
Hypergeometric Series and Functions as Periods 
of Exponential Modules 

Bernard Dwork and François Loeser 

In recent work [D-L] it was shown that every hypergeometric series occurs as a 

period of an exponential module. In the present work we give second and third 

proofs which eliminate some of the restrictions of our previous result. 

We also give some evidence supporting the suggestion [C, p. 181] of the Chud-

novskys that all G-functions are generalized hypergeometric function, but we would 

modify their proposal so as to include the composition of hypergeometric functions 

in several variables with rational maps of C n into C. 

We have benefitted from the advice of N. Katz and C. Sabbah. 

§1. Exponential Module. 

For v e Z let (x)„ = T(x + ι/)/Γ(χ), an element of Q(x). 

Let y be a hypergeometric series in n variables i.e. 

N 

Π K)M*) 
« ^ - Σ Τ Ϊ Γ ^ ^ «* 

s£Nn Π( ΐ-",)-ν ·>(- ΐ)*(# ) 

where a = (c*i.. . αχ) £ CN, ap = 0 for 1 < p < n and 

n 
£P(S) = Y^APJSJ 

a linear form with coefficients in Z. We insist that £j(s) = — Sj (1 < j < n). We 

assume 

(1-1) lîp<Nu apeZ then ap G - N and ApJ < 0 . 
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(1.2)

Bernard Dwork and Loeser

For later use we mention a weaker form of 1.2.

(1.2)' If ap E Z, p > NI then a p E NX
, Ap,i 0, 1 j n .

Let n = Q(a), R' = n(t)[XI , ... ,Xm, xlxL.xJ where m = N - n. Let

a = (aI,'" ,am) = (an+I, ... ,aN). Let g(t,X) E R' be defined by
n

A'(j)-g(X,t) = Xl + ... +Xm +LtjX
j=I

where A,(j) is the ph column of the matrix
,_ (An+I,I, ,An+I,n)

A - .
AN,I' ,AN,n

,(j) m
(so X A = IT XAn+;,;). We view 9 as a Laurent polynomial in X parametrized

;=1
by t.

We define operators on R', E; = X; ot, (1 i m), we define g; = E;g

(1 i m) and operators Da,;,t = E; + a; + g; (1 i m) on R'. For 1 j n

we define Uj = + If again operators on R'. We now define n(t) vector spaces
J J

= R'/'£Da,;,t R'

which we view as an n = n[t, f,UI, ... ,Un] module since Uj is stable on '£Da,;,tR'.
[10 0] . 0Let n = n t, , otn . Clearly n n under the mappmg r.p: ot; -+ Uj'

Let 21 (a) be the annihilator of y(a, t) in k Let 21 1( a) be the annihilator in n of
[1] (the class of 1 in

For 1 j n let Dj = ij ..
J

Let l.m be the semigToup of n[8]X generated by all linear operators {c+ diDI +
... + dnD" Ie <t Z,(d1 , ... ,dn) E zn}. If l!: is an ideal ofR then (l!:: l.m) = {8 E n I
m8 E l!: for some mE 9R}. Note that 9R is independent of a.

Theorem A.

(i) 21(a) = ((r.p-1 211(a»:9R), subject to 1.1,1.2.
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(ii) If a is generic, i.e. a i , . . . , a m algebraically independent over Q then 

„(«(a)) = «!(«.). 

§2. Dual space. 

Before starting the proof we recall some definitions concerning dual spaces. We 

follow here the exposition of [GHF] and draw upon the 1991 Princeton lectures of 

A. Adolphson. 

Let R'* = { £ AU^JT | Au e ü(t)} an ü(t) space with a pairing R* xR' -^ Q(t) 
u£Zm 

defined by (£*, ξ) = constant term of ξ*ξ. By means of this pairing we identify R' 

with Hom(Ä', £l(t)) and deduce the mapping £>* 1 1 = — Ei -f Oi + <7t adjoint to Dait 

(1 < t < m). The annihilator, /CJ, ti of HDa^R1 in Ä' is via the above pairing 

dual to Wa v The action of d/dtj on Ω(ί) extends to K'a t via σ* = -^- — - ^ and 

trivially 

We may construct universal bases of W'a t and JC'a t. Let R be the subring of R' 

generated over il(t) by the set of all monomials Xu such that u is a lattice point 

in the cone determined by g. Let {£t}i<i<g be a set of monomials of R which 
m 

represent a basis of R/ J2 giR. Then these represent a basis of Wa t for generic 

a. More generally let p i , . . . ,ρ µ be Z-linear forms in m variables whose zero sets 

represent the codimension one faces of the polyhedron of g which pass through the 

origin and which are normalized by the conditions that each p, maps Z m into a 

subset of Z with unity as a greater common divisor and that each p, maps the cone 

of this polyhedron into the positive reals. Then {f,}i<t<g represents a basis of W'a t 

provided [GHF, Proposition 6.4.1] no pj(a) lies in Nx (j = 1,2,... ,µ). 

