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§1. Introduction

Our object is to explain in cohomological terms all hypergeometric series.
This we do via the theory of “exponential modules” (see §7 for definition) previ-
ously studied [GHF]. At the same time we establish a connection with the theory of
Gelfand, Kapranov, and Zelevinsky [GKZ]. By means of a formal Laplace transfor-
mation (§9) we deduce integral representations of the classical type. In an appendix
we treat the full list of Horn [E.M.O.T] the Lauricella generalization of Appell’s
F, — Fy as well as a number of confluent forms of Lauricella type. Many of these
representations have appeared in the literature (e.g. Erdelyi, Yoshida, Humbert,
Aomoto, Pastro). To our knowledge the only previous systematic list is due to Kita
[K]. Kita’s list goes beyond ours in that he gives the corresponding cycle of inte-
gration. On the other hand he does not treat the confluent case. Our interest lies
only in the differential module and questions of convergence and confluence play
no role.

In the present treatment we have imposed the condition that the multiplicative
character parameters (e.g. a, b, c in the case of o F) are algebraically independent.
We will not at this time explain how these conditions may be eliminated but do
point out that the classical representations are totally inadequate in the case of
trivial parameters (e.g. (a,b,c¢) = 0 in the above example) while the exponential
modules do provide differential modules associated with the specialized differential
equations. In previous work [GHF] one of the authors has shown how Frobenius
structure and Boyarsky principle may be associated with exponential modules.

§2. Notation

Let S be a finite set of lattice points Z™

Hy be the semigroup generated by S. (Thus 0 € Hy).

Hy be the group generated by S. Let H be the linear space spanned by S.
Let g = > ,cs X" be the generic polynomial with support in S. Thus
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(-++, Ay, -+ ) are algebraically independent over Q.

Let a = (ay,... ,a,) be generic point of H, i.e. the transcendence degree of
Q(a) is equal to the dimension of H. We insist that Q(a) be linearly disjoint from
Q(X) over Q.

Let R be the ring of polynomials with coefficients in Q(a, \) and support in
H.

Let R’ be the ring of polynomials with coefficients in Q(a, A) and support in
H().

For 1 <7 < n we define F; = Xiaixu g;: = Eig,

Doi=Ei+gi+a

an operator on R’ and on R. We define W, = R/ S D, :R. We give W, the
structure of a differential module (see §7 for another point of view) by setting

o %

5:\-1;+3)\u Yu € S.

Ty —

We restrict our attention to W, but our results may be extended to W/, = R’/
S DaiR' by means of the isomorphism between W, and W! induced by the
injection R—R.

We shall have occasion to speak of

1

Let R be the non-commutative ring, R = Q(a, A)[o]. Following the spirit of
Gelfand and his colleagues [G.K.Z], we define the Gelfand ideal, B of R to be the

left ideal
B=> RZ+ Yy RO,
=1 A

the second sum being over the module of Z relations, A, among the elements of S.
Here
Z,L' = Z ui)\ugu +a;

ueS

while if 3, .5 Auu = 0, is a relation over Z among the elements of S then for each
u we write A, = A/, — A where A], - A = 0, and both A7, and Aj lie in N and
define

A/ 1"
Oa = Hdu“ — HO’u”.

ueS u€eS



Hypergeometric series 83

Let 2 be the left ideal of all # € R which annihilate [1], the class of 1 in W,. We
shall refer to 21 as the exponential module ideal.
We shall show that 2 = B.

§3. Basic Propositions

The main hypothesis, a is generic element of H, will be understood throughout
this section.

ProposiTION 3.1, Let £ € Q(N\)[X,1/ ], X;] and suppose that
£€> Dy M

then £ = 0. (Note that £ is an element of R independent of a).

Proor. By hypothesis £ =3 D, n;, 7; € H. By definition of H there exists
m € N such that each 7; is annihilated by all derivatives of order m — 1 relative to
ai,...,a,. We conclude from [GHF, p. 14] that £ may be written in the form

m—1 ; n ;
(-1 e
= Dy Dy ——r"——
¢ Z il Z o 7" daj, 0aj, - - - Oay,
=1 J1se--53i=1 *

The right side is zero as element of R.
PROPOSITION 3.2. The annihilator in R of 1 (as element of R) is Y AROA.

Proor. For each element, A, of the module of relations of S we have 4 - 1
= 0. Conversely if P € R, P-1 = 0 then we write P = ) B,0% where each
B, € Q(a,\). We may assume that P is minimal in its class modulo >R, in

the sense that Card (w | By, # 0) is minimal. By hypothesis 0 = 3 B, X >ues’
Hence if B,, # 0 then there exists w’ # w with B, # 0 such that

E U Wy = E u-wl,.

For each u € S let v, = min(w,,w)) and let A = wl — v,, A = wy, — vy,
A, = A, — A, Then o% = o% + ¢°[04 and hence modulo >~ RO4 we may
eliminate ¢ . This completes the proof.

ProposiTION 3.3. Let P = Y A"P,(0), a Laurent polynomial in A whose
coefficients, P,, lie in Q[o] for each multi-exponent, v. Suppose P(A\,0)1 € 3 Da,zﬁ.
Then for each v,

Py(0)1 €Y DaiR.

Proor. Multiplying on the left by a suitable monomial, \¥, we may assume
that P is a polynomial in A. We use induction on the degree of P as polynomial in



84 B. DWORK and F. LOESER

. Since multiplication by X* € R commutes with o, for each w € S, we deduce
after multiplication on the left

PX" €Y Dy uif.

Applying the automorphism a — a + u (which does not change P) and letting
u €S,
Po,1=PX" €Y D,.R.

On the other hand, multiplying our original relation on the left by oy, we have
0uP1 € 3 D, ;R. Thus taking the difference

(4P — Po,)l € Z Da,i}’i.

By an elementary calculation

S XY, Py(0)1 € Y Dok

We may now use induction on the degree of P as polynomial in A.

COROLLARY 3.4. Let P € Q(a)[A, %,a]. Letu € S. Suppose o,P1 €Y, Da’if%
(i.e. 0uP €2A). Then P1 € Y. Dy ;R, i.e. P € 2.

ProoF. Multiplying by an element of Q[a] we may reduce to the case in
which P € Qla, A, %, o). Since a; commutes with o, for each v € S, we may reduce
modulo >, Q[a, A, %, 0]Z; to the case in which P lies in Q[A, %, o). Thus we may
write P .= Y. A\*P,(0), P, € Q[o] for each multi-exponent, v.

We use induction on the number of distinct multi-exponents, v, such that
P, # 0. By hypothesis

3 [A”Uqu(o) n vu)\”_lqu(U)] 1€y DR

Hence by Proposition 3.3, o, P,(0)1 € ZDM-E for each multi-index v in which
v, is maximal. Since ¢, commutes with P,(0), we have for each such multi-

exponent, v,
Py(0)oul € Y  DaiR

and so

Py(0)X" € Da;R.

This implies [GHF Lemma 1.0.1],

Py(0)1 €Y DajusR
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We now apply the automorphism a — a — u to deduce
P(o)1 €)Y DoiR

for each multi-exponent v such that v, is maximal. Let T be the set of all such v.
Then P = ZveT AYP, is congruent to P mod 2 and so o, P again lies in 2. Since
P is a sum y_, AYP, involving fewer v than P, the induction hypothesis may be

applied.

§4. Equality of Gelfand ideal and exponential module ideal

THEOREM. B =2.

Proor.
4.1. We easily verify that B C 2.
(a) If A lies in the module of relations over Z among the elements of S, then

Ol = <u1;£au;>1 - (H ou5>1

u€eS

=[] x4 -] XuwAY = 0.

u€ES ueS

(So in fact 041 = 0 as element of R.)

(b) Zil=a;+ Y ,csuiraX® =a; +g; = Doyl.

