Subtriviality of continuous fields of nuclear C^*-algebras

By Étienne Blanchard

Last update 15/08/04

Abstract

We extend in this paper the characterisation of a separable nuclear C^*-algebra given by Kirchberg proving that given a unital separable continuous field of nuclear C^*-algebras A over a compact metrizable space X, the $C(X)$-algebra A is isomorphic to a unital $C(X)$-subalgebra of the trivial continuous field $O_2 \otimes C(X)$, image of $O_2 \otimes C(X)$ by a norm one projection.

AMS classification: 46L05.

0 Introduction

In order to study deformations in the C^*-algebraic framework, Dixmier introduced the notion of continuous field of C^*-algebras over a locally compact space ([7]). In the same way as there is a faithful representation in a Hilbert space for any C^*-algebra thanks to the Gelfand–Naimark–Segal construction, a separable continuous field of C^*-algebras A over a compact metrizable space X always admits a continuous field of faithful representations π in a Hilbert $C(X)$-module, i.e. there exists a family of representations $\{\pi_x, x \in X\}$, in a separable Hilbert space H which factorize through a faithful representation of the fibre A_x such that for each $a \in A$, the map $x \mapsto \pi_x(a)$ is strongly continuous ([4, théorème 3.3]).

In a work on tensor products over $C(X)$ of continuous fields of C^*-algebras over X ([16]), Kirchberg and Wassermann raised the question of whether the continuous field of C^*-algebras A could be subtrivialized, i.e. whether one could find a continuous field of faithful representations π such that the map $x \mapsto \pi_x(a) \in L(H)$ is actually norm continuous for all a in A. In this case, given any C^*-algebra B, the minimal tensor product $A \otimes B$ is a $C(X)$-subalgebra of the trivial continuous field $[L(H) \otimes B] \otimes C(X)$ and is therefore a continuous field with fibres $(A \otimes B)_x = A_x \otimes B$. They proved that a non-exact continuous field with exact fibres cannot be subtrivialized and they constructed such examples.

The non-trivial example of the continuous field of rotation algebras over the unit circle \mathbb{T} had already been studied by Haagerup and Rørdam in [10]. More precisely, they constructed continuous functions u, v from \mathbb{T} to the unitary group $U(H)$ of the infinite-dimensional separable Hilbert space H satisfying the commutation relation $u_t v_t = t v_t u_t$.
for all $t \in T$ and the uniform continuity condition $\max \{\|u_t - u_{t'}\|, \|v_t - v_{t'}\|\} < C'|t - t'|^{1/2}$ where C' is a computable constant.

Our purpose in the present paper is to show that the subtrivialization is always possible in the nuclear separable case through a generalisation of the following theorem of Kirchberg using RKK-theory arguments:

Theorem 0.1 ([15]) A unital separable C*-algebra A is exact if and only if it is isomorphic to a C*-subalgebra of O_2. Moreover the C*-algebra A is nuclear if and only if A is isomorphic to a C*-subalgebra of O_2 containing the unit 1_{O_2} of O_2, image of O_2 by a unital completely positive projection.

As a matter of fact, we get an equivalent characterisation of nuclear separable continuous fields of C*-algebras (theorem 3.2) which is made possible thanks to $C(X)$-linear homotopy invariance of the bifunctor $RKK(X; -, -)$ (theorem 1.6) and $C(X)$-linear Weyl-von Neumann absorption results (proposition 2.5). This also enables us to have a better understanding of the characterisation of separable continuous fields of nuclear C*-algebras given by Bauval in [2].

In an added appendix, the corresponding characterisation of exact separable continuous fields of C*-algebras as $C(X)$-subalgebras of $O_2 \otimes C(X)$ given by Eberhard Kirchberg is described (theorem A.1).

I would like to thank E. Kirchberg for his enlightenment on the exact case. I also want to express my gratitude to C. Anantharaman-Delaroche and J. Cuntz for fruitful discussions.

1 Preliminaries

1.1 $C(X)$-algebras

Let X be a compact Hausdorff space and $C(X)$ be the C*-algebra of continuous functions on X with complex values. We start by recalling the following definition.

Definition 1.1 ([13]) A $C(X)$-algebra is a C*-algebra A endowed with a unital morphism from $C(X)$ in the centre of the multiplier algebra $M(A)$ of A.

Remark: We do not assume that $C(X)$ embeds into $M(A)$. For instance, there is a natural structure of $C([0, 2])$-algebra on the C*-algebra $C([0, 1])$.

For $x \in X$, define the kernel $C_x(X)$ of the evaluation map $ev_x : C(X) \to \mathbb{C}$ at x; denote by A_x the quotient of a $C(X)$-algebra A by the closed ideal $C_x(X)A$ and by a_x the image of an element $a \in A$ in the fibre A_x. Then the function

$$x \mapsto \|a_x\| = \inf \{\|[1 - f + f(x)]a\|, f \in C(X)\}$$

is upper semi-continuous for any $a \in A$ and the $C(X)$-algebra A is said to be a continuous field of C*-algebras over X if the function $x \mapsto \|a_x\|$ is actually continuous for every $a \in A$ ([7]).
Examples 1. If A is a $C(X)$-algebra and D is a C^*-algebra, the spatial tensor product $B = A \otimes D$ is naturally endowed with a structure of $C(X)$-algebra through the map $f \in C(X) \mapsto f \otimes 1_{M(D)} \in M(A \otimes D)$. In particular, if $A = C(X)$, the tensor product B is a trivial continuous field over X with constant fibre $B_x \simeq D$

2. Given a $C(X)$-algebra A, define the unital $C(X)$-algebra A generated by A and $u[C(X)]$ in $M[A \oplus C(X)]$ where $u(g)(a + f) = ga + gf$ for $a \in A$ and $f, g \in C(X)$. It defines a continuous field of C^*-algebras over X if and only if the $C(X)$-algebra A is continuous ([4, proposition 3.2]).

Remark: If A is a separable continuous field of non-zero C^*-algebras (not necessarily unital) over the compact Hausdorff space X, the positive cone $C(X)_+$ and so the C^*-algebra $C(X)$ are separable. Hence, the topological space X is metrizable.

Definition 1.2 ([4, 5]) Given a continuous field of C^*-algebras A over the compact Hausdorff space X, a continuous field of representations of a $C(X)$-algebra D in the multiplier C^*-algebra $M(A)$ of A is a $C(X)$-linear morphism $\pi : D \to M(A)$, i.e. for each $x \in X$, the induced representation π_x of D in $M(A_x)$ factorizes through the fibre D_x.

If the $C(X)$-algebra D admits a continuous field of faithful representations π in the $C(X)$-algebra $M(A)$ where A is a continuous field over X, i.e. the induced representation of the fibre D_x in $M(A_x)$ is faithful for every point $x \in X$, the function

$$x \mapsto \|\pi_x(d)\| = \sup\{\|\pi(d)a_x\|, a \in A \text{ such that } \|a\| \leq 1\}$$

is lower semi-continuous for all $d \in D$ and the $C(X)$-algebra D is therefore continuous.

