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Introduction

The purpose of these notes is to indicate a path for students which starts from a
basic theory in undergraduate studies, namely the structure of solutions of Linear
Differential Equations which is a classical subject in mathematics (see Ince [9])
that has been constantly enriched with developments of various theories and ends
in a subject of research in contemporary mathematics, namely perverse sheaves.
We report in these notes on the developments that occurred with the introduction
of sheaf theory and vector bundles in the works of Deligne [4] and Malgrange [3,2)].
Instead of continuing with differential modules developed by Kashiwara and ex-
plained in [12], a subject already studied in a Cimpa school, we shift our attention
to the geometrical aspect represented by the notion of Local Systems which de-
scribe on one side the structure of solutions of linear differential equations and
on the other side the cohomological higher direct image of a constant sheaf by a
proper smooth differentiable morphism.

Then we introduce the theory of Connections on vector bundles generalizing to
analytic varieties the theory of linear differential equations on a complex disc.
The definition of local systems is easily extended to varieties of dimension n while
it is more elaborate to extend the notion of differential equations into the concept
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of connections. Deligne establish an equivalence of categories between local sys-
tems and integrable connections.

In particular this point of view explains how the connections, named after Gauss
and Manin, are defined by the cohomology of families of algebraic or analytic va-
rieties ( precisely by a smooth proper morphism). A background to this result is
the classical construction of solutions of differential equations as integrals along
cycles of relative differential forms on algebraic families of varieties defined by a
smooth proper morphism. DeRham resolutions of local systems are obtained via
the associated integrable connections.

Singularities in the fields of algebraic and analytic geometry appear in the study
of linear differential equations with meromorphic coefficients on the punctured
complex disc. In particular a basic result of Fuchs on equations with Regular
Singularity is at the origin of the theory and leads to the notion of meromorphic
connections with regular singularity.

The work of P. Deligne in 1970 [4] pointed out to the developments of this theory
to higher dimensional varieties in algebraic and analytic geometry.

Constructible sheaves. Singularity theory in mathematics which arise for example
with the vanishing of the differential of a morphism, has had important develop-
ments in algebraic geometry; in particular Whitney’s and Thom'’s stratification
theory [10] contributed to a further generalization of local systems, namely the
concept of constructible sheaves which appear in the study of cohomology the-
ory of the fibers of any algebraic morphism. This concept is used in séminaire de
géométrie algébrique [6] by Grothendieck’s school and in an important article [11]
on Chern classes for singular algebraic varieties by MacPherson.

Among the complexes of sheaves with constructible cohomology, the perverse
sheaves have important special properties since they are related to the theory
of differential modules in the sense that the DeRham complex defined by an holo-
nomic differential module is a complex with constructible cohomology sheaves
which is in fact a perverse sheaf.

Complexes with constructible cohomology sheaves are preserved by derived direct
image by a proper algebraic morphism (and in general by the six classical oper-
ations). The concept and the proofs are based on Thom-whitney stratification of
varieties and morphisms and a result proved by Mather known as Thom - Mather
isotopy lemma describing local topological triviality along strata.

Decomposition theorem. This theorem is stated here to illustrate how it is possible
to develop a basic classical result such as Lefschetz theorem via the above tools.
The proof is beyond the scope of this exposition. The reader don’t see here the use
of regularity necessary in the proof, neither we can present Hodge theory which
is hidden in the hypothesis of geometric local system. In fact we mention further
references where it is possible to find more results on the subject.

Family of Elliptic Curves. The appendix gives explicit computation of the mon-
odromy of the local system and the Gauss-Manin connection defined by the family
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of elliptic curves, a mathematical subject that should serve as a test example for
every mathematician.
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The reader can expect to learn from this expository paper various points of view
of the subject in topology, geometry and analysis in the direction of the decompo-
sition theorem.

To cover recent developments in the theory, the reader dispose of various books
listed after the references.

Finally, the theory of Local Systems and Constructible Sheaves play an impor-
tant role in the theory of Arrangement of Hyperplanes and we refer the reader to
expository and research articles by experts on this subject in this summer school.

1. Local Systems

We study here sheaves of groups with topological interest known as local sys-
tems or locally constant sheaves. They arise in mathematics as solutions of linear
differential equations, as higher direct image of a constant sheaf by a proper dif-
ferentiable submersive morphism of manifolds and as representations of the funda-
mental group of a topological space. Local systems can be enriched with structures
reflecting geometry like the notion of Hodge structures.

1.1. Background in undergraduate studies

The affine differential equation zu'(z) = 1 with complex variable z, well known
by students, is singular at the origin, since we can apply Cauchy’s theorem on
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the exitence of a unique solution with given initial condition only for z # 0. We

put u'(z) = %, then for any a # 0 there exists an analytic solution near a for
|z —al < la|, u(z) = Enz()%(z — a)"*!. In particular, for a = 1 we

define in this way the function u(z) = logz solution of the equation satisfying the
condition u(1) = 0. Then we can extend the above local solution into the global
function log z = r + 10,0 €] — «, 7| for z = re’®. The main point of interest in our
study, due to the singularity of the equation at zero, comes down in this case to
the fact that logz cannot be extended in a continuous function beyond the above
domain in the complex plane, since its limit near a negative real number —r along
a path in the upper half plane is log r+im and differs by 2i7w with its limit log r —iw
along a path in the opposite half plane.

Such function is an inverse to the exponential map e, but other inverse maps can
be written as logz + 2kim and are always defined on C— { ray }. They are called
various determinations of the logarithm. The exponential map e* : C — C* is said
to be a covering and a determination of log z is a section of such covering.
However our interest is in linear differential equations, for example zu'(z) —au(z) =
0, for o € R, with solutions z® = r%¢**?. When we cross the negative reals the
solution is multiplied by e*?™®. We express this property by introducing the one
dimensional vector space Cz® of all the solutions defined on a simply connected
open subset of C* and the linear endomorphism 7" : Cz* — Cz® called monodromy,
acting as €™ Id on this linear space.

In another point of view, the monodromy extends to a morphism from Z to the
group of linear automorphisms of the one dimensional vector space Cz® defined
by n +— T™. We obtain in this special case the representation of the fundamental
group 71 (C*) identified with Z, defined by the differential equation.

1.2. Definition and properties

To define local systems we use the language of sheaf theory for which basic refer-
ences are Godement [5] and Warner [14], then we describe here the relation with
the topology of the base space, precisely the fundamental group.

The constant sheaf. On a topological space M, an abelian group G defines a con-
stant sheaf denoted by G ( or also by @), whose sections on a connected open
subset is the group itself with the identity as a restriction morphism to smaller
connected open subsets.

Definition 1.1. Let A be a ring, a local system £ on a connected topological space
M with fiber an A—module L, is a sheaf locally isomorphic to the constant sheaf
defined by L i.e at each point v in M there exists an open neighbourhood U of v
in M and an isomorphism of A—modules on the restriction of £ to the constant
sheaf Ly on U: Ly ~ Ly.

There exists a covering U; of M and isomorphisms of modules ¢; ; : Ly, —
Ly, ; constant on each connected component of U; ; = U; N Uj, called transition
transformations, whose restrictions to triple intersections U; j = U; N U; N Uy,

satisfy Pii|v, ;. © Pik|U

i3,k

= Pik|U; 0
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We will be mainly interested by Q—local systems £ with finite dimensional Q—vector
spaces as fiber (said to be of finite rank), then the transition morphisms ¢; ;
are defined by matrices in GL(n,Q) constant on each connected component of
Ui’j =U;N Uj.

We will be concerned with local systems arising in two natural subjects. The first
will consist of the higher direct image cohomology sheaves by a proper submersive
morphism and the second is defined by the solutions of linear differential systems.

Properties. The inverse image of a local system £ by a continuous map f: N — M
is defined as the locally constant sheaf f~!(L£) on N.

Lemma 1.2. A local system L on the interval [0,1] is constant.

Proof. There exists a finite number of intervals [t;,¢;+1] s.t. the restriction of L is
constant on each interval. Each element a; in the fiber L at a point ¢ € [t;, t;41]
defines a unique section on [t;,t; 1] which extends to sections on [t;_1,t;] and
[ti+1,ti+2] and successively to a section on [0, 1]. The extension operation has an
inverse defined by the restriction of global sections to the point ¢t € [0, 1], hence it
is an isomorphism. O

From now on we suppose the topological space M locally path connected and locally
simply connected (each point has a basis of connected neighbourhoods (U;);er with
trivial fundamental groups i.e 7o(U;) = e and m1(U;) = e).

Remark 1.3. On complex algebraic varieties, we refer to the transcendental topol-
ogy and not the Zariski topology to define local systems.

1.2.1. Monodromy. Let « : [0,1] — M be a loop in M with origin a point v and

let £ be a Q—local system on M with fiber L at v. The inverse image v~ 1(L)

of the local system is isomorphic to the constant sheaf defined by L on [0,1]:
-1

Y L~ L[O,l] .

Definition 1.4 (Monodromy). The composition of the linear isomorphisms
L~L,=Lyo~=T(0,1,L)~L,qy=Ly =L

is denoted by T and called the monodromy along . It depends only on the homo-

topy class of ~.

Proof. Given an homotopy H defined on [0,1]? between two loops v and «/ we
lift £ by H to [0,1]> where we apply an argument similar to the interval case, by
covering the square with products [z;, z;41] X [y, y;+1] s.t. the restrictions of the
inverse image of £ are constant ( proofs using homotopy are standard and must
be worked once in detail, see for instance the invariance of the primitive of an
analytic function constructed along two homotopic loops in Cartan [1] p. 59). O

Proposition 1.5. Let M be a topological space connected, simply connected, locally
path connected and locally simply connected, then a local system L on M is iso-
morphic to a constant sheaf Ly;.
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Proof. Let a be a fixed point in M and let L = L, denotes the stalk of the
sheaf £ at a. For any point £ € M two paths v and 4/ from a to z define equal
isomorphisms 7, = 7. : £, — L, since (7'.y~!) is homotopic to the identity, hence
(7' 4~1)« = Id. We define an isomorphism of sheaves ¢ : Ly — L s.t. for all point
x €M, pp: (Ly)e =~ Lo — L, 18 equal to 7., then ¢ is well defined since ¢, is
independent of the choice of the path. O

1.3. Local systems and Representations of the fundamental group

The notion of local system can be introduced as the theory of representations of
the fundamental group of a topological space. This fact will be presented in terms
of equivalence of categories that we recall now.

1.3.1. An equivalence of two categories C and D, consists of a functor F': C — D,
a functor G : D — C, and two natural isomorphisms a : FF o G — Idp and
b:Ide — GoF.

An interesting criteria states that a functor F' : C — D defines an equivalence of
categories if and only if it is:

1) full, i.e. for any two objects A; and Ay of C, the map Home(A;, As) —
Homp(F (A1), F(A3)) induced by F' is surjective

2) faithful, i.e. for any two objects A; and Ay of C, the map Home (A1, Ag) —
Homp(F (A1), F(As)) induced by F is injective and

3) essentially surjective, i.e. each object B in D is isomorphic to an object of the
form F(A), for Ain C.

Definition 1.6. Let L be a Q—vector space. A representation of a group G is a
homomorphism of groups

G % Autg(L)
from G to the group of Q—linear automorphisms of L or equivalently a linear
action of G on L.

The monodromy of a local system L defines a representation of the fundamental
group 71 (M, v) of a topological space M on the stalk at v, £, = L

T (M, v) 2 Autg(L,)
which characterizes local systems on connected spaces in the following sense

Proposition 1.7. Let M be a connected topological space. The above correspondence
is an equivalence between the following categories

i) Q—local systems with fiber a vector space L on M

1) Representations of the fundamental group 71 (M,v) by linear automorphisms of
a Q—wvector space L.

