Orbit equivalence and entropy for locally finite group: detailed proof of a result of Stepin

François Le Maître

Abstract

We give an exposition of the proof of Theorem 1 from [Ste71] which is more detailed than the original one.

Let $\Gamma = \bigoplus_{n \ge 1} \mathbb{Z}/2\mathbb{Z}$, denote by γ_i the *i*'th coordinate natural generator and $\Gamma_i = \langle \gamma_1, \ldots, \gamma_i \rangle = \bigoplus_{n=1}^i \mathbb{Z}/2\mathbb{Z}$.

Theorem 1 (Stepin). Let $S, T : \Gamma \to \operatorname{Aut}(X, \mu)$ be two free pmp actions of Γ on a standard probability space (X, μ) , suppose that for every $n \in \mathbb{N}$, $S(\Gamma_n)$ has the same orbits as $T(\Gamma_n)$, then

$$|h(S) - h(T)| \le \log 2.$$

Proof. For brevity, we let $S_{\gamma} = S(\gamma)$ and $T_{\gamma} = T(\gamma)$ be the pmp bijections induced by these two actions. We are going to bound the entropy of S in terms of that of T, which by symmetry will yield the desired result. The key to this bound is the following claim, which estimates how much larger the $S(\Gamma_n)$ -saturation of a $T(\Gamma_n)$ -invariant partition is.

Claim. Define by induction $p_1 = 1$ and $p_{k+1} = 2^k p_k^2$. Let $n \ge 1$, let \mathcal{P} be a partition which is $T(\Gamma_n)$ invariant. Then $\bigvee_{\gamma \in \Gamma_n} S_{\gamma} \mathcal{P}$ is obtained by dividing each atom of \mathcal{P} in at most p_n elements.

Proof of the claim. The proof is by induction. For n = 1 we defined $p_1 = 1$ and our claim is clear since two involutions sharing the same orbits must be equal.

Suppose the claim has been proved at rank n, let \mathcal{P} be $T(\Gamma_{n+1})$ -invariant. In particular \mathcal{P} is $T(\Gamma_n)$ invariant so by our induction hypothesis if we let \mathcal{Q} be the partition obtained by $S(\Gamma_n)$ -translating \mathcal{P} , \mathcal{Q} is obtained by splitting each element of \mathcal{P} into at most p_n pieces. Observe that $\bigvee_{\gamma \in \Gamma_{n+1}} S_{\gamma} \mathcal{P} = \mathcal{Q} \vee S(\gamma_{n+1}) \mathcal{Q}$ since γ_{n+1} is an involution commuting with Γ_n and $\Gamma_{n+1} = \langle \Gamma_n, \gamma_{n+1} \rangle$.

Observe that by freeness each $S(\Gamma_{n+1})$ -orbit splits into two $S(\Gamma_n)$ -orbits, and is equal to a $T(\Gamma_{n+1})$ -orbit. Since $S(\Gamma_n)$ has the same orbits as $T(\Gamma_n)$, the cocycle of $S_{\gamma_{n+1}}$ must have its n + 1 coordinate equal to 1. We thus get a partition $(A_{\gamma})_{\gamma \in \Gamma_n}$ of X such that for all $x \in A_{\gamma}$,

$$S_{\gamma_{n+1}}(x) = T_{\gamma}T_{\gamma_{n+1}}(x).$$

We claim that the partition

$$\tilde{\mathcal{Q}} = \{A_{\gamma} \cap C \cap T_{\gamma}T_{\gamma_{n+1}}(C') \colon C, C' \in \mathcal{Q}, \gamma \in \Gamma_n\}$$

refines \mathcal{Q} while being $S(\gamma_{n+1})$ -invariant. First note that each A_{γ} is $S_{\gamma_{n+1}}$ -invariant since it is the place where $S_{\gamma_{n+1}}$ coincides with another fixed involution, namely $T_{\gamma}T_{\gamma_{n+1}}$. It follows from the definition of A_{γ} that we can rewrite \mathcal{Q} as

$$\tilde{\mathcal{Q}} = \{ A_{\gamma} \cap C \cap S_{\gamma_{n+1}}(C') \colon C, C' \in \mathcal{Q}, \gamma \in \Gamma_n \}.$$

Since $S_{\gamma_{n+1}}$ is an involution, it then easily follows that \tilde{Q} is $S_{\gamma_{n+1}}$ -invariant.