For generic a we have a basis {^)l)t}i<i<g of fC'at and this specializes to a basis 

{£a(°),t,t}i<i<i °f ^l(o) t provided no pj(a^) lies in N x . However for each µ 6 Z m , 

{^u£a-u,a;,<}*<»<? ^ 0 represents a basis IC'a t and this specializes to a basis of 
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JC'a(o) t provided no pj(a^ — u) G N x . We conclude that for any α^ there exists a 

generic basis of JC'at which specializes to a basis of Kf
a(0) t. 

Let Βζ = {ΣΑΗ-£ζ | Au e Ω}, then multiplication by G{t,X) = exp(g(X,t) -

g(X, 0)) is a map of R'0 into Ω[[ί]] <8> R! and the image is annihilated by σΐ-, 

1 < J < η· Furthermore this mapping induces an Ω linear map of K'a 0 into 

£'a,t ® Ω[Μ1 w h i c h w e c a l 1 TQ,V 

§3. Proof of Theorem A. 

3.1. We now commence our proof. By an easy calculation, K'a 0 is a one dimensional m
 -

f oo 

Ω space with basis £* = j[ £? where [GHF §13.1] ft = £ (afi.JX?, the 

Heaviside generalized exponential series. (We use here the hypothesis that a; ^ N x , 

but this argument could be modified so as to permit ap 6 N x , Apj > 0 if p > Νχ). 

Let £* = T0*^o = ÇoG(tyX)i a horizontal element of K,'a t <g) Ω[[£]], i.e. annihilated 

by each σ!·. By a direct calculation y(a,t) = (££, 1). 

If *(*, £ , · · · , £ ) € * then 

and then φ(Ρ)[1] = 0 implies P € Sl(a), i.e. 

ν(*(α)) 3 « i («) , 

subject to condition 1.1, 1.2. 

3.2 

To continue the proof we first consider the case in which a is generic. We use 

the notation of 3.1. 

Proposition. Let η £ Q[-^x]> Tje· independent of a). If a is generìc and 

0 = (ξζ,η) then 77 = 0. 
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Proof. Let η = ΣΑηΧη, a finite sum. By hypothesis 0 = 

ΣΑηΓ(αχ + ui) . . . T(am + wm), a sum over the support of η. We conclude that each 

Au = 0 since Γ(χ), Γ(α; -f 1 ) , . . . , Τ(χ -f ^) are linearly independent over a field K if 

x is transcendental over K. 

Corollary. Let η € Q(i)[X, γ ] (independent of a). If a is generic and (£*,?/) = 0 

then η — 0. 

Proo/. We may assume 77 € Q[i, X, - ^ ] . For each u € Nn we have 

° = (Π(^)",)<ί»*·,ί> = ««*'σ",···σ·",ί> · 
Since 77 is analytic at t = 0 we may specialize at t = 0 and deduce 0 = (£J, (au77)i=0) 

and so by the proposition (σηη)ι=ο = 0 for all u. But 

(f[(-£:)Ui)bG(t,X))=G(t,X)a"v 

and specializing at t = 0 shows that 

(f[(|:)"'')Wa))|l=0=o 

and so by Taylor's theorem, η = 0. 

Lemma. If a is generic then y>(2l(a)) = 211 (a). 

Proof. Let P( t , ^ - , . . . , ̂ ) 6 21(a) then 0 = Py = (ξΐ,φ(Ρ)Ι). We may assume 

P e Q [ < M , £ , ^ , . . . ,37^]· We assert that φ(Ρ)[1] = 0. By hypothesis φ(Ρ)1 = 

η G Q[a,£, j , X , i ] . By reduction modulo EDa)i>tQ[a,t, j , X , -^] we may reduce to 

the case in which 77 is independent of a, but then 0 = (ζΐ,η) and by the Corollary, 

η = 0. 
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3.4 

Let al·0) be any specialization of a. Conditions 1.1, 1.2 play no role here. 

Propos i t ion . Let P{a,t£t) G Q [ M , { , J j , . . . , ^ ] . If Py(a,t) = 0 then 

^ ( a ( ° ) , i i ) ) [ l ] = 0 m W : ( û ) ) i . 