In particular a separable $C(X)$-algebra D is continuous if and only if there exists a Hilbert $C(X)$-module E such that D admits a continuous field of faithful representations in the multiplier algebra $M(K(E)) = L(E)$ of the continuous field over X of compact operators $K(E)$ acting on E ([4, théorème 3.3]).

Let us also mention the characterisation of separable continuous fields of nuclear C^*-algebras over a compact metrizable space X given by Bauval in [2] using a natural $C(X)$-linear version of nuclearity introduced by Kasparov and Skandalis in [14][§6.2 : a $C(X)$-linear completely positive σ from a $C(X)$-algebra A into a $C(X)$-algebra B is said to be $C(X)$-nuclear if and only if given any compact set F in A and any strictly positive real number ε, there exist an integer k and $C(X)$-linear completely positive contractions $T : A \to M_k(\mathbb{C}) \otimes C(X)$ and $S : M_k(\mathbb{C}) \otimes C(X) \to B$ such that for all $a \in F$, one has the inequality

$$\|\sigma(a) - (S \circ T)(a)\| < \varepsilon.$$

One can then state the following results. The first assertion is a simple $C(X)$-linear reformulation of the Choi-Effros theorem and the second one is due to Bauval.

Proposition 1.3 Let X be a compact metrizable space and A be a separable $C(X)$-algebra.
1. ([14]§6.2) Given a \(C(X) \)-algebra \(B \) and a closed ideal \(J \subset B \), any contractive \(C(X) \)-nuclear map \(A \to B/J \) admits a contractive \(C(X) \)-linear completely positive lift \(A \to B \).

2. ([2, théorème 7.2]) The \(C(X) \)-algebra \(A \) is a continuous fields of nuclear \(C^* \)-algebras over \(X \) if and only if the identity map \(\text{id}_A : A \to A \) is \(C(X) \)-nuclear.

Remark: In assertion 1., the ideal \(J = (C(X)B)J = C(X)J \) is a \(C(X) \)-algebra.

1.2 \(C(X) \)-extensions

Given a compact Hausdorff space \(X \), we introduce a natural \(C(X) \)-linear version of the semi-group \(\text{Ext}(-,-) \) defined by Kasparov ([12, 13]).

Call a morphism of \(C(X) \)-algebras a \(*\)-homomorphism between \(C(X) \)-algebras which is \(C(X) \)-linear.

Definition 1.4 A \(C(X) \)-extension of a \(C(X) \)-algebra \(A \) by a \(C(X) \)-algebra \(B \) is a short exact sequence

\[
0 \to B \to D \xrightarrow{\pi} A \to 0
\]

in the category of \(C(X) \)-algebras. The \(C(X) \)-extension is said to be trivial if the map \(\pi \) admits a cross section \(s : A \to D \) which is a morphism of \(C(X) \)-algebras.

As in the \(C^* \)-algebraic case a \(C(X) \)-extension \(0 \to B \to D \to A \to 0 \) of \(A \) by \(B \) defines unambiguously an homomorphism from \(D \) to the multiplier algebra \(M(B) \) of \(B \), which gives a morphism of \(C(X) \)-algebras \(\sigma : A \to M(B)/B \) (called the Busby invariant of the extension) and the \(C(X) \)-extension is trivial if and only if the map \(\sigma \) lifts to a morphism of \(C(X) \)-algebras \(A \to M(B) \). Conversely, given a morphism of \(C(X) \)-algebras \(\sigma : A \to M(B)/B \), setting \(D = \{(a, m) \in A \times M(B), \sigma(a) = q(m)\} \) where \(q \) is the quotient map \(M(B) \to M(B)/B \), one has a \(C(X) \)-extension \(0 \to B \to D \to A \to 0 \) (see [12]§7).

Remark: A \(C(X) \)-extension \(0 \to B \to D \to A \to 0 \) induces for every \(x \in X \) a \(C^* \)-extension \(0 \to B_x \to D_x \to A_x \to 0 \).

In order to define the sum of two \(C(X) \)-extensions, recall that the Cuntz algebra \(\mathcal{O}_2 \) is the unital \(C^* \)-algebra generated by two orthogonal isometries \(s_1 \) and \(s_2 \) subject to the relation \(1 = s_1 s_1^* + s_2 s_2^* \) ([6]). Then if \(\mathcal{K} \) is the \(C^* \)-algebra of compact operators on the infinite-dimensional separable Hilbert space, one defines the sum of two \(C(X) \)-extensions \(\sigma_1 \) and \(\sigma_2 \) of the \(C(X) \)-algebra \(A \) by the stable \(C(X) \)-algebra \(\mathcal{K} \otimes B \) through the choice of a unital copy of \(\mathcal{O}_2 \) in the multiplier algebra \(M(\mathcal{K}) \) of \(\mathcal{K} \) to be the \(C(X) \)-extension

\[
\sigma_1 \oplus \sigma_2 : a \mapsto q(s_1 \otimes 1)\sigma_1(a)q(s_1^* \otimes 1) + q(s_2 \otimes 1)\sigma_2(a)q(s_2^* \otimes 1) \in M(\mathcal{K} \otimes B)/(\mathcal{K} \otimes B),
\]

where \(q \) is the quotient map \(M(\mathcal{K} \otimes B) \to M(\mathcal{K} \otimes B)/(\mathcal{K} \otimes B) \).
Definition 1.5 Given a compact Hausdorff space X and two $C(X)$-algebras A and B, $\Ext(X; A, B)$ is the semi-group of $C(X)$-extensions of A by $K \otimes B$ divided by the equivalence relation \sim where $\sigma_1 \sim \sigma_2$ if there exist a unitary $U \in M(K \otimes B)$ of image $q(U)$ in the quotient $M(K \otimes B)/(K \otimes B)$ and two trivial $C(X)$-extensions π_1 and π_2 such that for all $a \in A$,

$$(\sigma_2 \oplus \pi_2)(a) = q(U)^* (\sigma_1 \oplus \pi_1)(a) q(U) \ (\text{in } M(K \otimes B)/(K \otimes B)).$$

Let $\Ext(X; A, B)^{-1}$ be the group of invertible elements of $\Ext(X; A, B)$, i.e. the group of classes of $C(X)$-extension σ such that there exists a $C(X)$-extension θ with $\sigma \oplus \theta$ trivial. One can generalise Kasparov's theorem of homotopy invariance of the group $\Ext(X; A, B)^{-1}$ to the framework of $C(X)$-algebras as follows.

Theorem 1.6 ([12]) Assume that A is a separable $C(X)$-algebra and that B is a σ-unital $C(X)$-algebra. Then the group $\Ext(X; A, B)^{-1}$ is isomorphic to the group $\KK(X; A, B)$ and is therefore $C(X)$-linear homotopy invariant in both entries A and B.

