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1 Definition and first examples from countable groups

Let (M, τ) be a finite separable von Neumann algebra. A subalgebra A ⊆ M is called
maximal abelian if it is maximal as an abelian subalgebra. This means that there is no
x ∈M \ A which commutes with A.

In this section, our only source of examples will be von Neumann algebras of countable
infinite groups. So let us fix a countable infinite group Γ. Recall that each element of LΓ
has a unique Fourier decomposition x =

∑
γ aγuγ, where the convergence is in the 2-norm

(but not in any of the usual topologies on B(H) !) and aγ = 〈xδe, δγ〉 = 〈xδe, uγδe〉 =
τ(u∗γx) = τ(xu∗γ). Let us start by recalling when LΓ is a factor.

Proposition 1.1. The von Neumann algebra LΓ is a factor iff Γ is i.c.c. (all the conju-
gacy classes of non trivial elements are infinite).

Proof. Suppose γ ∈ Γ has a finite conjugacy class F . Then by considering the average
of the elements in the conjugacy class, we get an element of LΓ which is invariant under
conjugacy by unitaries from γ. In other words, our algebra has nontrivial center.

Conversely let x =
∑

γ aγuγ belong to the center. Then for all h ∈ Γ, we have
aγ = ahγh−1 . Indeed,

τ(xλ∗hγh−1) = τ(xλhλ
∗
γλ
∗
h)

= τ(λ∗hxλhλ
∗
γ)

= τ(xλ∗hλhλ
∗
γ)

= τ(xλ∗γ)

Note that we used the trace property to go from the first to the second line. But the
integrability of the squares of aγ then forces that if a coefficient other than ae is non zero,
the conjugacy class of the corresponding element is finite.
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More generaly, we have the following computation of relative commutants of subgroups
of Γ.

Proposition 1.2. Let Λ be a subgroup of Γ. Then the elements of Λ′ ∩ LΓ are those
whose Fourier coefficients are constant on each Λ-conjugacy class.

When M is the von Neumann algebra of a group Γ and Λ is an abelian subgroup of
Γ, one can consider LΛ as an abelian subalgebra of LΓ. We first figure out when it is
maximal. Clearly a sufficient condition is that Λ is a maximal subgroup of Γ. Moreover
if x ∈ LΓ commutes with all the elements of Λ, by the previous proposition its Fourier
coefficients must be constant on Λ conjugates, so by the same proof as above we have:

Proposition 1.3. LΛ is a masa in LΓ iff Λ is abelian and every element of Γ \Λ has an
infinite Λ-conjugacy class.

Note that a masa in a finite II1 factor has to be diffuse, so all masas in separable von
Neumann algebras are isomorphic as von Neumann algebras. However, the way they sit in
the ambient algebra can be drastically different. Here is a first basic invariant introduced
by Dixmier.

Definition 1.4. Let N be a subalgebra of a von Neuman algebra M . The normalizing
algebra of N in M , denoted by NM(N), is the von Neumann algebra generated by the
unitaries u of M satisfying uNu∗ = N . Say that N is

• Regular (or Cartan) if NM(N) = M ;

• Semi-regular if NM(N) is a factor;

• Singular if NM(N) = N .

Note that it can happen that a masa falls in none of the above categories. Such
examples will be obtained later on via ergodic theory.

1.1 Regular masas

The following proposition is not hard to show.

Proposition 1.5. Let Γ be a countable group, let Λ 6 Γ be an abelian normal subgroup
such that every element of Γ \Λ has an infinite Λ-conjugacy class. Then LΛ is a Cartan
subalgebra of LΓ.

Example 1.6. Consider the group Γ whose elements are 2-by-2 matrices of the form(
a x
0 1

)
where a ∈ Q∗ and x ∈ Q. We have the following conjugation:

(
b y
0 1

)(
a x
0 1

)(
b y
0 1

)−1

=

(
ab bx+ y
0 1

)(
b−1 −b−1y
0 1

)
=

(
a bx+ (1− a)y
0 1

)

So if x 6= 0 the conjugacy class of
(
a x
0 1

)
is infinite, and if a 6= 1 it is also infinite, so

our group Γ is i.c.c.
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The subgroup Λ consisting of those elements of the form
(

1 y
0 1

)
is a normal sub-

group. Every element of Γ \ Λ is of the form
(
a x
0 1

)
with a 6= 1, and its conjugate by(

1 y
0 1

)
is equal to: (

a x+ (1− a)y
0 1

)
so its Λ-conjugacy class is infinite. So LΛ is a Cartan subalgebra of LΓ.

In order to give a more elaborate example, let us first recall the definition of the semi-
direct product of groups: given a group Γ acting on a group Λ by automorphism, the
semi-direct product Λ o Γ is the set Λ× Γ equipped with the product

(λ1, γ1)(λ2, γ2) = (λ1(γ1 · λ2), γ1γ2).

We view both Λ and Γ as subgroups of Λ o Γ via the respective group embeddings
λ 7→ (λ, 1Γ) and γ 7→ (1Λ, γ). Note that we then have, for all g, γ ∈ Γ and all λ ∈ Λ,

g(λ, γ)g−1 = (g · λ, gγg−1),

in particular gλg−1 = g · λ, using our previous identifications. It is also useful to give a
description of the conjugacy action of Λ on the whole group: given h ∈ Λ, we have

h(λ, γ)h−1 = (hλ(γ · h−1), γ).

So when Λ is abelian, the Λ-stabilizer of (λ, γ) for the conjugacy action is the set of all
h ∈ Λ such that h − γ · h = 0, so it is the subgroup Fix(γ). So the conjugacy class is
infinite if and only if Fix(γ) has infinite index in Λ.

Exercise 1.1. Show that the previous example is isomorphic to the semi-direct product
QoQ∗, where Q∗ acts by multiplication on Q.

Example 1.7. Let us show that LZ2 6 LZ2 o Sl2(Z) is Cartan. First, let us see why
Z2oSl2(Z) is i.c.c. Clearly the Sl2(Z)-action on Z2 has infinite orbits except for (0, 0). So

it suffices to show that every element 6=
(
−1 0
0 −1

)
in Sl2(Z) has an infinite conjugacy

class in Sl2(Z), and then to show that the elements ((a, b),

(
−1 0
0 −1

)
) have an infinite

conjugacy class. For a given matrix
(
a b
c d

)
, its respective conjugates by

(
1 1
0 1

)
and(

1 0
1 1

)
(which both belong to Sl2(Z)) are equal to

(
a+ c (b+ d)− (a+ c)
c d− c

)
and

(
a− b b

(a+ c)− (b+ d) b+ d

)

So we see that as soon as one of the coefficients c or b is non zero, the matrix
(
a b
c d

)
has

an infinite Sl2(Z) conjugacy class. Since the only 2 matrices the form
(
a 0
0 d

)
belonging
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to Sl2(Z) are ±id, we now only need to show that ((a, b),

(
−1 0
0 −1

)
) has an infinite

conjugacy class. But if we conjugate it by an element ((u, v), id), we get

((u, v), id)

(
(a, b),

(
−1 0
0 −1

))
((−u,−v), id) =

(
(a+ 2u, b+ 2v),

(
−1 0
0 −1

))
So our group is icc as wanted.