Proof. The representation associated in (i) to the local system is defined by the
monodromy along a path as we have seen above and this correspondence is func-
torial.

ii) To simplify the proof we use the existence of a universal covering P : M— M
of M. The group m(M,v) acts on M and can be identified with the group of
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covering transformations. Given a representation p : m (M,v) — Aut L, we define
its associated local system L via the introduction of the constant sheaf L,; on M;
we put:

DU L): ={sel (P~ U),Ly):Yue P~ U),Vy € m(M,v),s(y.u) = p(7).s(u)}
i.e the sections of £ on U are the equivariant sections of Ly; on P~ (U) under the
action of 71 (M, v). Then the functoriality of the construction can be checked. O

Given a linear automorphism 7' € AutgL, we define an action of 7' on a represen-
tation p by conjugation as

T.p:m(M,v)—Autg(Ly) 1y € m (M,v) — Top(y)oT™ L.
then we deduce from the proposition a correspondence between:

i) Isomorphisms classes of Q—local systems on M with fiber L at a fized point v
and

ii) Classes of representations of the fundamental group 71 (M,v) in finite dimen-
sional Q—wvector spaces L modulo the above action of the group of linear automor-
phisms AutgL on the representations

Let L = L,, then for each isomorphism T : L. — L’ we deduce a local system L’
isomorphic to £ as shown in the following diagram where v € m1 (M, v)

L sl L
T\ T\
[ TeeeT Tt o

Reciprocally a linear automorphism 7 of £ is defined by the action of T' € AutgL
where T is induced by 7 at v.

Remark 1.8. In the above equivalence the vector space L is viewed as the fiber of
the local system at the reference point v for the fundamental group. In another
point of view the vector space L is identified with the space of global sections of
the constant inverse image of the local system £ on the universal covering of M,
in which case L is called the space of multivalued sections of £ [4].

Corollary 1.9. The group of global sections of the local system L is isomorphic to
the invariant subspace of the fiber L at the reference point v under the action of
the representation p

HY(M, L)~ L": ={a € L|p(a)(a)=a,Va € 1 (M,v)}

Proof. The above proposition applied to the constant sheaf Zj,; states that the
space of morphisms ¢ € Hom(Z, L) is isomorphic to the space of morphisms of
the trivial representation Z into p. On one side Hom(Z, L) is isomorphic to the
space of global section H°(M, L) via ¢ — s = (1) and on the other side the
morphisms from the trivial representation Z to £ are defined by elements a € L
satisfying the above formula where p(a) = Id since it is the image by ¢ of the
trivial action on Z. (]
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Ezample. 1) Let D, be an open complex disc centered at 0 of radius r, then a local
system on DX = D, —{0} is defined by a vector space L and a linear automorphism
T on L.

ii) More generally for M = D, — {x1,...,z,} a disc with n points deleted, 71 (M)
is the free group on n generators corresponding to a loop around each point; hence
the representations of m (M) are defined by the choice of n linear automorphisms
Ti on L.

1.3.2. Cohomology. Let £ be a local system on D*, with fiber L at some point
and monodromy 7' : L — L, we prove that its cohomology is as follows
H°(D*, L) ~ ker (T — Id), H*(D*, L) ~ coker (T — Id)

and HY(D*,L£) ~0 for i > 1,

hence it is defined as the cohomology of the complex

L2 L:o®b) = (T - 1d)(b)

The cohomology is computed via Céch definition; we consider the covering of D* by
the two open sets, north U, = {D — D NiR ™~ }(complement of negative imaginary
numbers) and south Us = {D — D NiR"} (complement of positive imaginary
numbers) and their intersections U,, N Us = UT UU~ where UT = {a+ib € D :
a>0}, U ={a+1ibe€ D:a<0}. The associated Céch complex C; is defined as
(C1)

HO(U,, L) H (U, £) 2 HOU™, L)SH (U™, £) : &1 (a1+a-1) = (a-1—a1) v, v,

The fundamental group of D* is generated by the loop v defined by €2 for
t € [0, 1], hence according to the definition as a representation, the local system is
determined by its stalk L = £; at 1 and the monodromy 7" image of «y. Since all the
open subsets are simply connected we have isomorphisms: ¢; : HO(U,, L) ~ L1 =
Loy : H(UY, L)~ Ly =L, p_1: H U L) =L 1,1 : HHU L)~ L,
with the fibers L at 1 € U,, and £_1 at —1 € U,. Moreover we have isomorphisms
a: L =Ly ~ L_; defined by a path from {1} to {-1} and 6 : Ly ~ Ly = L
defined by a path from {—1} to {1} s.t. § o & = T". We introduce the complex C

)
(CQ) L D L:_l 3 ,C_l D L: ag(bl, b_l) = (b_l - Oé(bl), 5(b_1) — bl)
The morphisms ¢1,11,%_1 and ¢@_; above can be combined to define a quasi-
isomorphism of complexes ¢ : C; — C5. Then we introduce the complex Cs
(Cs) L2 L:05b) = (T — Id)(b)

and the morphism D : C3 — Cy defined by D°(b) = (b,a(b)) in degree 0 and
D*(a) = (0,a) in degree 1. Finally we can check that D is a quasi-isomorphism,
since for example in Co, ker 95 ~ {(b1,b_1)|a(by) = b_y and 6(b_1) = b1}, hence
ker 0y ~ {b € L|T'(b) = b}.

1.4. System of n—linear first order differential equations and local systems

We consider here holomorphic equations, however the theory can be developed for
differentiable equations.



Local Systems and Constructible Sheaves 9

Definition 1.10. A first order holomorphic system of n—linear differential equations

on C™ is written as J
u
— =A(2)u
o (2)

where u € C", z is a coordinate on an open subset U of C and A : U — End(C™)
is an holomorphic map in the vector space of endomorphisms of C™.
When A is independent of z, the system is said to have constant coefficients.

Classically the system is referred to as homogeneous in n—unknowns w;(z) € C,i €
[1,n], with holomorphic coefficients as entries of A, a;; : U — C,4,j € [1,n], and
it is written in the following form:

du; &
dZZ = Zaij(z)uj(z), i=1,2,...,n
j=1

this is one equation and it is not true that we have n distinct equations with
independent variables.

If we consider a differentiable map A : I — End(R™) on an interval I of R, then
Cauchy’s theorem confirms the existence of global solutions, defined on the whole
interval, which form a real vector space of dimension n, the isomorphism with R"™
being determined by the initial condition given at a fixed time ¢ € I with varying
position u € R".

The extension of Cauchy’s theorem to the holomorphic case can be found in the
book of Cartan [1]. This proves the existence of unique local solutions with fixed
initial conditions. A subtle point to study is the existence and behavior of a global
solution on U C C, namely to decide whether a local solution can be extended to
all U. This behavior is a central point in our subject here.

Let v : I — U denotes a path in U defined on a real interval. Identifying C™ with
R?" we deduce by composition a map Ao~ : I — R2" defining a real differential
system. Applying the result on the existence of global solutions on I, it is not
difficult to check that the local solutions can be extended along each path.

The problem arise when we extend a solution along a non trivial loop. Since a
solution defined near the origin and extended along a path does not necessarily
coincide, upon first return to the origin, with itself, that is we don’t obtain necessar-
ily the original solution. In conclusion holomorphic solutions cannot be extended
necessarily to the whole open set. However the extensions along two paths with
the same origin and the same end point, coincide at the same end point if the two
paths are homotopic.

Corollary 1.11. Global solutions are defined on a simply connected open subset V
in U and form a complex vector space of dimension n.

The notion of local system is the abstract concept which takes care of this behavior
and of the basic properties of the space of solutions.

Proposition 1.12. Given an homogeneous system of n—linear first order differential
equations with holomorphic coefficients on an open subset U of C, the sheaf defined
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by holomorphic global solutions on each open subset V.C U form a local system L
onU.

Proof. The restriction of £ to a simply connected open subset V' is isomorphic to
the constant sheaf C{,. (]

1.5. Connections and Local Systems

We introduce the concept of connections directly on analytic manifolds. The gener-
alization of the concept of system of n—linear first order differential equations is in
two directions. First, since the coordinate space may be of dimension higher than 1,
we are concerned with partial differential equations in many variables and second
the definition is compatible with transition transformations on the manifold.

Definition 1.13. Let F' be a locally free holomorphic Ox—module on a complex
analytic manifold X. A connection on F' is a Cx—linear map

V:F— Qoo F
satisfying the following condition for all sections f of F' and ¢ of Ox :

Vipf)=dp® f+¢Vf
known as Leibnitz condition.

1.5.1. Properties. We define a morphism of connections as a morphism of O x —modules
which commutes with V.
The definition of V extends to differential forms in degree p as a C—linear map
VP Ok @0y, F— O @0y Fst. VPI(w® f) =dw® f+ (—1)Pw AV
The connection is said to be integrable if its curvature VoV : F — Q% ®p, F
vanishes (the curvature is a linear morphism).
Then it follows that the composition of maps Vi*! o V¥ = 0 vanishes for all i € N
for an integrable connection.
In this case a DeRham complex is associated to V

(% R0y F,V): =F > QL @0, F-- Q% @0, F 5 QL ®0, F
The contraction of V with a vector field X is denoted by V x. For two vector fields

X,Y, let [X,Y] denotes the vector field defined as the bracket of X and Y, then
the connection is integrable if and only if V|xy) = VxVy — VyVx for all X,Y.

Proposition 1.14. The horizontal sections FY of a connection V on a module F
on an analytic smooth variety X, are defined as the solutions of the differential
equation

FY ={f:V(f) =0}
When the connection is integrable, FV is a local system of dimension equals to
dimF'.

Proof. Based on the relation between differential equations and connections, lo-
cally we can find a small open subset U C X isomorphic to an open set of C™ s.t.
Fjy is isomorphic to Off. This isomorphism corresponds to the choice of a frame
{ei}ie[lym] of F on U and extends to the tensor product of F' with the module
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of differential forms: Q}; ® F' ~ (Qf,)™. The connection matrix Q¢ is a matrix of
differential forms {ws; }; je[1,m], sections of Q}], defined as follows: its ¢—th column
is the transpose of the line image of V(e;) in (2};)™. Then the restriction of V
to U corresponds to a connection on Off denoted Vi and defined on sections
y=(y1, - ,Ym) of OF on U, written in column Vy'y = d('y) + Qu 'y or

W dy1 Y1
A I 1 IR I P
Ym dym Ym
the equation is in End(T, F)|y ~ Qe F) where T is the tangent bundle to X.
Let (z1,--- ,2,) denotes the coordinates of C", then w;; decompose as

Wij = Zke[l,n] F?j(m)dxk
so that the equation of the coordinates of horizontal sections is given by linear
partial differential equations for ¢ € [1,m] and k € [1,n]

y;
371 + Y Tha)y; =0
L )
Jjet,m]

The solutions form a local system of dimension m since the Frobenius condition

is satisfied by the integrability hypothesis on V. O
Remark 1.15. In terms of the basis e = (e1,--- ,en) of Fiy, a section s is written
as

5= Zie[l,m] yie; and Vs = Zie[l,m] dy; ® e; + Zie[l,m] y; Ve; where

Vel- = Zje[l,m] Wij X €j.

The connection appears as a global version of linear differential equations, inde-
pendent of the choice of local coordinates on X.

Remark 1.16. The natural morphism £ — (2% ®c £, V) defines a resolution of £
by coherent modules, hence induces isomorphisms on cohomology
H'(X, L) ~ H'(RD(X, (2% ®c £, V)))

where we take hypercohomology on the right. On a smooth differentiable manifold
X, the natural morphism £ — (Q% ®c £, V) defines a soft resolution of £ and
induces isomorphisms on cohomology

1.5.2. Connections defined by local systems. We associate to a local system £ on
X, a vector bundle Lx := Ox ®¢ L on X.

The transition transformations are deduced from the corresponding transforma-
tions of £. Then a connection is defined on Lx as follows

Vg e T(U,0),Vs e T(U, L), V(gRs)=dg®s

The connection is well defined since the transition transformations are defined by
matrices with locally constant coefficients.
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Ezample. 1) Let D, be an open complex disc centered at 0 of radius r, then the
connection on the trivial line bundle OD: defined as Vu = du — %udz admits for
flat sections the vector space of solutions of the equation du = Sudz generated by
all determinations z* on open subsets of D} . Since the extension of z* along a loop
around the origin produces the new determination e*(l092+2im) — g2ima o the flat
sections define a local system on D} with fiber C and monodromy 7' = €2"*Id on
C.

ii) More generally for M = D, — {b1,...,b,} a disc with n points deleted, the
connection on the trivial line bundle Oy defined as Vu = du — (S, 725, Judz
admits for flat sections the vector space of solutions of the equation

du = (Ziep1,n) 325 )udz generated by all determinations Ilie[y ny(2 — b;)* on open
subsets of M. They define a local system with fiber C and monodromy T} =
e2imx Id around each point b,. The bundle associated to the local system is iso-
morphic to Oy, hence trivial.