Proof: Let us first make the following observation. Given a $C(X)$-algebra B and a Hilbert B-module E, denote by $\mathcal{L}(E)$ the set of bounded B-linear operators on E which admit an adjoint ([11]). Then any operator $T \in \mathcal{L}(E)$ is B-linear and so $C(X)$-linear. This argument provides a natural extension of the Stinespring-Kasparov theorem ([12]) to the framework of $C(X)$-algebras. Consequently, if A is a separable $C(X)$-algebra and B is a σ-unital $C(X)$-algebra, the class of a $C(X)$-extension $\sigma : A \to M(K \otimes B)/(K \otimes B)$ is invertible in $\Ext(X; A, B)$ if and only if there is a $C(X)$-linear completely positive contractive lift $A \to M(K \otimes B)$.

Let $\mathcal{R}X(E; A, B)$ be the set of Kasparov $C(X)$–A, B-bimodules ([13], definition 2.19), i.e. the set of Kasparov A, B bimodules (\mathcal{E}, F) such that the representation $A \to \mathcal{L}(\mathcal{E})$ is a $C(X)$-representation. Call a $C(X)$-linear operator homotopy an element $\{F_t, 0 \leq t \leq 1\} \in \mathcal{R}X(E; A, B \otimes C([0, 1]))$ such that $t \mapsto F_t$ is norm continuous and define on $\mathcal{R}X(E; A, B)$ the equivalence relation corresponding to the one defined by Skandalis in [18, definition 2]. The constructions given by Kasparov in [12, section 7] imply that, if the $C(X)$-algebra B is σ-unital, the group of equivalence classes $\KK(X; A, B \otimes C_1)$ is isomorphic to $\Ext(X; A, B)^{-1}$, where C_1 is the first (graded) Clifford algebra.

On the other hand, given two graded $C(X)$-algebras A and B with A separable, the different steps of the demonstration of [18, theorem 19] provide us with an isomorphism between the two groups $\KK(X; A, B)$ and $\KK(X; A, B)$ since proposition 2.21 of [13] defines an intersection product in $\KK(X)$-theory and lemma 18 of [18] gives us the equality

$$(ev_0 \otimes id_{C(X)})^* (1_{C(X)}) = (ev_1 \otimes id_{C(X)})^* (1_{C(X)}) \in \KK(X; C([0, 1]) \otimes C(X), C(X)),$$

where $1_{C(X)}$ is the Kasparov $C(X), C(X)$-bimodule $(C(X), 0)$ and $ev_t : C([0, 1]) \to C$ is the evaluation map at $t \in [0, 1]$. □

Remarks: 1. Kuiper's theorem implies that the law of addition on the abelian group $\Ext(X; A, B)^{-1}$ is independent of the choice of the unital copy of O_2 in $M(K)$.

5
2. If A is a separable nuclear continuous field of C^*-algebras over X and B is a $C(X)$-algebra, every $C(X)$-linear morphism from A to the quotient $M(K \otimes B)/(K \otimes B)$ is $C(X)$-nuclear and therefore admits a $C(X)$-linear completely positive lifting $A \to M(K \otimes B)$ thanks to proposition 1.3. Accordingly one has the equality

$$\text{Ext}(X; A, B)^{-1} = \text{Ext}(X; A, B).$$

2 An absorption result

In this section we prove a continuous generalisation of a statement contained in [15] which will enable us to get a $C(X)$-linear Weyl-von Neumann type result (proposition 2.5). Let us start with the following definition of Cuntz.

Definition 2.1 ([6]) A simple C^*-algebra A distinct from \mathbb{C} is said to be purely infinite if and only if for any non-zero $a, b \in A$, there exist elements $x, y \in A$ such that $a = xby$.

Then, we can state a proposition from Kirchberg’s classification work, based on Glimm’s lemma ([7], § 11.2). A sketch of proof can also be found in [1, proposition 5.1].

Proposition 2.2 ([15]) Let A be a purely infinite simple C^*-algebra and D be a separable C^*-subalgebra of $M(A)$. Assume that $V : D \to A$ is a nuclear contraction.

Then there exists a sequence (a_n) of elements in A of norm less than 1 such that $V(d) = \lim_{n \to \infty} a_n^* da_n$ for all $d \in D$.

Remark: A simple ring has by definition exactly two distinct two sided ideals and is therefore non-zero.

Corollary 2.3 Let A be a continuous field of purely infinite simple C^*-algebras over a compact Hausdorff space X and assume that D is a separable $C(X)$-subalgebra of the multiplier algebra $M(A)$ such that there is a unital $C(X)$-embedding of the $C(X)$-algebra $O_\infty \otimes C(X)$ in the commutant D' of D in $M(A)$ and the identity map $id_D : D \to M(A)$ is a continuous field of faithful representations.

If $V : D \to A$ is a $C(X)$-nuclear contraction, there exists a sequence (a_n) in the unit ball of A with the property that for all $d \in D$,

$$V(d) = \lim_{n \to \infty} a_n^* da_n.$$

Proof: If F is a compact generating set for D, it is enough to prove that given a strictly positive real number $\varepsilon > 0$, there exists an element a in the unit ball of A such that $\|V(d) - a^* da\| < \varepsilon$ for all $d \in F$.

For $x \in X$, the fibre A_x is a purely infinite simple C^*-algebra and the map $d \mapsto V(d)_x \in A_x$ factorizes through $D_x \simeq (id_D)_x(D) \subset M(A_x)$ since id_D is a continuous field of faithful representations. As a consequence, the previous proposition implies that we can find an element $g \in A$ with $\|g\| \leq 1$ satisfying for all $d \in F$ the inequality

$$\|\left[V(d) - g^* dg\right]_x\| < \varepsilon.$$
Thus, by upper semi-continuity and compactness, there exist a finite open covering \(\{U_1, \ldots, U_n\} \) of the space \(X \) and elements \(g_1, \ldots, g_n \) in the unit ball of \(A \) such that for all \(d \in F \) and \(x \in U_i, 1 \leq i \leq n, \)

\[
\| \left[V(d) - g_i^* d g_i \right] \| < \varepsilon.
\]

Choose \(n \) orthogonal isometries \(w_1, \ldots, w_n \) in the \(C^* \)-algebra \(O_\infty \otimes 1_{C(X)} \subset D' \) and let \(\{\phi_i\} \) be a partition of the unit \(1_{C(X)} \) subordinate to the covering \(\{U_i\} \) of \(X \). The element \(a = \sum_i \phi_i^{1/2} w_i g_i \in A \) verifies:

1. \(a^* a = \sum_{i,j} \sqrt{\phi_i \phi_j} g_i^* w_i^* w_j g_j = \sum_i \phi_i g_i^* g_i \leq 1_{M(A)}, \)

2. for \(d \in F \) and \(x \in X, \| \left[V(d) - a^* da \right] \| \leq \sum_i \phi_i(x) \| \left[V(d) - g_i^* d g_i \right] \| < \varepsilon. \text{ \(\Box \)}

Let us mention the following technical corollary which will be needed in theorem 3.2.