4.2. We must now invert the inclusion. Let P € 2. Thus P1 =", Dqg i,
each n; € Q(a, V) [X, %] N R. With no loss in generality we may replace P by h- P,
where h € Q[a, \] is chosen such that hn; € Q[a, A, X, %] N R. Thus we may assume
P € Qla, A, o] and that

F%a3Aag)1::zE:l)aJni

=1

and each 7; € RN Qla, \, X, +]. We may reduce P modulo } 7, Q[a, A, 0]Z; C B
and assume that P is independent of a. Hence by Proposition 3.1, P1 = 0, and so
by Proposition 3.2, P € ‘B.

§5. Hypergeometric series

Let y be a hypergeometric series in n variables, t1,... ,t,ie.y = > o C(s)t°
where N > N; > n,
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N

1
C(s) = ) H (aq)éq(S)
H p(S) 1-— ap) tp g=1+N1

and ¢1,... ¢y are linear forms in Z[sy, ... ,s,]. We simplify:
5.1. We insist that o = 0 and £,(s) = —s, for 1 <p < n.

5.2. We insist that for p € [1, N], the greatest common divisor of the coeffi-
cients of £, be unity.

5.3. We insist that (n41,@n2,...,an) be algebraically independent over
Q.

For 1 <j < mnleté; “tJat

5.4. It follows from 5.3 that the annihilator of y in Q(c)[61, ... , 6] is trivial.
Indeed if P(6) were such an element then P(s)C(s) = 0 for all s € N" and hence
P(s) =0 for all s € N™ since by 5.3 C(s) is never zero.

Let Q = Q(a), R = Q[t, %, §]. Let A be the annihilator of y in R. For1 <p < N

) t,
let Ip(s) = > 7, Ap,;sj. We compute

N
C(s+1;)
Hap—i—l Am

S Cls)
= H (ap + 1y s) / H (op + Ip(s

Ap ;>0 Ay ;<0

We put

(5.5) hj(s) = H (ap + lp(s)) ;
Ap,520

(5.6) ki) = ][ ((a,,+ lp(s))Am)‘1
Ap,;<0

and set

(57) 0] = k]((S) Otjvl - hJ((S) S ﬁ

It is clear that 8; € % (1 < j <n). Let B = Z?zl RO;
Let M be the multiplicative subgroup generated by

{ap +€,(6) +up | ap #0, up, € Z}.

We denote (B : M) ={# € R | mf € B for some m € M}.
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5.7.1. Note that if o, ¢ Z then oy, + 1,(6) has trivial kernel in Q(t4, ... ,t,),
the space of formal Laurent series in ti,... ,t,. It follows that the same hold for
each element of M.

PROPOSITION 5.8.
A=(B: M).

ProoF. Certainly B C 2. We assert that (B : M) C . Let § € (B : M),
hence there exists m € M such that mfy = 0. Since 0y € Q(t1,... ,t,), it follows
from 5.7.1 that fy = 0 and hence 0 € 2.

To reverse the inclusion we first show that if # € R then there exists m € M,
s € N", be B, ve Qé such that md = b+ tisl/. Indeed we may choose s so that
t56 € Qlt, 6]. For each u € N®

h1(6 - 11 - u) o) tutl = t“hl(é - 11) o tl
Ztu(—tlel +k1(6—11>) Ek1(6—11 ﬁU,)Otu mod%

and hy (6 —1; —u) € M. It follows by induction on the degree of t°¢ as polynomial
in t that m, b, v exist as asserted.
If now 0 € A then vy = 0 and so by 5.4 v = 0. Thus m € B as asserted.

§6. Pullback to N-space

We use the notation of §5. Let m +n = N. Let &) = Q(T},... ,Tx) be the
space of formal Laurent series in N variables with coefficients in Q. For 1 < j <n
let 7; = Hp(——Tp)"Ap’j. Let T = (Tpt1, ... , Tn). There exists a 1-1 correspondence
7 between Z" and Z" x Z™

w(w) = (71'1(10)7 T2 (w))

such that for w € ZN
% — () Fra),

Let A, = Tpg%, a differential operator on &),

ProrosiTION 6.1. QS(()N) = Q71,... ,Ty) is a subspace of BN,
&™) may be identified with B (Tpy1, ..., Tn) = { yegm &I | & € 8TV}
and in particular if Y c;n {vf” =0 as element of ) then each &, = 0.

PrOOF. If € = Y koT% € 8™ then € = ¥, pm &T° where & = 0
ﬂ:k,r—l(u’v)’l'u.

Conversely if & = Y ,ezn HuoT®, then 6T = 3, Hy( T™ 49) =
Y wezny THrw)T. Again if >&,T? = 0 as element of &) then Hrwy = 0
for all w € ZN and hence H, , =0 for all u,v. This completes the proof.
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Let x be the mapping of (™ = Q(tq,... ,t,) into &) defined by x(t¥) = 7
for all u € Z™.
Let A be the N x m matrix defined by

61(8) S1
D=4l
ffq(s) Sn

We write the matrix A in the form

(6.1.1) A= (j,")

where A’ is a m X n matrix. Let
(6.1.2) B=(A1,)

an m x N matrix. The rows of B span the space of N-tuples, w, such that wA = 0.
For 1 <1< mletp = 25:1 BipAp, an element of R = Q[T, 7, Al, (where
A= (Ay,...,AN)).
Let € be the set of all n € Q[T, %, A] which annihilate 6(()1\7) , the image under
x of &™),

ProproSsITION 6.2. N
Cc=1

ProoF.
A1 61
(6.2.1) =1 ¢ Jox=xoA| :
Ay bn,
61
Hence —p; o x = —Eév:l BipApox = Xo(Bil,,.. ,Bin)A| : | =0. Thus p;
on

annihilates ngN) .

Conversely letting € = > 7", R p; we know that

1

(6.2.2) ﬁ:Q[T,T,Al,... LA + €.

If » € € then we may assume that (after reduction modulo &)

(6.2.3) n= Y T'Py(r,A1,...,An),
vEL™
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a finite sum over v and where each P, € Q]r, %,Al, oAy Forj<n,Ajox=
x ©8; and hence A; is stable on QS(()N). The same then holds for P, (7, A1, ... ,Ay).
Thus if € € QﬁéN) we have

0=né= Y T°(Py(r,Ar,...,8,)8)

vEL™

and so by Proposition 6.1, P, annihilates &.
Thus we may assume that € Q[r,2 A;,...,A,]. Let us write n =

P

S uenn Qu(T)A} - AU» a finite sum where each Q, lies in Q[7, 1]. For £ € &™

n
we have

0=nx(§) = x( > Qu(t)csué)'

ueNn

Since x is injective, we conclude that » nn Qu(t)é" is an elenent of R which
annihilates (). We conclude that Q,(t) = 0 for all u € N™. Thus 7 is identically
zero. This completes the proof.

COROLLARY 6.3. For each n € R there exists n* € R such that
xon=n’ox.

PrOOF. As a ring R is generated by the operation of multiplication by t;-bl
and the operation 6;. We may choose ¢} = 7;, 67 = A; (1<j < n).

REMARK. 7* is unique mod €.
Let 2 be the annihilator of y in R. Let
A =€+ Z Rn*
neA
an ideal of R.
COROLLARY 6.4. 2A* is the annihilator of x(y) in R.

Proor. Trivially 2* lies in the annihilator. To show the converse let 7 lie in
the annihilator. Reducing modulo € we may assume that 7 is of the form (6.2.3).
Following the proof of Proposition 6.2, (with £ = x(y)) we conclude that we may
assume 7 € Q[r, %,Al, ..., Ap] and writing n = 7 oy Qu(T)AY -+ AR we de-

duce
0=x( Y Quit)sy).

ueN?
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Thus Y, cnn Qu(t)0™ € A and 7 lies in 2A*.

PROPOSITION 6.5. dej:fhm>“—ﬂyﬂw.TMn

WJ'O; = H ((ap — AP)Ap,j)il(—Tp)Ap’j - H (_Tp)_Ap’j (ap —Dp)a,,-

Ap <0 Ap, ;>0
Proor.
9]' = H ((O‘p + Ep((s))Ap,j)_l t;‘—l - H (O‘p + gp(6))Ap,j
Aij<O Ap,]'>0

while (€,(6))* = —A,. Hence

0; = H ((ep — Ap)Ap,j);l Tj_l - H (o = Bp)ay,;-

Ap,; <0 Ap,;>0
The assertion now follows by multiplication by w;.