Proof. We have shown <p(P(a,t,£t))[l] = 0 in Wa%t. Hence (£,,-,«, p(P(a, * , £ ) ! ) 

= 0 (1 < i < q). We may assume that the basis {C»'<}i< <· specializes to a 

basis {f*(o), t} and hence the specialization, φ(Ρ(αΙ°\ί,·^))1, annihilates a basis 

of £'a(0) t . This completes the proof. 

Corollary. For 1 < j < n let 8, =tj-£-, 

*> = Π ((«p + W ) ^ ) _ 1 ° '71 - Π ("p + W)>»?J 
APij < 0 i4 P ti > 0 

then (p(6j) G 21 x(a) with no condition on a. 

Proof. Bj G 21(a) for a generic and specializes. 

3.5 

n 
We now assume that a satisfies conditions (1.1), (1.2). Let *8 = £} TtBj. We 

i= i 
have shown that 

?(») c a,(«) c *>(»(«)) · 

To complete the proof it is enough to verify that 21 = (*B:93l). For this one shows 

that given Θ G H there exists m G 9Λ, 5 G Nn such that m0 = 6 + f~*i/ where b G 93 

and i/ G Ω[£]. The key point here is that for Apj > 0 we know by 1.2 that ap tf. Z. 

We conclude that if 6y = 0 then uy = 0 which shows that v — 0 since the support 

of y is Nn and v G Ω(δ], This completes the proof of Theorem A. 
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§4. Periods of exponential modules. 

Let V and U be Ü modules. We say that u G U is a period of v G V if v i-> u 

defines an A-module homomorphism of Ttv onto Tlu. 

Let V" = XaR'expg/ Σ EiR'exP9> l e t ^ = XaRexpg/TtEiRexpg, and let 

ω = X a expp. (For defniition of R see §2.) 

We note that V is an Ü module which is isomorphic to 

, ™ dXi / ^ , dXi AdXt dXrn\ 

and a similar result holds for V, replacing R! by R. 

Theorem B . 

Let U0 = Ω[[*]]. 

1. Subject to 1.1, 1.2, y is (up to a constant factor) the only period in Z70 of [a;], 

the class of ω in V. 

2. Subject to 1.1, 1.2!', y is (up to a constant factor) the only period in UQ of [ώ], 

the class οίω in V. 

Proof. That y is a period of [ω] follows from 3.1. For special values of a as suggested 

by 1.2', the class [ω] in V may be quite trivial and for that reason we use V. For 

the dual theory we replace D*a i t by D* , t = 7_ o D* i t where 7_ is the natural 

projection of R' onto Ä*, the Ω(<) space of Laurent series %A'U/XU where the sum 

is over all u such that Xu E R. We repeat the argument of 3.1 by explaining the 

basis of fca,o-

If X~l occurs in g, let ζ* = ξ* as defined in 3.1. If X~l does not occur in </, 

l e t ζ* = Σ (α«')*.7^7<· fâ ai £ NX t n e n ky hypothesis we will be in this second 
s,=0 m *> 

situation.) Then ξζ = -γ_ J] £* is a basis of /Ca?0 and y(a, t) = (^*,1) where £* is 
i= l 

the horizontal element of £α,<®Ω[[*]] obtained by applying T0*t = 7» oT0*t to £*. By 
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the same argument as in 3.1, y is a period of the class of 1 in Wa,t — -β/ΣΖ)α,ΐ,<-β, 

i.e. of the class of ω in V. 

We know that [ω] is annihilated by B. The same proofs shows that [ώ] is also 

annihilated by B. Thus if Σ C(s)ta is a period of either class then writing 6j in 
sei 

the form 

ej = -kj(6)(l + Sj)otj1-hj(S) 

where 

*;(*)= Π («p+WW; 
Arj>0 

*;(*)= Π (<*p + ep(6) + APj)-A„j 
p>n,ApJ<0 

then we must have the recursion relations 

(1 + 3^(3)0(3 + lj) + hj(3)C(3) = 0 . 

It follows from 1.1, 1.2' that neither hj(s) nor kj(s) can ever be zero for s 6 Nn. 

The uniqueness of y as period in UQ now follows. 

§5. Appl icat ion. 

Let f ^ \ . . . , f^£\h be Laurent polynomials in z i , . . . , zn with possibly variable 

coefficients in C. We view the periods of the differential ω = —t · 
Π /(i)6· 

• exp h-^1- Λ . . . Λ -j*- as hypergeometric functions of the variable coefficients. But 

are these branches of a hypergeometric series? We give a positive response subject 

to the following conditions. 

