Hypergeometric Series and Functions as Periods
of Exponential Modules

Bernard Dwork and Frangois Loeser

In recent work [D-L] it was shown that every hypergeometric series occurs as a
period of an exponential module. In the present work we give second and third
proofs which eliminate some of the restrictions of our previous result.

We also give some evidence supporting the suggestion [C, p. 181] of the Chud-
novskys that all G-functions are generalized hypergeometric function, but we would
modify their proposal so as to include the composition of hypergeometric functions
in several variables with rational maps of C” into C.

We have benefitted from the advice of N. Katz and C. Sabbah.

§1. Exponential Module.

For v € Z let (z), = I'(z + v)/T'(z), an element of Q(z).

Let y be a hypergeometric series in n variables i.e.

N
IT (op)e, o)

=1+N
y(a,t)= Z A 2 - ¢
seN" TT(1— ap)-t,(a)("l)l’(’)
=1

where a@ = (a; ...an) €ECY,a, =0for 1 <p<nand

(s) =) Ap;s;
=1

a linear form with coefficients in Z. We insist that £;(s) = —s; (1 < j < n). We
assume
(1.1) Kp<Ni,op€Z then ap€—-Nand 4,;<0.
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(1.2) f p>N;, then a,¢Z.

For later use we mention a weaker form of 1.2.

(1.2 If o,€Z, p>N,then a,€N*4,;>0,1<j<n.

Let @ = Q(a), R' = Q(t)[Xy,... ’X""m] where m = N —n. Let
a=(a1,... ,am) = (@nt1,... ,an). Let g(t,X) € R' be defined by

n
(X, ) =X1+... 4+ Xm + thX""’)
j=1

where A'Y is the 7t column of the matrix

, An+1,1,-~- ;An+1,n)
A =
ANayeo AN

/(3) m . . N
A7 = [] XA=+ii). We view g as a Laurent polynomial in X parametrized
=1

(so X

by ¢.
We define operators on R/, E; = X,-BL;(‘,, (1 £ ¢ £ m), we define g; = E;g

(1 <i<m)andoperators Dy ;s =E;+a;i+¢gi (1<i<m)onR'. For1<j<n

we define o; = & + 2L again operators on R'. We now define Q(t) vector spaces
i =% T ot 98 P P

W.,=R'[SD.; R

which we view asan R = Q[t, %, O1y.++, a,.] module since o; is stable on £D, ; . R'.
Let R = Qft, 1, %, ceey 5?:] Clearly R ~ R under the mapping ¢: 3;% — ;.

Let 2(a) be the annihilator of y(a,t) in R. Let ®,(a) be the annihilator in R of
[1] (the class of 1in W, ,).

For 1 <j <nlet §; =t;5%-.

Let 9 be the semigroup of 2[6]* generated by all linear operators {c + d,6; +
o+ dpb, | c€Z,(dy,... d,) € Z*). If €is an ideal of R then (€: M) = {§ € R |

mé € € for some m € M}. Note that M is independent of a.

Theorem A.

(i) A(a) = ((¢~'%1(a)): M), subject to 1.1, 1.2.
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(i) If a is generic, i.e. ai,... ,am algebraically independent over Q then

p(A(a)) = Ai(a).

§2. Dual space.

Before starting the proof we recall some definitions concerning dual spaces. We
follow here the exposition of [GHF] and draw upon the 1991 Princeton lectures of
A. Adolphson.

Let R ={ ¥ Auzz | Au € Q(t)} an Q(t) space with a pairing R" xR — Q(t)
defined by (£ *,uﬁe)zz constant term of £*¢. By means of this pairing we identify R"
with Hom(R', Q(t)) and deduce the mapping D; ; , = —E; +a; +g; adjoint to Dy ; ;
(1 £ 4 < m). The annihilator, Xy ,, of £D, ;R in R" is via the above pairing
dual to W, ;. The action of 3/3t; on §(t) extends to K, , via o] = 3;3;' - ‘gt,;‘ and
trivially

