TD4 - Groupes polonais

Exercice 1. Continuité de morphismes de groupes topologiques.

- 1. Soit G un groupe topologique. Montrer que pour tout $g \in G$, les voisinages de g sont exactement les ensemble de la forme gV où V est un voisinage de l'identité.
- 2. En déduire qu'un morphisme $\pi: G \to H$ entre deux groupes topologiques est continu ssi il est continu en l'identité : pour tout voisinage V de 1_H , l'ensemble $\pi^{-1}(V)$ est un voisinage de 1_G .

Exercice 2. Unicité de topologie polonaise.

On se propose de montrer que la topologie τ de groupe de \mathfrak{S}_{∞} que l'on a vue en cours est en fait la seule topologie de groupe polonais possible sur \mathfrak{S}_{∞} . Soit τ' une autre topologie de groupe polonaise. On note

$$G_n := \{ \sigma \in \mathfrak{S}_{\infty} : \forall i < n, \sigma(i) = i \} \text{ et } H_n := \{ \sigma \in \mathfrak{S}_{\infty} : \forall i \geqslant n, \sigma(i) = i \}.$$

1. Montrer que pour tout $n\geqslant 3$, l'ensemble G_n est le commutateur de H_n , c'est-à-dire que

$$G_n = \{ \sigma \in \mathfrak{S}_{\infty} : \forall \tau \in H_n, \sigma \tau = \tau \sigma \}.$$

2. En déduire que G_n est τ' -fermé et conclure que $\tau = \tau'$.

Exercice 3. Sous groupes d'indice dénombrable.

- 1. Montrer que tout sous-groupe Baire-mesurable non maigre d'un groupe polonais est ouvert d'indice dénombrable.
- 2. Montrer qu'un groupe connexe n'a pas de sous-groupe Baire-mesurable d'indice dénombrable.
- 3. Montrer que $\mathbb R$ admet des sous-groupes d'indice dénombrable. *Indication* : voir $\mathbb R$ comme $\mathbb Q$ espace vectoriel.
- 4. Montrer que G a la propriété d'indice dénombrable ssi tous les morphismes $G \to \mathfrak{S}_{\infty}$ sont continus. Indication : Si $H \leqslant G$ est d'indice dénombrable, considérer l'action de G sur G/H.

Exercice 4. Images de morphismes.

Soit $\pi: G \to H$ un morphisme continu entre deux groupes polonais G et H.

- 1. Montrer que π passe au quotient en un morphisme continu injectif $\tilde{\pi}: G/\mathrm{Ker}\,\pi \to H$.
- 2. En déduire que $\pi(G)$ est borélien.
- 3. Montrer que si π est surjective, alors π est ouverte.