Corollary 2.4 If \(p \in O_2 \otimes C(X) \) is a projection such that for all points \(x \in X, p_x \) is non-zero, then there exists an isometry \(u \in O_2 \otimes C(X) \) such that \(p = uu^* \).

Proof: Let \(D_2 = \lim_{n \to \infty} O_2 \otimes O_2 \) be the infinite tensor product of \(O_2 \).

Given a projection \(q \in D_2 \otimes C(X) \) such that \(\| q_x \| = 1 \) for all \(x \in X \), we first show that there exists an element \(v \in D_2 \otimes C(X) \) satisfying \(1_{D_2 \otimes C(X)} = v^*qv \). Namely, by density of the algebraic tensor product

\[
\left[\bigcup_n O_2 \otimes O_2 \right] \otimes C(X) = \bigcup_n \left[O_2 \otimes O_2 \otimes C(X) \right]
\]

in the \(C^* \)-algebra \(D_2 \otimes C(X) \) and functional calculus one can find an integer \(n > 0 \) and a projection \(r \in O_2 \otimes O_2 \otimes C(X) \subset D_2 \otimes C(X) \) such that \(\| q - r \| < 1 \), which implies that \(r = s^* q s \) for some element \(s \in D_2 \otimes C(X) \). Take then a faithful state \(\varphi \) on \(O_2 \otimes O_2 \) and consider the \(C(X) \)-linear completely positive map

\[
V : [O_2 \otimes O_2 \otimes 1_{O_2}] \otimes C(X) \to O_2 \otimes O_2 \otimes O_2 \otimes O_2 \otimes 1_{O_2} \otimes 1_{O_2} \otimes C(X)
\]

defined by the formula \(V(d) = (\varphi \otimes id_{C(X)})(d)1_{O_2 \otimes O_2} \otimes C(X) \) for \(d \in [O_2 \otimes O_2 \otimes O_2 \otimes O_2] \otimes C(X) \). According to corollary 2.3, there exists an element \(t \in O_2 \otimes O_2 \otimes C(X) \) such that

\[
1_{D_2 \otimes C(X)} = 1_{O_2 \otimes O_2} \otimes C(X) = t^* r t = (st)^* q(st).
\]

Consider now the set \(P \) of projections \(p \in O_2 \otimes C(X) \) such that \(p_x \neq 0 \) for all points \(x \in X \). If \(p \) belongs to \(P \), there exists an isometry \(v \in O_2 \otimes C(X) \) such that \(p \geq vv^* \) since the \(K \)-trivial purely infinite separable unital nuclear \(C^* \)-algebra \(D_2 \) satisfying the U.C.T. is isomorphic to \(O_2 \) ([15]). As a consequence, if \(t \) is the isometry \(t = v(s_1 \otimes 1)^* v^* \), the projection \(r = tt^* \) (Murray-von Neumann equivalent to \(1_{O_2 \otimes C(X)} \)) verifies

\[
p - r \geq r' = v(s_2 s_2^* \otimes 1) v^* \in P.
\]
The non-empty set \mathcal{P} therefore satisfies the conditions $(\pi_1)-(\pi_4)$ defined by Cuntz in [6]. But the C^*-algebra $O_2 \otimes C(X)$ is K_0-triviality thanks to [6, theorem 2.3] and the theorem 1.4 of [6] enables us to conclude. □

One now deduces from corollary 2.3 the following absorption results ([21, 12, 15]):

Proposition 2.5 Let A be a σ-unital continuous field of purely infinite simple nuclear C^*-algebras over a compact Hausdorff space X and let K be the C^*-algebra of compact operators on the separable Hilbert space H. Denote by q the quotient map $M(K \otimes A) \to M(K \otimes A)/(K \otimes A)$.

1. Assume that D is a unital separable $C(X)$-subalgebra of the multiplier algebra $M(K \otimes A)$ with same unit such that there is a unital $C(X)$-embedding of the $C(X)$-algebra $O_\infty \otimes C(X)$ in the commutant of D in $M(K \otimes A)$ and the identity map id_D is a continuous field of faithful representations of D in $M(K \otimes A)$.

(a) If V is a unital $C(X)$-linear completely positive map from D in $M(K \otimes A)$ which is zero on the intersection $D \cap (K \otimes A)$, there exists a sequence of isometries s_n in $M(K \otimes A)$ such that for every $d \in D$,

$$V(d) - s_n^*ds_n \in K \otimes A \text{ and } V(d) = \lim_n s_n^*ds_n.$$

(b) If π is a unital morphism of $C(X)$-algebras from D into $M(K \otimes A)$ which is zero on the intersection $D \cap (K \otimes A)$, there exists a sequence of unitaries u_n in $M(K \otimes A)$ such that for every $d \in D$,

$$(d \oplus \pi(d)) - u_n^*du_n \in K \otimes A \text{ and } (d \oplus \pi(d)) = \lim_n u_n^*du_n.$$

(c) Let B be a $C(X)$-algebra and assume that the quotient $D/(D \cap (K \otimes A))$ is isomorphic to the $C(X)$-algebra B, where B is the unital $C(X)$-algebra generated by $C(X)$ and B in $M[B \oplus C(X)]$ ([4, définition 2.7]).

Then, if $\pi : B \to M(K \otimes A)$ is a $C(X)$-linear homomorphism, there exists a unitary $U \in M(K \otimes A)$ such that for all $b \in B \subset M(K \otimes A)/(K \otimes A)$,

$$b \oplus (q \circ \pi)(b) = q(U)^*bq(U).$$

2. Assume that the continuous field A is separable and let D be a separable $C(X)$-subalgebra of $M(A)$ containing A such that the identity representation $D \to M(A)$ is a continuous field of faithful representations and there is a unital $C(X)$-embedding of the $C(X)$-algebra $O_\infty \otimes C(X)$ in the commutant of D in $M(A)$. Define the quotient $C(X)$-algebra $B = D/A$.

If $\pi : K \otimes B \to M(K \otimes A)$ is a morphism of $C(X)$-algebras, there exists a unitary $U \in M(K \otimes A)$ such that for all $b \in K \otimes B \subset M(K \otimes A)/(K \otimes A)$,

$$b \oplus (q \circ \pi)(b) = q(U)^*bq(U).$$
Proof : 1. It derives from corollary 2.3 by the same method as the one developed by Kasparov in [11, theorem 5 and 6]. Nevertheless, for the convenience of the reader we describe the different steps of the demonstration.