S (€06 = (030,60 + €0

We may construct universal bases of W, , and K ,. Let R be the subring of R’
generated over {2(t) by the set of all mdnomials X* such that u is a lattice point
in the cone determined by g. Let {£i}i<i<q be a set of monomials of R which
represent a basis of f?/ f: giR. Then these represent a basis of W, , for generic
a. More generally let p;,—.l.. ,Pp be Z-linear forms in m variables whose zero sets
represent the codimension one faces of the polyhedron of ¢ which pass through the
origin and which are normalized by the conditions that each p; maps Z™ into a
subset of Z with unity as a greater common divisor and that each p; maps the cone
of this polyhedron into the positive reals. Then {;}1<i<, represents a basis of W,
provided [GHF, Proposition 6.4.1] no pj(a) lies in N* (5 =1,2,... , ).

For generic a we have a basis {{] ; ,}1<i<, of K, ; and this specializes to a basis
{EQ(O)'i,t}lst.Sl of Ko , provided no p;i(a®) lies in N*. However for each u € Z™,

{X"§:_u'i’t}1555q also represents a basis IC;', and this specializes to a basis of
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K © provided no p;(al® — u) € N*. We conclude that for any a(®) there exists a
generic basis of X , which specializes to a basis of Koo o

Let R('; = {EA,,,% | Ay € Q}, then multiplication by G(¢,X) = exp(g(X,t) -
9(X,0)) is a map of Ry into Q[[t]] ® R” and the image is annihilated by o}
1 £ 5 € n. Furthermore this mapping induces an § linear map of )C",‘o into

Ka,: ® Q[[t]] which we call T,.

§3. Proof of Theorem A.

3.1. We now commence our proof. By an easy calculation, X, , is a2 one dimensional
’

+ o0
Q space with basis £ = [] € where [GHF §13.1] £ = 55 (a;)s/X?, the
=1

§i=—00

Heaviside generalized exponential series. (We use here the hypothesis that a; ¢ N>,
but this argument could be modified so as to permit ap, € N*, 4, ; > 0if p > Ny).
Let £ = Tg & = & G(¢, X), a horizontal element of K , ® Q[t]], i.e. annihilated
by each o}. By a direct calculation y(a,t) = (£7,1).

If P(t,5%,... ,3=) € R then
9 .
P(t, a)y = (£, (P)1)
and then ¢(P)[1] = 0 implies P € A(a), i.e.
¢(%A(a)) D Ay(a) ,
subject to condition 1.1, 1.2.

3.2
To continue the proof we first consider the case in which a is generic. We use

the notation of 3.1.

Proposition. Let n € Q[X, %], (i.e. independent of a). If a is generic and

0= (£5,n) then n = 0.
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Proof. Let n = LA, X", a finite sum. By hypothesis 0 =
LAT(ay +u1)...I'(am +um), a sum over the support of 7. We conclude that each
Ay = 0since I'(z),I(z + 1),... ,I'(z + £) are linearly independent over a field K if

z is transcendental over K.

Corollary. Let n € Q(t) [X , jlg] (independent of a). If a is generic and (£f,1) =0

then n = 0.

Proof. We may assume n € Q[t,X, -}?] For each u € N™ we have

0= (TIGE)™ i€ = (ot .ot

i=1
Since 7 is analytic at t = 0 we may specialize at t = 0 and deduce 0 = (¢35, (0%7)¢=0)

and so by the proposition (0*n)i=¢ = 0 for all u. But
1,9 uj ” u
(I1G)™) 6. %)) = 6z, X)a*n
i Ot;
and specializing at ¢t = 0 shows that
i a u;
(I1G)™) 6t X)) |,p=0

=1 =7

and so by Taylor’s theorem, n = 0.

Lemma. If a is generic then p(%(a)) = %;(a).

Proof. Let P(t,a—‘?;, ,a—‘;’:) € 2(a) then 0 = Py = (&, 9(P)1). We may assume

P € Qla,t, 1,5, ,55-]- We assert that o(P)[1] = 0. By hypothesis o(P)1 =
n € Qla,t,4,X, %] By reduction modulo £D, ; Q[a,t, 4, X, %] we may reduce to
the case in which 7 is independent of a, but then 0 = (£;,5) and by the Corollary,

n=20.
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3.4

Let a'® be any specialization of a. Conditions 1.1, 1.2 play no role here.