Let M be the multiplicative semigroup in R generated by {a, — Ap + up |
a, #0, u, € Z}.

By the same arguments as in 5.7.1, each element of M has trivial kernel in
UTy, ..., Tn).

LEMMA 6.6. Let 2 = Sy 7%9; + Y7 Rpi. The annihilator of x(y) in R
is (A : M).

Proor. Certainly 2 C annihilator of x(y). Let m € M, 9 € R and suppose
m € 2. Thus mOx(y) = 0 while Ox(y) € T, ... ,Tn) and by the above argument
Ox(y) =0, ie. (A : M) lies in the annihilator of X (y).

Now let n* lie in the annihilator. Reducing modulo €,7* has the form (6.2.3)
and proceeding as in the proof of Proposition 6.2 we may further reduce to the case
in which n* o x = x on where 7 lies in the annihilator of y. Thus by Proposition 5.8
there exists m € M such that mn € 3 R6; and so

m*np* € Y RO; + €.

Recall that since m € M, m is a product of elements (o, + £,(6) + up) where
ap # 0, up € Z. Thus we may take m* to be a product of elements (a, — Ay, + uyp),
i.e. m* € M. Thus n* C (2 : M) which completes the proof.

LEMMA 6.7. Let Mg be the semigroup generated by {Ap, + up | ap # 0, up €
7}.
Let
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aq Ant1
(6.7.1) a=B : =
anN aN
N
(6.7.2) Li=pitai=Y BiyAy+a; (1<i<m)
p=1
a —Ap,j (9 Ap,j
(6.7.3) ;= JI (—) - II (—) .
Ap,;<0 T, ap,; >0 Ty
Let

A = iﬁej + iﬁLi.
j=1 i=1
The annihilator of z = T~%x(y) in R is (A’ : My).
Proor. The annihilator of z = T~ “o annihilator of x(y) o T
= (T oAoT* : T Mo T).
Thus it is enough to check that
T ®op;oT*=p;+a;=1L;
T™%ow;f; o T = O,
T=% 0 MoT* = M,.
This completes the proof.

We now return to the space Wa discussed in §2 but here we put
6.74) g(X1,..., Xm) =T XYV 4+ 4T, XYY 4T 0 Xy 4+ Ty X

where A’0) is the j** column of A’.

Let R = Q[T, %,01,,... ,07y] viewed as operators on W,, with o, = = +
o9 '
aT;

THEOREM 6.8. The mapping ¢ : R —> R defined by @(5%) = or, s an
isomorphism mapping the annihilator of z onto 2, the annihilator of [1].

ProoOF.

N
o(Li) =a; + Z B, Tyor,

p=1
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and B;, is the exponent of X; in the monomial multipled by T}, in g (B;, = 0 if
p>n,p#n+i, Bi,=1ifp=n+i, Bj, = A}, if p < m). Thus ¢(L;) = Z; in
the terminology of §2. The set S of §2 now consists of the columns of B.

The relations among the columns of B = (A’, I,,,) are generated by the columns
of A. Corresponding to AY), the 5 column of A, we have (cf. §2)

—A

A, ;<0 Ay ;>0

and this is precisely ¢(©;).

This shows that ¢ maps 2’ onto 9B in the notation of §2.

If 6z = 0, 6 € R then there exists m € Mg such that m§ € A'. Thus
o(m)p()[1] = 0. We assert that ¢(#) € 2. We use induction on the degree of
m as polynomial in A. We may assume m = (A, + u,)my with my € Mo, up € Z.
Thus (Tpop + up)e(my)e(0)[1] = 0 and so

(Tpop)Ty7 p(m1)p(8)[1] = 0.

By Corollary 3.4, ¢(m;)p(6)[1] = 0. Hence by induction ¢(#)[1] = 0. This shows
that ¢ maps (' : Mp) into 2. By Theorem 4 we conclude

() = A = p((A : Mo)).
This completes the proof.
Since ¢ is an isomorphism we deduce two consequences.

CoroLLARY 6.9. The annihilator of z, (A M) =
The annihilator of x(y), A* = (2: M) 2.

REMARK. Hypergeometric series are solutions of the hypergeometric D-
modules defined in [L.S.2]. In fact the inverse mapping by x of such hypergeo-
metric D-modules are up to a twisting exactly the D-modules of [G.K.Z.] which
seem to be defined only in the case of regular singularities. In §8 we shall remove the
necessity of both the transformation x and twisting and identify hypergeometric
D-modules with the D-modules of [GHF].

§7. Exponential modules

Let HO,HO,S g be as in §2 but we now drop the requlrement that the A,
be algebraically independent over Q. We may still view Rasa Q(a, M) space. Let
A1,. .. ,Aq be a transcendence basis for Q(A) over Q.

LEMMA 7.1. The mapping £ — X°%Eexp g(z) of R into RX®exp g(x) induces
an isomorphism,
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W, = RX® expg(:t)/z Ei(ﬁXa exp g(X))

=1

as differential modules over Q(a, \), the operator o; = % + % on Wa correspond-
J 7

ing to ai/\j on the right side.
Proor. Obvious.
We now remove the twist.

COROLLARY 7.2. With g as in 6.7.4, R = Q|T, %, A] operates on

T*RX® expg/ zm: Ei(ﬁTaXa expg)

=1

and the annihilator in R of the class of T*X®expg is precisely the same as the
annihilator 2 of x(y).

Proor. By Theorem 6.8 and the lemma, the annihilator in R of [X®expg]
coincides with that of z. Twisting by T, we deduce that the annihilator of [T*z®

- exp g| coincides with that of x(y).

§8. Normalization (Removal of pullback)

Let g € Q[t, 2], t = (t1,... ,tn), 2= (21,... ,2m), m = N —n be defined by

n
~ 10)
—g(t,2) =214+ 4+ zm + E iz ”
i=1

the columns A’0) (1 < j < n) being precisely as in §5. So here S is precisely
as in the proof of Theorem 6.8. Let R be the ring in Q(q,t)[z, i] generated by
the monomials z%, u € S. Let W, be the Q(a, t) space defined precisely as in §2
with a,a related as in (6.7.1). Then W, is a differential module with operators
g = 5% + g%. To avoid confusion we shall use Ei to denote Zis% as an operator
on R.

We recall y in §5 and its annihilator 2 in R = Q[t, 1, 6].

Let ¢ be the isomorphism of R with R; = Qt, %, ] defined by ¢(8;) = t;o;
(1<j<n).

o~ =

THEOREM. The image of 2 under o is precisely the annihilator in Ry of [1],
the class of 1 in W,.
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Proor. Using the natural isomorphism of §7 it is enough to show that
A = 2A;, the annihilator in R of the class of 2*expg in \N/adéfz“ﬁ expg/ Y v,
E;(z°Rexpg).
Let R be the ring over Q(T) generated by the monomials of ¢ in (6.7.4) and
let "
v, = TaXaﬁexpg/ ZEi(To‘Xa}ABexp g)
=1
where E; = Xia_g)(? This is an Q(T) space on which R = Q[T, %,Aq,... ,AN]
operates. (The class of 1 in Wa corresponds to the class of T*X®expg and so

involves a twist by T%.)
We use the map x of

2% exp 'gv’ﬁ into T“X®expgR

defined by
x(2i) = =XiTjpn for 1<i<m

X(t]‘) =T; = H(“TP)VAP'J' for 1<j<n.
=1

We have the relations
EiOXZXOE'i for 1 <7< m,

Apoxzxoﬁp_n——xoép(é) for 1<p<N, Ep_n=0ifp<n.

Thus classes of 17& are mapped into classes of \7a and A, is stable on the image of
V, in V,. In particular y induces a mapping of V, into an Q(7) linear submodule
of ‘7@.

