NON-ARCHIMEDEAN TAME TOPOLOGY AND STABLY DOMINATED TYPES

EHUD HRUSHOVSKI AND FRANÇOIS LOESER

Abstract. Let V be a quasi-projective algebraic variety over a non-archimedean valued field. We introduce topological methods into the model theory of valued fields, define an analogue \hat{V} of the Berkovich analytification V^{an} of V, and deduce several new results on Berkovich spaces from it. In particular we show that V^{an} retracts to a finite simplicial complex and is locally contractible, without any smoothness assumption on V. When V varies in an algebraic family, we show that the homotopy type of V^{an} takes only a finite number of values. The space \hat{V} is obtained by defining a topology on the pro-definable set of stably dominated types on V. The key result is the construction of a pro-definable strong retraction of \hat{V} to an o-minimal subspace, the skeleton, definably homeomorphic to a space definable over the value group with its piecewise linear structure.

1. Introduction

Model theory rarely deals directly with topology; the great exception is the theory of o-minimal structures, where the topology arises naturally from an ordered structure, especially in the setting of ordered fields. See [32] for a basic introduction. Our goal in this work is to create a framework of this kind for valued fields.

A fundamental tool, imported from stability theory, will be the notion of a definable type; it will play a number of roles, starting from the definition of a point of the fundamental spaces that will concern us. A definable type on a definable set V is a uniform decision, for each definable subset U (possibly defined with parameters from larger base sets), of whether $x \in U$; here x should be viewed as a kind of ideal element of V. A good example is given by any semi-algebraic function f from \mathbb{R} to a real variety V. Such a function has a unique limiting behavior at ∞: for any semi-algebraic subset U of V, either $f(t) \in U$ for all large enough t, or $f(t) \notin U$ for all large enough t. In this way f determines a definable type.

One of the roles of definable types will be to be a substitute for the classical notion of a sequence, especially in situations where one is willing to refine to a
subsequence. The classical notion of the limit of a sequence makes little sense in a saturated setting. In o-minimal situations it can often be replaced by the limit of a definable curve; notions such as definable compactness are defined using continuous definable maps from the field R into a variety V. Now to discuss the limiting behavior of f at ∞ (and thus to define notions such as compactness), we really require only the answer to this dichotomy - is $f(t) \in U$ for large t? - uniformly, for all U; i.e. knowledge of the definable type associated with f. For the spaces we consider, curves will not always be sufficiently plentiful to define compactness, but definable types will be, and our main notions will all be defined in these terms. In particular the limit of a definable type on a space with a definable topology is a point whose every neighborhood is large in the sense of the definable type.

A different example of a definable type is the generic type of the valuation ring \mathcal{O}, or of a closed ball B of K, for K a non-archimedean valued field, or of $V(\mathcal{O})$ where V is a smooth scheme over \mathcal{O}. Here again, for any definable subset U of \mathbb{A}^1, we have $v \in U$ for all sufficiently generic $v \in V$, or else $v \notin U$ for all sufficiently generic $v \in V$; where “sufficiently generic” means “having residue outside Z_U” for a certain proper Zariski closed subset Z_U of $V(k)$, depending only on U. Here k is the residue field. Note that the generic type of \mathcal{O} is invariant under multiplication by \mathcal{O}^* and addition by \mathcal{O}, and hence induces a definable type on any closed ball. Such definable types are stably dominated, being determined by a function into objects over the residue field, in this case the residue map into $V(k)$. They can also be characterized as generically stable. Their basic properties were developed in [16]; some results are now seen more easily using the general theory of NIP, [20].

Let V be an algebraic variety over a field K. A valuation or ordering on K induces a topology on K, hence on K^n, and finally on $V(K)$. We view this topology as an object of the definable world; for any model M, we obtain a topological space whose set of points is $V(M)$. In this sense, the topology is on V.

In the valuative case however, it has been recognized since the early days of the theory that this topology is inadequate for geometry. The valuation topology is totally disconnected, and does not afford a useful globalization of local questions. Various remedies have been proposed, by Krasner, Tate, Raynaud and Berkovich. Our approach can be viewed as a lifting of Berkovich’s to the definable category. We will mention below a number of applications to classical Berkovich spaces, that indeed motivated the direction of our work.

The fundamental topological spaces we will consider will not live on algebraic varieties. Consider instead the set of semi-lattices in K^n. These are \mathcal{O}^n-submodules of K^n isomorphic to $\mathcal{O}^k \oplus K^{n-k}$ for some k. Intuitively, a sequence Λ_n of semi-lattices approaches a semi-lattice Λ if for any a, if $a \in \Lambda_n$, for infinitely many n then $a \in \Lambda$; and if $a \notin M\Lambda_n$ for infinitely many n, then $a \notin M\Lambda$.

The actual definition is the same, but using definable types. A definable set of semi-lattices is closed if it is closed under limits of definable types. The set of closed balls in the affine line \mathbb{A}^1 can be viewed as a closed subset of the set of semi-lattices in K^2. In this case the limit of a decreasing sequence of balls is the intersection of these balls; the limit of the generic type of the valuation ring \mathcal{O} (or of small closed balls around generic points of \mathcal{O}) is the closed ball \mathcal{O}. We also consider subspaces of these spaces of semi-lattices. They tend to be definably connected and compact, as tested by definable types. For instance the set of all semi-lattices in K^n cannot be split into two disjoint closed definable subsets.

To each algebraic variety V over a valued field K we will associate in a canonical way a projective limit \hat{V} of spaces of the type described above. A point of \hat{V} does not correspond to a point of V, but rather to a stably dominated definable type on V. We call \hat{V} the stable completion of V. For instance when $V = \mathbb{A}^1$, \hat{V} is the set of closed balls of V; the stably dominated type associated to a closed ball is just the generic type of that ball (which may be a point, or larger). In this case, and in general for curves, \hat{V} is definable (more precisely, a definable set of some imaginary sort), and no projective limit is needed.

While V admits no definable functions of interest from the value group Γ, there do exist definable functions from Γ to \mathbb{A}^1: for any point a of \mathbb{A}^1, one can consider the closed ball $B(a; \alpha) = \{ x : \text{val}(a - x) \geq \alpha \}$ as a definable function of $\alpha \in \Gamma$. These functions will serve to connect the space \mathbb{A}^1. In [15] the imaginary sorts were classified, and moreover the definable functions from Γ into them were classified; in the case of \mathbb{A}^1, essentially the only definable functions are the ones mentioned above. It is this kind of fact that is the basis of the geometry of imaginary sorts that we study here.

At present we remain in a purely algebraic setting. The applications to Berkovich spaces are thus only to Berkovich spaces of algebraic varieties. This limitation has the merit of showing that Berkovich spaces can be developed purely algebraically; historically, Krasner and Tate introduce analytic functions immediately even when interested in algebraic varieties, so that the name of the subject is rigid analytic geometry, but this is not necessary, a rigid algebraic geometry exists as well.

While we discussed o-minimality as an analogy, our real goal is a reduction of questions over valued fields to the o-minimal setting. The value group Γ of a valued field is o-minimal of a simple kind, where all definable objects are piecewise \mathbb{Q}-linear. Our main result is that any for any quasi-projective variety V over K, \bar{V} admits a definable deformation retraction to a subset S, a “skeleton”, which is definably homeomorphic to a space defined over Γ. There is a delicate point here: the definable homeomorphism is valid semi-algebraically, but if one stays in the tropical / locally semi-linear setting, one must take into account subspaces of Γ_∞^n, where Γ_∞ is a partial completion of Γ by the addition of a point at ∞.
The intersection of the space with the points at ∞ contains valuable additional information. In general, such a skeleton is non-canonical. At this point, o-minimal results such as triangulation can be quoted. As a corollary we obtain an equivalence of categories between the category of algebraic varieties over K, with homotopy classes of definable continuous maps $\tilde{U} \to \tilde{V}$ as morphisms $U \to V$, and a category of definable spaces over the o-minimal Γ.

In case the value group is \mathbb{R}, our results specialize to similar tameness theorems for Berkovich spaces. In particular we obtain local contractibility for Berkovich spaces associated to algebraic varieties, a result which was proved by Berkovich under smoothness assumptions [4], [5]. We also show that for projective varieties, the corresponding Berkovich space is homeomorphic to a projective limit of finite dimensional simplicial complexes that are deformation retracts of itself. We further obtain finiteness statements that were not known classically; we refer to § 13 for these applications.

We now present the contents of the sections and a sketch of the proof of the main theorem. Section 2 includes some background material on definable sets, definable types, orthogonality and domination, especially in the valued field context.

In § 3 we introduce the space \tilde{V} of stably dominated types on a definable set V. We show that \tilde{V} is pro-definable; this is in fact true in any NIP theory, and not just in ACVF. We further show that \tilde{V} is strict pro-definable, i.e. the image of \tilde{V} under any projection to a definable set is definable. This uses metastability, and also a classical definability property of irreducibility in algebraically closed fields. In the case of curves, we note later that \tilde{V} is in fact definable; for many purposes strict pro-definable sets behave in the same way. Still in § 3, we define a topology on \tilde{V}, and study the connection between this topology and V. Roughly speaking, the topology on \tilde{V} is generated by \hat{U}, where U is a definable set cut out by strict valuation inequalities. The space V is a dense subset of \hat{V}, so a continuous map $\hat{V} \to \tilde{U}$ is determined by the restriction to V. Conversely, given a definable map $V \to \hat{U}$, we explain the conditions for extending it to \tilde{V}. This uses the interpretation of \hat{V} as a set of definable types. We determine the Grothendieck topology on V itself induced from the topology on \tilde{V}; the closure or continuity of definable subsets or of functions on V can be described in terms of this Grothendieck topology without reference to \tilde{V}, but we will see that this viewpoint is more limited.

In §2.10 (to step back a little) we present the main result of [16] with a new insight regarding one point, that will be used in several critical points later in the paper. We know that every nonempty definable set over an algebraically closed substructure of a model of ACVF extends to a definable type. A definable type p can be decomposed into a definable type q on Γ^n, and a map f from this type to stably dominated definable types. In previous definitions of metastability, this
decomposition involved an uncontrolled base change that prevented any canonicity. We note here that the \(q \)-germ of \(f \) is defined with no additional parameters, and that it is this germ that really determines \(p \). Thus a general definable type is a function from a definable type on \(\Gamma^n \) to stably dominated definable types.

In § 4 we define the central notion of definable compactness; we give a general definition that may be useful whenever one has definable topologies with enough definable types. The \(o \)-minimal formulation regarding limits of curves is replaced by limits of definable types. We relate definable compactness to being closed and bounded. We show the expected properties hold, in particular the image of a definably compact set under a continuous definable map is definably compact.

The definition of \(\hat{V} \) is a little abstract. In §5 we give a concrete representation of \(\hat{\mathbb{A}}^n \) in terms of spaces of semi-lattices. This was already alluded to in the first paragraphs of the introduction.

A major issue in this paper is the frontier between the definable and the topological categories. In \(o \)-minimality automatic continuity theorems play a role. Here we did not find such results very useful. At all events in §6.2 we characterize topologically those subspaces of \(\hat{V} \) that can be definably parameterized by \(\Gamma^n \). They turn out to be \(o \)-minimal in the topological sense too. We use here in an essential way the construction of \(\hat{V} \) in terms of spaces of semi-lattices, and the characterization in [15] of definable maps from \(\Gamma \) into such spaces. We shall prove that our retractions provide skeleta lying in the subspace \(V^\# \) of \(\hat{V} \) corresponding to Abhyankar valuations. In particular, when they are of maximal \(o \)-minimal dimension they cannot be deformed by any homotopy, cf. Proposition 6.6.1.

§7 is concerned with the case of curves. We show that \(\hat{C} \) is definable (and not just pro-definable) when \(C \) is a curve. The case of \(\mathbb{P}^1 \) is elementary, and in equal characteristic zero it is possible to reduce everything to this case. But in general we use model-theoretic methods. We find a definable deformation retraction from \(\hat{C} \) into a \(\Gamma \)-internal subset, the kind of subset whose topology was characterized in §6.2. We consider relative curves too, i.e. varieties \(V \) with maps \(f : V \to U \), whose fibers are of dimension one. In this case we find a deformation retraction of all fibers that is globally continuous and takes \(\hat{C} \) into \(\Gamma \)-internal subset for almost all fibers \(C \), i.e. all outside a proper subvariety of \(U \). On curves lying over this variety, the motions on nearby curves do not converge to any continuous motion.

§8 contains some algebraic criteria for the verification of continuity. For the Zariski topology on algebraic varieties, the valuative criterion is useful: a constructible set is closed if it is invariant under specializations. Here we are led to doubly valued fields. These can be obtained from valued fields either by adding a valued field structure to the residue field, or by enriching the value group with a new convex subgroup. The functor \(\hat{X} \) is meaningful for definable sets of this theory as well, and interacts well with the various specializations. These criteria are used in §9 to verify the continuity of the relative homotopies of §7.
§9 includes some additional easy results on homotopies. In particular, for a smooth variety \(V \), there exists an “inflation” homotopy, taking a simple point to the generic type of a small neighborhood of that point. This homotopy has an image that is properly a subset of \(\hat{V} \), and cannot be understood directly in terms of definable subsets of \(V \). The image of this homotopy retraction has the merit of being contained in \(\hat{U} \) for any Zariski open subset \(U \) of \(V \).

§10 contains the statement and proof of the main theorem. For any quasi-projective algebraic variety \(V \), we find a definable homotopy retraction from \(\hat{V} \) to an \(\alpha \)-minimal subspace of the type described in §6.2. After some modifications we fiber \(V \) over a variety \(U \) of lower dimension. The fibers are curves. On each fiber, a homotopy retraction can be described with \(\alpha \)-minimal image, as in §7; above a certain Zariski open subset \(U_1 \) of \(U \), these homotopies can be viewed as the fibers of a single homotopy \(h_1 \). We require however a global homotopy. The homotopy \(h_1 \) itself does not extend to the complement of \(U_1 \); but in the smooth case, one can first apply an inflation homotopy whose image lies in \(\hat{V}_1 \), where \(V_1 \) is the pullback of \(U_1 \). If \(V \) has singular points, a more delicate preparation is necessary. Let \(S_1 \) be the image of the homotopy \(h_1 \). Now a relative version of the results of §6.2 applies (Proposition 6.4.2); after pulling back the situation to a finite covering \(U'' \) of \(U \), we show that \(S_1 \) embeds topologically into \(U'' \times \Gamma^\infty_N \).

Now any homotopy retraction of \(\hat{U} \), fixing \(U'' \) and certain functions into \(\Gamma^m \), can be extended to a homotopy retraction of \(S_1 \) (Lemma 6.4.5). Using induction on dimension, we apply this to a homotopy retraction taking \(U \) to an \(\alpha \)-minimal set; we obtain a retraction of \(V \) to a subset \(S_2 \) of \(S_1 \) lying over an \(\alpha \)-minimal set, hence itself \(\alpha \)-minimal. At this point \(\alpha \)-minimal topology as in [8] applies to \(S_2 \), and hence to the homotopy type of \(\hat{V} \).

In §10.7 we give a uniform version of Theorem 10.1.1 with respect to parameters. Sections 11 and 12 are devoted to some further results related to Theorem 10.1.1.

Section 13 contains various applications to classical Berkovich spaces. Let \(V \) be a quasi-projective variety over a field \(F \) endowed with a non-archimedean norm and let \(V^\text{an} \) be the corresponding Berkovich space. We deduce from our main theorem several new results on the topology of \(V^\text{an} \) which were not known previously in such a level of generality. In particular we show that \(V^\text{an} \) admits a strong homotopy retraction to a subspace homeomorphic to a finite simplicial complex and that \(V^\text{an} \) is locally contractible. We prove a finiteness statement for the homotopy type of fibers in families. We also show that if \(V \) is projective, \(V^\text{an} \) is homeomorphic to a projective limit of finite dimensional simplicial complexes that are deformation retracts of \(V^\text{an} \).

We do not assume any previous knowledge of Berkovich spaces, but highly recommend the survey [10]; as well as [11] for an introduction to the model-theoretic viewpoint, and a sketch of proof of Theorem 10.1.1.
We are grateful to Vladimir Berkovich, Zoé Chatzidakis, Antoine Ducros, Martin Hils, Dugald Macpherson, Kobi Peterzil, Anand Pillay, and Sergei Starchenko for very useful comments. The paper has also benefited greatly from highly extensive and thorough comments by anonymous referees, and we are very grateful to them.

During the preparation of this paper, the research of the authors has been partially supported by the following grants: E. H. by ISF 1048/07, F.L. by ANR-06-BLAN-0183 and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 246903/NMNAG.

* * *

Contents

1. Introduction 1
2. Preliminaries 7
3. The space of stably dominated types \hat{V} 31
4. Definable compactness 46
5. A closer look at the stable completion 55
6. Γ-internal spaces 60
7. Curves 81
8. Specializations and ACV^2F 92
9. Continuity of homotopies 112
10. The main theorem 122
11. The smooth case 143
12. An equivalence of categories 149
13. Applications to the topology of Berkovich spaces 152

References 165

2. Preliminaries

Summary. In 2.1-2.5 we recall some model theoretic notions we shall use in an essential way in this work: definable, pro-definable and ind-definable sets, definable types, orthogonality to a definable set, stable domination. In 2.6-2.8 we consider more specifically these concepts in the framework of the theory ACVF of algebraically closed valued fields and recall in particular some results of [15] and [16] we rely on. In 2.9 we describe the definable types concentrating on a stable definable V as an ind-definable set. In 2.10, we prove a key proposition allowing to view definable types as integrals of stably dominated types along some definable type on the value group sort. Finally, in 2.11 we discuss the notion of pseudo-Galois coverings that we shall use in §6.
We will rapidly recall the basic model theoretic notions of which we make use, but we recommend to the non-model theoretic reader an introduction such as [27] (readers seeking for a more comprehensive text on stability may also consult [26]).

2.1. **Definable sets.** Let us fix a first order language \mathcal{L} and a complete theory T over \mathcal{L}. The language \mathcal{L} may be multisorted. If S is a sort, and A is an \mathcal{L}-structure, we denote by $S(A)$, the part of A belonging to the sort S. For C a set of parameters in a model of T and x any set of variables, we denote by $S_x(C)$ the set of types over C in the variables x. Thus, $S_x(C)$ is the Stone space of the Boolean algebra of formulas with free variables contained in x up to equivalence over T.

We shall work in a large saturated model U (a universal domain for T). More precisely, we shall fix some uncountable cardinal κ larger than any cardinality of interest, and consider a model U of cardinality κ such that for every $A \subseteq U$ of cardinality $< \kappa$, every p in $S_x(A)$ is realized in U, for x any finite set of variables. (Such a U is unique up to isomorphism. Set theoretic issues involved in the choice of κ turn out to be unimportant and resolvable in numerous ways; cf. [6] or [17], Appendix A.)

All sets of parameters A we shall consider will be small subsets of U, that is of cardinality $< \kappa$, and all models M of T we shall consider will be elementary substructures of U with cardinality $< \kappa$. By a substructure of U we shall generally mean a small definably closed subset of U.

If φ is a formula in \mathcal{L}_C, involving some sorts S_i with arity n_i, for every small model M containing C, one can consider the set $Z_\varphi(M)$ of tuples a in the cartesian product of the $S_i(M)^{n_i}$ such that $M \models \varphi(a)$. One can view Z_φ as a functor from the category of models and elementary embeddings, to the category of sets. Such functors will be called definable sets over C. Note that a definable X is completely determined by the (large) set $X(U)$, so we may identify definable sets with subsets of cartesian products of sets $S_i(U)^{n_i}$. Definable sets over C form a category Def_C in a natural way. Under the previous identification a definable morphism between definable sets $X_1(U)$ and $X_2(U)$ is a function $X_1(U) \rightarrow X_2(U)$ whose graph is definable.

By a definable set, we mean definable over some C. When C is empty one says \emptyset-definable or 0-definable. A subset of a given definable set X which is an intersection of $< \kappa$ definable subsets of X is said to be ∞-definable.

Sets of U-points of definable sets satisfy the following form of compactness: if X is a definable set such that $X(U) = \bigcup_{i \in I} X_i(U)$, with $(X_i)_{i \in I}$ a small family of definable sets, then $X = \bigcup_{i \in A} X_i$ with A a finite subset of I.

Recall that if C is a subset of a model M of T, by the algebraic closure of C, denoted by $\text{acl}(C)$, one denotes the subset of those elements c of M, such that,
for some formula φ over C with one free variable, $Z_\varphi(M)$ is finite and contains c. The definable closure $\text{dcl}(C)$ of C is the the subset of those elements c of M, such that, for some formula φ over C with one free variable, $Z_\varphi(M) = \{c\}$.

If X is a definable set over C and $C \subseteq B$, we write $X(B)$ for $X(\mathbb{U}) \cap \text{dcl}(B)$.

2.2. Pro-definable and ind-definable sets. We define the category ProDef_C of pro-definable sets over C as the category of pro-objects in the category Def_C indexed by a small directed partially ordered set. Thus, if $X = (X_i)_{i \in I}$ and $Y = (Y_j)_{j \in J}$ are two objects in ProDef_C,

$$\text{Hom}_{\text{ProDef}_C}(X,Y) = \lim_{\leftarrow j} \lim_{\rightarrow i} \text{Hom}_{\text{Def}_C}(X_i,Y_j).$$

Elements of $\text{Hom}_{\text{ProDef}_C}(X,Y)$ will be called C-pro-definable morphisms (or C-definable for short) between X and Y.

By a result of Kamensky [22], the functor of “taking \mathbb{U}-points” induces an equivalence of categories between the category ProDef_C and the sub-category of the category of sets whose objects and morphisms are inverse limits of \mathbb{U}-points of definable sets indexed by a small directed partially ordered set (here the word “co-filtering” is also used, synonymously with “directed”). By pro-definable, we mean pro-definable over some C. Pro-definable is thus the same as \ast-definable in the sense of Shelah, that is, a small projective limit of definable subsets. One defines similarly the category IndDef_C of ind-definable sets over C for which a similar equivalence holds.

