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•˜ 1. Introduction

Our object is to explain in cohomological terms all hypergeometric series. 

This we do via the theory of "exponential modules" (see •˜7 for definition) previ

ously studied [GHF]. At the same time we establish a connection with the theory of 

Gelfand, Kapranov, and Zelevinsky [GKZ]. By means of a formal Laplace transfor

mation (•˜9) we deduce integral representations of the classical type. In an appendix 

we treat the full list of Horn [E.M.O.T] the Lauricella generalization of Appell's 

F1-F4 as well as a number of confluent forms of Lauricella type. Many of these 

representations have appeared in the literature (e.g. Erdelyi, Yoshida, Humbert, 

Aomoto, Pastro). To our knowledge the only previous systematic list is due to Kita 

[K]. Kita's list goes beyond ours in that he gives the corresponding cycle of inte

gration. On the other hand he does not treat the confluent case. Our interest lies 

only in the differential module and questions of convergence and confluence play 

no role.

In the present treatment we have imposed the condition that the multiplicative 
character parameters (e.g. a, b, c in the case of 2F1) are algebraically independent. 
We will not at this time explain how these conditions may be eliminated but do 

point out that the classical representations are totally inadequate in the case of 
trivial parameters (e.g. (a, b, c)=0 in the above example) while the exponential 
modules do provide differential modules associated with the specialized differential 
equations. In previous work [GHF] one of the authors has shown how Frobenius 
structure and Boyarsky principle may be associated with exponential modules.

•˜ 2. Notation

Let S be a finite set of lattice points Zn 

Ha be the semigroup generated by s. (Thus 0 •¸ H0).

H0 be the group generated by s. Let H be the linear space spanned by s.

Let g = >uES auXu be the generic polynomial with support in s. Thus
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(•c , ƒÉu,•c) are algebraically independent over Q. 

Let a = (a1, ... , an) be generic point of H, i.e. the transcendence degree of 

Q(a) is equal to the dimension of H. We insist that Q(a) be linearly disjoint from 

Q(A) over Q.

Let R be the ring of polynomials with coefficients in Q(a, A) and support in 

H0.
Let R' be the ring of polynomials with coefficients in Q(a, A) and support in 

H0.
For 1<i<n we define Ei = X1 aX2 , gz = EZg,

Da ,i=Ei+gi+ai

an operator on R' and on R. We define Wa = R / >I 1 Da,iR. We give Wa the 

structure of a differential module (see •˜7 for another point of view) by setting

We restrict our attention to Wa but our results may be extended to Wa = R'/ 
~? 1 Da,jR' by means of the isomorphism between Wa and Wa induced by the 
injection R-*R'.

We shall have occasion to speak of

Let R be the non-commutative ring, R=Q(a,ƒÉ) [ƒÐ] . Following the spirit of 

Gelfand and his colleagues [G.K.Z], we define the Gelfand ideal, B of R to be the 

left ideal

the second sum being over the module of Z relations, A, among the elements of s. 

Here

while if >uES Au = 0, is a relation over Z among the elements of s then for each 
u we write Au = Au  Au, where Au • Au = 0, and both Au and A' lie in N and 
define
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Let U be the left ideal of all ƒÆ •¸ 7 which annihilate [1], the class of 1 in Wa. We 

shall refer to U as the exponential module ideal.

We shall show that U=B.

•˜ 3. Basic Propositions

The main hypothesis, a is generic element of H, will be understood throughout 

this section.

PROPOSITION 3.1. Let E Q(A) [X,11 fl 1 XZ] and suppose that

then ƒÌ= 0. (Note that ƒÌ is an element of R independent of a).

PROOF. By hypothesis _ Da,i~li1 m E 71. By definition of fl there exists 

m •¸ N such that each ill is annihilated by all derivatives of order m-1 relative to 

a1,... , an. We conclude from [GHF, p. 14] that ƒÌ may be written in the form

The right side is zero as element of R.

PROPOSITION 3.2. The annihilator in R of 1 (as element of R) is >EA 1ZDA.

PROOF. For each element, A, of the module of relations of S we have LIA • 1 

= 0. Conversely if P•¸R , P• 1 = 0 then we write P = Bwaw where each 

BwEQ(a, A). We may assume that P is minimal in its class modulo RL1A in 

the sense that Card (w|Bw•‚0) is minimal. By hypothesis 0 = > BwX> ES . 

Hence if Bw•‚0 then there exists w'•‚w with Bw'•‚0 such that

For each u•¸S let vu=min(wu,w'u) and let A' = wu  vu, A'; = w,~  vu, 

Au = Au  Au. Then awe = aw + a0LIA and hence modulo >7 L1 we may 

eliminate ƒÐw'. This completes the proof.