Proposition. Let P(a,tZ) € Qa,t,1,%,..., 5] If Py(a,t) =0 then
o(P(a®,t,2)[1) =0 in W o)

Proof. We have shown ¢(P(a,t,%))[1] = 0 in W, ,. Hence (£]; ,,o(P(a,t,£)1)
=0 (1 £ i < ¢g). We may assume that the basis {5;,,-',}1«(]. specializes to a
basis {6:(0, ; t} and hence the specialization, ¢(P(a(®,t, %))1, annihilates a basis

of K © ¢ This completes the proof.
Corollary. For1<j<nleté; = tja%j,
—1 -
0= TI (0 +6@a) ot = II (0 +6(0)a,,
Ap,; <0 Ay ;>0

then ¢(8;) € ™A;(a) with no condition on a.

Proof. 8; € YU(a) for a generic and specializes.

3.9

noo.
We now assume that a satisfies conditions (1.1), (1.2). Let B = > R8;. We
=1

have shown that

#(B) C %1(a) C p(A(a)) -

To complete the proof it is enough to verify that A = (B:9). For this one shows
that given 8 € R there exists m € M, s € N* such that mf = b+1"*v where b€ B
and v € Q[4]. The key point here is that for 4, ; > 0 we know by 1.2 that a, ¢ Z.
We conclude that if 8y = 0 then vy = 0 which shows that v = 0 since the support

of y is N® and v € ©(6]. This completes the proof of Theorem A.
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§4. Periods of exponential modules.

Let V and U be R modules. We say that u € U is a period of v € V if v — u
defines an R-module homomorphism of Rv onto Ru.

Let V! = X®R'expg/ i E;R'expg, let V = X“Rexpg/)]EiRexpg, and let
w=X%expg. (For defniit;:rll of R see §2.)

We note that V' is an R module which is isomorphic to

A-——/d(f:R' X\ %/\.../\%)

and a similar result holds for V, replacing R' by R.

Theorem B.

Let Uy = Q[[t]].

1. Subject to 1.1, 1.2, y is (up to a constant factor) the only period in Uy of [w],
the class of w in V'.

2. Subject to 1.1, 1.2, y is (up to a constant factor) the only period in Uy of [&],

the class of w in V.

Proof. That y is a period of [w] follows from 3.1. For special values of a as suggested
by 1.2, the class [w] in V' may be quite trivial and for that reason we use V. For

the dual theory we replace D* ., by i);,i,t = 4~ o D ;, where §_ is the natural

a,i,t

projection of R onto R*, the Q(t) space of Laurent series XA, /X* where the sum
is over all u such that X* € R. We repeat the argument of 3.1 by explaining the
basis of 16,,,0.

If X! occurs in g, let {A,* = ¢! as defined in 3.1. If X! does not occur in g,

let f;‘ = Y (a:i)s;/X;*. (If a; € N* then by hypothesis we will be in this second

8;=0
situation.) Then € = 4_ [ €} is a basis of }f:a,o and y(a,t) = (€2, 1) where £ is
i=1
the horizontal element of K, ; ®Q[t]] obtained by applying Tg‘,, =4-0T5, to ér. By
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the same argument as in 3.1, y is a period of the class of 1 in Wa,t = R/ED.,,i,tfi,
i.e. of the class of win V.
We know that [w] is annihilated by B. The same proofs shows that [] is also

annihilated by B. Thus if 3 C(s)t* is a period of either class then writing 6, in
s€Z

the form

8; = —k;(6)(1 +6;) o t;' — h;(6)
where

hj(6) = H (ap +£5(8))a,,;

Ap,i >0

B0 = JI (e +6(6)+455) 4,

p>ﬂ’AP,i <0

then we must have the recursion relations
(14 5;5)ki(s)C(s+ 1)+ hj(s)C(s)=0.

It follows from 1.1, 1.2' that neither h;(s) nor k;(s) can ever be zero for s € N”.

The uniqueness of y as period in Uy now follows.

§5. Application.

