Proof of the Kakutani metrization theorem

François Le Maitre

March 10, 2017

Theorem 0.1. Let G be a group, let $\left(U_{n}\right)$ be a decreasing family of symmetric subsets of G containing 1_{G} such that for all $n \in \mathbb{N}$,

$$
U_{n+1}^{\cdot 2} \subseteq U_{n}
$$

Then there is a pseudo-metric d on G such that
(i) The pseudo-metric d is left invariant.
(ii) For all $x \in U_{n}, d(1, x) \leqslant 3 \cdot 2^{-n}$
(iii) For all $x \notin U_{n}, d(1, x) \geqslant 2^{-n}$

Proof. First note that by using our hypothesis that for all $n \in \mathbb{N}, U_{n+1}^{\cdot 2} \subseteq U_{n}$, a straightforward induction on k yields that for every $n_{0}<n_{1}<\cdots<n_{k}$ we have

$$
\begin{equation*}
U_{n_{0}} \supseteq U_{n_{1}} U_{n_{2}} \cdots U_{n_{k}} . \tag{}
\end{equation*}
$$

We will now build a natural analogue of a norm in our group G using a construction reminiscent of the Urysohn construction of a continuous test function on a regular space.

For each $n \in \mathbb{N}^{*}$ Let $V_{2^{-n}}:=U_{n}$. We will extend this definition so that V_{r} makes sense for every r positive dyadic fraction. First, for all $r \geqslant 1$ we let $V_{r}=G$. Next, for $r \in \mathbb{N}^{*}[1 / 2]$ and $r<1$ write the dyadic expansion of r as $r=2^{-n_{1}}+\cdots+2^{-n_{k}}$ with $n_{1}<\cdots<n_{k}$. Then let

$$
V_{r}=V_{2^{-n_{1}}} \cdots V_{2^{-n_{k}}} .
$$

Given $r, s \in \mathbb{N}^{*}[1 / 2]$, note that if the biggest exponent n_{k} in the dyadic expansion of r satisfies $2^{-n_{k}}>s$ then

$$
V_{r+s}=V_{r} V_{s}
$$

Now property (*) may be restated as: for every $n_{0}<n_{1}<\cdots<n_{k}$, if we let $t=2^{-n_{1}}+2^{-n_{2}}+\cdots+2^{-n_{k}}$ then

$$
V_{2^{-n_{0}}} \supseteq V_{t} .
$$

We will use this property to show that the V_{r} 's are nested, i.e.

$$
\begin{equation*}
\forall r<s, V_{r} \subseteq V_{s} \tag{1}
\end{equation*}
$$

So suppose $r<s$, write $r=2^{-n_{1}}+\cdots+2^{-n_{k}}$ with $n_{1}<\cdots<n_{k}$ and $s=$ $2^{-m_{1}}+\cdots+2^{-m_{l}}$ with $m_{1}<\cdots<m_{l}$. Let i be the first integer such that $m_{i} \neq n_{i}$, then since $r<s$ we must have $m_{i}<n_{i}$. Since $m_{i}<n_{i}<n_{i+1}<\cdots n_{k}$, property yields

$$
V_{2^{-m_{i}}} \supseteq V_{2^{-n_{i}}} \cdots V_{2^{-n_{k}}} .
$$

Multiplying each side by $V_{2^{-n_{1}}} \cdots V_{2^{-n_{i-1}}}$ on the left, we finally obtain

$$
V_{s} \supseteq V_{2^{-n_{1}}} \cdots V_{2^{-n_{i-1}}} V_{2^{-m_{i}}} \supseteq V_{r}
$$

We now define a function which will behave almost like a norm on G : for $g \in G$ we let

$$
\phi(g):=\inf \left\{r: g \in V_{r}\right\} .
$$

Then clearly $\phi(g) \leqslant 2^{-n}$ for all $x \in U_{n}$, and $\phi(g) \geqslant 2^{-n}$ for all $g \notin U_{n}$. Moreover since each V_{r} contains 1_{G}, we have $\phi\left(1_{G}\right)=0$.

We will now see that ϕ satisfies a uniform continuity-like inequality, which will allow us to build a left-invariant pseudo metric with nice properties out of it.