We sketch the remainder of the proof. By the method of proof of Proposition
6.1, x is injective. Our relations show that Z;V:l B; ,Ap lies in the annihilator
of X(T~/) By the proof of Proposition 6.2, the annihilator of the image is again
€o. By the proof of Corollary 6.5 the annihilator of [T*X“expg] in R is precisely
¢+ Znem Rn the sum being over all € 2;, the annihilator in R of [2% exp g].
But we have shown (Corollary 7.2) that the annihilator in R of [T*X®expg] is
2 which by Corollary 6.9 coincides with A* = € + Zneﬁ ﬁn*. This shows that
C+ > cx Ry =€+ D oned, Rn*. It follows from the injectivity of x that A = ;.

§9. Laplace isomorphism

Let R = K[X1,...,Xm, E’l_x:] where K is a field containing Q(a). We
assume that
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(9.0.1) g= me(m) et X[,f(l) + f(fél)

where f)(m > j > £ —1) lies in K[Xy,..., X1, 5%, (and so is inde-
pendent of Xi,...,X,,). We assume that @, @m—1,...,a, are each outside —7Z
(If a, € Z, p > I, then we must insist that a, > 1 and must remove from R all
monomials X“ with u, < 0). We make no hypothesis concerning as, ... ,ae—1.

For m > p > £ —1 we put giP) = f¢=1 ¢ E?:e Xjf(j) (and so in particular,
gD = plt=1),

— Xlal"'X:p P
We define 0, = Fomam - fFDapt expg®.

We define R, to be the K span of all expressions X ~--X,1,L”/f(m)um
FEU for all (us, ..., Uy) € Z™. (Thus Ry, = R'.)

We define T}, to be the mapping 6,R, — 6, 1R, 1 defined by linearity and
the condition

Ul Up uy , yUr-1
Xu. X, X4 X

p—1 _1\Up
gpf(m)"m-~-f<f’+1>%+1 _’gp‘lﬂm)um...f<p+1)up+1f<p>up (ap)u, /(=1)".

Ty

Thus X, does not appear in the image.
LemMma 9.1 (cf. [GHF, §10.2]). For p > ¢, T, maps 0,R, onto 6, 1R, 1.
For1 <1 <p the diagram

0,R, —— 6, 1R, 1

HpRp —)T ep—lRpfl

commutes. In particular E,(0pRy) C ker(Ty,, 0,R,).
TueoreM 9.2 (cf. [GHF Lemma 11.1.1]). For p > ¢, T}, induces an isomor-
phism

p p—1
GPRP/ Z Ei(6pRp) ~ p—lRp—l/ Z Ei(6p—1Rp-1).
i=1 i=1

Proor. Let n € R, and suppose Tp(nf,) = Zf:_ll E;(ni6p—1), where n; €
R, 1 (1 <i<p—1). We assert that

p—1

(9.2.1) 0y € Ep(0,Ry) + > Ej(0,Ry).
j=1
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By surjectivity there exist &;,...,§,—1 € R, such that

Tp0p8 =mifp—1 1<i<p-1

and hence
p—1 p—1
T, Ei(0p&) = Y Es(mibp—),
i=1 =1
which shows that .
p—
Ty(nbp — > Ei(6p8:)) = 0.
=1
Thus we may assume 7 € Ry, '
(9.2.3) Tp(nbp) = 0.
We assert that
(9.2.4) nbp € Ep(Rpby).
We write
X D
(9.2.5) n=>_ Cy Fm D
Let S = {u, | Cy, # 0 for some choice of uy,... ,up—1}. Let M = sup, s up,

M = infupes Up-
We use induction on M — M’. By (9.2.3)

X;‘l - X;:f;l
0= Cu oy - o <L)

u€S

where €(up) = (ap)u, (—1)"".

Thus
Cu X X7
(M) ZM Fmyum . fe+Dup
(9.2.6) ’ 1
D D i
— _ fp)M ikt S it S
=7 2, Cuelup) Fm)um . fouy
up <M—1
Let u
X" X,T

&1 = Z Cu f(m)um ~.-f(17+1)up+1
up<M—1

- X ...X;:l
fo= Y. Cu Fmyum T D

up=M
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Thus
n==& + Xév[{o-

If M = M’ then & = 0 and hence the right side of (9.2.6) is zero and so the
same holds for &, i.e. n = 0. Thus we may assume M # M’.
By (9.2.6) we have

o= fPe
where Xu... et
£ = — fPIM-1) u,,gle Cy- :8\% f(ml)um ...;Zplm € By.
Thus

n==E& + pr(p)XIJyﬂfz_
Now &5 is independent of X, and hence
Eyp(0,X)" " 62) = (ap+ M = 1)6, X" 7160 + X, f P X160,
Thus
0, = 0p&1 + Ep(0,X) 71 6) — (ap + M — 1), X6

Thus we may replace n by &1 — (ap + M — 1)X;)V1_1§2 and the support S’ of this
element has the property that sup,, ¢ g u, —inf, es v, < M —M'—1. The assertion
now follows from the induction hypothesis.

COROLLARY 9.3.
T=TioTp10---0T),

induces an  isomorphism of 0mR'/Y.iv Ei(0mR) with 92_1R[_1/Zf;i
Ei(6i—1Ro—1).

We recall (§2), R is defined to be the subring of R’ generated by all monomials
occuring in g. We define R,_; a subring of Ry;_; by the condition

T(ROp,) = Ro_160—1.
CoroLLARY 9.4. If
(9.4.1) RNy D,R =) D..R
i=1 i=1

then T induces an isomorphism of
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m £2—1
RO, / S"Ei(0mR) with 6,_1Ryy / S Ei(6e-1Re-y).
=1 =1

Proor. It is enough to show that if n € R and

-1

T(10m) € Y Ei(6e-1Re)
i=1

then 70, € Y vy Ei(é’mflm). By the preceding corollary we know that 06, €
S Ei(BmRim) = it Ei(6mR') and so the assertion follows from (9.4.1).

REMARK 9.4.2. Hypothesis 9.4.1 is known to be valid if a is generic and more
generally if no lattice point lies on any face of codimension one passing through the
origin of the polyhedron of g.

§10. Integral representation

Integral representation of hypergeometric functions associated with

——g:Xl +"'+X.m +thXAl(j)

Jj=1

are obtained by application of Corollary 9.3. For many purposes (e.g. p-adic co-
homology as in [GHF]) it is enough to consider 6, R’/ Y 7", Ei(6,R'), but for
comparison with the classical literature (Erdelyi, Humbert) and the recent work of
Yoshida and Aomoto and Kita we regroup the terms of g as indicated by (9.0.1).
There is no unique way to arrive at this regrouping, particularly since we may
introduce multiplicative changes in variable,

log 23 log X3
(10.1) : =C :
log zm log X

where C € G{(m,Z). Of course such a change in variables must be accompanied
by a corresponding change in the vector a = (ai, ... ,am).

We illustrate this by working out representations for the Horn list, the Lau-
ricella functions, and ,Fj_; and a few of the confluent forms of the Lauricella

functions.
In the non-confluent case ¢ is homogeneous of degree 1 and hence g = X h(2),
z = (29,23, ,2m). It follows that in all such cases there is an integral represen-

tation of the form (237 - - -zf,;"/h(z)‘“""“2+‘“"l'“’")‘1732Z RERWA d—;iﬂ..
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Appendix

Notes on the Appendix.
We give some details for all the elements of Horn’s list, for the four Lauricella

series, for some of their confluent variations and for . Fi_1.
The information is in the following form following the name of the function.

1.
2.

7.
8.
9.

The general term of the series representation

(n, N,m) = (number of variables, number of factors in the general term,
the number of X variables)

The signs of ¢1,t2,... ,t,

The matrix A’ of equation 6.1.1 with a listing of the corresponding
Qntly-- - »Ontm

—g with the correct signs for t1,... ,t,

The change in variables used to achieve a more standard integral repre-
sentation

The transformed representation of g

X% in terms of new variables

The integral representation.

We give no indication of cycles.

M. Kita has treated all the complete series of Horn as well as the four series of
Lauricella and has given appropriate cycles. His differentials usually but not always
agree with ours. Kita has also given a general integral formula for all hypergeometric

series of non-confluent type.

