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Introduction

A hyper-Kähler manifold is a simply connected compact Kähler manifold whose space of
holomorphic 2-forms is generated by an everywhere non-degenerate form.

Hyper-Kähler manifolds appear naturally in the study of compact Kähler manifolds
with trivial real first Chern class (which is the image of the canonical bundle via the first
Chern class map). Indeed, the following theorem holds.

Theorem ([Bea83, Théorème 2]). Each compact Kähler manifold X with trivial real first
Chern class admits a finite étale cover

k∏
i=1

Mi −! X,

where each Mi is a complex torus, a Calabi–Yau manifold, or a hyper-Kähler manifold.

In dimension 2, hyper-Kähler manifolds are known as K3 surfaces, and have been
widely studied in the past century. A simple example of K3 surface is the Fermat quartic,
the smooth quartic in P3

C defined by the equation

x4
0 + x4

1 + x4
2 + x4

3 = 0. (1)

All K3 surfaces are deformation equivalent [Kod64, Theorem 13], hence, in particular,
diffeomorphic to the Fermat quartic.

For complex surfaces, the cup-product is a nondegenerate pairing on the second inte-
gral cohomology group, and it induces, via the first Chern class map, an intersection form
on the Picard group. Moreover, for K3 surfaces, the second integral cohomology group is
a torsion-free abelian group of rank 22. The second integral cohomology group of a K3
surface with the intersection form is a unimodular even lattice, isomorphic to the lattice

ΛK3 = U⊕3 ⊕ E8(−1)⊕2,

where U is the hyperbolic plane and E8(−1) is the standard rank 8 lattice with negative
definite scalar product.

A polarized K3 surface of degree 2d is a K3 surface S together with an ample invertible
sheaf of self-intersection 2d and primitive class in H2(S,Z). There exists a coarse moduli
space M2d for polarized K3 surfaces of degree 2d, namely a space whose closed points
parametrize isomorphism classes of polarized K3 surfaces of degree 2d. This was first
shown by Pjateckĭı–Šapiro and Šafarevič.

Theorem. There exists a coarse moduli space for polarized K3 surfaces of degree 2d. It
is an irreducible quasi-projective variety of dimension 19.

The proof is based on the global Torelli theorem that says that K3 surfaces are char-
acterized by their Hodge structure. More precisely, each Hodge isometry between the
second cohomology groups of two polarized K3 surfaces is induced by an isomorphism.
More precisely, the period morphism

℘2d : M2d −! D2d/O(ΛK3, 2d),
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a regular map between the moduli space of polarized K3 surfaces and their period space
(quotient of a Hermitian symmetric domain by an arithmetic group of isometries), is an
open embedding.

Some of the theory developed for K3 surfaces can be generalized in higher dimensions.
Beauville, Bogomolov, and Fujiki constructed a quadratic form on the second cohomology
group of a hyper-Kähler manifold, which is a free abelian group. For a hyper-Kähler
manifold X, the lattice H2(X,Z) only depends on the deformation type of X. A class
of examples of hyper-Kähler manifolds is given by the hyper-Kähler manifolds of K3[m]-
type, deformations of the m-th Hilbert scheme of points of a K3 surface. The second
cohomology group of a hyper-Kähler manifold of K3[m]-type with its quadratic form is,
for m ≥ 2, the lattice

ΛK3[m] = ΛK3 ⊕ Z(−2(m− 1)).

Fixing an integer m and the O(ΛK3[m])-orbit τ of a primitive vector h in ΛK3[m] with

h2 > 0, there exists a coarse moduli spaceMK3[m]

τ of polarized hyper-Kähler manifolds of
K3[m]-type with a primitive ample invertible sheaf of orbit τ .

Theorem. For m ≥ 2, the moduli spaceMK3[m]

τ is a quasi-projective variety of dimension
20.

For hyper-Kähler manifolds, the Torelli theorem holds in a weaker form than for K3
surfaces. In particular, the moduli space of polarized hyper-Kähler manifolds of K3[m]-
type is not irreducible in general. However, the period morphism

℘τ : MK3[m]

τ −! Dτ/Ô(ΛK3[m] , h)

of hyper-Kähler manifolds of K3[m]-type (see Section 4.3) and polarisation type τ =
O(ΛK3[m])h is an open embedding when restricted to each irreducible component of

MK3[m]

τ .

Fixing an even integral lattice Λ of signature (2, n−), with n− ≥ 2, and a subgroup
Γ < O(Λ) of finite index, we can consider the period space DΛ/Γ, where DΛ is a Hermitian
symmetric domain. Borel–Baily studied these quotients and proved that they are normal
quasi-projective varieties. This generalizes the period space of polarized K3 surfaces and
polarized hyper-Kähler manifolds of K3[m]-type.

When Γ is a normal subgroup of O(Λ), we obtain a Galois cover

q : DΛ/Γ −! DΛ/O(Λ).

For polarized K3 surfaces of degree 2d, we obtain the cover

q2d : D2d/O(ΛK3, h) −! D2d/O(h⊥),

where h is a primitive vector of square 2d in the lattice ΛK3 (they are all conjugate).

A reflection with respect to β ∈ Λ is an isometry rβ ∈ O(Λ) which is the identity on
β⊥ and acts as −id on Zβ. Not all vectors β ∈ Λ define a reflection.
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Stellari [Ste08, Theorem 3.3] characterized the ramification divisors of q2d, proving
that they are in correspondence with the nontrivial classes [rβ] in the Galois group
O(h⊥)/O(ΛK3, h), for β with negative square. Moreover, he gave a numerical charac-
terization of vectors β such that rβ is nontrivial in O(h⊥)/O(ΛK3, h).

In Theorem 5.5, we generalize the first result of Stellari for even lattices Λ of signature
(2, n−) with n− ≥ 2 and all normal subgroups Γ C O(Λ) of finite index such that DΛ/Γ
is irreducible.

The structure of this memoir is the following. In Section 1, we state some preliminary
results of complex geometry and we present a brief introduction to lattice theory. Section 2
is devoted to the study of K3 surfaces and of the lattice ΛK3. We present the theory of
linear systems on K3 surfaces that leads to the construction of the coarse moduli spaces
M2d of polarized K3 surfaces. In Section 3, we focus on the construction of the period
morphism for polarized K3 surfaces. Hyper-Kähler manifolds are defined in Section 4,
where we present the known examples of deformation types of hyper-Kähler manifolds
and the result on the period morphism of polarized hyper-Kähler surfaces proved by
Markman. Moreover, following the work of [GHS10], we give a description of the lattice
and of various isometry groups in the case of a hyper-Kähler manifold of K3[m]-type.
Finally, in Section 5, we characterize the ramification divisors of the morphism q, which
are the invariant divisors of the period space DΛ/Γ under the action of O/Γ, where Γ C O
and Γ and O are subgroups of finite index of O(Λ). In Section 5.2, we treat the case of
polarized K3 surfaces, obtaining again the result proved by Stellari, and in Section 5.3,
we study the case of hyper-Kähler manifolds of K3[m]-type.
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1 Preliminaries

In this section, we will introduce some notation and state some results about complex
geometry and lattice theory that we will need in the rest of the memoir.

1.1 Some results of complex geometry

The manifolds considered will always be complex manifolds, of which we recall some useful
properties. For more details, we refer to [Huy05].
For each complex manifold X, the exponential sequence 0! Z! OX ! O∗X ! 1 defines
a long exact sequence in cohomology

H1(X,OX) −! H1(X,O∗X) −! H2(X,Z) −! H2(X,OX). (2)

There is a natural identification between the group H1(X,O∗X) and the Picard group
Pic(X) of X. Hence, we obtain a morphism c1 : Pic(X) ! H2(X,Z), called first Chern
class.
If the manifold X is compact Kähler, each cohomology group has a Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hq(X,Ωp
X),

where Hq(X,Ωp
X) ' Hp(X,Ωq

X). We will denote by Hp,q(X) the group Hq(X,Ωp
X) and

by hp,q its dimension.
Moreover, we can define the groups

Hp,q(X,Z) = Im(Hk(X,Z)! Hk(X,C)) ∩Hp,q(X),

where the morphism Hk(X,Z)! Hk(X,C) is induced by the sheaf inclusion Z ⊂ C.

Theorem 1.1 (Lefschetz theorem on (1,1)-classes). Let X be a compact Kähler manifold.
The image of the first Chern class c1 : Pic(X) −! H2(X,Z) is H1,1(X,Z).

We now consider a compact complex surface S. The cup product is a nondegenerate
integral bilinear form on the second integral cohomology group. Thus, via the first Chern
map, we can induce an intersection form on Pic(S) by setting

∀L,M ∈ Pic(S) L ·M = c1(L) ^ c1(M) ∈ H4(S,Z) ' Z.

We will denote by L2 the number L · L.

Theorem 1.2 (Wu’s Formula). Let S be a compact complex surface. For each class
a ∈ H2(S,Z), we have

a ^ a ≡ a ^ c1(ωS) (mod 2).

More generally, for a compact complex variety X of dimension n, we can define an
intersection product of n invertible sheaves on X using the first Chern class. Namely, we
set

∀L1, . . . , Ln ∈ Pic(X) L1 · · · · · Ln = c1(L1) ^ · · ·^ c1(Ln) ∈ H2n(X,Z) ' Z.

If S is a surface, the intersection form on Pic(S) also has a geometric definition (see
[Bea96, Chapter 1]). It can be shown that, if C is a smooth curve contained in S and L
an invertible sheaf on S, then

L · OS(C) = deg(L|C).
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Theorem 1.3 (Riemann–Roch Theorem). Let S be a compact complex surface. For any
invertible sheaf L on S, one has

χ(S, L) = χ(S,OS) +
L2 − L · ωS

2
.

Theorem 1.4 (Noether Formula). For each compact complex surface S,

χ(S,OS) =
χtop(S) + ω2

S

2
,

where χtop(S) :=
∑4

i=0(−1)ibi(S) is the topological Euler characteristic.

If X is a compact Kähler manifold, the first cohomology group H1(X,C) decomposes
as H0,1(X)⊕H1,0(X), hence the first Betti number b1(X) is equal to h0,1(X) +h1,0(X) =
2h0,1(X). In the case of a general compact complex surface S, the following result holds.

Theorem 1.5 ([BHPV04, IV.Theorem 2.7]). Let S be a compact complex surface. Then

- b1(S) = h0,1(S) + h1,0(S);

- if b1(S) is even, then h0,1(S) = h1,0(S);

- if b1(S) is odd, then h1,0(S) = h0,1(S)− 1.

Moreover, the first Betti number provides a characterization of compact Kähler sur-
faces.

Theorem 1.6 ([BHPV04, IV.Theorem 3.1]). A compact complex surface is Kähler if and
only if its first Betti number is even.

1.2 An introduction to lattice theory

A lattice Λ is a free Z-module of finite rank with a nondegenerate integral symmetric
bilinear form q. The lattice Λ is called even if

∀x ∈ Λ x2 := q(x) ∈ 2Z.

For each field K containing Q, we will denote by ΛK the vector space Λ⊗ZK. The vector
space ΛK is endowed with the K-linear extension of the bilinear form q, which is still
nondegenerate.
The signature of Λ is the signature of ΛR and will be denoted by (n+, n−).
If n+ or n− is zero, the lattice is called definite; otherwise, Λ is indefinite.

Definition 1.7. Given a lattice Λ, its dual lattice is

Λ∨ := {x ∈ ΛQ | ∀y ∈ Λ x · y ∈ Z} = HomZ (Λ,Z) .

Clearly, there is an inclusion Λ ↪! Λ∨. The discriminant group of Λ is the quotient

AΛ = Λ∨/Λ.
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It is a finite abelian group. We denote by disc(Λ) the cardinality of AΛ. The lattice is
called unimodular if AΛ is trivial or equivalently if Λ∨ = Λ.
For each x ∈ Λ nonzero, the divisibility of x, denoted by div(x), is the minimal positive
generator of the ideal x · Λ ⊂ Z. Thus, the element

x∗ =

[
x

div(x)

]
is an element of AΛ of order div(x).

Definition 1.8. The length of a lattice Λ, denoted by `(Λ), is the minimal number of
generators of its discriminant group.

The quadratic form q on Λ induces a quadratic form qQ on ΛQ. When Λ is even, we
obtain a quadratic form qΛ on the discriminant group AΛ with values in Q/2Z, given by
the formula

∀x ∈ Λ∨ qΛ([x]) ≡ qQ(x) (mod 2Z).

The quadratic form qΛ is well defined on the quotient AΛ. Indeed for all y ∈ Λ, the
number qQ(x+ y) = qQ(x) + 2x · y + y2 is equal to qQ(x) modulo 2Z.

Definition 1.9. The group of isometries of AΛ, denoted by O(AΛ), is the group of group
automorphisms of AΛ that preserve qΛ.

For lattices Λ1 and Λ2, the direct sum Λ1 ⊕ Λ2 will always indicate the orthogonal
direct sum. Observe that there exists an isomorphism AΛ1⊕Λ2 ' AΛ1 × AΛ2 compatible
with the discriminant forms.

An injective morphism of lattices Λ1 ↪! Λ (which respects the quadratic forms) is a
primitive embedding if the cokernel is torsion free. An element x ∈ Λ is primitive if it is
not a nontrivial multiple of some element of Λ.

For example, the orthogonal complement Λ⊥1 of a sublattice Λ1 of Λ is a primitive
lattice that intersects Λ1 trivially. Observe that in general, the inclusion

Λ1 ⊕ Λ⊥1 ↪! Λ

is of finite index but not necessarily surjective.

Remark 1.10. If Λ1 ↪! Λ is an embedding of lattices with Λ1 unimodular, then Λ =
Λ1⊕Λ⊥1 . Indeed, for all x ∈ Λ, there exists x1 ∈ Λ1 such that the linear form sx : Λ1 ! Z,
defined as sx(y) = x · y, is equal to sx1 (because Λ1 ' Λ∨1 ). Hence, x − x1 is in Λ⊥1 and
x = x+ (x− x1).

Theorem 1.11 ([Nik80, Theorem 1.14.4]). Let Λ be a unimodular, even, indefinite lattice
of signature (n+, n−) and let Λ1 be an even lattice of signature (m+,m−). If m± < n±
and `(Λ1) + 2 ≤ rk(Λ)− rk(Λ1), there exists a primitive embedding

Λ1 ↪! Λ

that is unique up to post composition by isometries of Λ.

As a particular case of Theorem 1.11, we obtain the following corollary.
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Corollary 1.12. Let Λ be a unimodular, even lattice with signature (n+, n−), such that
n± > 1. For each d ∈ Z, there exists a primitive vector k ∈ Λ with k2 = 2d, and this
element is unique up to isometries of Λ.
In particular, all primitive vectors of fixed degree 2d are conjugate by an isometry of Λ.

Example 1.13. To set up some notation, we include a list of standard example of lattices
that we will use frequently.

a) We will denote by Z the lattice of rank 1 with intersection matrix 1. More generally,
we will denote by Z(n) the lattice of rank 1 with intersection matrix n, for all n 6= 0.
We will write Z(n) = Zk if the lattice is generated by the vector k.
The discriminant group of Z(n) is the cyclic group Z/nZ and is generated by the
element k∗ = [k/n]. If n is even, the quadratic form qAZ(n) takes the value 1/n on
k∗.

Lemma 1.14. Let n be a nonzero integer. Consider the group G = Z/2nZ with

quadratic from q : G ! Q/2Z defined by q(1) =
1

2n
. The group of isometries of G

with respect to q is
O(G, q) ' (Z/2Z)ρ(n) ,

where ρ(n) is the number of distinct primes dividing n.

Proof. An isometry of G is determined by the image a of the generator 1, where a
is invertible modulo 2n and satisfies

a2q(1) = q(a) = q(1) ∈ Q/2Z ⇐⇒ a2

2n
=

1

2n
∈ Q/2Z.

Hence O(G, q) = {a ∈ (Z/2nZ)× | a2 ≡ 1 (mod 4n)}. Observe that O(G, q) is an
abelian group whose elements are all involutions: in order to prove the theorem, we
just have to compute its cardinality.
We write n = 2epe11 · · · perr , where e ≥ 0, r ≥ 0, ei > 0, and p1, . . . , pr are the distinct
odd prime factors of n.
The condition a2 ≡ 1 (mod 4n) is equivalent to the system{

a ≡ ±1 (mod peii ) for all i ∈ {1, . . . , r};
a ≡ ±1 (mod 2e+1),

which has 2r solutions modulo 2n if e = 0, and 2r+1 solutions modulo 2n if e > 0.
Observe that each solution to the system is coprime with 2n, hence, in both cases,
the cardinality of O(G, q) is 2ρ(n).

b) The hyperbolic plane U is the rank-2 lattice with intersection matrix(
0 1
1 0

)
.