Now by construction of the semi-direct product, the subgroups Z2 is normal, so to
finish the proof we need to show that every element of Z2 oSl2(Z) which does not belong

to Z2 has an infinite Z2 conjugacy class. Fix a matrix γ =

(
a b
c d

)
in Sl2(Z) different

from the identity, by our analysis on semi-direct products and the fact that Λ is abelian
it suffices to show that the set of all h− (γ ·h) is infinite when h ranges over Z2. So write

h =

(
u
v

)
, then

h− γ · h =

(
u− (au+ bv)
v − (cu+ dv)

)
Since γ 6= 1, either b 6= 0 in which case by changing v we see that the first coordinate
of the above vector can take infinitely many different values, or c 6= 0 in which case the
second coordinate of the above vector can take infinitely many different values.

1.2 Singular masas

Consider the following condition on an abelian subgroup H 6 G: for all B b G\H, there
is h ∈ H such that BhB ∩H = ∅.

First note that this implies that LH is a masa. Indeed, take g ∈ G \H, suppose for a
contradiction that the conjugacy class gH is finite. Then (γ−1)Λ is also finite, so there is
λ0 ∈ Λ such that for all λ1, λ2 ∈ Λ,

λ1γλ
−1
1 λ0λ2γ

−1λ−1
2 6∈ Λ

But if we take λ1 = λ0 and λ2 = e, this becomes λ0γγ
−1 = λ0 ∈ Λ, a contradiction.

Now let us see why this implies that LH is moreover singular. To this end, let u
be a unitary in LG which normalizes LH. By the Kaplansky density theorem, we find
a sequence of elements tn ∈ CG such that tn → u *-strongly and ‖tn‖ 6 1. Write
tn = xn + yn, where xn ∈ CH and yn ∈ CG \H. Note that ‖xn‖ 6 1 because xn is the
conditional expectation of tn on LH.

Writing the union of the support of yn and y∗n as Bn, we find hn such that BnhnBn∩H =
∅. Then the elements ynλhny∗n, ynλhnx∗n and xnλhny∗n are all supported outside of H, in
particular the conditional expectation of tnλhnt∗n onto LH is equal to xnλhnx∗n.

But by the continuity of multiplication on bounded sets and the continuity of the
conditional expectation, we then have that the 2 norm of the conditional expectation of
tnλhnt

∗
n converges to the 2-norm of uλhnu∗ which is equal to 1. So the 2-norm of xnλhnx∗n

goes to 1, and since it is bounded above by ‖xn‖ ‖λhn‖ ‖xn‖2, we have ‖xn‖2 → 1, which
means that ‖yn‖2 → 0. So u is a ‖·‖2 limit of elements of (LH)1, in particular it belongs
to LH as wanted.

Example 1.8. Let us go back to the Q o Q∗ example, this time consider the group
H = Q∗, we show it satisfies the previous condition. Suppose we are given a family B of
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elements (a1, b1), ..., (an, bn) with all the ai’s non zero. Observe that

(a, b)(0, c)(a′, b′) = (a, bc)(a′, b′) = (a+ bca′, bcb′)

so c is as wanted as soon as ai + bjcaj 6= 0 for all i, j which we can always ensure.

Example 1.9. In LF2 = 〈a, b〉, consider the group generated by a. It is abelian, and
easily seen to satisfy the singularity condition by taking a large enough power of a such
that for any b1, b2 ∈ B, when reducing b1a

kb2, one letter of ak is kept in the middle,
ensuring there is no simplification of a b letter.

1.3 Semi-regular masas

In order to obtain semi-regular masas, we need an extra intermediate subgroup. Suppose
we have H 6 K 6 G, where LH is already a masa in LG, that both K and G are icc and
that H is normal in G.

We introduce two conditions which are both sufficient for LH to be semi-regular, and
which will actually ensure that its normalizing algebra is equal to LG.

(i) For all k ∈ K \G, all B b K, there is h ∈ H such that khk−1 6∈ H and for all b ∈ B,
either hbh−1 = b or hbh−1 6∈ B.

(ii) For all k ∈ K \ G, all F b K \ H, there is h ∈ H such that k−1hk 6∈ H and
hFh−1 ∩H = ∅.

We first show that (i) implies that the normalizer is equal to LG. Take u normalizing
unitary, write u =

∑
akuk, assume by contradiction that ak0 6= 0 for some k ∈ K \ G.

Take a sequence (tn) ∈ CK with norm bounded by 1 which strong-* converges to u. Note
that ak0 = τ(uu∗k0), so we have τ(tnu

∗
k0

) is far from zero for large enough n.
Consider tnλht∗n, then this converges ∗-strongly to uλhu∗, all whose Fourier coefficients

outside of H are zero. So the coefs of tnλht∗n must converge uniformly to zero outside of
H. Indeed τ(tnλht

∗
nu
∗
k) − τ(uλhu

∗u∗k) 6 ‖(tnλht∗n − uλhu∗)u∗k‖2 6 ‖tnλht∗n − uλhu∗‖2 6
‖(tn − u)λhu

∗‖2 + ‖uλh(u− tn)∗‖2 6 2 ‖u− tn‖2. So we need to compute τ(tnλht
∗
nλ
∗
k) for

large enough n. Now fix such an n, write t = tn, denote by (βk) the Fourier coefficients
of t. Let us see what is the Fourier coeff at k0hk

−1
0 . We have the term |βk0|

2, but also
terms coming from those k’s and j′s in the support of t such that khj−1 = k0hk

−1
0 , which

is equivalent to k−1
0 k = hk−1

0 jh−1. Now take for B the set of all k−1
0 k for k in the support

of t, and take h given by the condition, we find that this condition on k and j is met if
and only if j = k, in particular the other terms will be squares, so the Fourier coefficient
of tλht∗ at k0hk

−1
0 is at least |βk0|

2, which is a contradiction because all those should
converge uniformly to zero.

Now we show that (ii) implies (i), thus finishing the proof.

2 Basics on ergodic theory

2.1 Measure-preserving transformations and actions

Let A be the diffuse separable abelian von Neumann algebra, equipped with a trace τ . We
denote by Aut(A, τ) the group of trace preserving automorphisms of A. We need models
for A in order to build such automorphisms.
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Lemma 2.1. Let (X, τ) be a separable topological space whose topology admits a compat-
ible complete metric (also known as a Polish space). Let µ be a diffuse Borel probability
measure on X. Then L∞(X,µ) is the diffuse separable abelian von Neumann algebra.

Proof. The difficult part is to show separability. For this, we need to show that the Hilbert
space L2(X,µ) is separable. Recall that step functions are dense, so it suffices to show
that the space of characteristic functions of subsets is separable. Note that the square of
the L2 distance between the characteristic function of A and B is equal to µ(A4B).

The separability and metrizability ensures that the topology is second-countable, i.e.
admits a countable basis (Un). Then using the regularity of the measure (a consequence of
the Polishness of the space), one sees that the set of characteristic functions of finite unions
of elements of (Un) is dense in the set of characteristic functions, so we are done.

Definition 2.2. A measure-preserving transformation of a probability space (X,µ)
is a bimeasurable bijection T : X → X such that µ(T−1(B)) = µ(B) for all measurable
B ⊆ X. A measure-preserving action of a countable group Γ on (X,µ) is an action
on (X,µ) by measure-preserving transformations.