PROPOSITION 3.3. Let P = >v wP0(a), a Laurent polynomial in A whose 
coefficients, Pv, lie in Q[a] for each multi-exponent, v. Suppose P(A, a)1 E > D0,1R. 
Then for each v,

PROOF. Multiplying on the left by a suitable monomial, ƒÉw, we may assume 

that P is a polynomial in A. We use induction on the degree of P as polynomial in
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A. Since multiplication by Xu•¸R commutes with ƒÐw for each w•¸S, we deduce 

after multiplication on the left

Applying the automorphism a•¨a+u (which does not change P) and letting 

u•¸S,

On the other hand, multiplying our original relation on the left by au, we have 

ƒÐuP1•¸ƒ°Da,iR. Thus taking the difference

By an elementary calculation

We may now use induction on the degree of P as polynomial in A.

COROLLARY 3.4. Let P E Q(a)[a, ~, a]. Let u e S. Suppose ƒÐuP1•¸ƒ°Da,iR 

(i.e. ƒÐuP•¸U). Then P1•¸ƒ°Da,iR,i.e.P•¸U.

PROOF. Multiplying by an element of Q[a] we may reduce to the case in 

which P•¸Q[a, A, ~, a]. Since ai commutes with ƒÐv for each v E S, we may reduce 

modulo ~z 1 Q{a, A, a , a] Zi to the case in which P lies in Q [A, A , a]. Thus we may 

write P T AV Pv (a), P, E Q[a] for each multi-exponent, v.

We use induction on the number of distinct multi-exponents, v, such that 

Pv•‚0. By hypothesis

Hence by Proposition 3.3, ƒÐuPv(ƒÐ)1•¸ƒ°Da,iR for each multi-index v in which 

vu is maximal. Since au commutes with Pv(ƒÐ), we have for each such multi

- exponent, v,

and so

This implies [GHF Lemma 1.0.1],
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We now apply the automorphism a•¨a-u to deduce

for each multi-exponent v such that vu is maximal. Let T be the set of all such v. 

N Then P=ƒ°v_??_TƒÉAPv is congruent to P mod U and so ƒÐuP again lies in 2. Since 

P is a sum ƒ°vƒÉvPv involving fewer v than P, the induction hypothesis may be 

applied.

•˜ 4. Equality of Gelfand ideal and exponential module ideal

THEOREM. B=U.

PROOF.

4.1. We easily verify that B •¼ U.

(a) If A lies in the module of relations over Z among the elements of 8, then

(So in fact • A1=0 as element of R.)

(b) Zi1=ai+ƒ°u•¸S uiƒÉuXu=ai+gi=Da,i1.

4.2. We must now invert the inclusion. Let P •¸ U. Thus P1=ƒ°ni=1 Da,jƒÅi, 

each ƒÅi •¸ Q(a, ƒÉ) [X, 1/X] •¿ R. With no loss in generality we may replace P by h . P, 

where h •¸ Q [a, ƒÉ] is chosen such that hƒÅi •¸ Q [a, ƒÉ, X, 1/X ] •¿ R. Thus we may assume 

P E Q[a, ƒÉ, ƒÐ] and that

and each ƒÅi •¸ R •¿ Q [a, ƒÉ, X, 1/X]. We may reduce P modulo ~2 1 Q [a, ƒÉ, ƒÐ] Z1 •¼ B 

and assume that P is independent of a. Hence by Proposition 3.1, P1=0, and so 

by Proposition 3.2, P •¸ 93.

•˜ 5. Hypergeometric series

Let y be a hypergeometric series in n variables, t1,...,tn i.e. y=ƒ°s•¸Nn C(s)ts 

where N>N1>n,
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and l1,...,lN are linear forms in Z[s1,...,sn]. We simplify:

5.1. We insist that ƒ¿p=0 and lp(s)=-s, for 1<p< n.

5.2. We insist that for p •¸ [1, N], the greatest common divisor of the coeffi

cients of lp be unity.

5.3. We insist that (ƒ¿n+1,ƒ¿n+2,...,ƒ¿N) be algebraically independent over 

Q.

For 1<j<n let ƒÂj=tjat .

5.4. It follows from 5.3 that the annihilator of y in Q(ƒ¿) [(ƒÂ1,...,ƒÂn] is trivial. 

Indeed if P(ƒÂ) were such an element then P(s)C(s)=0 for all s •¸ Nn and hence 

P(s)=0 for all s •¸ Nn since by 5.3 C(s) is never zero.

Let ƒ¶=Q(ƒ¿),R=ƒ¶[t,1/t,ƒÂ]. Let U be the annihilator of y in R. For 1<p< N 

let lp(s)=Ap,jsj. We compute

We put

(5.5)

(5.6)

and set

(5.7)

It is clear that ƒÆj •¸ U (1<j<m). Let B=
~''n 
~j=1 RƒÆj.

Let M be the multiplicative subgroup generated by

{ƒ¿p+lp(ƒÂ)+up|ƒ¿p•‚0,up •¸ Z}.

Wedenote(B:M)={ƒÆ •¸ R mƒÆ•¸ B for some m •¸ M}.
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5.7.1. Note that if ƒ¿p Z then ƒ¿p+lp(ƒÂ) has trivial kernel in ƒ¶<t1,...,tn>, 

the space of formal Laurent series in t1,...,tn. It follows that the same hold for 

each element of M.