Namely, U is generated by two vectors e and f such that e2 = f 2 = 0 and e · f = 1.
It is a unimodular even lattice.
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c) The E8-lattice is the subgroup of Q8 generated by all vectors of Z8 whose coordinate
sum is even, and by the vector 1

2
(1, . . . , 1). We can verify that the restriction to E8

of the canonical quadratic form of Q8 is even, hence E8 is an even lattice that is
positive definite. Moreover it is the only even, unimodular, positive definite lattice
of rank 8.
We will indicate by E8(−1) the lattice obtained by inverting the sign of the quadratic
from on E8.

The following theorem shows that the last two examples determine all even, unimod-
ular and indefinite lattices.

Theorem 1.15 ([Ser93, Chapter 5]). Let Λ be an indefinite, even, unimodular lattice of
signature (n+, n−). The number τ := n+ − n− is a multiple of 8 and

Λ '

{
U⊕n− ⊕ E⊕

τ
8

8 if n− < n+;

U⊕n+ ⊕ E8(−1)⊕
−τ
8 if n+ ≤ n−.

Remark 1.16. Let Λ be a unimodular indefinite lattice and let h ∈ Λ be a vector of square
2d. We show that

h⊥ = Z(−2d)⊕M,

where M is unimodular.
Indeed, the lattice Λ is of the form U ⊕Λ′ and, because of Corollary 1.12, we can assume
h = e + df , where {e, f} is a basis of U as in Example 1.13.b). Therefore, using h⊥U =
Z(e− df) ⊂ U , we obtain the description of h⊥.

Observe that each isometry of Λ induces an isometry of the discriminant group AΛ.
Indeed for each f ∈ O(Λ), the morphism

f̄ : AΛ −! AΛ

[x] 7−! [fQ(x)]

is a well defined isometry of AΛ. We obtain a morphism

O(Λ) −! O(AΛ). (3)

We denote by Õ(Λ) the kernel of this morphism and we call it the stable orthogonal group.
We also define the group

Ô(Λ) = {f ∈ O(Λ) | f̄ = ±id ∈ O(AΛ)}.

Clearly, Õ(Λ) is a subgroup of Ô(Λ) of index at most 2. Both Õ(Λ) and Ô(Λ) are normal
subgroups of O(Λ).

Theorem 1.17 ([Nik80, Theorem 1.14.2]). Let Λ be an even indefinite lattice with `(Λ) + 2 ≤ rkΛ.
Then the morphism

r : O(Λ) −! O(AΛ)

is surjective.
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If Λ satisfies the hypotheses of the theorem, it follows that

O(AΛ) ' O(Λ)/Õ(Λ).

The following result, proved in [Eic74, Satz 10.4], generalizes Corollary 1.12.

Lemma 1.18 (Eichler). Let Λ be a even lattice containing the direct sum of two hyperbolic

planes. The Õ(Λ)-orbit of a primitive vector h is uniquely determined by the integer h2

and the element h∗ = [h/div(h)] of AΛ.

1.2.1 Extension of isometries of a sublattice

Let M be a primitive sublattice of an even lattice L. We want to characterize isometries
of M⊥ that extend to isometries of L, following [Nik80, Section 1.5].

We define
O(L,M) = {f ∈ O(L) | f |M = id},

the group of isometries of L that are the identity on M . Analogously, we define the groups
Õ(L,M) = Õ(L) ∩O(L,M) and Ô(L,M) = Ô(L) ∩O(L,M).

Clearly, each isometry in O(L,M) restricts to an isometry of M⊥; namely, we have a
morphism

ρ : O(L,M) −! O(M⊥).

We say that an isometry f ∈ O(M⊥) extends to an isometry of O(L,M) if it is in the
image of the restriction ρ.

Consider the chain of sublattices

M ⊕M⊥ < L < L∨ < M∨ ⊕ (M⊥)∨, (4)

from which we obtain the subgroup

H = L/(M ⊕M⊥) < (M∨ ⊕ (M⊥)∨)/(M ⊕M⊥) = AM × AM⊥ .

Moreover, we consider the projections

p : H ↪! AM × AM⊥ � AM⊥ and q : H ↪! AM × AM⊥ � AM

Since M is primitive in L, the morphism p is injective. Indeed, each l ∈ L can be
written as l = qm+ rm′ with q, r ∈ Q and m and m′ vectors in M and M⊥ respectively.
Since l · L ⊂ Z, we obtain that qm is an element of M∨ and rm′ is an element of (M⊥)∨.
Hence,

p([l]) = [rm′] = 0 ∈ AM⊥ implies rm′ ∈M⊥.

Therefore, the vector l − rm′ = qm is in L. Since M is primitive, this implies qm ∈ M ,
and therefore l ∈M ⊕M⊥.

Analogously, we show that the morphism q is injective.

By computing the indices from the chain (4), we obtain

disc(M) disc(M⊥) = |H|2 disc(L). (5)
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Moreover, the injectivity of p and q implies |H| ≤ disc(M⊥) and |H| ≤ disc(M). Hence,
if the lattice L is unimodular, then |H| = disc(M) = disc(M⊥), and the morphisms p and
q are isomorphisms.

Proposition 1.19 ([Nik80, Corollary 1.5.2]). An isometry g ∈ O(M⊥) extends to O(L,M)
if and only if ḡ|p(H) = id.

Proof. We prove the proposition in the case of M = Zh for some primitive vector h of L.
In this case, we will denote by O(L, h) the group O(L,Zh).

Each isometry g ∈ O(h⊥) extends uniquely to an isometry g̃ ∈ O(LQ, h), defined by
g̃(h) = h and g̃|h⊥Q = g. The isometry g extends to O(L, h) if and only if g̃|L ∈ O(L, h),

namely if and only if g̃(l) ∈ L for all l ∈ L.
Observe that each vector l ∈ L can be written as l = qh+rv, with v ∈ h⊥ and r, q ∈ Q.

Therefore, g̃(l) = qh+ rg(v).
Since l · h⊥ ⊂ Z, we obtain that b = rdiv(v) is an integer. Notice moreover that

div(g(v)) = div(v) because g in an isometry of h⊥. Hence, we obtain

p([l]) = [rv] = b

[
v

div(v)

]
∈ Ah⊥ and ḡ(p([l])) = [rg(v)] = b

[
g(v)

div(g(v))

]
∈ Ah⊥ .

Observe that ḡ(p([l])) = p([l]) if and only if r(g(v)− v) ∈ h⊥, which is equivalent to

g̃(l)− l ∈ h⊥ = h⊥Q ∩ L. (6)

Since l ∈ L and g̃(l)− l ∈ h⊥Q, equation (6) is equivalent to g̃(l) ∈ L.

Therefore,
O(L, h) = {g ∈ O(h⊥) | ḡ|p(H) = id}.

If L is unimodular, we showed earlier that p(H) = Ah⊥ .

Corollary 1.20. If L is a unimodular lattice and h ∈ L is a primitive vector, then

O(L, h) = Õ(h⊥).

For a general lattice L, from the chain (4), it follows that

AL = L∨/L '
(
L∨
/

(Zh⊕ h⊥)
)/(

L
/

(Zh⊕ h⊥)
)

Therefore AL is the quotient of AZh ⊕ Ah⊥ by the subgroup H.

Proposition 1.21. For each lattice L and each primitive vector h ∈ L, there is an
inclusion Õ(h⊥) ↪! Õ(L, h).

Proof. Since p(H) < Ah⊥ , Proposition 1.19 implies that each isometry g ∈ Õ(h⊥) extends

to an isometry of O(L, h), which we will still denote by g. By definition of Õ(h⊥), the
isometry g satisfies ḡ|A

h⊥
= id. Moreover g|Zh = id, hence ḡ is the identity on AZh⊕Ah⊥ ,

and therefore on AL.
Finally, the morphism Õ(h⊥) ! Õ(L, h) is injective because restriction has a left

inverse.

We have the following chain of inclusions

Õ(h⊥)
i1
↪−! Õ(L, h)

i2
↪−! Ô(L, h)

i3
↪−! O(L, h)

i4
↪−! O(h⊥), (7)

where the index of i2 divides 2 and the inclusions i3 and i3i2 define normal subgroups of
O(L, h).
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2 K3 Surfaces

2.1 Definition and first properties

Definition 2.1. A complex K3 surface is a compact complex surface S such that the
canonical bundle ωS = Ω2

S is trivial and H1(S,OS) = 0.

The triviality of Ω2
S implies the existence of a nowhere vanishing holomorphic 2-form.

It is in particular nowhere degenerate as an alternating form on the tangent space. Such
a 2-form is called a symplectic form.

Observe that, if S is a smooth complex projective algebraic variety of dimension 2 such
that ωS = Ω2

S/k ' OS and H1(S,OS) = 0, the GAGA principle implies that San = S(C)
is a complex K3 surface.

Example 2.2. The following are some examples of projective K3 surfaces.

a) Complete intersections. We want to identify smooth complete intersections S of
multidegree 2 ≤ d1 ≤ · · · ≤ dn in Pn+2

C that are K3 surfaces. Using the exact
sequence that defines the complete intersection, it can be shown that H1(S,OS) = 0.
Moreover, the adjunction formula implies

ωS = ωPn+2
C
⊗OPn+2

C
(d1 + · · ·+ dn)|S = OPn+2

C
(d1 + · · ·+ dn − n− 3)|S.

Hence S is a K3 surface if and only if
∑
di = n + 3. This gives only 3 cases: a

smooth quartic in P3
C, a smooth complete intersection of a quadric and a cubic in

P4
C, and a smooth complete intersection of three quadrics in P5

C.

b) A double covering π : S ! P2
C branched along a smooth plane sextic curve C is a

K3 surface. From the equation OP2
C
(C) = OP2

C
(3)⊗2, we get π∗OS = OP2

C
⊕OP2

C
(−3).

Hence H1(S,OS) = 0, as π is a finite morphism and π∗OS has zero first cohomology
group. Moreover, the canonical bundle formula for branched covers shows that

ωS = π∗(ωP2
C
⊗OP2

C
(−3)) = OS.

Example 2.3. Let A be a complex torus of dimension 2. The surface A has a natural
involution ι : x 7! −x whose set of fixed points has cardinality 16. Let Ã! A be the blow
up of A in these points. As the blown up points are ι-invariant, ι extends to an involution
ι̃ of Ã. The quotient S = Ã/ι̃ is a complex K3 surface [Bea96, Proposition VIII.11], called
the “Kummer surface” associated with A. Moreover, S is projective if and only if A is
projective, hence we obtain many K3 surfaces that are not projective.

Let S be a K3 surface. By definition, one has h0(S,OS) = 1 and h1(S,OS) = 0, and
Serre duality, implies h2(S,OS) = h0(S,OS) = 1. Hence χ(S,OS) = 2.
The Riemann–Roch Theorem 1.3 for K3 surfaces becomes

χ(S, L) = 2 +
L2

2
, (8)

where χ(L) = h0(S, L)− h1(S, L) + h0(S, L−1) by Serre duality.
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The condition H1(S,OS) = 0 implies, using Theorem 1.5 and Theorem 1.6, that
each K3 surface is in particular Kähler and H1(S,Z) = 0. From the Noether formula
(Theorem 1.4), we can compute

2 + b2(S) = χtop(S) = 12χ(S,OS)− c2
1(S) = 24. (9)

Remark 2.4. The Picard group of a K3 surface S is torsion free.
Indeed, first observe that, if L is a nontrivial invertible sheaf that is a torsion element in
Pic(S), then L2 = 0. From the Riemann–Roch formula (8) and Serre duality it follows
that

2 = χ(S, L) = h0(S, L)− h1(S, L) + h0(S, L−1) ≤ h0(S, L) + h0(S, L−1).

Hence L or L−1 is effective, and in particular has a nonzero global section s. For each
nonzero n, the section s⊗n is a global section of L⊗±n that has the same zero set as s.
Therefore, if L⊗n is trivial, L is also trivial.

For a K3 surface S, the long exact sequence (2) becomes

0 = H1(S,OS) −! Pic(S) −! H2(S,Z) −! H2(S,OS).

Since Pic(S) and H2(S,OS) are torsion free, we obtain that the group H2(S,Z) is also
torsion free. Hence (H2(S,Z),^) is a lattice of dimension 22.

Poincaré Duality implies that the cup product is unimodular, and Theorem 1.2 shows
that it is even. Moreover, from the Hodge Index Theorem, we obtain that H1,1(S) has
signature (1, h1,1(S) − 1), where h1,1(S) = 22 − 2h2,0(S) = 20. In particular, if H2(S,C)
has signature (n+, n−), we have n+ ≤ 3. Hence, Theorem 1.15 implies that the lattice
(H2(S,Z),^) has signature (3, 19) and is isomorphic to

ΛK3 = U⊕3 ⊕ E8(−1)⊕2.

As H1(S,OS) = 0, the first Chern map is injective and so ρ(S), the Picard number of
S (the rank of Pic(S)⊗ R) is less than or equal to b2(S)− 2h0,1(S) = 20.
If S is projective, the signature of the intersection form on Pic(S) is (1, ρ(S)− 1).

Since each K3 surface S is Kähler, there is a Hodge decomposition

H2(S,C) = H0,2(S)⊕H1,1(S)⊕H2,0(S)

such that H0,2(S) ' H2,0(S), H1,1(S) ⊥ (H2,0(S)⊕H0,2(S)), and H2,0(S) is of dimension
one. Therefore the Hodge structure of S is uniquely determined by H2,0(S) ⊂ H2(S,C).

Theorem 2.5 (Torelli). Two K3 surfaces S and S ′ are isomorphic if and only if there
exists an isometry

ϕ : H2(S,Z) −! H2(S ′,Z)

such that ϕC(H2,0(S)) = H2,0(S ′).
Moreover, there exists an isomorphism u : S ′ ! S such that u∗ = ϕ if and only if

ϕC(Kah(S)) ∩Kah(S ′) 6= ∅,

where Kah(S) ⊂ H1,1(S,R) is the cone of Kähler classes on S.
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2.2 Linear systems on K3 surfaces and polarized K3 surfaces

Let X be a projective variety. For each invertible sheaf L on X, we will denote by |L|
the associated complete linear system, namely |L| := P(H0(X,L)), or equivalently, if
L = OX(D),

|L| = {E ∈ Div(X) | E ∼ D and E is effective}.

The invertible sheaf L induces a rational map

ϕL : X 99K P(H0(X,L)∨)

that is regular on the complement of the base locus Bs(L) of L.

Definition 2.6. A sheaf L on X is called very ample if it induces a closed embedding
X ↪! PnC, and it is called ample if there exists k ∈ N such that L⊗k is very ample.

There is a numerical characterization of ampleness ([Laz04, Theorem 1.2.23]).

Theorem 2.7 (Nakai–Moishezon Criterion). An invertible sheaf L over a proper scheme
X is ample if and only if

(L|Y )dim(Y ) > 0

for every irreducible subvariety Y ⊂ X of positive dimension.

Definition 2.8. An invertible sheaf L on X is called nef if c1(L|C) = deg(L|C) ≥ 0 for
every irreducible curve C ⊂ X.

Theorem 2.9 (Kleiman). An invertible sheaf L over a projective scheme X is nef if and
only if

(L|Y )dim(Y ) ≥ 0

for every irreducible subvariety Y ⊂ X of positive dimension.

We now consider a projective surface S. An invertible sheaf L on S is ample if and
only if

L2 > 0 and L · C = deg(L|C) > 0 for all curves C ⊂ S,

and is nef if and only if

L · C = deg(L|C) ≥ 0 for all curves C ⊂ S.

Kleiman’s Theorem implies that for each nef invertible sheaf L, we have L2 ≥ 0.

Theorem 2.10 (Kodaira vanishing). Each ample invertible sheaf L on a smooth projective
variety X satisfies

∀i < dim(X) H i(X,L∨) = 0.

We now restrict ourselves to the case of K3 surfaces. The Riemann–Roch formula (8)
and Kodaira vanishing imply that each ample invertible sheaf L on a K3 surface S has a
space of global sections of dimension h0(S, L) = χ(S, L) = 2 + L2

2
.

A main result in the study of projective K3 surfaces is the following.
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Theorem 2.11 ([May72, 4.Corollary 6]). Let L be an ample invertible sheaf on a projec-
tive K3 surface. The sheaf L⊗k is globally generated for all k ≥ 2 and is very ample for
all k ≥ 3.

As a consequence, we obtain that if a K3 surface S has an ample invertible sheaf of
degree L2 = 2d > 0, then it has an embedding

ϕL⊗3 : S ↪! P(H0(S, L⊗3)∨) = P9d+1
C .

An invertible sheaf L on a K3 surface S is said to be primitive if its class c1(L) is a
primitive element of the lattice H2(S,Z). This is equivalent to say that the sheaf L is
primitive in Pic(S).

Definition 2.12. A polarized K3 surface of degree 2d is a projective K3 surface S together
with a primitive ample invertible sheaf L of square L2 = 2d.
A pseudo-polarized K3 surface of degree 2d is a projective K3 surface S together with a
primitive invertible nef sheaf L of square L2 = 2d > 0.

Theorem 2.13. For each d > 0, there exists a polarized K3 surface of degree 2d.