Let X be a pro-definable set. We shall say it is strict pro-definable if it may be represented as a pro-object $(X_i)_{i \in I}$, with surjective transition morphisms $X_j(\mathbb{U}) \to X_i(\mathbb{U})$. Equivalently, it is a \ast-definable set, such that the projection to any finite number of coordinates is definable.

Dual definitions apply to ind-definable sets; thus “strict” means that the maps are injective: in \mathbb{U}, a small union of definable sets is a strict ind-definable set.

By a morphism from an ind-definable set $X = \varprojlim X_i$ to a pro-definable one $Y = \varprojlim Y_j$, we mean a compatible family of morphisms $X_i \to Y_j$. A morphism $Y \to X$ is defined dually; it is always represented by a morphism $Y_j \to X_i$, for some j,i.

Remark 2.2.1. Any strict ind-definable set X with a definable point admits a bijective morphism to a strict pro-definable set. On the other hand, if Y is strict pro-definable and X is strict ind-definable, a morphism $Y \to X$ always has definable image.

Proof. Fix a definable point p. If $f : X_i \to X_j$ is injective, define $g : X_j \to X_i$ by setting it equal to f^{-1} on $\text{Im}(f)$, constant equal to p outside $\text{Im}(f)$. The second statement is clear. \qed
Definition 2.2.2. Let $Y = \varprojlim Y_i$ be pro-definable. Assume given, for each i, $X_i \subseteq Y_i$ such that the transition maps $Y_i \to Y_{i'}$, for $i \geq i'$, restrict to maps $X_i \to X_{i'}$ and set $X = \varprojlim X_i$.

1. If each X_i is definable and, for some i_0, the maps $X_i \to X_{i'}$ are bijections for all $i \geq i' \geq i_0$, we say X is iso-definable.
2. If each X_i is ∞-definable and, for some i_0, the maps $X_i \to X_{i'}$ are bijections for all $i \geq i' \geq i_0$, we say X is iso-∞-definable.
3. If there exists a definable set W and a pro-definable morphism $g : W \to Y$ such that for each i, the composition of g and the projection $Y \to Y_i$ has image X_i, we say X is definably parameterized.
4. If there exists a strict ind-definable set Z and an injective morphism $g : Z \to Y$ with image X, we say by abuse of language X is strict ind-definable.

Thus a set is iso-definable if and only if it is strict pro-definable and iso-∞-definable. We do not know if definably parameterized subsets of the spaces \tilde{V} that we will consider are iso-definable. A number of proofs would be considerably simplified if this were true; see Question 7.2.1 for a special case. We mention two conditions under which definably parameterized sets are iso-definable.

Lemma 2.2.3. Let W be a definable set, Y a pro-definable set, and let $f : W \to Y$ be a pro-definable map. Then the image of W in Y is strict pro-definable. If f is injective, or more generally if the equivalence relation $f(y) = f(y')$ is definable, then $f(W)$ is iso-definable.

Proof. Say $Y = \varprojlim Y_i$. Let f_i be the composition $W \to Y \to Y_i$. Then f_i is a function whose graph is ∞-definable. By compactness there exists a definable function $F : W \to Y_i$ whose graph contains f_i; but then clearly $F = f_i$ and so the image $X_i = f_i(W)$ and f_i itself are definable. Now $f(W)$ is the projective limit of the system (X_i), with maps induced from (Y_i); the maps $X_i \to X_{i'}$ are surjective for $i > j$, since $W \to X_j$ is surjective. Now assume there exists a definable equivalence relation E on Y such that $f(y) = f(y')$ if and only if $(y, y') \in E$. If $(w, w') \in W^2 \setminus E$ then w and w' have distinct images in some X_i. By compactness, for some i_0, if $(w, w') \in W^2 \setminus E$ then $f_{i_0}(w) \neq f_{i_0}(w')$. So for any i mapping to i_0 the map $X_i \to X_{i_0}$ is injective.

Corollary 2.2.4. Let Y be pro-definable and let $X \subseteq Y$ be a pro-definable subset. Then X is iso-definable if and only if X is in (pro-definable) bijection with a definable set.

Lemma 2.2.5. Let Y be pro-definable, X an iso-definable subset. Let G be a finite group acting on Y, and leaving X invariant. Let $f : Y \to Y'$ be a map of pro-definable sets, whose fibers are exactly the orbits of G. Then $f(X)$ is iso-definable.
Proof. Let U be a definable set, and $h : U \to X$ a pro-definable bijection. Define $g(u) = u'$ if $gh(u) = h(u')$. This induces a definable action of G on U. We have $f(h(u)) = f(h(u'))$ iff there exists g such that $gu = u'$. Thus the equivalence relation $f(h(u)) = f(h(u'))$ is definable; by Lemma 2.2.3, the image is iso-definable.

We shall call a subset X of a pro-definable Y relatively definable in Y if X is cut out from Y by a single formula. More precisely, if $Y = \lim_{i \geq i_0} Y_i$ is pro-definable, X will be relatively definable in Y if there exists some index i_0 and and a definable subset Z of Y_{i_0}, such that, denoting by X_i the inverse image of Z in Y_i for $i \geq i_0$, $X = \lim_{i \geq i_0} X_i$.

Iso-definability and relative definability are related somewhat as finite dimension is related to finite codimension; so they rarely hold together. In this terminology, a semi-algebraic subset of \hat{V}, that is, a subset of the form \hat{X}, where X is a definable subset of V, will be relatively definable, but most often not iso-definable.

Lemma 2.2.6. (1) Let X be pro-definable, and assume that the equality relation Δ_X is a relatively definable subset of X^2. Then X is iso-∞-definable.

(2) A pro-definable subset of an iso-∞-definable set is iso-∞-definable.

Proof. (1) X is the projective limit of an inverse system $\{X_i\}$, with maps $f_i : X \to X_{a(i)}$. We have $(x, y) \in \Delta_X$ if and only if $f_i(x) = f_i(y)$ for each i. It follows that for some i, $(x, y) \in \Delta_X$ if and only if $f_i(x) = f_i(y)$. For otherwise, for any finite set I_0 of indices, we may find $(x, y) \notin \Delta_X$ with $f_i(x) = f_i(y)$ for every $i \in I_0$. But then by compactness, and using the relative definability of (the complement of) Δ_X, there exist $(x, y) \in X^2 \setminus \Delta_X$ with $f_i(x) = f_i(y)$ for all i, a contradiction. Thus the map f_i is injective. (2) follows from (1), or can be proved directly.

Lemma 2.2.7. Let $f : X \to Y$ be a morphism between strict pro-definable sets. Then $\text{Im } f$ is strict pro-definable, as is the graph of f.

Proof. We can represent X and Y as respectively projective limit of definable sets X_i and Y_j with surjective transition mappings and f by $f_j : X_{c(j)} \to Y_j$, for some function c between the index sets. The projection of X to Y_j is the same as the image of f_j, using the surjectivity of the maps between the sets X_j and $f_j(X_j)$. The graph of f is the image of $\text{Id} \times f : X \to (X \times Y)$.

Remark 2.2.8 (on terminology). We often have a set $D(A)$ depending functorially on a structure A. We say that D is pro-definable if there exists a pro-definable set D' such that $D'(A)$ and $D(A)$ are in canonical bijection; in other words D and D' are isomorphic functors.

In practice we have in mind a choice of D' arising naturally from the definition of D; usually various interpretations are possible, but all are isomorphic as pro-definable sets.
Once D' is specified, so is, for any pro-definable W and any A, the set of A-definable maps $W \to D'$. If worried about the identity of D', it suffices to specify what we mean by an A-definable map $W \to D$. Then Yoneda ensures the uniqueness of a pro-definable set D' compatible with this notion.

The same applies for ind. For instance, let $\text{Fn}(V,V')(A)$ be the set of A-definable functions between two given 0-definable sets V and V'. Then $\text{Fn}(V,V')$ is an ind-definable set. The representing ind-definable set is clearly determined by the description. To avoid all doubts, we specify that $\text{Fn}(U,\text{Fn}(V,V')) = \text{Fn}(U \times V, V')$.

2.3. Definable types. Let $\mathcal{L}_{x,y}$ be the set of formulas in variables x, y, up to equivalence in the theory T. A type $p(x)$ in variables $x = (x_1, \ldots, x_n)$ can be viewed as a Boolean homomorphism from \mathcal{L}_x to the 2-element Boolean algebra.

A definable type $p(x)$ is defined to be a Boolean retraction $d_p x : \mathcal{L}_{x,y_1,\ldots} \to \mathcal{L}_{y_1,\ldots}$. Here the y_i are variables running through all finite products of sorts. Equivalently, for a 0-definable set V, let L_V denote the Boolean algebra of 0-definable subsets of V. Then a type on V is a compatible family of elements of $\text{Hom}(L_V, 2)$; a definable type on V is a compatible family of elements of $\text{Hom}_{\text{def}}(L_V \times W, L_W)$, where Hom_{def} denotes the set of Boolean homomorphisms h such that $h(V \times X) = X$ for $X \subseteq W$.

Given such a homomorphism, and given any model M of T, one obtains a type over M, namely $p|M := \{ \varphi(x, b_1, \ldots, b_n) : M \models (d_p x) \varphi(b_1, \ldots, b_n) \}$.

This type over M determines p; this explains the use of the term “definable type”. However viewed as above, a definable type is really not a type but a different kind of object.

The type $p|U$ is $\text{Aut}(U)$-invariant, and determines p; we will often identify them. The image of $\phi(x,y)$ under p is called the ϕ-definition of p.

Similarly, for any $C \subseteq U$, replacing \mathcal{L} by \mathcal{L}_C one gets the notion of C-definable type. If p is C-definable, then the type $p|U$ is $\text{Aut}(U/C)$-invariant. The map $M \mapsto p|M$, or even one of its values, determines the definable type p.

If p is a definable type and X is a definable set, one says p is on X if all realizations of $p|U$ lie in X. One denotes by $S_{\text{def},X}$ the set of definable types on X. Let $f : X \to Z$ be a definable map between definable sets. For p in $S_{\text{def},X}$ one denotes by $f_*(p)$ the definable type defined by $d_{f_*(p)}(\varphi(z,y)) = d_p(\varphi(f(x), y))$. This gives rise to a mapping $f_* : S_{\text{def},X} \to S_{\text{def},Z}$.

Let U be a pro-definable set. By a definable function $U \to S_{\text{def},V}$, we mean a compatible family of Boolean homomorphisms $L_{V \times W \times U} \to L_{W \times U}$, with $h(V \times X) = X$ for $X \subseteq W \times U$. Any element $u \in U$ gives a Boolean retraction $L_{W \times U} \to L_W(u)$ by $Z \mapsto Z(u) = \{ z : (z,u) \in Z \}$, with $L_W(u)$ the Boolean algebra of u-definable subsets of W. So a definable function $U \to S_{\text{def},V}$ gives indeed a U-parameterized family of definable types on V.

Let us say p is definitably generated over A if it is generated by a partial type of the form $\bigcup_{(\phi, \theta) \in S} P(\phi, \theta)$, where S is a set of pairs of formulas $(\phi(x, y), \theta(y))$ over A, and $P(\phi, \theta) = \{ \phi(x, b) : \theta(b) \}$.

Lemma 2.3.1. Let p be a type over \mathbb{U}. If p is definitably generated over A, then p is A-definable.

Proof. This follows from Beth’s theorem: if one adds a predicate for the p-definitions of all formulas $\phi(x, y)$, with the obvious axioms, there is a unique interpretation of these predicates in \mathbb{U}, hence they must be definable.

Alternatively, let $\phi(x, y)$ be any formula. From the fact that p is definitably generated it follows easily that $\{ b : \phi(x, b) \in p \}$ is an ind-definable set over A. Indeed, $\phi(x, b) \in p$ if and only if for some $(\phi_1, \theta_1), \ldots, (\phi_m, \theta_m) \in S$, $(\exists c_1, \ldots, c_m)(\theta_i(c_i) \land (\forall x)(A \phi_i(x, c) \implies \phi(x, b)))$. Applying this to $\lnot \phi$, we see that the complement of $\{ b : \phi(x, b) \in p \}$ is also ind-definable. Hence $\{ b : \phi(x, b) \in p \}$ is A-definable. \square

Corollary 2.3.2. Let $f : X \to Y$ be an A-definable function. Let q be an A-definable type on Y. Assume: for any $B \geq A$ there exists a unique type p_B such that p_B contains p_A, and $f|_{p_B} = q|B$. Then there exists a unique A-definable type p such that for all B, $p|B = p_B$. \square

Definition 2.3.3. In the situation of Corollary 2.3.2, p is said to be dominated by q via f.

Let us recall that a theory T is said to have elimination of imaginaries if, for any $M \models T$, any collection S_1, \ldots, S_k of sorts in T, and any \emptyset-definable equivalence relation E on $S_1(M) \times \cdots \times S_k(M)$, there is a \emptyset-definable function f from $S_1(M) \times \cdots \times S_k(M)$ into a product of sorts of M, such that for any $a, b \in S_1(M) \times \cdots \times S_k(M)$, we have Eab if and only if $f(a) = f(b)$. Given a complete theory T, it is possible to extend it to a complete theory T^{eq} over a language \mathcal{L}^{eq} by adjoining, for each collection S_1, \ldots, S_k of sorts and \emptyset-definable equivalence relation E on $S_1 \times \cdots \times S_k$, a sort $(S_1 \times \cdots \times S_k)/E$, together with a function symbol for the natural map $a \mapsto a/E$. Any $M \models T$ can be canonically extended to a model of T^{eq}, denoted M^{eq}. We shall refer to the new sorts of T^{eq} as imaginary sorts, and to elements of them as imaginaries.

Suppose that D is a definable set in $M \models T$, defined say by the formula $\phi(x, a)$. There is a \emptyset-definable equivalence relation $E_{\phi}(y_1, y_2)$, where $E_{\phi}(y_1, y_2)$ holds if and only if $\forall x (\phi(x, y_1) \leftrightarrow \phi(x, y_2))$. Now a/E_{ϕ} is identifiable with an element of an imaginary sort; it is determined uniquely (up to interdefinability over \emptyset) by D, and will often be referred to as a code for D, and denoted $[D]$. We prefer to think of $[D]$ as a fixed object (e.g. as a member of \mathbb{U}^{eq}) rather than as an equivalence class of M; for viewed as an equivalence class it is formally a different set (as is D itself) in elementary extensions of M.
Lemma 2.3.4. Assume the theory \(T \) has elimination of imaginaries. Let \(f : X \to Y \) be a \(C \)-definable mapping between \(C \)-definable sets. Assume \(f \) has finite fibers, say of cardinality bounded by some integer \(m \). Let \(p \) be a \(C \)-definable type on \(Y \). Then, any global type \(q \) on \(X \) such that \(f_*(q) = p|U \) is \(acl(C) \)-definable.

Proof. Let \(p = p|U \). The partial type \(p(f(x)) \) admits at most \(m \) distinct extensions \(q_1, \ldots, q_\ell \) to a complete type. Choose \(C' \supset C \) such that all \(q_i|C' \) are distinct. Certainly the \(q_i \)'s are \(C' \)-invariant. It is enough to prove they are \(C' \)-definable, since then, for every formula \(\varphi \), the \(\text{Aut}(U/C) \)-orbit of \(d_{q_i}(\varphi) \) is finite, hence \(d_{q_i}(\varphi) \) is equivalent to a formula in \(\mathcal{L}(acl(C)) \). To prove \(q_i \) is \(C' \)-definable note that

\[
p(f(x)) \cup q_i|C'(x) \vdash q_i(x).
\]

Thus, there is a set \(A \) of formulas \(\varphi(x,y) \) in \(\mathcal{L} \), a mapping \(\varphi(x,y) \to \vartheta_{\varphi}(y) \) assigning to formulas in \(A \) formulas in \(\mathcal{L}(C') \) such that \(q_i \) is generated by \(\{ \varphi(x,b) : U \models \vartheta_{\varphi}(b) \} \). It then follows from Lemma 2.3.1 that \(q_i \) is indeed \(C' \)-definable. □

2.4. Orthogonality to a definable set. Let us start by recalling the notion of stable embeddedness. A \(C \)-definable set \(D \) in \(U \) is stably embedded if, for any definable set \(E \) and \(r > 0 \), \(E \cap D^r \) is definable over \(C \cup D \). If instead we worked in a small model \(M \), and \(C, D \) were from \(M^{eq} \), we would say that \(D \) is stably embedded if for any definable \(E \) in \(M^{eq} \) and any \(r \), \(E \cap D^r \) is definable over \(C \cup D \) uniformly in the parameters defining \(E \); that is, for any formula \(\phi(x,y) \) there is a formula \(\psi(x,z) \) such that for all \(a \) there is a sequence \(d \) from \(D \) such that

\[
\{ x \in D^r : \models \phi(x,a) \} = \{ x \in D^r : \models \psi(x,d) \}.
\]

For more on stably embedded sets, we refer to the Appendix of [7].

Let \(Q \) be a fixed \(0 \)-definable set. We give definitions of orthogonality to \(Q \) that are convenient for our purposes, and are equivalent to the usual ones when \(Q \) is stably embedded and admits elimination of imaginaries; this is the only case we will need.

Let \(A \) be a substructure of \(U \). A type \(p = \text{tp}(c/A) \) is said to be almost orthogonal to \(Q \) if \(Q(A(c)) = Q(A) \). Here \(A(c) \) is the substructure generated by \(c \) over \(A \), and \(Q(A) = Q \cap acl(A) \) is the set of points of \(Q \) definable over \(A \).

An \(A \)-definable type \(p \) is said to be orthogonal to \(Q \), and one writes \(p \perp Q \), if \(p|B \) is almost orthogonal to \(Q \) for any substructure \(B \) containing \(A \). Equivalently, for any \(B \) and any \(B \)-definable function \(f \) into \(Q \) the pushforward \(f_*p \) is a type concentrating on one point, i.e. including a formula of the form \(y = \gamma \).

Let us recall that for \(F \) a structure containing \(C \), \(\text{Fn}(W,Q)(F) \) denotes the family of \(F \)-definable functions \(W \to Q \) and that \(\text{Fn}(W,Q) = \text{Fn}(W,Q)(U) \) is an ind-definable set.

Let \(V \) be a \(C \)-definable set. Let \(p \) be a definable type on \(V \), orthogonal to \(Q \). Any \(U \)-definable function \(f : V \to Q \) is generically constant on \(p \). Equivalently, any \(C \)-definable function \(f : V \times W \to Q \) (where \(W \) is some \(C \)-definable set)
Given this consistency condition, there exists repetitions), suffices to show that the image is relatively

\[
p_*^W : \text{Fn}(V \times W, Q) \rightarrow \text{Fn}(W, Q)
\]

denoted by \(p_*\) when there is no possibility of confusion) given by \(p_*(f)(w) = \gamma\) if \((d_p v)(f(v, w) = \gamma)\) holds in \(U\).

Uniqueness of \(\gamma\) is clear for any definable type. Orthogonality to \(Q\) is precisely the statement that for any \(f, p_*(f)\) is a function on \(W\), i.e. for any \(w\), such an element \(\gamma\) exists. The advantage of the presentation \(f \mapsto p_*(f)\), rather than the two-valued \(\phi \mapsto p_*(\phi)\), is that it makes orthogonality to \(Q\) evident from the very data.

Let \(S^Q_{\text{def}, V}(A)\) denote the set of \(A\)-definable types on \(V\) orthogonal to \(Q\). It will be useful to note the (straightforward) conditions for pro-definability of \(S^Q_{\text{def}, V}\). Given a function \(g : S \times W \rightarrow Q\), we let \(g_s(w) = g(s, w)\), thus viewing it as a family of functions \(g_s : W \rightarrow Q\).

Lemma 2.4.1. Assume the theory \(T\) eliminates imaginaries, and that for any formula \(\phi(v, w)\) without parameters, there exists a formula \(\theta(w, s)\) without parameters such that for any \(p \in S^Q_{\text{def}, V}\), for some \(e\),

\[
\phi(v, c) \in p \iff \theta(c, e).
\]

Then \(S^Q_{\text{def}, V}\) is pro-definable, i.e. there exists a canonical pro-definable \(Z\) and a canonical bijection \(Z(A) = S^Q_{\text{def}, V}(A)\) for every \(A\).

Proof. We first extend the hypothesis a little. Let \(f : V \times W \rightarrow Q\) be 0-definable. Then there exists a 0-definable \(g : S \times W \rightarrow Q\) such that for any \(p \in S^Q_{\text{def}, V}\), for some \(s \in S\), \(p_s(f) = g_s\). Indeed, let \(\phi(v, w, q)\) be the formula \(f(v, w) = q\) and let \(\theta(w, q, s)\) the corresponding formula provided by the hypothesis of the lemma. Let \(S\) be the set of all \(s\) such that for any \(w \in W\) there exists a unique \(q \in Q\) with \(\theta(w, q, s)\). Now, by setting \(g(s, w) = q\) if and only if \(\theta(w, q, s)\) holds, one gets the more general statement.