Theorem 1.17 (Deligne). The functor (F,V) — FY is an equivalence between the
category of integrable connections on X and the category of complex local systems
on X with quasi-inverse defined by L — Lx.

Proof. i) The correspondence giving horizontal sections is functorial. The canonical
morphism, compatible with the connections, Ox ®c FY — F : g® s + gs is an
isomorphism. In fact, since the connection is integrable, there exists locally a basis
consisting of horizontal sections, hence locally every section s of (F, V) is written
as a sum s = Zie[l’n] gih; where h; is horizontal and g¢; is an analytic function,
then V(s) = > icp1,,) 9ili-

ii) Let £ denotes a local system on X, then the canonical morphism £ — Lx :
s+ 1® s is an isomorphism onto LY. O

1.6. Fibrations and local systems (Gauss-Manin connection)

We prove that the i—th group of rational cohomology of the fibers of a proper
submersion of manifolds f : M — N form a local system R‘f,Q on N for all
integers 7. First we recall notions on the higher direct image of a sheaf.

1.6.1. Cohomology via sheaf theory techniques. In this section we recall notions
on cohomology constructed via sheaf theory. Basic references are Godement [5] and
Warner [14]. Cohomology attach to a topological space, a group or a vector space
in degree ¢ known as i—th cohomology group and to a continuous map a linear
function on the groups (for this reason the cohomology is an invariant said to be
linear depending on topology only in contrast to other structure, differentiable for
example. The first technical constructions were simplicial, based on a triangulation
of the space, but later cohomology with various coefficients constructed via sheaf
theory proved to be of more flexible use in various domains of mathematics.

- Real coefficients. The real field R defines on a topological space M, a constant
sheaf denoted Rj; or simply R.

On a differentiable manifold A, the DeRham complex of differential forms £}, is
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a resolution of the constant sheaf Rjy; (Poincaré’s lemma).
DeRham theorem asserts that the i—th cohomology of the complex of global sections
(M, E;y) is isomorphic to the i — th cohomology vector space:

HY(M,R) ~ H(T'(M, &)
This construction of cohomology is fit to analysis. It is so important, that it can
be considered as a definition, for a first approach to cohomology.

- The pushforward functor f. and its derived functors. We may think of a map
of topological spaces f : M — N as a family of spaces consisting of the fibers
M, = f~!(v) at various points v of N, whose cohomologies can be viewed as
a family of groups. However the fact that the union M of these fibers has itself
the structure of a topological space, as well the presence of a topology on the
parameter space N and the continuity of the morphism f can be used to obtain a
more rich structure on the family of cohomologies {H*(M,,Z)},,v € N, namely
the structure of a sheaf R’f,Z defined by the “presheaf ” associating to an open
subset U in N the group H(f~1(U),Z).

Definition 1.18. Let f: M — N be a continuous map and F be a sheaf of abelian
groups on M.

i) The direct image sheaf f.F is associated to the presheaf on N defined by the
global sections on inverse of open sets: U — I'(f~1(U, F).

ii) For any f.—acyclic resolution * of F on M, the complex of sheaves Rf.F
on N is defined as Rf,F: = f.K* on N and called the higher direct image of
the sheaf F. Its i — th cohomology sheaves is defined as R'f.: = H!(f.KL*) and
called the i — th derivative of the direct image functor (flabby or fine resolutions
are examples of acyclic resolutions).

If we view f as giving rise to the family of fibers f~!(v) and if f is proper, the
sheaf R'f.Zys gives rise to the family of cohomology of the fibers H(f~*(v),Z) ~
(Ri f+Znr)w. The sheaf structure contains more information than merely the family
of cohomology of the fibers (for example the monodromy invariant recalled below).
Even if f is not proper the direct image is still interesting, for example in the case
of the embedding j of the punctured disk in C the fiber at 0 of R'j,Z is isomorphic
to Z generated by the Poincaré dual of the homology class of a loop around 0.

Ezample. Let X be an analytic variety, Y a normal crossing divisor (NCD) in X
and j : X — Y — X the open embedding. The local information on the topology
near Y as a product of discs punctured or not is reflected in the higher direct
image Rj,C of the constant sheaf C on X =Y. Let y € Y and U, a neighbourhood
of y isomorphic to a product of complex discs D™ s.t. D" — D" NY ~ D*P x D4,
then (R'j.C), ~ H (D*?,C) ~ N*(CP).

The result follows from a general relation known as Kunneth formula for a product
of spaces and a general statement:

(R'j.C), is isomorphic to the inductive limit of H'(U,,C) for small open sets U,.

We see on this example that in practice we don’t need to go back to the def-
inition and construct a flabby resolution of C to compute the cohomology groups.
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However, it happens that one need to work directly on the complex level, like
in Hodge theory where Deligne needed filtered complexes to define the weight
and the Hodge filtrations on the cohomology of algebraic varieties. In this case,
although the analytic DeRham complex Q% _ is not fine, the direct image com-
plex j.Q%_y is quasi-isomorphic to Rj,C since we can find enough small Stein
open sets U, with acyclic cohomology for coherent analytic coefficients sheaves.
Moreover it was necessary to introduce a subcomplex of forms having logarithmic
singularities along Y in order to define the correct Hodge filtration (see(2.2.1.)).

Theorem 1.19 (differentiable fibrations ). Let f : M — N be a proper differentiable
submersive morphism of manifolds. For each point v € N there exists an open
neighbourhood U, of v such that the differentiable structure of the inverse image
My, = f~Y(U,) decomposes as a product of a fibre at v with U,:

©
f_l(Uv) =, U, x M, s.t. prioe = flu,

The proof follows from the existence of a tubular neighbourhood of the sub-
manifold M,. Let V' C M containing M, be isomorphic to an open neighbourhood
of the zero section in the normal bundle Ny, /5 and endowed with a retraction
P:V — M,. Since the differential of the map P x fy, : V. — M, x N is invertible
on the compact manifold M, and the restriction of P x fjy is injective on M,,
there exists an open neighbourhood V' C V' such that the restriction of P x fjy
to V' is an open embedding. Since f is proper we find U, such that f=(U,) is
included in V' and satisfy the statement of the theorem.

- We will retain that if M, N are smooth complex algebraic varieties and f is a
smooth algebraic proper morphism, the theorem will apply only to the underlying
differentiable structure. The algebraic structure or the underlying analytic struc-
ture do not decompose into a product, since two smooth nearby fibers are not
necessarily isomorphic as analytic or algebraic varieties but only as differentiable
varieties.

Remark. 1) The morphism obtained by composition P = pry o ¢ : My, — M,
induces for each point w € U, a diffeomorphism of the fibers M,, ~ M, equal to
the identity on M, for w = v. It defines a retraction by deformation from My,
onto M,.

ii) Let f : (M,0M) — N be a differentiable morphism of manifolds with boundary.
Suppose f proper and submersive, as well as its restriction to the boundary M
of M. Then f is locally differentially trivial on NN, that is at each point v in N
there exists a commutative diagram

Ux(f~'v), af'(v) =~ (f7HU), af '(U))
pru N\ 7 fiu
U

where U is an open neighbourhood of v in N and the isomorphism is a differentiable
morphism of manifolds with boundary.
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1.6.2. Locally constant cohomology. The differentiable result above for a proper
submersive morphism f : M — N has a linear version on the cohomology of the
fibers

Proposition 1.20 (locally constant cohomology). In each degree i, the cohomology
sheaf of the fibers R'f.Z is constant on a small neighbourhood U,, of any point v of
fiber H'(M,,Z) i.e there exists an isomorphism between the restriction (Rif*Z)WU
with the constant sheaf H[ijv defined on U, by the vector space H* = H'(M,,Z).

Proof. Let U, be isomorphic to a ball in R™ over which f is trivial, then for any
small ball B, included in U,, the restriction H*(My,,Z) — H'(Mg,,Z) is an
isomorphism since Mp, is a deformation retract of My, . O

1.6.3. Complex algebraic case. Let f : X — V be an algebraic, proper and smooth
morphism of complex algebraic varieties ( analytically f® is a submersion), then f
defines a differentiable locally trivial fiber bundle on V' (that is the trivialisations
are differentiable but not necessarily analytic ). The problem of discovering prop-
erties to distinguish such class of local systems (called geometric) is a fundamental
problem in geometry.

We still denote by f the differentiable morphism X%f — V%f associated to f,
then the complex of real differential forms £% is a fine resolution of the constant
sheaf R and R'f.R ~ H'(f.E%).

Ezample. Let f : X — S! be a locally trivial fibration with typical fiber F' at
some point t. The direct image sheaves R!f,Q are local systems on S'. In this
case the fibration is defined by a monodromy homeomorphism 7T : F — F which
induces on cohomology isomorphisms T} : H(F,Q) — H*(F,Q), the monodromy
of R f,Q on S! where the fiber (R!f,Q); at t is identified with H*(F, Q). It follows
that: H'(S*, R'f.Q) ~ Coker(T; — Id) and H°(S', R f,Q) ~ Ker(T; — Id).

Ezample (Geometric local system). Let f: X — V be a smooth and proper mor-
phism of smooth analytic varieties. It follows that f is a differentiable bundle on
V' ( since f is a submersion) i.e every point y in V' has a neighbourhood U, such
that f~1(U,) is diffeomorphic to a product U, x X, of U, with the fiber of X at
y. Namely let v: [0,1] — V be a differentiable path in V between two points yq
and yi, then it defines a diffeomorphism . : X, — X, inducing an isomorphism
~v* on cohomology.

This isomorphism on cohomology depends on the path up to homotopy and hence
defines a representation of the fundamental group 71 (V,yo) on the cohomology
H%(Xy,,Z) or equivalently, the family H'(X,,Z) forms a local system on V. In
this example the structure of the sheaf on the higher direct cohomology is defined
by the cohomology of the fibers and the monodromy.

The monodromy in this case is induced by the diffeomorphism defined on the fiber
f~Y(v) by a trivialization of [}y, in particular it is compatible with the cup-product
on cohomology.

Suppose now that V is a punctured disc D*, then 1 (D*, t) is isomorphic to Z. The
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action of a generator (a circle through ¢) is the monodromy operator on H*(X;,Z)
and denoted by T

Suppose again V is a disc but f smooth only over D*. Then the monodromy is
related to the singularities of the fiber X at the origin of D. For example, it is
a necessary condition that the monodromy defined by f over D* is trivial, for f
to be smooth over D . A morphism f over D* giving rise to a non trivial mon-
odromy cannot be extended to a smooth morphism over D. The local system is
called geometric to recall that it is constructed as direct image of cohomology
of algebraic varieties. Such local systems reflect special topological properties of
algebraic varieties. The concept of Variation of Hodge structures is introduced in
order to take care of such additional properties. At the expense of hard technical
constructions, such structure leads to results subsequent to the geometry.

1.6.4. Relative DeRham complex. Let f : X — V be a smooth morphism of
analytic manifolds, the bundle of relative differential forms is defined as Q; Vo=

Q% /f*(Qy) and Q% )y, = APQ% y, so that the differential d on Q% induces a
differential on the relative forms and a relative DeRham complex (0% /V,d) is
defined and can be extended for any local system £ to a complex Q% /V([,): =
(Q}/V ®c L£,V); at a point v € V| there exists an isomorphism Q}(v) ~ Q}/V ®
C(v) where C(v) = Oy, /My, ~ C. The complex of holomorphic forms is not
fine to compute cohomology but Grothendieck showed the interest in the notion
of Hypercohomology (see later 3.6) which is used in the next result, the best that
we can hope for and which is indeed proved in [4]

Theorem 1.21 (Deligne). There exists natural isomorphisms of holomorphic bun-
dles on V
RPf.(L) ® Oy ~ R" [0 )y (L)

This result generalizes the classical DeRham theorem in the case where V is
reduced to a point but with coefficient in a local system in remark 1.16. It leads
to a description of the Gauss-Manin connection on R f,Q% (£ with RP f,(L)
isomorphic to the horizontal sections.