4.1 For 1 < j < n there exists ij such that 1 · Zj is a term of f^>\ 

4.2. Forl<i<£ the constant term of / ( i ) is 1. 

4.3 All coefficients in f^\ . . . ,f^e\h aside from those previously mentioned are 

generic. 
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We reduce to the preceding sections in two steps. We introduce new variables 

X n +i , · ·. ,Χη+i- Then ω is obtained by a formal Laplace transform [GHF, D-L] 

from 

ω ' = ^ . . . < ^ · + 1 · . . ^ β χ ρ 9 ( , , χ ) ^ Λ . . . Λ ^ Α § = ± ΐ Λ . . . Λ ^ 
Z\ Zn A„+i A n +* 

where 
/ 

g(z,X) = h(z)^Xn+if^(z). 
i=l 

We now make a change of variable. For 1 < i < n let Xj = ZjXn+i. and eliminate 

the 2 i , . . . , zn variables. Then ω' takes the form Xe exp g(X)Λ£ί/ 4*± where 

Here £ 1 , . . . ,<µ are the generic coefficients appearing in the /(*' and h and the 

monomials are those obtained from those of h and from the non-special terms of 

the /<·*>. 

Since we may replace Z{ by z~ condition 4.1 may be modified in an obvious way. 

Example. Let ut be the holomorphic differential associated with a K — 3 surface 

Ut = [2lZ2(l + * l ) ( l + 22XI + *1*1 +*2Z2)( l+*3Zl + * 4 * 2 ) ] ~ 2 ^ Ι Λ ^ 2 . 

We are indebted to William Hoyt for bringing this example to our attention. Using 

the inverse Laplace transform we obtain 

ω = (XzXtXsXs)1'2^)^ exp(g(t,X,z)) ^- A ̂  Λ (Λ ^ ) 
Ζ\ Ζ2 J=3 &j / 

where -g = X 3 ( l + ζλ) + X 4 ( l + z2) + X5(l + *i*i + <2*2) + X%(1 + t3*i + *4*2)· 

Let Xj =2:2X3, X2 = Z2X4 and eliminate zi, z2 so now we have 

-g = Ä! + . . . + A 6 + Î ! — — + * 2 ^ r — +h——- +U——- . 
A3 A4 Λ3 Λ4 
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So now we have ω = (ΧιΧ2ΧζΧα)ι/2 exp(g(t,X)) /\6
i=1 4 ^ . The matrix A' and 

A'\a = 

vector a are given by 

/ 1 0 1 0 
0 1 0 1 

- 1 0 - 1 0 
0 - 1 0 - 1 
1 1 0 0 

\ 0 0 1 1 
The associated hypergeometries series is 

I 
2 
0 
0 
.1 
2 

(0 J_ β. Μ / β . ^L β. Μ β . Ι β_ Ι Λ . Ι β . Ι Γ1 Γ2 Γ3 Γ4 
eGN4 (« i + < s 3 ) ! ( 5 2 + θ4 ) ! 5 1 ! θ 2 ! θ 3 ! θ 4 ! 

§6. Hypersurfaces . 

We take this opportunity to make available some old calculations (1965) involving 

the periods of differentials in middle dimension on the complement in P n of the union 

of the coordinate hyperplanes and a non-singular hypersurface of degree d. This 

topic has been treated in several places [Ei, E2, C-N, K]. 

Let A = (Αχ , . . . , Am) be algebraically indpendent over Q. Let Ω = Q(A). Let 

Cs be the ring over Ω generated by all monomials, X v , in Ω[Χο, X\, · · · , Xn+\] such 

that 

(6.1) dv0 = vi + . . . + vn+i , VJ > 1 (1 < j < n + 1) . 

Let Χω , . . . ,Χω be distinct monomials of degree d in X\,... , X n +i , each of 

which is divisible by at least two of the variables. We define f(A,X) = n + l m ,., 

Σ x t + Σ AjX" so that /(0,ΛΛ) defines the Fermât hypersurface. 

We define endomorphisms of Cs as linear Ω spaces 

A - = £i + *οΛ , / < = £ . · / ( A , X ) . 
n+l s 

we define VV^ = Cs/ Σ D{CS. The space £* adjoint to £ s consists of all formal 
i= l 

C = {ΣΒν/Χν \ΒΌ£η,ν satisfies (6.1)} . 
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Let 7ÎÎ be the projections of formal Laurent series into £* defined by *ys_}l/Xv = 

1/XV if v satisfies 6.1 and zero otherwise. The pairing of C* with Cs is as defined 

in §2. The operator adjoint to A is D? = 7 ? o (-£, · + X0fi) 1 < i < n + 1. The 

dual of W5 is /C$ = {Γ G £*5 | D?C = 0 ,1 < i < n + 1}. 

