
A hyper-Kähler manifold is a simply connected complex compact Kähler manifold X whose space of holomorphic 2-forms is
generated by a symplectic form.

H
2(X,Z) carries a nondegenerate quadratic form qX (topological invariant)

X of K3[n]-type if X is a deformation of Hilbn(S), for some K3 surface S.

Def. An EPW cube is a hyper-Kähler sixfold eZ of K3[3]-type constructed by [IKKR] as the double cover

g : eZ �! Z,

of some integral sixfold Z contained in the Grassmannian Gr(3, 6), branched over the smooth threefold Z3 = Sing(Z).

The pullback of the hyperplane section of Z defines an ample class h on eZ of square qeZ(h) = 4 and divisibility divq(h) = 2.

The construction of eZ is explicit, and yields a family of EPW cubes of dimension 21.

Let ◆ be the involution eZ associated with the double cover g .

Since ◆ is antisymplectic, the fixed locus W := g
�1(Z3) is a smooth Lagrangian threefold.

The deformation space of W inside eZ has dimension h
0(W, NW/eZ) = h

0(W,⌦1
W) = h

0,1(W).

Thm.[ ] Let eZ be a smooth EPW cube with associated involution ◆. The fixed locus W of ◆ is a rigid Lagrangian submanifold,
namely its first Betti number is 0.

Pf. The proof uses the degeneration methods of [FMOS 1, 2]

A singular degeneration of EPW cubes

Let S be a degree 2 K3 surface, with S
2:1�! P2. There exists a

divisorial contraction
⇡ : S [3] �! X.

The singular variety X is the special fiber of a degeneration
X ! (D, 0), whose generic fiber Xt is a smooth EPW cube eZt.

[BM] Contraction of moduli spaces of sheaves on a K3 surface S are determined by walls in the space Stab†(S).

Explicit description of the contraction ⇡ : S [3] �! X ' M�(v)

Fixed locus of ◆ X = F2 t F3

Degeneration of W
The schematic fixed locus Fix(◆X ) ! (D, 0) has reduced fibers.

The connected component W that dominates D has generic fiber
equal to Wt and special fiber equal to F3.

The family W ! D has slc fibers =) h
0(Wt,OWt

) is constant. Hence h0(W,OW) = h
0(F3,O) = 0.

There exists a family eW ! B whose fibers eWb are Lagrangians sumbanifolds of class 2[W] that cover eZ.
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