Note that every measure-preserving transformation yields a trace preserving automor-
phism of L∞(X,µ) given by f 7→ f ◦ T−1, and that two measure-preserving transfor-
mations which yield the same automorphism are equal up to measure zero. Now every
trace-preserving automorphism of a finite von Neumann algebra (M, τ) induces a unitary
on its ‖·‖2-completion L2(M). In our case, the unitary associated to a measure-preserving
transformation T is given by UT : f 7→ f ◦ T−1.

Note that we have the following formula, where mf is the bounded operator of multi-
plication by f , which we will also sometimes denote by f when it is clear from the context
that we work in B(L2(X,µ))

UTmfU
−1
T = mT ·f (2.1)

Indeed UTmfU
−1
T g(x) = (mfU

−1
T g)(T−1x) = f(T−1x)(U−1

T g)(T−1x) = f(T−1x)g(x).
Given a measure-preserving group action of a countable group Γ, we then have an

associated unitary representation κ : γ 7→ Uγ. Moreover, the space of constant functions
is invariant, we denote by L2

0(X,µ) its orthogonal. The restriction of the unitary repre-
sentation κ to L2

0(X,µ), denoted by κ0, is called the Koopman representation of the
action.

Definition 2.3. Γ y (X,µ) is ergodic when κ(Γ)′ ∩ L∞(X,µ) = C1.

Remark 2.4. Recall that L∞(X,µ) is a masa in B(L2(X,µ)), i.e. L∞(X,µ)′ = L∞(X,µ).
So equivalently, a measure-preserving action Γ y (X,µ) is ergodic if and only if (π(Γ) ∪
L∞(X,µ))′′ = B(L2(X,µ)). In order to obtain a more interesting von Neumann algebra
out of a measure-preserving action, we will rather consider the crossed product construc-
tion. The unitary representation associated to the action will also provide some relevant
information.

Proposition 2.5. The following are equivalent:

(i) The action is ergodic;

(ii) The only elements of L∞(X,µ) which are fixed by the action are the constant func-
tions;
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(iii) There is no measurable set A with 0 < µ(A) < 1 such that µ(γA4 A) = 0 for all
γ ∈ Γ;

(iv) There is no measurable set A with 0 < µ(A) < 1 such that γA = A for all γ ∈ Γ;

(v) The associated Koopman representation κ0 on L2
0(X,µ) is ergodic.

Proof. The equivalence of the first two items is a consequence of equation (2.5). The equiv-
alence of (i) and (iii) is given by the fact that the von Neumann algebra κ(Γ)′∩L∞(X,µ)
is generated by its projections, which are of the form χA, and we have κ(γ)χAκ(γ−1) =
χγ·A. Condition (iii) clearly implies (iv), and for the converse one considers the set
Ã =

⋂
γ ∈ ΓγA.

Finally, it is clear that (v) implies (ii) since L∞(X,µ) ⊆ L2(X,µ). For the converse,
we use the contrapositive. Suppose χ is a non zero invariant function in L2

0(X,µ), suppose
it has norm 1. Denote by L∞0 (X,µ) the orthocomplement of the constant functions in
L∞(X,µ). Take f ∈ L∞0 (X,µ) which is 1/8-close to χ in ‖·‖2. Then ‖f − γf‖2 6 1/4 for
all γ ∈ Γ. Since ‖f‖2 > 7/8, we have ‖f − γf‖2 6

2
7
‖f‖2. By Theorem A.4, the closed

convex hull of π(Γ)f contains a non zero Γ-fixed point. But recall that the operator norm
ball (L∞0 (X,µ))‖f‖ is closed in ‖·‖2 and convex, so the non-zero fixed point we found
actually belongs to L∞0 (X,µ)

2.2 Compact examples

All the transformations considered in this section are gradually more general: the odome-
ter is a special case of profinite action, and every profinite action is a special case of a
compact action.

2.2.1 The odometer

Consider the standard Borel space X = {0, 1}N equipped with the non-atomic probability
measure µ = (1

2
δ0 + 1

2
δ1)⊗N. Any finite binary sequence s ∈ {0, 1}n defines a subset Ns of

the product space {0, 1}N consisting of all the sequences starting by s, i.e.

Ns := {x ∈ {0, 1}N : xi = si for i ∈ {0, ..., n− 1}}.
We can see elements a ∈ {0, 1}n and b ∈ {0, 1}N ∪

⋃
n∈N{0, 1}n as words in {0, 1}, and

denote their concatenation by a a b. For ε ∈ {0, 1} and n ∈ N, εn is the word (xi)
n
i=1 ∈

{0, 1}n defined by xi = ε.
Now the odometer T0 ∈ Aut(X,µ) is defined by T0((xi)i∈N) = 0n−11 a (xi)i>n, where

n is the first integer such that xn = 0, and T0((1, 1, ..., 1...)) = (0, 0, ..., 0, ...) when such
an n does not exist. This can be understood as adding (1, 0, 0, ...) to (xi)i∈N with right
carry.

The key feature of the odometer is that his action on the sets Ns is very simple to
understand as we will now see. In what follows, SF denotes the permutation group of a
finite set F .

Let n ∈ N, then we define a finite odometer σn ∈ S{0,1}n by

σn((si)
n−1
i=0 ) =

{
0n if (si) = 1n

0k−11 a (si)i>k else, where k is the first integer such that sk = 0.

Observe that by definition, for every s ∈ {0, 1}n, we have T0(Ns) = Nσn(s). Since the finite
odometer is transitive on {0, 1}n, we conclude that the sets N0n , T0(N0n),..., T 2n−1

0 (N0n)
form a partition of X.
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Exercise 2.1. Prove that the odometer induces a free ergodic Z-action.

2.2.2 Profinite actions

Definition 2.6. Let Γ be a countable group. Suppose we have a decreasing sequence
(Γn) of finite index subgroups of Γ. We then have a sequence of quotients Γ/Γn as well
as projections πn : Γ/Γn+1 → Γ/Γn. The projective limit X = proj lim Γ/Γn is endowed
with the limit of the normalized counting measures µn. We then have a profinite action
Γ y (proj limn Γ/Γn, proj limn µn).

2.2.3 Some compact actions

Let K be a compact Polish group equipped with its Haar measure µ. If Γ is a countable
subgroup of K, the action of K by left translation on K is measure-preserving since the
Haar measure is left-invariant. One can further refine this by adding in the picture a
closed subgroup L and make Γ act on K/L by left translation, where K/L is equipped
with the pushforward of the Haar measure. The actions obtained this way are a special
case of compact actions1, which we will define in the next section. Let us start by seeing
why profinite actions are compact.

2.3 Other examples

2.3.1 Actions by automorphism on compact groups

2.3.2 Bernoulli shifts

3 Using the Koopman representation

3.1 The von Neumann ergodic theorem

3.2 Variations on ergodicity

We have seen in the previous section that the Koopman representation sees the ergodicity
of the action. We will now introduce two refinements of ergodicity which are also detected
by the unitary representation via some natural definition.

Definition 3.1. A measure-preserving action Γ y (X,µ) is called mixing if for every
Borel A,B ⊆ X and every ε > 0, for all but finitely many γ ∈ Γ we have

|µ(A ∩ γB)− µ(A)µ(B)| < ε.

