient space.
On the other hand it is reasonable to consider only connected quotients G�H .

Definition 3.22. We will refer as a Klein geometry a pair (G , H) such that the homoge-
neous space G�H is connected.

There are two conditions which one can add without much loss of generality, namely,
that the action of G be effective and that G be connected.

Note that if g ∈ G acts trivially on G�H then g eH = eH and therefore g ∈ H . Let
h ∈ H be acting trivially. For any g ∈G and any coset pH we would have that g hg−1pH =
g (h(g−1pH )) is equal to g (g−1pH ) since h acts trivially on g−1pH and therefore g hg−1pH =
pH . So if h acts trivially, then g hg−1 does too.

Definition 3.23. We say that a maximal subgroup K ⊂ H which is normal in G is the
kernel of a Klein geometry. The action of K is trivial and we say that the geometry is
effective if K = {e}.

If K is the maximal normal subgroup in H (the definition implies that K is a closed
subgroup of G) one can consider the effective geometry (G�K , H�K ) which describes

the same homogeneous space as (G�K )�(H�K ). It is diffeomorphic to G�H with an

equivariant action by G�K .

Sometimes one might consider non-effective Klein geometries. For instance, SL(2,R)�SO(2)
corresponds to the hyperbolic geometry but the subgroup Z2 ⊂ SL(2,R) generated by
− id is a maximal normal subgroup contained in SO(2). Nonetheless, this subgroup is
discrete and is does not intervene infinitesimally.

If G is not connected one can consider the connected component containing the
identity Ge ⊂G and we obtain that G�H is diffeomorphic to Ge�(H ∩Ge ) with an equiv-

ariant action by Ge . This follows since if G�H is connected, one has G =Ge H . On the
other hand, one can prove that if H is connected then G is also connected.

Lemma 3.24. Let N ⊂G be a normal subgroup with corresponding algebras n⊂ g. Then
for all v ∈ g and n ∈ N ,

Adn(v)− v ∈ n. (81)
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Proof. Since N is normal, for any g ∈ G and any n ∈ N we have ng n−1g−1 ∈ N . Let
g (t ) = exp(t v). We have:

(LnLg (t )Rn−1 )g (−t ) ∈ N (82)

and by derivation at t = 0:
Adn(v)− v ∈ n. (83)

Reciprocally, this condition implies, by differentiation along a path in N , that [n,g] ⊂
n so n is an ideal of G .

We will need to identify maximal normal subgroups of G contained in H ⊂G . The
goal is to obtain properties for effective Klein geometries. The easiest way to start is with
a normal subgroup N of H (N = H is the most natural choice) so that its Lie algebra n is
an ideal of h. According to the preceding lemma, a candidate for a normal subgroup of
G contained in N ⊂ H is

N ′ = {
n ∈ N |∀v ∈ g, Adn v − v ∈ n}

. (84)

The subgroup N ′ might be much smaller that N . At least, it is still normal in H :

Adhnh−1 (v)− v = Adh(Adn Adh−1 (v)−Adh−1 (v)) ∈ Adh(n) ⊂ n. (85)

The greatest normal subgroup of G which is contained in H is obtained by the
following procedure.

Proposition 3.25. Suppose G is connected and H ⊂G a closed Lie subgroup. Define the
decreasing sequence of subgroups of H:

N0 = H , (86)

∀i ≥ 0, Ni+1 =
{
n ∈ H |Adn v − v ∈ ni , ∀v ∈ g} . (87)

Then, each Ni ⊂ H is a closed normal subgroup of H and the intersection

N∞ =⋂
i

Ni ⊂ H (88)

is the largest normal subgroup of G contained in H.

Proof. The fact that Ni and N∞ are normal will depend on the following computation,
related to the preceding paragraph. Let n ∈ G , g ∈ G and k ≥ 0. Assume that Adn v =
v +w(v) for any v ∈ g, with a corresponding w(v) ∈ nk . Then

Adg ng−1 v = Adg Adn(Adg−1 v) (89)

= Adg

(
Adg−1 v +w(Adg−1 (v))

)
(90)

= v +Adg (w(Adg−1 (v))). (91)

Now, to see that each group Ni is normal in H , note that if n ∈ Ni and g ∈ H then the
preceding computation shows that g ng−1 belongs to Ni if, and only if, Adg (w(Adg−1 (v))) ∈
ni−1. By hypothesis, w(Adg−1 (v)) ∈ ni−1. By recurrence, Adg (ni−1) ⊂ ni−1, showing that
we have indeed Adg (w(Adg−1 (v))) ∈ ni−1.

It is clear that N∞ is well defined and is normal in H . We have to show it is also
normal in G . First, n∞ ⊂ g is an ideal. Indeed, by differentiation of Adn(v) = v +w(v)
along a path n(t ) we have [n, v] = w ′(v) and it belongs to to n∞ since w(v) does.
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Since n∞ ⊂ g is an ideal and G is connected, the component of the identity of N∞
is normal in G . But then it implies Adg−1 n∞ = n∞. By the preceding computation it
implies Adg (w(Adg−1 (v))) ∈ n∞ and therefore that N∞ is indeed normal.

To complete the proof, we show that for a normal subgroup N ⊂G contained in H,
N ⊂ N∞: by induction, N ⊂ H and if N ⊂ Ni son⊂ ni and therefore N ⊂ {

n ∈ H |Adn v − v ∈ ni , ∀v ∈ g}=
Ni+1.
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