Definition 1.22. Suppose f a locally trivial topological fibration, then the con-
nection defined by the local system RPf,L on the bundle Rpf*Q}/V(ﬁ) is the
Gauss-Manin connection.

2. Singularities of Local Systems and Systems of differential
equations with meromorphic coefficients: Regularity

In the previous paragraph we obtained a general result on the equivalence of the
two categories defined by Local Systems on one side and flat Connections on a
manifold on the other side; moreover Gauss-Manin connections are associated to
the cohomology of the fibers of a smooth morphism of smooth varieties.

A morphism, in general acquire singular fibers at some critical values in the space
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of parameters, then the Gauss-Manin connection is defined on the complement of
the set of critical values (known also as the discriminant of the morphism). Hiron-
aka’s result on desingularisation, suggest that the case of normal crossing divisor
as discriminant is the most important to study.

Historically, connections which are meromorphic on analytic varieties and holo-
morphic on the complement of a divisor were studied first. As usual it is natural
to start the study on a small disc, where an asymptotic property near a singularity
known as regular singularity has been described first.

The corresponding singularities of local systems appears in the DeRham complex
defined by the connection. The discovery of perverse sheaves later, will be pre-
sented in the third section. The references to this section are [3] and [4].

2.1. System with meromorphic coefficients on the complex disc

Let K = M denotes the field of germs of meromorphic functions at 0. We consider
the above homogeneous system of m—Ilinear first order differential equations with
coefficients a;;(z) meromorphic at 0

du — A(z)u, A(z) matrix with entries a;;(z) meromorphic at 0
Taking the coefficients of the system in K is a convenient way to make sure that 0 is
the only singular point of the coefficients, equivalently the system is meromorphic
on a disc D, where we shrink the radius enough to have a unique singular point
at the origin (we may suppose r = 1 for convenience). The solutions are vectors
w(z) = (u1(2),...,um(2)) of holomorphic functions on any sector in D* (simply
connected region of the disc defined by the rays of angle 0 satisfying:0; < 6 < 65);
there exist always solutions since the restriction of the system to such sector is
holomorphic. The main point of study here is that the solutions cannot be extended
in general to univalent solutions on the whole disc.

Definition 2.1. A fundamental matrix of solutions consists of a basis of solutions
of m vectors where each vector is written as a column of m holomorphic functions
defined on a sector.

In fact it is convenient to write the equation in matrix form as follows
dau
dz

where A(z) is a matrix with entries a;;(2) € K and U(z) represents a matrix of m
independent solutions. This equation can be treated as a first order equation.

(2) = A()U(2) (2.1)

Ezample. Let T be a constant (m, m)— complex matrix. It is easy to check that a
solution of the matrix equation: 2L U(z) — T'U(z) = 0 on the complex disc D* is
given on any sector by U(z) = exp((log z) T') where log z is a determination of the
logarithm. In particular the equation defined by the matrix

A(z) = ér (2.2)

where I' is a Jordan matrix with eigenvalue o admits the solutions u;(z) =
(2%(logz)*, 2%(logz)*=1, -+ ,2%,0,--+) for 0 < i < m forming the columns of the
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exponential matrix exp(logzT).

2.1.1. Multivalued solutions. For certain canonical constructions it is convenient
to avoid the choice of a sector, then there is an advantage to introduce the space
of multivalued solutions [4].

By definition, multivalued functions on D} are holomorphic functions on the
universal covering D7 of D* (called Poincaré half plane H for r = 1).

D,={teC,|z=e*" <1}, m: D, — D} 1t — 2z =¥ (2.3)

Definition 2.2. Let F be a sheaf of complex vector spaces on D}. A multivalued
section of F is a section of 7~ 1F.

The covering 7 admits sections s on sectors of D}. Given a multivalued section f
of F, a section s of 7 defines a section f o s of F on a sector of D;.

Definition 2.3. The multivalued solutions of an homogeneous system of m—linear
first order differential equations on D} form a vector space of finite dimension,
solutions of the differential operator obtained on D, by the change of variable
z = e2i7‘rt'

Ezample. The general theory below is similar to the above example (2.2) that we
discuss again.

i) The matrix U (t) = exp((2imt)I") consists of multivalued solutions on the Poincaré
half plane H of the equation: %0(1&) = 2inT U (t).

ii) Monodromy. If we view the solutions in z near a point zy # 0 as sections of a
local system L and we follow a solution U(z) along a circle, we obtain upon the
first return to zp a new basis of sections of £: exp(2inI")U(z) = TU(z) , where T
is the monodromy and logT = 2inT.

On H, U(t) consists of sections of 7' £ and satisfy:

Ut + 1) = exp(2inT)U(t) that is exp(2in(t + 1)T) = exp(2inT)exp(2imtl).

iii) If we introduce the fibre bundle Lp« = Op+ ® L, the holomorphic sections
defined by U'(t) = exp(—2imtT)U(t) have period 1 on H, that is

U (t+1) = exp((—2imt—2im)T)U (t+1) = exp(—2intTD)(exp—2inT)exp(2inT)U(t) =
U'(t)

Hence if (uf(t),...,ul,(t)) is a multivalued solution then the product of the ma-

trix exp(—tlogT') with the vector (u)(t),...,u,,(t)) is the inverse image of a global
holomorphic section of Lp«.

2.1.2. Canonical form of the solutions of the meromorphic system.

We consider again the above general system (2.1) defined by A(z) lifted to H. Let
S(t) = (U1(t),- -, Upn(t)) be a set of m independent multivalued solutions; each
vector Uy(t) has m holomorphic functions on H = D* as components.

The Monodromy is induced on the solutions by the action of the translation :

t+—t+1on D*. As the coefficients of the system defined by A(2int) are of period



Local Systems and Constructible Sheaves 19

1, the substitution of ¢ by ¢ + 1 transform the basis S(t) of the vector space of
solutions into another basis, hence there is a matrix C' € GL(m,C) s.t.

S(t+1)=8t)0C

The matrix C' defines a linear transformation of the space of solutions, that is the
monodromy transformation.

The logarithm of the monodromy. Let I" be a matrix s.t. e = (' with eigenvalues
X satisfying the condition 0 < Re(\) < 1, then the the matrix S(t)e~2™T has
period 1 in t. Considering the change of variable z = €7 we get a matriz 3(z)
with coefficients holomorphic on D} s.t.

2iml

¥(z) € Gl(m,Op:) : $(e2im) = §(t)e~ T

then for each determination of logz, the columns of ¥(z)e" 9% form a basis of the
vector space of solutions (called also a fundamental system of solutions) since if
we put formally z = €2 and 2int = logz, we recover §(t)
For example for m = 1 and I' = «, the solution z& = 27t
e2imate2ima hence the matrix C' has one entry 7™,

satisfy e2ima(t+l) —

Remark 2.4. The condition 0 < Re(\) < 1 on the eigenvalues is arbitrary and we
could add to A an integer.

In summary we have

Proposition 2.5. Let A(z) be a matriz (m, m) with coefficients holomorphic on D},
meromorphic at 0, and consider the equation

dau
5= A(z)U.

There exists a matriz T with constant complex coefficients and an (m,m) matriz
>(2) with coefficients holomorphic on D} such that a fundamental system of multi-
valued solutions of the equation is of the form g(t) = (e t)e2 ™ or equivalently
S(z) = 2(2)el°9%T is a solution on any sector of D} with a fired determination of
logz. The monodromy matriz is then defined as C = >,

Remark 2.6. 1) To construct the matrix C' we need to choose a basis of the solutions
and then study the action of T, that is the transformation of the solutions by the
change of variable 6 + 2im (one turn around zero). Then C' and T are defined up
to conjugation by the matrix of change of the basis. Hence we can reduce I to the
Jordan canonical form in the example (2.2).

ii) If the matrix A(z) is of the form @ where B(z) is holomorphic s.t. the
difference of two eigenvalues of B(0) is never a non zero integer, the matrix C is
conjugate to exp(2iwB(0)) [3,1), p 137].
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2.1.3. Equivalent Systems. Consider a matrix M (z) € GL(n, K) and let

dM
G(z) = MY (AM — —
()= M (an - )
then V = M~'U is a solution of the equation 42X = G(2)V if and only if U is a

solution of the equation 4 = A(2)U.

Definition 2.7. Let A(z) and G(z) be two matrices with meromorphic coefficients
at 0, the two systems 42 = A(2)U and %% = G(z)V are said to be equivalent if
there exists an invertible matrix M (z) such that G(z) is related to A(z) by the

above formula.
2.1.4. Regular singularity.

Theorem 2.8 (regular singular point). Given a system 42 = A(z)U, the following
conditions are equivalent:

i) the system is equivalent to a system of the form d‘giz) = @V(z) where B(z)
is a matriz with holomorphic coefficients

i) the system is equivalent to a system of the form d‘giz) = gV(z) where T is a
matriz with constant coefficients

i11) there exists a matriz Y (z) with meromorphic coefficients at 0 s.t. a fundamen-
tal system of solutions is given as S(z) = X(z)el°9?T.

Counteiemmple. The singularity of the equation 22% + f = 0 is not regular since
it has e= as solution.

Definition 2.9. A system % = A(z)U has regular singular point at 0 if the equiv-
alent conditions of the theorem are satisfied.

2.1.5. Linear differential equations on a punctured disc. Let D. = {2z € C: |z] <
¢} denotes the complex open disc of radius & centered at 0. A set of n+ 1 meromor-
phic functions a;(z) for ¢ € [0,n] on the complex disc D, with a unique isolated
singular point at 0 defines a differential operator

P = . \n—1i
3wl
1€[0,n]

of degree n if ag(z) # 0, acting on the holomorphic functions on D, for ¢ < r. The
study of the solutions u on D} of the equation:
()" u(2) = = ooy (e @i (2) (G2)""ul2))

can be reduced to the case of a linear system if we introduce the new variables
d

Uy = U, U] = (d%)w cee Uy = (E)iu, ey Up_1 = (%)”flu,
then the system is written as
d%uo = Uy, %Ui = Uitls-- -, %unfl = —ﬁ@(zieu,n} ai(z)un7i>'

Corollary 2.10. i) The holomorphic solutions of the differential equation P(u) =0
on a simply connected open subset U C D} = D, — {0} form a complex vector
space of dimension n.

1) The sheaf of solutions on D} is a local system.
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The corollary follows from the existence and uniqueness of local holomorphic solu-
tions of the equation. Holomorphic version of Cauchy conditions for the existence
of solutions of the equation P(u) = 0 apply near any point zg # 0 € D} and show
the existence of a unique holomorphic solution u; with given initial values for its
derivatives to the order n—1 at zg. The solutions near zy, being in correspondence
with these initial values in C™, form a complex vector space of dimension n on a
neighbourhood of zy and extend on a simply connected open subset.

Remark 2.11. i) The regularity condition has been introduced by Fuchs as follows:
the order of the pole of Z—é at 0 is at most 7. Later we will extend the notion of
regularity to meromorphic connections always associated to a differential equation
3,1), p 143].

ii) Although the solutions are sections of Op- which is a trivial fibre bundle, the
local system L is not necessarily trivial ( £ defines an analytic bundle denoted by
L ® Op: which is trivial).

Example. A determination of the function z® = e®/°9% is the solution of the equa-

tion zz—:fozu = 0 on any sector. The value of one determination on the complement
of a ray in D, is multiplied by e after extension across the ray in the positive
orientation.

2.1.6. Monodromy. Let P be an holomorphic differential operator on a punctured
disc D} and consider the vector space E of solutions near a point v in D). The
extension of a solution along a circle S through v defines the invertible linear
monodromy operator T : F — F.

2.2. Connections with Logarithmic singularities

The object of regularity is to study the behavior of a connection near singularities
along a divisor Y on X. Since resolution of singularities leads naturally to a normal
crossing divisor (NCD), special techniques have been developed in this case by
Deligne, based on the logarithmic complex.