Fy

—

(a)31+32 (/6)51 (ﬂ,)sz

(’Y)Sl—{'sz’sl !82!

(n,N,m) = (2,6,4)

411, +12
-1 -1 1—7
1 o
A =
@ia=|1 o | &
0 1 i
Xo X X2 X
—g= X1+ Xo+ X3+ Xy + 1) 222 44, 2204

X1 X1

(Xl,X27X3,X4) = (Xl, —ZX1,X3,X4)
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7. —g=X1(1—2)+ X3(1 — zt1) + X4(1 — 2t2)
8. X=Xt xixy

2% 1 1 dz
(1—2)1te=7 (1—t12)? (1 —t22)" 2

6. (X1, Xz, X3, X4) = (X1, X2, — X121, —X122)
7/. —g=X1(1 — zZ1 —22)+X2(1—t12’1 —thz)
8. X0 =X\ xe b0

Az ! dz | dz

9. !
(1 — 21 — 22)1_7+B+ﬂ (1 — tlzg — thQ)a z1 z9

10. [E.M.O.T. p. 230, 231]

F

(@) 51452 (8)s: (8')ss
(V)51 (7) sz 81182!

2. (n,N,m) = (2,7,4)

3. iy, +to

-1 0 1—x

0 -1 | 1—4
4. Ale)y=]1 1 a

1 0 3

0 1 il

XX, X3 X

5. —g= X1+ Xo+Xs+ X4+ X5+t 2 44, 2300

X3 Xs

6. (X1, X2, X3, X4, X5) = (X1, X2, X3, —21 X1, —22X2)
7. -—g=X1(1—Zl)+X2(1—22)+X3(1—t121 "‘tQZz)

8. Xo= XM Xt xe 0



9.

10.

F3

10.

Fy
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GE1 day | dz

(1 — Zl)l—hﬂ_’y(l — 22)1+'B,77,(1 — t121 - tzZz)a Z1 Z9

[E.M.O.T. p. 230]

(@)1 (@), (B) 51 (8)s2

(7)314—5231!52!

(n,N,m) = (2,7,5)

+t1, +t2
-1 -1 1—7
1 0 o
(A ) = 0 1 o
1 0 I6]
0 1 e
XX X3X,
—g=X1+Xo+Xs+Xu+ X5+ 1 2 4+t2 325

X, X3

(X17X23X35X47X5) = (X17X27X31 —Xlzla "'X122)
—g = Xl(l — 21, —22) + X2(1 — tlzl) + X3(1 — tzZz)

Xa — X11+ﬂ+ﬁ’—“/X§cX§x'z,132/5'

Az day | dz
(1 — 21 — 20)1HBHA=7(1 — t121)%(1 — t222)¥ = 22

[E.M.O.T. p. 230]

(OFETACINETN
(7)51 (7,)5251!52!

(n,N,m) = (2,6,4)

+t1, +t2
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-1 0 1—7
-1 1—+
4. (A'|a)= 7
1 «
11 8
X3X X3X
5. —g:X1+X2+X3+X4+t1 3 4+t2 374
X3 Xo

6. (X1,X2,X3,X4) = (—Xs21, X322, X3, X4)

1 1
7. —g:Xg(l—Z1—22)+X4 (l—tl—*—tgﬁ)

21 z2
a_ -7 1-7 y2+a—m—-72 yB
8. X°®=2 "z ' X3 X5

9 Z%_’Yl Z;_’YQ 1 dz1 dZQ
’ (1 — 21 — 22)2+a—'y—'y’ (1 — tl% — tgi)'@ z1 Z9

10. [Yo. p. 329], [Pa, p. 120]

G
(a)51+52 (/6)52—51 (ﬁ/)sl—sz

81!82!

2. (n,N,m)=(2,5,3)

3. —t1,—1s
1 1 «
4. Ala)y={-1 1 I6]
1 -1 8

XX, XXo

5. —-g:X1+X2+X3—t1 X2 X3

6. (X1,X2,X3)=(X1,X32,X3)
1
7. —g=X3(1+Z>+X1 <1~t1;—t2z>

8. Xo=XePXLHE



9.

10.

G

10.

Gs

Hypergeometric series

2P 1 dz

(1—t12 —tpz)> (L+2)PH0 2

[Er 1950, p. 156, z =

]

1—u

(a)81 (a/)sz (16)82'51 (ﬁl)sl—sz

81!82!

(n,N,m) = (2,6,4)

——t17—t2
1 0 «
0 o

A’ =

@i =| o |G
1 -1 o4

X X XoX
—g= Xy 4+ Xo+ Xy + Xy — 1 ot 4, 2208

X3 X4

(XlaX27X3a-X4) = (X17X27ZX49X4)
1
—g=X; <1 —t1;> +X2(1 —tQZ)+X4(1 —I-Z)

X = XeXg' PAXIHF

28 1 dz
(1—t12)o(1 —tg2)™ (1+2)P4F 2

[Er 1950, p. 148]

(a)ZSz—sl (a/)2sl—sz
81!32!

(n,N,m) = (2,4,2)

—t1, —t2

103
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cuwa=(3 %] 2)

X2 X2
5. —g=X;+ Xo—t1 =2 —ty—-
g 1+ X2 1X1 2X2

6. (Xl,Xz) = (Xl,Xlz)
9 1
7. —g=X1|14+2z—-112 —tzg

a _ vata o
8. X*=Xj z

’

z¢ dz

(142 —t122 —tyl)ate’ 2

10. [Er 1950, p. 158]

H,
(0)317‘92 (ﬁ)sﬁ'sz (7)82

(6)3181!32!

2. (n,N,m)=(2,6,4)

3. ty,—ts
-1 0 1-6
-1 o
4. (A’ =
(' |a) Lo
0 1 0%
XX X3X
5, —g=X1+Xo+X3+Xs+1 223 ¢y Sh

X1 X5
6. (X1,Xo,X3,X4) = (X1,X121, X3, X12122)
7. ~g=X1(].+Zl +21Z2)+X3(1+t121 _tZZQ)

8. Xa=X.tetvletraxp



10.

H,

10.

Hj3

Hypergeometric series

oty )y
27 2y dz1 dz

(1 +ti121 — t222)6(1 +2z1 4+ 212’2)1_5*'0‘""y _Zl_ 29

[Yo, p. 330]

(0)51_32 (5)51 ('7)52 (6)52

(€)s,51!s2!

(n,N,m) = (2,7,5)

t1, —t2
-1 0 1—¢€
1 -1 «
Alay=| 1 o0 | 5
0 1 7y
0 1 6

XoXs5 t X4 X5

—ag=X X X X X t
g 1+ X+ X3+ Xg+ X5+ 1 X, X,

(X1, X2, X3, X4, X5) = (X1, X121, X3, Xy, X12122)
—g = X1(1 +z1 + Z1z2) + X3(1 + t1z1) + X4(1 - tQZQ)
X0 = X metotb ol s xBxy

(1 + 21 + Z122)1+6+a_6(1 + tlzl)ﬂ(l — t222)’7 Z1 z9

[Yo, p. 330]

(a)251 +s2 (ﬁ)sz

(’Y)sl-i—sz 31!32!

(n,N,m) = (2,5,3)

t1,t2

105
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-1 -1 | 1-~

4, Ala)=1 2 1 a
0 1 B
X2 X2 X3
5. —g=X;+Xo+Xs+t1 =2 +to———
g 1+ Xo+ X3+ 1X1+2 X,

6. (XlaX2aX3) = (X17—X127X3)
7. —g=X(1—-z+t2%)+ X3(1 —t22)

8. Xo=Xx]teTvex)

9 2 dz
(1= z4t22) e (1 —t22)P 2
Hy
1. (a)281+32 (ﬁ)sz

(7)51 (5)3231!52!