PROPOSITION 5.8.

PROOF. Certainly B •¼ U We assert that (B:M) •¼ U. Let ƒÆ •¸ (B: M), 

hence there exists m •¸ M such that mƒÆy = 0. Since ƒÆy •¸ ƒ¶<t1,...,tn>, it follows 

from 5.7.1 that ƒÆy=0 and hence ƒÆ •¸ 2.

To reverse the inclusion we first show that if ƒÆ •¸ R then there exists m •¸ M, 

s •¸ Nn, b •¸ B, v •¸ ƒ¶[ƒÂ] such that mƒÆ=b+1/tsv. Indeed we may choose s so that 

tsƒÆ •¸ ƒ¶[t,ƒÂ]. For each u •¸ NS

and h1(ƒÂ-11-u) •¸ M. It follows by induction on the degree of tsƒÆ as polynomial 

in t that m, b, v exist as asserted.

If now ƒÆ •¸ U then vy=0 and so by 5.4 v=0. Thus m •¸ B as asserted.

•˜ 6. Pullback to N-space

We use the notation of •˜5. Let m+n=N. Let B(N)=ƒ¶<T1,...,TN> be the 

space of formal Laurent series in N variables with coefficients in ƒ¶. For 1<j<n 

let ƒÑj=ƒÑp(-Tp)-Ap,j. Let T=(Tn+1,...,TN). There exists a 1-1 correspondence 

ƒÎ between ZN and Zn•~Zm

such that for w •¸ ZN

Let •¢p=Tpaa , a differential operator on B(N).

PROPOSITION 6.1. B(N)0=ƒ¶<ƒÑ1,...,ƒÑn> is a subspace of B(N).B

(N) may be identified with B(N)0<Tn+1
,...,TN>= {vEZm LJvT v ev E N)} 

and in particular if ƒ°v•¸Zn ƒÄvTv=0 as element of B(N) then each ƒÄv=0.

PROOF. IfƒÄ=ƒ°kwTw •¸ B(N) then ƒÄ=ƒ°v•¸m ƒÄvTv where ƒÄv=ƒ°u•¸Zn

•}kƒÎ-1(u v)ƒÑu. 

 Conversely if ƒÄv=ƒ°u•¸Zn Hu,vƒÑu, then ƒ°ƒÄvTv=ƒ°u,v Huk,vTƒÎ-1(u,v)

=w•¸ZN •}HƒÎ(w)Tw. Again if ƒ°ƒÄvTV=0 as element of B(N) then HƒÎ(w)=0 

for all w •¸ ZN and hence Hu,v=0 for all u,v. This completes the proof.
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Let x be the mapping of B(n)=ƒ¶(t1,...,tn) into B(N) defined by x(tu)=ƒÑTu 

for all u •¸ Zn.

Let A be the N•~m matrix defined by

We write the matrix A in the form

(6.1.1)

where A' is a m•~n matrix. Let

(6.1.2)

an m•~N matrix. The rows of B span the space of N-tuples, w, such that wA=0. 

   For 1<i<m let ƒÏi=~p 1 Bip•¢p, an element of R=ƒ¶[T,1/T,•¢], (where •¢=(•¢1,...

,•¢N)).

Let be the set of all ƒÅ •¸ ƒ¶[T,1/T,•¢] which annihilate B(N)0, the image under 

x of B(n) 

.

PROPOSITION 6.2.

PROOF.

(6.2.1)

annihilates B(N)0 .

Conversely letting l0=~m 1 RƒÏi we know that

(6.2.2)

If ƒÅ •¸ l then we may assume that (after reduction modulo l0)

(6.2.3)
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a finite sum over v and where each Pv •¸ ƒ¶[ƒÑ,1/ƒÑ,•¢1,...,•¢n]. For j<n, •¢jox=

xoƒÂj and hence •¢j is stable on B(N)0. The same then holds for Pv(ƒÑ, •¢1,...,•¢n). 

Thus if ƒÄ •¸ B(N)0 we have

and so by Proposition 6.1, Pv annihilates ƒÄ.

Thus we may assume that ƒÅ •¸ ƒ¶[ƒÑ,1/ƒÑ,•¢1,...,•¢A]. Let us write ƒÅ

= L.iuENn Q(r)A'•c Ann , a finite sum where each Qu lies in ƒ¶ [ƒÑ,1/ƒÑ]. For ƒÄ •¸ B(n) 

we have

Since x is injective, we conclude that ƒ°u•¸Nn Q(t)ƒÂu is an elenent of R which 

annihilates B(n) . We conclude that Q(t)=0 for all u •¸ Nn. Thus ƒÅ is identically 

zero. This completes the proof.

COROLLARY 6.3. For each ƒÅ •¸ R there exists ƒÅ* •¸ R such that

PROOF. As a ring R is generated by the operation of multiplication by t•}1j 

and the operation ƒÂj. We may choose t*j=ƒÑi,ƒÂ*j=•¢J(1<j<n).