Let ,4 = {u satisfying (6.1) | 1 < Ui < d , 1 < i < n + 1}. Then {Xu}tte.4 

represents a basis of WQ. The dual basis is given by 

1 ' w + * -i i 

ί«,0 = χ«Γ /ui\ Σ Γθν7 + Σ / 5 < 1 ,j * (-Xn)Zsi n+1 7" 
Λ l o w) ,6N»+> «=1 * ° ; Π XiSi 

def n + 1 

where Γ0(ΐί') = Π ^(^0? u ' = projecton of u on the last n+1 coordinates . This 

symbol is used only for elements of Q n + 1 none of whose coordinates lie in — N. 

We map Κξ onto KS
A by ΤζA = 7Ll o G(A,X\ G(A,X) = e x p ( £ AjX0Xu ). 

The period matrix coincides with the matrix of this transformation and so we com-

pute CUfV = (TQ Λξζ UÌXV) for all u,v G A. It is technically simpler to replace the 

basis {(α,ηίηβΛ of the target space JCA by {£Zü}ueA dual to {Xu}ueA where for 

each u G A, we choose û satisfying 5.1 such that ( t i i , . . . , u n +i ) = (£ti , . . . , ϋ„+ ι) 

mod d. The precise choice will be indicated below. Thus we compute 

CUiv = (Το,Α&,θίΧ") 

and we find 
/ / n+ l m 

(r,5)6Nn+1xNm »=1 >=1 

the sum being over all r, s such that 

« ' + φ ι , - ,3„+ 1) = ΰ , + ^ Γ > α ; ^ . 

Consider all solutions of u' = υ ' + ΣΓ,α/ ' mod d. This set is a finite set independent 

of the choice of v. For each solution let ( n , . . . , r m ) 6 [0,<i — l p be a minimal 
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representative. We may now write 

( r i , . . . , r m ) =?+<*(<!, . . . ,<m) with teNm. 

Thus 
m m 

u' + d(su... ,3n+_0 = ϋ' + p ; W ( i ) + d £*,·«<''> . 

We now choose v = v' mod d such that for each solution ( r i , . . . ,^ m ) in our finite 
m set, each component of v' + ^ Fju/^ — i/ is in N. By hypothesis these components 

are divisible by d. For each r we define θ^0 ,̂ 

-(0) = (- ί0),...Λ) = 2[β' + = ^ ί Λ - «Τ 
m 

and so we have s = s ^ + ^ iju>^\ Thus 

, m / ö + d i J , m 

Γοφ^ = ΣΣ^οΠ(^)ΐ ·Γ»(7^( 0 ) + Σ^0))· 
r <GNm i = l v 3 3' j - \ 

Here e(r, t) = (_1)«ι+···+*»+ι = (_ΐ)*(ι°)+···+^ι+^«ι+.··+<η)> W e o b t a i n i n t h i s 

way a finite sum of generalized hypergeometric functions. 

As a special case one may obtain classical formulae for the roots of a polynomial 

equation as generalized hypergeometric functions of the coefficients [M]. 

The symbol CUyV refers to a period of 

ων = X?x? . . . » ; - exp(Xo/(x, 1 ) Ä Λ ^ Λ . , . Λ ^ , 
Ao X\ xn 

where (a?i,... , # n , 1) refer to dehomogenized coordinates. By means of the Laplace 

transform relative to X0, uv may be replaced by ων = *ί*ι\υ0 ^f1 Λ . . . Λ ^p1 . The 

period C u t , involves a cycle j u which may be identified by an examination of the 

matrix at A = 0. Details on this method of distinguishing cycles may be found in 

[C-N p. 287] and the work of Tretkoff [T] on Fermât surfaces may be helpful. 
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§7. Modified hypergeometric series. 

We consider once again the hypergeometric series y(a,t) of §1. Our object is 

to describe the series obtained by formally difFerentating the series with respect to 

the parameters (α ι , . . . , a m ) = ( a n + i , . . . a n + m ) . The basic point is that by the 

formulae of 3.1 we have 

(έ)"··(έΓ-((έ)"-(έΓ«·'>· 
The formula £>* i = — Ei + Oj + </,· shows that 

Thus if £<Γι.···.Γ«> denotes the set of all £* € Rr such that 

£ : , ; 'Γ= 0 ( l < i < m ) 

then ^ maps £<Γι.···.Γ»») into ^d+n,r2,.. . ,rm) T h u g t h e derivatives of y with 

respect to a may be viewed as periods of elements of spaces of the type R'/V(
a

r) R' 

where Va denotes forms in Dai,... , Da,m °f degree r. 

§8. Delsarte Sums. 

