arxiv:2505.15717 Francesca Rizzo

IMJ-PRG Paris

A hyper-Kähler manifold is a simply connected complex compact Kähler manifold X whose space of holomorphic 2-forms is generated by a symplectic form.

- $H^2(X,\mathbb{Z})$ carries a nondegenerate quadratic form q_X (topological invariant)
- X of $K3^{[n]}$ -type if X is a deformation of $Hilb^n(S)$, for some K3 surface S.

Def. An **EPW cube** is a hyper-Kähler sixfold $\widetilde{\mathbf{Z}}$ of K3^[3]-type constructed by [IKKR] as the double cover

$$g: \widetilde{Z} \xrightarrow{2:1} Z, \qquad (\times)$$

of some integral sixfold Z contained in the Grassmannian Gr(3,6), branched over the smooth threefold $Z_3 = Sing(Z)$. * Z₃ \(Z \) \(Gr(3,6) \) are Lagrangian degeneracy loci.

- The pullback of the hyperplane section of **Z** defines an ample class h on $\tilde{\mathbf{Z}}$ of square $q_{\tilde{\mathbf{Z}}}(h) = 4$ and divisibility $\operatorname{div}_q(h) = 2$.
- The construction of $\widetilde{\mathbf{Z}}$ is explicit, and yields a family of EPW cubes of dimension 21.

Let ι be the involution Z associated with the double cover g

- Since ι is antisymplectic, the fixed locus $W := g^{-1}(Z_3)$ is a smooth Lagrangian threefold.
- The deformation space of W inside $\tilde{\mathsf{Z}}$ has dimension $h^0(\mathsf{W},N_{\mathsf{W}/\widetilde{\mathsf{Z}}})=h^0(\mathsf{W},\Omega^1_{\mathsf{W}})=h^{0,1}(\mathsf{W}).$

Thm. [R] Let \tilde{Z} be a smooth EPW cube with associated involution ι . The fixed locus W of ι is a rigid Lagrangian submanifold, namely its first Betti number is 0.

Pf. The proof uses the degeneration methods of [FMOS 1, 2]

A singular degeneration of EPW cubes

Let S be a degree 2 K3 surface, with $S \xrightarrow{2:1} \mathbf{P}^2$. There exists a divisorial contraction

$$\pi\colon S^{[3]}\longrightarrow X.$$
 invariant wrt the involution $j^{[3]}$ of $S^{[3]}$ \Longrightarrow induces an involution $\iota \curvearrowright \chi$

The singular variety X is the special fiber of a degeneration $\mathscr{X} \to (D,0)$, whose generic fiber \mathscr{X}_t is a smooth EPW cube Z_t . Smooth curve

[BM] Contraction of moduli spaces of sheaves on a K3 surface S are determined by walls in the space $\operatorname{Stab}^{\dagger}(S)$. uses the normality of ME(v)

showed using the Kuranishi map • Explicit description of the contraction $\pi: S^{[3]} \longrightarrow X \simeq M_{\overline{\sigma}}(v)$

Degeneration of W

The schematic fixed locus $Fix(\iota_{\mathscr{X}}) \to (D,0)$ has reduced fibers.

The connected component \mathcal{W} that dominates D has generic fiber equal to W_t and special fiber equal to F_3 .

The family $\mathscr{W} \to D$ has slc fibers $\Longrightarrow h^i(\mathscr{W}_t, \mathscr{O}_{\mathscr{W}_t})$ is constant. Hence $h^1(\mathsf{W}, \mathscr{O}_{\mathsf{W}}) = h^1(F_3, \mathscr{O}) = 0$.

References