REMARK. ƒÅ* is unique mod l.

Let U be the annihilator of y in R. Let

an ideal of R.

COROLLARY 6.4. U* is the annihilator of x(y) in R.

PROOF. Trivially U* lies in the annihilator. To show the converse let i lie in 

the annihilator. Reducing modulo l we may assume that ƒÅ is of the form (6.2.3). 

Following the proof of Proposition 6.2, (with ƒÄ=x(y)) we conclude that we may 

assume ƒÅ •¸ ƒ¶ [ƒÑ,1/ƒÑ,•¢1,...,An] and writing ƒÅ=~uENn Q(r)A' •c Ann we de

duce
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Thus ƒ°u•¸Nn Qu(t)ƒÂu •¸ U and ƒÅ lies in U*.

PROPOSITION 6.5. Let wj=„PAp,j>0(-Tp)-Ap,j. Then

PROOF.

while (lp(ƒÂ))*=-•¢p. Hence

The assertion now follows by multiplication by wj.

Let M be the multiplicative semigroup in R generated by {ƒ¿p-•¢p+up

|ƒ¿p•‚0, up •¸ Z}.

By the same arguments as in 5.7.1, each element of ,M has trivial kernel in 

ƒ¶<T1,...,TN?.

LEMMA 6.6. Let U=_17Z0 + ~m 1 R.pi. The annihilator of x(y) in R 
is (U: M).

PROOF. Certainly U •¼ annihilator of x(y). Let m •¸ M, ƒÆ •¸ R and suppose 

mƒÆ •¸ U Thus mƒÆx(y)=0 while ƒÆx(y) •¸ ƒ¶<T1,...,TN> and by the above argument ƒÆ

x(y)=0, i.e. (U: M) lies in the annihilator of x(y).

Now let ƒÅ* lie in the annihilator. Reducing modulo l, ƒÅ* has the form (6.2.3) 

and proceeding as in the proof of Proposition 6.2 we may further reduce to the case 

in which ƒÅ* ox=xoƒÅ where ƒÅ lies in the annihilator of y. Thus by Proposition 5.8 

there exists m E M such that mƒÅ •¸ ƒ°RƒÆj and so

Recall that since m •¸ .M, m is a product of elements (ƒ¿p+lp(ƒÂ)+up) where 

ƒ¿p•‚0, up •¸ Z. Thus we may take m* to be a product of elements (ƒ¿p-•¢p+up), 

i.e. m* •¸ .M. Thus ƒÅ* C (U: M) which completes the proof.

LEMMA 6.7. Let Ma be the sernigroup generated by {•¢p+up|ƒ¿p•‚0, up •¸ 

Z}.

Let
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(6.7.1)

(6.7.2)

(6.7.3)

Let

The annihilator of z=T-ƒ¿x(y) in R is (U' : M0).

PROOF. The annihilator of z=T-ao annihilator of x(y) o Ta

= (To2toT -a~ : T-a.M o Ta).

Thus it is enough to check that

This completes the proof.

We now return to the space Wa discussed in •˜2 but here we put 

(6.7.4) g(X1,...,Xm)=T1XA'(1)+•c+TnXA'n+Tn+1X1+•c+TNXm 

where A'(j) is the jth column of A'.

Let R=ƒ¶ [T,1/T,ƒÐT1,...,ƒÐTN] viewed as operators on Wa, with ƒÐTi=aT2+

8g

. THEOREM 6.8. The mapping ƒÕ:R•¨R defined by ƒÕ (aT-)=ƒÐTi is an 

isomorphism mapping the annihilator of z onto U, the annihilator of [1].

PROOF.
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and Bi,p is the exponent of Xi in the monomial multipled by Tp in g (Bi,p=0 if 

p>n, p•‚n+i, Bi,p=1 if p=n+i, Bi,p=A'i,p if p<n). Thus ƒÕ(Li)=Zi in 

the terminology of •˜2. The set S of •˜2 now consists of the columns of B.

The relations among the columns of B=(A',Im) are generated by the columns 

of A. Corresponding to the jth column of A, we have (cf. •˜2)

and this is precisely ƒÕ(ƒ¦j).

This shows that p maps U' onto B in the notation of •˜2.

If ƒÆz=0, ƒÆ •¸ R then there exists m •¸ M0 such that mƒÆ •¸ U'. Thus 

ƒÕ(m)ƒÕ(ƒÆ)[1]=0. We assert that ƒÕ(ƒÆ) •¸ U. We use induction on the degree of 

m as polynomial in •¢. We may assume m=(•¢p+up)m1 with m1 •¸ M0, up •¸ Z. 

Thus (TpƒÐp+up)ƒÕ(m1)ƒÕ(ƒÆ)[1]=0 and so

By Corollary 3.4, ƒÕ(m1)ƒÕ(ƒÆ)[1]=0. Hence by induction ƒÕ(ƒÆ)[1]=0. This shows 

that ƒÕ maps (U':M0) into U. By Theorem 4 we conclude

This completes the proof.