1.a) Let F be a compact generating set for D containing the unit $1_{M(K \otimes A)}$. Then given a real number $\varepsilon > 0$, it is enough to find an element $a \in M(K \otimes A)$ such that $V(d) - a^*da \in K \otimes A$ and $\|V(d) - a^*da\| < 3\varepsilon$ for all $d \in F$.

Let $\{e_n\}$ be an increasing, positive, quasicentral, countable approximate unit in the ideal $K \otimes A$ of the C*-algebra generated by $K \otimes A + V(D)$. If we set $f_0 = (e_0)^{1/2}$ and $f_k = (e_k - e_{k-1})^{1/2}$ for $k \geq 1$, we can then assume, passing to a subsequence of (e_n) if necessary, that $\|V(d_k) - f_k V(d_k)\| < 2^{-k}\varepsilon$ for all $k \in \mathbb{N}$ and $d \in F$. This implies that the series $\sum_k [V(d_k) - f_k V(d_k)] f_k$ is convergent in $K \otimes A$ and its norm is less than ε. Furthermore, the series $\sum_k [f_k V(d_k)] f_k$ is strictly convergent in $M(K \otimes A)$ for all $d \in F$ since $\sum_k f_k^2$ is strictly convergent to 1.

Notice now that the maps $V_k(d) = f_k V(d) f_k$ are all $C(X)$-nuclear since the separable continuous field $K \otimes A$ is nuclear. The corollary 2.3 therefore enables us to choose by induction $a_k \in K \otimes A$ satisfying the following conditions:

1. $\forall d \in F$, $\|V_k(d) - a_k^*da_k\| < 2^{-k}\varepsilon$,
2. $\forall d \in F, \forall l < k$, $\|a_l^*da_k\| < 2^{-l-k}\varepsilon$,
3. $\sum_k a_k$ is strictly convergent toward an element $a \in M(A)$.

One then checks as in [11, theorem 5] that the limit a satisfies the desired properties.

1.b) Take a compact generating F for D containing $1_{M(K \otimes A)}$ and consider the homomorphism $\pi' = 1 \otimes \pi : D \to M(K \otimes (K \otimes A)) \simeq M(K \otimes A)$. Given $\delta > 0$, one can find, thanks to the previous assertion, an isometry $s \in M(K \otimes A)$ such that

$$s^*ds - \pi'(d) \in K \otimes A$$

and $\|s^*ds - \pi'(d)\| < \delta$ for all $d \in K^*K$.

As a consequence, if we fix $\varepsilon > 0$, the choice of δ small enough gives us the inequality $\|pd - dp\| < \varepsilon$, and so $\|d - [pd + p^d + dp]\| < 2\varepsilon$ for all $d \in F$, where $p = ss^*$ and $p^+ = 1 - p$.

Define the unital map $\Theta : D \to M(p^+ (K \otimes A)p^+)$ by the formula $\Theta(d) = p^+ dp^+$. According to the stabilisation theorem of Kasparov ([11, theorem 2]), one can construct a unitary $w \in M(K \otimes A)$ verifying for all $d \in F$ the inequality

$$\|d - w^*[\pi'(d) \oplus \Theta(d)] w\| < 3\varepsilon.$$

To finish the demonstration, notice that the two homomorphisms π' and $\pi' \oplus \pi$ are unitarily equivalent.

1.c) Consider the unital extension $\tilde{\pi}$ of π to B. Then, the morphism $\tilde{\pi} \circ q : D \to M(K \otimes A)$ reduces the demonstration to the previous assertion.

2. The identity representation of the unital $C(X)$-algebra $D = (K \otimes D) + C(X) \subset M(K \otimes A)$ is clearly a continuous field of faithful representations since the unital $C(X)$-representation $C(X) \to M(A)$ is a continuous field of faithful representations. Extend
the map $\pi : \mathcal{K} \otimes B = (\mathcal{K} \otimes D)/(\mathcal{K} \otimes A) \to M(\mathcal{K} \otimes A)$ to a unital morphism of
$C(X)$-algebras $\tilde{\pi} : D/(\mathcal{K} \otimes A) \to M(\mathcal{K} \otimes A)$. Applying assertion $1.b)$ to the unital
homomorphism $d \mapsto (\tilde{\pi} \circ q)(d)$ from the $C(X)$-subalgebra $D \subset M(\mathcal{K} \otimes A)$ to the
multiplier algebra $M(\mathcal{K} \otimes A)$ now leads to the desired conclusion. □

3 The subtriviality

Given a separable continuous field of nuclear C^*-algebras A over X, the strategy to
prove the subtriviality of the $C(X)$-algebra A will be the same as the one developed
by Kirchberg in [15] to prove theorem 0.1 whose main ideas of demonstration are also
explained in [1, Théorème 6.1]. We associate to A a $C(X)$-extension by an hereditary
C^*-subalgebra of the trivial continuous field $\mathcal{O}_2 \otimes C(X)$ (propo-sition 3.1) and then
prove that after stabilisation, this $C(X)$-extension splits by RKK-theory arguments
(theorem 3.2).

3.1 Let us construct the fundamental $C(X)$-extension associated to an exact separable
continuous field of C^*-algebras.

Proposition 3.1 Given a compact Hausdorff space X and a non-zero separable unital
exact $C(X)$-algebra A, there exist a unital $C(X)$-subalgebra F of $\mathcal{O}_2 \otimes C(X)$ with same
unit and an hereditary subalgebra I of $\mathcal{O}_2 \otimes C(X)$ such that I is an ideal in F and the
$C(X)$-algebra A is isomorphic to the quotient $C(X)$-algebra F/I.

Furthermore, if the topological space X is perfect (i.e. without any isolated point)
and the $C(X)$-algebra A is continuous, the canonical map $F \to M(I)$ is a continuous
field of faithful representations.

Proof: Thanks to the characterisation of separable exact C^*-algebras obtained by
Kirchberg (theorem 0.1), one may assume that the C^*-algebra A is a C^*-subalgebra of
\mathcal{O}_2 containing the unit of \mathcal{O}_2.

Let $G \subset \mathcal{O}_2 \otimes C(X)$ be the trivial continuous field $A \otimes C(X)$ over X. Then the
kernel of the $C(X)$-linear morphism $\pi : G \to A$ defined by $\pi(a \otimes f) = fa$ is the ideal
$J = C_\Delta(X \times X)G$ where $C_\Delta(X \times X)$ is the ideal in $C(X \times X)$ of functions which are
zero on the diagonal. Indeed suppose that $T \in G$ verifies $\pi(T) = 0$. Then given $\varepsilon > 0$, take a
finite number of elements $a_i \in A$, $f_i \in C(X)$ such that $\|T - \sum_i a_i \otimes f_i\| < \varepsilon$; one has $\|T - \sum_i (1 \otimes f_i - f_i \otimes 1)(a_i \otimes 1)\| < \varepsilon + \|\pi(\sum_i a_i \otimes f_i)\| < 2\varepsilon$.