Definition 3.2. A measure-preserving action Γ y (X,µ) is called weakly mixing if for
every Borel A1, ..., An, B1, ..., Bn ⊆ X and every ε > 0, there is γ ∈ Γ such that for all
i = 1, ..., n, we have

|µ(Ai ∩ γBi)− µ(Ai)µ(Bi)| < ε.

Observe that every mixing action is weakly mixing, and that every weakly mixing
action is ergodic: if A is Γ-invariant, the condition yields |µ(A)− µ(A)2| < ε for every
ε > 0, so µ(A)2 = µ(A), and we conclude µ(A) ∈ {0, 1}.

1 We will see that in the ergodic case, these are the only compact actions.
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Proposition 3.3. Let Γ y (X,µ) be a measure-preserving action. Then it is mixing iff
the associated Koopman representation is mixing.

Proof. Suppose that the action is mixing, recall that the mixing condition for a unitary
representation needs only to be checked on a spanning subset, so here we can take elements
of the form µ(B)χA−µ(A)χB, and a straightforward computation shows that they behave
as expected.

Conversely, suppose the unitary representation is mixing, and consider what happens
for the vector µ(B)χA − µ(A)χB...

3.3 Compact actions

Theorem 3.4. Let Γ y (X,µ) be a faithful ergodic compact action. Then there is a
compact Polish group K and a closed subgroup L 6 K such that Γ is a dense subgroup of
K and Γ y (X,µ) is conjugate to the Γ-action by translation on K/L endowed with the
pushforward of the Haar measure.

Proof. We already know from Proposition A.12 that the closure of Γ in Aut(X,µ) is a
compact group K. Our first task is to lift the inclusion of K in Aut(X,µ) (which is
ergodic since the Γ action is ergodic) to a genuine action of K on a standard probability
space. To this end, we will find a G-invariant dense separable C∗-subalgebra of L∞ onto
which K acts continuously, using the following concept from [GW05]. Call a function
f ∈ L∞(X,µ) K-continuous if the map g 7→ g · f is continuous where on the right hand
side we put the L∞ norm2.

Claim. The space of K-continuous functions is dense in L∞(X,µ) for the L2 norm.

Proof of the claim. Let λ be the Haar measure on G. Let (Fn) be a decreasing family of
closed neighborhoods of the identity in K with trivial intersection. Let (ψn) be a sequence
of continuous positive functions on G of integral 1 such that suppψn ⊆ Fn.

Now for f ∈ L∞(X,µ) and ψ ∈ C(G), define the operator ψ ∗ f by

〈ψ ∗ fξ, η〉 =

∫
K

ψ(g) 〈fκ(g)∗ξ, κ(g)∗η〉 dλ(g)

=

∫
K

ψ(g) 〈κ(g)fκ(g)∗ξ, η〉 dλ(g)

=

∫
K

ψ(g) 〈g · fξ, η〉 dλ(g).

Note that the expression in the first integral is continuous, so ψ ∗ f is well defined. It is
bounded because the latter equation yields

‖ψ ∗ f‖ 6 ‖ψ‖∞ ‖f‖∞ . (3.1)

It also belongs to L∞(X,µ) because it commutes with the elements of L∞(X,µ), as a
straightforward computation shows3. Let us now compute ‖ψ ∗ f − h · ψ ∗ f‖∞. Observe

2 Note that by assumption this map is continuous for the L2 norm.
3 This whole proof is actually easier if one is willing to consider vector valued integration as in [Rud07,

Chap. 3]. The reader is encouraged to write down such a proof !
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that h · ψ ∗ f is given by

〈h · (ψ ∗ f)ξ, η〉 = 〈κ(h)(ψ ∗ f)κ(h)∗ξ, η〉
= 〈ψ ∗ fκ(h)∗ξ, κ(h)∗η〉

=

∫
K

ψ(g) 〈fκ(hg)∗ξ, κ(hg)∗η〉 dλ(g)

=

∫
K

ψ(h−1g) 〈fκ(g)∗ξ, κ(g)∗η〉 dλ(g),

so we have h · ψ ∗ f = (h · ψ) ∗ f as one should expect. Since ψ is uniformly continuous
and the map ϕ 7→ ϕ ∗ f is linear, we deduce from (3.1) that ψ ∗ f is K-continuous. We
finally check that ψn ∗ f → f in L2 norm. First note that by continuity and the fact that
the supports of the ψn’s have vanishing diameter, for all ε, for large enough n, we have
‖g · f − f‖2 6 ε for all g in the support of ψn. The desired conclusion follows from the
estimates4

‖ψn ∗ f‖2
2 =

∫
K

ψn(g) 〈g · f, ψn(f)1〉

=

∫
K

ψn(g)

∫
K

ψn(h) 〈g · f, h · f〉

→ ‖f‖2
2

and

〈ψn ∗ f, f〉 =

∫
K

ψn(g) 〈g · f, f〉 dλ(g)→ ‖f‖2
2 ,

which use
∫
K
ψn = 1. �claim

Now observe that K-continuous functions form a closed *-algebra in the L∞ norm.
Applying the claim, we find a countable family of functions fn ∈ L∞ which are K-
continuous, and that generate a dense C*-algebra of L∞(X,µ). Let A be the C*-algebra
generated by these functions, which only consists of K-continuous functions. Denote by
Y the spectrum of A, which is a compact Polish space acted upon continuously by K.

By construction µ induces a probability measure ν on Y , and the standard represen-
tation of A on L2(Y, ν) is isomorphic to the representation on L2(X,µ), so by taking weak
closures L∞(X,µ) is naturally isomorphic to L∞(Y, ν).

This means that we may as well assume that we have a compact group K acting
continuously on a compact space X and that Γ is a subgroup of K. Then X/K is
compact, µ induces a probability measure on X/K, and the latter has to consist of one
single atom, otherwise the Γ action would not be ergodic. In other words, we can also
assume that the K-action is transitive. So up to isomorphism of pmp actions, Γ is acting
on K/L for some closed subgroup L of K.

We are left with showing that ν is the pushforward of the Haar measure λK on K.
Denote by λL the Haar measure on L. Let X0 be a fundamental domain for the right
L-action on K, so that X0 is in bijection with K/L via the projection map, and we still
denote by ν the induced probability measure on X0.

4 Using vector valued integration, this would follow directly from [Rud07, Thm. 3.29].
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Define a probability measure on K by

µ(f) =

∫
X0

∫
L

f(xl)dλL(l)dν(x)

Observe that µ is left K-invariant5, so it has to be the Haar measure λK . Denote by ν ′
the pushforward of µ on K/L via the projection π, then for all Borel function f on K/L
we have

ν ′(f) =

∫
X0

∫
L

f(π(xl))dλL(l)dν(x) =

∫
X0

f(x)dν(x)

so ν = ν ′ as wanted.

3.4 The maximal compact factor

We can use the Koopman representation in order to find a maximal compact factor in any
action, where a factor simply means a Γ-invariant von Neumann subalgebra of L∞(X,µ).
The following definition is a natural companion of Definition A.7.

Definition 3.5. Suppose Γ y (X,µ) is a pmp action. A function f ∈ L∞(X,µ) is
compact if it is compact as an element of L2(X,µ).