2.2.1. Logarithmic Complex.

i) Let X be a smooth complex algebraic variety. A normal crossing divisor Y in
X is defined by a system of local parameters of the regular local ring Ox ,, then
Y is the union of its irreducible components Y; and it is written as Y = U;c1Y;
for all subset M of I, let Yas = MiemYs, Yy = Y — Ujgnm Y, then given a general
point y € Y} there exist analytic local coordinates z;,j € [1,n] at y such that
Yy is defined by z; = 0 for i < p. A neighbourhood U(y) of y is isomorphic to
DPtE and U(y)* ~ (D*)? x D* where D is a complex disc, denoted with a star
when the origin is deleted, with fundamental group II; (U(y)*) a free abelian group
generated by p elements representing classes of closed paths around the origin, one
for each D* in the various one dimensional axis with coordinate z;.

ii) Let j : X =Y — X denotes the open embedding, the sheaf Q% (LogY") of
differential forms of degree m with logarithmic poles on Y is the subsheaf of
7<% _y defined locally near y by
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O (LogY )y: = {w € (juQ%)y : fw € %, and fd(w) € Q!
where f is a reduced equation of Y near y.

2.2.2. Properties. The above definition is independent of the choice of coordinate
equations of the components Y;,i < p of Y near y.

From now on we will suppose the component Y; of Y smooth.

i) In terms of the equations z;, the forms ‘Z’i,i < p,dz;,p < i < n form an
Ox,y—basis of Q% (LogY),.

i1)QR(LogY) ~ A™Q% (LogY).

iii) There exists a global residue morphism Res; : Q4 (LogY) — Oy, with value,
the restriction to Y; of the locally defined coefficient of %

Definition 2.12. Let F be a vector bundle on X. A connection with logarithmic
poles along Y, V: F — Q4 (LogY) ®o, F has a matrix with logarithmic poles.

It extends to V' : Q% (LogY) ®oy F — Q4 (LogY) @0, F; it is integrable if V' o
V =0, so that a logarithmic complex Q% (LogY)(F): = (2% (LogY) ®o F,V)
is defined in this case.
The composition map: R; ® [doV : F — QY (LogY) ®o, F — Oy, ® F vanishes
on the product Iy, F' of F' with the ideal Zy, defining Y;. It induces a linear map
called the residue endomorphism of the connection

Resl(V) : F®OX Oyi — F®Ox OYr
At the point y € Y, the residue Res; induces a linear endomorphism Res;(y) on
the fibre F(y) of the vector bundle defined by F.
Let U(y) denotes a polydisc D™ with center y. The universal covering U (y) of
D*P x D" P is defined by
{t =(t1, - ,tn) € C": Vi < p,Imt; > 0andVi > p, | t; |< €},
with t — (€2 ... e2™e ¢, .- t,) € D®™ as covering map. We denote by
L the local system defined by the horizontal sections, by L its fibre and by L the
global sections of the inverse image of £ on U(y). The monodromy action T for
j < pis defined on U(y) by the formula: T;u(t) = v(t1, -~ ,t; +1,--- ,t,) for
any section v. Moreover there is an isomorphism between the fibre F(y) and the
vector space L (see the proof of next theorem); via this isomorphism, we have the
following relation proved in ([4],IL5)

Lemma 2.13. T; = exp(—2imRes;(V)).

In what follows we need to choose a section 7 of the projection C on C/Z, given
for example by a region of C defined by the conditions on real z, Rz € [0, 1[; such
section will appear, when we fix a determination of the logarithm, in the proof in
[4] (see also[3,2)]) of the following result due to Manin in dimension one.

Theorem 2.14 (Logarithmic extension). Let Y be a NCD in X, Fx« an holomor-
phic vector bundle on X —Y and V a connection on Fx~. There exists a locally
free module Fx on X which extends Fx«, moreover the extension is unique if the
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following conditions are satisfied
1) V has logarithmic poles with respect to Fx.

V: Fx — Q% (logY) ® Fy

11) The eigenvalues of the residues of V with respect to Fx belongs to the image
of T.

Proof. a) The local system L is said locally unipotent along Y if at any pointy € Y
all T; are unipotent, in which case the extension we describe is called canonical.

First we work locally on a neighbourhood of a point y of Y, which amounts to
suppose from now on X* isomorphic to a product of discs punctured or mot. Let
L = FY. and let L denotes the vector space of multivalued sections of £, that is the
subspace of horizontal sections of the analytic sheaf Fy- on X*. The bundle Fx.
is isomorphic to OX*®CZ. In such case of local unipotent monodromy actions,
the endomorphisms N; = Res;V are nilpotent and related to the logarithm of
the monodromy by the formula: N; = —5—LogT; = 5=, (I — T;)*/k. The

connection on O X®(CE defined by the matrix
Vv = EiSpNi dZZ/,%

is isomorphic to the local extension we are looking for. For v € E, we define a
section ¥ € F 'x+ via the action of the monodromy, explicitly described by the
formula

0 = (exp(2inX;<pt; N;)) v
Notice that the exponential is a linear sum of multiples of Id — T} with analytic
coefficients, hence its action defines an analytic section.
We have, for all t € X*, O(t+ej) = v(t), since fore; = (0,--- ,1;,---,0),0(t+e;) =
lexp(2imN;)exp(2imE;<pt; N;)] v (t + e;) = [exp(2inE;<pt; N; ]emp(?z N;).v(t +ej)
where exp(2inN;).v(t +¢;) = Tj_l.v(t +e;) =T, YTj0(t) = v(t);
hence v is the inverse image of a section of Fix« denoted by

vV = (exp(Zi<p(logz;)N;)).v
dz7

where 2imt; = logz;, moreover Vv = ZKPN RS
Let j : X* — X be the inclusion, then we can debcrlbe Fx as a subsheaf of j, Fix«
by the condition that a basis of L is sent onto a basis of Fxy.

b) In general the local system is defined by a representation of IT; (X *) on the vector
space L, i.e the action of commuting automorphisms 7; for ¢ € [1, p] indexed by the
local components Y; of Y at y. The automorphisms 7; decomposes as a product of
commuting automorphisms, semi-simple and unipotent 7; = 7;°T}*. Since L isa C -
vector space, T}’ can be represented by the diagonal matrix of its eigenvalues. If we
consider families of eigenvalues \; for each T; we have the spectral decomposition
of L

L=, L™ ) LN = Nig,n](Ujso ker (T; — AI))
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where the direct sum is over all families (A.) € CP. The logarithm of T; is defined
as the sum
LogT; = LogT} + LogT}

LogT? is the diagonal matrix formed by log A; for all eigenvalues A; of T and
for a fixed determination of log, while LogT{ = —X,>1(1/k)(I — Tzf“)k is defined
as a finite sum of nilpotent endomorphisms. Let N; = —%LogTi" and D; =
— 5 LogT¢, then the i-th residue is D; + N; with eigenvalues «; € [0, 1[ such that
A = e~ 2T

Let U3 denotes the vector bundle defined by Ox with the connection V- defined
by the matrix

Zigpaidzi/zi 5 Q; = —ﬁlOg/\i
where the determination of log); is such that «; is in the image of the section 7.
Let U* denotes the local system of horizontal sections. The local system £ on X*
decomposes into

L = oxUM)eLr

where £ is unipotent, then we put Fx = @& Uy ® L where L% is the extension
of Ox+ ® L defined above in (a).

¢) The crucial step is in the uniqueness since the patching process of the local
system extends uniquely to a patching process of the bundle Fx. This result is
explained with details in [3,2)].

A basic ingredient in the proof,is that the eigenvalues of the residue are constants
along Y; and Fx is unique up to isomorphisms if we suppose the eigenvalues of
the residues in the image of the section 7.

Local description of Fx as a subsheaf of j, Fx«.

Let ; be the coordinates of the product of p—upper half planes and n—p discs, then
the universal covering map of a neighbourhood of y is given by z; = exp(2int;), j =
1,...,p and z; = t; for j > p. We associate to an element v of LN\ = e~ 2T

the section © of Fx defined by the formula
V= exp(2imEj<pti(o; I + Nj))v = ngpz;xj exp(X;<plogz;N;).v

It can be checked that this section descends to a section near y € Yj; in X*. A
basis of L is sent on a basis of (Fx), and we have

Vo = Ejgp[aﬁ) + Nj.’l)] X dzﬁ
J
Notice that a different choice for the section 7 would add an integer k to «;, hence
would multiply the basis v by zjk and modify the extension, but a different choice
of the determination of logz; would add an integer 2imk and hence change v by
T~ %y in the expression of ¥ which is only a linear transformation of the basis and
does not modify the extension. O

The main application of the above construction is proved in ( [4],IL,6)
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Theorem 2.15 (Logarithmic DeRham cohomology ). The integrable connection V
defines a DeRham complex with coefficients in the canonical extension Fx of a flat
bundle on X*, quasi-isomorphic to Rj,Fy.

Rj.FY = Q%(LogY)® Fx
In particular H{(X — Y, FY.) ~ H(RT(X, Q% (LogY) ® Fx)).
2.3. Meromorphic Connections on the disc

To study the behavior of a connection near singularities along any divisor Y (not
necessarily a NCD) on X it is useful to introduce meromorphic connections. We
start with the disc case.

Let Opl0] denotes the sheaf of holomorphic functions on D*, meromorphic at 0.
We define now a meromorphic connection on Op[0]— modules

Definition 2.16. Let D be a complex disc and M a locally free Op[0]— module of
finite rank. A meromorphic connection on M is a C—linear operator V : M — M
satisfying

dh
Vh € Op[0],Yu € M, V,(hu)= au—i— hV.u

The definition is for modules on a disc and will be extended to varieties. In
this definition we did contract the differential form dz with 0,.
Let K be the germ of Op[0] at 0, then the above definition apply for the K —vector
space F, germ of M at 0.
Ife=(e1, -+ ,en) is a basis of I over K, we can write V.e; = >, a;i(2)ej, then
V. is defined by the matrix

A = (a;i(z)) € End(n, K)

with respect to this basis, then we have in matrix form

V.e =ed and for u =Y u;i(2)e;, Vou=3,(L4 + > aji(2)ug(2))e;

If f=(f1, -+, fn) is a new basis defined on e by a matrix B (f = eB), then
V.f=e(% + AB) = £tB~1(4E + AB)

Example. Let v a vector in E' with matrix Q on f, v = fQ = eBQ and let P = B(Q
s.t. v = eP, then dQ/dz = —(B~}(%2 + AB))Q is equivalent to dP/dz = —AP (
the horizontality of v is independent of the basis).

2.3.1. Connections and Systems of linear differential equations. The equation
V.u = 0 is equivalent for u = eU to the system d%—iz) =—AU.

Hence a system defines a connection with respect to the canonical basis of K™.
We deduce from the expression of the matrix of a connection with respect to a basis
that equivalent classes of systems of linear differential equations give isomorphic

meromorphic connections.

Corollary 2.17. There is a correspondence between equivalent classes of systems of
linear differential equations and isomorphisms classes of meromorphic connections
on the disc.



26 Fouad El Zein and Jawad Snoussi

Ezample. i) The differential operator P = z(d/dz) — «, defines on the sheaf Op|0]
the connection V. (f) = P(f).

ii) Let M = K e+, this notation means that we consider M as a K subspace of
the inductive limit of I‘(D* O) so to induce the natural connection. Hence we
consider V,(fez): = ez - fz2ez then (M, V) is isomorphic to (K, V) s.t
Vi) =%~ [

2.4. Regular meromorphic connections

For any divisor ¥ on X we denote by Ox[Y] the sheaf of rings of holomorphic

functions on X* = X — Y, meromorphic along Y. It is a coherent sheaf of rings
since Ox[Y] is locally isomorphic to Ox[h~!] where h is a local equation of Y.

Definition 2.18. i) Let Y be a divisor on X and F' a vector bundle on X — Y. An
Ox[Y]-coherent module F with an isomorphism ﬂ x—y = F'is called a meromor-
phic extension of F'.

ii) A connection on F is defined as a C—linear map F— QL ®o, [Y] F satisfying
the usual (Leibnitz) condition.

iii)A connection V on F' is said to be meromorphic with respect to F if it extends
to a connection on F.

iv) A coherent module F is effective if there exists an O x-coherent module G s.t.
F~0Ox[Y] ®oy G.

We recover the definition on the disc D since Q1 is free of rank one generated by
dz (05 ®o, F ~F).