Define then the hereditary subalgebra $I = J[\mathcal{O}_2 \otimes C(X)]J$ in $\mathcal{O}_2 \otimes C(X)$ generated
by J. It is a $C(X)$-algebra since it is closed by Cohen theorem (see e.g. [4, proposition
1.8]) and the product $(1 \otimes f)(bc) = b(1 \otimes f)c$ belongs to I for all $f \in C(X)$ and
$b, c \in I$. If we set $F = I + G$, the intersection $G \cap I$ is reduced by construction to the
subalgebra J, and so we have a $C(X)$-extension

$$0 \to I \to F \to A \to 0.$$

Assume now that the space X is perfect and that the $C(X)$-algebra A is continuous.
We need to prove that the map $F_x \to M(I_x)$ is injective for each $x \in X$. Let $a \in G$
and $b \in I$ be two elements such that the sum $d = a + b \in F$ verifies for a given point
$x \in X$ the equality

$$
To end the proof, we have to show that \(d_x \) is zero. For every \(f \in C_\Delta(X \times X) \), one has \((bf)_x = -(af)_x \in J_x \), whence \(b_x \in J_x \) and so \(d_x \in G_x \). But the representation of \(G_x \) is perfect in \(M(J_x) \approx M(C_\Delta(X)) \) is injective since \(X \) is perfect and \(A \) is continuous, from which we deduce that \(d_x = 0 \). \(\square \)

Remark: With the previous notations, if the \(C(X) \)-algebra \(A \) is nuclear and \(\psi \) is a unital completely positive projection from \(O_2 \) onto \(A \), the map \(\pi \circ (\psi \otimes \text{id}_{C(X)}) \) is a unital \(C(X) \)-linear completely positive map from \(O_2 \otimes C(X) \) onto the \(C(X) \)-subalgebra \(A \) which is zero on the nuclear hereditary \(C(X) \)-subalgebra \(I \).

3.2 We can now state the main theorem:

Theorem 3.2 Let \(X \) be a compact metrizable space and \(A \) be a unital separable \(C(X) \)-algebra with a unital embedding of the \(C(X) \)-algebra \(C(X) \) in \(A \).

The following assertions are equivalent:

1. \(A \) is a continuous field of nuclear \(C^* \)-algebras over \(X \);

2. there exist a unital monomorphism of \(C(X) \)-algebras \(\alpha : A \rightarrow O_2 \otimes C(X) \) and a unital \(C(X) \)-linear completely positive map \(E : O_2 \otimes C(X) \rightarrow A \) such that \(E \circ \alpha = \text{id}_A \).

Proof: \(2 \Rightarrow 1 \) By assumption the identity map \(\text{id}_A = E \circ \text{id}_{O_2 \otimes C(X)} \circ \alpha : A \rightarrow A \) is nuclear since the \(C^* \)-algebra \(O_2 \otimes C(X) \) is nuclear and so the \(C^* \)-algebra \(A \) is nuclear. Besides, the \(C(X) \)-algebra \(A \) is isomorphic to the \(C(X) \)-subalgebra \(\alpha(A) \) of the continuous field \(O_2 \otimes C(X) \) and is therefore continuous.

\(1 \Rightarrow 2 \) Let us first deal with the case where the space \(X \) is perfect.

Given a unital nuclear separable continuous fields \(A \) over \(X \) which is unitally embedded in the \(C^* \)-algebra \(O_2 \), consider the \(C(X) \)-extension

\[
0 \rightarrow I \rightarrow F \xrightarrow{\pi} A \rightarrow 0
\]

constructed in proposition 3.1 and take the associated \(C(X) \)-extension

\[
0 \rightarrow K \otimes I \otimes O_2 \rightarrow D = (K \otimes F \otimes 1_{O_2}) + (K \otimes I \otimes O_2) \rightarrow K \otimes A \rightarrow 0.
\]

The \(C(X) \)-nuclear quotient map \(\sigma = \sigma \circ \text{id}_{K \otimes A} \) from the separable nuclear continuous field \(K \otimes A \) to the quotient \(D/(K \otimes I \otimes O_2) \subset M(K \otimes I \otimes O_2)/(K \otimes I \otimes O_2) \) admits a \(C(X) \)-linear completely positive lifting \(K \otimes A \rightarrow D \subset K \otimes [O_2 \otimes C(X)] \otimes O_2 \) thanks to proposition 1.3. This means that the class of \(\sigma \) is invertible in \(Ext(X; K \otimes A, I \otimes O_2) \) (see the second remark following theorem 1.6).

But the group \(Ext(X; K \otimes A, I \otimes O_2)^{-1} \) is \(C(X) \)-linear homotopy invariant (theorem 1.6), hence zero since the endomorphism \(\varphi_2(a) = s_1a^*s_1 + s_2a^*s_2 \) of \(O_2 \) is homotopic to the identity map \(\text{id}_{O_2} \) ([6, proposition 2.2]) and so \([\theta] = 2[\theta] \) in \(Ext(X; K \otimes A, I \otimes O_2)^{-1} \) for any invertible extension \(\theta \) of \(K \otimes A \) by \(I \otimes O_2 \). As a consequence, the \(C(X) \)-extension defined by \(\sigma \) is stably trivial. Furthermore, the identity representation of
$D \subset M(K \otimes I \otimes O_2)$ is a continuous field of faithful representations (proposition 3.1) and the assertion 2. of proposition 2.5 implies that the quotient morphism $(id_K \otimes \pi \otimes id_{O_2})$ from D to $K \otimes A$ admits a cross section α which is a morphism of $C(X)$-algebras.

This monomorphism α is going to enable us to conclude by standard arguments, using theorem 0.1 and the result of Elliott ([9]) that the C^*-algebra O_2 is isomorphic to $O_2 \otimes O_2$.

Choose a non-zero minimal projection e_{11} in the C^*-algebra K of compact operators that we embed in O_2 and let φ be a state on O_2 such that $\varphi(e_{11}) = 1$. If we take a unital completely positive projection ψ of O_2 onto the nuclear C^*-subalgebra $A \subset O_2$ (theorem 0.1), the composed map

$$E = (\varphi \otimes id_A) \circ (id_{O_2} \otimes [\pi \circ (\psi \otimes id_{C(X)})] \otimes \varphi)$$

is a unital $C(X)$-linear completely positive map from $O_2 \otimes [O_2 \otimes C(X)] \otimes O_2$ onto A. Take also an isometry $u \in O_2 \otimes C(X)$ such that $\alpha(e_{11} \otimes 1_A) = uu^*$ (corollary 2.4) and define the unital $C(X)$-algebra morphism

$$\beta : A \rightarrow O_2 \otimes [O_2 \otimes C(X)] \otimes O_2 \simeq O_2 \otimes C(X)$$

by the formula $\beta(a) = uu^* \alpha(e_{11} \otimes a)u$. If $\tilde{E} : O_2 \otimes C(X) \rightarrow A$ is the completely positive unital map $d \mapsto E(udu^*)$, one gets for all $a \in A$ the equality

$$(\tilde{E} \circ \beta)(a) = (E \circ \alpha)(e_{11} \otimes a) = a$$

Let us now come back to the general case of a compact space X.