2. (n,N,m)=(2,6,4)

3. ti,te
-1 0 1—7
1 1—
4, A’ =
(A" | @) 5 1 o
0 1 3
X2 X3X
5. —9=X1+X2+X3+X4+t1'£+t2 324
X1 Xs

6. (X1, X2, X3, X4) = (X1, X2, X121, ~X20)
7. —g=X1(1-2 +t1zf+t22122)+X2(1 — 22)
8 X¢= X11+a—’YX21+ﬁ—6zixzé3

zf‘zg dzy dz
(1 -2+ tlz% + t22122)1+a—7(1 - 22)1+ﬁ‘5 21 29




Hs

Hypergeometric series

(@)2s,+s, (IB)82~81

("}’)5231!82!

(n,N,m) = (2,5,3)
—t1,t2

0 -1 1—7
Ala)y={ 2 1 a
-1 1 B

X2 X2 X3
—g=X1+Xo+ Xg—t; ==+t
g 1+ X9+ X3 1X3+2X1

(X1, X2, X3) = (X2/2122, X2, X2/21)

1 1
—QZX2<1—t1Z1+t222+—+ )
Z1 Z1%2

—1-By1 —y -1
Xa:Z’lY 1 ﬁX2+a+ﬁ 'YZ;

P dz
(1 -tz +t2zp + 3= + )Tt 2

(a)231‘52 (/8)32—31 (7)52

81!82!

(n’Nv m) =(2,5,3)

_t17—t2
2 -1 a
Ala)y=[-1 1 | 8
0 1 ¥
X2 X5X3
—g=X1+ X0+ X5 —t; =2 —t
g 1+ Az + A3 1X2 2 X,

(X1, X2, X3) = (X1, X1/2,X3)

d22

22
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H;

b1

B. DWoORK and F. LOESER

1 1
—g:Xl (1+——t1Z>+X3 (1—t2—>
z z

X = X0PPx]

PRl 1 dz
(1+1—t1z)oth (1—t7)7 2

(01)251 —82 (ﬂ) S2 (7)32

(6)s,81!s2!

(n, N,m) = (2,6,4)

ty, —t2
-1 0 1-6
-1 «
A =
(4| ) Ll
0 1 o

X2
=X+ Xo+ X3+ Xy +t, =2 —t
g 1+ Xo+ X3+ Xg4+ 1X1 2 X,

(X1, X2, X3, X4) = (X1, X121, X3, X122)

z
_g—_—X1(1+21 +tlzf+22)+X3 (l—tQ;z)
1

a 1+at+y=6 o v yP
Xo = X] 222) X

2§z 1 dz A dzs

(14 21 + 1122 + z9) 1 Tot7=8 (1 - tzﬁ—f)’g z1 Z2

(@) sy+s2 (B)s2

(7) sy +s251182!

(n,N,m) = (2,5,3)

t1,t2



b2

10.

Hypergeometric series

-1 -1 | 1—+

Ala)y=1{ 1 1 o
1 0 8
X2 X3 Xs
—g = X t t
g=X1+Xo+ X3+t X, +2X1

(X1, X2, X3) = (X1, —X12,X3)
—g = —taz + X1(1 — Z) + X3(1 - tlz)
X =X, xY

2% exp(ta2) dz
(1 —2)tte=7(1—t12)8 2

[Hu, p. 79

(B8)s, (B) s,

(7)31—{—5231!32!

(n, N,m) = (2,5,3)

1,12
1 -1 | 1-+
Ala)y=1 1 0 8
0 1 B
X X3
—g=X X. X =2 4t
g 1+ Xo + X3+ lX +2X1

(X1, X2, X3) = (X1, — X121, —X122)
—g=X1(1 - 21 — 23) —t121 — t22o

Xo — X11+ﬁ+ﬁ'*’yzlﬁzé3’

zfzg dz;
(1 — 21 — 29)1HA+A =

d22

exp(tiz1 + tzzz)— N —=

22

109



110 B. DWORK and F. LOESER

6. (X1,X2,X3) = (—2,X2,X3)

1 1
7’. —g = ‘Z+X2 (1 —tl—‘) +X3 (1 —tg—)
z z

8. Xo=27XPXY

o 217 o Zdz
. X -
(—tDPA-uh?

10. [Hu, p. 74], [Er 1939, p. 227]

¢3
(B) s,

(7)814‘8251!52!

2. (n,N,m)=(2,4,2)

3. ty,to
-1 -1 1—7
4. (A =
wio=(3 5117
X5 1
5 —g=X X t1— +tg—
g 1+ Xo + 1X1+ 2X1

6. (Xl,Xg)'—_ (—Z,Xg)

1 1
7. —g=X2 (1—t1—>——(2+t2-—)
z z

8. X*= ZI‘VXQB

9 2V exp(z + t21) dz
’ (1 — tlé)ﬁ z

(G}

(@) 51455 (B)sy
(V)51 (7)s, 511s2!

2. (n,N,m) = (2,6,4)
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t1,t2
-1 0 1 -7
-1 11—+
Ala)=
e o
1 0 38
X3X. X
—g= X1+ Xo+ Xs+ Xy + 1 + 15520
X, X5

1
(X1, X2, X3, X4) = (Xl, —z_’X3’ —X1Z1>
2

1
—g=-— +X1(1 = z1) + X3(1 — t121 — taz2)
2

X = X0 g

22~ exp(3) dn dz
(1 — Z1)1+B~7(1 —t121 — tQZQ)a 21 Z9
(@)1 452

(7)51 (7/)3231!52!
(n,N,m) = (2,5,3)
t17 t2

1 0 1—
(Ale)y=1 0 -1 1—+
1 1 «
X3

X3
—g=X1+Xo+X3+t1— +to—
g 1+ Xo+ X3+ 1X1+2X2

(X1, X2, X3) = (—21, —22, X3)

1 1
—g=—(x1+22)+ X3 <1 —t1— — t2—>
21 22
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[1]

a = 1=7,1-7 xa
X =12z, " X§

B. DWORK and F. LOESER

1—vy _1-+
7z dzy dzo
t ) A
(e A R
(@)s; ()55 (B) s
(V) s1+sq51!52!
(n,N,m) = (2,6,4)
tl,tQ
-1 -1 1—7
0 o
A’ =
( | a) 1 al
1 0 38
XX X
—g= X1+ Xo+ Xa+ Xa +ti ot 1
X1 X1

(X1, Xo, X3, X4) = (X1, — X121, — X122, X4)

—g = Xl(l — 2] — ZQ) + X4(1 had tlzl) — t2Z2

(1]

X = xirrete e X
z‘fzg“' d21 d22
t — N —
(1= 2 — zp)t ot =7(1 — t121)° exp(tz72) 21z
[Hu, p. 79
(a)31 (/8)81

(7)31—1—5231 !32!

<n7 N? m) = (2’ 5’ 3)

tlatQ
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Hypergeometric series

-1 -1 1—7

(Aley=| 1 O @
1 0 e
XoX3 1
—g=X1+Xo+ X3+t to—
g 1+ Xo+ X3+ 1 X, +2X1

(X1, X2, X3) = (22, X2, —2122)

1
—g = Xg(l — thl) + 29 — 2122 +t22—
2

X =202 " Xg

Bol-vth 1)\ dz dz
Az (2122 o t2_) dzi | dz

(1= 2z1t1)® 20/) =

(a)81 (/8)82—51 (,3')51;32

81!82!

(n,N,m) = (2,5,3)

_t17—t2
1 0 a
“la=(-1 1 | 5
1 -1 | g
X1 X3 X
—g = X5 —t —t, 22
g=X1+Xo+X3—-1t X, X,

(X17X27X3) = (X17X3ZaX3)
1
—g = X1 (1 '\Lt];) +X3(1 -’Z) +t22

X = XpAXEH

2B
(1+t1 1) (1 - z)0+F

dz
exp(—tzz)—z—

22
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10.

H,

B. DWORK and F. LOESER

[Er 1940, p. 351]

(/8)32"31 (/3,)51—52

51!82!

(nva m) = (274’2)

—ty, —t2

wio=(7 4| 5)

X5 X,
= Xy + X — 22—ty =t
g 1+ A2 5 2X2

(X17X2) = (Xla—Xlz)
1
—g = Xl(l — Z) + tlz + tg—z'
Xe = X16+5’zﬁ/
2F dz

1
e (he)

(@) s1—ss (B)s1+s2

(6)5151!52!