We sketch a generalization of §5 which uses ideas associated with §6. 

Following Delsarte [De] let us consider /i, a Laurent polynomial in m variables 

m 

where ω^\... ,o /m) are linearly independent elements of Z m . The corresponding 

exponential module may be described briefly. 

We define Q linear forms L\,... , Lm in m variables by the condition —Li(u^) = 

àij (1 < ·,j < m). 
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Let a = (α ι , . . . , a m ) be sufficiently general, Ω = Q(a), RQ = Ω[Χ,χ], Da,i = 

Ei H- α, + hi, hi = ^,-Λ, Ei = Xi^. The structure of Äj/E£>a>tJRJ is clarified by 

the remark that for u € Z m 

To verify this we observe that 

Ai \ / X1 A1) 

U m / \ X - ( m ) / 

where ω is the m x m matrix whose j t i l column is ω^Κ Let c = ω _ 1 . Then . .v m HT m 

X « W > = £ ^ χ * = _ £ <*>(£> + a>)Xtt = - Σ cij(aJ + " i ) · * * modulo 

Σ£)α>Ι\β(>. The assertion follows from X,(w) = — HCÌJUJ. 
m 

Let ^ b e a set of representatives in Z m of Z m / £ Ζω (». Then {Xu}u€A rep-
>=i 

resents a basis W'a = J2o/E.Da)l\RÓ. The dual basis {££a}ue.4 °f ^e dual space 

K,'a = {ξ* e WQ \(-EÌ + ai + Λ,·)£* = 0,1 < i < m} will now be constructed 

-Lj(a + u))rj X i-» 

Indeed if £* = ΣΑν/Χν lies in /C^ then 

j=i 

and hence 

Αν+ωΟ) =Lj(a + v)Av . 
m 

It follows that the support of ξζ a lies on it + J^ Zu/·7) and Att = 1. The asserted 

formula then follows by induction on r\,... , rm and the definitions. 

We now consider a deformation of the Delsarte polynomial. Let g(t, X) = h(X) + 
n ... 
Σ tjX113 where { µ ^ \ . . . , µ ^ } is a set of distinct elements of Z m disjoint from 

3=1 
{ω^\... ,u;(m)}. As in §1 we construct Wa t and /C'a t using the present formula 
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for g. We deform K'a into K'at by means of T0*t = multiplication by exp(g(t,X) -

h(X)). For u e A, TQ^I a is a horizontal element of K'at. For v 6 A we put 

Trivially CUfV is a period of [X% the class of Xv in Wi?< if we identify K with ft 

by means of φ as in §1. We may also view CUfV as a period of Xa+V expg(x, ί)~χ Λ 

. . . Λ ^2 3- . We compute 

(*) σ-,. = Σ7Τ—ΤΐΠ(-Ι '(β + Μ)) , , + ν « » · 
β 1=1 ; s l 

the sum being over all θ = («sl5... , sn) G Nn such that 

n 

(**) £,·(υ - u + Σ SJ^J)) e% 1 < » < m . 
>=i 

Let £ be the lattice in Z n consisting of all s — (s\,... , sn) such that 
n 

^ » ( Σ sjfJt^) € Z (1 < z < m). For fixed ti, v there exists a finite set of solutions, 
i= i 

s, in Zn modulo £ of the equation (**). Let s ' 1 ' , . . . , s'q* be a set of representatives 

of these classes. Then each solution of (**) may be written uniquely in the form 

SU) _|_ u,, j £ [1, q]y w £ C. Thus CU)V may be written as a sum F\ + . . . + Fq where 

Fj is obtained by restricting the sum on the right side of (*) to s = s^ + w with 

w running over C Π (Nm — s^). 

Thus we obtain hypergeometric functions as periods of differentials of the type 

discussed in §4 subject to the weaker hypothesis. 
i 

4.1' The monomials of h + £) f^\z)Xi include n + £ with exponents which are 
t = l 

linearly independent over Q in Zn +*. 

4.2' The remaining monomials have algebraically independent coefficients. 

§9. New Method. 

In this section we improve upon Theorem A. We are indebted to C. Sabbah for 

proposing the method of this section. 
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Let Tì = 

iì[t,t~ ,X,X~ ] = Ωβι , . . . ,tnìt^ , . . . ,t~ ,ΛΊ , . . . ,Xm, Χγ , . . .Χ~ ]. 

We define Wa,t = RfôDajjR as in section 1 and we view it as an Ω[ ί , ί_ 1 ,σ]-

module or an Ω^, ί""1,^]-module (we identify Ω[2,<_1,σ] and ß f M " 1 » ^ ] via y?). 