Lemma 3.6. The space of compact functions in L∞(X,µ) is dense in the space of compact
elements of L2(X,µ). It is moreover a von Neumann subalgebra.

Proof. Let us first show the density statement. For any n > 0, consider the truncation
map Φn : L2(X,µ)→ L∞(X,µ) defined by

Φn(ξ)(x) =

{
ξ(x) if |ξ(x)| < n,
n otherwise.

Observe that Φn is a contraction for the L2 norm, and that it is Γ-equivariant. Then if
π(Γ)ξ is precompact, it is clear that π(Γ)Φn(ξ) also is, and since Φn(ξ) converges to ξ in
L2 norm, the conclusion follows.

The fact that the space of compact functions is a *-subalgebra follows from the conti-
nuity of the addition, of the adjoint map and of the multiplication on bounded sets for the
L2 norm. Now the *-algebra of compact functions is closed in L∞(X,µ) for the L2 norm
by Proposition A.8, so we can apply Corollary B.2 to conclude that it is a von Neumann
subalgebra.

Definition 3.7. The von Neumann algebra of compact functions in L∞(X,µ) is denoted
by L∞c (X,µ).

4 The crossed product construction

4.1 The standard representation of the crossed product

Y = X × Γ, H = L2(Y ), make Γ act diagonally via unitaries uγ = κ(γ) ⊗ λ(γ)
and L∞ act on the first coordinate. We have γfγ−1ξ(x, g) = fγ−1ξ(γ−1x, γ−1g) =

5 This uses the right invariance of λL, noting that k · x has to be right translated by an element of L
in order to belong to X0.
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f(γ−1x)γ−1ξ(γ−1x, γ−1g) = f(γ−1x)ξ(x) so the same commutation relation holds as be-
fore. Observe that the algebra generated by the f ’s and γ’s is then spanned by elements
of the form auγ which on a basic tensor ξ ⊗ δg as

auγ(ξ ⊗ δg) = a(ξ ◦ γ−1 ⊗ δγg) = aξ ◦ γ−1 ⊗ δγg

In order to identify the commutant, consider the right regular representation ρ, and
L∞ acting this time via π on the γ copy of L2(X) by γ ·f , denote by N the associated von
Neumann algebra. We have π(a1)uγ(ξ⊗ δg) = π(a1)(ξ ◦ γ−1⊗ δγg) = a1 ◦ (g−1γ−1)ξ⊗ δγg,
while uγπ(a1)(ξ⊗δg) = uγ(a1 ◦g−1ξ⊗δg) = (a1 ◦g−1 ◦γ−1ξ⊗δγg) so π commutes with uγ,
it also commutes with the previous representation of L∞, and by similar computations ρ
commutes with L∞. So N ⊆M ′.

Consider the vector ξ = 1X × δe, then this vector is cyclic for crossed product and
separating. To see that it is separating, we use the algebra N . Indeed, suppose that for
some x ∈M we have xξ = 0 then we compute x(f ⊗ δg) where f ∈ L∞ and note that the
latter is equal to ρ(g)π(f)(ξ), so by commutation this is equal to zero, so the operator x
is zero. The vector ξ is thus both cyclic and separating. Let us show that it is tracial: let
τ(x) = 〈xξ, ξ〉, then

auγbuλ(1X ⊗ δe) = (a(γ · b)⊗ δγλ))
buλauγ(1X ⊗ δe) = (b(λ · a)⊗ δλγ),

so the scalar product of these two expressions with ξ is non zero if and only if γ = λ−1,
and then in this case the first is equal

∫
X
a(b ◦ γ−1) =

∫
X

(a ◦ γ)b =
∫
X

(b(a ◦ λ−1) which
is equal to the second. So we have indeed a tracial vector.

In particular M is in standard form, and we have auγξ = (a ⊗ δγ) while (auγ)
∗ξ =

uγ−1a(ξ) = (γ−1 · a)uγ−1ξ = (γ−1 · a⊗ δγ−1).
So the canonical antiunitary J is given by J(f ⊗ δg) = (g−1 · f ⊗ δg−1), and one can

check that it intertwines our standard representation of L∞ with π, and κ ⊗ λ with ρ.
Since JMJ = M ′, we conclude that M ′ = N .

Consider now the conditional expectation onto A = L∞(X,µ). Note that in the Hilbert
space this is just the projection onto the Hilbert subspace L2(X,µ)⊗ δe. So uγeAu∗γ is the
projection onto the Hilbert subspace L2(X,µ)⊗ δγ. In particular for all x ∈M we get

x̂ =
∑
γ

uγeAu
∗
γx̂ =

∑
γ

uγeAu
∗
γx(1X ⊗ δe) =

∑
γ

uγeAu
∗
γxeA(1X ⊗ δe)

, so x̂ =
∑

γ uγ
̂EA(u∗γx), but uγEA(u∗γx) = uγEA(u∗γxu

∗
γuγ) = EA(xu∗γ)uγ

Free implies A masa: take x in M commuting with A, take any function f ∈ A, then
EA(xfu∗γ) = EA(xu∗γuγfu

∗
γ) = EA(xu∗γ(γ · f)) = EA(xu∗γ)γ · f and on the other hand

EA(fxu∗γ) = fEA(xu∗γ) so the Fourier coefs aγ of x satify: aγf = aγ(γ · f) for all f .)
Contradiction.

4.2 Description of the normalizing algebra of LΓ

We will now use our work on unitary representations in order to get a better understanding
of the normalizer of LΓ inside the semidirect product L∞(X,µ) o Γ.

Theorem 4.1. Let Γ y (X,µ), let M = L∞(X,µ) o Γ, then NM(LΓ) ⊆ L∞c (X,µ) o Γ.
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Proof. We prove this by contradiction: assuming that u is a unitary not in L∞c (X,µ)oΓ,
we will show that u cannot normalize LΓ, using ideas similar to those of Section 1.3.
First note that the conditional expectation onto LΓ is easily describe in terms of Fourier
decomposition: if x =

∑
γ aγuγ then ELΓ(x) =

∑
γ τ(aγ)uγ. By the Kaplansky theorem,

we find a sequence (tn) in the *-algebra consisting of finite linear combinations of aγuγ’s
such that tn → u in 2-norm and ‖tn‖ 6 1.

Let yn = EL∞c (X,µ)oΓ(tn) and xn = tn − yn. Note that ‖y‖n 6 1, and xn is a finite
linear combination of aγuγ’s with aγ orthogonal to L∞c (X,µ), and hence aγ is in the weakly
mixing part of the unitary representation κ, by a combination of Lemma 3.6 and Theorem
A.17. Finally since u 6∈ L∞c (X,µ) o Γ and ‖u‖2 = 1, we must have some ε > 0 such that
for all large enough n, ‖yn‖2 6 1− ε.

Now let λ be an arbitrary element of Γ. We have

‖ELΓ(tnuλt
∗
n)− ELΓ(uuλu

∗)‖2 6 2 ‖tn − u‖2 ,

and since ELΓ(uuλu
∗) = uuλu

∗ we deduce that ‖ELΓ(tnuλt
∗
n)‖2 → 1, uniformly on λ ∈ Γ.