Let u : Z — X be a morphism on a connected analytic manifold Z s.t. u=*(Y) is a
divisor on Z. The inverse image u*V of the meromorphic connection is defined on
the vector bundle v* F' and its meromorphic extension uwF = Op ®@y-10, ulF as
follows. Near a point a € Z with local coordinates (z1,...,2,) and b = u(a) with
local coordinates (z1,...,%y), v is defined by x; = w;(#1,...,2,). For a section
fe F, s.t. Vf= z:d:m@fZ where f; € F,, we define (V) (u*f) = du; @ u* f;.
It can be checked that the definition of u*V is independent of all choices and
that the inverse image of the local system of flat sections of V consists of the flat
sections of u*V ( write u as a composition of a projection and an immersion).

Definition 2.19 (regularity in dim 1). A connection (F,V) meromorphic with re-
spect to F on a disc D is said to be regular at 0 if the system defining the flat
sections is regular, that is if we can choose a basis € = (e1,...,em) near 0 of F
over K s.t. the matrix of the connection has a simple pole

zV,e; = — Zj bij(z)ej, b”(z) S OD70

Ezample. We deduce in the one dimensional case, by (2.8,ii) and the remark (2.6,i)
on the reduction of the logarithm of the monodromy via Jordan form that a regular
connection on a disc, meromorphic at 0, is isomorphic to a direct sum of mero-
morphic connections of the form M, ¢, where M, ; is the meromorphic connection
with a basis eq, ..., e; such that
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zVe; =ae;+e;41 fori <l and 2Vey = aey

M, ¢ can be realized as the vector subspace of O over K with basis :
ei i € [1,1] : e; = ey 41—; where e;; = za%

Definition 2.20 (regularity). i) A connection (F, V) meromorphic with respect to
F'is said to be regular if for any morphism u : D — X s.t. u”L(Y) = {0} its
inverse u*(F, V) is regular on D with respect to u*F.
ii) A connection (F,V) meromorphic with respect to F has logarithmic poles
along a normal crossing divisor ¥ in X if there exists a bundle G on X s.t.
F~G®0, Ox[Y] and V restricts to G — Q% (LogY) ®0, G.

2.4.1. Riemann-Hilbert correspondence.

Theorem 2.21. The functor (ﬁ, V) — (ﬁ, V)ix—y on a complex analytic manifold
X with a divisor Y induces an equivalence of the following categories

1) the category of flat meromorphic and regular connections along Y

i1) the category of analytic flat connections on X =Y.

iii) the category of finite rank complex local system on X —Y.

The proof in [3,2), prop. 5.1] is based on the canonical logarithmic extension across
a NCD obtained by the repeated blowing up process until we transform Y into a
NCD.

2.4.2. Algebraic results. Let X be a smooth complex algebraic variety and F' an
algebraic vector bundle on X with its Zariski topology. A connection V : F —
QL ® F is said to be algebraic if its image is in the algebraic tensor product
with algebraic differential forms on X, then an analytic connection denoted also
V: Fom — Qié“" ® F extends V. The algebraic connection V is integrable if
and only if the associated analytic V is, and in this case the analytic flat sections
FV form a local system £ for the transcendental topology on X — Y.

Regularity. The main difference between algebraic and analytic varieties consists
in the fact that an algebraic variety X can be always embedded into a proper
algebraic variety X s.t. Y = X — X is a divisor in X. We can moreover suppose
X smooth if X is. Let j : X — X be the inclusion, then we consider the algebraic
extension j,F' , its analytic extension (j,F)** and the extension j%(F%") (for
example in the case of C* and F = O¢+ we get the meromorphic functions at
0 and in the second case the essential singularities of functions at 0). The sheaf

(4« F)™ is a vector bundle on X —Y meromorphic on X along Y with a connection

V.

Definition 2.22. (regularity at co) The algebraic connection (F, V) is regular at co
if ((4.F)%", V) is regular as an analytic meromorphic connection along Y.

This definition is independent from the choice of X.
The following version of the Riemann-Hilbert correspondence is proved in [3,2)]
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Theorem 2.23. The functor (F,V) — (F V) is an equivalence of the following
categories

1) the category of algebraic flat connections on X regular at oo

i1) the category of analytic flat connections on X ™.

Hence with the category of finite rank complex local system on X™.

3. Singularities of local systems: Constructible Sheaves

In the previous sections local systems were attached to proper differentiable fibra-
tions. We explore here the structure of higher direct image of constant sheaves by
algebraic morphisms, subsequent to the special properties of algebraic morphisms
(for example Bertini’s theorem on the general fiber of a morphism of algebraic
varieties, the counterpart of Sard’s theorem in differential geometry).

More precisely, Thom-Whitney stratifications for proper morphisms, are intro-
duced to describe the relative behavior of singular fibers varying on a general base
space of dimension higher than one. As a consequence, we are lead to introduce
constructible sheaves to describe the derived image by an algebraic morphism.

In parallel local systems were attached to differential equations with holomorphic
coeflicients. The corresponding subject which is not treated in this section, would
be the structure differential modules on analytic varieties; the correspondence be-
ing via the DeRham complex attached to such modules.

The references to these subsections are the papers of Lé-Teissier [10],[2] and the
book of Goresky-MacPherson [7].

3.1. Stratification theory

3.1.1. Bertini’s result. Let f: X — V' be a morphism on a smooth variety X of
dimension m into a variety V of dimension n, then there exists a Zariski open
subset Sy, in V' such that the restriction of f to S, is smooth.

The fibers of f on S, are smooth.

An algebraic morphism f can be completed, that is f can be factorized as an open
immersion followed by a proper morphism. This important property explains the
fact that we don’t need f to be proper.

- One can try again to describe the restriction f, : f=1(V = S,) — (V. = S,,) of f
to V. — S,,. However f~1(V — S,,) may be a singular variety now, nevertheless it
follows from Thom’s work:

for a proper morphism f, there exists an open set S,_1 in V — S, such that
any point y € Sn,—1 has an open neighbourhood U, of y in S,—1 satisfying the
following property: the topological structure of f‘l(Uy) decomposes into a product:
fFHUy) = U, x f1(y).

Hence a sequence of subspaces S;, locally closed in V' and adapted to f, can be
constructed in this way (and will be called a stratification of V adapted to f when
it satisfy additional topological properties ). This is the subject of the next result.
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Ezxample. 1- Let P: C* — C be a morphism defined by a polynomial. Bertini’s
result shows that there exists a subset A C C containing a finite number of critical
values such that the restriction of P to C"* — P~1(A) is smooth.

However P may not define a locally trivial fibration on C — A if it is not proper.
The morphism P: C? — C defined by the polynomial X2Y + X has no critical
value. Let X* = C? — P71(0), for any a # 0 the morphism X x C* — X* :
((z,y),b) — (%2, %) is an algebraic trivialization over C*. In particular the fiber
over C* is smooth and irreducible while the fiber at 0 is the union of X = 0 and
XY 4+ 1 = 0 hence reducible. Hence, the morphism is not topologically locally
trivial on C [S.A. Broughton On the topology of polynomial hypersurfaces, AMS

Proceedings of Symposia in Pure Math. volume 40 (1983) Part 1 |

2- In the previous example , the morphism is not proper but can be compactified
by considering the family of polynomials P* = X2Y + X Z2 —tZ> homogeneous in
X,Y, Z defining a variety V(P}') C P? x C. The points ((z,y, 2),t) = ((0,1,0),1)
are singular on the fibers of the projection V(P}) — C to the coordinate ¢ s.t.
(0,1,0) is contained and singular in all compactified fibers of P.

In general algebraic varieties have the property that they can be compactified; and
the morphisms can be factorized by an embedding followed by a proper projection.
For example a polynomial P(z1,...,z,) of degree m in n variables defines a quasi-
projective variety X C C™ C P"(C) such its closure is defined by Py (zg, Z1,...,Tn) =
x()”P(i—é, e ’;—E) To compactify the morphism we introduce the hypersurface
X C P x C defined as {z,t) € P* x C: Py(xo,21,...,T,) — tz" = 0}.

The open subset X N (C™ x C), complement of the hyperplane H., : g = 0, is the
graph of the morphism defined by ¢t = P(z1,...,z,). The study of the fibration
on X is related to the fibration on X.

3) Let p : C2 — C2 denotes the blowing -up of 0 in C2; the fiber over C2 — {0}
is reduced to a point and the restriction of p is an isomorphism over C? — {0}; at
the origin the fiber is a projective line. N

Let D be a line in C2 and D its strict transform, then the image of p’ : (C2—D) —
C?%is (C* — D)U{0}.

3.1.2. Stratification. Let V be a complex analytic space (resp. algebraic variety)
endowed with a decreasing sequence of sub-analytic spaces (resp. algebraic subva-
rieties) V =V3 D Vy_1--- D Vo 2 V_1 =) . The various subspaces S} := V;\ Vi_;
(called strata ) form a partition of V' by locally closed subspaces (V = U;S)). A
partition of V' is called a (Whitney) stratification when it is subject to the following
properties.

(1)- Smoothness. S; := V; \ V,_1 is either empty or a locally closed analytic (resp.
algebraic) subset of pure dimension ! and the connected components of S; are a
finite number of non singular varieties.

(2)- (Local normal topological triviality). Given a point v in a strata S; in V' (S; is
smooth but V is not necessarily smooth along .S;), we consider a local embedding
in a complex space C" of a neighbourhood U, of v in V and a transversal section
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through v, that is an analytic (resp. algebraic) smooth subspace N, _; of C" in-
tersecting transversally in C" each strata S; N Uy,j > [ adjacent to S; such that
S; NN,,_; is a zero dimensional subspace containing v.

The intersection with a small ball of center v and small radius r: N(v) = Np—; N
V N B2 is called a normal slice. The boundary L(v) = ON(v) of N(v) is called
the link at v.

The normal slice and the link are canonically partitioned (or stratified) as trans-
verse intersections of partitioned spaces. For r small enough, the homeomorphic
type of the pair (N(v), L(v)) is a topological local invariant (independent of the
embedding, the choice of AV,,_; and the point v varying in the ( connected) strata
([7] p 41). The partitioned normal slice is homeomorphic to a cone on the link
with its canonical partition with respect to the vertex (identified with v) and the
product partition on L(v)x]0, 1]. Moreover there exist standard (transcendental)
neighbourhoods W,, of v in V satisfying:

W, =~ (N x (W, NS)) ~ (N x (C'
this being a homeomorphism respecting the partitions.
Historically, Whitney introduced two conditions on the stratifications that were

enough to obtain local topological triviality as it has been shown by the following
Thom - Mather isotopy lemma.

Lemma 3.1. Fvery stratum Y of a Whitney stratified algebraic set has a neigh-
bourhood which is the total space of a locally trivial topological fibre bundle with
base space the stratum.

Hence we may consider this lemma as an existence theorem for the above
stratifications.

Ezample (Whitney umbrella). Consider the surface W : 2% — zy = 0 in : C3. Let
A, be the z—axis defined by Z = 0,y = 0. The singular subset is A,, but the link
at a point z # 0 has a different topological type than the link at 0.

3.1.3. Topological structure of algebraic morphisms.

Theorem 3.2 (Thom - Whitney). Let f : X — V be a proper algebraic map of
algebraic varieties.

There exist finite algebraic Whitney stratifications X of X and S of V' such that,
given any connected component S of a stratum S; of S on V :

1) f7Y(S) is a union of connected components of strata of X each of which is
mapped submersively to S; in particular, every fiber f~1(y) is stratified by its
intersection with the strata of X.

2) for all points y € S there exists a transcendental open neighbourhood U of y in
S and a stratum-preserving homeomorphism h : U x f~1(y) ~ f~Y(U) such that
f oh is the projection to U.

Definition 3.3 (Stratification of f). A pair of stratifications X and S as above is
called a (Thom-Whitney) stratification of f.
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The proof is based on Thom Isotopy Lemmas, adapted to the algebraic setting
[10].

Definition 3.4 ( Constructible sheaves). Let X be an analytic (resp. algebraic)
variety and A be a ring. A sheaf F in the category of Ax —modules is constructible
if there exists a stratification (resp. with algebraic strata) X of X such that its
restriction to each stratum is a local system (for the transcendental topology).

A linear version of the result of Thom is :

Proposition 3.5. The i—th higher direct image sheaf R f.Zx by an algebraic mor-
phism is constructible.