By our assumption on \mathcal{P} , the pmp bijection $T_{\gamma}T_{\gamma_{n+1}}$ permutes the elements of \mathcal{P} , each which was cut into at most p_n pieces of the form C or C' when obtaining \mathcal{Q} . Since $|\Gamma_n| = 2^n$, we get from the first definition of Q, namely

$$\tilde{Q} = \{A_{\gamma} \cap C \cap T_{\gamma}T_{\gamma_{n+1}}(C') \colon C, C' \in \mathcal{Q}, \gamma \in \Gamma_n\}$$

that \tilde{Q} was obtained by cutting each element of \mathcal{P} into at most $2^n \times p_n \times p_n$ pieces. As a consequence¹, each element of \mathcal{P} will be split in at most $2^n \times p_n \times p_n = p_{n+1}$ pieces when first constructing \mathcal{Q} and then constructing $\mathcal{Q} \vee \mathcal{S}_{\gamma_{n+1}} \mathcal{Q} = \bigvee_{\gamma \in \Gamma_{n+1}} S_{\gamma} \mathcal{P}$. This finishes the proof of the induction. This finishes the proof of the induction.

We can now compare entropies. Given a finite set of pmp bijections F and a partition \mathcal{R} , we denote by

$$\mathcal{R}^F = \bigvee_{T \in F} T(\mathcal{R})$$

the partition generated by the T-translates of \mathcal{R} for $T \in F$. Fix a finite partition

 \mathcal{R} . Then by definition $h(T(\Gamma), \mathcal{R}) = \lim_{n \to +\infty} \frac{H(\mathcal{R}^{T(\Gamma_n)})}{2^n}$. Now let $\mathcal{Q}_n = (\mathcal{R}^{T(\Gamma_n)})^{S(\Gamma_n)}$, which refines $\mathcal{R}^{S(\Gamma_n)}$. By our previous claim applied to $\mathcal{P} = \mathcal{R}^{T(\Gamma_n)}$,

$$H(\mathcal{Q}_n) \leqslant H(\mathcal{P}^{T(\Gamma_n)}) + \log p_n$$

(this follows by conditioning on the elements of $\mathcal{P}^{T(\Gamma_n)}$ since these have been split in at most p_n pieces and a partition in p_n pieces has entropy at most $\log p_n$). In particular $\frac{H(Q_n)}{2^n} \leq \frac{\log p_n}{2^n}$. Now $\log p_{n+1} = 2\log p_n + n\log 2$ so

$$\frac{\log p_{n+1}}{2^{n+1}} = \frac{\log p_n}{2^n} + \frac{n\log 2}{2^{n+1}}$$

Since the series $\sum_{n} \frac{n \log 2}{2^{n+1}}$ converges to $\log 2$, we conclude that

$$h(S(\Gamma), \mathcal{R}) \leq h(T(\Gamma), \mathcal{R}) + \log 2 \leq h(T) + \log 2$$

Taking a supremum over all \mathcal{R} we get

$$h(S) \leqslant h(T) + \log 2,$$

and the result follows by symmetry.

¹Note that here we do not claim (and it might very well not be the case) that \tilde{Q} is $S(\Gamma_{n+1})$ invariant, we only need that it is $S(\gamma_{n+1})$ -invariant.

Remark 2. In particular, the above theorem says that if we restrict orbit equivalence of Γ -actions by requiring it to take Γ_n -orbits to Γ_n -orbits for every $n \in \mathbb{N}$, we get countably many different actions up to this finer equivalence relation on actions. We should also mention that Stepin refines the above result and gets continuum many such actions in [Ste71, Theorem 2], which uses Theorem 1. Vershik obtained a similar result to Stepin's in the same journal issue as Stepin [Ver71]. Moreover, another result of Vershik shows that given $S, T : \Gamma \to \operatorname{Aut}(X, \mu)$, there is a sequence (n_k) and an orbit equivalence which takes $S(\Gamma_{n_k})$ orbits to $T(\Gamma_{n_k})$ -orbits for every $k \in \mathbb{N}$ [Ver68]. The above result shows that in general, one cannot take $n_k = k$.

References

- [Ste71] A. M. Stepin. On entropy invariants of decreasing sequences of measurable partitions. *Functional Analysis and Its Applications*, 5(3):237–240, 1971.
- [Ver68] A. M. Vershik. Theorem on lacunary isomorphisms of monotonic sequences of partitions. Functional Analysis and Its Applications, 2(3):200–203, 1968.
- [Ver71] A. M. Vershik. Continuum of pairwise nonisomorphic diadic sequences. Functional Analysis and Its Applications, 5(3):182–184, 1971.