Let \(f_i : V \times W_i \rightarrow Q\) be an enumeration of all 0-definable functions \(f : V \times W \rightarrow Q\), with \(i\) running over some index set \(I\). Let \(g_i : S_i \times W_i \rightarrow Q\) be the corresponding functions provided by the previous paragraph. Elimination of imaginaries allows us to assume that \(s\) is a canonical parameter for the function \(g_{i,s}(w) = g_i(s, w)\), i.e. for no other \(s'\) do we have \(g_{i,s} = g_{i,s'}\). We then have a natural map \(\pi_i : S^Q_{\text{def}, V} \rightarrow S_i\), namely \(\pi_i(p) = s\) if \(p_*(f_i) = g_{i,s}\). Let \(\pi = \Pi_i \pi_i : S^Q_{\text{def}, V} \rightarrow \Pi_i S_i\) be the product map. Now \(\Pi_i S_i\) is canonically a pro-definable set, and the map \(\pi\) is injective. So it suffices to show that the image is relatively \(\infty\)-definable in \(\Pi S_i\). Indeed, \(s = (s_i)_i\) lies in the image if and only if for each finite tuple of indices \(i_1, \ldots, i_n \in I\) (allowing repetitions), \((\forall w_1 \in W_1) \cdots (\forall w_n \in W_n) (\exists v \in V) \wedge_{i=1}^n f_i(v, w_i) = g_i(s_i, w_i).\) For given this consistency condition, there exists \(a \in V(U')\) for some \(U < U'\) such
that \(f_i(a, w) = g_i(s, w) \) for all \(w \in W_i \) and all \(i \). It follows immediately that \(p = \text{tp}(a/\mathbb{U}) \) is definable and orthogonal to \(Q \), and \(\pi(p) = s \). Conversely if \(p \in S_{\text{def},V}^Q(\mathbb{U}) \) and \(a \models p|\mathbb{U} \), for any \(w_1 \in W_1(\mathbb{U}), \ldots, w_n \in W_n(\mathbb{U}) \), the element \(a \) witnesses the existence of \(v \) as required. So the image is cut out by a set of formulas concerning the \(s_i \).

If \(Q \) is a two-element set, any definable type is orthogonal to \(Q \), and \(\text{Fn}(V, Q) \) can be identified with the algebra of formulas on \(V \), via characteristic functions. The presentation of definable types as a Boolean retraction from formulas on \(V \times W \) to formulas on \(W \) can be generalized to definable types orthogonal to \(Q \). An element \(p \) of \(S_{\text{def},V}^Q(A) \) yields a compatible systems of rejections \(p^W_\ast : \text{Fn}(V \times W, Q) \to \text{Fn}(W, Q) \). These rejections are also compatible with definable functions \(g : Q^m \to Q \), namely \(p_\ast(g \circ (f_1, \ldots, f_m)) = g \circ (p_\ast f_1, \ldots, p_\ast f_m) \). One can restrict attention to 0-definable functions \(Q^m \to Q \) along with compositions of the following form: given \(F : V \times W \to Q \) and \(f : V \times W \to Q \), let \(F \circ f(v, w) = F(v, w, f(v, w)) \). Then \(p_\ast(F \circ f) = p_\ast(F) \circ p_\ast(f) \). It can be shown that any compatible system of rejections compatible with these compositions arises from a unique element \(p \) of \(S_{\text{def},V}^Q(A) \). This can be shown by the usual two way translation between sets and functions: a set can be coded by a function into a two-element set (in case two constants are not available, one can add variables \(x, y \), and consider functions whose values are among the variables). On the other hand a function can be coded by a set, namely its graph. This characterization will not be used, and we will leave the details to the reader. It does give a slightly different way to see the \(\infty \)-definability of the image in Lemma 2.4.1.

2.5. Stable domination. We shall assume from now on that the theory \(T \) has elimination of imaginaries.

Definition 2.5.1. A \(C \)-definable set \(D \) in \(\mathbb{U} \) is said to be stably embedded if, for every definable set \(E \) and \(r > 0 \), \(E \cap D^r \) is definable over \(C \cup D \). A \(C \)-definable set \(D \) in \(\mathbb{U} \) is said to be stable if the structure with domain \(D \), when equipped with all the \(C \)-definable relations, is stable.

One considers the multisorted structure \(\text{St}_C \) whose sorts \(D_i \) are the \(C \)-definable, stable and stably embedded subsets of \(\mathbb{U} \). For each finite set of sorts \(D_i \), all the \(C \)-definable relations on their union are considered as 0-definable relations \(R_j \). The structure \(\text{St}_C \) is stable by Lemma 3.2 of [16].

For any \(A \subset \mathbb{U} \), one sets \(\text{St}_C(A) = \text{St}_C \cap \text{dcl}(CA) \).

Definition 2.5.2. A type \(\text{tp}(A/C) \) is stably dominated if, for any \(B \) such that \(\text{St}_C(A) \downarrow_{\text{St}_C(C)} \text{St}_C(B) \), \(\text{tp}(B/C\text{St}_C(A)) \vdash \text{tp}(B/CA) \).

Remark 2.5.3. The type \(\text{tp}(A/C) \) is stably dominated if and only if, for any \(B \) such that \(\text{St}_C(A) \downarrow_{\text{St}_C(C)} \text{St}_C(B) \), \(\text{tp}(A/\text{St}_C(A)) \) has a unique extension over \(C\text{St}_C(A)B \).
By [16] 3.13, if \(\text{tp}(a/C) \) is stably dominated, then it is has an \(\text{acl}(C) \)-definable extension \(p \) to \(U \); this definable type will also be referred to as stably dominated; we will sometimes denote it by \(\text{tp}(a/\text{acl}(C))|U \), and for any \(B \) with \(\text{acl}(C) \leq B \leq U \), write \(p|B = \text{tp}(a/\text{acl}(C))|B \). For any \(|C|^+ \)-saturated, \(|C|^+ \)-homogenous extension \(N \) of \(C \), \(p|N \) is the unique \(\text{Aut}(N/\text{acl}(C)) \)-invariant extension of \(\text{tp}(a/\text{acl}(C)) \). We will need a slight extension of this:

Lemma 2.5.4. Let \(p = \text{tp}(a/C) \) be a stably dominated \(C \)-definable type, \(C = \text{acl}(C) \). Let \(C \subseteq B = \text{dcl}(B) \). Assume that, for any \(b \in \text{St}_C(B) \setminus \text{dcl}(C) \), there exists \(b' \in B \), \(b' \neq b \), with \(b, b' \) \(\text{Aut}(B/C) \)-conjugate. Then \(p|B \) is the unique \(\text{Aut}(B/C) \)-invariant extension of \(\text{tp}(a/C) \).

Proof. By hypothesis, \(p \) is stably dominated via some \(C \)-definable function \(h \) into \(\text{St}_C \). Let \(q \) be an \(\text{Aut}(B/C) \)-invariant extension of \(\text{tp}(a/C) \), say \(q = \text{tp}(d/B) \). Let \(h.q = \text{tp}(h(d)/\text{St}_C(B)) \) be its pushforward. Let \(B_0 \) be the smallest definably closed subset of \(\text{St}_C(B) \) containing \(C \) such that \(h.sq \) is the unique nonforking extension to \(\text{St}_C(B) \) of its restriction to \(B_0 \). Since, by assumption, there is an elementary permutation of \(\text{St}_C(B) \) over \(C \) which moves \(b \), it follows that \(B_0 \) is contained in \(C \), thus \(h.sq \) does not fork over \(C \), so \(h.sq = h.sp \). By definition of stable domination, it follows that \(q = p \). \(\square \)

Proposition 2.5.5 ([16], Proposition 6.11). Assume \(\text{tp}(a/C) \) and \(\text{tp}(b/aC) \) are stably dominated, then \(\text{tp}(ab/C) \) is stably dominated.

Remark 2.5.6. It is easy to see that transitivity holds for the class of symmetric invariant types. Hence Proposition 2.5.5 can be deduced from the characterization of stably dominated types as symmetric invariant types.

A formula \(\varphi(x,y) \) is said to shatter a subset \(W \) of a model of \(T \) if for any two finite disjoint subsets \(U, U' \) of \(W \) there exists \(b \) with \(\phi(a,b) \) for \(a \in U \), and \(\neg\phi(a',b) \) for \(a' \in U' \). Shelah says that a formula \(\varphi(x,y) \) has the independence property if it shatters arbitrarily large finite sets; otherwise, it has NIP. Finally, \(T \) has NIP if every formula has NIP. Stable and o-minimal theories are NIP, as is ACVF.

If \(\varphi(x,y) \) is NIP then for some \(k \), for any indiscernible sequence \((a_1, \ldots, a_n) \) and any \(b \) in a model of \(T \), \(\{ i : \phi(a_i, b) \} \) is the union of \(\leq k \) convex segments. If \(\{ \sigma(1), \ldots, \sigma(n) \} \) is an indiscernible set, i.e. the type of \((a_{\sigma(1)}, \ldots, a_{\sigma(n)}) \) does not depend on \(\sigma \in \text{Sym}(n) \), it follows that \(\{ i : \phi(a_i, b) \} \) has size \(\leq k \), or else the complement has size \(\leq k \).

Definition 2.5.7. If \(T \) is a NIP-theory, and \(p \) is an \(\text{Aut}(U/C) \)-invariant type over \(U \), one says that \(p \) is generically stable over \(C \) if it is \(C \)-definable and finitely satisfiable in any model containing \(C \) (that is, for any formula \(\varphi(x) \) in \(p \) and any model \(M \) containing \(C \), there exists \(c \) in \(M \) such that \(U \models \varphi(c) \)).
In general, when \(p(x), q(y) \) are \(\text{Aut}(U/C) \)-invariant types, there exists a unique \(\text{Aut}(U/C) \)-invariant type \(r(x, y) \), such that for any \(C' \supseteq C \), \((a, b) \models r(x, y) \) if and only if \(a \models p|C \) and \(b \models q|C(a) \). This type is denoted \(p(x) \otimes q(y) \). In general \(\otimes \) is associative but not necessarily symmetric. We define \(p^n \) by \(p^{n+1} = p^n \otimes p \).

The following characterization of generically stable types in \(NIP \) theories from [20] will be useful:

Lemma 2.5.8 ([20] Proposition 3.2). Assume \(T \) has \(NIP \). An \(\text{Aut}(U/C) \)-invariant type \(p(x) \) is generically stable over \(C \) if and only if \(p^n \) is symmetric with respect to permutations of the variables \(x_1, \ldots, x_n \).

For any formula \(\varphi(x, y) \), there exists a natural number \(n \) such that whenever \(p \) is generically stable and \((a_1, \ldots, a_N) \models p^N|C \) with \(N > 2n \), for every \(c \) in \(U \), \(\varphi(x, c) \in p \) if and only if \(U \models \bigvee_{i_0 < \cdots < i_n} \varphi(a_{i_0}, c) \land \cdots \land \varphi(a_{i_n}, c) \).

The second part of the lemma is an easy consequence of the definition of a \(NIP \) formula, or rather the remark on indiscernible sets just below the definition.

We remark that Proposition 2.5.5 also follows from the characterization of generically stable definable types in \(NIP \) theories as those with symmetric tensor powers in Lemma 2.5.8, cf. [20].

We also recall the notion of a strongly stably dominated type from [18]. These are the stably dominated types that are dominated within a single formula, rather than a type. The distinction is analogous to that between regular and strongly regular types in stability.

Definition 2.5.9. Say \(\text{tp}(a/C) \) is strongly stably dominated if, writing \(A \) for \(\text{St}_C(a) \), there exists \(\phi(x) \in \text{tp}(a/A) \) such that for any tuple \(b \) with \(A \parallel_C b \), \(\text{tp}(a/Ab) \) is isolated via \(\phi \). Equivalently, \(\text{tp}(a/C) \) is stably dominated via some definable \(h \), and \(\text{tp}(a/h(a)) \) is isolated. (We then say that \(\text{tp}(a/C) \) is strongly stably dominated via \(h \.).)

We say that a definable type \(p \) is strongly stably dominated if for some \(A = \text{acl}(A) \) with \(p \) based on \(A \), \(p|A \) is strongly stably dominated.

Assume \(\text{tp}(c/A) \) is stably dominated. Then \(\text{tp}(c/A) \) is strongly stably dominated iff \(\text{tp}(c/A') \) is isolated for some \(A' \) with \(A \subset A' \subset \text{St}_A \). This is because \(\text{tp}(c/\text{St}_A(c)) \) implies \(\text{tp}(c/\text{St}_A) \).

Lemma 2.5.10. Let \(p \) be a strongly stably dominated definable type.

1. For any \(A = \text{acl}(A) \) with \(p \) based on \(A \), \(p|A \) is strongly stably dominated.
2. Let \(f \) be a definable function. Then \(f \cdot p \) is strongly stably dominated.
3. If \(\text{tp}(a/C) \) is stably dominated, and \(\text{tp}(a/\text{St}_C) \) is isolated, then \(\text{tp}(a/C) \) is strongly stably dominated.

Proof.

1. If \(p \) is based on \(A \) and on \(A' \), we have to show that \(p|A \) is strongly stably dominated. Assume \(p|A' \) is strongly stably dominated.
Assume $p|A$ is strongly stably dominated, say via $\phi(a,e)$ with $e \in St_C(a)$. Then if $e \downarrow_A b$, it follows that $e \downarrow_A b'$, so $tp(a/Ae)$ implies $tp(a/A'be)$ by stable domination; by $\phi(x,e)$ implies $tp(a/Ae)$, so $\phi(x,e)$ implies $tp(a/A'be)$.

Assume $p|A'$ is strongly stably dominated. We have to show that $tp(a/E)$ is isolated where $E = St_A(a)$. Let $E' = St_A(a) = dcl(A' \cup E)$. Then $tp(a/E')$ is isolated, i.e. $tp(a/EA')$ is isolated, say by $\psi(x,e,a')$. But $tp(a/E)$ implies $tp(a/Ea)$. So some $\theta(x,e) \in tp(a/E)$ implies $\psi(x,e,a')$, and this $\theta(x,e)$ clearly isolates $tp(a/E)$.

(2) Say p and f are defined over A. Let $c \models p|A$. Then $tp(c/St_C(a))$ is isolated. So $tp(f(c)/St_A(c))$ is isolated. As noted above, since $St_A(f(c)) \subseteq St_A(c) \subseteq St_A$, and $tp(f(c)/St_A(f(c)) \models tp(f(c)/St_A)$, it follows that $tp(f(c)/A)$ is strongly stably dominated.

(3) This is by the open mapping theorem within St_C: since $a \downarrow_{St_C} St_C(a)$, if $tp(a/St_C)$ is stably dominated then so is $tp(a/St_C(a))$. \qed

2.6. Review of ACVF. A valued field consists of a field K together with a homomorphism v from the multiplicative group to an ordered abelian group Γ, such that $v(x + y) \geq \min(v(x),v(y))$. In this paper we shall write the law on Γ additively. We shall write Γ_∞ for Γ with an element ∞ added with usual conventions. In particular we extend v to $K \rightarrow \Gamma_\infty$ by setting $v(0) = \infty$. We denote by R the valuation ring, by M the maximal ideal and by k the residue field.

Now assume K is algebraically closed and v is surjective. The value group Γ is then divisible and the residue field k is algebraically closed. By a classical result of A. Robinson, the theory of non trivially valued algebraically closed fields of given characteristic and residue characteristic is complete. Several quantifier elimination results hold for the theory ACVF of algebraically closed valued fields with non-trivial valuation. In particular ACVF admits quantifier elimination in the 3-sorted language $L_{k\Gamma}$, with sorts VF, Γ and k for the valued field, value group and residue field sorts, with respectively the ring, ordered abelian group and ring language, and additional symbols for the valuation v and the map $Res : VF^2 \rightarrow k$ sending (x,y) to the residue of xy^{-1} if $v(x) \geq v(y)$ and $y \neq 0$ and to 0 otherwise, (cf. [15] Theorem 2.1.1). Sometimes we shall also write val instead of v for the valuation. In this paper we shall use the extension $L_\mathfrak{c}$ of $L_{k\Gamma}$ considered in [15] for which elimination of imaginaries holds. In addition to sorts VF, Γ and k there are sorts S_n and T_n, $n \geq 1$. The sort S_n is the collection of all codes for free rank n \mathfrak{R}-submodules of K^n. For $s \in S_n$, we denote by $red(s)$ the reduction modulo the maximal ideal of the lattice $\Lambda(s)$ coded by s. This has \emptyset-definably the structure of a rank n k-vector space. We denote by T_n the set of codes for elements in $\bigcup_{s \in S_n} \{red(s)\}$. Thus an element of T_n is a code for the coset of some element of $\Lambda(s)$ modulo $\mathfrak{M}\Lambda(s)$. For each $n \geq 1$, we have symbols τ_n for the functions $\tau_n : T_n \rightarrow S_n$ defined by $\tau_n(t) = s$ if t codes an element of $red(s)$. We
shall set $S = \bigcup_{n \geq 1} S_n$ and $T = \bigcup_{n \geq 1} T_n$. The main result of [15] is that ACVF admits elimination of imaginaries in L_G.

With our conventions, if $C \subset \mathbb{U}$, we write $\Gamma(C)$ for $\text{dcl}(C) \cap \Gamma$ and $k(C)$ for $\text{dcl}(C) \cap k$. If K is a subfield of \mathbb{U}, one denotes by Γ_K the value group, thus $\Gamma(K) = \mathbb{Q} \otimes \Gamma_K$. If the valuation induced on K is non-trivial, then the model theoretic algebraic closure $\text{acl}(K)$ is a model of ACVF. In particular the structure $\Gamma(K)$ has definable choice - hence is Skolemized -, being an expansion by constants of a divisible ordered abelian group (cf. Proposition 2.6.1).

We shall denote in the same way a finite cartesian product of sorts and the corresponding definable set. For instance, we shall denote by Γ the definable set which to any model K of ACVF assigns $\Gamma(K)$ and by k the definable set which to K assigns its residue field. We shall also sometimes write K for the sort VF.

The following follows from the different versions of quantifier elimination (cf. [15] Proposition 2.1.3):

Proposition 2.6.1. (1) The definable set Γ is o-minimal in the sense that every definable subset of Γ is a finite union of intervals.

(2) Any K-definable subset of k is finite or cofinite (uniformly in the parameters), i.e. k is strongly minimal.

(3) The definable set Γ is stably embedded.

(4) If $A \subseteq K$, then $\text{acl}(A) \cap K$ is equal to the field algebraic closure of A in K.

(5) If $S \subseteq k$ and $\alpha \in k$ belongs to $\text{acl}(S)$ in the K^{eq} sense, then α belongs to the field algebraic closure of S.

(6) The definable set k is stably embedded.

In fact, Γ is endowed with the structure of a pure divisible ordered abelian group and k with the structure of a pure algebraically closed field.

Lemma 2.6.2 ([15] Lemma 2.17). Let C be an algebraically closed valued field, and let $s \in S_n(C)$, with $\Lambda = \Lambda_s \subseteq K^n$ the corresponding lattice. Then Λ is C-definably isomorphic to \mathbb{R}^n, and the torsor $\text{red}(s)$ is C-definably isomorphic to k^n.

A C-definable set D is called k-internal if there exists a finite $F \subset \mathbb{U}$ such that $D \subset \text{dcl}(k \cup F)$ (this is a special case of the more general definition given at the beginning of subsection 2.7).

By Lemma 2.6.2 of [15], we have the following characterisations of k-internal sets:

Lemma 2.6.3 ([15] Lemma 2.6.2). Let D be a C-definable set. Then the following conditions are equivalent:

(1) D is k-internal.
(2) For any $m \geq 1$, there is no surjective definable map from D^m to an infinite interval in Γ.

(3) D is finite or, up to permutation of coordinates, is contained in a finite union of sets of the form $\text{red}(s_1) \times \cdots \times \text{red}(s_m) \times F$, where s_1, \ldots, s_m are $\text{acl}(C)$-definable elements of S and F is a C-definable finite set of tuples from \mathfrak{G}.

For any parameter set C, let $\text{VC}_{k,C}$ be the many-sorted structure whose sorts are k-vector spaces $\text{red}(s)$ with s in $\text{dcl}(C) \cap S$. Each sort $\text{red}(s)$ is endowed with k-vector space structure. In addition, as its \emptyset-definable relations, $\text{VC}_{k,C}$ has all C-definable relations on products of sorts.

By Proposition 3.4.11 of [15], we have:

Lemma 2.6.4 ([15] Proposition 3.4.11). Let D be a C-definable set of K^{eq}. Then the following conditions are equivalent:

1. D is k-internal.
2. D is stable and stably embedded.
3. D is contained in $\text{dcl}(C \cup \text{VC}_{k,C})$.

By combining Proposition 2.6.1, Lemma 2.6.2, Lemma 2.6.4 and Remark 2.5.3, one sees that (over a model) the ϕ-definition of a stably dominated type factors through some function into k^n, where k is the residue field.

Corollary 2.6.5. Let C be a model of ACVF, let V be a C-definable set and let $a \in V$. Assume $p = \text{tp}(a/C)$ is a stably dominated type. Let $\phi(x, y)$ be a formula over C. Then there exists a C-definable map $g : V \to k^n$ and a formula θ over C such that, if $g(a) \downarrow_{k(C)} \text{St}_C(b)$, then $\phi(a, b)$ holds if and only if $\theta(g(a), b)$.

2.7. Γ-internal sets. Let Q be an F-definable set. An F-definable set X is Q-internal if there exists $F' \supset F$, and an F'-definable surjection $h : Y \to X$, with Y an F'-definable subset of Q^n for some n. When Q is stably embedded and eliminates imaginaries, as is the case of Γ in ACVF, we can take h to be a bijection, by factoring out the kernel. If one can take $F' = F$ we say that X is directly Q-internal.

In the case of $Q = \Gamma$ in ACVF, we mention some equivalent conditions.