Precisely, the restriction of R’f.Zx in degree i, the cohomology of the fibers, is
locally constant on each stratum of a Thom-Whitney stratification.

3.1.4. Basic properties.

i)-The category of constructible sheaves is abelian.

Let f: F — G be a morphism of constructible sheaves then ker f and coker f are
constructible sheaves.

The proof is based on the following result. If F (resp. G) is constructible with
respect to a stratification Sy (resp. Sz2), then there exists a finer stratification for
which F and G are constructible.

ii) - Let 0 — F; — F — F5 — 0 be a short exact sequence of sheaves, if F; and
Fo are constructible then F is also constructible.

iii) - Let f : X — V be an algebraic morphism then the inverse image of a con-
structible sheaf on V' is constructible on X and the direct image of a constructible
sheaf on X is constructible on V.

3.2. Cohomologically Constructible sheaves

In general not only the cohomology of complexes is interesting but also the com-
plexes themselves, however since there is no preference between resolutions of
complexes there is a need to define a category which identify all resolutions in
some sense. Verdier did find the correct definition of the category by considering
morphisms up to homotopy and inverting quasi-isomorphisms (morphisms induc-
ing isomorphisms on cohomology), constructing in this way the derived category
of abelian sheaves. Inside this category of abelian sheaves on a variety, we are
interested in the subcategory of complexes whose cohomology are constructible
sheaves. The correspondence between differential modules and their associated
DeRham complexes is a good example where we need derived categories.

3.2.1. The derived category of abelian sheaves DT (M, Z). In the previous coho-
mological constructions we needed to choose an acyclic resolution to define the
direct image functors. The existence of various acyclic resolutions gives the nec-
essary flexibility for computation; however we need to justify such construction,
that is to prove that the various resolutions give isomorphic objects.

At first sight the resolution itself may appears to be of no interest, while only



32 Fouad El Zein and Jawad Snoussi

its cohomology is of interest. However, DeRham resolution has already its own
interest in analysis, and the increasing use of cohomology in mathematics showed
that one might need to work with the complex itself. For example, considering a

diagram of continuous maps N 4, v M, the higher direct images R*(go f).F
of a sheaf F on N by go f is linked to the the higher direct images R'g, (R’ f..F)
only via a spectral sequence, hence they can never be recovered completely unless
we keep some knowledge of the complex Rf,F itself instead of its cohomology.
How should we formulate this knowledge without loosing the flexibility in the
choice of acyclic resolutions is the problem solved by Verdier [13]. The basic idea
is to consider a category where the complex remains the object but to modify the
morphisms of complexes to signal that our interest is in fact in its cohomology. In
the first step of the construction the morphisms of complexes are considered up to
homotopy. This step already transforms significantly the category. For example,
the inverse of a morphism of complexes f : K — K’ is a morphism ¢ : K/ — K
such that g o f (resp. f o g ) is only homotopic to the identity. This is already
an important modification of the category, since Deligne,for example, notices that
any morphism of complexes is isomorphic to an injective morphism [2] in such
category.

In the second step a quasi-isomorphism, that is a morphism of complexes inducing
an isomorphism on cohomology, is set to be an isomorphism by declaring invertible
all quasi- isomorphisms.

Rigorous proofs and elaborate constructions are needed to develop this concept
of Grothendieck-Verdier derived category (see Illusie’s article which gives motiva-
tions behind these constructions in [8] (see also the Springer book of Iversen in
the series universitext (1986) and earlier work in a book by Cartan and Eilenberg
published by Princeton University Press (1956)).

The category obtained from the category of complexes of abelian sheaves on a topo-
logical space M by the above two step construction is called the derived category of
abelian sheaves DT (M, 7).

3.2.2. Hypercohomology. That is cohomology with coefficients in a complex of
sheaves. Let

L= (= Lj— Ljg1— )

be a complex of abelian sheaves on M. The hypercohomology R‘T'(M, L*), is the
cohomology of the derived functor defined by global sections I" on M with value
in the complex £*. The definition is in two steps. In the first step one construct
a quasi-isomorphism of £* with a complex of T'-acyclic sheaves A* (for example
fine or flabby or injective sheaves ) that is a morphism of complexes g : L* — A*
inducing isomorphisms on cohomology. In the second step one take the cohomology
of global sections as definition of hypercohomology

RIT(M, £*) = Hi(I'(M, A*))
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In general, for each left exact (resp. right exact) functor F' from the category of
complexes of sheaves to an abelian category, derived functors denoted RF ((resp.
LF) are defined in a similar way.

Remark 3.6. The classical cohomology theory with coefficients in the group Z can
be viewed as the special case of the cohomolgy with coefficients in the constant
sheaf Z.

However the original topological construction of homology (dual to cohomology,
see Spanier, Massey, and Dieudonné for historical remarks) remains basic for the
intuition in topological problems that motivates the interest in cohomology and
still gives powerful methods of computation as in the case of the first construction
of Intersection cohomology by MacPherson with Goresky.

3.2.3. The derived category of c-constructible sheaves D%(X, Q).

The main result states that the higher direct image sheaves of constructible sheaves
by algebraic morphisms are constructible.

This is the main reason to study cohomology with coefficients in constructible
sheaves and for more flexibility in deriving functors. We need to work in the sub-
category of the Grothendieck-Verdier derived category of sheaves of Q—modules
consisting of complexes of sheaves whose cohomology sheaves are constructible.

Definition 3.7. i) A complex of sheaves of Qx—modules is c-constructible (for co-
homologically constructible) if its cohomology sheaves are constructible.

ii) Let D(X) denotes the derived category of Qx —modules. The full sub-category
of D(X) whose objects are c-constructible sheaves (resp. bounded, bounded at left,
bounded at right) is denoted by D.(X,Q) (resp.D%(X,Q), D} (X,Q), D;°°(X,Q)).

Proposition 3.8. The higher direct image of a c-constructible complex by a proper
algebraic morphism f: X — V is c-constructible, hence the derived functor Rf, :
DY(X,Q) — D4(Y,Q) is well defined.

The result follows from Thom-Whitney stratification theory for an algebraic
morphism.

4. From Lefschetz theorems to the decomposition theorem

To illustrate the power of the various objects introduced in the last three sections,
we give a statement of the decomposition theorem in [2]. However it is not pos-
sible to give a proof, since either we deduce the result from the proof in positive
characteristic, or we need to develop Hodge theory and in both cases there is still
a long way left to the interested reader.

The classical Hard Lefschetz theorem on a non singular complex projective
variety X — P™ of dimension n with a class n € H?(X,Q) of an hyperplane
section X; = H; N X, states that the iterated cup-product

H(X,Q) L H"™(X,Q) (4.1)
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is an isomorphism for i € [0, n].

The relative case. For a smooth projective morphism f : X — V where dim X =n
and dim V = s, the class of an hyperplane section defines a section n € R2f.Qx
induces by cup-product a map

Rn—s—if*QX 77_> Rn_S—Hf*QX (42)

which is an isomorphism.

If we imagine to study the cohomology of X via the fibration on V', we see that
we need to consider the cohomology of V' with coefficients in the geometric local
systems R'f,Qx. Such local systems underly various geometric invariants that
have been abstracted into the theory of polarized variations of Hodge structures,
and many of the important theorems on geometric local systems follow uniquely
from this underlying Hodge theory.

For example, in the abelian category of finite local systems which is noetherian
and artinian, the sheaves R'f.Qx are semisimple, which means that they split
into a finite direct sum of irreducible local subsystems (with no nontrivial local
subsystems).

The study of such geometric local systems in Hodge theory has become a central
object in the study of cohomology of algebraic varieties.

The isomorphisms 7’ in the relative case are compatible with the Hodge structure
on the cohomology of the fibres X; of f. Deligne, using Hodge theory, deduced the
degeneration of Leray’s spectral sequence, from the relative version of Lefschetz
result. By definition, such spectral sequence is associated to the canonical filtra-
tion 7 on Rf,Qx defined by truncation, that is to say that if Zyx is an injective
resolution of Qx, then the filtered complex (f.Zx,7) is defined up to a filtered
quasi-isomorphism in the derived category of filtered complexes on the base V;
then the associated spectral sequence corresponding to the filtration 7 is defined
up to isomorphism. Such filtration 7 defines a filtration L on the cohomology of
X

HI(V,R' f.Qx) = Grt H(X,Q)
and the degeneration statement asserts that there exists natural isomorphisms:
GriH"™(X,Q) =~ H/(V,R'f.Qx)
In particular there exists non canonical isomorphisms of rational vector spaces
H"(X,Q) ~ &i4j=nH’(V, R f.Qx)

The degeneration translates in the derived category of sheaves on V', into a non-
canonical decomposition of the derived direct image complex as a direct sum of
its cohomology

Rf.Qx ~ OR f.Qx[—1]. (4.3)
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4.1. The decomposition theorem for projective morphisms

A natural question is to find how far we can relax the hypothesis and keep in the
same time the result. In fact the theorems as stated are false for a non necessarily
smooth projective morphism. In order to formulate similar results in the presence of
singularities of spaces as well of the morphism, various objects and tools introduced
in the last two decades proved to be fundamental objects in the study of the
topology as well of the geometry of varieties and lead to spectacular extensions of
the results [2]. In particular the following are basic subjects in the theory

- Thom-Whitney stratification

- Perverse sheaves and Intermediate extension of a local system.

- General Intersection theory on cohomology.

Since the restriction to a strata f/S is a locally trivial topological bundle, the
higher direct cohomology sheaf (R’ f.Qx)/S is locally constant on S. Then we say
that R’f,Qx is constructible on V and Rf,Qx is cohomologically constructible
onV.

The category of perverse sheaves. A subcategory of the derived category
DT (V,Q) of Q—sheaves on a variety V, which is abelian, called the category of
perverse sheaves, has been introduced in [2] following earlier work in ([7], 1). It
appeared to be a fundamental object in the study of topological and geometrical
properties of the morphism f.

A complex of sheaves K in DY(V,Q) is defined to be perverse if the following
property is satisfied: there exists a stratification S of V' such that for each strata
S,is:S — V, the restriction H"(i5K) = 0 for n > —dimS and H"(RixsK) = 0
forn < —dimS.

When K is constructible, these conditions show that the restriction of K to the
open strata, is reduced to a local system £ in degree —dimX.

The perverse truncation. The main interest in the subcategory of perverse
sheaves follows from the construction of a cohomological functor defined on the
derived category DT (V,Q) with value in the category of perverse sheaves, con-
structed inductively with respect to a stratification of V. Namely, the notion of
perverse truncation 7' of a complex K is constructed in [2] and then the no-
tion of i—th perverse cohomology PH"(K) is defined as the cone of the morphism
Priml(K) — Pr(K) so to fit in a triangle P71 (K) — P7(K) — PH'(K). Perverse
cohomology sheaves in various degrees fit together in a long exact sequence in the
abelian category and in fact such exact sequence is the best way to compute these
objects, as in any cohomology theory.

The Intermediate extension. Research in the above field has been motivated
first by the discovery by Goresky and MacPherson ([7], 1) of special objects called
Intersection complexes. They are uniquely defined by local systems on locally
closed subsets of V. Their construction use the above Whitney stratification on
a singular variety V and in an essential way the local topological triviality of the
various strata Sj.
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In the abelian category of perverse sheaves which is noetherian and artinian, the
irreducible sheaves are Intersection complexes defined by irreducible local sys-
tems.The following is Deligne’s construction of Intersection complexes.

Let & = {Si}i<a of V (dimension S; =1) and let jo : V — So — V, ji :
V-8 —V—=8_1 for 0 <1 < d denotes the embedding. The Intermediate
extension compatible with S of a local system L on the big open strata Sy is defined
as:

JLld] = T< 1 Rjow - T< 11 Rjpu - - - T<—aRja—1.L]d]
where for all sheaves F constructible with respect to S, we have

(le*f)v =~ RF(LSl,vvf)

where Lg, , is the link of Sy at v, then 7<_;_1 truncates the cohomology up to
degree < —[ — 1.