Let f, ... f® h be Laurent polynomials in z,... , 2, wi&h possibly variable
I =’

j=1

coefficients in C. We view the periods of the differential w = 5 .
II £O%
i=1

- exp th”ll A A -dz—zll as hypergeometric functions of the variable coeflicients. But

are these branches of a hypergeometric series? We give a positive response subject

to the following conditions.

4.1 For 1 < j < n there exists i; such that 1-z; is a term of f(),
4.2. For 1 < i < £ the constant term of f(* is 1.
4.3 All coefficients in f) ... f(O h aside from those previously mentioned are

generic.
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We reduce to the preceding sections in two steps. We introduce new variables

Xpn41,..+ y Xnte. Then w is obtained by a formal Laplace transform [GHF, D-L]
from

dz dz dX dX
nyb b 1 +1 +2
w'=2%...2% Xn;_]...Xn;,expg(z,z)?A /\__"./\ X,:H A'“A—)ﬁ

where ,
9(2,X) = h(z) + Z Xo4if9(2) .

We now make a change of variable. For 1 <i <nlet X; = sz,,.,.,-j and eliminate

the z1,...,2z, variables. Then w' takes the form X°¢ exp §(X)A?:1‘ %—éﬂ where
p 1
7= X +...+Xn+(+zt,,XA(“) .
=1
Here ty,...,t, are the generic coefficients appearing in the f(! and h and the

monomials are those obtained from those of h and from the non-special terms of
the f(),

Since we may replace z; by 2, ! condition 4.1 may be modified in an obvious way.
Ezample. Let w,; be the holomorphic differential associated with a K — 3 surface
-1
Wy = [2122(1 + 21)(1 + 22)(1 +ti121 + thz)(l + 1321 + t422)} 2 dzy Ndzy .

We are indebted to William Hoyt for bringing this example to our attention. Using

the inverse Laplace transform we obtain

dZ] de
w = (X3X4X5X6)1/2(z1z2)1/2 exp(g(t,X,z)) — A —22— (J—3 X )

where —-q = X3(1 + 21) + X4(1 + 2’2) + X5(1 + t121 +t222) + Xs(l + t321 + t422).

Let X; = 21 X3, X2 = 2,X,4 and eliminate 27, 25 so now we have

. X1 X5 X2 Xs X1 X6 X2 X
—g=2X oo+ X+t t .
g 1+ + Ag + 11 X, + 12 X, + i3 X, + 14 X,
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So now we have w = (X1X2X5Xs)'/? exp(§(t, X)) /\f’=l % The matrix A’ and

vector a are given by

1 0 1 0 i

0 1 0 1 3
n_|-1 0 -1 0 0
Ale=19 1 0 -1 o
1 1. 0 0 3

0 0 1 1 i

The associated hypergeometries series is

1
Z( 81+63 )32+&4( )61+82( )33+~!4 t"t;zt;ati‘

fp=-e? (81 4 83)!(82 + 34)!s11851s30s4!

§6. Hypersurfaces.

We take this opportunity to make available some old calculations (1965) involving
the periods of differentials in middle dimension on the complement in P" of the union
of the coordinate hyperplanes and a non-singular hypersurface of degree d. This
topic has been treated in several places [E;, E;, C-N, K].

Let A =(A;1,...,An) be algebraically indpendent over Q. Let Q = Q(A). Let

L% be the ring over Q generated by all monomials, X?, in Q[Xo, X1,... , Xnt1] such

that
(61) dvo='t)1+...+‘l)n+1,'UjZl(lSan-l-l).
Let X“’(l),.. . ,X“’(m) be distinct monomials of degree d in Xj,..., X4, each of

which is divisible by at least two of the variables. We define f(4,X) =
Z X¢+ E A;X ““) 5o that f(0,X) defines the Fermat hypersurface.

i=1 Jj=1
We define endomorphisms of £° as linear  spaces

D;=E;+Xofi ,fi = Eif(4,X) .

we define W5 = £5/ z D; LS. The space c adjoint to £5 consists of all formal
i=1

series

¢* = {ZB,/X"| B, € Q,v satisfies (6.1)} .
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Let 4% be the projections of formal Laurent series into £*° defined by 4*'1/X" =
1/X" if v satisfies 6.1 and zero otherwise. The pairing of £*° with £5 is as defined
in §2. The operator adjoint to D; is D} = y* o (—E; + Xofi)1<i¢<n+1. The
dual of WS is K§ = {¢* € £*° | Di¢* =0,1<i<n+1}.