Proof. We will only treat the case d = 3k − 1; for the other cases, see [Bea96, Proposi-
tion VIII.15].
Let S ⊂ P3

C be a quartic K3 surface that contains a line `, for example the Fermat quartic
(1), and consider H the hyperplane section: we have that H2 = 4, H · ` = 1 and `2 = −2.
Hence H − ` defines a rational map ϕ : S 99K P1

C which is the projection from the line `.
The morphism ϕ is defined everywhere on S: indeed, it extends to a rational morphism
on P3

C which is everywhere defined on Bl`(P3
C). Hence, it is defined on the strict transform

Ŝ of S under Bl`(P3
C) ! P3

C. Since Ŝ is the blow up of S with respect to ` and ` is a

smooth divisor of S, we obtain that Ŝ is isomorphic to S. Therefore, the sheaf E = H− `
is globally generated. This implies that the sheaf Lk = H + (k − 1)E is very ample. We
notice that L2

k = 4 + 6(k− 1) = 2d and that Lk is also primitive. Indeed H ·L = 1 hence
Lk ·H = 4 + 3(k − 1) and Lk · ` = 1 + 3(k − 1), with (4 + 3(k − 1), 1 + 3(k − 1)) = 1.

2.3 Universal local deformation

A local deformation of a compact complex manifold X is a smooth and proper morphism
f : X ! B, where B is the germ of an analytic space with a distinguished point 0 ∈ B
such that the fiber X0 is isomorphic to X.

Theorem 2.14 (Kuranishi). Let X be a smooth compact and connected variety with
H0(X,TX) = 0. There exists a pointed analytic space (Buniv, 0) and a deformation funiv :
Xuniv ! Buniv with X0 ' X that satisfies the following universal property: for each local
deformation f : X ! B there exists a unique morphism B ! Buniv such that f is the
pullback of funiv via this morphism:

X 'Xuniv ×Buniv
B Xuniv

B Buniv.

f funiv
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The morphism funiv is called the universal local deformation of X.
Moreover, the Zariski tangent space of Buniv at 0 is isomorphic to H1(X,TX) via the
Kodaira–Spencer application TBuniv,0 ! H1(X,TX) and Buniv is defined around 0 by
h2(X,TX) equations in a smooth analytic space of dimension h1(X,TX).

Let S be a K3 surface. Each nowhere vanishing 2-form on S induces an isomorphism
ΩS ' TS, hence,

H0(S, TS) ' H0(S,ΩS) ' H2(S, TS)

where the last isomorphism follows from Serre duality. Since H0(S,ΩS) ⊂ H1(S,C) = 0,
all three terms are 0. Moreover, from (9), we have

h1(S, TS) = h1(S,Ω1
S) = b2(S)− 2 = 20.

Hence we obtain the following corollary.

Corollary 2.15. Let S be a K3 surface. There exists a universal local deformation

funiv : Suniv −! Buniv

where (Buniv, 0) is a germ of a smooth analytic space of dimension 20.

We say that a variety X ′ is a smooth deformation of X if there exists a smooth proper
morphism f : X ! B and points b, b′ ∈ B such that Xb ' X and Xb′ ' X ′, where B is
smooth and connected.

Lemma 2.16. All smooth deformations of a K3 surface are K3 surfaces.

Proof. Let f : S ! B be a deformation of a K3 surface S ' S0, where 0 is a distinguished
point of B. We want to show that for all b ∈ B, the fiber Sb is a K3 surface.
From Ehresmann’s Lemma [Huy05, Proposition 6.2.2], it follows that the Betti numbers
are stable under deformation, hence b1(Sb) = 0. This implies in particular H1(Sb,OSb

) =
0. Moreover, also the topological Euler characteristic is preserved, hence χtop(Sb) = 24.

In order to show that Sb is K3, we only need to prove that ωSb
is trivial. From

[Tos18, Lemma 5.6] we obtain ωSb
= ωS |Sb

. The number ω2
Sb

is an integer that depends
continuously on b, therefore it is always 0. Using the Noether formula (Theorem 1.4), we
obtain

h0(Sb,OSb
) + h2(Sb,OSb

) ≥ χ(Sb,OSb
) =

χtop(Sb) + ω2
Sb

12
= 2.

Hence, we have h2(Sb,OSb
) ≥ 2−h0(Sb,OSb

) = 1. By Serre duality, we obtain that ωSb

has a nonzero global section: the triviality of ωSb
is therefore equivalent to showing that

h0(Sb, ω
∨
Sb

) ≥ 1. (10)

We show that this is an open and closed condition on B: since the property is verified for
0 and B is connected, this concludes the proof.
From [Har77, III.Theorem 12.8], for each i, the function

b 7−! hi(Sb, ω
⊗j
Sb

)

is uppersemicontinuous on B for all i ∈ N and j ∈ Z. Hence, the condition (10) is a closed
condition. Moreover, we have

2 = χ(Sb,OSb
) + (ω∨Sb

)2 R.R
= χ(Sb, ω

∨
Sb

) ≤ h0(Sb, ω
∨
Sb

) + h2(Sb, ω
∨
Sb

).

The condition h2(Sb, ω
∨
Sb

) ≤ 1 is open and implies condition (10). Hence the set of points
b ∈ B that satisfy condition (10) is also open.
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2.4 Moduli space of polarized K3 surfaces

Definition 2.17. A family of polarized K3 surfaces of degree 2d is a pair (f : S ! B,L)
where f : S −! B is a smooth and projective morphism of C-schemes, and L is an
invertible sheaf on S with the property that, for all b ∈ B,

(Sb = S ×B b,L|Sb
)

is a polarized K3 surface of degree 2d.
Two such families (f : S ! B,L) and (f ′ : S ′ ! B,L′) are isomorphic if there

exists a B-isomorphism u : S ! S ′ and an invertible sheaf L ∈ Pic(B), such that
u∗L′ = L ⊗ f ∗L.

We fix an integer d and consider the moduli functor

M2d : (SchC)op −! (Sets)

such that, for each C-scheme B,

M2d(B) = {(f : S ! B,L) family of polarized K3 surfaces of degree 2d }/isom.

and, for each C-morphism g : B′ ! B,

M2d(g) :M2d(B) −!M2d(B
′)

[(f : S −! B,L)] 7−! [(fB′ : S ×B B′ −! B′, g∗SL)]

where gS : B′ ×B S −! S is the pullback of g via f .

The presence of nontrivial automorphisms on some polarized K3 surfaces prevents the
existence of a fine moduli space [Deb19, Remarque 6.11], hence we can only hope for a
coarse moduli space, namely a C-scheme M2d with a natural transformation η :M2d −!
hM2d

(where hM2d
(S) = Hom (S,M2d) for all C-schemes S), such that

a) the morphism
ηC :M2d(C)

∼
−! hM2d

(C)

is an isomorphism between the set of closed points of Md and the set of classes of
polarized K3 surfaces of degree 2d modulo isomorphism;

b) for each C-scheme N and natural transformation Φ : M2d ! hN , there exists a
unique C-morphism π : M2d ! N such that η = hπ ◦Φ, where hπ : hN ! hM is the
morphism induced by π.

The following theorem says that such a scheme exists and it is actually a quasi-
projective variety.

Theorem 2.18. The moduli functor M2d admits a coarse moduli space M2d that is an
irreducible quasi-projective variety of dimension 19.
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We present the idea of a construction of the moduli space, following the path proposed
by Viehweg [Vie90].

Let (S, L) be a polarized K3 surface of degree 2d. From Theorem 2.11, there exists a
closed immersion

ϕL⊗3 : S ↪! PNC
where N = 9d+1 and such that ϕ∗L⊗3(OPNC

(1)) = L⊗3. Moreover, from the Riemann–Roch

formula (8), we obtain that the Hilbert Polynomial of ϕL⊗3(S) is

P (t) = χ(S, L⊗3t) = 9dt2 + 2.

Hence we shall consider the Hilbert scheme Hilb = Hilb
P (t)

PNC
of all closed subschemes

of PNC with Hilbert polynomial P . It is a projective scheme that represents the Hilbert
functor

Hilb : (SchC)op −! (Sets)

that associates with each C-scheme B the set of subschemes Z ⊆ PNB flat over B such
that all closed fibers Zb ⊂ PNC have Hilbert polynomial P . In particular, there exists a
universal family Z ⊂ PNHilb, flat over Hilb, whose closed fibers have Hilbert polynomial P ,
see [EH00].

Proposition 2.19 ([Huy16, 5.Proposition 2.1]). Let H : (SchC)op ! (Sets) be the functor
that maps a C-scheme B to the set of B-flat closed subschemes Z ⊂ PNB whose closed fibers
have Hilbert polynomial P (t) such that

a) there exist L ∈ Pic(Z), L0 ∈ Pic(B) such that

p∗(O(1)) ' L⊗3 ⊗ f ∗(L0)

where p : Z ! PNC and f : Z ! B are the natural projections,

b) for each fiber Zb of f : Z ! B, restriction induces an isomorphism

H0(PNk(b),O(1))
∼
−! H0(Zb, L

⊗3
b );

c) (f : Z ! B,L) is a family of polarized K3 surfaces (of degree 2d).

The functor H is represented by an open subscheme H ⊂ Hilb, with universal family

ZH := Z ×Hilb H −! H.

Hence, mapping Z ∈ H(B) to [(f : Z ! B,L)], where L is defined as in a), defines a
functor

H −!M2d.

It can be proven that the sheaf L is uniquely determined up to tensoring with the pullback
of an invertible sheaf of B, hence the morphism is well defined.

The Hilbert scheme comes with a natural PGL = PGL(N + 1)-action that is defined
functorially as the functor transformation given by

∀ϕ ∈ PGL(B) ∀Z ∈ Hilb(B) ϕ · Z 7−! ϕPNB
(Z),
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where ϕPNB
: PNB ! PNB is the B-morphism induced by viewing ϕ as a family of automor-

phisms of PNC that vary over B. As the conditions that define H are stable under the
PGL-action, we obtain an action on H. Moreover, we observe that the functor H !M2d

is equivariant, hence we obtain a functor

θ : H/PGL −!M2d.

It can be shown [Huy16, 5.Theorem 2.2] that θ is injective and locally surjective and that
if there exists a categorical quotient Q of H/PGL, then it is a coarse moduli space for
M2d, [Huy16, 5.Theorem 2.3].

Viehweg’s work shows that there exists a categorical quotient Q which is a quasi-
projective scheme, completing the proof of the existence of a quasi-projective coarse mod-
uli space for polarized K3 surfaces.
We will show another construction of the moduli space for polarized K3 surfaces in Sec-
tion 3.3.
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3 Periods

3.1 Local period map

Let f : X ! (B, 0) be a local deformation of a smooth compact connected Kähler
manifold X with smooth base B, with X0 ' X, and such that Xb is Kähler for each
b ∈ B. The higher direct image sheaf R2f∗Z is a locally constant sheaf whose fiber at
b ∈ B is

(R2f∗Z)b = H2(Xb,Z).

By choosing a path γ in B joining 0 and b, we can identify H2(Xb,Z) and H2(X,Z), and
the identification only depends on the homotopy class of the path. Therefore, we can
define the monodromy morphism

ρ : π1(B, 0) −! Aut(H2(X,Z)).

In particular, if B is simply connected, then R2f∗Z is canonically isomorphic to the
constant sheaf H2(X,Z).

We observe that R2f∗Z ⊗Z C ' R2f∗C. These local systems induce a holomorphic
vector bundle R2f∗Z⊗Z OB ' R2f∗C⊗C OB whose fiber at b is naturally isomorphic to

(R2f∗C)b ' H2(Xb,C).

Proposition 3.1 ([Huy16, 6.Lemma 2.1]). There is a natural injection

f∗Ω
2
X /B ↪! R2f∗C⊗C OB

of holomorphic vector bundles which on each fibre yields the natural inclusion H2,0(Xb) ⊂
H2(Xb,C).

Remark 3.2. Observe that, since Xb is compact Kähler for each b, the Hodge Decompo-
sition Theorem implies that the Hodge numbers of the manifolds Xb are all the same, up
to shrinking B. Indeed, [GR84, Theorem 5.10.4] implies that the function

b 7−! hq(Xb,Ω
p
X /B|Xb

)

is uppersemicontinuous, where Ωp
X /B|Xb

' Ωp
Xb

. Therefore,

hp,q(Xb) ≥ hp,q(X)

locally around 0 ∈ B. Since the Betti numbers are preserved by deformation (see Ehres-
mann’s Lemma [Huy05, Proposition 6.2.2]), using the Hodge Decomposition Theorem we
obtain hp,q(Xb) = hp,q(X) in an open neighbourhood of 0 ∈ B.

In particular, we have that h2,0(Xb) is constant.

Up to shrinking B, we can always suppose that it is simply connected. In this case,
the local system is the constant sheaf associated with H2(X,C) ' Cb2(X). Therefore the

holomorphic bundle f∗Ω
2
X /B is a subbundle of R2f∗C⊗C OB ' Oh

2(X,C)
B of rank h2,0(X).

Thus, from [GH94, Section 1.5], it induces a holomorphic map

B −! Gr(h2,0(X), H2(X,C)) (11)
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such that f∗Ω
2
X /B is obtained as the pullback of the universal subbundle on the Grass-

mannian Gr(h2,0(X), H2(X,C)). Explicitly, the image of b ∈ B under this morphism is
the subspace (f∗Ω

2
X /B)b = H2,0(Xb) contained in H2(Xb,C) ' H2(X,C).

We now restrict ourselves to smooth deformations f : S ! (B, 0) of a K3 surface S,
where B is smooth and simply connected. In this case, Proposition 3.1 yields a subbundle
f∗Ω

2
S /B ↪! R2f∗C⊗C OB which at each point b ∈ B is the inclusion of the line H2,0(Sb)

in the vector space H2(Sb,C), which we identify with H2(S,C).

Therefore, the morphism defined in (11) gives the period map

℘B : B −! P(H2(S,C)),

defined by ℘(b) = [H2,0(Sb,C)].

Let ωb be a symplectic form on Sb, namely H2,0(Sb,C) ' Cωb. The 2-form ωb satisfies
the Hodge–Riemann relations∫

ωb ∧ ω̄b > 0 and

∫
ωb ∧ ωb = 0.

Therefore, the image of ℘ is contained in the period domain

DS := {x ∈ P(H2(S,C)) | x · x = 0, x · x̄ > 0},

a complex manifold.

We have obtained the following result.

Proposition 3.3. Given a smooth deformation f : S ! B of a K3 surface S, with B
smooth simply connected, the period map defined by

℘B : B −! P(H2(S,C))

b 7−! [H2,0(Sb)]

is a holomorphic map that takes values in the period domain DS ⊂ P(H2(S,C)).

We can apply this theory to the universal local deformation, of which we have proven
the existence in Section 2.3. We thus obtain a morphism

℘univ : Buniv −! DS,

after possibly shrinking of the base Buniv.
Moreover, if we fix an isometry H2(S,Z) ' ΛK3, we can identify the period domain

DS with the K3 period domain

DK3 = {x ∈ P((ΛK3)C) | x · x = 0, x · x̄ > 0}.

For K3 surfaces, the following local Torelli theorem holds, see [Huy16, 6.Proposi-
tion 2.8]
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Theorem 3.4 (Local Torelli). The period map ℘univ : Buniv ! DS is a local isomorphism
at 0.

Remark 3.5. Using this Local Torelli Theorem, we can prove the existence of a universal
local deformation of a polarized K3 surface (S, L) of degree 2d > 0.
Let f : S ! (B, 0) be the universal local deformation of S, with B smooth simply
connected, and let ℘ : B ! DS be the associated period map. The class ` = c1(L) ∈
H2(S,Z) is of type (1, 1), therefore it is orthogonal to the subspace H2,0(S) of S. Hence,
the period ℘(0) is in D ∩ P(`⊥C).

As B is simply connected, we have natural identifications H2(Sb,Z) ' H2(S,Z) for
each b ∈ B. The class ` ∈ H2(Sb,Z) is of type (1, 1) if and only if it is orthogonal to the
subspace H2,0(Sb), namely if and only if ℘(b) ∈ D ∩P(`⊥C). In this case, it corresponds by
Theorem 1.1 to an invertible sheaf Lb of Sb of square 2d. Since being ample is an open
condition verified in 0, after possibly shrinking (B, 0), we can suppose that Lb is ample
for each b ∈ B.
Observe that

D`⊥C
:= D ∩ P(`⊥C) = {x ∈ P(`⊥C) | x · x = 0, x · x̄ > 0} (12)

is a smooth variety, because `⊥C is a (nondegenerate) lattice because of the assumption
d > 0. Therefore, from Theorem 3.4, we obtain that B(`) := ℘−1(D`⊥C

) ⊂ B is a smooth

hypersurface. Hence, we get a morphism f (`), defined as the restriction of f to f−1(B(`)),
which is still smooth and proper.