Lemma 2.7.1. Let X be an F-definable set. The following conditions are equivalent:

1. X is Γ-internal.
2. X is internal to some o-minimal definable linearly ordered set.
3. X admits a definable linear ordering.
4. Every stably dominated type on X (over any base set) is constant (i.e. contains a formula $x = a$).
5. There exists an $\text{acl}(F)$-definable injective $h : X \to \Gamma^*$, where Γ^* means Γ^n for some n.
Proof. The fact that (2) implies (3) follows easily from elimination of imaginaries in ACVF: by inspection of the geometric sorts, the only o-minimal one is \(\Gamma \) itself. Condition (3) clearly implies (4) by the symmetry property of generically stable types \(p(x) \otimes p(y) \) has \(x \leq y \) if and only if \(y \leq x \), hence \(x = y \). The implication (4) → (5) again uses elimination of imaginaries in ACVF, and inspection of the geometric sorts. Namely, let \(A = \text{acl}(F) \) and let \(c \in Y \). Assuming (4), let us show that \(c \in \text{dcl}(A \cup \Gamma) \). This reduces to the case that \(\text{tp}(c/A) \) is unary in the sense of §2.3 of [15]; for if \(c = (c_1, c_2) \) and the implication holds for \(\text{tp}(c_2/A) \) and for \(\text{tp}(c_1/A(c_2)) \) we obtain \(c_2 \in \text{acl}(A, \Gamma, c_1) \); it follows that (4) holds for \(\text{tp}(c_1/A) \), so \(c_1 \in \text{dcl}(A, \gamma) \) and the result follows since \(\text{acl}(A, \gamma) = \text{dcl}(A, \gamma) \) for \(\gamma \in \Gamma^m \) by Lemma 3.4.12 in [15]. So assume \(\text{tp}(c/A) \) is unary, i.e. it is the type of a sub-ball \(b \) of a free 0-module \(M \). The radius \(\gamma \) of \(b \) is well-defined. Now \(\text{tp}(c/A, \gamma(b)) \) is a type of balls of constant radius; if \(c \notin \text{acl}(A, \gamma(b)) \) then there are infinitely many balls realizing this type, and their union fills out a set containing a larger closed sub-ball. In this case the generic type of the closed sub-ball induces a stably dominated type on a subset of \(\text{tp}(c/A, \gamma(b)) \), contradicting (4). Thus \(c \in \text{acl}(A, \gamma(b)) = \text{dcl}(A, \gamma(b)) \). This provides an \(\text{acl}(F) \)-definable surjection from a definable subset of some \(\Gamma^n \) to \(X \). Using definable Skolem functions, one obtains a definable injection from \(X \) to some \(\Gamma^n \).

The remaining implications (1) → (2) and (5) → (1) are obvious. \(\square \)

Let \(U \) and \(V \) be definable sets. A definable map \(f : U \to V \) with all fibers \(\Gamma \)-internal is called a \(\Gamma \)-internal cover. If \(f : U \to V \) is an \(F \)-definable map, such that for every \(v \in V \) the fiber is \(F(v) \)-definably isomorphic to a definable set in \(\Gamma^n \), then by compactness and stable embeddedness of \(\Gamma \), \(U \) is isomorphic over \(V \) to a fiber product \(V \times_{g, h} Z \), where \(g : V \to Y \subseteq \Gamma^m \), and \(Z \subseteq \Gamma^n \), and \(h : Z \to Y \).

We call such a cover directly \(\Gamma \)-internal.

Any finite cover of \(V \) is \(\Gamma \)-internal, and so is any directly \(\Gamma \)-internal cover.

Lemma 2.7.2. Let \(V \) be a definable set in ACVF. Then any \(\Gamma \)-internal cover \(f : U \to V \) is isomorphic over \(V \) to a finite disjoint union of sets which are a fiber product over \(V \) of a finite cover and a directly \(\Gamma \)-internal cover.

Proof. It suffices to prove this at a complete type \(p = \text{tp}(c/F) \) of \(U \), since the statement will then be true (using compactness) above a (relatively) definable neighborhood of \(f_*(p) \), and so (again by compactness, on \(V \)) everywhere. Let \(F' = F(f(c)) \). By assumption, \(f^{-1}(f(c)) \) is \(\Gamma \)-internal. So over \(F' \) there exists a finite definable set \(H \), for \(t \in H \) an \(F'(t) \)-definable bijection \(h_t : W_t \to U \), with \(W_t \subseteq \Gamma^n \), and \(c \in \text{Im}(h_t) \). We can assume \(H \) is an orbit of \(G = \text{Aut}(\text{acl}(F')/F') \).

In this case, since \(\Gamma \) is linearly ordered, \(W_t \) cannot depend on \(t \), so \(W_t = W \). Similarly let \(G_c = \text{Aut}(\text{acl}(F)(c)/F(c)) \subseteq G \). Then \(h_t^{-1}(c) \in W \) depends only on the \(G_c \)-orbit of \(h_t \). Let \(H_c \) be such an orbit (defined over \(F(c) \)), and set \(h_t^{-1}(c) = h_t^{-1}(c) \) for \(t \) in this orbit and some \(h \in H_c \). Then \(H_c \) has a canonical
Let and exists a definable \(g \) \(\in \acl(F(f(c))) \), and \(c \in \dcl(F(f(c), g_1(c), h^{-1}(c))) \). Let \(g(c) = (f(c), g_1(c)) \). Then \(\tp(g(c)/F) \) is naturally a finite cover of \(\tp(f(c)/F) \), and \(\tp(f(c), h^{-1}(c)/F) \) is a directly \(\Gamma \)-internal cover. \qed

We write \(VF^* \) for \(VF^n \) when we do not need to specify \(n \). Similarly for \(VF^* \times \Gamma^* \).

Lemma 2.7.3. Let \(F \) be a definably closed substructure of \(VF^* \times \Gamma^* \), let \(B \subseteq VF^m \) be \(ACVF_F \)-definable, and let \(B' \) be a definable set in any sorts (including possibly imaginaries). Let \(g : B' \to B \) be a definable map with finite fibers. Then there exists a definable \(B'' \subseteq VF^{m+\ell} \) and a definable bijection \(B' \to B'' \) over \(B \).

Proof. By compactness, working over \(F(b) \) for \(b \in B \), this reduces to the case that \(B \) is a point. So \(B' \) is a finite \(ACVF_F \)-definable set, and we must show that \(B' \) is definably isomorphic to a subset of \(VF^\ell \). Now we can write \(F = F_0(\gamma) \) for some \(\gamma \in \Gamma^* \) with \(F_0 = F \cap VF \). By Lemma 3.4.12 of [15], \(\acl(F) = \acl(F_0(\gamma)) \). So \(B' = \{ f(\gamma) : f \in B'' \} \) where \(B'' \) is some finite \(F_0 \)-definable set of functions on \(\Gamma \). Replacing \(F \) by \(F_0 \) and \(B' \) by \(B'' \), we may assume \(F \) is a field.

Claim. \(\acl(F) = \dcl(F^{alg}) \).

Proof of the claim. This is clear if \(F \) is not trivially valued since then \(F^{alg} \) is an elementary substructure of \(U \).

When \(F \) is trivially valued, suppose \(e \in \acl(F) \); we wish to show that \(e \in \dcl(F^{alg}) \); we may assume \(F = F^{alg} \). The easiest proof is by inspection of the geometric imaginaries: the only \(F \)-definable sublattice of \(K^n \) is \(O^n \), and the elements of the sort \(T_n \) above it are indexed by \(k^n \). (Here is a sketch of a more direct proof, let \(t \) and \(t' \) be elements with \(0 < \val(t) \ll \val(t') \). Then \(e \in \dcl(F(t)^{alg}) \) and \(e \in \dcl(F(t')^{alg}) \) by the non-trivially-valued case. But by the stationarity lemma ([16] 8.11), \(\tp((e,t)/F) \cup \tp((e,t')/F) \) generates \(\tp((e,t), (e,t')/F) \), forcing \(e \in \dcl(F) \).) \qed

Now we have \(B' \subseteq \acl(F) = \dcl(F^{alg}) \). Using induction on \(|B'| \) we may assume \(B' \) is irreducible, and also admits no nonconstant \(ACVF_F \)-definable map to a smaller definable set. If \(B' \) admits a nonconstant definable map into \(VF \) then it must be 1-1 and we are done. Let \(b \in B' \) and let \(F' = \Fix(\Aut(F^{alg}/F(b))) \). Then \(F' \) is a field, and if \(d \in F' \setminus F \), then \(d = h(b) \) for some definable map \(h \), which must be nonconstant since \(d \notin F \). If \(F' = F \) then by Galois theory, \(b \in \dcl(F) \), so again the statement is clear. \qed

Note that the last part of the argument is valid in any expansion of the theory of fields: if \(C \) is definably closed and \(F \subset C \subset \dcl(F') \), with \(F' \) an algebraic extension of \(F \), then \(C = \dcl(C \cap F') \).

Corollary 2.7.4. The composition of two definable maps with \(\Gamma \)-internal fibers also has \(\Gamma \)-internal fibers. In particular if \(f \) has finite fibers and \(g \) has \(\Gamma \)-internal fibers then \(g \circ f \) and \(f \circ g \) have \(\Gamma \)-internal fibers.
Proof. As pointed out by a referee this follows from characterization (4) in Lemma 2.7.1, which is clearly closed under towers. Let us also give a direct proof. We may work over a model A. By Lemma 2.7.2 and the definition, the class of Γ-internal covers is the same as compositions $g \circ f$ of definable maps f with finite fibers, and g with directly Γ-internal covers. Hence to show that this class is closed under composition it suffices to show that if f has finite fibers and g has directly Γ-internal covers, then $f \circ g$ has Γ-internal fibers; in other words that if $b \in \acl(A(a)), a \in \dcl(A \cup \{\gamma\})$ with γ a tuple from Γ, then $(a,b) \in \dcl(A \cup \Gamma)$. But $\acl(A,\gamma) = \dcl(A,\gamma)$ for $\gamma \in \Gamma^n$ by Lemma 3.4.12 in [15], so $(a,b) \in \dcl(A \cup \Gamma)$. □

Warning 2.7.5. The corollary applies to definable maps between definable sets, hence also to iso-definable sets. However if $f: X \to Y$ is map between pro-definable sets and U is a Γ-internal, iso-definable subset of Y, we do not know if $f^{-1}(U)$ must be Γ-internal, even if f is ≤ 2-to-one.

Remark 2.7.6. Let Γ be a Skolemized o-minimal structure, $a \in \Gamma^n$. Let D be a definable subset of Γ^n such that a belongs to the topological closure $\cl(D)$ of D. Then there exists a definable type p on D with limit a, in the sense of Definition 4.1.1.

Proof. Consider the family F of all rectangles (products of intervals) whose interior contains a. This is a definable family, directed downwards under containment. By Lemma 2.19 of [18] there exists a definable type q on F concentrating, for each $b \in F$, on $\{b' \in F : b' \subseteq b\}$. Since $a \in \cl(D)$, there exists a definable (Skolem) function g such that for $u \in F$, $g(u) \in u \cap D$. To conclude it is enough to set $p = g_* (q)$. □

An alternative proof is provided, in our case, by Lemma 4.2.13.

It follows that if the limit of any definable type on D exists and lies in D, then D is closed. Conversely, if D is bounded, any definable type on D will have a limit, and if D is closed then this limit is necessarily in D.

2.8. Orthogonality to Γ. Let A be a substructure of \U.

Proposition 2.8.1. (a) Let p be an A-definable type. The following conditions are equivalent:

(1) p is stably dominated.
(2) p is orthogonal to Γ.
(3) p is generically stable.

(b) A type p over A extends to at most one generically stable A-definable type.

Proof. The equivalence of (1) and (2) follows from [16] 10.7 and 10.8. Using Proposition 10.16 in [16], and [20], Proposition 3.2(v), we see that (2) implies (3). (In fact (1) implies (3) is easily seen to be true in any theory, in a similar
way.) To see that (3) implies (2) (again in any theory), note that if \(p \) is generically stable and \(f \) is a definable function, then \(f \cdot p \) is generically stable (by any of the criteria of [20] 3.2, say the symmetry of indiscernibles). Now a generically stable definable type on a linearly ordered set must concentrate on a single point: a 2-element Morley sequence \((a_1, a_2)\) based on \(p \) will otherwise consist of distinct elements, so either \(a_1 < a_2 \) or \(a_1 > a_2 \), neither of which can be an indiscernible set. The statement on unique extensions follows from [20], Proposition 3.2(v). □

We shall use the following statement, Theorem 12.18 from [16]:

Theorem 2.8.2.

1. Suppose that \(C \leq L \) are valued fields with \(C \) maximally complete, \(k(L) \) is a regular extension of \(k(C) \) and \(\Gamma_L/\Gamma_C \) is torsion free. Let \(a \) be a sequence in \(\mathbb{U} \), \(a \in \text{dcl}(L) \). Then \(\text{tp}(a/C \cup \Gamma(Ca)) \) is stably dominated.

2. Let \(C \) be a maximally complete algebraically closed valued field, and \(a \) be a sequence in \(\mathbb{U} \). Then \(\text{tp}(\text{acl}(Ca)/C \cup \Gamma(Ca)) \) is stably dominated.

We use this especially when \(C \) is algebraically closed, so that the conditions on regularity and torsion-freeness are redundant.

In particular, if \(C = \text{acl}(C) \) and \(\Gamma(C) = \mathbb{R} \), every type of elements of \(\Gamma \) over \(M \) is definable, so every type over \(C \) is definable. This is relevant to Berkovich spaces. We note another instance of this, when the value group is extended only by infinite or infinitesimal elements.

Lemma 2.8.3. Let \(A \) be a divisible Abelian group. Let \(B \) be an extension of \(A \) containing no proper extension of \(A \), in which \(A \) is order-dense. Then every type realized in \(B \) over \(A \) is definable.

Proof. Indeed, let \(B \) be a finitely generated extension of \(A \). We show that \(B/A \) is definable by induction on \(\text{rk}(B/A) \). If there are any positive elements \(b \in B \) with \(b < a \) for any \(0 < a \in A \), one can find such a \(b \) with smallest archimedean class; so any element \(b' \) of \(B \) with \(0 < b' < b \) has the form \(\alpha b', \alpha \in \mathbb{Q} \). Let \(B' = \{b' \in B : b \ll |b'|\} \). Let \(B'' = \{b'' \in B : (\exists n \in \mathbb{N})(|b''| < nb)\} \). Then \(B \cong B'' \oplus B' \), by induction \(B'/A \) is definable, and as \(B''/B' \) is definable by inspection, the result follows. Similarly, though slightly less canonically, if there are any \(b \in B \) with \(b > A \), find such a \(b \) with maximal archimedean class. Pick a maximal set of \(\mathbb{Q} \)-linearly independent elements \(b_i \) in the same archimedean class as \(b \). Let \(B' = \{b' \in B : |b'| \ll b\} \). Then again \(B = B' \oplus \mathbb{Q}b_i, \text{tp}(b_1, \ldots, b_m)/B' \) is definable, and the result follows. Finally, if there are no infinitesimal nor any infinite elements in \(B \) over \(A \), then by assumption we have \(A = B \), and certainly \(B/A \) is definable. □

2.9. \(\hat{V} \) for stable definable \(V \). We end with a description of the set \(\hat{V} \) of definable types concentrating on a stable definable \(V \), as an ind-definable set. The notation \(\hat{V} \) is compatible with the one that will be introduced in greater
generality in §3.1. Such a representation will not be possible for algebraic varieties V in ACVF and so the picture here is not at all suggestive of the case that will mainly interest us, but it is simpler and will be lightly used at one point.

A family X_a of definable sets is said to be uniformly definable in the parameter a if there exists a definable X such that $X_a = \{ x : (a,x) \in X \}$. An ind-definable set X_a depending on a parameter a is said to be uniformly definable in a if it can be presented as the direct limit of a system $X_{a,i}$, with each $X_{a,i}$ and the morphisms $X_{a,i} \rightarrow X_{a,j}$ definable uniformly in a. If U is a definable set, and $X_u = \lim_i X_{u,i}$ is (strict) ind-definable uniformly in u, then the disjoint union of the X_u is clearly (strict) ind-definable too.

Recall k denotes the residue field sort. Given a Zariski closed subset $W \subseteq k^n$, define $\deg(W)$ to be the degree of the Zariski closure of W in projective n-space. Let $ZC_d(k^n)$ be the family of Zariski closed subsets of degree $\leq d$ and let $IZC_d(k^n)$ be the sub-family of absolutely irreducible varieties. It is well known that $IZC_d(k^n)$ is definable (cf., for instance, §17 of [13]). These families are invariant under $GL_n(k)$, hence for any definable k-vector space V of dimension n, we may consider their pullbacks $ZC_d(V)$ and $IZC_d(V)$ to families of subsets of V, under a k-linear isomorphism $V \rightarrow k^n$. Then $ZC_d(V)$ and $IZC_d(V)$ are definable, uniformly in any definition of V.

Lemma 2.9.1. If V is a finite-dimensional k-space, then \widehat{V} is strict ind-definable.

The disjoint union D_{st} of the \widehat{V}_Λ with $V_\Lambda = \Lambda/\Lambda M$ and where Λ ranges over the definable family S_n of lattices in K^n is also strict ind-definable.

Proof. Since \widehat{V} can be identified with the limit over all d of $IZC_d(V)$, it is strict ind-definable uniformly in V. The family of lattices Λ in K^n is a definable family, so the disjoint union of \widehat{V}_Λ over all such Λ is strict ind-definable. \hfill \square

If K is a valued field, one sets $RV = K^\times / 1 + M$. So we have an exact sequence of abelian groups $0 \rightarrow k^\times \rightarrow RV \rightarrow \Gamma \rightarrow 0$. For $\gamma \in \Gamma$, denote by V_γ^\times the preimage of γ in RV. It is a principal homogeneous space for k^\times. It becomes a k-vector space V_γ after adding an element 0 and defining addition in the obvious way. For $m \geq 0$, we denote by RV^m the set of stably dominated types on RV^m.

Lemma 2.9.2. For $m \geq 0$, RV^m is strict ind-definable.

Proof. Note that RV is the union over $\gamma \in \Gamma$ of the principal homogeneous spaces V_γ^\times. For $\gamma = (\gamma_1, \ldots, \gamma_n) \in \Gamma^n$, let $V_\gamma = \Pi_{i=1}^n V_{\gamma_i}$. Since the image of a stably dominated type on RV^m under the morphism $RV^m \rightarrow \Gamma^m$ is constant, any stably dominated type must concentrate on a finite product V_γ. Thus it suffices to show, uniformly in $\gamma \in \Gamma^n$, that \widehat{V}_γ is strict ind-definable. Indeed \widehat{V}_γ can be identified with the limit over all d of $IZC_d(V_\gamma)$. \hfill \square
Remark 2.9.3. By the above proof, the function \(\dim \) on \(IZC_d(V_\gamma) \) induces a constructible function on \(\overline{RV^m} \), that is, having definable fibers on each definable piece of \(\overline{RV^m} \).

2.10. Decomposition of definable types. We seek to understand a definable type in terms of a definable type \(q \) on \(\Gamma^n \), and the germ of a definable map from \(q \) to stably dominated types. We shall make use of the notion of \(A \)-definable germ, for which we refer to Definition 6.1 in [16].

Let \(p \) be an \(A \)-definable type. Define \(rk_p(p) = rk_{\Gamma}(M(c))/\Gamma(M) \), where \(A \leq M \models ACVF \) and \(c \models p|M \). Since \(p \) is definable, this rank does not depend on the choice of \(M \), but for the present discussion it suffices to take \(M \) somewhat saturated, to make it easy to see that \(rk_p(p) \) is well-defined.

If \(p \) has rank \(r \), then there exists a definable function to \(\Gamma^r \) whose image is not contained in a smaller dimensional set. We show first that at least the germ of such a function can be chosen \(A \)-definable.

Lemma 2.10.1. Let \(p \) be an \(A \)-definable type and set \(r = rk_p(p) \). Then there exists a nonempty \(A \)-definable set \(Q'' \) and for \(b \in Q'' \) a function \(\gamma_b = (\gamma_1(b), \ldots, \gamma_r(b)) \) into \(\Gamma^r \), definable uniformly in \(b \), such that

1. If \(b \in Q'' \) and \(c \models p|A(b) \) then the image of \(\gamma_b(c) \) in \(\Gamma(A(b,c))/\Gamma(A(b)) \) is a \(\mathbb{Q} \)-linearly-independent \(r \)-tuple.
2. If \(b, b' \in Q'' \) and \(c \models p|A(b,b') \) then \(\gamma_b(c) = \gamma_{b'}(c) \).

Proof. Pick \(M \) as above, and an \(M \)-definable function \(\gamma = (\gamma_1, \ldots, \gamma_r) \) into \(\Gamma^r \), such that if \(c \models p|M \) then \(\gamma_1(c), \ldots, \gamma_r(c) \) have \(\mathbb{Q} \)-linearly-independent images in \(\Gamma(M(c))/\Gamma(M) \). Say \(\gamma = \gamma_a \) and let \(Q = \text{tp}(a/A) \). If \(b \in Q \) there exist a unique \(N = N(a,b) \in \text{GL}_r(Q) \) and \(\gamma' = \gamma'(a,b) \in \Gamma^r \) such that for \(c \models p|M(b) \), \(\gamma_b(c) = N \gamma_\gamma(c) + \gamma' \). By compactness, as \(b \) varies the matrices \(N(a,b) \) vary among a finite number of possibilities \(N_1, \ldots, N_k \); moreover there exists an \(A \)-definable set \(Q' \) containing \(Q \) such that for \(a', b \in Q' \) we have \((\exists t' \in \Gamma^r)(d_p(u) \cup \gamma_b(u) = N_2 \gamma_{a'}(u) + t') \). In other words the definable set \(Q' \) has the same properties as \(Q \).

Define an equivalence relation on \(Q' \): \(b'E b \) if \((d_p(x') \gamma_{b'}(x) = \gamma_b(x)) \). Then by the above discussion, \(Q'/E \subseteq \text{dcl}(A(a), \Gamma) \) (in particular \(Q'/E \) is \(\Gamma \)-internal, cf. 2.7). By Lemma 2.7.1 it follows that \(Q'/E \subseteq \text{acl}(A, \Gamma) \), and there exists a definable map \(g : Q'/E \rightarrow \Gamma^d \) with finite fibers.