Since ƒÕ is an isomorphism we deduce two consequences.

COROLLARY 6.9. The annihilator of z, (U':M0)=U'.

The annihilator of x(y), U*=(U:M)=U.

REMARK. Hypergeometric series are solutions of the hypergeometric D
modules defined in [L.S.2]. In fact the inverse mapping by x of such hypergeo
metric D-modules are up to a twisting exactly the D-modules of [G.K.Z.] which 
seem to be defined only in the case of regular singularities. In §8 we shall remove the 
necessity of both the transformation x and twisting and identify hypergeometric 
D-modules with the D-modules of [GHF].

•˜ 7. Exponential modules

Let H0, H0, S, g be as in •˜2 but we now drop the requirement that the ƒÉu 

be algebraically independent over Q. We may still view R as a Q(a, ƒÉ) space. Let 

ƒÉ1,..., ƒÉq be a transcendence basis for Q(ƒÉ) over Q.

LEMMA 7.1. The mapping ƒÄ_??_XaƒÄ exp g(x) of R into RXa a exp g(x) induces 

an isomorphism,
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as differential modules over Q(a, ƒÉ), the operator ƒÐj=+ as on Wa correspond

ing to ~~ on the right side.

PROOF. Obvious.

We now remove the twist.

COROLLARY 7.2. With g as in 6.7.4, 1Z = sZ[T, ,, ®] operates on

and the annihilator in R of the class of Tƒ¿Xa a exp g is precisely the same as the 

annihilator U of x(y).

PROOF. By Theorem 6.8 and the lemma, the annihilator in R of {Xa exp g] 

coincides with that of z. Twisting by Tom, we deduce that the annihilator of [Tƒ¿xa

• exp g] coincides with that of x(y).

•˜ 8. Normalization (Removal of pullback)

Let g •¸ Q[t,z],t=(t1,...,tn),z=(z1,...,zm),m=N-n be defined by

the columns A'(j) (1<j<n) being precisely as in •˜5. So here s is precisely 

as in the proof of Theorem 6.8. Let R be the ring in Q(ƒ¿, t) [z, 1/z] generated by 

the monomials zu, u •¸ S. Let Wa be the Q(ƒ¿, t) space defined precisely as in •˜2 

with a, ƒ¿ related as in (6.7.1). Then Wa is a differential module with operators 

~j = at + a g.. To avoid confusion we shall use Ei to denote ziazi as an operator 

on R.

We recall y in •˜5 and its annihilator U in R=l [t, t , S] .

Let ƒÕ be the isomorphism of R with R1=l [t, t , Q] defined by ƒÕ(ƒÂj)=tjƒÂj 

(1<j<n).

THEOREM. The image of U under ƒÕ is precisely the annihilator in R1 of [1], 

the class of 1 in Wa.



94 B. DW0RK and F. LOESER

PROOF. Using the natural isomorphism of •˜7 it is enough to show that

 =2t1, the annihilator in R of the class of za exp g in Va = zaR exp g/ ~m 1 
N EZ (zaR exp g).

Let R be the ring over ƒ¶(T) generated by the monomials of g in (6.7.4) and 

let

where Ei=Xiaxi . This is an ƒ¶(T) space on which R=s1[T, ~,, &, ... , ®N] 

operates. (The class of 1 in Wa corresponds to the class of Tƒ¿Xa exp g and so 

involves a twist by Tƒ¿.)

We use the map x of

into defined byforfor

We have the relationsforfor if

Thus classes of Va are mapped into classes of Va and •¢p is stable on the image of 

Va in Va. In particular x induces a mapping of Va into an ƒ¶(r) linear submodule 

of Va.

We sketch the remainder of the proof. By the method of proof of Proposition 

6.1, x is injective. Our relations show that lies in the annihilator 

of x(Va). By the proof of Proposition 6.2, the annihilator of the image is again 

e0

. By the proof of Corollary 6.5 the annihilator of [aƒ¿Xa exp g] in R is precisely 

e

+ƒ°ƒÅ•¸U1 RƒÅ*, the sum being over all ƒÅ •¸ U1, the annihilator in R of [za exp g]. 

But we have shown (Corollary 7.2) that the annihilator in R of [Tƒ¿Xa exp g] is 

U which by Corollary 6.9 coincides with U*=e+ This shows that 

~ + = ~ + 11Zrf. It follows from the injectivity of x that U=U1.•˜

9. Laplace isomorphism

Let R'=K[X1,...,Xm,X
1 1Xm ] where K is a field containing Q(a). We 

assume that

into
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(9.0.1)

where f(j)(m>j>l-1) lies in K [X1, ... , X~ _ 1 i X 1 X2 ~ , X 1 ] (and so is inde

pendent of Xl,...,Xm). We assume that am, am-1,..., al are each outside -Z 

(If ap •¸ Z,p>1, then we must insist that ap>1 and must remove from R' all 

monomials Xu with up<0). We make no hypothesis concerning a1,...,al-1.