Define the continuous field $B = A \otimes C([0,1])$ over the perfect compact space $Y = X \times [0,1]$. According to the previous discussion, there exist a unital completely positive map $\tilde{E} : O_2 \otimes C(Y) \rightarrow B$ and a $C(X) \otimes C([0,1])$-linear monomorphism $\tilde{\alpha} : B \rightarrow O_2 \otimes C(Y)$ such that $\tilde{E} \circ \tilde{\alpha} = id_B$. If $ev_1 : C([0,1]) \rightarrow \mathbb{C}$ is the evaluation map at $x = 1 \in [0,1]$, define the two maps $E : O_2 \otimes C(X) \rightarrow A$ and $\alpha : A \rightarrow O_2 \otimes C(X)$ by

$$E(d) = (id_A \otimes ev_1) \circ \tilde{E}(d \otimes 1_{C([0,1])})$$

and $\alpha(a) = (id_{O_2 \otimes C(X)} \otimes ev_1) \circ \tilde{\alpha}(a \otimes 1_{C([0,1])})$.

Then E is a unital $C(X)$-linear completely positive map, α is a unital $C(X)$-linear monomorphism and one has the identity $E \circ \alpha = id_A$. □

Remark: Assume that X is a locally compact metrizable space and that the $C_0(X)$-algebra A is a nuclear continuous field of C^*-algebras over X, where $C_0(X)$ denotes the algebra of continuous functions on X vanishing at infinity. If \tilde{X} is the Alexandroff compactification of X, the unital $C(\tilde{X})$-algebra A generated by A and $C(\tilde{X})$ in the multiplier algebra $M[A \oplus C(\tilde{X})]$ is a separable unital continuous field of C^*-algebras over \tilde{X} ([4, proposition 3.2]). By theorem 3.2, there exists therefore a $C(\tilde{X})$-linear monomorphism $\alpha : A \hookrightarrow O_{2} \otimes C(\tilde{X})$ and the $C_0(X)$-algebra A is isomorphic to the $C_0(X)$-subalgebra $\alpha(A)$ of $O_{2} \otimes C_0(X)$.

12
4 Concluding remarks

4.1 A $C(X)$-subalgebra of $O_2 \otimes C(X)$ is by construction exact and continuous. Conversely, if A is a non-zero exact separable unital continuous field of C*-algebras over a perfect metrizable compact space X, one has by proposition 3.1 a $C(X)$-extension

$$0 \to I \to F \to A \to 0$$

where F is a $C(X)$-subalgebra of $O_2 \otimes C(X)$. If the identity map $A \to A = F/I$ admits a $C(X)$-linear completely positive lifting $A \to F$, the same method as the one used in theorem 3.2 will imply that the exact continuous field A is isomorphic to a $C(X)$-subalgebra of the trivial continuous field $O_2 \otimes C(X)$.

It is therefore interesting to know whether this map admits a $C(X)$-linear completely positive lifting in the not discrete case.

4.2 Let us have a look at one of the technical problems involved, the Hahn-Banach type extension property in the continuous field framework for finite type $C(X)$-submodules.

Let A be a separable unital continuous field of C*-algebras over a compact metrizable space X and let D be a finitely generated $C(X)$-submodule which is an operator system. Assume that $\phi : D \to C(X)$ is a $C(X)$-linear unital completely positive map. Then for $x \in X$, there exists, thanks to [4, proposition 3.13], a continuous field of states Φ_x on A, i.e. a $C(X)$-linear unital positive map from A to $C(X)$, such that for all $d \in D$,

$$\Phi_x(d)(x) = \phi(d)(x).$$

As a consequence, given $\varepsilon > 0$ and a finite subset F of D, one can build by continuity and compactness a continuous field of states Φ on A such that

$$\max\{\|\Phi(d) - \phi(d)\|, d \in F\} < \varepsilon.$$

But one cannot find in general any continuous field of states on A whose restriction to D is ϕ. Indeed, consider the $C(\tilde{N})$-algebra $A = C^2 \otimes C(\tilde{N})$ where $\tilde{N} = \mathbb{N} \cup \{\infty\}$ is the Alexandroff compactification of the space \mathbb{N} of positive integers. Define the positive element $a \in C_{\infty}(\tilde{N})A \subset A$ by the formulas

$$a_n = \begin{cases} \left(\frac{1}{n+1}, 0\right) & \text{if } n \text{ even} \\ (0, \frac{1}{n+1}) & \text{if } n \text{ odd} \end{cases}$$

and let ϕ be the $C(\tilde{N})$-linear unital completely positive map with values in $C(\tilde{N})$ defined on the $C(\tilde{N})$-submodule generated by the two $C(\tilde{N})$-linearly independent elements 1_A and a through the formula

$$\phi(a)(n) = \frac{1}{n+1} \text{ if } n < \infty \text{ and } \phi(a)(\infty) = 0.$$

Suppose that the continuous field of states Φ is a $C(\tilde{N})$-linear extension of ϕ to A. Then as A. Bauval already noticed it, one has the contradiction

$$1 = \Phi(1_A)(\infty) = \Phi((1, 0) \otimes 1)(\infty) + \Phi((0, 1) \otimes 1)(\infty) = \lim_{n \to \infty} \Phi((1, 0) \otimes 1)(2n + 1) + \lim_{n \to \infty} \Phi((0, 1) \otimes 1)(2n) = 0 + 0 = 0.$$
Appendix by Eberhard Kirchberg
(Humboldt Universität zu Berlin)

In this appendix, we solve in proposition A.3 the lifting question raised in paragraph 4.1 through a continuous generalisation of joint work of E.G. Effros and U. Haagerup on lifting problems for C*-algebras ([8], see also [22]). This result enables us to state the following characterisation of separable exact continuous fields of C*-algebras:

Theorem A.1 Let \(X\) be a compact metrizable space and \(A\) be a (unital) separable continuous field of C*-algebras over \(X\).

Then the C*-algebra \(A\) is exact if and only if there exists a (unital) monomorphism of \((X)\)-algebras \(A \hookrightarrow \mathcal{O}_2 \otimes \mathcal{C}(X)\).

Let us start with a technical C(\(X\))-linear version of Auerbach’s theorem ([17, proposition 1.c.3]) for a continuous field of C*-algebras \(A\) over \(X\) which gives us local bases over \((X)\) with continuous coordinate maps for particular free \((X)\)-submodules of finite type in \(A\).

Define a \((X)\)-operator system in \(A\) to be a \((X)\)-submodule which is an operator system.

