TD n°4. Compacité

1 Exemples et construction d'espaces compacts

Exercice 1. Déterminer si les sous-ensembles de \mathbb{R}^2 suivants sont compacts :

$$A = \{(x,y) \in \mathbb{R}^2 | y \ge e^x, x \ge 0, x + y \le 2\},$$

$$B = \{(x,y) \in \mathbb{R}^2 | y > e^x, x \ge 0, x + y \le 2\},$$

$$C = \{(x,y) \in \mathbb{R}^2 | x^2 + xy + y^2 \ge 0\}.$$

Exercice 2. Montrer que $O(n) = \{A \in M_n(\mathbb{R}) | A^t A = I\}$ est compact.

Exercice 3. a) Soit X un espace métrique compact. On munit l'ensemble $X^{\mathbb{N}}$ des fonctions de \mathbb{N} dans X de la distance suivante $d(u,v) = \sum_{n \in \mathbb{N}} 2^{-n} \min(1, d(u(n), v(n)))$. Vérifier que d est effectivement une distance. Montrer que X est compact.

b) On considère $X = \{0,1\} \subset \mathbb{R}$. Soit $f: X^{\mathbb{N}} \to \mathbb{R}$ l'application qui envoie u sur $\sum_{n \in \mathbb{N}} 3^{-n} u(n)$. Montrer que f est continue et injective.

Exercice 4. Soient K et L deux sous-espaces compacts d'un espace métrique X. Montrer que $K \cup L$ est compact.

Exercice 5. Soit $(x_n)_{n\in\mathbb{N}}$ une suite convergente, de limite notée x, d'un espace métrique X. Montrer que $A := \{x\} \cup \{x_n, n\in\mathbb{N}\}$ est un sous-espace compact de X.

Exercice 6. Soit A et B deux fermés de \mathbb{R}^n . Soit $A + B = \{a + b, (a, b) \in A \times B\}$.

- a) Montrer que, si A et B sont compacts A + B est compact.
- b) Montrer que, si A est compact, A + B est fermé.
- c) A + B est-il nécessairement fermé pour A et B fermés quelconques?

2 Propriétés des espaces compacts

Exercice 7. Soit X un espace metrique dont toute boule fermée est compacte. Montrer que X est complet.

Exercice 8. Soit X un espace métrique compact non vide et A un sous-ensemble de X. Montrer qu'il existe une suite dont l'ensemble des valeurs d'adhérence est A si et seulement si A est fermé et non vide.

Exercice 9. a) Soit K un compact non vide d'un espace métrique (X, d) et F un fermé non vide de X tel que $K \cap F = \emptyset$. Montrer que $d(K, F) := \inf_{x \in K, y \in F} d(x, y)$ est strictement positif.

b) Montrer que, si F est compact, alors il existe $x \in K$ et $y \in F$ tels que d(K, F) = d(x, y).

Exercice 10. Si (X, d) est un espace métrique non vide, on note $diam(X) = \sup_{x,y \in X} d(x,y) \in \mathbb{R}_+ \cup \{\infty\}$.

- a) Montrer que, si X est compact, alors $diam(X) \in \mathbb{R}_+$ et il existe $x, y \in X$ tels que diam(X) = d(x, y).
- b) Montrer que, si $(K_n)_{n\in\mathbb{N}}$ est une suite décroissante de compacts non vides de X, alors $K:=\bigcap_n K_n$ est un compact non vide de X et $diam(K)=\lim_{n\to\infty} diam(K_n)$.

Exercice 11. Soit (E, d) un espace métrique compact et $f: E \to E$ une application telle que, pour tous $x, x' \in E$, d(f(x), f(x')) = d(x, x').

- a) Montrer que f est injective, continue et que Z = f(E) est un fermé de E.
- b) Soit $x_0 \in E$. On pose $\alpha = \inf_{z \in \mathbb{Z}} d(x_0, z)$. Soit $(x_n)_{n \in \mathbb{N}}$ la suite définie par récurrence par $x_{n+1} = f(x_n)$. Montrer que $d(x_0, x_n) \ge \alpha$ pour tout $n \ge 1$, puis que $d(x_n, x_m) \ge \alpha$ pour tout $n \ne m$.
- c) Montrer que $\alpha = 0$ et en déduire que $x_0 \in \mathbb{Z}$.
- d) Montrer que f est un homéomorphisme de E sur E.

Exercice 12. Soit (E, d) un espace métrique compact non vide et $f : E \to E$ une application telle que, pour tous $x, x' \in E$, d(f(x), f(x')) < d(x, x'). Montrer que f admet un unique point fixe.

3 Pour aller plus loin...

Exercice 13. Soit (X, d) un espace métrique compact et soit Y l'ensemble des fermés non vides de X. Considérons $\delta: Y^2 \to \mathbb{R}$ définie par :

$$\delta(F_1, F_2) = \max(\sup_{x \in F_1} d(x, F_2), \sup_{x \in F_2} d(x, F_1)).$$

- a) Montrer que pour tout $x \in X$ et $A, B \in Y$, $d(x, A) \leq d(x, B) + \delta(A, B)$. En déduire que δ est un distance.
- b) Soit $\epsilon > 0$ et $x_1, \ldots, x_n \in X$ tels que X est l'union des boules ouvertes de centre x_i et de rayon ϵ . Pour $I \subset \{1, \ldots, n\}$, on note $F_I = \{x_i\}_{i \in I} \in Y$. Montrer que Y est recouvert par les boules de centre F_I et de rayon ϵ quand I parcourt toutes les parties de $\{1, \ldots, n\}$.
- c) Soit $(F_n)_{n\in\mathbb{N}}$ une suite de Cauchy de (Y,δ) . Montrer que F_n converge vers $\overline{\bigcup_n\bigcap_{k\geq n}F_k}$. En déduire que Y est compact.

Exercice 14. Soit X un espace métrique compact non vide. Montrer qu'il existe une application continue surjective $\{0,1\}^{\mathbb{N}} \to X$.

Exercice 15 (Compacts convexes). Soit K un convexe compact non vide de \mathbb{R}^n .

- a) Soit f une application linéaire $\mathbb{R}^n \to \mathbb{R}^n$ telle que $f(K) \subset K$. Montrer que f admet un point fixe dans K.
- b) Soit G un sous-groupe de $GL_n(\mathbb{R})$ tel que pour tout $g \in G$, $g(K) \subset K$.
 - Soient $g_1, \ldots, g_n \in G$. Montrer qu'un point fixe dans K de $\frac{1}{n} \sum_{i=1}^n g_i$ est un point fixe de tous les g_i .
 - Montrer qu'il existe $x \in K$ tel que, pour tout $g \in G$, g(x) = x.
- c) Soit A une partie non vide de \mathbb{R}^n . On note $Conv(A) = \{\sum_i \lambda_i x_i, x_i \in A, \lambda_i > 0, \sum_i \lambda_i = 1\}$. C'est la plus petite partie convexe de \mathbb{R}^n contenant A. Montrer que

$$Conv(A) = \{ \sum_{i=0}^{n} \lambda_i x_i, x_i \in A, \lambda_i > 0, \sum_{i=0}^{n} \lambda_i = 1 \}.$$

En déduire que si A est compact, Conv(A) est compact.

d) Soit G un sous-groupe compact de $GL_n(\mathbb{R})$. Montrer qu'il existe une matrice symétrique définie positive S telle que pour tout $g \in G$, $g^t S g = S$.