For m>p>l-1 we put g(p)=f(l-1)+Xjf(j) (and so in particular, 

g(l-1)=f(l-1)).

We define ƒÆp=
m 1 . 1(p+ p f ( ) m ..

We define Rp to be the K span of all expressions X11•c X~ p I f (m)um•c

f (P+1)+' for all (u1,...,um)•¸ Zm. (Thus Rm=R'.)

We define Tp to be the mapping ƒÆpRp•¨ƒÆp-1Rp-1 defined by linearity and 

the condition

Thus Xp does not appear in the image.

LEMMA 9.1 (cf. [GHF, •˜10.2]). For p>l, Tp maps ƒÆpRp onto ƒÆp-1Rp-1. 

For 1<i<p the diagram

commutes. In particular Ep(ƒÆpRp) •¼ ker(Tp, ƒÆpRp).

THEOREM 9.2 (cf. [GHF Lemma 11.1.1]). For p>l, Tp induces an isomor

phism

PROOF. Let ƒÅ •¸ Rp and suppose Tp(ƒÅƒÆp)=>p_1 EZ(7Z9p_1), where ƒÅi •¸ 

Rp-1(1<i<p-1). We assert that

(9.2.1)
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By surjectivity there exist ƒÄi,...,ƒÄp-1•¸Rp such that

and hence

which shows that

Thus we may assume ƒÅ •¸ Rp,

(9.2.3)

We assert that

(9.2.4)

We write

(9.2.5)

Let S={up|Cu•‚0 for some choice of u1,..., up-1}. Let M=supup•¸S up,

M'=infup•¸S up.

We use induction on M-M'. By (9.2.3)

where •¸(up)=(ap)up(-1)up.

Thus

(9.2.6)

Let
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Thus

If M=M' then ƒÄ1=0 and hence the right side of (9.2.6) is zero and so the 

same holds for ƒÄ0, i.e. ƒÅ=0. Thus we may assume M•‚M'.

By (9.2.6) we have

where

Thus

Now 2 is independent of Xp and hence

Thus

Thus we may replace ƒÅ by ƒÄ1-(ap+M-1)Xp -1ƒÄ2 and the support S' of this 

element has the property that supu•¸S, up-infup•¸S' up<M-M'-1. The assertion 

now follows from the induction hypothesis.

COROLLARY 9.3.

induces an isomorphism of 8mR' / ~m 1 EZ (om R') with ƒÆl-1Rl-1-1 

E2(o~_1Re_1).

We recall (•˜2), R is defined to be the subring of R' generated by all monomials 

occuring in g. We define Rl-1 a subring of Rl-1 by the condition

COROLLARY 9.4. If

(9.4.1)

then T induces an isomorphism of
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with PROOF. It is enough to show that if e R and

then ƒÅƒÆm•¸> m 1 Ei(ƒÆmRm). By the preceding corollary we know that ƒÅƒÆm•¸

~. 1 Ei(ƒÆmRm) = >11 Ei(9mR') and so the assertion follows from (9.4.1).

REMARK 9.4.2. Hypothesis 9.4.1 is known to be valid if a is generic and more 

generally if no lattice point lies on any face of codimension one passing through the 
origin of the polyhedron of g.

•˜ 10. Integral representation

Integral representation of hypergeometric functions associated with

are obtained by application of Corollary 9.3. For many purposes (e.g. p-adic co

homology as in [GHF]) it is enough to consider ƒÆmR'/ ~m 1 Ei(ƒÆmR'), but for 

comparison with the classical literature (Erdelyi, Humbert) and the recent work of 

Yoshida and Aomoto and Kita we regroup the terms of g as indicated by (9.0.1). 

There is no unique way to arrive at this regrouping, particularly since we may 

introduce multiplicative changes in variable,

(10.1)

where C•¸Gl(m, Z). Of course such a change in variables must be accompanied 

by a corresponding change in the vector a=(a1,...,am).

We illustrate this by working out representations for the Horn list, the Lau

ricella functions, and kFk-1 and a few of the confluent forms of the Lauricella 

functions.

In the non-confluent case g is homogeneous of degree 1 and hence g=X1h(z),

z=(z2,z3,...,zm). It follows that in all such cases there is an integral represen

tation of the form (z22...zm /h(z)al+a2+°+am) dz2 •È•c•È dzm.
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Appendix

Notes on the Appendix.

We give some details for all the elements of Horn's list, for the four Lauricella 

series, for some of their confluent variations and for kFk-1.

The information is in the following form following the name of the function.

1. The general term of the series representation

2. (n,N,m)=(number of variables, number of factors in the general term,

the number of X variables)

3. The signs of t1,t2,...,tn

4. The matrix A' of equation 6.1.1 with a listing of the corresponding

 ƒ¿ n+1,...,ƒ¿n+m

5. -g with the correct signs for t1,...,tn

6. The change in variables used to achieve a more standard integral repre

sentation

7. The transformed representation of g

8. Xa in terms of new variables

9. The integral representation.

We give no indication of cycles.