We denote by 2ti(a) the annihilator of the class [1] of 1 in Wayti viewed as an 

ideal in Ωβ ,*""1,*^]. We will prove in this section the following theorem. 

T h e o r e m C. 

1) If the hypergeometric serìes y(a,t) satisfìes 1.1 and 1.2, we have 

21(a) = 2Γχ (a) . 

2) If the hypergeometric series y(a,t) satisfies 1.1, 1.2, then 

21(a) C% (a). 

We identify the non-commutative ring Ω ^ , ί - 1 , ^ ] with Ω[τ, r""1,^] by an iso-

morphism 7: Ω [ ί , ί _ 1 , ί^ ] —> Ω[τ, T - 1 , S ] : 

T(Ti) = <r 1 ,7 ( r r 1 ) = <i, i<e<) = '<ät7 · 

So the commutation relations between the r 's and the s's are 

TiS,· = SjTi l φ j 

TÌSÌ = (SÌ + l)r,· . 

We remark that Ω[θ] and Ω(θ) have a natural Ω [τ ,τ - 1 , s]-module structure, the r^s 

acting as shift operators: TiP(s) = P(s + 1,·), τ^1Ρ(3) = P(s - l j ) . If £:Ωη -> Ω 

is a linear form with integer coefficients and a E Ω, we denote by M{£, a)(s) the 

n(s)-module, free of rank 1, generated by the symbol [T(£(s) + a)] over Ω(θ). We 

put on M(£, oc)(s) a left Ω[τ, r_1,s]-module structure by 
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We denote by M(^, a) the Ω [τ ,τ _ 1 , s]-module generated by [T(£(s) + a)] in 

M(£, <*)($)> Now let £jy 1 <j < N, be linear forms as above, and OLJ G Ω ,1 < j < N. 

Denote by M the tensor product over Q[s] of the modules M(£j,aj). We impose 

on M an Ω [τ ,τ _ 1 , $]-module structure by 

τ ϊ (β ! ® . . . (g) ejsf) — Tit\ ® . . . ® T;ejv · 

We denote by 

e = <8> [ I W S ) + a,·)] 6 M . 
1<»<ΛΤ J 

Note that in general e does not generate M as an Ω[τ, r_1,,s]-module. 

We will deduce the theorem from the following statement: 

Proposition. The Çl[r,r~l,s\-module generated by e in Ω is isomorphic to the 

fì[i,<_1,^]-moduie generated by [1] in Wa,t, by an isomorphism sending e to [1], 

using the isomorphism j between Ω[£,£-1,£^γ] and Ω [τ ,τ _ 1 , s]. 

Proof. We consider 

7Γ :Ω [* Ι , . . . j tn j i f 1 , . . . ,*"1] ->Ω [Τι , . . . ,ΤΝ,Τ^1,... ,Τ^1] 

given by 

<*i)= Π 2f·'· 
l<j<N 

As above, we identify Ω ^ , Τ - ^ Γ ^ . with Ω[0,0_ 1,£] via 0; = T~\ 9~l = T, 

Si = Ti-Qjr. As above we consider the Ω(5)-ηκ^ιι1β generated by [T(Si + OJJ)], 

Μ(5,·,α,·)(5), and we denote by M(Si , a t ) the sub fì[0,0_1,5]-module generated 

by [T(S{ -f Of<)]. We denote by M the tensor product over Ω[5] of the M(5 i , a , ) , 

1 < jt, < N. As above we put on M a natural Ω[0,0""1, S]-module structure. We 

define 

ê = ® [Γ(5,·+£*,·)]€ AT . 
Ki<N / J 
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We remark that obviously e generates M as an Cì[9ì9~'1ìS]-moduìe. 

More precisely we have: 

Lemma 1. Let I be the left Ù[9Ì9"1
Ì S]-module generated by 

Oi-iSi+ai) ,l<i<N . 

Then M is isomorphic to Ω[θ, θ~ι, S]/I as an 

Q,[9,9~1
iS]-module, via an isomorphism sending ë to [1]. 

Proof. Obvious. 

We will use the morphism 

5,- - ii(s) . 

We now remark that M ( ^ , oii) is isomorphic as an fì[,s]-module to fì[s]®^M(Si, <*»)» 

hence 

M = Θ Μ ( ^ ,α< ) ^ΘΩΗ (ΩΜ®Μ (Α ,αΟ ) 
Q[s) φ 

~ Ω[*] (g)̂  ( <g) M(Si,ai)) 

~ ü[s] ®φ M . 