Let A = {u satisfying (6.1) | 1 <u; £d,1 <i<n+1}. Then {X*},ca

represents a basis of Wy. The dual basis is given by

. 1 o R 1
w0 = m se%':“ ( + ZS. -) - Xo)z.. nﬁl x4+
=1

where T'g(u') def I'[ I'(u;), u' = projecton of u on the last n+1 coordinates . This
symbol is used only for elements of Q™*! none of whose coordinates lie in —N.

We map K§ onto K§ by Ty , = v* 0 G(4, X), G(4,X) = exp(z; AjXo X,
The period matrix coincides with the matrix of this transformatlon a.nd SO wWe com-
pute Cy v = (T 465 4, X ") for all u,v € A. It is technically simpler to replace the
basis {{; ,}uea of the target space Kfﬁ by {E;,ﬁ}uGA dual to {X%#},e4 where for
each u € A, we choose 4 satisfying 5.1 such that (uy,... ,unq1) = (%1,... ,%ny1)

mod d. The precise choice will be indicated below. Thus we compute
Cui = (To a0 X*)

and we find

' n+1

ro(%’)c..,.-, = > T ('—;— + Zs;l;)(—l)z" II 47 /rit
i=1 Jj=1

(r,8) ENmH1 xNm
the sum being over all r, s such that
u + d(s1,... ,8n41) = o+ erwu)
i=

16

Consider all solutions of ¥’ = %' +Xr;w"" " mod d. This set is a finite set independent

of the choice of #. For each solution let (Ty,... ,7m) € [0,d ~ 1} be a minimal
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representative. We may now write

(1, *m) =F+d(ts,... ,tm) with teN™ .

Thus
m . m .
u' +d(s1,... ,Sn4-1) =0+ ZFjw(-’) + dthw(J)
j=1 y=
We now choose ¢ = v' mod d such that for each solution (7y,... ,7,») in our finite

m .
set, each component of ' + 3 7;w” —u' is in N. By hypothesis these components
j=1

are divisible by d. For each 7 we define s,
$© = (Sgo) s )= —[v + 27wl —u']

yren n+l

m .
and so we have s = s(%) + 3 tjw(’). Thus

=
Yy H APT (u' © Z ») .
u b= 5(7' t) - + sV + tw"
7 teNm - (T +dt )' j=1

Here e(F,t) = (—1)n+-+ann = (=137 +otellitdtitttn) - We obtain in this
way a finite sum of generalized hypergeometric functions.

As a special case one may obtain classical formulae for the roots of a polynomial
equation as generalized hypergeometric functions of the coefficients [M].

The symbol C, , refers to a period of

dXo d d
wy = Xz .. ahn exp(Xof(z,l))—,—qA—m—]/\ AR
/\0 z Tp
where (z1,...,Zn,1) refer to dehomogenized coordinates. By means of the Laplace
transform relative to Xy, w, may be replaced by @, = T(':,_;)To' del,_ A... d—;’:"- The

period C, , involves a cycle v, which may be identified by an examination of the
matrix at A = 0. Details on this method of distinguishing cycles may be found in

[C-N p. 287] and the work of Tretkoff [T] on Fermat surfaces may be helpful.
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§7. Modified hypergeometric series.

We consider once again the hypergeometric series y(a,t) of §1. Our object is
to describe the series obtained by formally differentating the series with respect to
the parameters (ai,... ,a@m) = (@n+1,...An4m). The basic point is that by the

formulae of 3.1 we have

(5ar) "+ (aem) v =)+ ) ")

The formula D7 ; = —E; + a; + gi shows that

a * * 6 . .
a_(IiODa’j_Da’joaTj+6"J .

Thus if K{"-"m) denotes the set of all £* € R” such that
D,j ¢ =0 (1<ism)

then 8%1 maps K("1r™m) into KO+r1m2rm) - Thus the derivatives of y with
respect to a may be viewed as periods of elements of spaces of the type R'/ DR

where ’D,(,r) denotes forms in Dy, ... ,Ds m of degree r.