S B D

S (`) := f−1(B(`)) B(`) D ∩ P(`⊥C).

f ℘

f (`)

We show that there exists a line bundle L on S (`) such that the stalk of L in S (`)
b is equal

to Lb for each b ∈ B(`). Observe that ` is a global section of R2f
(`)
∗ Z that is zero under the

projection to R2f
(`)
∗ OS (`) . Since B is simply connected, we have H2(S ,Z) ' Γ(B,R2f∗Z)

and H2(S ,OS ) ' Γ(B,R2f∗OS ) and similarly for B(`). Thus, we have

` ∈ R2f
(`)
∗ Z R2f

(`)
∗ OB(`) 3 0

H2(S (`),Z) H2(S (`),OS (`))

∼ ∼

and ` ∈ R2f
(`)
∗ Z gives rise to a unique class in H2(S (`),Z) that vanishes under the pro-

jection to H2(S (`),OX (`)). Hence, it is an element L of the Picard group of S (`).

Therefore (f (`) : S (`) ! B(`),L) is a local deformation of (S, L) and it can be proved
that it satisfies the universal property of universal local deformations.

3.2 Period domains of type IV

In this section, we want to generalize the definition of the period domain constructed for
local polarized deformations of K3 surfaces and study the properties of these generalized
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domains.

Let Λ be an even indefinite lattice of signature (2, n−) such that `(AΛ) is less than n−
and n− ≥ 2.

Example 3.6. Key examples of such a lattice are lattices of the form

Λ = Zk ⊕M,

where k2 = −2d and M is a unimodular, even, indefinite lattice of signature (2, n− − 1).
Given a primitive vector h of square 2d in the unimodular K3-lattice ΛK3, its orthogonal
complement h⊥ is of this type, as showed in Remark 1.16.

The zero locus of the quadratic form induced on ΛC is a smooth quadric in P(ΛC).
The open analytic subset

D = {[x] ∈ P(ΛC) | x · x = 0, x · x̄ > 0}

of this quadric is a complex manifold, called the period domain.
Notice that for Λ = `⊥, where ` ∈ ΛK3 primitive vector of degree 2d, it is the same domain
we have constructed in (12) in Remark 3.5.

The period domain D is diffeomorphic to Grpo(2,ΛR) ⊂ Gr(2,ΛR), the open set of
oriented planes P ⊂ ΛR on which the quadratic form is positive definite. The diffeomor-
phism associates with each [x] ∈ D the oriented plane P = Re(x)R⊕ Im(x)R. Indeed, as
x2 = 0 and x · x̄ > 0, the plane P is positive definite and only depends on [x] ∈ P(ΛC).
Conversely, each oriented and positive definite plane P with direct orthonormal basis
{v1, v2} defines an element [v1 + iv2] ∈ D independent of the choice of the basis.

Having fixed an orthonormal basis {e1, e2, f1, . . . , fn} of ΛR, where e1R⊕e2R is positive
definite, Grpo(2,ΛR) has two connected components determined by the sign of the deter-
minant of the matrix given by the projection of each 2-oriented plane P onto e1R⊕ e2R.
So we get a decomposition

D = D+ tD−,

where the two connected components are diffeomorphic, exchanged by complex conjuga-
tion.

Observe that the condition n− > `(AΛ) implies that the lattice Λ is of the form U⊕Λ′.
Indeed, from [Nik80, Corollary 1.10.2], since l(AΛ) < n− = 1 + (n− − 1), it follows that
there exists a lattice Λ′ of signature (1, n− − 1) and such that AΛ′ = AΛ. Therefore, the
lattice U ⊕ Λ′ has the same signature and the same discriminant quadratic form as the
lattice Λ, and from [Nik80, Corollary 1.13.3] we obtain Λ ' U ⊕ Λ′.

For such a lattice Λ = U ⊕ Λ′, we show that the isometry g = −idU ⊕ idΛ′ ∈ O(Λ)
exchanges the two connected components of Grpo(2,ΛR). Indeed, if {e1, f1} is a basis of U
and e2 is a positive vector of Λ′R, then g(v) · e1 = −v · e1 and g(v) · e2 = v · e2 for each vec-

tor v ∈ Λ. Observe that g induces the identity on the discriminant group, hence g ∈ Õ(Λ).

Since each isometry of Λ acts on P(ΛC) and preserves D , we get an action of O(Λ) on
D . We show that this action is properly discontinuous.
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Proposition 3.7 ([Huy16, 6.Proposition 5]). There exists a diffeomorphism

D
∼
−! Grpo(2,ΛR)

∼
−! O(2, n−)/SO(2)×O(n−)

Proof. By identifying ΛR with the vector space R2+n− endowed with the quadratic form of
signature (2, n−), we obtain a transitive action of O(2, n−) on Grpo(2,ΛR). Let P be the
plane spanned by the two positive vectors of the canonical basis of R2+n− . The stabilizer
of P ∈ Grpo(2,ΛR) is SO(2)×O(P⊥) = SO(2)×O(n−).

The group SO(2)× O(n−) is compact and O(Λ) is a discrete subgroup of the locally
compact group O(2, n−). Hence, from [Wol84, Lemma 3.1.1], it follows that O(Λ) acts on
D properly discontinuously.

Recall the following theorem by Borel–Baily.

Theorem 3.8 ([Huy16, Theorem 6.1.13]). For all subgroups Γ of O(Λ) of finite index,
the quotient D/Γ is a normal quasi-projective variety.

Moreover, if there exists g ∈ Γ that exchanges the two components of D (for example

if Γ ⊃ Õ(Λ)), the variety D/Γ is irreducible.

3.3 Period map for polarized K3 surfaces

In Section 3.1, we have constructed a period morphism for each local deformation with
smooth and simply connected base B. In this section, we generalize that construction
and we build a global period map for polarized K3 surfaces.

Consider a smooth deformation f : S ! B of K3 surfaces. There exists an étale

covering B̃ ! B such that the pullback f̃ : S̃ ! B̃ admits a marking, that is an
isomorphism

R2f̃∗Z
∼
−! B̃ × ΛK3.

Indeed, we consider B̃ := Isom(R2f∗Z,ΛK3) ! B, the natural O(ΛK3)-principal bundle

associated to R2f∗Z. The fiber at b ∈ B is the set of isometries H2(Sb,Z)
∼
! ΛK3.

Therefore, the pullback

S̃ S

B̃ B

f̃ f

has a marking R2f̃∗Z
∼
! B̃ × ΛK3. Indeed, at the point (b, ϕ) ∈ B̃, with b ∈ B and

ϕ : H2(Sb,Z)
∼
! ΛK3, we have a canonical isomorphism of the fiber of R2f̃∗Z with ΛK3,

and this isomorphisms glue together.
The trivialization of the local system R2f̃∗Z yields, as in the case of simply connected

local deformations, a period morphism

℘B̃ : B̃ −! D ⊂ P((ΛK3)C).

We now restrict ourselves to families of polarized K3 surfaces of degree 2d. We fix a
primitive vector h of ΛK3 with h2 = 2d and denote by Λ2d the lattice h⊥, as described in

24



Remark 1.16.
Consider a family (f : S ! B,L) of polarized K3 surfaces of degree 2d. The image of L
via its first Chern class is a global section ` of R2f∗Z. The orthogonal system `⊥ ⊂ R2f∗Z
is defined fiberwise as the orthogonal complement of `b = `|Sb

in H2(Sb,Z).
Therefore, the fibers of `⊥ are lattices that are isomorphic to Λ2d.
Similarly to the construction above, we have an étale cover B̃′ ! B such that

B̃′b = {f : H2(Sb,Z)
∼
−! ΛK3 | f(`) = h},

and we obtain a period morphism

℘B̃′ : B̃′ −! DΛ2d
⊂ P((Λ2d)C).

Observe that B̃′ embeds into the space B̃ constructed above and ℘B̃′ is the restriction of
the period map ℘B̃.

The group O(Λ, h) ' Õ(Λ2d) (Corollary 1.20) acts on B̃′ and on DΛ2d
and the morphism

℘ is equivariant. Passing to the quotient, we obtain a holomorphic morphism

℘B : B −! DΛ2d
/Õ(Λ2d).

After the discussion of Section 3.2, we see that DΛ2d
/Õ(Λ2d) is an irreducible quasi-

projective variety.
Recall the following result from Borel [Bor72, Theorem3.10] (see also [Huy16, Re-

mark 6.4.2]).

Theorem 3.9 (Borel). If Y is a nonsingular complex algebraic variety and ϕ : Y !

DΛ2d
/Õ(Λ2d) is a holomorphic map, then ϕ is algebraic.

In particular, if B is algebraic the period morphism ℘B is an algebraic morphism.

Fix a degree 2d. In Section 2.4, we constructed a subscheme H of the Hilbert scheme,
whose closed points parametrize polarized K3 surfaces (S, L) of degree 2d with an embed-
ding in PNC , for N = 9d+ 1, such that L⊗3 = OPNC

(1)|S. It comes with a universal family

of polarized K3 surfaces (ZH ! H,L), thus we can apply the previous construction to
the underlying complex manifolds.

We obtain a period morphism

℘ : H −! DΛ2d
/Õ(Λ2d).

The morphism ℘ is clearly invariant under the action of PGL. Moreover, the Torelli
theorem implies that the set of orbits of H/PGL injects into DΛ2d

/Õ(Λ2d). Indeed, if
(S ⊂ PNC , L) and (S ′ ⊂ PNC , L′) are two polarized K3 surfaces of degree 2d with the same

image x̄ ∈ DΛ2d
/Õ(Λ2d) under ℘, we have a commutative diagram

H2(S,Z) ΛK3

H2(S ′,Z) ΛK3

ϕ

∼

∼

Φ g

∼

∼
ϕ′
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where ϕ (similarly ϕ′) is an isometry between H2(S,Z) (respectively H2(S ′,Z)) and ΛK3,

that sends c1(L) (respectively c1(L′)) to h, and g ∈ O(ΛK3, h) = Õ(Λ2d) is such that

(g ◦ ϕ)(ωS) = ϕ′(ωS′).

Therefore, the obtained isomorphism Φ = (ϕ′)−1◦g◦ϕ : H2(S,Z)! H2(S ′,Z) is a Hodge
isomorphism that sends the ample class L of S to the ample class L′ of S ′. Since each
ample class is Kähler, because of a theorem of Kodaira [Huy05, Proposition 5.3.1], the
Torelli Theorem 2.5 implies the existence of an isomorphism u : S ′

∼
! S such that u∗ = Φ

on the second cohomology groups. We observe that the morphism S ′
u
! S

i
↪! PNC is such

that
(i ◦ u)∗(OPNC

(1)) = u∗(L⊗3) = L′⊗3.

Thus, it is obtained by composing the inclusion S ′ ⊂ PNC with an automorphism of
PNC . Hence, the surfaces (S, L) and (S, L′) are in the same PGL-orbit.
Moreover, using the local Torelli theorem, it can be proven that the set of PGL-orbits is
an analytic open subset of the algebraic variety DΛ2d

/Õ(Λ2d).
In particular, we obtain again the existence of a coarse moduli space for polarized K3

surfaces of degree 2d.

Theorem 3.10. One can put a structure of quasi-projective variety M2d on the orbit space
H/PGL such that it is a coarse moduli space for the functor M2d. Moreover, M2d can be

realized as a Zariski open subscheme of the quasi-projective variety DΛ2d
/Õ(Λ2d).

Proof. Since ℘ : H ! DΛ2d
/Õ(Λ2d) is algebraic, its image is a constructible set which is

also an analytic open subset. Therefore, by [Gro05, Exp. XII, Corollary 2.3], it is open
in the Zariski topology. Thus M2d := ℘(H) has a natural algebraic structure whose close
points parametrize polarized K3 surfaces of degree 2d.
Additionally, for each family of polarized K3 surfaces (f : S ! B,L) ∈ M2d(B), with
the above construction, we obtain a period morphism

℘b : B −! DΛ2d
/Õ(Λ2d)

with image in M2d. This provides a holomorphic map B ! M2d that is algebraic by
Theorem 3.9. Therefore, we have a natural transformation M2d ! hM2d

that induces an
isomorphism on closed points.

Corollary 3.11. The moduli space M2d is an irreducible quasi-projective variety of di-
mension 19.

Proof. In Section 3.2, we proved that DΛ2d
/Õ(Λ2d) is an irreducible quasi-projective alge-

braic variety. Moreover, it is of dimension 19, because it is the quotient of a Zariski open
set of an hypersurface of P((Λ2d)C) ' P20

C by a properly discontinuous action. As M2d is

a Zariski open subset of DΛ2d
/Õ(Λ2d), we obtain the wanted result.
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4 Hyper-Kähler manifolds

4.1 Definition and first properties

Definition 4.1. A hyper-Kähler manifold is a simply connected compact Kähler manifold
X such that H0(X,Ω2

X) = Cω, where ω is a holomorphic 2-form on X which is nowhere
degenerate.

Results from Section 2.1 imply that hyper-Kähler manifolds of dimension 2 are K3
surfaces. From the definition, it follows that each hyper-Kähler manifold X has trivial
canonical bundle ωX and even dimension. In the same way as we did for K3 surfaces, it
can be shown that H2(X,Z) is torsion free.

Let X be a hyper-Kähler manifold of dimension 2m. There exists an integral quadratic
form qX on the free abelian groupH2(X,Z) of signature (3, b2(X)−3), called the Beauville–
Fujiki form. It satisfies

∀x ∈ H2(X,Z) x2m = cXq(x)m, (13)

where cX is a positive rational number, called the Fujiki constant. It is a topological
invariant of X. Moreover, it satisfies qX(x) > 0 for all Kähler classes x ∈ H2(X,Z), thus
in particular for all ample classes. For more details, see [GHJ03, Chapter 23].

Example 4.2. We present here two families of hyper-Kähler manifolds.
These, and two other examples in dimensions 6 and 10 found by O’Grady, are the only
known deformations types of hyper-Kähler manifolds in even dimension greater than or
equal to 4.

a) Hilbert powers of K3 surfaces [Bea83, Section 6]. Let S be a K3 surface and let S[m]

be the Douady–Hilbert space that parametrizes analytic subspaces of S of length
m ≥ 2. It is a smooth compact Kähler manifold of dimension 2m. Beauville proved
that it is a hyper-Kähler manifold and that its second cohomology group is

H2(S[m],Z) ' H2(S,Z)⊕ Zδ,

where 2δ is the class of the exceptional divisor of the natural projection S[m] ! S(m).

This decomposition is orthogonal for the Beauville–Fujiki quadratic form. This form
restricts to the intersection form on H2(S,Z) and is such that qS[m](δ) = −2(m−1).
Hence, the lattice (H2(S[m],Z), qS[m]) is isomorphic to

ΛK3[m] := ΛK3 ⊕ Z(−2(m− 1)).

Definition 4.3. For m ≥ 2, a hyper-Kähler manifold is of type K3[m] if it is a
smooth deformation of S[m] for some K3 surface S.

Since the second cohomology group is invariant under deformation, the lattice asso-
ciated with a hyper-Kähler manifold of type K3[m] is always isomorphic to ΛK3[m] .
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b) Generalized Kummer varieties [Bea83, Section 7]. Let A be a complex torus of
dimension 2 and let m be an integer greater than or equal to 2. The Douady–
Hilbert space A[m+1] is a complex manifold with a nowhere degenerate holomorphic
2-form, but it is not simply connected. Given the application

A[m+1] −! A

(p0, . . . , pm) 7−!
m∑
i=0

pi,

we define Km(A) as the inverse image of 0. For m = 1, it is isomorphic to the Kum-
mer surface associated with A, constructed in Example 2.3. For m ≥ 2, Beauville
proved that it is a hyper-Kähler manifold of dimension 2m and that there is a
decomposition

H2(Km(A),Z) ' H2(A,Z)⊕ Zδ,
orthogonal for the quadratic form and with qKm(A)(δ) = −2(m+ 1). Therefore,

(H2(Km(A),Z), qKm(A)) ' U⊕3 ⊕ Z(−2(m+ 1)).

Definition 4.4. For m ≥ 2, a hyper-Kähler manifold is of Kummer type Km if it
is a smooth deformation of Km(A) for some complex torus A and some integer m.

4.2 Moduli space of polarized hyper-Kähler manifolds

Similarly to the case of polarized K3 surfaces, using Viehweg’s results [Vie90], we can con-
struct a quasi-projective coarse moduli space of polarized hyper-Kähler manifolds (X,H)
of fixed dimension 2m and fixed degree H2m. Indeed, Matsusaka’s Big Theorem implies
the existence of a constant k(m) such that, for any hyper-Kähler manifold X of dimension
2m and any ample invertible sheaf H on X, the sheaf H⊗k is very ample for each k ≥ k(m).

Let (Λ, q) be a lattice. If we fix a hyper-Kähler manifold X0 with an isometry
(H2(X0,Z), qX0) ' (Λ, q), and the O(Λ)-orbit τ of a primitive element of Λ of positive
square, this construction gives a coarse moduli space of polarized hyper-Kähler manifolds
of type (X0, τ): its closed points parametrize equivalence classes (X,H) where X is a
hyper-Kähler manifold that is a smooth deformation of X0, and H is an ample line bun-
dle on X whose class in Λ is in the orbit τ .