We can consider the following partial orderings on \(Q' \): \(b' \leq_i b \) if and only if \((d_p(x')(\gamma_{b'}(x) \leq \gamma_b(x)) \). These induce partial orderings on \(Q'/E \), such that if \(x \neq y \) then \(x <_i y \) or \(y <_i x \) for some \(i \). This permits a choice of an element from any given finite subset of \(Q'/E \); thus the map \(g \) admits a definable section.

It follows in particular there exists a non empty \(A \)-definable subset \(Y \subseteq \Gamma^r \) and for \(y \in Y \) an element \(e(y) \in Q'/E \). If \(Y \) has an \(A \)-definable element then there exists an \(A \)-definable \(E \)-class in \(Q'/E \); let \(Q'' \) be this class. This is always
the case unless $\Gamma (A) = (0)$, and $Y \supseteq (0)^{l_1} \times (0, \infty)^{l_2} \times (-\infty, 0)^{l_3}$, with $l_2 + l_3 > 0$; but we give another argument that works in general.

For $y \in Y$ we have a p-germ of a function $\gamma [y]$ into $\Gamma ^r$, and the germs of $y, y' \in Y$ differ by an element $(M(y, y'), d(y, y'))$ of $\text{GL}_r (\mathbb{Q}) \ltimes \Gamma ^r$. It is easy to cut down Y so that $M(y, y') = 1$ for all y, y'. Indeed, let q be any definable type on Y; then for some $M_0 \in \text{GL}_r (\mathbb{Q})$, for $y \models q$ and $y' \models q | y$ we have $M(y, y') = M_0$; it follows that $M_0^2 = M_0$ so that $M_0 = 1$; replace Y by $(d_q y') M(y, y') = 1$. Now $d(y, y'') = d(y, y') + d(y', y'')$. Pick $a \in Y$, and let $d_a(y) = d(y, a)$; then we have $d(y, y') = d_a(y) - d_a(y')$. Let $p \in \Gamma _\infty$ be some A-definable limit point of Y. (Such a point exists by induction on dimension; consider the boundary.) Then d_a has a finite number of limit values at p (being piecewise linear); let c_a be the smallest of them. So $d'_a = d_a - c_a$ still satisfies $d(y, y') = d'_a(y) - d'_a(y')$, and now 0 is a limiting value of d'_a. Any conjugate d'_a' of d'_a differs from d'_a by a constant, and only finitely many constants are possible (since both functions have 0 as a limit value at p). Thus d'_a has only finitely many conjugates, so it is acl(0)-definable; as above it follows that it is definable. Set $d' = d'_a$ and replace each germ $\gamma [y]$ by $\gamma [y] - d'(y)$. The result is another family of germs with $M(y, y') = 1$ and $d(y, y') = 0$. This means that the germ does not depend on the choice of $y \in Y$.

Lemma 2.10.2. Let p be an A-definable type on some A-definable set V and set $r = \text{rk}_\Gamma (p)$. There exists an A-definable germ of maps $\delta : p \to \Gamma ^r$ of maximal rank. Furthermore for any such δ the definable type $\delta _*(p)$ is A-definable.

Proof. The existence of the germ δ follows from Lemma 2.10.1. It is clear that any two such germs differ by composition with an element of $\text{GL}_r (\mathbb{Q}) \ltimes \Gamma (A)^r$. So, if one fixes such a germ, it is represented by any element of the A-definable family $(\gamma _a : (a \in Q^n))$ in Lemma 2.10.1. The definable type $\delta _*(p)$ on $\Gamma ^r$ does not depend on the choice of δ within this family, hence $\delta _*(p)$ is an A-definable type.

Let q be a definable type over A. Two pro-definable maps $h = (h_1, h_2, \ldots)$ and $g = (g_1, g_2, \ldots)$ over $B \supseteq A$ are said to have the same q-germ if $h(e) = g(e)$ when $e \models q | B$. The q-germ of h is the equivalence class of h. So h, g have the same q-germ if and only if the definable approximation $(h_1, \ldots, h_n), (g_1, \ldots, g_n)$ have the same q-germ for each n; and the q-germ of h is determined by the sequence of q-germs of the h_n.

In the remainder of this section, we will use the notation \widehat{V} for the space of stably dominated types on V, for V an A-definable set, introduced in §3.1. In Theorem 3.1.1 we prove that \widehat{V} can be canonically identified with a strict pro-definable set.

Lemma-Definition 2.10.3. If q is an A-definable type on some A-definable set V and $h : V \to \widehat{W}$ is an A-definable map, there exists a unique A-definable type
Let \(M \) have hypotheses of Lemma 2.5.4 hold. Consider an element \(b \) in the equivalence relation: \(x \) has the form \(\overline{f} \) if \(\overline{f} \) is stably dominated, hence extends to a unique element \(\overline{h} \) of \(h \). We set \(\int_q \overline{h} := \int_q h \).

Note that that for \(h \) as above, if the \(q \)-germ \(\overline{h} \) is \(A \)-definable (equivalently \(\text{Aut}(U/A) \)-invariant), then so is \(r \); again the definition of \(r \) depends only of the \(q \)-germ \(\overline{h} \) of \(h \) along \(q \). As by definition \(r \) depends only of the \(q \)-germ \(\overline{h} \) of \(h \), we set \(\int_q \overline{h} := \int_q h \).

Remark 2.10.4. The notion of stably dominated type making sense for \(* \)-types, one can consider the space \(\hat{\Gamma} \) of stably dominated types on the strict pro-definable set \(\hat{V} \), for \(V \) a definable set. There is a canonical map \(\vartheta : \hat{\Gamma} \to \hat{\Gamma} \) sending a stably dominated type \(q \) on \(\hat{V} \) to \(\vartheta(q) = \int_q \text{id}_{\hat{V}} \). So \(\vartheta(q) \) is a definable type, and by Proposition 2.5.5 it is stably dominated.

The following key Proposition 2.10.5 states that any definable type may be viewed as an integral of stably dominated types along some definable function; there may be no \(A \)-definable function with this germ.

Proposition 2.10.5. Let \(p \) be an \(A \)-definable type on some \(A \)-definable set \(V \) and let \(\delta : p \to \Gamma^r \) be as in Lemma 2.10.2. Let \(s = \delta \cdot p \). There exists an \(A \)-definable \(s \)-germ \(f : s \to \hat{V} \) such that \(p = \int_s f \).

Proof. Let \(M \) be a maximally complete model, and let \(c \models p|M, t = \delta(c) \). Then \(\Gamma(M(c)) \) is generated over \(\Gamma(M) \) by \(\delta(c) \). By [15], Corollary 3.4.3 and Theorem 3.4.4, \(M(t) := \text{dcl}(M \cup \{t\}) \) is algebraically closed. By Theorem 2.8.2 \(\text{tp}(c/M(t)) \) is stably dominated, hence extends to a unique element \(f_M(t) \) of \(\hat{V}(M(t)) \). We will show that \(f_M \) does not depend on \(M \).

Let \(M \leq N \models \text{ACVF} \), with \(N \) large and saturated. We first show that \(f_M = f_N \). Let \(c \models p|N, t = \delta(c); \) so \(t \models s|N \). We will show that the homogeneity hypotheses of Lemma 2.5.4 hold. Consider an element \(b \) of \(N(t) \setminus M(t) \); it has the form \(h(e, t) \) with \(e \in N \). Let \(\bar{e} \) be the class of \(e \) modulo the definable equivalence relation: \(x \sim x' \) if \((d_x t)(h(x, t) = h(x', t)) \). Since \(b \) is not \(M(t) \)-definable, \(\bar{e} \notin M \). Hence there exists \(e' \in N \) with \(\text{tp}(e'/M) = \text{tp}(e/M) \), but \(e' \neq e \); and there exists an automorphism of \(N \) of \(M \), taking \(e \) to \(e' \); and it may be extended to an automorphism of \(N(t)/M(t) \), taking \(b \) to \(b' = h(e', t) \neq b \), and \(\text{tp}(b'/M(t)) = \text{tp}(b/M(t)) \). Since \(\text{tp}(c/N(t)) \) is \(\text{Aut}(N(t)/M(t)) \)-invariant, by Lemma 2.5.4, \(\text{tp}(c/N(t)) = f_M(t)|N(t) \). Hence \(f_M(t)|N(t) = f_N(t)|N(t) \); but as above \(N(t) \) is algebraically closed, so two stably dominated types based on \(N(t) \) and with the same restriction to \(N(t) \) must be equal; hence \(f_M(t) = f_N(t) \), so \(f_M = f_N \).

Given two maximally complete fields \(M \) and \(M' \) we see by choosing \(N \) containing both that \(f_M(t)|N(t) = f_{M'}(t)|N(t) \); another use of Lemma 2.5.4, this time over \(N(t) \) and with \(U \) as the homogeneous larger model, gives \(f_M(t) = f_{M'}(t) \).
So $f_M(t)$ does not depend on M and can be denoted $f(t)$. We obtain a definable function $f : P \to \hat{V}$, where $P = \text{tp}(t/A)$. The $\delta_\ast(p)$-germ of this function f does not depend on the choice of δ. It follows that the germ is $\text{Aut}(\mathbb{U}/A)$-invariant, hence A-definable; and by construction we have $p = \hat{f}_{\delta_\ast(p)} f$. \hfill \Box

2.11. Pseudo-Galois morphisms. We finally recall a notion of Galois cover at the level of points; it is essentially the notion of a Galois cover in the category of varieties in which radicial morphisms (EGA I, (3.5.4)) are viewed as invertible.

Following [33] p. 52, we call a finite surjective morphism $Y \to X$ of integral separated noetherian schemes a pseudo-Galois covering if the field extension $F(Y)/F(X)$ is normal and the canonical group homomorphism $\text{Aut}_X(Y) \to \text{Gal}(F(Y), F(X))$ is an isomorphism, where by definition $\text{Gal}(F(Y), F(X))$ means $\text{Aut}_{F(X)}(F(Y))$. Injectivity follows from the irreducibility of Y and the separateness assumption.

If V is a normal irreducible variety over a field F (by a variety over F, we mean a reduced and separated scheme of finite type over F) and K' is a finite, normal field extension of $F(V)$, the normalization V' of V in K' is a pseudo-Galois covering since the canonical morphism $\text{Aut}_V(V') \to G = \text{Gal}(K', F(V))$ is an isomorphism. This is a special case of the functoriality in Galois-covering since the canonical morphism K'/K is normal, for any morphism $g : V' \to V''$ may be described as follows. To g corresponds a rational map $V' \to V''$; let W_g be the graph of this map, a closed subvariety of $V' \times V''$. Each of the projections $W_g \to V'$ is birational, and finite. Since V' is normal, these projections are isomorphisms, so g is the graph of an isomorphism $V' \to V''$.

As observed in loc. cit., p. 53, if $Y \to X$ is a pseudo-Galois covering and X is normal, for any morphism $X' \to X$ with X' an integral noetherian scheme, the Galois group $G = \text{Gal}(F(Y), F(X))$ acts transitively on the components of $X' \times_X Y$. Here is a brief argument. Note that if X' is the normalization of X in a finite purely inseparable extension K' of its function field $F(X)$, the morphism $X' \to X$ is radicial. Indeed one may assume $X = \text{Spec} A$, $X' = \text{Spec} A'$ and the characteristic is p. For some integer h, $F(X)$ contains K^{p^h} and an element x of K' lies in A' if and only if $x^{p^h} \in A$. It follows that the morphism $Y/G \to X$ is radicial, hence G is transitive on fibers of Y/X. So there are no proper G-invariant subvarieties of Y mapping onto X. It is clear from Galois theory that G acts transitively on the components of $X' \times_X Y$ mapping dominantly to X'; it follows that the union of these components is an $\text{Gal}(F(Y), F(X))$-invariant subset mapping onto X', hence is all of $X' \times_X Y$. So there are no other components.

If Y is a finite disjoint union of non-empty integral noetherian schemes Y_i, we say a finite surjective morphism $Y \to X$ is a pseudo-Galois covering if each restriction $Y_i \to X$ is a pseudo-Galois covering. Also, if X is a finite disjoint
union of non empty integral noetherian schemes X_i, we shall say $Y \to X$ is a pseudo-Galois covering if its pull-back over each X_i is a pseudo-Galois covering.

3. The space of stably dominated types \hat{V}

Summary. The core of this section is the study of the space \hat{V} of stably dominated types on a definable V. It is endowed with a canonical structure of a (strict) pro-definable set in 3.1. Some examples of stably dominated types are given in 3.2. Then, in 3.4 we endow it with the structure of a definable topological space, a notion defined in 3.3. The properties of that definable topology are discussed in 3.5. In 3.6 we study the canonical embedding of V in \hat{V} as the set of simple points. An essential feature in our approach is the existence of a canonical extension for a definable function on V to \hat{V}. This is discussed in 3.8 where continuity criteria are given. They rely on the notion of v-, g, $v+g$-continuity introduced in 3.7. In 3.9 we introduce basic notions of (generalized) paths and homotopies. In the remaining 3.10-3.12 we introduce notions of use in later sections: good metrics, Zariski topology, schematic distance.

3.1. \hat{V} as a pro-definable set. We shall now work in a big saturated model U of ACVF in the language \mathcal{L}_g. We fix a substructure C of U. If X is an algebraic variety defined over the valued field part of C, we can view X as embedded as a constructible in affine n-space, via some affine chart. Alternatively we could make new sorts for \mathbb{P}^n, and consider only quasi-projective varieties. At all events we will treat X as we treat the basic sorts. By a “definable set” we mean: a definable subset of some product of sorts (and varieties), unless otherwise specified.

For a C-definable set V, and any substructure F containing C, we denote by $\hat{V}(F)$ the set of F-definable stably dominated types p on V (that is such that $p|F$ contains the formulas defining V).

We will now construct the fundamental object of the present work, initially as a pro-definable set. We will later define a topology on \hat{V}.

We show that there exists a canonical pro-definable set E and a canonical identification $\hat{V}(F) = E(F)$ for any F. We will later denote E as \hat{V}. We call \hat{V} the stable completion of V. Here “stable” makes reference to the notion of stably dominated or generically stable type, and “completion” refers to the density of simple points, cf. Lemma 3.6.1.

Theorem 3.1.1. Let V be a C-definable set. Then there exists a canonical pro-C-definable set E and a canonical identification $\hat{V}(F) = E(F)$ for any F. Moreover, E is strict pro-definable.

Remark 3.1.2. The canonical pro-definable set E described in the proof will be denoted as \hat{V} throughout the rest of the paper.

If one wishes to bring the choice of E out of the proof and into a formal definition, a Grothendieck-style approach can be adopted. The pro-definable structure of E determines in particular the notion of a pro-definable map $U \to E$,

\footnote{This very formal remark can be skipped with no loss of understanding.}
where U is any pro-definable set. We thus have a functor from the category of pro-definable sets to the category of sets, $U \mapsto E(U)$, where $E(U)$ is the set of (pro)-definable maps from U to \hat{V}. This includes the functor $F \mapsto E(F)$ considered above: in case U is a complete type associated with an enumeration of a structure A, then $\hat{V}(U)$ can be identified with $\hat{V}(A)$. Now instead of describing E we can explicitly describe this functor. Then the representing object E is uniquely determined, by Yoneda, and can be called \hat{V}. Yoneda also automatically yields the functoriality of the map $V \mapsto \hat{V}$ from the category of C-definable sets to the category of C-pro-definable sets.

In the present case, any reasonable choice of pro-definable structure satisfying the theorem will be pro-definably isomorphic to the E we chose, so the more category-theoretic approach does not appear to us necessary. As usual in model theory, we will say "Z is pro-definable" to mean: "Z can be canonically identified with a pro-definable E', where no ambiguity regarding E is possible."

One more remark before beginning the proof. Suppose Z is a strict ind-definable set of pairs (x,y), and let $\pi(Z)$ be the projection of Z to the x-coordinate. If $Z = \cup Z_n$ with each Z_n definable, then $\pi(Z) = \cup \pi(Z_n)$. Hence $\pi(Z)$ is naturally represented as an ind-definable set (and is itself strict.)

Proof of Theorem 3.1.1. A definable type p is stably dominated if and only if it is generically stable (Lemma 2.8.1). The definition of $\phi(x,c) \in p$ stated in Lemma 2.5.8 clearly runs over a uniformly definable family of formulas. Hence by Lemma 2.4.1, \hat{V} is pro-definable.

To show strict pro-definability, let $f : V \times W \rightarrow \Gamma_\infty$ be a definable function. Write $f_w(v) = f(w,v)$, and define $p_*(f) : W \rightarrow \Gamma_\infty$ by $p_*(f)(w) = p_(f_w).$ Let $Y_{W,f}$ be the subset of $\text{Fn}(W,\Gamma_\infty)$ consisting of all functions $p_*(f)$, for p varying in $\hat{V}(\mathbb{U})$. By the proof of Lemma 2.4.1 it is enough to prove that $Y_{W,f}$ is definable. Since by pro-definability of \hat{V}, $Y_{W,f}$ is ∞-definable, it remains to show that it is ind-definable.

Set $Y = Y_{W,f}$ and consider the set Z of quadruples (g, h, q, L) such that:

1. $L = k^n$ is a finite dimensional k-vector space;
2. $q \in \hat{L}$;
3. h is a definable function $V \rightarrow L$ (with parameters);
4. $g : W \rightarrow \Gamma_\infty$ is a function satisfying: $g(w) = \gamma$ if and only if

$$(d_q\bar{v})(\exists v \in V)(h(v) = \bar{v}) \& (\forall v \in V)(h(v) = \bar{v} \implies f(v, w) = \gamma)$$

i.e. for $\bar{v} \models q$, $h^{-1}(\bar{v})$ is nonempty, and for any $v \in h^{-1}(\bar{v})$, $g(w) = f(v, w)$.

Let Z_1 be the projection of Z to the first coordinate. Note that Z is strict ind-definable by Lemma 2.9.1 and hence Z_1 is also strict ind-definable.

Let us prove $Y \subseteq Z_1$. Take p in $\hat{V}(\mathbb{U})$, and let $g = p_*(f)$. We have to show that $g \in Z_1$. Say $p \in \hat{V}(C')$, with C' a model of ACVF and let $a \models p|C'$. By Corollary
2.6.5 there exists a C'-definable function $h : V \to L = k^n$ and a formula θ over C' such that if $C' \subseteq B$ and $b, \gamma \in B$, if $h(a) \downarrow_{k(C')} \text{St}_{C'}(B)$, then $f(a, b) = \gamma$ if and only if $\theta(h(a), b, \gamma)$. Let $q = \text{tp}(h(a)/C')$. Then (1-4) hold and (g, h, q, L) lies in Z.

Conversely, let $(g, h, q, L) \in Z$; say they are defined over some base set M; we may take M to be a maximally complete model of ACVF. Let $\bar{v} \models q|M$, and pick $v \in V$ with $h(v) = \bar{v}$. Let $\bar{\gamma}$ generate $\Gamma(M(v))$ over $\Gamma(M)$. By Theorem 2.8.2 $\text{tp}(v/M(\bar{\gamma}))$ is stably dominated. Let $M' = \text{acl}(M(\bar{\gamma}))$. Let p be the unique element of $\widehat{V}(M')$ such that $p|M' = \text{tp}(v/M')$. We need not have $p \in \widehat{V}(M)$, i.e. p may not be M-definable, but since k and Γ are orthogonal and k is stably embedded, $h_*(p)$ is M-definable. Thus $h_*(p)$ is the unique M-definable type whose restriction to M is $\text{tp}(\bar{v}/M)$, i.e. $h_*(p) = q$. By definition of Z it follows that $p_*(f) = g$. Thus $Y = Z_1$ and $Y_{W,f}$ is strict ind-definable, hence C-definable. \(\square\)

If $f : V \to W$ is a morphism of definable sets, we shall denote by $\widehat{f} : \widehat{V} \to \widehat{W}$ the corresponding morphism. Sometimes we shall write f instead of \widehat{f}.

3.2. Some examples.

Example 3.2.1. If b is a closed ball in \mathbb{A}^1, let $p_b \in \widehat{\mathbb{A}}^1$ be the generic type of b; it can be defined by $(p_b)_*(f) = \min\{\text{val}(x) : x \in b\}$, for any polynomial f. This applies even when b has valuative radius ∞, i.e. consists of a single point. The generic type of a finite product of closed balls is defined by exactly the same formula. If b and b' are (finite products of) closed balls, in the notation of Remark 3.6.3, $p_{b \times b'} = p_b \otimes p_{b'}$. Let F be a valued field. By [15], 2.3.6, 2.3.8, and 2.5.5, $\widehat{\mathbb{A}}^1(F)$ is equal to the set of generic types of closed balls $B(x, \alpha) := \{y : \text{val}(y - x) \geq \alpha\}$, for x and α running over F and $\Gamma_\infty(F)$, respectively. As a set, $\widehat{\mathbb{P}}^1$ consists of the disjoint union of $\widehat{\mathbb{A}}^1$ and the definable type concentrating on the point ∞.

Example 3.2.2. Let us give examples of a more exotic nature. Let $\varphi = \sum_{i=0}^{\infty} a_i z^i$ be a formal series with coefficients $a_i \in \mathbb{Q}$. Assume φ is not algebraic. Let $K = \mathbb{Q}(t)$ with valuation trivial on \mathbb{Q} and $\text{val}(t) = 1$. Let $p_0(x; y)$ consist of all formulas over $\mathbb{Q}(t)$ of the form

$$\text{val}(y - \sum_{i=0}^{n} a_i(tx)^i) \geq n\text{val}(t).$$

Then $p_0(x; y) + (p_0[U](x)$ generates a complete type p_φ and p_φ is a stably dominated type. Thus $p_\varphi \in \widehat{\mathbb{A}}^2$.