The Decomposition theorem. Now we are in a position where we can state
the version of the decomposition for a projective morphism and a geometric local
system ([2], 6.2.4) so that we don’t need to invoke explicitly the Hodge theoretical
properties which underly such local system and can refer to ([2], 6.2.10)

Let f : X — V be a projective morphism and L be a geometric local system
on a smooth open subset U of X, j: U — X, dim. X = n. The map defined by
iterated cup-product with the class of an hyperplane section n € R2f.Qx

P RS G £ln)) 2D PHE(RfL G £[0)) (4.4)
18 an isomorphism.

Then, the degeneration of the perverse Leray’s spectral sequence defined by the
perverse filtration on Rf, (ji.£[n]) follows and leads to the decomposition:

There exists a non canonical isomorphism in the derived category
Rf.(jiL[n]))) = @PH (Rf. (i L£[n]))[~d] (4.5)

Remark 4.1. The proof given in [2] is deduced from the theory in positive char-
acteristic. The interested reader can find a proof via differential modules in the
following paper by

Saito M.: Modules de Hodge polarisables. Publ. RIMS, Kyoto univ., 24 (1988),
849-995.

An interesting paper, for constant coefficients by

De Cataldo M.A.A., Migliorini L.: The Hodge Theory of algebraic maps. Ann.
scient. Ec. Norm. Sup. (2005)

is easier to read. Finally, a paper by

El Zein F.: Topology of Algebraic Morphisms, Contemporary Mathematics 474;
http://arxiv.org/abs/math/0702083, states the theorem in the form of a geometri-
cal decomposition formula and treats the isolated singularity case. Such treatment
apply also in the general case (to appear later).
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Appendix A. Example: Family of Elliptic Curves

To illustrate the various features of the subject we go back to its origin and compute
the local system and Gauss-Manin connection defined by the family of elliptic
curves.

A.1. Riemann Surfaces

The classical theory of Riemann surfaces originated in the study of the ‘algebraic
functions” w = w(z) satisfying the equation with analytic coefficients

ap(2)w™ + ar (2)w" "+ -+ an(2) =0, ao(z) 0

The main problem consists in the fact that there is no such continuous function
w(z) since there exist in general n values of the function for each z. However it is
possible to define on each simply connected open subset U in C, an holomorphic
function w(z) solution of the equation, called a branch of the function. The be-
havior of such branches is useful to understand the integrals of rational functions
R of z and w

F) = / " Rz w(2))dz

The beautiful idea of Riemann, to interpret such branch as a section of a covering
space of C, is at the origin of the introduction of the notion of manifolds in modern
geometry. This rich subject is treated here as an example, but it is also an historical
subject in the field basic in Mathematic.

A.1.1. Elliptic Curves. We consider the equation parameterized by a variable ¢
w? = 2(z — 1)(z — 1) (A1)

The point of view of manifolds consists in the introduction of the complex curve
S; defined by the equation P;(z,w) = w? — 2(z —1)(z —t) = 0 in the variables z,w
in C2. The implicit function theorem shows that for t # 0 and t # 1, the curve
is smooth. Moreover since the degree in z is 3, this curve which is not compact,
is homeomorphic to a torus minus one point( the proof uses Weirstrass periodic
meromorphic function P and its derivative).

This suggest strongly to study the torus itself, that is to compactify the curve. This
operation known as the projective completion appeared to be so rich in Mathematic
that it became common to view the non compact varieties as compact varieties
minus a locus “at infinity” (or open varieties).

Such Riemann surface S; can be represented as a cover of the Riemann sphere P
via the projection onto the variable z that extends to the projective curve onto the
projective space. The historical technique to understand such curve via the cuts
from 0 to 1 and from ¢ to co in the z—plane may be confusing, unless it is coupled
with this covering point of view (see [2] for a complete description of the theory).
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A.1.2. The local system. The theory of Weirstrass function P(z) constructed as
the sum of the series with indices in Z? and its relation to its derivative P’(z)
define an isomorphism between the torus with its analytic structure as a quotient
of C by a lattice isomorphic to Z? and the elliptic curve (see the book of Cartan on
analytic functions). It follows that the cohomology space H'(S;,Z) of the smooth
elliptic curve, for ¢t # 0, ¢t # 1 is generated by two cycles v and § with intersection

0 1

-1 0 )
Now if the parameter ¢ vary in C — {0,1} = P! — {0, 1, 00}, we consider the fam-
ily S = U.S; and the projection f : S — C — {0,1} defined by ¢. The family of
cohomology spaces H'(S;,Z) form a local system on C — {0,1}. Since the funda-
mental group of C — {0,1} is a free group generated by two loops around the two
punctures {0, 1}, the local system is completely determined by the two associated
monodromy linear operators around 0 and 1.

matrix J =

The monodromy is related to the presence of a critical point (0,0) (resp. (1,0)) for
P(z,w,t) for t = 0 (resp. t = 1). It is possible to check that the Hessian matrix at
these critical points is invertible. Such property of points, known as non degenerate
critical points, has been the center of continuous attention by mathematicians and
an hypothesis of fundamental results known as Morse theory. We give the basic
results in this theory in the next subsection.

We apply these results in our case to the variety S = U;ccSt. Locally S is defined
in C® by P(z,w,t) = w? — z(z — 1)(2 — t) = 0 and the projection to C is defined
by the projection on the parameter ¢ space.

We conclude from Picard-Lefschetz transformation below that the monodromy
linear operators around 0 and 1 are defined resp. by the matrices

1 2 1 0
=(o 1) e=(5 )
as computed for example in ([1], thm 1.1.20).

A.2. Non degenerate critical points

Let z=1(z1, -+ ,2,) € U CC" and let f: U — C be a Morse function defined for
n > 1by f(z) = £, 22. The Hessian of f at zero is the matrix (82f/8zi82j(0))i’j.
The point 0 is a non degenerate critical point if the differential df (0) = 0 and the
determinant of the Hessian matrix is non zero.

These properties together are independent of the coordinates.

The following result show that the local study of the fibration defined by f near a
non degenerate critical point, is isomorphic to the case defined by a Morse function.

Lemma A.1 (Morse). Let f : U — C be an holomorphic map on an open set U in
an analytic manifold M with a non degenerate critical point a € U. Locally near a,
f can be written in a suitable set of coordinates 21, ..., zn as f(z) = fla)+Y 27, 23

See for example ([3], II, 1.1).
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Morse lemma has the following real form

Lemma A.2. Let f: X — R be a differentiable map with a non degenerate critical
point a € X. Locally near a, f can be written in a suitable set of coordinates

Liy.w.y Ty GS f(.’IJ) = f(a’) - Z;:l .1']2 +Z;'L:'r‘+1 .’E?

The number 7 is called the index of f at a and it is independent of the choice
of coordinates.

A.2.1. Invariants attached to a non degenerate critical point. Let z = (z1,--- , 2,) €
U C C"and let f: U — C be defined for n > 1 by f(z) = ¥, 22. There exists a
unique critical point at the origin since df/dz; = 2z; vanish for all ¢ only at such
point. The inverse image Y = f~1(0) of zero has an isolated singular point at the
origin.

Moreover, this singular point is non degenerate, since the determinant of the Hes-
sian matrix (82f/8zi8zj)(0)ij of f at zero doesn’t vanish. The map f induces a
morphism B, — D.2 from the closed 2n—ball of radius € to the disc of radius 2.
Let z; = x; + iy;, then f(z.) = X7, (23 — y3) + 2i(X)_ 25y;).

Lemma A.3. For |t| small enough, the fiber of f att meets transversally the bound-
ary S2" 1,

Corollary A.4. Let f : B. — f~1(0) — D, be the restriction of the fibration to the
punctured disc. There exists & small enough s.t. f: f~1D}; N (B. — f~1(0)) — D;
is a differentiable bundle.

This corollary follows from the theorem on differentiable fibration. It is valid
for any morphism f as proved by Milnor.

A.2.2. Milnor fiber is defined for t small enough by

Fo={z€B.: f(z.)=1}.
Since it is a differentiable invariant, it is denoted by F' instead of F}. For each ¢,
the fiber F; has an holomorphic structure depending on ¢ in general.

A.2.3. Vanishing cycle. With the usual norm and scalar product on R"”, let
Q={(u,v)eR"xR": ||u|=1] v |I<1,(u,v.) =0}

Q is homeomorphic to the space of tangent vectors to the sphere S™~! of length

less or equal to 1. Since the sphere S”~! is a deformation retract of @Q,

H, 1(Q,Z) ~ H, 1(S"1,Z) ~ Z.

We define an isomorphism from ¢) onto the Milnor fiber F), for real numbers p as

follows.

Let z; = x; + 4y;, then F, can be considered as a subset of R" x R™ defined by

three real conditions

n n 2 2 2 2
Fy={(z,y) eR"xR": [[a. [+ y. | < |z "=l y. I = p, (2.,9.) = 0}.

Let o: = (1/2(? — ,0))1/2, then the following change of variables
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Y2,y = o(v)
maps F, to @ isomorphically. The image of S"~! is the set z. in F, with real
coordinates z; = pl/guj for all j. When p vary in a small interval [0, pg], the
family of embedded spheres S™"!, each in a fiber at p, form a ball B of radius
po in the total space C™ s.t. the spheres collapse to 0 for p = 0. In this sense the
sphere is a non vanishing cycle on the fiber which vanish in the total space.

2
u.=xz./| x|, v.=y.Jo, x.= (2| v [ +p)

Definition A.5. A generator of H,,_1(F,Z) is called a vanishing cycle. It is defined
by the homology class of an orientation on the embedded sphere S™~! in F.

The homology of F' vanish in degrees different from 0 and n — 1.

For example, if n = 2, by a change of variables, we are reduced to the case of
[ = 2} — 23, then Milnor fiber F, is an hyperbola rotating along the circle defined
by the vanishing cycle. The singular fiber is given by two complex lines intersecting
in one point.

This local situation apply in general near an isolated singularity as proved by
Milnor (only the number of vanishing cycles vary).

A.2.4. Picard-Lefschetz transformation. Let f : X — A be a projective morphism
defined on an analytic manifold with value in a complex disc A. Let a € X be a
unique non degenerate critical point and let v be a simple loop in the disc with
origin a general point p around the critical value ¢ = f(a) (one positive turn).
By the above local theory, a vanishing cycle v, near a has been constructed on
the fiber of a point y. on the loop v near ¢; this cycle v, can be carried, by a
trivialization of f restricted to the induced path v, . from the loop 7, into a cycle
0 (depending on ), called also vanishing cycle.

Proposition A.6. The monodromy action is trivial on H'(X,, Q) fori#n—1 and
fori=n—-1
yr =z +en(x,0)0

where €, = £1 is a sign depending on n and (x,0) is the intersection number
Tr(x —9)

See ([3], II, Thm 3.16).

A.3. Picard-Fuchs Equations

Considering again the equation Al in (z,w) € C2, the meromorphic differen-
tial form w = j—; on C?, induces a form on the curve S; classically written as

wy = z(z—dif)(z—t). It can be checked that this form extends for ¢t # 0,1 to an

holomorphic form on the compact curve, that is w; can be written locally as
wy = f(u)du where u is a local coordinate and f(u) is holomorphic. For each
t, there exists a small ball B; s.t. the family is topologically trivial over B; so that
we can choose constant homology vectors 6,y generating the homology of S;. The
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form wy is closed and its class [w;] decomposes on the dual basis of the cohomology

0*,v* as follows
o = ([w)d+ ([ wr
g Y

The coefficients are called the periods A(t) = [;w; and B(t) = f,y wt of wy. By
derivation under the integral sign, we can check that the coefficients are in fact
holomorphic in t.

Since the basis (6*,7*) is locally constant, hence horizontal for the Gauss-Manin
connection, the derivation of w; by the connection is wj = A’(t)d* + B'(t)y*. It can
be checked that [w] and [w}] form a basis of the cohomology, so that by derivation
we obtain [w}’] which decomposes on such basis, hence we obtain an equation in
cohomology classes

alt)w”" +b(t) W +c(t)w =0

If we consider a cycle £ in S; and the function h(t) = fgw then we deduce a
differential equation in the function h(t); it is possible to determine the coefficients
a(t),b(t) and ¢(t) and obtain the equation with regular singular points ([1], 1.1.17)

HE— 1) R (8) + (26 = 1) I (8) + ih(t) —0
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