§8. Delsarte Sums.

We sketch a generalization of §5 which uses ideas associated with §6.
Following Delsarte [De] let us consider h, a Laurent polynomial in m variables

m

B(X) = Z xwt)
=1
where w1, ... ,w(™ are linearly independent elements of Z™. The corresponding

exponential module may be described briefly.
We define Q linear forms L,,... , L, in m variables by the condition —L;(w()) =

5,",’ (1 <i4,7 < m)
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Let a = (ai,... ,am) be sufficiently general, @ = Q(a), Ry = Q[X, %], Do, =
E;+a;+ h;, hy = E.‘h, E; = X,a—a)ﬁ The structure of R(')/E-Dn,iR(I) is clarified by

the remark that for u € Z™
[x*+P] = Lj(a + w)[X"] .

To verify this we observe that

hy Xt
| =w :
B xwt™

where w is the m x m matrix whose 7** column is w). Let ¢ = w™!. Then
Xt in: cijh;j X* = — in: ¢iij(Ej + aj)X* = — i cij(a; + u;) - X* modulo
ZD, iRy Tlh=e1 assertion follozv:lfrom Li(u) = —Ec;,-u;.=l

Let A be a set of representatives in Z™ of Z™/ f: Zw9. Then {X“}ye rep-
resents a basis W, = Ry/%D, iR;. The dual bas;:I{E;,a}.,e_A of the dual space

K. ={¢¢€ R{; (=E; +ai+ hi)¢* =0,1 <i < m} will now be constructed

1 m _'"‘ rswl) 'z": "
éu,a = Xu Z H(—Lj(a+u))ri X = (...1);=1 .

r€Zm j=1

Indeed if £* = LA, /X7 lies in K, then
—(vi+a;)Ay, = EwijAu+w(i)
i=1
and hence

Av+w(j) = L_,'(a + ‘U)Av .

It follows that the support of {; , lies on u+ in: ZwU) and A, = 1. The asserted
formula then follows by induction on ry,... ,r,,f =x:nd the definitions.

We now consider a deformation of the Delsarte polynomial. Let g(¢,X) = h(X)+
il th“(j) where {u®),...,u{™} is a set of distinct elements of Z™ disjoint from
= A

fw®,... ,wl™}. Asin §1 we construct W, , and K, , using the present formula
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for g. We deform K into X , by means of Tj', = multiplication by exp(g(f,X) -
h(X)). For u € A, Ty £, , is a horizontal element of K7 ,. For v € A we put
Cun = (T3bt,0r X°).

Trivially C, » is a period of [X*], the class of X* in W, , if we identify R with R
by means of ¢ as in §1. We may also view C,, , as a period of X*** exp g(m,t)-‘%’- A

LA %:L. We compute

s aea

s m
(*) Cup = Z gt—“‘,m [Il(—Li(a + U))—L"(”_“‘f"f:l oa))
i= i=
the sum being over all s = (s1,...,5,) € N® such that
n
(%) L;(v—u-}—Zs,-p(j))EZ 1<i<m.
j=1
Let £ be the lattice in Z™ consisting of all s = (sy1,... ,5,) such that
L,—(Z": sjp(j)) € Z (1 <1 < m). For fixed u, v there exists a finite set of solutions,
s, irjl—Zl" modulo £ of the equation (**). Let s ..., s(9 be a set of representatives
of these classes. Then each solution of (**) may be written uniquely in the form
s 4w, j€el,ql, w€ L. Thus Cy,» may be written as a sum F) + ...+ F, where
F; is obtained by restricting the sum on the right side of (*) to s = s() + w with
w running over £ N (N™ — s0)),
Thus we obtain hypergeometric functions as periods of differentials of the type

discussed in §4 subject to the weaker hypothesis.

¢
4.1' The monomials of h + Y f()(2)X; include n + £ with exponents which are
=1

linearly independent over Q in Z"*¢.

4.2' The remaining monomials have algebraically independent coefficients.