\(^2\)Actually $\text{dcl}(M(\bar{\gamma}))$ is algebraically closed.
Proof. Let M be any valued field extension of $\mathbb{Q}(t)^{alg}$ such that \mathbb{Z} is cofinal in $\Gamma(M)$. For a series $\beta = \sum_{i=0}^{\infty} b_i z^i$, $b_i \in \mathcal{O}_M$, define $p_{0,\beta}$ to consist of all formulas
\[\text{val}(y - \sum_{i=0}^{n} b_i(xt)^i) \geq n. \]

Let $c \models p_0|M$. First suppose $p_{0,\beta}(c; 0)$ holds. Then $\min_{i \leq n}(\text{val}(b_i + i) = \text{val}(\sum_{i=0}^{n} b_i(ct)^i)) \geq n$. So $\text{val}(b_i) \geq n - i$. Letting $n \to \infty$ we see that $b_i = 0$; so $\beta = 0$.

Next suppose just that $p_{0}(c; d)$ holds for some $d \in M(c)^{alg}$. So $F(c, d) = 0$ for some polynomial $F \in \mathcal{O}_M[x, y]$. Let $\varphi' = F(x, \varphi(tx))$ be the power series obtained by substituting $\varphi(tx)$ for y. Then $p_{0,\varphi'}(c; 0)$ holds. Hence by the previous paragraph, $\varphi' = 0$, so $\varphi(tx)$ is algebraic, and φ is also algebraic.

Thus, $p_0(c; y)$ defines an infinite intersection b of balls over $M(c)$, with no algebraic point. Hence b contains no nonempty $M(c)$-definable subset. So $p_0 + \text{tp}(c/M)$ generates a complete type p over $M(c)$. Now assume M is maximally complete and let $(c, d) \models p|M$. By Theorem 2.8.2 $\text{tp}((c, d)/M)$ is stably dominated.

Example 3.2.3. By Example 13.1 in [16] (which is rather similar to Example 3.2.2), over any valued field, there exist points of $\widehat{\mathbb{A}}^2$ that do not satisfy the Abhyankar property from §6.5. By Lemma 6.5.1 they are not strongly stably dominated in the sense of Definition 2.5.9.

3.3. The notion of a definable topological space. We will consider topologies on definable and pro-definable sets X. With the formalism of the universal domain \mathbb{U}, we can view these as certain topologies on $X(\mathbb{U})$, in the usual sense.

If M is a model, the space $X(M)$ will not be a subspace of $X(\mathbb{U})$; instead we define $X(M)$ to be the topological space whose underlying set is $X(M)$, and whose topology is generated by sets $U(M)$ with U an M-definable open set.

We will not have occasion to consider $X(A)$ when A is a substructure, which is not a model. We remark however that if $\text{acl}(A) = M$ is a model, then the induced topology on $X(A)$ from $X(M)$ is induced by the A-definable open sets. Indeed if $p \in X(A)$ and $p \in U$ with U definable over M, let U be the intersection of all $\text{Aut}(M/A)$-conjugates of U; then U is open, A-definable, and $p \in U \subseteq U$.

We will say that a topological space X is definable in the sense of Ziegler if the underlying set X is definable, and there exists a definable family B of definable subsets of X forming a neighborhood basis at each point. This allows for a good topological logic, see [35]. But it is too restrictive for our purposes. An algebraic variety with the Zariski topology is not a definable space in this sense; nor is the topology even generated by a definable family.
Let X be an A-definable or pro-definable set. Let \mathcal{T} be a topology on $X(\mathbb{U})$, and let \mathcal{T}_d be the intersection of \mathcal{T} with the class of relatively U-definable subsets of X. We will say that \mathcal{T} is an A-definable topology if it is generated by \mathcal{T}_d, and for any A-definable family $W = (W_u : u \in U)$ of relatively definable subsets of X, $W \cap \mathcal{T}$ is ind-definable over A. The second condition is equivalent to $\{(x, W) : x \in W, W \subseteq X, W \in W \cap \mathcal{T}\}$ is ind-definable over A. An equivalent definition is that the topology is generated by an ind-definable family of relatively definable sets over A. We will also say that (X, \mathcal{T}) is a (pro)-definable space over A, or just that X is a (pro)-definable space over A when there is no ambiguity about \mathcal{T}. We say X is a (pro)-definable space if it is an (pro)-A-definable space for some small A. As usual the smallest such A may be recognized Galois theoretically.

If \mathcal{T}_0 is any ind-definable family of relatively definable subsets of X, the set \mathcal{T}_1 of finite intersections of elements of \mathcal{T}_0 is also ind-definable. Let \mathcal{T} be the family of subsets of $X(\mathbb{U})$ that are unions of sets $Z(\mathbb{U})$, with $Z \in \mathcal{T}_1$. Then \mathcal{T} is a topology on $X(\mathbb{U})$, generated by the relatively definable sets within it. By compactness, a relatively definable set $Y \subseteq X$ is in \mathcal{T} if and only if for some definable $T' \subseteq \mathcal{T}_1$, Y is a union of sets $Z(\mathbb{U})$ with $Z \in T'$. It follows that the topology \mathcal{T} generated by \mathcal{T}_0 is a definable topology. In the above situation, note also that if Y is A-relatively definable, then Y' is an A-definable union of relatively definable open sets from T'. Indeed, let $Y' = \{Z \in T' : Z \subseteq Y\}$, then $Y = \bigcup_{Z \in Y'} Z$. In general Y need not be a union of sets from $\mathcal{T}_1(A)$, for any small A.

As is the case with groups, the notion of a pro-definable space is more general than that of pro-(definable spaces). However the spaces we will consider will be pro-(definable spaces).

When Y is a definable topological space, and A a base substructure, the set $Y(A)$ is topologized using the family of A-definable open subsets of Y. We do not use externally definable open subsets (i.e. A'-definable for larger A) to define the topology on $Y(A)$; if we did, we would obtain the discrete topology on $Y(A)$ whenever Y is Hausdorff. The same applies in the pro-definable case; thus in the next subsection we shall topologize $\hat{X}(K)$ using the K-definable open subsets of \hat{X}, restricted to $\hat{X}(K)$.

When we speak of the topology of Y without mention of A, we mean to take $A = \mathbb{U}$, the universal domain; often, any model will also do.

3.4. \hat{V} as a topological space. Assume that V comes with a definable topology \mathcal{T}_V, and an ind-definable sheaf \mathcal{O} of definable functions into Γ_∞. We define a topology on \hat{V} as follows. A pre-basic open set has the form: $\{p \in \hat{O} : p_u(\phi) \in U\}$, where $O \in \mathcal{T}_V$, $U \subseteq \Gamma_\infty$ is a definable set, open for the order topology, and $\phi \in \mathcal{O}(O)$. A basic open set is by definition a finite intersection of pre-basic open sets.

When V is an algebraic variety, we take the topology to be the Zariski topology, and the sheaf to be the sheaf of regular functions composed with val.
When X is a definable subset of a given algebraic variety V, we give \hat{X} the subspace topology.

3.5. The affine case. Assume V is a definable subset of some affine variety. Let $\text{Fn}_n(V, \Gamma_\infty)$ denote the functions of the form $\text{val}(F)$, where F is a regular function on the Zariski closure of V. By quantifier-elimination any definable function is piecewise a difference of the form $\frac{1}{n}f - \frac{1}{m}g$ with f and g in Fn_n and n and m positive integers. Moreover, by piecewise we mean, sets cut out by Boolean combinations of sets of the form $f \leq g$, where $f, g \in \text{Fn}_n(V, \Gamma_\infty)$. It follows that if p is a definable type and $p_*(f)$ is defined for $f \in \text{Fn}_n(V, \Gamma_\infty)$, then p is stably dominated, and determined by $p_*|\text{Fn}_n(V \times W, \Gamma_\infty)$ for all W. A basic open set is defined by finitely many strict inequalities $p_*(f) < p_*(g)$, with $f, g \in \text{Fn}_n(V, \Gamma_\infty)$. (In case $f = \text{val}(F)$ and $g = \text{val}(G)$ with $G = 0$, this is the same as $F \neq 0$.) It is easy to verify that the topology generated by these basic open sets coincides with the definition of the topology on \hat{V} above, for the Zariski topology and the sheaf of functions $\text{val}(f)$, f regular.

Note that if F_1, \ldots, F_n are regular functions on V, and each $p \mapsto p_*(f_i)$ is continuous, with $f_i = \text{val}(F_i)$, then $p \mapsto (p_*(f_1(x)), \ldots, p_*(f_n(x)))$ is continuous. Thus the topology on \hat{V} is the coarsest one such that all $p \mapsto p_*(f)$ are continuous, for $f \in \text{Fn}_n(V, \Gamma_\infty)$. So the basic open sets with f or g constant suffice to generate the topology.

The topology on \hat{V} is strict pro-definably generated in the following sense: for each definable set W, one endows $\text{Fn}(W, \Gamma_\infty)$ with the Tychonoff product topology induced by the order topology on Γ_∞. Now for a definable function $f : V \times W \to \Gamma_\infty$ the topology induced on the definable set $Y_{W,f}$ is generated by a definable family of definable subsets of $Y_{W,f}$ (recall that $Y_{W,f}$ is the subset of $\text{Fn}(W, \Gamma_\infty)$ consisting of all functions $p_*(f)$, for p varying in $\hat{V}(\mathbb{U})$). By definition, the pullbacks to \hat{V} of the definable open subsets of the $\text{Fn}(W, \Gamma_\infty)$ generate the topology on \hat{V}.

In particular, \hat{V} is a pro-definable space in the sense of § 3.3.

When V is a definable subset of an algebraic variety over VF, the topology on \hat{V} can also be defined by glueing the affine pieces. It is easy to check that this is consistent (if V' is an affine open of the affine V, obtained say by inverting g, then any function $\text{val}(f/g)$ can be written $\text{val}(f) - \text{val}(g)$, hence is continuous on \hat{V}' in the topology induced from \hat{V}). Moreover, this coincides with the topology defined via the sheaf of regular functions.

Lemma 3.5.1. If X is a definable subset of Γ^n_∞, then $X = \hat{X}$ canonically. More generally if U is a definable subset of VF^n or a definable subset of an algebraic variety over VF and W is a definable subset of Γ^n_∞, then the canonical map $\hat{U} \times W \to \hat{U} \times \hat{W}$ is a bijection.
Proof. Let \(f : U \times W \to U, g : U \times W \to W \) be the projections. If \(p \in \widehat{U \times W} \) we saw that \(g_*(p) \) concentrates on some \(a \in W \); so \(p = f_*(p) \times g_*(p) \) (i.e. \(p(u, w) \) is generated by \(f_*(p)(u) \cup g_*(p)(w) \)). \(\square \)

If \(U \) is a definable subset of an algebraic variety over \(\mathbb{VF} \), we endow \(\widehat{U} \times \Gamma_m^{\infty} \simeq \widehat{U} \times \Gamma_m^{\infty} \) with the quotient topology for the surjective mapping \(\widehat{U} \times \mathbb{A}^m \to \widehat{U} \times \Gamma_m^{\infty} \) induced by \(\text{id} \times \text{val} \).

We will see below (as a special case of Lemma 3.5.3) that the topology on \(\Gamma_m^{\infty} = \Gamma_\infty \) is the order topology, and the topology on \(\Gamma_m^{\infty} = \Gamma_\infty \), is the product topology.

For \(\gamma = (\gamma_1, \ldots, \gamma_n) \in \Gamma_\infty^n \), let \(b(\gamma) = \{x = (x_1, \ldots, x_n) \in \mathbb{A}_n^\infty : \text{val}(x_i) \geq \gamma_i, i = 1, \ldots, n\} \). Let \(p_\gamma = p_{b(\gamma)} \).

Lemma 3.5.2. The map \(j : \mathbb{A}_n^\infty \times \Gamma_\infty \to \mathbb{A}_n^{n+1}, (q, \gamma) \mapsto q \otimes p_\gamma \) is continuous for the product topology of \(\mathbb{A}_n^\infty \) with the order topology on \(\Gamma_\infty \).

Proof. We have to show that for each polynomial \(f(x_1, \ldots, x_n, y) \) with coefficients in \(\mathbb{VF} \), the map \((p, \gamma) \mapsto j(p, \gamma)_* f\) is continuous. The functions \(\text{min} \) and \(+ \) extend naturally to continuous functions \(\Gamma_\infty^2 \to \Gamma_\infty \). Now if \(f(x_1, \ldots, x_n, y) \) is a polynomial with coefficients in \(\mathbb{VF} \), there exists a function \(P(\gamma_1, \ldots, \gamma_n, \tau) \) obtained by composition of \(\text{min} \) and \(+ \), and polynomials \(h_i \) such that \(\text{min}_{\text{val}(y) = \alpha} \text{val}(f(x_1, \ldots, x_n, y)) = P(\text{val}(h_1(x)), \ldots, \text{val}(h_d(x)), \alpha) \), namely, \(\text{min}_{\text{val}(y) = \alpha} \text{val}(\sum h_i(x)y^i) = \text{min}(\text{val}(h_i(x)) + i\alpha) \). So \(P : \Gamma_\infty^{n+1} \to \Gamma_\infty \) is continuous. Hence \(j(p, \gamma)_* f = P(p_*(h_1), \ldots, p_*(h_d), \gamma) \). Continuity follows, by composition. \(\square \)

Lemma 3.5.3. If \(U \) is a definable subset of \(\mathbb{A}_n^\infty \times \Gamma_\infty^\ell \) and \(W \) is a definable subset of \(\Gamma_\infty^m \), the induced topology on \(U \times W = \widehat{U} \times W \) coincides with the product topology.

Proof. We have seen that the natural map \(\widehat{U \times W} \to \widehat{U} \times W \) is bijective; it is clearly continuous, where \(\widehat{U} \times W \) is given the product topology. To show that it is closed, it suffices to show that the inverse map is continuous, and we may take \(U = \mathbb{A}_n^\infty \) and \(W = \Gamma_\infty^m \). By factoring \(\widehat{U} \times \Gamma_\infty^m \to \widehat{U} \times \Gamma_\infty^{m-1} \times \Gamma_\infty \to \widehat{U} \times \Gamma_\infty^{m-1} \times \Gamma_\infty \), we may assume \(m = 1 \). Having said this, by pulling back to \(\mathbb{A}_n^{n+\ell} \) we may assume \(\ell = 0 \). The inverse map is equal to the composition of \(\gamma \) as in Lemma 3.5.2 with a projection, hence is continuous. \(\square \)

Let \(U \) be a definable subset of \(V \), over a structure \(A \). Say \(\widehat{U}(A) \) is *explicitly \(A \)-open* if for any \(p \in \widehat{U}(A) \), there exists a Zariski open \(V' \) with \(p \in \widehat{V'} \), and regular functions \(G_1, \ldots, G_n \) on \(V' \), \(g_i = \text{val}(G_i) : V' \to \Gamma_\infty \) and open neighborhoods \(E_i \) of \(p_*(g_i) \), all defined over \(A \), such that \(\cap_i g_i^{-1}(E_i) \subset \widehat{U} \).

The following lemma will be used in §13 for structures of the form \(F = (F, \mathbb{R}) \).
Lemma 3.5.4. Let \mathbf{F} be any structure consisting of field points and Γ-points including at least one positive element of Γ. Let V be a variety defined over \mathbf{F} and let U be a \mathbf{F}-definable subset of V. If \hat{U} is open in \hat{V}, then $\hat{U}(\mathbf{F})$ is explicitly \mathbf{F}-open.

Proof. Covering V by affine subsets, we may assume V is affine. Let $F = VF(\mathbf{F})$ be the field points.

We first show that if the statement holds for $(F^{\text{alg}}, \Gamma(F^{\text{alg}}))$, then it holds for $F = (F, \Gamma(F))$. Note that it is enough to show it holds for $(F, \Gamma(F^{\text{alg}}))$ since $g_i^{-1}((\alpha, \beta)) = (ng_i)^{-1}((n\alpha, n\beta))$. Let $p \in \hat{U}(F)$. There exist regular functions G_1, \ldots, G_n over F^{alg}, and intervals I_j of Γ_∞, defined over $\Gamma(F)$, such that $p \in \cap_j \hat{g}_j^{-1}(I_j) \subset \hat{U}$, with $g_j = \text{val}(G_j)$. So it suffices to show, for each j, that the intersection of Galois conjugates of $\hat{g}_j^{-1}(I_j)$ contains an open neighborhood of p in $\hat{V}(F)$. Let $G = G_j$, $g = g_j$ and $I = I_j$, and let G^ν be the Galois conjugates of G over F, $g^\nu = \text{val}(G^\nu)$.

Let $b \models p$. Then the G^ν are Galois conjugate over $F(b)$, p being F-definable. The elements $c_\nu = G^\nu(b)$ are Galois conjugate over $F(b)$; they are the roots of a polynomial $H(b, y) = \Pi_\nu (y - G^\nu(b)) = \sum m_h(b) y^m$. For all b' in some F-definable Zariski open set U' containing b, the set of roots of $H(b', y)$ is equal to $\{G^\nu(b')\}$. Within U', the set of b' such that, for all ν, $g^\nu(b') \in I$ can therefore be written in terms of the Newton polygon of $H(b', y)$, i.e. in terms of certain inequalities between convex expressions in $\text{val}(h_k(b'))$. This shows that the intersection of Galois conjugates of $\hat{G}^{-1}(I)$ contains an open neighborhood of p.

This permits us to assume F is algebraically closed, as we will do from now on.

Assume first $\mathbf{F} \subseteq \text{dcl}(F)$. In particular, by assumption, F is not trivially valued and since $\mathbf{F} = \text{acl}(F)$ is an elementary submodel, the statement is clear.

We now have to deal with the case that \mathbf{F} is bigger than F; we may assume \mathbf{F} is generated over F by finitely many elements of Γ, and indeed, adding one element at a time, that $\mathbf{F} = F(\gamma)$ for some $\gamma \in \Gamma$. Let c be a field element with $\text{val}(c) = \gamma$; it suffices to show that if U is open over $F(c)$, then it is over F too. Let $G(x, c) = \sum G_i(x)c^i$ be a polynomial (where $x = (x_1, \ldots, x_n), V \subseteq \mathbb{A}^n$). Let $g(p, c)$ be the generic value of $\text{val}(G(x, c))$ at p and $g_i(p)$ the one of $\text{val}(G_i)$. Then $g(p, c) = \min_i g_i(p) + i\gamma$. From this the statement is clear.

When $\Gamma(\mathbf{F}) = (0)$, Lemma 3.5.4 is not true as stated. Here is a counterexample: Let $V = \mathbb{A}^2$, $U = \{(x, y) \in V : \text{val}x < \text{val}y\}$, let p be the generic type of $\emptyset \times \{0\}$. If $G(x, y)$ is any polynomial over $F = \emptyset F$, then $p_*G = 0$ unless $y G$ and then $p_*G = \infty$. The only conditions about G one can form around p over F are, in case $G = yG_1$, that $p_*G > 0$. So no F-explicit open set can be contained in U, since one can always take $0 < \text{val}(y) < \text{val}(x)$ to satisfy $p_*(yG_1) > 0$. But nevertheless, we still have:
Corollary 3.5.5. Let F be any structure consisting of field points and Γ-points. Let V be a variety over a valued field F and let U be an F-definable subset of V. If \hat{U} is open in \hat{V}, then there exists a definable function $\alpha : V \to \Gamma^n_\infty$ and an open neighborhood E of $p_*(\alpha)$, both defined over F, such that $a^{-1}(E) \subset \hat{U}$ is explicitly F-open and α has the form $(\text{val}(G_1), \ldots, \text{val}(G_n))$ for some regular functions G_i on V', as in Lemma 3.5.4.

Proof. This follows from Lemma 3.5.4 unless $\Gamma(F) = (0)$. Assume therefore that $\Gamma(F) = 0$, so that all elements of Γ of positive valuation have the same type over F. Let γ be such an element. By Lemma 3.5.4, there exist $G_1, \ldots, G_n, V', E_\gamma$ as required but over $F(\gamma)$. So G_1, \ldots, G_n, V' are defined over F; E_γ depends on γ. Let $E = \bigcup_{\gamma > 0} E_\gamma$. Then clearly E is open and the statement holds. \(\square\)

3.6. Simple points. For any definable set V, we have an embedding $V \to \hat{V}$, taking a point x to the definable type $\text{tp}(x/\mathbb{U})$ concentrating on x. The points of the image are said to be simple.

Lemma 3.6.1. Let X be a definable subset of VF^n.

1. The set of simple points of \hat{X} (which we identify with X) is an iso-definable and relatively definable dense subset of \hat{X}. If M is a model of ACVF, then $X(M)$ is dense in $\hat{X}(M)$.

2. The induced topology on X agrees with the valuation topology on X.

Proof. (1) The fact that X is iso-definable in \hat{X} is clear. For relative definability, note that a point of \hat{X} is simple if and only if each of its projections to \hat{A}^1 is simple and that on A^1, the points are a definable subset of the closed balls (cf. Example 3.2.1). For density, consider (for instance) $p \in \hat{X}(M)$ with $p_*(f) > \alpha$. Then $\text{val}(x) > \alpha \land x \in X$ is satisfiable in M, hence there exists a simple point $q \in \hat{X}(M)$ with $q_*(f) > \alpha$.

(2) Clear from the definitions. The basic open subsets of the valuation topology are of the form $\text{val}(x) > \alpha$ or $\text{val}(x) < \alpha$. \(\square\)

Lemma 3.6.2. Let $f : U \to V$ be a definable map between definable subsets of VF^n. If f has finite fibers, then the preimage of a simple point of \hat{V} under \hat{f} is simple in \hat{U}.