Furthermore e corresponds to 1 ® ê. We may extend this isomorphism to an 

Ω[τ, τ_1,θ]-module isomorphism by putting: 

Ti(f(s) <g> m) = nf(s) ® J ] ^'■iro 

for f(s) e fì[s], m e M. 
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So we deduce the following:

171

Lemma 2. The nIT, T- 1 ,s]-module generated by e in M is isomorphic to the

nIT, T- 1 ,s]-module generated by [IJ in

W:= n[s] ®", n[8,frt,s]/lo

Proof. If we identify n[8, 8-1 , S] and nIT,T- 1 , T a;"] via ....( 'Y(Ti) = 8;1, ;(Ti-
1
) =

8j , ,(T; = S;, I is identified with the ideal! generated by

l:::;j:::;N.

But nIT,T- 1 , Ta;"l/1 is isomorphic to the n[T, T- 1 , Ta;"]-module generated by
- E T,-l

<p = e l., •.,N (n T;-<>') and [1] corresponds to <po Now suppose that Ct; = 0
15,;5,N

for 1 :::; i :::; n, and that f;( s) = -s; for 1 :::; i :::; n.

We will identify R = n[t,X,t-1 ,X-1 ] with n[T,T-l] via:

t; = T;-1 IITtj ,· 1 :::; i :::; n
i>n

Xj = 1 :::; i :::; m 0

Hence we see that n[8, 8-1 , Sl/I is isomorphic to the R[tft, X ]-nlUdule generated

by eg(t,X) n X;"'+n, with -g(t,X) = I: X j + t t;( fi X: k+",,). Call this
15,;5,m ;=1 ;=1 1:=1

last module Eo Now we just have to remark that the mapping 1f;: n[S] -> n[s]
corresponds, via the above isomorphisms to

defined by ip(t; = tj ip(X; = O. Hence we obtain that W = n[sJ ®1f;

n[8,O-I,S]/1 is isomorphic to n[tft] ®. E, this last module being isomorphic to

E/ 4= X; at Eo Furthermore 1®[1] corresponds to the class of eg(t,X) n x;'+n
15,.5,m 15,i5,,,,
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and the isomorphism is compatible with the Ω[τ, r _ 1 , s]-module structure on W if we 

put the standard left fì[i,tf-1,rd/di]-module structure on £ / £) Xi-rß^S. Now 
l < t < m 

to finish the proof of the proposition we have just to observe that multiplication by 

e9(t,X) p | X?i+n gives an isomorphism of Ω[ί, t"1 , *d/démodules between Wa,t 
l<»<m 

a n ( i £1 Σ -^«Tör^y ^ e a c * i ° n °f ti~§r. o n We,i being given by U-^ + t{-§f:. 
l<i<m ' ' * 

Proof of Theorem C. 

1) If 1.1 and 1.2 are satisfied then 

c(-) = ( Π KKwJdi^^'^^i-^Kw)"1 
g = l + N i p = l 

is defined for s G Z n and zero for s G Zn — Nn. Hence we can write 

y(i,a)= £ C ( * ) f , 
sGZn 

and we have 

*4»( ί ,α)= ^ C ( * - l i ) * · , 

s6Z n 

ti—y(tia)= Σ*&(* + 10*β· 
1 sezn 

From that we deduce that if P{t,t~l,td/dt) G Q,[t,i-1 ,td/dt\, then 

P(t,t-\td/dt)y(t) = 0 if and only if P ( r - \ r , s ) C ( s ) = 0 in Ω(θ) χ . But it is clear 

that 

P(T-\T,S)C(S) = 0 in Ω(θ)χ 

is equivalent to 

P ( r - \ r , 6 ) [ e ] = 0 in M , 

and the result follows from the proposition. 
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2) If 1.1, 1.2' are satisfied then C(s) is defined for s e Nn. If P(t,t-l,t£t) 

annihilates y(tìa)ì then there exists 1; 6 N" such that P(r^1
irys)C(s) = 0 for 

s € k + Nn. This is enough to ensure that P(r~1
1r,s)C(s) = 0 in Q(s)x and the 

result follows as in case 1). 

Remark. We explain the relation between Theorem C and Theorem A. Since R C R' 

it is clear that 21 C 21 ! while by Al we have 2ti C 21 subject to 1.1, 1.2. Thus 

Theorem Cl implies that 211 = 21. 

It follows from [GHF, eq. 1.3.3] that if a is generic then ΑΠΣΖ>α>1)*Α' = Σ£)α) ί) ίΑ. 

Hence in the generic case Cl is equivalent to Al . 

The implications of C2 are obscure since if 1.2 is weakened to 1.2' the class of 1 

in W (and in W') may be trivial. It is perhaps more interesting in that case to use 

the class of 1 in VV as in Theorem B2. 
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