M. Kita has treated all the complete series of Horn as well as the four series of 

Lauricella and has given appropriate cycles. His differentials usually but not always 

agree with ours. Kita has also given a general integral formula for all hypergeometric 

series of non-confluent type.

F1

1.

2. (n,N,m)=(2,6,4)

3. +t1,+t2

4.

5.

6. (X1,X2,X3,X4)=(X1,-zX1,X3,X4)
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7. -g=X1(1-z)+X3(1-zt1)+X4(1-zt2)

8.

9.

6'.

7'.

8'.

9'.

10. [E. M. O. T. p. 230, 231]

F2

1.

2. (n,N,m)=(2,7,4)

3. +t1,+t2

4.

5.

6. (X1,X2,X3,X4,X5)=(X1,X2,X3,-z1X1,-z2X2)

7. -g=X1(1-z1)+X2(1-z2)+X3(1-t1z1-t2z2)

8.
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9.

10. [E. M. O. T. p. 230]

F3

1.

2. (n,N,m)=(2,7,5)

3. +t1,+t2

4.

5.

6. (X1,X2,X3,X4,X5)=(X1,X2,X3,-X1z1,-X1z2)

7. -g=X1(1-z1,-z2)+X2(1-t1z1)+X3(1-t2z2)

8.

9.

10. [E. M. O. T. p. 230]

F4

1.

2. (n,N,m)=(2,6,4)

3. +t1,+t2
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4.

5.

6. (X1,X2,X3,X4)=(-X3z1,-X3z2,X3,X4)

7.

8.

9.

10. [Yo. p. 329], [Pa, p. 120]

G1

1.

2. (n,N,m)=(2,5,3)

3. -t1,-t2

4.

5.

6. (X1,X2,X3)=(X1,X3z,X3)

7.

8.
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9.

10.

G2

1.

2. (n,N,m)=(2,6,4)

3. -t1,-t2

4.

5.

6. (X1,X2,X3,X4)=(X1,X2,zX4,X4)

7.

8.

9.

10. [Er 1950, p. 148]

G3

1.

2. (n,N,m)=(2,4,2)

3. -t1,-t2
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4.

5.

6. (X1,X2)=(X1,X1z)

7.

8.

9.

10. [Er 1950, p. 158]

H1

1.

2. (n,N,m)=(2,6,4)

3. t1,-t2

4.

5.

6. (X1,X2,X3,X4)=(X1,X1z1,X3,X1z1z2)

7. -g=X1(1+z1+z1z2)+X3(1+t1z1-t2z2)

8.
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9.

10. [Yo, p. 330]

H2

1.

2. (n,N,m)=(2,7,5)

3. t1,-t2

4.

5.

6. (X1,X2,X3,X4,X5)=(X1,X1z1,X3,X4,X1z1z2)

7. -g=X1(1+z1+z1z2)+X3(1+t1z1)+X4(1-t2z2)

8.

9.

10. [Yo, p. 330]

H3

1.

2. (n,N,m)=(2,5,3)

3. t1,t2
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4.

5.

6. (X1,X2,X3)=(X1,-X1z,X3)

7.

8.

9.

H4

1.

2. (n,N,m)=(2,6,4)

3. t1,t2

4.

5.

6. (X1,X2,X3,X4)=(X1,X2,-X1z1,-X2z2)

7. -g=X1(1-z1+t1z1+t2z1z2)+X2(1-z2)

8.

9.
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H5

1.

2. (n,N,m)=(2,5,3)

3. -t1,t2

4.

5.

6.

7.

8.

9.

H6

1.

2. (n,N,m)=(2,5,3)

3. -t1,-t2

4.

5.

6. (X1,X2,X3)=(X1,X1/z,X3)
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7.

8.

9.

H7

1.

2. (n,N,m)=(2,6,4)

3. t1,-t2

4.

5.

6. (X1,X2,X3,X4)=(X1,X1z1,X3,X1z2)

7.

8.

9.

ƒÓ1 1.

2. (n,N,m)=(2,5,3)

3. t1,t2
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4.

5.

6. (X1,X2,X3)=(X1,-X1z,X3)

7. -g=-t2z+X1(1-z)+X3(1-t1z)

8.

9.

10. [Hu, p. 79]

ƒÓ 2

1.

2. (n,N,m)=(2,5,3)

3. t1,t2

4.

5.

6. (X1,X2,X3)=(X1,-X1z1,-X1z2)

7. -g=X1(1-z1-z2)-t1z1-t2z2

8.

9.
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6'. (X1,X2,X3)=(-z,X2,X3)

7'.

8'.

9'.

10.

ƒÓ 3

1.

2. (n,N,m)=(2,4,2)

3. t1,t2

4.

5.

6. (X1,X2)=(-z,X2)

7.

8.

9.

ƒÕ1 1.

2. (n,N,m)=(2,6,4)
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3. t1,t2

4.

5.

6.

7.

8.

9.

ƒÕ2 1.

2. (n,N,m)=(2,5,3)

3. t1,t2

4.