Proof. It is enough to prove that if X is a finite definable subset of VF^n, then $X = \hat{X}$, which is clear by (1) of Lemma 3.6.1. \(\square\)

Remark 3.6.3. The natural projection $S_{\text{def}, U \times V} \to S_{\text{def}, U} \times S_{\text{def}, V}$ induces a continuous map $\hat{U} \times V \to \hat{U} \times \hat{V}$. On the other hand, it admits a natural section, namely $\otimes : S_{\text{def}, U} \times S_{\text{def}, V} \to S_{\text{def}, U \times V}$, which restricts to a section of $\hat{U} \times \hat{V} \to \hat{U} \times \hat{V}$. This map is not continuous in the logic topology, nor is its restriction to $\hat{U} \times \hat{V} \to \hat{U} \times \hat{V}$ continuous. Indeed when $U = V$ the pullback of
the diagonal Δ_U consists of simple points on the diagonal $\Delta_{\hat{\Gamma}}$. But over a model, the set of simple points is dense, and hence not closed.

3.7. v-open and g-open subsets, v+g-continuity.

Definition 3.7.1. Let V be an algebraic variety over a valued field F. A definable subset of V is said to be v-open if it is open for the valuation topology. It is called g-open if it is defined by a positive Boolean combination of Zariski closed and open sets, and sets of the form $\{u : \text{val} f(u) > \text{val} g(u)\}$. More generally, if V is a definable subset of an algebraic variety W, a definable subset of V is said to be v-open (resp. g-open) if it is of the form $V \cap O$ with O v-open (resp. g-open) in W. A definable subset of $V \times \Gamma^m_\infty$ is called v- or g-open if its pullback to $V \times \mathbb{A}^m$ via id \times val is.

Remark 3.7.2. If X is A-definable, the regular functions f and g in the definition of g-openness are not assumed to be A-definable; in general when A consists of imaginaries, no such f, g can be found. However when $A = \text{dcl}(F)$ with F a valued field, they may be taken to be F-definable, by Lemma 8.1.1. For A a substructure consisting of imaginaries, this is not the case.

Definition 3.7.3. Let V be an algebraic variety over a valued field F or a definable subset of such a variety. A definable function $h : V \to \Gamma_\infty$ is called v-continuous (resp. g-continuous) if the pullback of any v-open (resp. g-open) set is v-open (resp. g-open). A function $h : V \to \hat{W}$ with W an affine F-variety is called v-continuous (resp. g-continuous) if, for any regular function $f : W \to \mathbb{A}^1$, $\text{val} \circ f \circ h$ is v-continuous (resp. g-continuous).

Note that the topology generated by v-open subsets on Γ_∞ is discrete on Γ, while the neighborhoods of ∞ in this topology are the same as in the order topology. The topology generated by g-open subsets is the order topology on Γ, with ∞ isolated. We also have the topology on Γ_∞ coming from its canonical identification with $\hat{\Gamma}_\infty$, or the v+g topology; this is the intersection of the two previous topologies, that is, the order topology on Γ_∞.

From now on let V be an algebraic variety over a valued field F or a definable subset of such a variety. We say that a definable subset is v+g-open if it is both v-open and g-open. If W has a definable topology, a definable function $V \to W$ is called v+g-continuous if the pullback of a definable open subset of W is both v- and g-open, and similarly for functions to V.

Note that v, g and v+g-open sets are definable sets. Over any given model it is possible to extend v to a topology in the usual sense, the valuation topology, whose restriction to definable sets is the family of v-open sets. But this is not true of g and of v+g; in fact they are not closed under definable unions, as the example $\emptyset = \bigcup_{a \in \hat{M}}$ shows.

Any g-closed subset W of an algebraic variety is defined by a disjunction $\bigvee_{i=1}^m (\neg H_i \land \phi_i)$, with ϕ_i a finite conjunction of weak valuation inequalities $v(f) \leq$
Let cl valued field. Then "Lemma 3.7.4. Let W be a $v+g$-closed definable subset of a variety V over a valued field. Then \overline{W} is closed in \overline{V}. More generally, if W is g-closed then $cl(\overline{W}) \subseteq cl_v(W)$, with cl_v denoting the v-closure.

Proof. Let M be a model, $p \in \hat{V}(M)$, with $p \in cl(\overline{W}(M))$. We will show that $p \in cl_v(\overline{W})$. Let (p_i) be a net in $\overline{W}(M)$ approaching p. Let $a_i \models p_i|M$. Let $tp(a/M)$ be a limit type in the logic topology (so a can be represented by an ultraproduct of the a_i). For each i we have $\Gamma(M(a_i)) = \Gamma(M)$, but $\Gamma(M(a))$ may be bigger.

Consider the subset C of $\Gamma(M(a))$ consisting of those elements γ such that $\alpha < \gamma < \alpha$ for all $\alpha > 0$ in $\Gamma(M)$. Thus C is a convex subgroup of $\Gamma(M(a))$. Let N be the valued field extension of M with the same underlying M-algebra structure as $M(a)$, obtained by factoring out C. Let \bar{a} denote a as an element of N. We have $a_i \in W$, so $a \in W$; since W is g-closed it is clear that $\bar{a} \in W$. (This is the easy direction of Lemma 8.1.1.)

Let $b \models p(M)$. For any regular function f in $M[U]$, with U Zariski open in V, we have: $(*) \ valf(a_i) \rightarrow valf(b) \in \Gamma_infty(M)$ (since $p_i \rightarrow p$.)

Let $R = \{x \in N : (\exists m \in M)(val(x) \geq val(m))\}$. Then R is a valuation ring of N over M. By $(*)$, for large enough i, $valf(a_i)$ is bounded above some element of $\Gamma(M)$ (namely any element below $p_*(f)$.) So $valf(a)$ and $valf(\bar{a})$ must lie above the same element. Thus $\bar{a} \in R$. Also by $(*)$, if $valf(\bar{a}) = \infty$, or just if $valf(\bar{a}) > val(M)$, then $f(b) = 0$. Thus we have a well-defined map from the residue field of R to $M(\bar{b})$, with $res\bar{a} \rightarrow b$. Since $\bar{a} \in W$, it follows that $b \in cl_v(\overline{W})$ (see § 8.2 for more detail), hence $p \in cl_v(\overline{W})$. \hfill \Box

3.8. Canonical extensions. Let V be a definable set over some A and let $f : V \rightarrow \overline{W}$ be a A-definable map (that is, a morphism in the category of pro-definable sets), where W is an A-definable subset of $\mathbb{P}^n \times \Gamma^m$. We can define a canonical extension to $F : \hat{V} \rightarrow \overline{W}$, as follows.

If $p \in \hat{V}(M)$, say $p|M = tp(c/M)$, let $d \models f(c)|M(c)$. By transitivity of stable domination (Proposition 2.5.5), $tp(cd/M)$ is stably dominated, and hence so is $tp(d/M)$. Let $F(c) \in \overline{W}(M)$ be such that $F(c)|M = tp(d/M)$; this does not depend on d. Moreover $F(c)$ depends only on $tp(c/M)$, so we can let $F(p) = F(c)$. Note that $F : \hat{V} \rightarrow \overline{W}$ is a pro-A-definable morphism. Sometimes the canonical extension F of f will be denoted by \widehat{f} or even by f.

Lemma 3.8.1. Let $f : V \rightarrow \overline{W}$ be a definable function, where V is an algebraic variety and W is a definable subset of $\mathbb{P}^n \times \Gamma^m$. Let X be a definable subset of V. Assume f is g-continuous and v-continuous at each point of X; i.e. $f^{-1}(G)$
is g-open whenever G is open, and $f^{-1}(G)$ is v-open at x whenever G is open, for any $x \in X \cap f^{-1}(G)$. Then the canonical extension F is continuous at each point of \hat{X}.

Proof. The topology on $\hat{\mathbb{P}}^n$ may be described as follows. It is generated by the preimages of open sets of Γ^N_∞ under continuous definable functions $\mathbb{P}^n \to \Gamma^N_\infty$ of the form: $(x_0 : \ldots : x_n) \mapsto (\text{val}(x_0^d) : \ldots : \text{val}(x_n^d) : \text{val}(h_1) : \ldots : \text{val}(h_{N-n}))$ for some homogeneous polynomials $h_i(x_0 : \ldots : x_n)$ of degree d; where in Γ^N we define $(u_0 : \ldots : u_m)$ to be $(u_0 - u, \ldots , u_m - u)$, with $u = \min u_i$. Composing with such functions we reduce to the case of Γ^m_∞, and hence to the case of $f : V \to \Gamma_\infty$.

Let $U = f^{-1}(G)$ be the f-pullback of a definable open subset G of Γ_∞. Then $F^{-1}(G) = \hat{U}$. Now U is g-open, and v-open at any $x \in X \cap U$. By Lemma 3.7.4 applied to the complement of U, it follows that \hat{U} is open at any $x \in \hat{X}$. □

Lemma 3.8.2. Let K be a valued field and V be an algebraic variety over K. Let X be a K-definable subset of V and let $f : X \to \hat{W}$ be a K-definable function, with W is a K-definable subset of $\mathbb{P}^n \times \Gamma^m_\infty$. Assume f is $v+g$-continuous. Then f extends uniquely to a continuous pro-K-definable morphism $F : \hat{X} \to \hat{W}$.

Proof. Existence of a continuous extension follows from Lemma 3.8.1. There is clearly at most one such extension, because of the density in \hat{X} of the simple points $X(U)$, cf. Lemma 3.6.1. □

Lemma 3.8.3. Let K be a valued field and V be an algebraic variety over K. Let $f : I \times V \to \hat{V}$ be a g-continuous K-definable function, where $I = [a,b]$ is a closed interval. Let i_I denote one of a or b and e_I denote the remaining point. Let X be a K-definable subset of V. Assume f restricts to a definable function $g : I \times X \to \hat{X}$ and that f is v-continuous at every point of $I \times X$. Then g extends uniquely to a continuous pro-K-definable morphism $G : I \times \hat{X} \to \hat{X}$. If moreover, for every $v \in X$, $g(i_I, v) = v$ and $g(e_I, v) \in Z$, with Z a Γ-internal subset, then $G(i_I, x) = x$, and $G(e_I, x) \in Z$.

Proof. Since $\hat{I} \times \hat{V} = \hat{I} \times \hat{V}$ by Lemma 3.5.1, the first statement follows from Lemma 3.8.1, by considering the pull-back of I in \mathbb{A}^1. The equation $G(i_I, x) = x$ extends by continuity from the dense set of simple points to \hat{X}. We have by construction $G(e_I, x) \in Z$, using the fact that any stably dominated type on Z is constant. □

3.9. **Paths and homotopies.** By an interval we mean a subinterval of Γ_∞. Note that intervals of different length are in general not definably homeomorphic, and that the gluing of two intervals (e.g. $[0,1]$ coming to the right of $[0,\infty]$) may not result in an interval. We get around the latter issue by formally introducing a more general notion, that of a generalized interval.
First we consider the compactification \(\{-\infty\} \cup \Gamma_{\infty}\) of \(\Gamma_{\infty}\). (This is used for convenience; in practice all functions defined on \(\{-\infty\} \cup \Gamma_{\infty}\) will be constant on some semi-infinite interval \([-\infty, a] , a \in \Gamma\).) If \(I\) is an interval \([a, b]\), we may consider it either with the natural order or with the opposite order. The choice of one of these orders will be an orientation of \(I\). By a generalized interval \(I\) we mean a finite union of oriented copies \(I_1, \ldots, I_n\) of \(\{-\infty\} \cup \Gamma_{\infty}\) glued end-to-end in a way respecting the orientation, or a sub-interval of such an ordered set.

If \(I\) is closed, we denote by \(i_I\) the smallest element of \(I\) and by \(e_I\) its largest element. If \(I = [a, b]\) is a sub-interval of \(\Gamma_{\infty}\) and \(\varphi\) is a function \(I \times V \to W\), one may extend \(\varphi\) to a function \(\tilde{\varphi} : \{-\infty\} \cup \Gamma_{\infty} \times V \to W\) by setting \(\tilde{\varphi}(t, x) = \varphi(a, x)\) for \(x < a\) and \(\tilde{\varphi}(t, x) = \varphi(b, x)\) for \(x > b\). We shall say \(\tilde{\varphi}\) is definable, resp. continuous, resp. \(v+g\)-continuous, if \(\varphi\) is. Similarly if \(I\) is obtained by gluing \(I_1, \ldots, I_n\), we shall say a function \(I \times V \to W\) is definable, resp. continuous, resp. \(v+g\)-continuous, if it is obtained by gluing definable, resp. continuous, resp. \(v+g\)-continuous, functions \(\tilde{\varphi}_i : I_i \times V \to W\).

Let \(V\) be a definable set. By a path on \(\hat{V}\) we mean a continuous definable map \(I \to \hat{V}\) with \(I\) some generalized interval.

Example 3.9.1. Generalized intervals may in fact be needed to connect points of \(\hat{V}\). For instance let \(V\) be a cycle of \(n\) copies of \(\mathbb{P}^1\), with consecutive pairs meeting in a point. We will see that a single homotopy with interval \([0, \infty)\) reduces \(V\) to a cycle made of \(n\) copies of \([0, \infty) \subseteq \Gamma_{\infty}\). However it is impossible to connect two points at extreme ends of this topological circle without gluing together some \(n/2\) intervals.

Definition 3.9.2. Let \(X\) be a pro-definable subset of \(\hat{V} \times \Gamma_{\infty}^{n}\). A homotopy is a continuous pro-definable map \(h : I \times X \to X\) with \(I\) a closed generalized interval. The maps \(h_{i_I}\) and \(h_{e_I} : X \to X\) are then said to be homotopic.

If \(W\) is a definable subset of \(V \times \Gamma_{\infty}^{n}\), we will also refer to a \(v+g\)-continuous pro-definable map \(h_0 : I \times W \to \hat{W}\) as a homotopy; by Lemma 3.8.2, \(h_0\) extends uniquely to a homotopy \(h : I \times \hat{W} \to \hat{W}\).

A homotopy \(h : I \times V \to \hat{V}\) or \(h : I \times \hat{V} \to \hat{V}\) is called a deformation retraction to \(A \subseteq \hat{V}\) if \(h(i_I, x) = x\) for all \(x\), \(h(t, a) = a\) for all \(t\) in \(I\) and \(a\) in \(A\) and furthermore \(h(e_I, x) \in A\) for each \(x\). (In the literature, this is sometimes referred to as a strong deformation retraction.) If \(h : I \times V \to \hat{V}\) is a deformation retraction, and \(g(x) = h(e_I, x)\), we say that \(g(V)\) is the image of \(h\), and that \((g, g(X))\) is a deformation retract. Sometimes, we shall also call \(g\) or \(g(X)\) a deformation retract, the other member of the pair being understood implicitly.

A homotopy \(h\) is said to satisfy condition \((*)\) if \(h(e_I, h(t, x)) = h(e_I, x)\) for every \(t\) and \(x\).

Let \(h_1 : I_1 \times \hat{V} \to \hat{V}\) and \(h_2 : I_2 \times \hat{V} \to \hat{V}\) two homotopies. Denote by \(I_1 + I_2\) the (generalized) interval obtained by gluing \(I_1\) and \(I_2\) at \(e_{I_1}\) and \(i_{I_2}\). Assume
Lemma 3.9.3. Let X and X_1 be pro-definable subsets of $\hat{V} \times \Gamma^N_\infty$, with V an algebraic variety over a valued field, and let $f : X_1 \to X$ be a closed, surjective pro-definable map. Let $h_1 : I \times X_1 \to X$ be a homotopy, and assume h_1 respects the fibers of f, in the sense that $f(h_1(t,x))$ depends only on t and $f(x)$. Then h_1 descends to a homotopy of X.

Proof. Define $h : I \times X \to X$ by $h(t, f(x)) = f(h_1(t,x))$ for $x \in X_1$; then h is well-defined and pro-definable. We denote the map $(t, x) \mapsto (t, f(x))$ by f_2. Clearly, f_2 is a closed, surjective map. (The topology on $I \times X_1$, $I \times X$ being the product topology.) To show that h is continuous, it suffices therefore to show that $h \circ f_2$ is continuous. Since $h \circ f_2 = f \circ h_1$ this is clear. \qed

In particular, let $f : V_1 \to V$ be a proper surjective morphism of algebraic varieties over a valued field. Let h_1 be a homotopy $h_1 : I \times \hat{V}_1 \to \hat{V}_1$, and assume h_1 respects the fibers of \hat{f}. Then \hat{f} is surjective by Lemma 4.2.6, and closed by Lemma 4.2.24; so h_1 descends to a homotopy of X.

Let X be a pro-definable subset of $\hat{V} \times \Gamma^N_\infty$, and let X' be a pro-definable subset of $\hat{V}' \times \Gamma'^N_\infty$. A continuous pro-definable map $F : X \to X'$ is said to be a homotopy equivalence if there exists a continuous pro-definable map $G : X' \to X$ such that $G \circ F$ is homotopic to Id_X and $F \circ G$ is homotopic to $\text{Id}_{X'}$.

3.10. Good metrics. By a definable metric on an algebraic variety V over a valued field F, we mean an F-definable function $d : V^2 \to \Gamma_\infty$ which is $v+g$-continuous and such that

1. $d(x, y) = d(y, x); d(x, x) = \infty$.
2. $d(x, z) \geq \min(d(x, y), d(y, z))$.
3. If $d(x, y) = \infty$ then $x = y$.

Note that given a definable metric on V, for any $v \in V$, $B(v; d, \gamma) := \{y : d(v, y) \geq \gamma\}$ is a family of g-closed, v-clopen sets whose intersection is $\{v\}$.

We call d a good metric if there exists a v-g-continuous definable function $\rho : V \to \Gamma$ (so $\rho(v) < \infty$), such that for any $v \in V$ and any $\alpha > \rho(v)$, $B(v; d, \alpha)$ is affine and has a unique generic type; i.e. if there exists a definable type p such that for any Zariski closed $V' \subseteq V$ disjoint from $B(v; d, \alpha)$ and any regular f on $V \setminus V'$, p concentrates on $B(v; d, \alpha) \setminus V'$, and $p_*(f)$ attains the minimum valuation of f on $B(v; d, \alpha) \setminus V'$. Such a type is orthogonal to Γ, hence stably dominated.

3It follows by a definable compactness argument that d induces the v-topology on V; this is anyhow clear for the good metrics we will use.
Lemma 3.10.1. (1) \(\mathbb{P}^n \) admits a good definable metric, with \(\rho = 0 \).

(2) Let \(F \) be a valued field, \(V \) a quasi-projective variety over \(F \). Then there exists a definable metric on \(V \).

Proof. Consider first the case of \(\mathbb{P}^1 = \mathbb{A}^1 \cup \{ \infty \} \). Define \(d(x, y) = d(x^{-1}, y^{-1}) = \text{val}(x - y) \) if \(x, y \in \mathbb{O} \), \(d(x, y) = 0 \) if \(v(x), v(y) \) have different signs. This is easily checked to be consistent, and to satisfy the conditions (1-3). It is also clearly \(v \)-continuous. If \(F \leq K \) is a valued field extension, \(\pi : \Gamma(K) \rightarrow \Gamma \) a homomorphism of ordered \(\mathbb{Q} \)-spaces extending \(\Gamma(F) \), and \(K = (K, \pi \circ v) \), we have to check (Lemma 8.1.1) that \(\pi(d_K(x, y)) = d_K(x, y) \). If \(x, y \in \mathcal{O}_K \) then \(x, y \in \mathcal{O}_K \) and \(\pi d_K(x, y) = \pi d_K(x - y) = d_K(x, y) \). Similarly for \(x^{-1}, y^{-1} \). If \(v(x) < 0 < v(y) \), then \(v(x - y) < 0 \) so \(\pi(v(x - y)) \leq 0 \), hence \(d_K(x, y) = 0 = d_K(x, y) \). This proves the \(g \)-continuity. It is clear that the metric is good, with \(\rho = 0 \).

Now consider \(\mathbb{P}^n \) with homogeneous coordinates \([X_0 : \ldots : X_n]\). For \(0 \leq i \leq n \) denote by \(U_i \) the subset \(\{ x \in \mathbb{P}^n : X_i \neq 0 \wedge \inf \text{val}(X_j/X_i) \geq 0 \} \). If \(x \) and \(y \) belong both to \(U_i \) one sets \(d(x, y) = \inf \text{val}(X_j/X_i - Y_j/Y_i) \). If \(x \in U_i \) and \(y \notin U_i \), one sets \(d(x, y) = 0 \). One checks that this definition is unambiguous and reduces to the former one when \(n = 1 \). The proof it is \(v+g \)-continuous is similar to the case \(n = 1 \) and the fact it is good with \(\rho = 0 \) is clear. This metric restricts to a metric on any subvariety of \(\mathbb{P}^n \).

\[\square \]

3.11. Zariski topology. We shall occasionally use the Zariski topology on \(\hat{V} \). If \(V \) is an algebraic variety over a valued field, a subset of \(\hat{V} \) of the form \(\hat{F} \) with \(F \) Zariski closed, resp. open, in \(V \) is said to be Zariski closed, resp. open. Similarly, a subset \(E \) of \(\hat{V} \) is said to be Zariski dense in \(\hat{V} \) if \(\hat{V} \) is the only Zariski closed set containing \(E \). For \(X \subseteq \hat{V} \), the Zariski topology on \(X \) is the one induced from the Zariski topology on \(\hat{V} \).

3.12. Schematic distance. Let \(f(x_0, \ldots, x_m) \) be a homogenous polynomial with coefficients in the valuation ring \(\mathcal{O}_F \) of a valued field \(F \). One defines a function \(\text{val}(f) : \mathbb{P}^m \rightarrow [0, \infty] \) by \(\text{val}(f)[x_0 : \ldots : x_m] = \text{val}(f(x_0/x_i, \ldots, x_m/x_i)) \) for any \(i \) such that \(\text{val}(x_i) = \min_j(\text{val}(x_j)) \).

