A hyper-Kähler manifold is a simply connected manifold whose space of holomorphic 2-forms is generated by a symplectic form.

We study examples of hyper-Kähler manifolds of dimension 4 and 6 constructed from A in the Lagrangian Grassmannian $LG(\bigwedge^3V_6)$. The vector space of dim 6

Double EPW sextics

Given $A \in LG(\Lambda^3V_6)$, we can construct the EPW sextic stratification

$$Y_A^{\geq i} \subset \mathbf{P}(V_6)$$
.

Theorem (O'Grady). If $A \not\in \Sigma$, then

such that if $A \not\in \Delta$, \widetilde{Y}_A is a hK variety $\sim \text{K3}^{[2]}$.

If $A \in \Delta$, Y_A is singular along $f_A^{-1}(Y_A^3) = \{y_1, \dots y_r\}$. We can construct a K3 surface $S_A \subset \mathbf{P}^6$ of genus 6 and a projective resolution

$$\mathrm{Bl}_{\{y_1,\ldots,y_r\}}(\widetilde{Y}_A) \longrightarrow S_A^{[2]} \xrightarrow{\mathrm{Small}} \widetilde{Y}_A$$

<u>Not</u>: We denote by $\Sigma \subset LG(\Lambda^3V_6)$ the divisor of Lagrangians A that contain decomposable vectors. V1 1 V2 1 V3

EPW cubes

Given $A \in LG(\Lambda^3V_6)$, we have another chain of subschemes

$$\mathsf{Z}_A^{\geq i} \subset \operatorname{Gr}(3, V_6).$$

Theorem (IKKR, \mathbb{R}). If $A \notin \Sigma$, then

Theorem (IKKR, R). If
$$A \not\in \Sigma$$
, then
$$\operatorname{Gr}(3, V_6) \supset \operatorname{Z}_A^{\geq 1} \supset \operatorname{Z}_A^{\geq 2} \supset \operatorname{Z}_A^{\geq 3} \supset \operatorname{Z}_A^{\geq 4} \supset \operatorname{Z}_A^{\geq 5} = \varnothing$$

$$\text{In ormal integral integral integral for A general (outside the divisor } \emptyset$$
where each $\operatorname{Z}_A^{\geq i+1}$ is the singular locus of $\operatorname{Z}_A^{\geq i}$.

Theorem (IKKR, DK). There exists a double cover

such that the singular locus of $\widetilde{\mathsf{Z}}_A$ is $g_A^{-1}(\mathsf{Z}_A^4)$.

If $A \notin \Gamma$, \mathbf{Z}_A is a hyper-Kähler variety $\sim \mathrm{K3}^{[3]}$.

On the geometry of singular EPW cubes

 $A \in \Gamma$ Let $g^{-1}(\mathsf{Z}^4_{\scriptscriptstyle A}) \coloneqq \{z_1, \dots, z_r\}$

ar Xiv: 2405. 13472

- (a) The blowup $X_A \to Z_A$ of Z_A in $\{z_1, \ldots, z_r\}$ is smooth and the exceptional divisor E_i over the point z_i is the incidence variety $I \subset \mathbf{P}^3 \times (\mathbf{P}^3)^{\vee}$.
- (b) For any choice $\epsilon = (\epsilon_1, \dots, \epsilon_r)$ of contractions of each E_i onto either \mathbf{P}^3 or $(\mathbf{P}^3)^\vee$, we obtain an (analytic) small resolution

$$\mathsf{X}_A^\epsilon o \widetilde{\mathsf{Z}}_A$$

with exceptional locus a disjoint union of r copies of \mathbf{P}^3 .

For any two analytic resolutions X_A^{ϵ} and $X_A^{\epsilon'}$, there is a Mukai flop $X_A^{\epsilon} \longrightarrow X_A^{\epsilon'}$

(c) There exists a choice of ϵ such that X_A^{ϵ} is a **projective** smooth quasi-polarized hyper-Kähler sixfold with a projective contraction $\mathsf{X}_A^\epsilon \to \mathsf{Z}_A$ of r copies of \mathbf{P}^3 .

Tools for the proof:

References

surjectivity of the period map for hyper-Kähler sixfolds

+ relations between period maps for EPW cubes and double EPW sextics

Small projective resolutions of $\widetilde{\mathsf{Z}}_A$ are the blow up of Weil divisor classes that are nontrivial in $Cl(\widetilde{\mathsf{Z}}_A)$

there exists a line bundle L on \widetilde{X}_A such that $L_{|E_i} = \mathcal{O}(c_i, 0)$ or $\mathcal{O}(0, c_i)$, with $c_i > 0$, that induces the contraction $\widetilde{X}_A \to Y_A$.

[DK] Debarre, Kuznetsov, Double covers of quadratic degeneracy and Lagrangian intersection loci [IKKR] Iliev, Kapustka, Kapustka, Ranestad, EPW cubes [KKM] Kapustka, Kapustka, Mongardi, EPW sextics vs EPW cubes

[KP] Kuznetsov, Prokhorov, One-nodal Fano threefolds with Picard number one [O'G1] O'Grady, EPW-sextics: taxonomy [O'G2] O'Grady, Double covers of EPW-sextics.