§9. New Method.
In this section we improve upon Theorem A. We are indebted to C. Sabbah for

proposing the method of this section.
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Let R =
Q7L X, X7 =Qltr,. .. o tan T 875 Xy, Xy X8 XY
We define Wo ¢ = R/ED, ; (R as in section 1 and we view it as an Q[t,t™*,g}-
module or an Q[t,#~?,#Z]-module (we identify Q[t,t7*, 0] and Q[t,t™*,t2] via ).
We denote by ;(a) the annihilator of the class [1] of 1 in W, ,, viewed as an

ideal in Qt,t~!,¢Z]. We will prove in this section the following theorem.

Theorem C.

1) If the hypergeometric series y(a,t) satisfies 1.1 and 1.2, we have
A(a) = Ay (a) .
2) If the hypergeometric series y(a,t) satisfies 1.1, 1.2, then

A(a) C A (a) .

We identify the non-commutative ring Q[t,t_l,t%] with Q[r, 771, s] by an iso-

morphism : Q[t, t71,¢Z] = Q[r, 771, s):
Lol =1y s _, 0
)=t (7 )=t (si) = tig .
]
So the commutation relations between the 7’s and the s’s are

TiS; = 8;Ti t#£7

Tisi = (i + )7 .

We remark that Q[s] and (s) have a natural Q[r, 7!, s]-module structure, the 7;’s
acting as shift operators: 7,P(s) = P(s + 1,), m7'P(s) = P(s—1;). ££&Q" - Q
is a linear form with integer coefficients and a € 2, we denote by M(¢,a)(s) the
)(s)-module, free of rank 1, generated by the symbol [I'(4(s) + a)] over Q(s). We
put on M(¢,a)(s) a left Q[r, 771, s}-module structure by

i [D(s) + )] = F(f;((se(t)lf :)“) [res) + )] -
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We denote by M (£, a) the [r, 771, s]-module generated by [['(¢(s) + )] in
M(€,a)(s). Nowlet £;,1 < j < N, belinear forms as above,and a; € 2,1 <7 < N.
Denote by M the tensor product over [s] of the modules M(¥¢;, a;). We impose

on M an Q[r,77!, s]-module structure by
‘r,-(el ®...®CN) =Tie1 Q... TieN .

We denote by
e= 15('gém[l“(e.-(s) +a))]eM.

Note that in general e does not generate M as an Q[r, 71, s]-module.

We will deduce the theorem from the following statement:

Proposition. The Q[r,77!, s]-module generated by e in Q is isomorphic to the
Q[t,t™*,t2]-module generated by [1] in W, 4, by an isomorphism sending e to [1],

using the isomorphism vy between Q[t,t™!,tZ] and Q[r,771, ).

Proof. We consider
T Qb oty ty e 80 = QT . TN, T TRY

given by
ity =[] 7% .

1<jEN
As above, we identify Q[T, T‘I,T% with Q[9,671,5] via 6; = T}, 6] =T,
Si = T.-%. As above we consider the Q(S)-module generated by [['(S; + a;)],
M(S;,a;)(S), and we denote by M(S;,a;) the sub Q[f,6~*, S}-module generated
by [[(Si + a;)]. We denote by M the tensor product over [S] of the M(S;, &),
1 <z < N. As above we put on M a natural [8,671, S]-module structure. We
define

€= IS%N[F(Si +ai)l €M .
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We remark that obviously € generates M as an Q[8,671, S}-module.

More precisely we have:

Lemma 1. Let I be the left Q[6,6~', S]-module generated by
6;—(Si+a;),1<i<N.

Then M is isomorphic to Q[8,6~1,5)/I as an

Q[6,671, S]-module, via an isomorphism sending € to [1].

Proof. Obvious.

We will use the morphism

P: Q[S] — Qs]

Si = 4i(s) .

We now remark that M(¢;, a;) is isomorphic as an §[s]-module to Q[s]@y M (S, a;),

hence

M = ﬂ%] M(ei:ai) o ®Q[a](9[s] % M(S,', ai))
~ Qfs] ®y (QQ[?’] M(S;, )

~ Qfs] @y M .