We now remark that, using the bimodularity of the conditional expectation and the fact
that xn ∈ (L∞c (X,µ) o Γ)⊥,

EL∞c (X,µ)oΓ(tnuλt
∗
n) = EL∞c (X,µ)oΓ(xnuλx

∗
n) + ynuλy

∗
n

Taking further the conditional expectation onto LΓ, we get

ELΓ(tnuλt
∗
n) = ELΓ(xnuλx

∗
n) + ELΓ(ynuλy

∗
n)

By assumption for n large enough the term ELΓ(ynuλy
∗
n) has L2 norm at most 1− ε, while

ELΓ(tnuλt
∗
n)→ 1 so for large enough n, uniformly on λ, we have ‖ELΓ(xnuλx

∗
n)‖2 > ε/2.

Take such a large enough n, and fix it, letting x = xn. We then write x as
∑

γ∈F aγuγ,
where F is a finite subset of Γ, and each aγ belongs to L∞c (X,µ)⊥. For any λ ∈ Γ, we
may then write xuλx∗ as

xuλx
∗ =

∑
γ1,γ2∈F

aγ1uγ1λγ−1
2
aγ2

=
∑

γ1,γ2∈F

aγ1(γ1λγ
−1
2 · aγ2)uγ1λγ−1

2
.

We deduce that ELΓ(xuλx
∗) =

∑
γ1,γ2∈F τ

(
aγ1(γ1λγ

−1
2 ) · aγ2

)
uγ1λγ−1

2
, and since the Γ-

action is measure-preserving, for each γ1, γ2 ∈ F we have

τ
(
aγ1(γ1λγ

−1
2 ) · aγ2

)
= τ

(
(γ−1

1 · a1)λ · (γ−1
2 · a2)

)
.

As explained before, all the vectors of the form γ1 · aγ1 or γ−1
2 · a2 belong to the weakly

mixing part of the unitary representation of Γ and there are only finitely many of them, so
by taking a well chosen λ, we can make sure that the sum

∑
γ1,γ2∈F

∣∣τ (aγ1(γ1λγ
−1
2 ) · aγ2

)∣∣
is less than ε/2, contradicting the fact that ‖ELΓ(xuλx

∗)‖2 > ε/2.

In the case Γ is abelian, we can say much more. Indeed in this case, we have the
following nice way of understanding L∞c (X,µ).

Proposition 4.2. Suppose Γ y (X,µ) where Γ is abelian. Then L∞c (X,µ).
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5 An introduction to orbit equivalence

5.1 Dye’s theorem

It is very useful to think of the odometer as a limit of partial isomorphisms in the following
way. Consider first the set N0, then T0 sends N0 to N1 and we let ϕ1 be the restriction of
T0 to N0. To extend ϕ1, we look closer to what happens on N1 and find out that actually
N10 is sent to N01 by T0 and we let ϕ2 = ϕ1 ∪T�N10 . ϕ2 is defined everywhere but on N11.
Now we add the restriction of T0 to N110, etc... In the end we get an increasing sequence
(ϕn) of restrictions of T0 such that for all n, dom ϕn = X \ N1n and rngϕn = X \ N0n .
We deduce that for almost every x ∈ X, there is n such that T0(x) = ϕn(x). For n > 1,
the partial isomorphism ϕn is what we call a ladder of height 2n.

A Unitary representations

A.1 The convexity trick

We start this appendix by a well-known trick which has numerous applications. It is
based on the following important fact about Hilbert spaces, whose proof we recall.

Theorem A.1. Let H be a Hilbert space, let C ⊆ H be a closed convex set. Then there
is a unique x ∈ C of minimal norm.

Proof. Let α = infx∈C ‖x‖, let (xn) be a sequence of elements of C such that ‖x‖n →
α. Given n,m ∈ N, consider the point 1

2
(xn + xm)), which belongs to C. From the

parallelogram identity, we have :∥∥∥∥xn + xm
2

∥∥∥∥2

+

∥∥∥∥xn − xm2

∥∥∥∥2

=
1

2

(
‖xn‖2 + ‖xm‖2)

By convexity we have
∥∥xn+xm

2

∥∥2
> α2, so

α2 +

∥∥∥∥xn − xm2

∥∥∥∥2

6
1

2

(
‖xn‖2 + ‖xm‖2)→ α2[n,m→ +∞],

so (xn) is a Cauchy sequence. Denote by x is its limit, then x ∈ C since C is closed, and
‖x‖ = lim ‖xn‖ = α. The uniqueness follows by using the parallelogram identity once
again: if x, x′ ∈ C were two minimizing point, then (x+ x′)/2 ∈ C and so

α2 6

∥∥∥∥x+ x′

2

∥∥∥∥2

+

∥∥∥∥x− x′2

∥∥∥∥2

=
1

2

(
‖x‖2 + ‖x′‖2

)
= α2,

so ‖x− x′‖2 = 0, so x = x′.

We may now present the convexity trick (convexitrick ?), which will appear in many
different situations.

Corollary A.2. Let π : Γ → U(H) be a unitary representation. Suppose that C is a
π(Γ)-invariant convex closed subset which does not contain 0. Then the representation
admits a non zero invariant vector: there is η ∈ H\{0} such that π(γ)η = η for all γ ∈ Γ.
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Proof. By the previous theorem, C has a unique element η of minimal norm, and η is non
zero by the previous inequality. But since π is a unitary representation, for all γ ∈ Γ the
element π(γ)η is the unique element of minimal norm of π(γ)C = C, so by uniqueness
π(γ)η = η as wanted.

Remark A.3. A similar proof using the circumcenter shows that if an affine isometric
action on a Hilbert space has a closed convex invariant set, then it has a fixed point.

In order to find invariant vectors, we will need to find an invariant closed convex set
which does not contain zero. In the following results, the fact that this convex set does
not contain zero follows from the fact that all its elements have a scalar product with a
certain vector uniformly bounded away from zero, but there are some more subtle cases
such as the proof of Theorem A.10.

Theorem A.4. Let π : Γ → U(H) be a unitary representation, let ε <
√

2. Suppose
that ξ is a non zero vector such that for all γ ∈ Γ, ‖π(γ)ξ − ξ‖ 6 ε ‖ξ‖. Then there is a
non-zero vector invariant vector η ∈ H which belongs to the closed convex hull of π(Γ)ξ.

Remark A.5. It will be clear from the proof that one can moreover find an invariant
vector η not too far from ξ, but we won’t use that so we don’t state this more quantitative
version.

Proof of the theorem. For every γ ∈ Γ, we have

‖π(γ)ξ − ξ‖2 = 2 ‖ξ‖2 − 2< 〈π(γ)ξ, ξ〉 .

We thus have 2< 〈π(γ)ξ, ξ〉 > (2− ε2) ‖ξ‖2.
Consider the convex set C = conv(π(Γ)ξ). By linearity we see that all the elements

η ∈ C actually satisfy the inequality

2< 〈η, ξ〉 > (2− ε2) ‖ξ‖2 .

By continuity, such an inequality is also satisfied by elements of the closure C of C. The
latter is a π(Γ)-invariant set since C is. We conclude the proof by applying the previous
corollary.

Here is another easy application of the convexitrick which a priori has nothing to do
with Hilbert spaces. It is instructive to try to prove this statement directly first.