(n,N,m) = (2,5,3)

t1, —t2
Aley=| 1 -1 a

X2 X3

—g=X1+X2+X3+t1
X1

—ty—
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1 1
(XI,X27X3): <_ 7_7X3>
21%2 22

1 1
—g=—-—— +X3(1 - t1z1 "t222)
Z2 2122

a __ 6—1_b6—a—1 ,B
X% =2]" "2 X3

6—1_6—a—1
1 1\ dz dz
A% ex; ( ) it} A\ =2

(1 —t121 — taz)P 2z 2) = 22

(@) sy -5, (B)s1 (V)

(5)5181!82!

(n,N,m) = (2,6,4)

ty, —t2
-1 0 1-6
1 le%
A’ =
(4| a) o | s
0 1 0
XoX3 X4
—g=X Xo+ X X4+t — tg—
g 1+ X2+ A3+ X4+ 1 X, 2X2
1 1
(X17X23X37X4) = <_—:_7X37X4>
Z1292 Z9
1 1
—g=——+ — 4+ X3(1 —t121) + X4(1 — t222)
Z1292 )

a_ ,0-1 —a-1+8 By
X% = 2] 2 X5X/

zf_lzg_o‘_l ( 1 1 ) dz, A dzy

ex -] —
(1 - tlzl)ﬂ(l — tQZQ)'Y Z1292 Z9 zZ1 z9

(a)51—32 (/6)81

(6)51 81!82!
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(n,N,m) = (2,5,3)

t1,—t2
-1 0 1-46
Alay=| 1 -1 o
1 0 i
X2X3 1
—g=X X X t —tyg—
g 1+ X+ X3+ 1 X, 2X2

2129 ’ z2 ’

1 1
(X1, X2,X3) = <— — X3)

1 1
—g = Xg(l — tlzl) + — — —— — 1229
Z2  Z122

a _ b60-1_6—1—« B
X =2] "2z X5

2‘15—13‘25*1—0‘ ex ( — — + 122 ) iz—l A dﬂ
(1—t121)? P 2122 22 22 1 22
(@)s,—ss (V) sz
(6)s, 51!s2!
(n,N,m) =(2,5,3)
t17-t2
-1 0 1-46
Aley)=| 1 -1 o
0 1 ¥y
X5 X3
—g=X;+Xo+ X3 +t1— —ta—
g 1+ X2+ A3+ 1X1 2X2

(X1, X2, X3) = (X1, - X121, —X12122)

—-g= Xl(l — 21— 2122) — (t1z1 + tzzg)

Xa — X11+a+'y—6z<11+’yzg
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oty
1 %2 dzy dzp
exp(tiz; + tozg)— A —
(1 — 21 — z129)1Hat7r=8 xXp(t121 + t222) A
(a)sl—sz
(6)3181!82!

(n,N,m) = (2,4,2)

tla'—t2
-1 0 1-46
A =
wia= (7 )
X5 1
—g=X1+Xo+t1—=—= —to—
g 1 + 2 + 1X1 2X2
1 1
(X1,X2) = <—~—, —)
122 22
1
—g=- + — — 1121 —l22g
2122 22
X = Z;S_lzg_a—l
' 1 dz; dz
Zf—lzg—a—l exp ( — — +t1z1 + t2Z2) hiad A 2z2
Z122 22 21 29
(’Y)S]+S251!52!
(n,N,m) = (2,4,2)
t17t2
-1 -1 1—7v
/ —
wia=(3 7))
Xo

—g = X3
=X+ Xo+t; 22 4,22
g ! 2 "X, °X,
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Xo — Z'y—lXH—a”’Y
271 dz
T exp(t2z) -
(a)251+52
(7)51 (6)5231!32!
(n, N,m) = (2,5,3)
t17t2
-1 0 1—7v
Ala)=| 0 -1 | 1-6
2 1 o
X2 X3
—9=X1+X2+X3+t13§+t2X—2
X3 1
— (-2 -2 X
(X1>X27X3) ( P ) 227 3)

1
—g=——+X;

z2

(

1
1— — —ty1z1 —ta2o

21

-1 61 ylta—y
Xe=z""2 X3

y—1_6—1

21

22

ex
(1 — zl_l - t121 — t222)1+a—'y P (

(a)251 —s2 (/8)82—51

81!82!

1

22

)

)

dz |, 4z

z21 Z2
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(n,N,m) = (2,4,2)

~t17—t2
2 -1 fe

A’ =
(A e) <—1 1 lﬁ)
=X+ X tXl2 t—)gz
g = A1 2 1X2 2X1

(X1, Xo) = (X1, X12)
1
_g:X1 <1+Z—t1;) “tQZ

X = X{t028

2B
(1+z—ty 1)t

dz
exp(tgz)—z—

(a)231 —S2 (/6)82

((5)5181!32!

(n,N,m) = (2,5,3)

tla_tQ

-1 0 1-46
A'la)=| 2 -1 a

0 1 B
=X1+Xo+ X3+t X%_t&
g=A4a1 2 3 1X1 2X2

(X1, X2, X3) = (X221, X2, X220)

1
—g9=X> (1+21+Z2+t1;—> — 320
1

Xe = z%"éngg”L’BH_&
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1-6_8
2 %2 dz;  dzp
expltozg)— N —
(1 +2z1+220+ 11 Zl—l)o‘+ﬁ+1_§ p( 2 2) 21 29
HlO
1. (00281*52
(6)3181!82!

2. (n,N,m)=(2,4,2)

3. ti,—t9
-1 0 1-6
4. A’ =
wia=(5 5 1)
5 =X+ Xo+t X% t !
. g = A1 2 1X1 2X2

6. (X1,X2)=(—21,—22)

2
z 1
7. —g=Z1—22“t1—“2 +t2_“

zZ1 22
8. X =20z
2
z 1\ dz dz
9. zi_‘szg‘ exp (zl + 20+ 112 — t2—> sy
21 22/ z 22
Hy,
1 (@)s)—s» (B)ss (7)52

(5)3181!82!

2. (n,N,m)=(2,6,4)

3. t1,— 12
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X X3X4
—g=X X X X, t1— —t
g 1+ Xo+ A3+ Xg4 + 1X1 2 X,

(X1, X2, X3, X4) = (X1, — X121, — X1 2122, X4)

—g = Xl(l —Z1 — 2122) -+ X4(1 — thz) — tlzl
a a+pf—6 a

X :X11+ +p P +/3Z25XZ

at+p B
z1 % 1 dz1  dzs
t — N —
(1 — 21 — 2122)1+a+,8—6 (1 - t222)’7 eXp( 121) 21 Z9

(a)sl+“'+5n (ﬁl)sl o (IBn)sn
(’Yl)sl o (’Vn)snsll e sn!

(n,N,m)=(n,3n+1,2n+1)

Tty e
1 0 0 .- 0 1—m
0 -1 0 -~ 0 1—
0 0 0 -+ -1 | 1—7m
A]ley=]1 1 0 0 --- 0 b1
1 0 --- 0 B2
0 0 0 1 B
1 1 1 a
XTL Xn
—g= X1+ Xo+ - Xonp1 + 01 Xonp1 2 4 5 Xop g1 —t> -
X, X,
X2n
tnXont1 —
+tnAont1 X,
(le"- 7X2n+1) = (X17"' 7Xn7—X1z1a_X2z27"' ,_XnZTHXZn—i—l)
n
—g‘—‘ZXi(l—Zi)+X2n+1(1—tlz1—t222—"‘—tn2n)
i=1

_ yl+Bi—m y1+B2— 14-Bn —n 81,5 »
Xe=X;mnxT 2"'Xn+’3 7211222"'%@ X1
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zlﬁlzg2 oz 1 dz