We restrict ourselves to hyper-Kähler manifolds of K3[m]-type, whose second cohomol-
ogy group is isomorphic to the lattice

ΛK3[m] := ΛK3 ⊕ Z(−2(m− 1)).

Let τ be the O(ΛK3[m])-orbit of a primitive element h ∈ ΛK3[m] of positive square 2d. We

denote by MK3[m]

τ the coarse moduli space of polarized hyper-Kähler manifolds of type
K3[m] and polarization type τ . This moduli space is not irreducible, but the number of
irreducible components is known, see [Apo14] and [Son22].

For each primitive vector h in ΛK3[m] , the numbers h2 and div(h) are invariant under
the action of O(ΛK3[m]). In general, they do not determine the orbit of O(ΛK3[m])h, but
they do in some special cases.
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Proposition 4.5 ([GHS10, Corollary 3.7]). Let d, t, and γ be integers such that γ | (2t, 2d)
and let

L2t = ΛK3 ⊕ Z(−2t)

be the lattice associated with a hyper-Kähler manifold of type K3[t+1]. We set ω =
(2t
γ
, 2d
γ
, γ).

If ω = 1 and there exists a primitive h ∈ L2t such that h2 = 2d and div(h) = γ, then all
such vectors belong to the same O(L2t)-orbit.
Moreover, such a vector always exists if γ = 1, or γ = 2 and d+ t ≡ 0 (mod 4).

In these cases, we denote by M
[m]
γ,2d the moduli space MK3[m]

τ , where τ is the unique
orbit of a vector of square 2d and divisibility γ. We have the following result ([Deb17]).

Theorem 4.6. (Gritsenko–Hulek–Sankaran, Apostolov) If γ = 1, or γ = 2 and d+m ≡ 1

(mod 4), the quasi-projective moduli space M
[m]
γ,2d of polarized hyper-Kähler manifolds of

type K3[m] with a polarization of square 2d and divisibility γ is irreducible of dimension
20.

4.3 Period map for polarized hyper-Kähler manifolds of K3[m]-
type

Extending the construction of Section 3.3, a period morphism for polarized hyper-Kähler
manifolds of K3[m]-type with fixed polarization type has been constructed. Having fixed
a dimension 2m and a polarization type τ = O(Λ)h, for some primitive vector h ∈ ΛK3[m] ,
there is a period morphism

℘K3[m] : MK3[m]

τ −! Dh⊥/Ô(ΛK3[m] , h),

with the property that its restriction to any irreducible component of MK3[m]

τ is an open
embedding.

The key property of the period morphism for K3 surfaces is the Torelli Theorem
2.5. For hyper-Kähler manifolds, a weaker version of the Torelli theorem holds. Before
enunciating the theorem, we give the definition of parallel transport operators.

Definition 4.7. Let X and Y be deformation equivalent hyper-Kähler manifolds. An
isomorphism ϕ : H2(X,Z)

∼
! H2(Y,Z) is a parallel transport operator if there exists a

smooth and proper family f : X ! B of hyper-Kähler manifolds and a path γ : [0, 1]! B
with Xγ(0) = X and Xγ(1) = Y , such that ϕ is induced by the parallel transport of the
local system R2f∗Z along γ.

Theorem 4.8 ([Mar11, Theorem 1.3]). Let X and Y be hyper-Kähler manifolds that are
deformation equivalent. The manifolds X and Y are isomorphic if and only if there exists
a parallel transport operator ϕ : H2(X,Z)

∼
! H2(Y,Z) which is an isomorphism of integral

Hodge structures.
Moreover, let ϕ : H2(X,Z)

∼
! H2(Y,Z) be a parallel transport operator which is an

isomorphism of integral Hodge structures. There exists an isomorphism u : X
∼
! Y such

that ϕ = u∗ on the second cohomology group, if and only if u maps some Kähler class on
X to a Kähler class on Y .
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Therefore, instead of considering the group O(ΛK3, h) of isometries that preserve the
class h, in this case we should consider the group of Hodge isometries that preserve h and
that are parallel transport operators. In the case of polarized hyper-Kähler manifolds of
K3[m]-type, this group is Ô(ΛK3[m] , h), see [Mar11, Lemma 9.2].

Recall that, from Proposition 1.19, we have

O(ΛK3[m] , h) = {g ∈ O(h⊥) | g|p(H) = id},

where p(H) is the image of ΛK3[m]/(Zh⊕ (h⊥)) via the projection AZh ⊕ Ah⊥ ! Ah⊥ . If
g is an isometry of h⊥ such that g|p(H) = id, we will still denote by g its extension to ΛK3[m] .

Let l be the generator of the Z(−2(m − 1)) factor in ΛK3[m] . We saw in Section 1.2
that the discriminant group of ΛK3[m] is a cyclic group of order 2(m− 1) generated by the
element l∗ = [l/2(m− 1)]. Therefore, we have the identification

Ô(ΛK3[m] , h) = {g ∈ O(h⊥) | ḡ|p(H) = id and ḡ(l∗) = ±l∗ ∈ AΛ
K3[m]
}. (14)

We would like to give a more explicit description of the group Ô(ΛK3[m] , h). In order
to do so, we first describe the lattice h⊥ for a primitive vector h ∈ ΛK3[m] .

4.4 Groups of isometries of some lattices

We consider a slightly more general situation. Given a positive integer t, let L2t be the
lattice

L2t = M ⊕ U ⊕ Z(−2t), (15)

where M is an even unimodular lattice and the factor Z(−2t) is generated by a vector l.
The discriminant group AL2t is a cyclic group of order 2t generated by l∗. The lattice
ΛK3[m] is a lattice of type L2(m−1).

Let h be a primitive vector of L2t of square 2d > 0 and divisibility γ. Recall that
from (7) we have a chain of subgroups

Õ(h⊥)
i1
↪−! Õ(L2t, h)

i2
↪−! Ô(L2t, h)

i3
↪−! O(L2t, h)

i4
↪−! O(h⊥), (16)

where we can describe the group Ô(L2t, h) as in (14).

In this section we study the lattice h⊥ and the group Ah⊥ , following [GHS10]. Moreover

we describe the image of Ô(L2t, h) in O(Ah⊥) in some cases. In particular:

• in Proposition 4.10 we describe the lattice h⊥.

• When (2t
γ
, γ) = 1:

– we compute the discriminant group Ah⊥ and show that Õ(L2t, h) = Õ(h⊥)
(Proposition 4.14);

– we describe the image of the group Ô(L2t, h) in O(Ah⊥) under the morphism
r : O(h⊥) ! O(Ah⊥) introduced in Theorem 1.17 (Remark 4.15 for t = 1 or
γ > 2 and Proposition 4.16 for γ ∈ {1, 2}).
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– we discuss the normality of Ô(L2t, h) in O(h⊥), and show that, if (t, d) = 1,

then Ô(L2t, h) C O(h⊥) (Corollary 4.19).

4.4.1 The lattice h⊥

The vector h in the lattice L2t (15) can be written as

h = ax+ cl

where x ∈ M ⊕ U is primitive and a, c are coprime integers. The divisibility of h is
γ = (a, 2tc) = (a, 2t). In particular γ | 2t and we can write a = γa1 for some a1 ∈ Z.
Observe moreover that, since γ | a, we have (c, γ) = 1. Finally,

h∗ =

[
h

div(h)

]
= c

2t

γ
l∗ ∈ AL2t . (17)

By computing the square of h, we obtain

2d = h2 = γ2a2
1x

2 − 2tc2,

where x2 is an even integer. Thus, the quotient d+tc2

γ2
is an integer that we denote by b.

Given {e, f} a standard basis of U , we consider the vector

h̃ = γ(e+ bf) + cl. (18)

It has divisibility equal to (γ, 2tc), which is γ since γ | 2t, square equal to 2γ2b−2tc2 = 2d,
and

h̃∗ =

[
h̃

div(h̃)

]
=
c

γ
2tl∗ = h∗ ∈ AL2t .

Since by Eichler’s Lemma, the Õ(L2t)-orbit of h is determined by h2 and h∗, and we are
only interested in the O(L2t)-orbit of h, we can suppose that the vector h is of the form
(18).

Note that the element h∗ of AL2t (see (17)) is determined by c (mod γ). If c = γn+c′,
then, for b′ = b+ tn2 − 2t

γ
nc, the vector

h′ = γ(e+ b′f) + c′l

has square

2γ2b′ − 2tc′2 = 2γ2b+ 2tγ2n2 − 4tγnc− 2t(γ2n2 − 2γnc+ c2) = 2γ2b− 2tc2 = 2d,

and h′∗ = h∗ in AL2t .
Therefore, given a primitive vector h ∈ L2t of square 2d, divisibility γ, and such that

the class h∗ ∈ AL2t corresponds to the element c2t
γ

of order γ of Z/2tZ for some integer c
modulo γ and prime to γ, we may assume that h is of the form

h = γ(e+ bf) + cl (19)

up to isometries of L2t.
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Remark 4.9. We notice that if h is a primitive vector of L2t of divisibility γ and square
2d, then

γ2 | d+ tc2. (20)

Therefore, in general not all pairs (2d, γ) can be realized as (h2, div(h)) for some primitve
vector h ∈ L2t.
For instance, if γ = 1 the condition (20) is always verified. If γ = 2, then c is necessary 1
and we obtain that d must verify d+ t ≡ 0 (mod 4).

Proposition 4.10 ([GHS10, Proposition 3.6]). Let h be a primitive vector of L2t of square
2d and divisibility γ, and let c be the integer modulo γ and prime to γ defined in the above
discussion. Then,

h⊥ = M ⊕

−
2d+ 2c2t

γ2
c
2t

γ

c
2t

γ
−2t

 .

Proof. Since the orthogonal h⊥ only depends on the O(L2t)-orbit of h, we can suppose

h = γ(e+ bf) + cl,

where {e, f} is a standard basis of U and γ2b = d+ tc2. Hence h⊥ = M ⊕B, where B is
the orthogonal complement of h in the lattice U ⊕ Zl. The lattice B has rank two and

B =

〈
h1 = e− bf, h2 = c

2t

γ
f + l

〉
.

Indeed, h1 and h2 are orthogonal to h, each vector v ∈ U ⊕ Zl can be written as
v = x1h1 + x2h2 + yf , and such a vector v is orthogonal to h if and only if y = 0.
Direct computations show that the intersection matrix on B is the one written in the
statement.

Remark 4.11. If γ = 1, then h∗ = 0 ∈ AL2t . Therefore c = 0, the lattice B is diagonal
(or“split”), and

h⊥ 'M ⊕ Z(−2d)⊕ Z(−2t).

Conversely, if the lattice B is split, we have c = 0. Hence, from Equation (19) we obtain
γ = 1, since h is primitive.

Definition 4.12. A polarization type O(L2t)h is said to be split if div(h) = 1, non-split
otherwise.

4.4.2 The groups Õ(L2t, h) and Ô(L2t, h)

As already observe for the lattice ΛK3[m] , from Proposition (1.19) we have

O(L2t, h) = {g ∈ O(h⊥) | g|p(H) = id},

where H is the group L2t/(Zh⊕ h⊥) and p is the projection AZh × AH⊥ ! Ah⊥ .
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In the proof of Proposition 4.10, we have also proved that

H = L2t/(Zh⊕ h⊥) = (U ⊕ Zl)/(Zh⊕ h⊥) = 〈[f ]〉.

We describe the image p(H), that is generated by p([f ]). The vector

k1 =
γ

2d
h− f

is in (h⊥)∨. Indeed, we can compute k1 · h1 = −1 and k1 · h2 = 0. Notice, moreover, that
p(f̄) = −k̄1. Hence, the group p(H) is generated by k̄1 ∈ Ah⊥ .

Therefore, the groups Õ(L2t, h) = Õ(L2t)∩O(L2t, h) and Ô(L2t, h) = Ô(L2t)∩O(L2t, h)
can be described as

Õ(L2t, h) = {g ∈ O(h⊥) | ḡ(k̄1) = k̄1 ∈ Ah⊥ and ḡ(l∗) = l∗ ∈ AL2t} (21)

and
Ô(L2t, h) = {g ∈ O(h⊥) | ḡ(k̄1) = k̄1 ∈ Ah⊥ and ḡ(l∗) = ±l∗ ∈ AL2t}. (22)

4.4.3 The discriminant group Ah⊥

We study the discriminant group Ah⊥ : from Equation (5) follows that

disc(Zh) disc(h⊥) = |H|2 disc(L2t), (23)

where disc(Zh) = 2d, disc(L2t) = 2t and disc(h⊥) = |Ah⊥ |.

Observe that the element k̄1 has order 2d
γ

in Ah⊥ . Indeed, given an integer n ∈ Z, the

vector nk1 is in h⊥ = h⊥Q ∩ L2t if and only if n γ
2d
h ∈ L2t, hence if and only if n γ

2d
∈ Z.

We have showed in Section 1.2.1 that the morphism p is injective, hence we obtain

|H| = |p(H)| = 2d

γ
.

From Equation (23) we get

2d · |Ah⊥| = 2t

(
2d

γ

)2

,

from which we obtain that Ah⊥ is an abelian group of cardinality 2d
γ

2t
γ

.

Remark 4.13. If h ∈ L2t is a primitive vector of square 2d and divisibility γ, then

ω :=

(
2t

γ
,
2d

γ
, γ

)
=

(
2t

γ
, γ

)
.

Indeed, from (19) we can suppose that h = γ(e+ bf) + cl, and therefore

2d = h2 = 2bγ2 − 2tc2 = γ

(
2bγ − 2t

γ
c2

)
. (24)

Hence (2t
γ
, γ) | 2d

γ
.
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Proposition 4.14 ([GHS10, Proposition 3.12]). Let h ∈ L2t be a primitive vector with
h2 = 2d and div(h) = γ. We suppose ω = (2t

γ
, γ) = 1. Then, we have an isometry

Ah⊥ ' Z/2d
γ
Z× Z/2t

γ
Z

such that the subgroup p(H) < Ah⊥ corresponds to the factor Z/2d
γ
Z and the intersection

form on Ah⊥ is defined by q(1, 0) = −γ2

2d
and q(0, 1) = −γ2

2t
.

In this case, we have
Õ(L2t, h) = Õ(h⊥).

Proof. Keeping the notation of the previous proposition, we may assume h = γ(e+bf)+cl,
where γ2b = d+ c2t and {e, f} is the standard basis of the hyperbolic plane U contained
in L2t.
We have proven that the lattice h⊥ is of the form h⊥ = M ⊕ B, where B is the rank 2
sublattice of U ⊕ Zl generated by the vectors h1 = e− bf and h2 = c2t

γ
f + l. Therefore,

the group Ah⊥ is isomorphic to AB.
The vectors

k1 =
γ

2d
h− f and k̃2 =

c

2d
h+

1

2t
l

form a basis of B∨ that is (up to sign) dual to the basis {h1, h2} of B. Consider the vector

k2 := ck1 − γk̃2 = cf +
γ

2t
l =

γ

2t
h2.

This vector k2 is orthogonal to k1, and 〈k̄1〉 and 〈k̄2〉 are two subgroups of AB. We have
already shown that the order of k̄1 in AB is 2d

γ
. Analogously, we can show that the order

of k̄2 is 2t
γ

. We show that, for ω = 1, the subgroups 〈k̄1〉 and 〈k̄2〉 intersect trivially.

We fix some notation: let γ′, t′, and d′ be integers such that (γ′, t′, d′) = 1 and

γ = ωγ′,
2d

γ
= ωd′, and

2t

γ
= ωt′.

Suppose nk̄1 ∈ 〈k̄2〉, namely that there exists some integer m ∈ Z such that

nk̄1 = mk̄2 ∈ AB.

Then nk1 −mk3 is a vector in B, and its component along e is nγ2

2d
. Since B is contained

in L2t and e is primitive in L2t, the coefficient of nk1 −mk2 along e must be an integer.
We obtain

nγ2

2d
=
nγ′

d′
∈ Z. (25)

Moreover, by computing the order of nk̄1 = mk̄3 in AB, we obtain d′ | n. Indeed,

ωd′

(n, ωd′)
= ordAB

(
nk̄1

)
= ordAB

(
mk̄3

)
=

ωt′

(m,ωt′)
.

Hence, we obtain

d′(m,ωt′) = t′(n, ωd′) = t′
(

n

(n, d′)
, ω

d′

(n, d′)

)
(n, d′). (26)
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Let δ be the integer d′

(n,d′)
. By definition, δ is coprime with n

(n,d′)
, and d′ = δ(n, d′).

Equation (26) implies δ | t′. Moreover, since d′ | nγ′ by (25), we obtain δ | γ′. Since
(γ′, d′, t′) = 1, it follows that δ = 1. Therefore d′ divides n and we can write n = d′n′, so
that

nk̄1 =
nγ

2d
h− nf =

n′d′

ωd′
h− nf

=
n′

ω
(γ(e+ bf) + cl)− nf

≡ n′c

ω
l + (2n′γ′b− n)f (mod B).