Lemma A.2 ([8, lemma 2.4]) Let \(A\) be a separable unital continuous field of C*-algebras over a compact metrizable space \(X\), \(E \subset A\) be a \((X)\)-operator system and assume that there exists an integer \(n \in \mathbb{N}^*\) such that for all \(x \in X\), the dimension \(\dim E_x\) of the operator system \(E_x \subset A_x\) equals \(n\). Then the following holds.

Given any point \(x \in X\), there exist an open neighbourhood \(U\) of \(x\) in \(X\), self-adjoint \((X)\)-linear contractions \(\varphi_i : A \to (X)\) and self-adjoint elements \(f_i \in E\) with \(\|f_i\| \leq 2\) for \(1 \leq i \leq n\) such that

\[
\forall a \in C_0(U)E, \quad a = \sum_i \varphi_i(a)f_i.
\]

Furthermore, there exists a continuous field of states \(\Psi : A \to (X)\) such that the restriction of the map \(2n\Psi - id_A\) to the operator system \(E\) is completely positive.

Proof: Let us fix a point \(x \in X\). Then there exist, thanks to Auerbach’s theorem, a normal basis \(\{r_1, \ldots, r_n\}\) of the fibre \(E_x\) where each \(r_i\) is self adjoint and norm one hermitian functionals \(\phi_j : A_x \to \mathbb{C}\), \(1 \leq j \leq n\), such that \(\phi_j(r_i) = \delta_{i,j}\).

Consider the polar decomposition \(\phi_j = \phi_j^+ - \phi_j^-\) where \(\phi_j^+\) and \(\phi_j^-\) are positive functionals such that \(1 = \|\phi_j\| = \|\phi_j^+\| + \|\phi_j^-\|\). By [4] lemme 3.12, there exist \((X)\)-linear positive maps \(\varphi_j^+ : A \to (X)\) which extend the functionals \(\phi_j^+\) and \(\varphi_j^- : A \to (X)\) which extend the functionals \(\phi_j^-\) on the fibre \(A_x\) to the \((X)\)-algebra \(A\) with the property that \(\varphi_j^+(1) = \|\phi_j^+\|\) and \(\varphi_j^-(1) = \|\phi_j^-\|\). Take also \(n\) norm 1 self-adjoint elements \(e_i \in E\) satisfying the equality \((e_i) = r_i\) and define the matrix \(T = [\varphi_j(e_i)]_{i,j} \in \mathcal{M}_n(\mathbb{R}) \otimes (X)\).

One has by construction \(T_x = 1_{\mathcal{M}_n(\mathbb{C})}\); the set \(U_1 \subset X\) of points \(y \in X\) for which the spectrum of \(T_y \in \mathcal{M}_n(\mathbb{R})\) is included in the open set \(\{z \in \mathbb{C}, |z| > 1/2\}\) is therefore an open neighbourhood of \(x\) in \(X\) ([4, proposition 2.4 b)]. If \(\eta\) is a continuous function on \(X\) with values in \([0,1]\) which is 0 outside \(U_1\) and 1 on an open neighbourhood \(U\) of the point \(x \in X\), the self-adjoint elements \(f_1, \ldots, f_n\) of norm less than 2 are then well defined in \(C_0(U_1)E\) by the formula
Then the \step is the following. Given the equality $\dim(E_n)$ satisfies the equality $\dim(E_n) = \frac{1}{n} \sum_i (\varphi_i^+ + \varphi_i^-)$. Then one gets for all $a \in C_0(\mathcal{U})E$ the equality:

$$
(2n\Phi - id_A)(a) = \sum_{1 \leq i \leq n} \left[\varphi_i^+(a)(2 - f_i) + \varphi_i^-(a)(2 + f_i) \right].
$$

The \restriction of the map $(2n\Phi - id_A)$ to $C_0(\mathcal{U})E$ is therefore completely positive and an appropriate \partition of the unit $1_{C(X)}$ enables us to conclude. \hfill \Box

Noticing that a $C(X)$-linear map $\sigma : A \to B$ between $C(X)$-algebras is completely positive if and only if each induced map $\sigma_x : A_x \to B_x$ is completely positive (see for instance [4, proposition 2.9]), the lemma A.2 allows us to state a continuous version of theorem 2.5 of [8]. Replacing then the continuous field A by $A \oplus M_{2^\infty}(\mathbb{C}) \otimes C(X)$ (where $M_{2^\infty}(\mathbb{C}) = \lim_{n \to \infty} M_{2^n}(\mathbb{C})$) and working with finitely generated $C(X)$-operator systems $E_k \subset A \oplus \bigcup_n M_{2^n}(\mathbb{C}) \otimes C(X)$ for which the function $x \mapsto \dim(E_k)_x$ is continuous, one derives the following desired $C(X)$-linear completely positive lifting result.

Proposition A.3 ([8, theorem 3.4]) Suppose that A and B are two unital \separable \exact \continuous fields of C^*-algebras over a compact space X with $A = B / J$ for some nuclear ideal J in B.

Then there exists a $C(X)$-linear unital completely positive lifting $A \to B$ of id_A.

Proof: Let us define the two continuous fields $\mathcal{A} = A \oplus M_{2^\infty}(\mathbb{C}) \otimes C(X)$ and $\mathcal{B} = B \oplus M_{2^\infty}(\mathbb{C}) \otimes C(X)$. It is clearly enough to find a $C(X)$-linear unital completely positive cross section θ of the quotient morphism $\mathcal{B} \to \mathcal{A}$ (by [4, theorem 3.3]).

Consider a dense sequence $\{a_k\}$ in the self-adjoint part of \mathcal{A} where each a_k belongs to the dense subalgebra $A \oplus \bigcup_n M_{2^n}(\mathbb{C}) \otimes C(X)$ of \mathcal{A} and $a_1 = 1$. Let us show that we may assume inductively that $C(X)$-operator system E_n generated by the a_k, $1 \leq k \leq n$, satisfies the equality $\dim(E_n)_x = n$ for every $n \in \mathbb{N}^*$ and every $x \in X$. The inductive step is the following. Given $n \geq 2$, there exists by construction an integer l such that $E_n \subset A \oplus M_{2l}(\mathbb{C}) \otimes C(X)$. Set $a'_n = a_n + 2^{-n-1} d_l \otimes 1_{C(X)}$ where

$$
d_l = 1_{M_{2l}(\mathbb{C})} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in M_{2^{l+1}}(\mathbb{C}) \subset M_{2^\infty}(\mathbb{C}).
$$

Then the $C(X)$-module $E'_n = E_{n-1} + C(X)a'_n$ verifies for each $x \in X$ the equality $\dim(E'_n)_x = \dim(E_{n-1})_x + 1$.

Using proposition 1.3, one can now finish the proof by the same method as the one developed by E.G. Effros and U. Haagerup in [8],3 (see also [22, theorem 6.10]). \hfill \Box
References

E-mail: E.Blanchard@iml.univ-mrs.fr