The key to this inequality an estimate on products of the V_{r} 's, namely for all $r \in \mathbb{N}[1 / 2]$ and $n \in \mathbb{N}$,

$$
\begin{equation*}
V_{r} V_{2^{-n}} \subseteq V_{r+3 \cdot 2^{-n}} \tag{2}
\end{equation*}
$$

First note that if n is stricly larger than the biggest exponent in the dyadic expansion of r, then we have

$$
V_{r} V_{2^{-n}}=V_{r+2^{-n}} \subseteq V_{r+3 \cdot 2^{-n}}
$$

If not, write $r=2^{-n_{1}}+\cdots+2^{-n_{k}}$ with $n_{1}<\cdots<n_{k}$. Let $i \in \mathbb{N}$ such that $n_{i}<n \leqslant n_{i+1}$ (if $n \leqslant n_{1}$ we take $i=0$). Then consider $r^{\prime}=2^{-n_{1}}+\cdots+2^{-n_{i}}+2 \cdot 2^{-n}$. Observe that $r^{\prime}>r, r^{\prime}-r \leqslant 2 \cdot 2^{-n}$ and n is stricly larger than the biggest exponent in the dyadic expansion of r^{\prime}. We thus have

$$
V_{r} V_{2-n} \subseteq V_{r^{\prime}} V_{2^{-n}}=V_{r^{\prime}+2^{-n}}
$$

Since $r \leqslant 2 \cdot 2^{-n}+r$ we conclude $V_{r^{\prime}+2^{-n}} \subseteq V_{r+3 \cdot 2^{-n}}$ as wanted.
We can now use 2 to establish the desired uniform continuity-like inequality, namely

$$
\begin{equation*}
\text { for all } x \in V_{2^{-n}} \text { and all } g \in G, \quad|\phi(g x)-\phi(g)| \leqslant 3 \cdot 2^{-n} \tag{3}
\end{equation*}
$$

Equation 2 implies that for all $g \in G$ and all $x \in V_{2^{-n}}$, if $\phi(g)<r$, then $\phi(g x) \leqslant$ $r+3 \cdot 2^{-n}$. Taking the infimum over all r such that $\phi(g)<r$, we conclude that

$$
\phi(g x) \leqslant \phi(g)+3 \cdot 2^{-n}
$$

for all $g \in G$ and all $x \in V_{2^{-n}}$. Since $V_{2^{-n}}=U_{n}$ is symetric, we deduce that for all $g \in G$ and all $x \in V_{2^{-n}}$, we have $\phi\left(g x^{-1}\right) \leqslant \phi(g)+2^{-n}$. Replacing g by $g x$ in the above equation ($g \mapsto g x$ is a bijection of G !), we conclude that for all $g \in G$ and $x \in V_{2^{-n}}$,

$$
\phi(g) \leqslant \phi(g x)+3 \cdot 2^{-n}
$$

which finishes the proof of equation 3.
We have a nice pseudometric for points close to the identity given by $(x, y) \mapsto$ $|\phi(x)-\phi(y)|$. We will now propagate it to the whole group by letting

$$
d(x, y)=\sup _{g \in G}|\phi(g x)-\phi(g y)| .
$$

Let us now check our function d is a pseudo-metric. Clearly $d(x, x)=0$ for all $x \in G$ and $d(x, y)=d(y, x)$ for all $x, y \in G$. For the triangle inequality, note that for all $g, x, y, z \in G$

$$
|\phi(g x)-\phi(g z)| \leqslant|\phi(g x)-\phi(g y)|+|\phi(g y)-\phi(g z)| \leqslant d(x, y)+d(y, z) .
$$

Taking the supremum over $g \in G$ establishes the triangle inequality $d(x, z) \leqslant$ $d(x, y)+d(y, z)$.

Finally, let us check that d has the desired properties.
(i) Given $x, y, h \in G$ we have

$$
d(h x, h y)=\sup _{g \in G} d(g h x, g h x) .
$$

Since $g \mapsto g$ is a bijection of G we can replace $g h$ by g in the right-hand term, which establishes left-invariance.
(ii) Given $x \in U_{n}=V_{2-n}$ and $h \in G$, equation 3 implies $|\phi(g x)-\phi(g)| \leqslant 3 \cdot 2^{-n}$ for all $g \in G$, so by taking the supremum $d\left(1_{G}, x\right) \leqslant 3 \cdot 2^{-n}$.
(iii) Given $x \notin U_{n}=V_{2^{-n}}$ we have $\phi(x) \geqslant 2^{-n}$ and since $\phi\left(1_{G}\right)=0$ we deduce $\left|\phi(x)-\phi\left(1_{G}\right)\right| \geqslant 2^{-n}$. We conclude that $d\left(1_{G}, x\right) \geqslant 2^{-n}$.