We now use our assumption ω = 1. Then nk1 is an element of L2t ∩ B∨ = B. Therefore,
the intersection 〈k̄1〉 ∩ 〈k̄2〉 is trivial. Since the order of Ah⊥ is equal to the order of
〈k̄1〉 × 〈k̄2〉, we obtain

Ah⊥ ' 〈k̄1〉 × 〈k̄2〉 ' Z/2d
γ
Z× Z/2t

γ
Z. (27)

This proves the first part of the proposition.

By Proposition 1.21 we have an inclusion Õ(h⊥) ↪! Õ(L2t, h). We show that, for

ω = 1, this morphism is surjective, namely that for each isometry g ∈ Õ(L2t, h), its re-
striction to h⊥ satisfies ḡ|A

h⊥
= id.

Let g be an isometry of Õ(L2t, h). From (21), it follows that g(k1) ≡ k1 (mod h⊥),
hence

γ

2d
h− f = k1 ≡ g(k1) = g

( γ
2d
h− g(f)

)
=

γ

2d
h− g(f) (mod h⊥).

Hence, we obtain g(f) ≡ f (mod h⊥). Moreover, there exists, still by (21), a vector
m ∈ L2t such that g

(
l
2t

)
= l

2t
+m. Since g is an isometry, then

h · l
2t

= g(h) · g
(
l

2t

)
= h · g

(
l

2t

)
= h · l

2t
+ h ·m,

which implies that the vector m is in h⊥. Therefore g(k3) = g
(
cf + γ

2t
l
)
≡ k3 (mod h⊥).

Since, for ω = 1, the group Ah⊥ is generated by k1 and k3, we obtain ḡ|A
h⊥

= id, which is
what we wanted.

4.4.4 Normality of Ô(L2t, h) in O(h⊥)

We consider the chain of subgroups

Õ(h⊥)
i1
↪−! Õ(L2t, h)

i2
↪−! Ô(L2t, h)

i3
↪−! O(L2t, h)

i4
↪−! O(h⊥). (28)

We want to understand if Ô(L2t, h) is a normal subgroup of O(h⊥), which will be used in
Section 5.3. A summary of the results that follow can be found in Remark 4.20.

Proposition 4.14 implies that, if ω = 1, the inclusion i1 is an equality.
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For t = 1, the group AL2t is isomorphic to Z/2Z, therefore Õ(L2t) = Ô(L2t) = O(L2t),
hence we also have equalities

Õ(ΛK3[2] , h) = Ô(ΛK3[2] , h) = O(ΛK3[2] , h).

Moreover, in this case, the condition ω = 1 is always verified, hence Ô(ΛK3[2] , h) = Õ(h⊥)
is a normal subgroup of O(h⊥) (the inclusion i1, i2, and i3 are equalities).

We restrict ourselves to the case ω = 1. In this case, the chain (16) takes the form

Õ(h⊥) = Õ(L2t, h)
i2
↪−! Ô(L2t, h)

i3
↪−! O(L2t, h)

i4
↪−! O(h⊥). (29)

Remark 4.15. Beri et al. [BBBF] showed that, in the case ω = 1, the inclusion

i2 : Õ(L2t, h) ↪−! Ô(L2t, h)

is trivial if and only if t = 1 or γ > 2. Their proof goes as follows.
Suppose that there exists g ∈ Ô(L2t, h) \ Õ(L2t, h). The isometry g satisfies (see (21)

and (22))

g

(
l

2t

)
= − l

2t
+m

for some vector m ∈ L2t. Therefore,

γ(e+ bf) + cl = h = g(h) = γg(e+ bf)− cl + 2tcm, (30)

from which we obtain

2t

γ
cm− 2c

γ
l = (e+ bf)− g(e+ bf) ∈ L2t.

Since γ | 2t, this implies that 2c
γ

is an integer. Since γ and c are coprime, it follows that
γ divides 2.
Conversely, if γ is either 1 or 2, the integer c, being prime to γ and determined modulo
γ, is 0 or 1 respectively. In this cases, the vector y = ctf + l defines a reflection ry on L2t

such that ry(l∗) = −l∗ ∈ AL2t . Indeed, the vector y has square −2t and divisibility equal
to (ct, 2t). Hence, it defines a reflection on L2t, because −2t | 2(ct, 2t) (see Section 5) and

ry

(
l

2t

)
=

l

2t
− 2

2t

y · l
y2

y =
l

2t
− 2

2t
(ctf + l) ≡ − l

2t
(mod L2t).

We have proven in Proposition 4.14 that, for ω = 1, the discriminant group Ah⊥ is of
the form

Ah⊥ = Z/2d
γ
Z× Z/2t

γ
Z,

where the first factor is equal to the subgroup p(H). Observe that, if γ = 1 or γ = 2, the
reflection ry induces the isometry

s =

(
1 0
0 −1

)
on the discriminant group. Indeed, keeping the notation of Proposition 4.14, the vector
y is equal to 2t

γ
k2, therefore ry acts as −id on k2 and as id on k1 (which is orthogonal to

k2). Hence, if 2t
γ
6= 2, the isometry ry is an element of Ô(L2t, h) \ Õ(L2t, h). Since γ | 2,

t 6= 1 and (2t
γ
, γ) = 1 the condition 2t

γ
6= 2 is always satisfied, therefore the inclusion i2

has index 2 in these cases.
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Hence, if ω = 1 and γ > 2, the group Ô(L2t, h) is equal to Õ(h⊥), and thus it is a
normal subgroup of O(h⊥).

Proposition 4.16. If ω = 1 and γ is 1 or 2, the image of Ô(L2t, h) under the morphism
O(h⊥)

r
! O(Ah⊥) defined in Theorem 1.17 is

r(Ô(L2t, h)) = {id, s}.

Proof. We already showed in Remark 4.15 that the isometry s ∈ O(Ah⊥) is in the image

r(Ô(L2t, h)). Moreover, in Proposition 4.14, we showed that if g ∈ Õ(L2t, h), then r(g) =
id.

Let g be an isometry of Ô(L2t, h) \ Õ(L2t, h), namely g satisfies r(g)(k̄1) = k̄1 and
g( l

2t
) = − l

2t
+m for some m ∈ L2t (see (22)). We show that r(g)(k̄2) = −k̄2; that implies

r(g) = s.

For γ = 1, the integer c is 0, and the vector l
2t

is orthogonal to h = e + bf . Hence,
since g is an isometry of L2t that fixes h, the vector g( l

2t
) is orthogonal to g(h) = h, and

that implies m ∈ h⊥. Moreover, in this case, k2 = l
2t

, thus we have r(g)(k̄2) = −k̄2.

For γ = 2, the integer c is 1, and we have h = 2(e+ bf) + l. Recall that in the proof of
Proposition 4.14, we showed that if r(g)(k̄1) = k̄1, then g(f) ≡ f (mod h⊥). Therefore,
from equation (30), we obtain

2(e+ bf) + l = h = g(h) ≡ 2(g(e) + bf)− l + 2tm (mod h⊥).

Hence, we have 2tm ≡ 2e+2l−2g(e) (mod h⊥). Observe that the vector h1 = e−bf is in
the lattice h⊥, therefore g(h1) is in h⊥ too, and that implies g(e) ≡ bg(f) ≡ bf (mod h⊥).
Thus, we obtain

2tm ≡ 2e+ 2l − 2g(e) ≡ 2e+ 2l − 2bf ≡ 2l ≡ 2(l + tf)− 2tf ≡ −2tf (mod h⊥),

where we used that y = l + tf is orthogonal to h. Therefore, the vector m + f is an
integral vector that belong to the lattice h⊥, thus we have m ≡ −f (mod h⊥).

Finally, by computing the image of k2 = f + l
t
, we have

g(k2) ≡ f − l

t
+ 2m ≡ f − l

t
− 2f ≡ −k2 (mod h⊥).

As explained above, this proves r(g) = s.

Theorem 1.17 implies that, if the unimodular part M of h⊥ has rank at least 2 (which
is the case for L2t = ΛK3[t+1]), the morphism O(h⊥)

r
! O(Ah⊥) is surjective. In particular,

in this case and under the hypotheses of the previous proposition, the group Ô(L2t, h) is
normal in O(h⊥) if and only if the group

K =

{
id, s =

(
1 0
0 −1

)}
is a normal subgroup of O(Ah⊥).
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Example 4.17. The group K is not always a normal subgroup of O(Ah⊥). For example,
for t = 9, γ = 2 and d = 15, the group Ah⊥ is of the form

Ah⊥ = Z/15Z× Z/9Z

with quadratic form defined by q(1, 0) ≡ − 2
15

(mod 2Z) and q(0, 1) ≡ −2
9

(mod 2Z).

The morphism g defined by the matrix

(
1 10
6 2

)
is an isometry of Ah⊥ : indeed it is an

involution and for each (x, y) ∈ Ah⊥ , we can compute

q(g(x, y)) = q((x+ 10y, 6x+ 2y)) ≡ − 2

15
x2 − 2

9
y2 = q(x, y) (mod 2Z).

Moreover (
1 10
6 2

)(
1 0
0 −1

)(
1 10
6 2

)
=

(
1 5
3 2

)
.

Therefore, in this case, K is not a normal subgroup of O(Ah⊥).

Lemma 4.18. Let A be the group

A = Z/2d
γ
Z× Z/2t

γ
Z.

If t and d are coprime integers and γ is either 1 or 2, then K = {id, s} is a normal
subgroup of Aut(A).

Proof. If γ = 2, then A = Z/dZ × Z/tZ with (t, d) = 1. Hence A ' Z/tdZ and from
Lemma 1.14 we obtain that Aut(A) is abelian, and in particular it follows K C Aut(A).

We now consider the case γ = 1, hence A = Z/2dZ × Z/2tZ. Let g =

(
a e
b f

)
be an

automorphism of A. The order of (a, b) in A is equal to the order 2d of (1, 0) in A, hence
we obtain

lcm

(
2d

(a, 2d)
,

2t

(b, 2t)

)
= ordA (a, b) = 2d.

Since t and d are coprime, it follows that t | b and we can write b = tb′. Analogously, we
can write e = de′. Therefore, we can compute

gs =

(
a de′

tb′ f

)(
1 0
0 −1

)
=

(
a −de′
tb′ −f

)
and

sg =

(
1 0
0 −1

)(
a de′

tb′ f

)
=

(
a de′

−tb′ −f

)
.

Since tb′ ≡ −tb′ (mod 2t) and de′ ≡ −de′ (mod 2d), we obtain sg = gs and hence
g−1sg = s.

In both cases, we proved K C Aut(A).

Since O(Ah⊥) is a subgroup of Aut(Ah⊥) that contains K, we obtain the following
corollary.

Corollary 4.19. Let h ∈ L2t be a primitive vector of square 2d such that (t, d) = 1. The

group Ô(L2t, h) is a normal subgroup of O(h⊥).
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Proof. Since the divisiblity of h divides (2t, 2d), if t and d are coprime, it follows that γ
is either 1 or 2. Moreover, from (t, d) = 1 we obtain ω = (2t

γ
, 2d
γ
, γ) = 1. Proposition 4.14

provides an isomorphism
Ah⊥ ' Z/2d

γ
Z× Z/2t

γ
Z

where t, d and γ satisfy the hypotheses of Lemma 4.18. Therefore, the group K is normal
in Aut(Ah⊥) and hence in O(Ah⊥). Since K = r−1(Ô(L2t, h)), we obtain that Ô(L2t, h) is
a normal subgroup of O(h⊥).

Remark 4.20. To sum up, we have proved the following.

• If t = 1, then Ô(L2t, h) = Õ(h⊥);

• if t > 1 and ω = 1, then

– for γ > 2, then Ô(L2t, h) = Õ(h⊥),

– for γ ∈ {1, 2}, then Ô(L2t, h) = r−1

({
id, s =

(
1 0
0 −1

)})
.

Moreover, we proved that in the following cases

a) ω = 1 and γ > 2;

b) (t, d) = 1,

the group Ô(L2t, h) is a normal subgroup of O(h⊥).
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5 Invariant divisors

5.1 Ramification divisors of quotients of period domains

For each even indefinite lattice Λ of signature (2, n−), with n− ≥ 2, we have defined in
Section 3.2 a period domain

D = {[x] ∈ P(ΛC) | x · x = 0, x · x̄ > 0}

with a natural action of the group of isometries O(Λ). For each subgroup Γ < O(Λ) of
finite index, we have shown that the quotient

KΓ = D/Γ

is a quasi-projective variety, which is irreducible if there exists an element of Γ that ex-
changes the two connected components of D . In the following, we will suppose that there
exists such an element in Γ. Observe that −id acts trivially on D , hence on KΓ. Let Γ̂
be the group generated by Γ and −id: then KΓ̂ = KΓ.

Consider a subgroup O < O(Λ) of finite index such that

Γ C O < O(Λ).

Since −id is in the center of O(Λ), the group Γ̂ is a normal subgroup of Ô. The group

G = Ô/Γ̂

is a finite group that acts on KΓ.

Remark 5.1. An element [x] ∈ KΓ is fixed by g ∈ G if and only if there exists an isometry
f ∈ O such that [f ] = g and x is an eigenvector of fC.
Indeed, if [x] ∈ KΓ is fixed by g = [f ], then [f(x)] = [x] ∈ KΓ. This means that there

exists f̃ ∈ Γ̂ such that the lines fC(x)C and f̃C(x)C are equal. Replacing f by f̃−1f we
obtain that x is an eigenvector of fC. Conversely, by definition, each eigenvector of fC
defines a line that is fixed by [f ].

Therefore, the action of G on KΓ is (very)-generally faithful: let X be the subset

X =
⋃

g∈G\{id}

⋃
g=[f ]
λ∈Sp(f)

Vλ(f) ⊂ D ,

which is a countable union of closed subvarieties of D of codimension greater than or
equal to 1. Then, for x not contained in X, the stabilizer of [x] in KΓ is trivial.

Hence, the action of G on KΓ yields a Galois cover

q : KΓ −! KO (31)

with Galois group G.

The varieties KΓ and KO are normal varieties. By restricting the morphism q to the
preimage of the smooth locus of KO, the purity of the branch locus implies that the branch
locus has codimension 1. We want to characterize the ramification divisors of the cover q,
namely the irreducible algebraic divisors of KΓ contained in the fixed locus of a nontrivial
element of G.
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5.1.1 Heegner divisors and reflections

For all β ∈ Λ primitive with β2 < 0, we consider

Hβ⊥ = Im
(
D ∩ P(β⊥ ⊗ C) −! KΓ

)
.

Since the lattice β⊥ has signature (2, n− − 1), we observe that

Dβ⊥ := D ∩ P(β⊥ ⊗ C) = {[x] ∈ P(β⊥ ⊗ C) | x · x = 0, x · x̄ > 0} = Grpo(2, β⊥ ⊗ R)

is not empty, and it is a hypersurface of D .

Moreover, Hβ⊥ is always an irreducible algebraic divisor of KΓ. Indeed Hβ⊥ is the
image of the morphism i defined by

Dβ⊥ D

Dβ⊥/{g ∈ Γ | g(β) = ±β} D/Γ = KΓ.

π

i

Observe that the restriction induces a morphism

{g ∈ Γ | g(β) = ±β} −! O(β⊥)

whose image is a subgroup of finite index of O(β⊥). As Γ is of finite index in O(Λ), and
for each g ∈ Γ with g(β) = ±β, the isometry g2 is in O(Λ, β), it is enough to show that
O(Λ, β) is of finite index in O(β⊥). Proposition 1.19 implies

O(Λ, β) = {f ∈ O(β⊥) | f̄ |p(H) = id},

where p(H) < Aβ⊥ . Since Aβ⊥ is a finite group, its automorphism group is finite, hence
there exists an integer n such that for each f ∈ O(Λ), the isometry fn restricts to the
identity on the discriminant group. In particular, it is the identity on p(H) and hence
extends to O(Λ, β).

Therefore, from Borel–Baily’s theorem, it follows that

Dβ⊥/{g ∈ Γ | g(β) = ±β}

is algebraic. Another result of Borel [Bor72, Theorem 3.10] (with [Huy16, Remark 6.4.2]),
implies that the morphism i is algebraic, hence H⊥β is an algebraic divisor of KΓ.

Finally we observe that H⊥β is also irreducible. Indeed, D ∩ P(β⊥ ⊗ C) has 2 connected
components exchanged by complex conjugation, hence they are contained in two different
components of D . This implies that they are identified in the quotient.

Definition 5.2. A Heegner divisor of KΓ is a divisor of the form Hβ⊥ ⊂ KΓ for some
primitive β ∈ Λ with β2 < 0.

Lemma 5.3. Let β and γ be primitive vectors of Λ with negative squares. The divisors
Hβ⊥ and Hγ⊥ of KΓ are equal if and only if β and γ are in the same Γ̂-orbit.
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Proof. Let π : D ! KΓ be the canonical projection. For each vector β that defines a
Heegner divisor, the divisor Hβ⊥ is the image via π of the period domain Dβ⊥ ⊂ D . The
connected components of Dβ⊥ are D+

β⊥
= D+ ∩Dβ⊥ and D−

β⊥
= D− ∩Dβ⊥ .