5.

6. (X1,X2,X3)=(-z1,-z2,X3)

7.
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8.

9.

_??_1

1.

2. (n,N,m)=(2,6,4)

3. t1,t2

4.

5.

6. (X1,X2,X3,X4)=(X1,-X1z1,X1z2,X4)

7. -g=X1(1-z1-z2)+X4(1-t1z1)-t2z2

8.

9.

10. [Hu, p. 79]

_??_ 2

1.

2. (n,N,m)=(2,5,3)

3. t1,t2
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4.

5.

6. (X1,X2,X3)=(z2,X2,-z1z2)

7.

8.

9.

„C 1

1.

2. (n,N,m)=(2,5,3)

3. -t1,-t2

4.

5.

6. (X1,X2,X3)=(X1,X3z,X3)

7.

8.

9.
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10. [Er 1940, p. 351]

„C 2

1.

2. (n,N,m)=(2,4,2)

3. -t,-t2

4.

5.

6. (X1,X2)=(X1,-X1z)

7.

8.

9.

H1

1.

2. (n,N,m)=(2,5,3)

3. t1,-t2

4.

5.
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6.

7.

8.

9.

H2

1.

2. (n,N,m)=(2,6,4)

3. t1,-t2

4.

5.

6.

7.

8.

9.

H3

1.
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2. (n,N,m)=(2,5,3)

3. t1,-t2

4.

5.

6.

7.

8.

9.

H4

1.

2. (n,N,m)=(2,5,3)

3. t,-t2

4.

5.

6. (X1,X2,X3)=(X1,-X1z1,-X1z1z2)

7. -g=X1(1-z1-z1z2)-(t1z1+t2z2)

8.
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9.

H5

1.

2. (n,N,m)=(2,4,2)

3. t1,-t2

4.

5.

6.

7.8

.

9.

H6

1.

2. (n,N,m)=(2,4,2)

3. t1,t2

4.

5.
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6.

7.

8.

9.

H7

1.

2. (n,N,m)=(2,5,3)

3. t1,t2

4.

5.

6.

7.

8.

9.

H8

1.
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2. (n,N,m)=(2,4,2)

3. -t1,-t2

4.

5.

6. (X1,X2)=(X1,X1z)

7.

8.

9.

H9

1.

2. (n,N,m)=(2,5,3)

3. t1,-t2

4.

5.

6. (X1,X2,X3)=(X2z1,X2,X2z2)

7.

8.
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9.

H10

1.

2. (n,N,m)=(2,4,2)

3. t1,-t2

4.

5.

6. (X1,X2)=(-z1,-z2)

7.

8.

9.

H11

1.

2. (n,N,m)=(2,6,4)

3. t1,-t2

4.
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5.

6. (X1,X2,X3,X4)=(X1,-X1z1,-X1z1z2,X4)

7. -g=X1(1-z1-z1z2)+X4(1-t2z2)-t1z1

8.

9.

FA

1.

2. (n,N,m)=(n,3n+1,2n+1)

3. +t1,...,+tn

4.

5.

6. (X1,...,X2n+1)=(X1,...,Xn,-X1z1,-X2z2,...,-Xnzn,X2n+1)

7.

8.
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9.

FB

1.

2. (n,N,m)=(n,3n+1,2n+1)

3. t1,t2,...,tn

4.

5.

6.

7.

8.

9.

FC

1.
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2. (n,N,m)=(n,2n+2,n+2)

3. t1,...,tn

4.

5.

6.

7.

8.

9.

FD

1.

2. (n,N,m)=(n,2n+2,n+2)

3. t1,t2,...,tn

4.
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5.

6. (X1,...,Xn+2)=(X1,...,Xn,-Xn+2z,Xn+2)

8.

9.

6'. (X1,...,X+2)=(-Xn+2z1,...,-Xn+2zn,Xn+1,Xn+2)

7'. -g=Xn+2(1-z1-•c-zn)+Xn+1(1-t1z1-t2z2-•ctnzn)

8'.

9'.

ƒ³( n)2

1.

2.

3. t1,...,tn

4.

5.

6. (X1,...,X+1)=(-X+1z1,...n,-Xn+1zn,Xn+1)

7. -g=Xn+1(1-z1-...-zn)-t1z1-...-tnzn
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8.

9.

6'.

7'.

8'.

9'.

ƒµ(n)2

1.

2.

3. t1,...,tn

4.

5.

6.

7.

8.
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9.

ƒÓ D

1.

2.

3.

4.

5.

6. (X1,...,Xn+1)=(X1,...,Xn-1,-Xn+1z,Xn+1)

7. -g=X1(1-t1z)+...+Xn-1(1-tn-1z)+Xn+1(1-z)-tnz

8.

9.

kFk-1

1.

2. (n,N,m)=(1,2k,2k-1)

3. (-1)kt
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4.

5.

6.

7.

8.

9.

10. [GO, p. 281]

kFk+l,l>0.

1.

2.

3.
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4.

5.

6.

7.

8.

9.

10.
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