Proposition A.6. Let Γ be a group, let X be a set, suppose that Γ y X has only infinite
orbits. Then for every finite subset F ⊆ X, there is γ ∈ Γ such that γ · F ∩ F = ∅.

Proof. Suppose not. Consider the real Hilbert space `2(X), and the associated unitary
representation given by π(γ)(f)(x) = f(γ−1x). Observe that π(γ)χF = χγ·F , and by
hypothesis for all γ ∈ Γ we have |γF ∩ F | > 1, so

〈π(γ)χF , χF 〉 > 1

So if C = conv(π(Γ)χF ), every η ∈ C satisfies 〈η, χF 〉 > 1. Again the closure of C is
a π(Γ)-invariant set all whose elements satisfy the previous inequality, in particular the
closure of C does not contain the zero vector.

So our unitary representation has a non zero-invariant vector ξ =
∑

x∈X axδx. Now
observe that by invariance its coefficients ax satisfy ax = aγ−1·x for all γ ∈ Γ, and at
least one of them is non zero. But since every Γ-orbit is infinite, this contradicts the
summability of the squares of the coefficients.
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A.2 Compact representations

Recall that a subspace of a topological space is called precompact when its closure is
compact. Recall that in a complete metric space, a subspace is precompact if and only if
for every ε > 0 it can be covered by finitely many balls of radius ε.

Definition A.7. Let π : Γ→ U(H) be a unitary representation. A vector ξ ∈ H is called
compact if π(Γ)ξ is precompact for the Hilbert space norm.

By continuity of the sum, the space of compact vectors is a vector subspace. Let us
show that it is moreover closed. Suppose π(Γ)ξ is not precompact, then it contains an
infinite ε-discrete set for some ε > 0, which is obtained as {π(γi)ξ : i ∈ I}. Then if η is
ε/3 close to ξ, the set {π(γi)η : i ∈ I} is ε/3 discrete, so π(Γ)η is not precompact either.
We have shown:

Proposition A.8. The space of compact vectors is a closed subspace, thus defining a
subrepresentation of the representation.

Definition A.9. A unitary representation is compact when all its vectors are compact.

We will show every compact representation splits as an infinite direct sum of finite-
dimensional representations. For this, we will use compact groups and the fact that their
continuous unitary representations do have this property, which is part of the Peter-Weyl
theorem.

Theorem A.10. Let G be a compact group, let π : G → U(H) be a strongly continuous
unitary representation. Then π contains a finite dimensional subrepresentation.

Proof. Let p be any non trivial finite dimensional projection in H, then p is a trace class
operator of trace Tr p = dim pH > 0. Denote by B1(H) the Banach space of trace class
operators. Then G acts continuously on B1(H) by conjugacy (γ · x = π(γ)xπ(γ)∗). Then
G · p is a compact subset of B1(H) all whose elements have trace Tr p. The closed convex
hull (in B1(H) !) C of G · p is also compact (every closed convex hull of a compact set is
compact in a Banach space), and all its elements have trace Tr p by continuity of Tr on
B1(H), in particular C does not contain 0.

Now the embedding of B1(H) in the Hilbert space B2(H) of Hilbert-Schmidt operators
is continuous, so by compactness C is still a compact convex subset of B2(H), and it does
contain a non zero G-fixed point x by Corollary A.2.

So x is a non-trivial compact operator belonging to the commutant of our represen-
tation π. Then it has a non-trivial finite-dimensional spectral projection which belongs
to the commutant of our representation π, and the range of this projection is the desired
finite dimensional subrepresentation.

Before going back to countable groups, we need a better understanding of the precom-
pact subgroups of the unitary group. Here by precompact we mean whose closure is
compact, so this is a relative notion. There is a more satisfying intrinsic definition using
uniform structures, but it would take us too far afield6.

The unitary group is a Polish group when endowed with the strong topology, which
is the topology induced by the product topology on HH. But it is not closed in there,

6 Let us just mention that the next proposition also follows the fact that a topological group is pre-
compact for the left uniformity iff it is precompact for the right uniformity iff it is precompact for the
Raikov uniformity, and that the unitary group is Raikov complete...
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for instance if we fix an orthonormal basis (ξn), the sequence of unitaries which permutes
cyclically the first n vectors converges to the isometry ξn 7→ ξn+1.

Nevertheless, first note that B(H)1 is closed inHH. The graph of the weakly continuous
map x ∈ B(H)1 7→ x∗ is closed in the product of the weak topology, hence also in the
strong product topology. In other words, the set of all (x, x∗) is closed in B(H)1×B(H)1 ⊆
HH × HH. Now recall that the composition is continuous for the strong toplogy when
restricted to B(H)1, in particular the set of all (x, y) ∈ B(H)1 such that xy = yx = 1 is
closed. Putting this together with the previous statement, we have shown:

Lemma A.11. The map Φ : u ∈ U(H) 7→ (u, u∗) ∈ HH ×HH is continuous with closed
image, where we equip U(H) with the strong topology, and HH with the product topology,
H being equipped with its Hilbert norm.

Proposition A.12. For a unitary representation π : Γ→ U(H), the following are equiv-
alent:

(i) π is compact;

(ii) π(Γ) is precompact in HH equipped with the product topology;

(iii) π(Γ) is precompact in (B(H))1 equipped with the strong operator topology;

(iv) π(Γ) is precompact in U(H) equipped with the strong operator topology.

Proof. The implication (i)⇒(ii) follows from Tychonov’s theorem, which ensures us that
the infinite product

∏
ξ∈H π(Γ)ξ is compact.

The equivalence between (ii) and (iii) is a direct consequence of the fact that (B(H))1

is closed in HH.
The implication (iii)⇒(iv) follows from the previous lemma, noting that Φ(π(Γ)) ⊆

π(Γ)× π(Γ) ∩ U(H), where here we take the closure in B(H)1.
Finally the implication (iv)⇒(i) follows from the fact that a continuous image of a

compact set is compact.

We finally have the following characterization of compact representations.

Theorem A.13. A unitary representation is compact if and only if it splits as a direct
sum of finite dimensional representations.

Proof. This is a direct application of the previous results along with Zorn’s lemma.

A.3 Weakly mixing representations

We now introduce a property which is orthogonal to compactness.

Definition A.14. A unitary representation π : Γ → U(H) is called weakly mixing if
given a finite set of unit vectors F , and ε > 0, one can find an element γ ∈ Γ such that
for all ξ, η ∈ F ,

|〈π(γ)ξ, η〉| < ε

In other words, there is a sequence of group elements (γn) such that the associated
sequence of unitary operators π(γn) converges weakly to 0. The adjective "weakly" is
justified by the following definition.
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Definition A.15. A unitary representation π : Γ→ U(H) is called mixing if given ε > 0
and vector ξ, η, for all but finitely many elements γ ∈ Γ we have

|〈π(γ)ξ, η〉| < ε

This is sometimes written as limγ→∞ 〈π(γ)ξ, η〉 = 0.

Exercise A.1. Check that every mixing unitary representation is weakly mixing, and
that the regular representation of any discrete group is mixing.

Using the polarization identity, one can check that we can take ξ = η in both defini-
tions. Let us now relate weak mixing to compactness via finite dimensional subrepresen-
tations.