Observe that
π−1(Hβ⊥) =

⋃
g∈Γ̂

Dg(β)⊥ .

Clearly, if β and γ are in the same Γ̂-orbit, they define the same Heegner divisor.

Conversely, if Hγ⊥ = Hβ⊥ , then Dγ⊥ is contained in π−1(Hβ⊥) and in particular

D+
γ⊥
⊂ π−1(Hβ⊥) ∩D+ =

⋃
g∈Γ̂

D+
g(β)⊥

.

Since D+
γ⊥

is irreducible, there exists g ∈ Γ̂ such that D+
γ⊥

= D+
g(β)⊥

. As complex conju-

gation exchanges D+ and D−, we obtain Dγ⊥ = Dg(β)⊥ .
We show that this implies g(β) = nγ for some integer n ∈ Z, or equivalently that

g(β)⊥ = γ⊥. If not, the closed subvariety P(g(β)⊥C) ∩ P(γ⊥) is a hypersurface of P(γ⊥)
that contains Dγ⊥ . Therefore, it contains its closure {[x] ∈ P(γ⊥) | x2 = 0}, which is an
irreducible quadric, hence not contained in any hypersurface.

With the same reasoning, from Dβ⊥ ⊂ π−1(Hγ⊥), we obtain that there exists g′ ∈ Γ̂
such that g′(γ) = n′β for some n′ ∈ Z. Hence, we obtain n = ±1, and therefore γ and β

are in the same Γ̂-orbit.

For each primitive vector β ∈ Λ, the reflection with respect to β⊥ in ΛQ is given by
the formula

∀x ∈ Λ rβ(x) = x− 2x · β
β2

β.

Observe that since β is primitive, rβ is in O(Λ) if and only if β2 | 2div(β).

Definition 5.4. A primitive vector β ∈ Λ with β2 < 0 defines a nontrivial reflection in
G if β2 | 2div(β), the reflection rβ is in the group Ô, and [rβ] ∈ G is nontrivial.

If β defines a nontrivial reflection in G, then the Heegner divisor Hβ⊥ is contained in
the fixed locus of rβ.

5.1.2 The ramification divisors of q : KΓ −! KO
The following theorem generalizes [Ste08, Proposition 3.8]: in situation (31), we show
that the divisorial components of the ramification of q are Heegner divisors associated
with reflections in G.

Theorem 5.5 ([GHS07, Corollary 2.13]). Let Λ be an even lattice of signature (2, n−)
with n− ≥ 2, and let Γ and O be subgroups of finite index of O(Λ) such that Γ C O, and
Γ contains an isometry g that exchanges the two connected components of D .
An irreducible divisor D ⊂ KΓ is fixed by a nontrivial element g of G if and only if it is
a Heegner divisor Hβ⊥, where β defines a nontrivial reflection in G and g = [rβ].
Moreover, each irreducible divisor is contained in the fixed locus of at most one nontrivial
element g ∈ G.
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Proof. Remark 5.1 implies that the set of points of KΓ fixed by g ∈ G is

Fix(g) = π

 ⋃
[f ]=g

⊔
λ∈Sp(fC)

P(Vλ(fC)) ∩D

 ,

where π : D ! KΓ is the canonical projection and Vλ(fC) is the eigenspace of fC relative
to the eigenvalue λ.

Observe that if Fix(g) contains an irreducible divisor D, there exists an isometry f ∈ Ô
with [f ] = g and an eigenvalue λ of fC such that Vλ(fC) has codimension 1. Indeed, D
has codimension 1 in D and

D = π

π−1(D) ∩
⋃

[f ]=g

⊔
λ∈Sp(fC)

P(Vλ(fC)) ∩D


=

⋃
[f ]=g

λ∈Sp(fC)

π
(
π−1(D) ∩ P(Vλ(fC))

)
,

where the union is over a countable set, as Γ is countable. Hence at least one of the pieces
π(π−1(D)∩P(Vλ(fC))) has codimension 1, and so has π−1(D)∩P(Vλ(fC)) and this implies
the claim.

Moreover, since D is irreducible, we obtain

D = π(P(Vλ(fC)) ∩D).

For each real operator, the eigenspace relative to an eigenvalue λ has the same dimen-
sion as the eigenspace relative to λ̄. Since fC is a real operator and an isometry, and the
codimension of Vλ(fC) is 1, it follows that λ = ±1. Up to changing f into −f , we can
suppose λ = 1.

Since codim(V1(fQ)) = codim(ker(id − fQ)) = codim(V1(fC)) = 1, there exists β ∈ Λ
primitive such that

V1(fQ) = β⊥ and fQ|
β⊥

= id.

Observe moreover that β2 < 0. Indeed if x ∈ D ∩ P(V1(fC)), then fC(x̄) = x̄, so
P = Re(x)R⊕ Im(x)R ⊂ V1(fC). As P is positive definite, it follows that n+(V1(fC)) = 2,
hence β2 < 0. Hence f satisfies f |β⊥ = id and f(β) = −β, namely fQ is the reflection
with respect to β and [rβ] = [f ] = g ∈ G is nontrivial. Therefore D is a Heegner divisor
and β defines a nontrivial reflection in G.

Suppose there exists g and g′ in G such that D ⊂ Fix(g)∩Fix(g′). We have proved that
there exist vectors β and γ that define nontrivial reflections such that D = [Hβ⊥ ] = [Hγ⊥ ]

with g = [rβ] and g′ = [rγ]. Lemma 5.3 implies that γ = gβ for some g ∈ Γ̂. Thus, since
rgβ = grβg

−1, it follows that g′ = [rgβ] = [rβ] = g.

Hence, the ramification divisors of the morphism q : KΓ ! KO are parametrized by
the Γ̂-orbits of vectors β ∈ Λ that define a nontrivial reflection in Ô/Γ̂.
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We notice that given g ∈ G, the fixed locus Fix(g) may contain several divisorial
components, namely we could have g = [rβ] for several vectors β that are not in the same

Ô-orbit.

5.2 Polarized K3 surfaces

We apply the results of Section 5.1 to the moduli space M2d of polarized K3 surfaces of
degree 2d. We have constructed in Section 3.3 the period morphism

℘ : M2d ↪−! DΛ/Õ(Λ),

where Λ is the orthogonal of a primitive vector h ∈ ΛK3 of square 2d, described in
Example 3.6. In this case, Λ is a lattice of type L2d (see (15)), hence the discriminant
group is AΛ = Z/2dZ with quadratic form qΛ defined by qΛ(1̄) =

[
− 1

2d

]
.

The lattice Λ satisfies the hypothesis of Theorem 1.17, so Õ(Λ) is a normal subgroup
of O(Λ) with quotient

O(AΛ) ' O(Λ)/Õ(Λ).

Therefore, the lattice Λ and the group Γ = Õ(Λ) C O(Λ) satisfy the hypotheses of

Theorem 5.5. In this case, the group Γ̂ is equal to Ô(Λ), and

G = O(Λ)/Ô(Λ) ' O(AΛ)/± id.

Hence, the ramification divisors of

q : KÔ(Λ) −! KO(Λ)

are parametrized by the Ô(Λ)-orbits of vectors β ∈ Λ that define a nontrivial reflection in
G. We want to give numerical conditions for a vector β ∈ Λ to define nontrivial reflections
in G.

We will consider the (slightly) more general situation of a lattice Λ of the form M⊕Zk
with M even unimodular of signature (2, n−), with n− ≥ 1, k2 = −2d, and Γ = Õ(Λ).

Theorem 5.6 ([GHS07, Corollary 3.4]). Let β ∈ Λ be a primitive vector with β2 < 0.
The vector β defines a nontrivial reflection in G if and only if β satisfies the conditions

a) β2 | (2div(β), 2d);

b) β2 6∈ {−2,−2d}.

Proof. Each β ∈ Λ can be written in the form

β = am+ bk,

where a, b ∈ Z and m ∈ M is a primitive vector. The condition β primitive is equivalent
to (a, b) = 1. If β is a primitive vector that defines a reflection, we have by Definition 5.4
β2 | 2div(β) = 2(a, 2db). We can compute

β2 = a2m2 − 2db2 (32)
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where m2 is even.
From β2 | 2a | am2, we obtain β2 | 2db2. As β is primitive we have (a, b) = 1. From
β2 | (2a, 2db2), we obtain β2 | 2d. Thus condition a) is verified.

We observe that rβ ∈ O(AΛ) is the automorphism

1 =

[
k

2d

]
7−!

[
rβ

(
k

2d

)]
=

[(
1 + 2 · 2d

β2
b2

)
k

2d

]
= 1 + 2 · 2d

β2
b2

of Z/2dZ. Hence [rβ] ∈ G is nontrivial if and only if 1 + 2 · 2d
β2 b

2 6≡ ±1 (mod 2d), namely
if and only if

2d

β2
b2 6≡ 0 (mod d) and 1 +

2d

β2
b2 6≡ 0 (mod d).

We show that if β is primitive with β2 < 0 and satisfies a), this two conditions are
equivalent to β2 6= −2 and β2 6= −2d.

• 2d
β2 b

2 ≡ 0 (mod d) implies β2 | 2b2. Since β2 | 2a and (a, b) = 1, this implies β2 | 2.

As β2 < 0, the only possibility is β2 = −2. Conversely, for β2 = −2, we have
d | 2d

β2 b
2.

• 1 + 2d
β2 b

2 ≡ 0 (mod d) implies dβ2 | β2 + 2db2 and in particular β2 is divisible by d.

From a), it also satisfies β2 | 2d. Hence β2 ∈ {−d,−2d}. Observe that if β2 = −d,
the integer d is even, and, since β2d | β2 + 2db2, we get that d divides the odd
number 1 + 2b2, which is absurd. The only possibility is β2 = −2d. In this case,
since β2 | 2a and m2 is even, we obtain

β2d = −2d2 | a2m2 = β2 + 2db2 =⇒ 1 +
2d

β2
b2 ≡ 0 (mod d).

Corollary 5.7 ([Ste08, Theorem 3.3]). The divisorial components of the ramification
locus of q : KÔ(Λ) −! KO(Λ) are the Heegner divisors Hβ⊥ such that β is primitive and
satisfies the conditions

a) β2 | (2div(β), 2d);

b) β2 < 0 and β2 6∈ {−2,−2d}.

Proof. We observed in Section 5.1 that the ramification components of the ramification
locus of q : KÔ(Λ) −! KO(Λ) are the irreducible divisors of KÔ(Λ) contained in the fixed
locus of some nontrivial element of G, that we have characterized in Theorem 5.5.
Let D ⊂ KÔ(Λ) be an irreducible divisor contained in the fixed locus of a nontrivial g ∈ G.
From Theorem 5.5, we have D = Hβ⊥ where β defines a nontrivial reflection in G, so by
Theorem 5.6 it satisfies a) and b).

Conversely, if β satisfies a) and b), it defines a nontrivial reflection [rβ] ∈ G and the
divisor Hβ⊥ is contained in its fixed locus.
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In particular the components of the ramification divisor of q meets the image of the
period morphism ℘ : M2d ↪−! DÕ(Λ) and hence define divisors on the moduli space M2d.

Indeed by [Huy16, 6.Ramark 3.7] we have that

℘(M2d) = DÕ(Λ) \
⋃

β2=−2

Hβ2 .

5.3 Polarized hyper-Kähler manifolds of K3[m]-type

We now apply the results of Section 5.1 to moduli spaces of polarized hyper-Kähler man-
ifolds of K3[m]-type. In Section 4.3 we constructed, for each positive integer m and each
polarisation type τ = O(ΛK3[m])h, a period morphism

℘ : MK3[m]

τ −! Dh⊥/Ô(ΛK3[m] , h),

where h⊥ is the lattice described in Proposition 4.10. In order to apply Theorem 5.5 to
the cover

q : Dh⊥/Ô(ΛK3[m] , h⊥) −! Dh⊥/O(h⊥), (33)

we need to study the normality of the subgroup Ô(ΛK3[m] , h) of O(h⊥).

Let 2d be the square of h and let γ be the divisibility of h. We set

ω =

(
2(m− 1)

γ
,
2d

γ
, γ

)
.

In Remark 4.20, we proved that in the following cases, the group Ô(ΛK3[m] , h) is a normal
subgroup of O(h⊥).

a) (m− 1, d) = 1;

b) ω = 1 and γ > 2.

If Ô(ΛK3[m] , h) C O(h⊥), the cover q described in (33) is a ramified Galois cover of
group

G ' O(h⊥)
/
〈Ô(ΛK3[m] , h),−id〉,

therefore, again by Remark 4.20, we obtain that

• If t = 1, or ω = 1 and γ > 2, then G ' O(Ah⊥)/{±id};

• if ω = 1 γ ∈ {1, 2}, then G ' O(Ah⊥)/ 〈s,−id〉.

In Theorem 5.5, we showed that the ramification divisors of q are parametrized by
vectors β ∈ h⊥ that define nontrivial reflections in G.
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5.3.1 Vectors β that define nontrivial reflections

As in the case of polarizedK3 surfaces studied in Section 5.2, we would like to characterize
vectors β ∈ h⊥ that define nontrivial reflections in G, at least in some cases. We do that
in the case γ = 1.

As in Section 4.4, we consider a lattice L2t = M ⊕ U ⊕ Zl and a vector h ∈ L2t of
square 2d and divisibility 1. We have shown in Section 4.3 that, up to isometries of L2t,
we can suppose that h = e+ df , and that Λ = h⊥ is a lattice

Λ = M ⊕ Zk ⊕ Zl,

where k = e − df , and with k2 = −2d and l2 = −2t. Proposition 4.14 shows that the
discriminant group AΛ is isomorphic to

AΛ ' 〈k̄1〉 × 〈k̄2〉 ' Z/2dZ× Z/2tZ,

where k1 = e+df
2d
− f = e−df

2d
= k∗ and k2 = l

2t
= l∗.

Each vector β ∈ Λ can be written as

β = am+ bk + cl

where a, b, c are relatively prime integers and m ∈M is a primitive vector. Such a vector
β has divisibility div(β) = (a, 2db, 2tc) and square

β2 = a2m2 − 2db2 − 2tc2. (34)

If β defines a reflection, then, since β · k∗ = −b, we obtain

[rβ(k∗)] =

[
k∗ − 2

β · k∗
β2

β

]
=

[
k∗ + 2

b

β2
(2dbk∗ + 2tcl∗)

]
=

[(
1 +

4db2

β2

)
k∗ +

4tcb

β2
l∗

]
in AΛ, and an analogous computation gives [rβ(l∗)]. Hence [rβ] ∈ O(AΛ) is the matrix

[
1 +

4db2

β2

]
2d

[
4dbc

β2

]
2d[

4tcb

β2

]
2t

[
1 +

4tc2

β2

]
2t

 ∈ O(Z/2dZ× Z/2tZ). (35)

The vector β defines a reflection if and only if β2 | 2div(β). Observe that this implies

β2 | 4db and β2 | 4tc,

and therefore the entries of the matrix (35) are integers.

Recall that as γ = 1, if Ô(L2t, h) C O(h⊥), the groupG is isomorphic toO(AΛ)/{±s,±id},

where s =

(
1 0
0 −1

)
.

The next theorem characterize vectors β that define a reflection rβ trivial in G.
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Theorem 5.8. Let β ∈ M ⊕ Z(−2d)⊕ Z(−2t) be a primitive vector with β2 < 0. Let k
be a generator of the factor Z(−2d) and let l be a generator of the factor Z(−2t).
The vector β defines a reflection rβ such that [rβ] is contained in the group {±s,±id} if
and only if β satisfies the conditions:

a) β2 | 2div(β);

b) one has

- either β2 = −2;

- or β2 = −2t and 2td | β · k;

- or β2 = −2d and 2td | β · l;
- or β2 = −2td, (t, d) = 1, and 2td | (β · k, β · l).

Proof. The vector β defines a reflection if and only if β2 | 2div(β), and we have

div(β) = (a, 2db, 2tc) | 2 lcm(t, d)(a, b, c) = 2 lcm(t, d), (36)

where the last equality holds because β is primitive. Therefore,

β2 | 4 lcm(t, d). (37)

We want to characterize the reflections rβ such that

[rβ] ∈
{
±
(

1 0
0 −1

)
,±id

}
, (38)

where the matrix [rβ] is given in equation (35).

Assume (38) holds. The off-diagonal terms are then zero, namely 2tβ2 | 4tbc and
2dβ2 | 4dbc, or equivalently

β2 | 2bc. (39)

As for the diagonal terms, we want to understand when they are equal to ±1. For the
first entry, we have

(a) 1 +
4db2

β2
≡ 1 (mod 2d) if and only if 2dβ2 | 4db2, or equivalently β2 | 2b2.

(b) 1 +
4db2

β2
≡ −1 (mod 2d) if and only if 2dβ2 | 2(β2 + 2db2), so exactly when

dβ2 | β2 + 2db2, (40)

which yields d | β2 and β2 | 2db2. We show that necessarily 2d | β2. Indeed, if not,
β2 and d has the same valuation at 2, hence d is even and, from β2 | 2db2, we obtain
β2 | db2. Therefore, by (40), the even number d divides the odd number 1 + 2db

2

β2 ,
and clearly it is not possible.