Furthermore e corresponds to 1 ® é&. We may extend this isomorphism to an

Q[r, 77!, s]-module isomorphism by putting:

ri(f(sy@m)=rif(s)® J] 65'm

1<5<N

for f(s) € Qfs], m € M.
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So we deduce the following:

Lemma 2. The Q[r,77}, s]-module generated by e in M is isomorphic to the

Q[r, 771, s]-module generated by [1] in

W:=Q[s] ®, Q[6,67*,8]/1 .

Proof. If we identify 2[6,6~!,S] and Q[T, T"I,T%] via y:y(T}) = 671, v(T7') =
0;, '7(TiaiT.-) = §;, I is identified with the ideal T generated by
7,2 T 1<j<N
jé—ﬁ ta;—-1;", SISV
But Q[T, T TaT]/I is isomorphic to the Q[T, T, T%]-module generated by
- X T7
p=¢ SISV ( II T_“') and (1) corresponds to ¢. Now suppose that a; =0
1<iKN

for1<:<n, andtha.te(s) —s;for1 <1< n.

We will identify R = Q[t, X,t™!, X 7] with Q[T,T7] via:

Hence we see that Q[6,6~1, S]/1 is isomorphic to the K[t 2 £, X 5% ]-module generated
by 90X [[ X, with —g(t,X) = 3. Xi + 3 ti( [ X0 ). Call this
1<i<m =1 =1 k=1

last module £. Now we just have to remark that the mapping ¥:Q[S] — Q[s]

corresponds, via the above isomorphisms to
@;Q[t ] - Qft Bt]

defined by ®(tiz5-) = tiz2-, ®(Xi3%) = 0. Hence we obtain that W = Q[s] ®y

Q[0,071, S]/T is isomorphic to Q[t—g—‘] ®as £, this last module being isomorphic to

£ Y Xix%- 3% £+ Furthermore 1®[1] corresponds to the class of e9(-X) [T X+
1<i<m 1<i<m
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and the isomorphism is compatible with the Q[r, 77!, s]-module structure on W if we

put the standard left Q[¢,t™?,t8/8t]-module structure on £/ Y X;ai)(‘é' . Now
1<i<m
to finish the proof of the proposition we have just to observe that multiplication by

e9X) T X" gives an isomorphism of Q[t, ¢!, 8/8t]-modules between W,

1<i<m
and £/ Y Xia_ax_-é" the action of t,--a% on W” being given by t;% + t;gf-.
lsism ] 1] . 1

Proof of Theorem C.
1) If 1.1 and 1.2 are satisfied then

N Ny -1
) = ( II (o) (TI-D"P1 = ap)-¢,0)
q=1+N| p=1
is defined for s € Z™ and zero for s € Z™ — N™. Hence we can write
y(ta)= Y Cls)t*,
SEZ"

and we have

tyt,a)= 3 Cls— 1",

SEZ"
t7ly(ta)= > C(s+1:)t*,
Py Ad
2 - .C(s + 1L;)t*
t,a—“y(t,a)—sezvs. (s+1:)t° .

From that we deduce that if P(¢,t~1,t8/0t) € Q[t,t71,t8/6%), then
P(t,t71,t8/8t)y(t) = 0 if and only if P(771,7,5)C(s) = 0 in Q(s)*. But it is clear
that

P(r71,7,5)C(s)=0 in 9(s)*

is equivalent to

P(r71,7,8)[e] =0 in M,

and the result follows from the proposition.
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2) If 1.1, 1.2' are satisfied then C(s) is defined for s € N». If P(t,t71,t£)
annihilates y(t,a), then there exists k¥ € N™ such that P(r~!,7,5)C(s) = 0 for
s € k + N". This is enough to ensure that P(r~!,7,3)C(s) = 0 in Q(s)* and the

result follows as in case 1).

Remark. We explain the relation between Theorem C and Theorem A. Since R C R’
it is clear that A C oA, while by Al we have 2; C & subject to 1.1, 1.2. Thus
Theorem C1 implies that &A; = 2.

It follows from {GHF, eq. 1.3.3] that if a is generic then RNED, ; +R' = £D, ; (R.
Hence in the generic case C1 is equivalent to Al.

The implications of C2 are obscure since if 1.2 is weakened to 1.2’ the class of 1
in W (and in W') may be trivial. It is perhaps more interesting in that case to use

the class of 1 in W as in Theorem B2.
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