Proposition A.16. Let π : Γ → U(H) be a unitary representation, then the following
are equivalent:

1. π has a finite dimensional representation

2. π ⊗ π has an invariant vector

Proof. Suppose K is a non trivial finite dimensional π-invariant subspace, consider the
projection onto K, which is an element of H⊗H (if (ξi) is an orthonormal basis of K, this
is the vector ξi ⊗ ξi). It is an invariant vector for the representation π⊗ π, which acts on
this projection as a conjugacy.

Conversely, suppose π ⊗ π has an invariant vector, then this invariant vector is a
Hilbert-Schmidt operator whose spectral projections must commute with π, so that π has
a finite dimensional representation.

Let us also note the following computation on π⊗ π: suppose (ξi)
n
i=1 is a finite family

of vectors, and let us compute the scalar product〈
n∑
i=1

π ⊗ π(ξi ⊗ ξi),
n∑
j=1

ξj ⊗ ξj

〉
=

n∑
i,j=1

〈π(γ)ξi, ξj〉 〈π(γ)ξi, ξj〉

=
n∑

i,j=1

|〈π(γ)ξi, ξj〉|2 .

So we see that if π is weakly mixing, the right hand quantity can be made arbitrarily
small, in particular π has not finite dimensional representation.

The following result is fundamental.

Theorem A.17. Let π : Γ→ U(H) be a unitary representation. Denote by Hc the space
of compact vectors. Then the restriction of π to H⊥c is weakly mixing.

Proof. By Thm. A.13, the restriction of π to H⊥c contains no finite dimensional subrep-
resentation.

Suppose by contradiction that π is not weakly mixing, then by the previous computa-
tion we find a π⊗π invariant vector using convexity. This yields in turn a Hilbert-Schmidt
operator in the commutant of π, and hence once of its spectral projection yields a finite
dimensional subspace, a contradiction.
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B.1 Kaplansky’s theorem

Theorem B.1. Let A ⊆ B(H) be a *-subalgebra. Let x ∈ A′′. Then there is a sequence
(xn) of elements of (A)‖x‖ such that xn → x *-strongly.

Corollary B.2. Let (M, τ) be a finite von Neumann algebra in standard form, suppose
N is a *-subalgebra which is closed in M under the L2 norm. Then N is a von Neumann
subalgebra of M .

Proof. By Kaplansky’s theorem, every element of the weak closure of N is obtained as
the strong limit of a bounded sequence of elements of N , which by boundedness must also
converge in the L2 norm. So its limit belongs to N by assumption.

B.2 Conditional expectations

From uniqueness Eϕ(A)(x) = ϕ(EA(ϕ−1(x))), applying this to inner aut we get EuAu∗(x) =
uEA(u∗xu)u∗, so EuAu∗(uxu∗) = uEA(x)u∗.

C Topological groups

C.1 General definition and uniform structures

C.2 Compact groups and the Haar measure

We provide a proof that every metrizable compact group has a unique Haar measure, a
result which is much easier to prove than in the more general locally compact case. In the
course of the proof, we freely use the Riesz correspondence between probability measures
and linear functionals on continuous functions.

Proposition C.1. Every compact metrizable group admits a unique Borel left-invariant
probability measure which is also right-invariant.

Proof. The trick is to use the convolution of probability measures on our compact group
G. Given two Borel probability measures µ and ν on G, their convolution is defined as
the pushforward of the product measure µ⊗ λ under the group operation map. So

µ ∗ ν(A) =

∫
G

∫
G

χA(gh)dµ(g)dν(h) =

∫
G

µ(Ah−1)dν(h) =

∫
G

ν(g−1A)dµ(g)

From the associativity of the group law, we get the associativity of the convolution. We
now have the following important claim:

Claim. Let α be a Borel probability measure on G with full support. Let λ such that
α ∗ λ = λ. Then λ is left-invariant.

Proof of the claim. Let u be a continuous function on G, define a function Φλ(u) by

Φλ(u)(g) = (δg ∗ λ)(f) =

∫
G

u(gh)dλ(h)
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Note that Φλ(u) is continuous as a consequence of the uniform continuity of u. For every
a ∈ G, we then have ∫

G

Φλ(u)(ag)dα(g) =

∫
G

∫
G

u(agh)dα(g)dλ(h)

= δa ∗ α ∗ λ(f)

= δa ∗ λ(f)

= Φλ(u)(a)

Pick a ∈ G where the continuous function Φλ reaches its maximum, then since α is fully
supported, this can only happen if Φλ(u) is constant. We thus have δg ∗ λ = λ for all
g ∈ G: the measure λ is left-invariant. �claim

Now note that left convolution is continuous for the weak topology: if λn → λ weakly
and µ is fixed, and f is a continuous function, we have

(µ ∗ λn)(f) =

∫
G

(∫
G

f(gh)dµ(g)

)
dλn(h),

and the term in parenthesis is again continuous as a function of h because f is uniformly
continuous, so we do have µ ∗ λn → µ ∗ λ weakly.

Now let α be any full supported measure on G (for instance α =
∑

n>1 2−nδgn , where
(gn) is dense in G)). Let λ be a weak limit point of the sequence

λn :=
α + α ∗ α + · · ·+ α∗n

n

For every n we have ‖α ∗ λn − λn‖ 6 2
n
, in particular α ∗ λn − λn converges weakly to

zero, so by continuity we have α ∗ λ = λ. By the previous claim, we have just built the
desired left-invariant probability measure.

Observe that λ has full support, because its support is G-invariant. Now note that the
claim also yields that if λ∗α = λ for some fully supported α, then λ is right-invariant. We
have δg∗λ = λ for every g ∈ G, so by integrating, λ∗λ = λ, so applying the right-invariant
version of the claim to α = λ, we conclude that λ is G invariant.

Finally if µ were another such left-invariant probability measure, by the same argu-
ments it would have full support and be right invariant, but then λ ∗ µ = λ = µ.

C.3 Polish groups associated to von Neumann algebras

Given a finite von Neumann algebra (M, τ), every trace preserving automorphism of M
induces a unitary on L2(M, τ), which allows one to see Aut(M, τ) as a subgroup of the
unitary group of L2(M, τ).

Proposition C.2. Aut(M, τ) is a closed subgroup of U(L2(M, τ)).

Proof. Let α ∈ Aut(M, τ). The fact that α commutes with ∗ is witnessed by the fact
that the associated unitary operator commutes with J . The fact that α preserves the
unit ball of M defines a closed condition because the latter is a closed subset of L2(M, τ).
Finally the fact that α commutes with multiplication on the unit ball of M defines a
closed condition by continuity.

In other words, Aut(M, τ) is the set of unitaries which:
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• Commute with J

• Leave the unit ball of M invariant

• Commute with multiplication on the unit ball of M ,

and so it is closed.

Denote by κ the injection of Aut(M, τ) into U(L2(M, τ)). We can now observe the
following conjugation relation for all α ∈ Aut(M, τ):

α(x) = κ(α)xκ(α)∗

Indeed, it suffices to show that α(x)κ(α)ŷ = κ(α)xŷ for all y ∈ M , which is true since
α(x)κ(α)ŷ = α(x)α̂(y) = ̂α(x)α(y) = α̂(xy) and κ(α)x̂y = α̂(xy).
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