In conclusion, 1 +
4db2

β2
≡ −1 (mod 2d) implies 2d | β2 and β2 | 2db2.

48



The same argument applied to the second diagonal term yields analogous results with t
and c in place of d and b respectively. Namely, we have

(a’) 1 +
4tc2

β2
≡ 1 (mod 2t) if and only if β2 | 2c2.

(b’) 1 +
4db2

β2
≡ −1 (mod 2d) if and only if

tβ2 | β2 + 2tc2. (41)

Moreover, the last condition implies 2t | β2 and β2 | 2tc2.

Putting all together, we can characterize primitive vectors β such that [rβ] ∈ {±id,±s}.

• [rβ] = [id] if and only if β2 = −2.
Clearly, for β2 = −2, the matrix (35) is the identity. Conversely, if [rβ] = [id], the
two diagonal terms are equal to 1, and (a) and (a’) give

β2 | 2b2 and β2 | 2c2.

Moreover β2 | 2div(β) | 2a. Since (a, b, c) = 1, we obtain β2 | 2 hence the only
possibility is β2 = −2, as we assumed β2 < 0.

• [rβ] = s if and only if β2 = −2t and t | β · (k/2d).
Indeed, in this case, the second diagonal term must be equal to −1, hence from (b’)
we obtain

β2 = 2ti for some negative integer i, and 2ti = β2 | 2tc2.

Moreover, since the first diagonal term is 1, (a) implies 2ti = β2 | 2b2, and therefore
i | b2. Finally, we also have 2ti = β2 | 2div(β) | 2a, hence

i | (a, b2, c2) = 1.

Thus we obtain β2 = −2t. The number β2 divides both 2b2 and 2a. Since by (39)
β2 also divides 2bc, we obtain −2t = β2 | 2(a, b2, bc) | 2b, which implies

t | −b = β · (k/2d).

Conversely, for β2 = −2t with β2 | 2div(β) and t | b = β · (k/2d), we show that [rβ]

is equal to s. Indeed, the only nontrivial check is to show that

[
1 +

4tc2

β2

]
2t

is equal

to [−1]2t. By equation (41), this condition can be rewritten as tβ2 | β2 + 2tc2. By
equation (34) we have

β2 + 2tc2 = a2m2 − 2db2,

where 2t = β2 | 2div(β) | 2a, t | b by hypothesis, and m2 is even. Hence, we obtain
tβ2 = 2t2 | a2m2 − 2db2 = β2 + 2tc2, which is the condition we needed.

• Analogously, [rβ] = −s if and only if β2 = −2d and d | β · (l/2t).
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• [rβ] = −id if and only if β2 = −2td and β2 | (β · k, β · l).
Observe that, if β is a primitive vector that defines a reflection, the conditions
β2 = −2td and β2 | (β · k, β · l) imply (t, d) = 1.
Indeed, we have β · k = −2db and β · l = −2dc. Hence β2 | (β · k, β · l) is equivalent
to 2td | 2db and 2td | 2tc, and namely to t | b and d | c.
Therefore, since β2 | 2div(β) | 2a, it follows that (t, d) divides a, and also divides b
and c, from the previous observation. Since β is primitive, this implies (t, d) = 1.

If [rβ] = −id, the diagonal terms must be equal to −1. From (b) and (b’) we obtain

2d | β2 and β2 | 2db2,

2t | β2 and β2 | 2tc2.

Therefore, we get 2 lcm(t, d) | β2, which in turns divides 4 lcm(t, d), by (37), so β2

is either −2 lcm(t, d) or −4 lcm(t, d).
We exclude the case β2 = −4 lcm(t, d). Indeed, in this case, from β2 | 2db2 we obtain
4 lcm(t,d)

2d
| b2, hence 2 | b2, and analogously, from β2 | 2tc2, we get 2 | c2. Since we

also have 2 | a, because β2 | 2div(β) | 2a, we get a contradiction, β being primitive.

Therefore β2 = −2 lcm(t, d). If we denote by s the number (t, d), and we write
t = sτ and d = sδ, then (τ, δ) = 1 and lcm(t, d) = sτδ. We show that, still under
the hypothesis [rβ] = −id, we have s = 1.

The condition (40) is equivalent to 1 +
2db2

β2
≡ 0 (mod d). Thus,

1 +
2sδb2

2sτδ
≡ 0 (mod s), hence

b2

τ
≡ −1 (mod s).

In particular, we can write b2 = τb1, where (b1, s) = 1. Analogously, using (41), we
show that there exists c1 coprime with s such that c2 = δc1. The vanishing of the
off-diagonal terms condition (see equation (39)) gives

2sτδ = −β2 | 2bc.

Hence, for each prime q that divides s, we have

vq(s) + vq(τδ) = vq(sτδ) ≤ vq(bc) =
vq(b

2c2)

2
=
vq(τb1δc1)

2
=
vq(τδ)

2
, (42)

where in the last equality we used that vq(b1) = vq(c1) = 0 because q | s and s is
coprime to both b1 and c1. Equation (42) implies vq(s) ≤ 0, which is absurd since
q | s. Hence s = 1.

Therefore, we are left to consider the case (t, d) = 1, and β2 = −2td. The divisibility
relations β2 | 2div(β) | 4db and β2 | 2db2 imply

−2td = β2 | (4db, 2db2) = 2d(2b, b2),
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and thus t | (2b, b2). Moreover, from equation (39) we have −2td = β2 | 2bc,
therefore we obtain

t | (bc, 2b, b2) = b(c, 2, b).

We prove that this implies t | b. If (c, 2, b) = 1, the statement is clear. Otherwise,
since 2 | (b, c) and β is primitive, then 2 - a. Therefore, since −2td = β2 | 2div(β) |
2a, we obtain that t is odd and hence if t divides 2b, then it also divides b.
Analogously, we obtain d | c. Since β · k = −2db and β · l = −2tc, we obtain the
condition β2 | (β · k, β · l).
Conversely, as in the case [rβ] = s, direct computations show that if β is a primitive
vector that defines a reflection of square β2 = −2td and such that t | b and d | c,
then [rβ] = −id. Equation (39) is easily verified and the computation for equations
(40) and (41) is the same as in the case [rβ] = s.

We observe that the conditions found on β are invariant under the action of Ô(ΛK3[m] , h).

Indeed, if g ∈ Ô(ΛK3[m] , h), we have g(l) = ±l+2tn and g(k) = k+2dn′ for some n, n′ ∈ Λ.
Therefore, if β2 = −2d, then 2td | β · l if and only if 2td | g(β) · l. Indeed,

β · l = g(β) · g(l) = g(β) · (±l) + 2tg(β) · n,

and, since β2 | 2div(β) = div(g(β)), we have that 2td | 2tg(β) · n. The invariance of the
other conditions can be shown in a similar way using g(k) = k + 2dn′.

This is our main result: we determine the ramification divisors of the Galois cover
(33), in the case of polarised hyper-Kähler manifolds of polarisation type of square 2d
and divisibility 1. It applies in particular when (m− 1, d) = 1.

Corollary 5.9. Let h ∈ ΛK3[m] be a primitive vector of square 2d and divisibility 1 such
that Ô(ΛK3[m] , h) is a normal subgroup of O(h⊥). The divisorial components of the rami-
fication locus of q : KÔ(Λ

K3[m] ,h
⊥) −! KO(h⊥) are the Heegner divisors Hβ⊥ such that β is

primitive and satisfies the conditions

a) β2 | 2div(β);

b) β2 is such that:

• β2 6= −2;

• if β2 = −2(m− 1), then 2(m− 1)d - β · k;

• if β2 = −2d, then 2(m− 1)d - β · l;
• if β2 = −2(m− 1)d, then 2(m− 1)d - (β · k, β · l).

5.3.2 Hyper-Kähler fourfolds

We now restrict to the case m = 2 of hyper-Kähler fourfolds of polarization type τ =
O(ΛK3[2])h, where h is a primitive vector of square 2d and divisibility γ. Since γ | 2(m−1),
we obtain that γ is either 1 or 2.
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We consider the case γ = 1: since m−1 = 1, the group Ô(ΛK3[2] is a normal subgroup
of O(h⊥) and defines the Galois cover

q : Dh⊥/Ô(ΛK3[2] , h
⊥) −! Dh⊥/O(h⊥).

Corollary 5.9 implies that the divisorial components of the ramification locus of q, are the
Heegner divisors Hβ⊥ such that β is primitive and satisfies the conditions

a) β2 | 2div(β);

b) β2 6= −2 and if β2 = −2d, then 2d - β · l.

Observe that, from Equation (37), if β defines a reflection, then β2 | 4d.

In [DM19], Debarre and Macr̀ı characterized the image of the period morphism of
polarized hyper-Kähler fourfolds of square 2d and divisibility γ. We would like to char-
acterize those ramification divisors that meet the this image.

For each primitive rank-2 sublatticeK of ΛK3[2] of signature (1, 1) that contains the vec-

tor h, the authors denote by D (1)
2d,K the divisor of Dh⊥/Õ(h⊥) cut out by the codimension-2

subspace P(K⊥C ) ⊂ P((ΛK3[2])C). Namely, ifK∩h⊥ = Zβ for some primitive vector β ∈ h⊥,

the divisor D (1)
2d,K is the Heegner divisor Hβ⊥ . Moreover, for each positive integer D, the

authors set
D (1)

2d,D :=
⋃

disc(K⊥)=D

D (1)
2d,K ⊂ Dh⊥/Õ(h⊥).

The image of the period morphism

℘K3[2] : MK3[2]

2d,1 −! Dh⊥/Õ(h⊥),

for polarized hyper-Kähler fourfolds of K3[2]-type and polarization type defined by a vector
h of square 2d and divisibility 1 is described in [DM19, Theorem 6.1]. In particular, they
show that the following holds.

Proposition 5.10 ([DM19, Theorem 6.1]). The image of the period morphism ℘K3[2]

is the complement of certain irreducible Heegner divisors contained in the hypersurfaces
D (1)

2d,2d, D (1)
2d,8d, D (1)

2d,10d and D (1)

2d, 2d
5

, where the last case occurs only for d ≡ ±5 (mod 25).

We now determine when a Heegner divisor Hβ⊥ is contained in one of these hypersur-
faces, for β ∈ h⊥ primitive vector of negative square that defines a reflection.

Proposition 5.11. The Heegner divisors Hβ⊥ defined by primitive vectors β that define
a reflection, such that

• β2 6= −2, β2 6= −8;

• and if d ≡ ±5 (mod 25), β2 6= −10 and β2 6= −45,

define divisors in the moduli space MK3[2]

2d,1 .
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Proof. Observe that, if K∩h⊥ = Zβ for some vector β of negative square, then the lattices
K⊥ and 〈h, β〉⊥ are equal. In particular, using [GHS13, Lemma 7.2], we can compute

disc(K⊥) = disc(〈h, β〉⊥) =
−β2 disc (h⊥)

div(β)2
=
−4dβ2

div(β)2
, (43)

where we used that disc (h⊥) = |Ah⊥| = 2d · 2.

Therefore, the Heegner divisor Hβ⊥ is contained in the locus D (1)

2d, −4dβ2

div(β)2

.

If β is a primitive vector of negative square that defines a reflection, then β2 | 2div(β)
and, since div(β) always divides β2, we have that β2 is equal to either−div(β) or−2div(β).
Hence,

• for β2 = −div(β), the formula in (43) yields

disc(〈h, β〉⊥) = −4d

β2
,

where β2 | 2d. Hence the Heegner divisor Hβ⊥ is contained in the locus D (1)

2d,−2 2d
β2

.

Proposition 5.10 implies that, if

−2
2d

β2
6∈
{

2d, 8d, 10d,
2d

5

}
,

where the last case only occurs for d ≡ ± (mod 25), the Heegner divisor Hβ⊥ meets
the image of ℘K3[2] . Namely,

if β2 6= −2 and, for d ≡ ±5 (mod 25), β2 6= −10,

the divisor Hβ⊥ defines a divisor of the moduli space MK3[2]

2d,1 .

• for β2 = −2div(β), the formula in (43) yields

disc(〈h, β〉⊥) = −16d

β2
,

where β2 | 4d. Hence the Heegner divisor Hβ⊥ is contained in the locus D (1)

2d,−2 8d
β2

.

Proposition 5.10 implies that, if

−2
8d

β2
6∈
{

2d, 8d, 10d,
2d

5

}
,

where the last case only occurs for d ≡ ±5 (mod 25), the Heegner divisor Hβ⊥

meets the image of ℘K3[2] . Namely,

if β2 6= −2, β2 6= −8, and, for d ≡ ± (mod 25), if β2 6= −45,

the divisor Hβ⊥ defines a divisor of the moduli space MK3[2]

2d,1 .
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5.3.3 Hyper-Kähler fourfolds of polarisation of square 2.

We consider the case of a polarisation type defined by a vector h of square 2 (d = 1). In
this case γ is 1 (see Remark 4.9),the group of isometries of Ah⊥ is

O(Ah⊥) =

〈(
0 1
1 0

)〉
' Z/2Z,

and, since −id and id define the same isometry of Ah⊥ , we have G ' Z/2Z.

If β is a primitive vector of ΛK3[2] that defines a reflection, then β2 ∈ {−2,−4} (see
(37)). For β2 = −2, the reflection [rβ] is the identity on the discriminant group, while for
β2 = −4, the action of [rβ] on the discriminant group is nontrivial, and Fix([rβ]) contains
the Heegner divisorHβ⊥ . Proposition 5.11 implies thatHβ⊥ meets the image of the period
morphism

℘K3[2] : MK3[2]

2,1 −! Dh⊥/Õ(h⊥),

and therefore induces a divisor in the moduli space MK3[2]

2,1 of polarised hyper-Kähler four-
folds of square 2.

Observe that, if we write h⊥ = M ⊕ Zk ⊕ Zl, where k2 = −2 and l2 = −2, the vector
γ = k + l is a vector of square −4 that defines a nontrivial reflection in G.

Remark 5.12. All primitive vectors β ∈ Λ of square −4 that define a reflection, are con-
jugated by an element of Õ(Λ), hence Hβ⊥ = Hγ⊥ .

From Eichler’s Lemma 1.18, we know that the Õ(Λ)-orbit of a vector β is uniquely
determined by β2 and β∗ ∈ Ah⊥ . Notice that, for each primitive vector β of square
−4 that defines a reflection, div(β) = 2. Indeed, div(β) | 2 from Equation (36), and
−4 = β2 | 2div(β) because β defines a reflection.
We write β = am + bk + cl, where a, b, c are integers and m ∈ M is a primitive vector.
Recall that Ah⊥ = 〈k∗〉 × 〈l∗〉 where k∗ =

[
k
2

]
and l∗ =

[
l
2

]
. Therefore,

β∗ =

[
β

div(β)

]
= b̄k∗ + c̄l∗ ∈ Ah⊥ .

We show that b̄ = c̄ = 1 ∈ Z/2Z, hence β∗ = k∗ + l∗. This is enough to finish the proof.
Since div(β) = (a, 2b, 2c) = 2, we can write a = 2a1 for some integer a1. By computing

the square of β
−4 = (2a1)2m2 − 2b2 − 2c2

we obtain that 2 | b2 + c2, from which we obtain that b and c have the same parity. Since
a is even and a, b, c are coprime, it follows that b and c are both odd.

Corollary 5.13. Let h ∈ ΛK3[2] be a primitive vector of square 2. The ramification divisor
of the cover

q : Dh⊥/Ô(ΛK3[2] , h
⊥) −! Dh⊥/O(h⊥).

is irreducible and meets the image of the period morphism

℘K3[2] : MK3[2]

2,1 −! Dh⊥/Õ(h⊥).
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Proof. The components of the ramification divisor of q are the irreducible divisors D of
Dh⊥/Õ(h⊥) contained in the fixed locus of some nontrivial element of G.
Keeping the notation of the previous remark, we write h⊥ = M ⊕ Zk ⊕ Zl. The only
nontrivial element of G is [rγ], where γ = k + l. Theorem 5.5 shows that if D is an
irreducible divisor contained in Fix([rγ]), then there exists a vector β that defines a
nontrivial reflection in G, such that D = Hβ⊥ and [rγ] = [rβ]. Now, since [rβ] is nontrivial,
then β2 6= −2, and hence β2 = −4. From the previous remark, we have Hβ⊥ = Hγ⊥ .
Therefore the ramification divisor of q is irreducible.
Finally, Proposition 5.11 show that Hγ⊥ meets in the image of ℘K3[2] .

The moduli space MK3[2]

2,1 contains a dense open subset U2,1 that is the moduli space
of double EPW sextics (see [Deb17, Example 3.5]). The involution [rγ] ∈ G defines
an involution on U2,1 which is the duality involution of double EPW sextics studied by
O’Grady in [O’G08, Theorem 1.1]. Moreover the Heegner divisors Hγ⊥ induces a divisor
on U2,1, that is exactly the divisors of autodual double EPW sextics.
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