(1 —_ 21)1+B1_’Yl e (1 — Zn)1+,6n—7n (1 —_ tlzl — t222 F— tnzn)a 21
dzn,
R i
Z’n

(01)s, - (@n)sn (B1)sy - (Bn)sy,

(7)51+"~+sn51! sy

(n,N,m) = (n,3n+1,2n+1)

ty,t2,... 5 tn
1 0 0 0 o
1 0 0 (6]
0 0 0 1 i
Ala)=|1 0 0 - 0 B
0 1 0 0 B2
0O 0 0 1 B
-1 -1 -1 1| 1-4
X1 X X X
—g=X1+X2+-~~+X2n+1+t1—1ﬂi+-~+tn n2n
Xon+t1 Xon+t1
(X1,... s Xong1) = (X1, s Xn, —Xont121, - -, —Xont12n, Xont1)
—g=Xopt1(l—z1—22 =+ —2za) + in(l —tiz;)
=1
X0 = X0 Xon P B X BB
20 P 1 dz A dzp
n o o o VBB 5, T
T1(1 = tize)e 1=z —2 zp) 1P z Zn

=1

(a)51+52+'“+5n (ﬂ)sl+~-+sn
(71)81 T (’771)3"31! e 8p!
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(n,N,m) = (n,2n+2,n+2)
t1,-..,tn
-1 0 O 0 1—m
0o 0 -1 0 1 -1
, L e
(A | a) - 0 -1 1— Vn
1 o'
1 B
_g:X1+...+Xn+2+t1_ﬁ__+2+...+tn_j_l—+2
Xl Xn
Xn Xn
(Xla--- 7Xn+2): <_ +17"' y +13Xn+17Xn+2)
z1 Zn
—g=Xnt1 (1 - 'Zl_l """ ?1;) + Xn+2(1 —t1z1 — - —tn2y)
X0 = Z'l)’l—l . zzn—lx’sif—’)’l_“'—’)’nX5+2
R 1 dzy 4
(1 — % ..... i)’nﬂ-a"}’l-"'_’)’n (1 — tlzl —_—. e — tnzn)ﬂ Zl ZTL
(@) sy 445, (B1)sy "~ (Bn)sn
(V)51 4++sn 51! - Sn!
(n,N,m) = (n,2n+2,n+2)
tl7t27"' 7tn
1 0 0 0 061
0 1 0 0 B2
, I B R R R R R R R RRRRRRRRERRRE .
Ala)=1143 o o 1 N
1 1 1 1 a
-1 -1 -1 -1 1—7
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X Xn
5. —g:X1+X2+"'+Xn+2+t1X1 n+1—f—"'+tan +1
Xn+2 Xn+2
6. (X1,. . Xny2) = (X1, , Xn, —Xnp22, Xnyo)
7. —g:Xl(l«tlz)+~~+Xn(1—tnz)+Xn+2(1—z)
8. Xo=XM... XPrzox2H
9 2% 1
. - —ita—
10—tz E=277
i=1
6. (X1, Xn+2) = (—Xpg221, .-, —Xny22n, Xny1, Xny2)
7’. —g = Xn+2(1 — 2] — Zn) + Xn+1(1 — t1z1 - t222 —_—er = tnzn)
8. X0 =2 X XA Tt
o Zf}l"'zrﬁz" fd_z_l./\.../\fd_zﬂ
: (1_t1z1 __tnzn)a(l_zl — ..._Zn)1+ﬁ1+“'+ﬂn"'¥ 21 Zn
85
1 (61)31 e (ﬂn)sn

(7)31+...+Sn51! o8

2. (n,N;m)=(n,2n+1,n+1)

3. tiy...tn
1 0 0 - 0 B

/ I R .

L Wlg=| 4 ¢ o ... 1 Ba
1 -1 -1 - -1 | 1—7

;(1 n
5. —g=X,+ -+ X, et et ty,
g 1+ + 11+t X1 + + X1

6. (Xl,. .. ,Xn+1) = (—Xn+121,... ,—Xn+1zn,Xn+1)

7. —g=Xpi1(l—21—--—2zp) —t1z1 — - —tn2y
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X* = zlﬂ zﬁnxliﬁﬁ “+Bn—
2 P t

A== —ayid Ty pha

(X1,... y Xnt1) = (X1, .. , Xn, —2)
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dz dz
+ tnzn) —1 JAYRERIVAN n
) Zn

1 1
z z

Xa:Xlﬁ]...Xrﬁanl—')’

2= dz
- expz—
H (1—t;/z)%
(/8)-91+"'+5n
(M)sy - (Wm)s, 51! -8l
(n,N,m) = (n,2n+1,n+1)
t1,.--,tn
-1 0 0 0 1-m
0 -1 0 0 1— 1
(A’ la)=| i .
0 0 O -1 1—vn
1 1 1 1 B
Xn+1 X'n.+1
g 1+ +Xpp1tt X, 4+ 4 X,
X, X,
(Xl""an+1): (_—+13"'7_ +13Xn+1>
Z1 Zn
1 1
—gIXn+1 1—— -+ = —_— _(t121+"'+tnzn)
Z1 Zn

a_ =l =l Bty
X =2 Zn" Xn+1
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S t . dz AA dzy,
i —— Ty, OPtA ) TR A A T

(a)sl+---+sn (ﬂl)sl e (Bn—l)sn_l

(7)31+-~'+sn -8q!--- sn!

(n,N,m) = (n,2n+1,n+1)

ty e tn
1 0 0 0 B
0 1 0 0 0 Ba
) I TP UU TR
(A"] @) 0 0 0 1 0 B
1 1 1 1 1 a
-1 -1 -1 -1 -1 1—~
X X X
—g=X;+ -+ X, t X n et by 1 X by ——
g 1 + Xny1+ 1t 1Xn+1 + -+ 1 1Xn+1 + X

(le' . aXn—k-l) = (Xla e 7Xn—17—Xn+lz,Xn+1)
—g = X1(1 - t]_Z) + -+ Xn_l(l - tn_lz) + Xn-l—l(l - Z) —tn2

Xe = Xf XX

(e}

dz
(= ayrram oe(tn2)

H (1 — tiz)ﬁi

=1

(1)s- - (ak)s
('Yl)s e (’Yk:—l)SS!

(n, N,m) = (1,2k, 2k — 1)

(—1)t
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1 Qg
1 Q2
1 a
4. (A =
(A"] @) -1 1-m
-1 1—7
—1 1 —vg—1
Xy Xk
5. —g=Xi 4+ Xop_1 + (=1)"
g 1 21+ (=1) X1 Xhyr—1
6. (X1,...,Xok-1) = (—Xpt121, —Xpy222, -+, =Xt (k—1)2k—15 Xk» Xkt 1,
ceey Xok—1)
k—1
7. —g= ZXk—H(l —2)+ Xp(1 =tz z51)
i=1
8 xa— z1a1 o Z;:jil X;:kX;i-llll—"/l .. X;i?‘kk:;)—’m—1
Zal e Zak"a 1 d d -
9. kll = (1—t z )ak—;_l/\mA_Zk—l
— —tzy - _ Rk—
[ = aem T -
=1
10. [GO, p. 281]
ka+l> l 2 0.
1 (a1)s -+ (aw)s
. ]
('Yl)s e ('Yk+l)85'
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1 aq

1 (6%
(A la)=| 1 g

-1 L—m

-1 L= Ve

Xy Xx 1
Xiri+1 - Xowyt X1 Xeg

—g=X1 4+ Xoppr + (=1)FH Tt

(X1, Xogtt) = (= Xppi41215 - -+ = X2kt 12k =2kt 15+ -+ » —Zhtls Xktl+1s
aX2k+l)

(1e Xz = —Xk+l+1zi if 1 SZSk, Xlz —Z; lfk*’rlS’LSk)—Fl, X1:X7,

i k1<)

l

k
Z .‘-Zk
—g= ZXk+l+i(1 —zi) — Z Zhps — t—————

Zk+41 " Rkl

=1 =1
a _ o1 ag 1—-m 1—v y1l1=m41+aa 1=viprtok
Xe=z" 2 a0 X e X
ai ak 1-m 1=k l
Zl "‘Zk Zk+l --ozk+l Zl.-.zk
p exp Zk4i T tz———;—
H (1 - zi)l”'YH-i“{'ai i=1 k+1 k+1
i=1
[Er 1937]
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