Now let \(V \) be a projective variety over a valued field \(F \) and let \(Z \) be a closed \(F \)-subvariety of \(V \). Fix an embedding \(\iota : V \hookrightarrow \mathbb{P}^m \) and a family \(f \) of homogenous polynomials \(f_i, 1 \leq i \leq r, \) in \(\mathcal{O}_F[x_0, \ldots, x_m] \) such that \(Z = V \cap (f_1 = \cdots = f_r = 0) \). For \(x \) in \(V \) set \(\varphi_{i,f}(x) = \min_j(\text{val}(f_j(x))) \). The function \(\varphi_{i,f} : V \rightarrow [0, \infty] \) is clearly \(F \)-definable and \(v+g \)-continuous and \(\varphi_{i,f}^{-1}(\infty) = Z \). Any function \(V \rightarrow [0, \infty] \) of the form \(\varphi_{i,f} \) for some \(\iota, f \) will be called a schematic distance function to \(Z \).
4. Definable compactness

Summary. This section is devoted to the study of definable compactness for subsets of \hat{V}. One of the main result is Proposition 4.2.18 which establishes the equivalence between being definably compact and being closed and bounded.

4.1. Definition of definable compactness. Let X be a definable or pro-definable topological space in the sense of § 3.3. Let p be a definable type on X.

Definition 4.1.1. A point $a \in X$ is a limit of p if for any definable neighborhood U of a (defined with parameters), p concentrates on U.

When X is Hausdorff, it is clear that a limit point is unique if it exists.

Definition 4.1.2. Let X be a definable or pro-definable topological space. One says X is definably compact if any definable type p on X has a limit point in X.

For subspaces of Γ^n with Γ o-minimal, our definition of definable compactness Definition 4.1.2 lies between the definition of [25] in terms of curves, and the property of being closed and bounded; so all three are equivalent. This will be treated in more detail later.

4.2. Characterization. A subset of $V\Gamma^n$ is said to be bounded if for some γ in Γ it is contained in $\{(x_1, \ldots, x_n) : v(x_i) \geq \gamma, 1 \leq i \leq n\}$. This notion extends to varieties V over a valued field, cf., e.g., [29] p. 81: $X \subseteq V$ is defined to be bounded if there exists an affine covering $V = \cup_{i=1}^m U_i$, and bounded subsets $X_i \subseteq U_i$, with $X \subseteq \cup_{i=1}^m X_i$. Note that projective space \mathbb{P}^n is bounded within itself, and so any subset of a projective variety V is bounded in V.

We shall say a subset of $\Gamma_{0,\infty}^n$ is bounded if it is contained in $[a, \infty)^n$ for some a. More generally a subset of $V\Gamma^n \times \Gamma_{0,\infty}^n$ is bounded if its pullback to $V\Gamma^{n+m}$ is bounded.

We will use definable types as a replacement for the curve selection lemma, whose purpose is often to use the definable type associated with a curve at a point. Note that the curve selection lemma itself is not true for Γ_∞, e.g. in $\{(x, y) \in \Gamma_\infty^2 : y > 0, x < \infty\}$ there is no curve approaching $(\infty, 0)$.

Note that if V is a definable set, the notion of definable type on the strict pro-definable set \hat{V} makes sense, since the notion of a definable \ast-type, i.e. type in infinitely many variables, or equivalently a definable type on a pro-definable set, is clear.

Let Y be a definable subset of Γ_∞. Let q be a definable type on Y. Then let $\lim q$ be the unique $\alpha \in Y$, if any, such that q concentrates on any neighborhood of α. It is easy to see that if Y is bounded then α exists, by considering the $q(x)$-definition of the formula $x > y$; it must have the form $y < \alpha$ or $y \leq \alpha$.
Let V be a definable set and let q be a definable type on \hat{V}. Clearly $\lim q$ exists if there exists $r \in \hat{V}$ such that for any continuous pro-definable function $f : \hat{V} \to \Gamma_\infty$, $\lim f_*(q)$ exists and

$$f(r) = \lim f_*(q).$$

If r exists it is clearly unique, and denoted lim q.

Lemma 4.2.1. Let V be an affine variety over a valued field and let q be a definable type on \hat{V}. We have $\lim q = r$ if and only if for any regular H on V, setting $h = \text{val} \circ H$,

$$r_*(h) = \lim h_*(q).$$

Proof. One implication is clear, let us prove the reverse one. Indeed, by hypothesis, for any pro-definable neighborhood W of a, p implies $x \in W$. In particular, if U is a definable neighborhood of $f(a)$, p implies $x \in f^{-1}(U)$, hence $f_*(p)$ implies $x \in U$. It follows that $\lim f_*(p) = f(a)$.

Lemma 4.2.2. Let X be a bounded definable subset of an algebraic variety V over a valued field and let q be a definable type on \hat{X}. Then $\lim q$ exists in \hat{V}.

Proof. It is possible to partition V into open affine subsets V_i and X into bounded definable subsets $X_i \subseteq V_i$. We may thus assume V is affine; and indeed that X is a bounded subset of A^n. For any regular H on V, setting $h = \text{val} \circ H$, $h(X)$ is a bounded subset of Γ_∞ and $h_*(q)$ is a definable type on $h(X)$, hence has a limit $\lim h_*(q)$.

Now let K be an algebraically closed valued field containing the base of definition of V and q. Fix $\delta \models q|K$ and $d \models p_\delta|K(\delta)$, where p_δ is the type coded by the element $\delta \in \hat{V}$. Let $B = \Gamma(K), N = K(\delta, d)$ and $B' = \Gamma(N)$. So B is a divisible ordered abelian group. We have $\Gamma(N) = \Gamma(K(\delta))$ by orthogonality to Γ of p_δ. Since q is definable, for any $e \in B'$, $\text{tp}(e/B)$ is definable; in particular the cut of e over B is definable. Set $B'_0 = \{b \in B' : (\exists b \in B)b < b\}$. It follows that if $e \in B'_0$, there exists an element $\pi(e) \in B \cup \{\infty\}$ which is nearest e. Note $\pi : B'_0 \to B_\infty$ is an order-preserving retraction and a homomorphism in the obvious sense. The ring $R = \{a \in K(d) : \text{val}(a) \in B'_0\}$ is a valuation ring of $K(d)$, containing K. Also d has its coordinates in R, because of the boundedness assumption on X. Consider the maximal ideal $M = \{a \in K(d) : \text{val}(a) > B\}$ and set $K' = R/M$. We have a canonical homomorphism $R \to K'$; let d' be the image of d. We have a valuation on K' extending the one on K, namely $\text{val}(x + M) = \pi(\text{val}(x))$. So K' is a valued field extension of K, embeddable in some elementary extension. Let $r = \text{tp}(d'/K)$. Then r is definable and stably dominated; the easiest way to see that is to assume K is maximally complete (as we may); in this case stable domination follows from $\Gamma(K(d')) = \Gamma(K)$ by Theorem 2.8.2. The fact that, for any h as above, $r_*(h) = \lim h_*(q)$ is a direct consequence from the definitions. □
Let V be a definable set. According to Definition 4.1.2 a pro-definable $X \subseteq \hat{V}$ is definably compact if for any definable type q on X we have $\lim q \in X$.

Remark 4.2.3. Under this definition, any intersection of definably compact sets is definably compact. In particular an interval such as $\cap_n [0, 1/n]$ in Γ. However we mostly have in mind strict pro-definable sets.

Lemma 4.2.4. Let V be an algebraic variety over a valued field, Y a closed pro-definable subset of \hat{V}. Let q be a definable type on Y, and suppose $\lim q$ exists. Then $\lim q \in Y$.

Hence if Y is bounded (i.e. it is a subset of \hat{X} for some bounded definable $X \subseteq V$) and closed in \hat{V}, then Y is definably compact.

Proof. The fact that $\lim q \in Y$ when Y is closed follows from the definition of the topology on \hat{V}. The second statement thus follows from Lemma 4.2.2. \square

Definition 4.2.5. Let T be a theory with universal domain U. Let Γ be a stably embedded sort with a \emptyset-definable linear ordering. Recall T is said to be metastable over Γ if for any small $C \subset U$, the following condition is satisfied:

(MS) For some small B containing C, for any a belonging to a finite product of sorts, $\text{tp}(a/B, \Gamma(Ba))$ is stably dominated.

Such a B is called a metastability base. It follows from Theorem 12.18 from [16] that ACVF is metastable.

Let T be any theory, X and Y be pro-definable sets, and $f : X \to Y$ a pro-definable map. The f induces a map $f_{\text{def}} : S_{\text{def},X} \to S_{\text{def},Y}$ from the set of definable types on X to the set of definable types on Y.

We remark that if f is injective, then so is f_{def}. This reduces to the case of definable $f : X \to Y$, where it is clear.

We now consider the surjective case.

Lemma 4.2.6. Let $f : X \to Y$ a surjective pro-definable map between pro-definable sets.

(1) Assume T is o-minimal. Then f_{def} is surjective.

(2) Assume T is metastable over some o-minimal Γ. Then f_{def} is surjective, moreover it restricts to a surjective $\hat{X} \to \hat{Y}$.

Remarks 4.2.7.

(1) It is not true that either of these maps is surjective over a given base set F, nor even that the image of $S_{\text{def},X}(F)$ contains $\hat{Y}(F)$ (e.g. take X a finite set, Y a point).

(2) It would also be possible to prove the C-minimal case analogously to the o-minimal one, as below.

Proof. First note it is enough to consider the case where X consists of real elements. Indeed if X, Y consist of imaginaries, find a set X' of real elements and a surjective map $X' \to X$; then it suffices to show $S_{\text{def},X'} \to S_{\text{def},Y}$ is surjective.
The lemma reduces to the case that $X \subseteq U \times Y$ is a complete type, $f : X \to Y$ is the projection, and U is one of the basic sorts. Indeed, we can first let $U = X$ and replace X by the graph of f. Any given definable type $r(y)$ in Y restricts to some complete type $r_0(y)$, which we can extend to a complete type $r_0(u,y)$ implying X. Thus we can take $X \subseteq U \times Y$ to be complete. Now writing an element of X as $a = (b,a_1,a_2,\ldots)$, with $b \in Y$ and $(a_1,a_2,\ldots) \in U$, given the lemma for the case of 1-variable U, we can extend $r(y)$ to a definable type one variable at a time. Note that when $X = \lim X_j$, we have $S_{\text{def},X} = \lim S_{\text{def},X_j}$ naturally, so at the limit we obtain a definable type on X. If X is pro-definable in uncountably many variables, we repeat this transfinitely.

Let us now prove (1). We can take X,Y to be complete types with $X \subseteq \Gamma \times Y$, and f the projection. It follows from completeness that for any $b \in Y$, $f^{-1}(b)$ is convex. Let $r(y)$ be a definable type in Y. Let M be a model with r defined over M, let $b \models r|M$, and consider $f^{-1}(b)$.

If for any M, $x \in X \wedge f(x) \models r|M$ is a complete type $p|M$ over M, then $x \in X \cup p(f(x))$ already generates a definable type by Lemma 2.3.1 and we are done. So, let us assume for some M, and $b \models p|M$, $x \in X \wedge f(x) = b$ does not generate a complete type over $M(b)$. Then there exists an $M(b)$-definable set D that splits $f^{-1}(b)$ into two pieces. We can take D to be an interval. Then since $f^{-1}(b)$ is convex, one of the endpoints of D must fall in $f^{-1}(b)$. This endpoint is $M(b)$-definable, and can be written $h(b)$ with h an M-definable function. In this case $tp(h(b),b|M) = M$-definable, and has a unique extension to an M-definable type.

In either case we found $p \in S_{\text{def},X}$ with $f_*(p) = r$. Note that the proof works when only X is contained in the definable closure of an o-minimal definable set, for any pro-definable Y.

For the proof of (2) consider $r \in S_{\text{def},Y}$. Let M be a metastability base, with f, X, Y, and r defined over M. Let $b \models r|M$, and let $c \in f^{-1}(b)$. Let b_1 enumerate $\Gamma(M(b))$. Then $tp(b/M(b_1)) = r'|M(b_1)$ with r' stably dominated, and $tp(b_1/M) = r_1|M$ with r_1 definable. Let c_1 enumerate $\Gamma(M(c))$; then $tp(cb/M(c_1)) = q|M(c_1)$ with q' stably dominated. By (1) it is possible to extend $tp(c_1b_1/M) \cup r_1$ to a definable type $q_1(x_1,y_1)$. Let $M \prec M'$ with q_1 defined over M', with $c_1b_1 \models q_1|M'$, and $cb \models q|M'(c_1b_1)$. Then $tp(bc/M')$ is definable by transitivity, and $tp(b/M') = r|M'$. Let p be the M'-definable type with $p|M' = tp(bc/M')$. Then $f_*(p) = r$.

The surjectivity on stably dominated types is similar; in this case there is no b_1, and q_1 can be chosen so that $c_1 \in M'$. Indeed $tp(c_1/M)$ implies $tp(c_1/M(b))$ so it suffices to take M' containing $M(c)$.

Remark 4.2.8. It would be easy to give an abstract version of Lemma 4.2.6; let us just mention one more case that we will require. Say T has the extension property if f_{def} is always surjective, in the situation of Lemma 4.2.6. First, let
\[T = \text{Th}(A), \text{where } A \text{ is a linearly ordered group with a definable convex subgroup } B, \text{ such that } (*) \text{ } B \text{ and } A/B \text{ are o-minimal. Then } T \text{ has the extension property. This is proved exactly as in the beginning of (1), by reduction to 1-types; here we can reduce to } B \text{ and cosets of } B \text{ (all o-minimal) and to } A/B. \text{ Secondly, assume } T \text{ is metastable with respect to a linearly ordered group with } (*) \text{; then the proof of (2) shows that } T \text{ has the extension property.}

\]

In particular, the theory ACV\(^2\)F obtained from ACVF by expanding \(\Gamma \) by a predicate for a convex subgroup considered in 8.3 has the extension property.

Proposition 4.2.9. Let \(X \) and \(Y \) be definable sets and let \(f : \hat{X} \to \hat{Y} \) be a continuous and surjective morphism. Let \(W \) be a definably compact pro-definable subset of \(\hat{X} \). Then \(f(W) \) is definably compact.

Proof. Let \(q \) be a definable type on \(f(W) \). By Lemma 4.2.6 there exists a definable type \(r \) on \(W \), with \(f_* (r) = q \). Since \(W \) is definably compact, \(\lim r \) exists and belongs to \(W \). But then \(\lim q = f(\lim r) \) belongs to \(f(W) \) (since this holds after composing with any continuous morphism to \(\Gamma_\infty \)). So \(f(W) \) is definably compact. \(\square \)

Lemma 4.2.10. Let \(V \) be an algebraic variety over a valued field, and let \(W \) be a definably compact pro-definable subset of \(\hat{V} \). Then \(W \) is contained in \(\hat{X} \) for some bounded definable \(v+g \) closed subset \(X \) of \(V \times \Gamma_\infty^n \).

Proof. By using Proposition 4.2.9 for projections \(V \times \Gamma_\infty^n \to \hat{V} \) and \(V \times \Gamma_\infty^n \to \Gamma_\infty \), one may assume \(W \) is a pro-definable subset of \(\Gamma_\infty \) or \(\hat{V} \). The first case is clear. For the second one, one may assume \(V \) is affine contained in \(\mathbb{A}^n \) with coordinates \((x_1, \ldots, x_n)\). Consider the function \(\min \text{val}(x_i) \) on \(V \), extended to \(\hat{V} \); it’s a continuous function on \(\hat{V} \). The image of \(W \) is a definably compact subset of \(\Gamma_\infty \), hence is bounded below, say by \(\alpha \). Let \(X = \{(x_1, \ldots, x_n) : \text{val}(x_i) \geq \alpha \} \). Then \(W \subseteq \hat{X} \). \(\square \)

By countably-pro-definable set we mean a pro-definable set isomorphic to one with a countable inverse limit system. Note that \(\hat{V} \) is countably-pro-definable.

Lemma 4.2.11. Let \(X \) be a strict, countably-pro-definable set over a model \(M \), \(Y \) a relatively definable subset of \(X \) over \(M \). If \(Y \neq \emptyset \) then \(Y(M) \neq \emptyset \).

Proof. Write \(X = \text{lim}_{n} X_n \) with transition morphisms \(\pi_{m,n} : X_m \to X_n \), and \(X_n \) and \(\pi_{m,n} \) definable. Let \(\pi_n : X \to X_n \) denote the projection. Since \(X \) is strict pro-definable, the image of \(X \) in \(X_n \) is definable; replacing \(X_n \) with this image, we may assume \(\pi_n \) is surjective. Since \(Y \) is relatively definable, it has the form \(\pi_n^{-1}(Y_n) \) for some nonempty \(Y_n \subseteq X_n \). We have \(Y_n \neq \emptyset \), so there exists \(a_n \in Y_n(M) \). Define inductively \(a_m \in Y_m(M) \) for \(m > n \), choosing \(a_m \in Y_m(M) \) with \(\pi_{m,m-1}(a_m) = a_{m-1} \). For \(m < n \) let \(a_m = \pi_{n,m}(a_n) \). Then \((a_m) \) is an element of \(X(M) \). \(\square \)
Let X be a pro-definable set with a definable topology (in some theory). Given a model M, and an element a of X in some elementary extension of M, we say that $\text{tp}(a/M)$ has a limit b if $b \in X(M)$, and for any M-definable open neighborhood U of b, we have $a \in U$. This extends the notion of a limit of a definable type; if $a \models q|M$ with q an M-definable type, the limits have the same meaning. In the o-minimal setting of Γ_∞, we show however that in fact limits appear only for definable types.

Lemma 4.2.12. Let M be an elementary submodel of Γ_n^∞, and $p_0 = \text{tp}(a/M)$. Assume $\lim p_0$ exists. Then there exists a (unique) M-definable type p extending p_0.

Proof. In case $n = 1$, $\text{tp}(a/M)$ is determined by a cut in $\Gamma_\infty(M)$. If this cut is irrational then by definition there can be no limit in M. So this case is clear.

We have to show that for any formula $\phi(x,y)$ over M, $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_m)$, $\{c \in M : \phi(a,c)\}$ is definable. Any formula is a Boolean combination of unary formulas and of formulas of the form: $\sum \alpha_i x_i + \sum \beta_j y_j + \gamma \circ 0$, where i, j range over some subset of $\{1, \ldots, n\}, \{1, \ldots, m\}$ respectively, $\alpha_i, \beta_j \in \mathbb{Q}, \gamma \in \Gamma(M)$, and $\circ \in \{=, <\}$. This case follows from the case $n = 1$ already noted, applied to $\text{tp}(\sum \alpha_i a_i/M)$.

Proposition 4.2.13. Let X be a pro-definable subset of $\hat{V} \times \Gamma^m_\infty$ with V an algebraic variety over a valued field. Let a belong to the closure of X. Then there exists a definable type on $\hat{V} \times \Gamma^\infty_\infty$ concentrating on X, with limit point a.

Proof. We may assume V is affine; let $V' = V \times \Gamma^m_\infty$, so $\hat{V} \times \Gamma^m_\infty = \hat{V}'$. Since X is a pro-definable subset of \hat{V}', we may write $X = \cap_{i \in I} X_i$, with X_i a relatively definable subset of \hat{V}'. We may take the family (X_i) to be closed under finite intersections.

Let M be a metastability base model, over which the X_i and a are defined. Let \mathcal{U} be the family of M-definable open subsets U of \hat{V}' with $a \in U$. Given any $U \in \mathcal{U}$ and $i \in I$, choose $b_{U,i} \in (X_i \cap U)(M)$; this is possible by Lemma 4.2.11. Let $p_{U,i} = b_{U,i}|M$. (Here $b_{U,i}$ is viewed as a definable type; $p_{U,i}$ is a type over M.) Choose an ultrafilter μ on $\mathcal{U} \times I$ such that for any $U_0 \in \mathcal{U}$ and $i_0 \in I$,

$$\{(U,i) \in \mathcal{U} \times I : U \subseteq U_0, X_i \subseteq X_{i_0}\} \in \mu.$$

By compactness of the type space, there exists a limit point p_M of the points $p_{U,i}$ along μ, in the type space topology. In other words for any M-definable set W, if $W \in p_M$ then $W \in p_{U,i}$ for μ-almost all (U,i). In particular, $p_M(x)$ implies $x \in X_i$ for each i, so $p_M(x)$ implies $x \in X$. On the other hand a is the limit of the $b_{U,i}$ along μ in the space $\hat{V}'(M)$. View p_M as the type of elements of V' over M, of Γ-rank p say; let $f = (f_1, \ldots, f_p)$ be an M-definable function $V' \to \Gamma$ witnessing this rank. Since V is affine we can take f_i to have the form $\text{val}(F_i)$, with F_i a
polynomial, or coordinate functions on Γ^n_∞. Since a is stably dominated, $f_\cdot(a)$ concentrates on a single point $\alpha \in \Gamma^\rho$.

By definition of the topology on \widehat{V}, and since a is the μ-limit of the $p_{U,i}$ in \widehat{V}, $\lim_\mu f_\cdot(b_{U,i}) = \alpha$. In particular, for any M-definable open neighborhood W of α in Γ^ρ, $f_\cdot(b_{U,i}) \in W$ for almost all (U,i). So $f_\cdot(p_{U,i})$ concentrates on W for almost all (U,i), and hence so does $f_\cdot(p_M)$. Thus $f_\cdot(p_M)$ has α as a limit. By Lemma 4.2.12, $f_\cdot(p_M)$ is a definable type. By metastability, if $\beta \models p_M$, $\gamma = f(\beta)$, then $\text{tp}(\beta/M(\gamma))$ is the restriction to $M(\gamma)$ of an $M(\gamma)$-definable type; as now $\text{tp}(\gamma/M)$ is also definable, $\text{tp}(\beta/M) = p_M$ is a definable type, the restriction to M of an M-definable type p. To show that the limit of p is a, it suffices to consider M-definable neighborhoods U_0 of a in \widehat{V}; for any such U_0, we have $b_{U,i} \in U_0$ for all U with $U \subseteq U_0$, so $a \in U_0$.

Corollary 4.2.14. Let X be a pro-definable subset of \widehat{V} with V an algebraic variety over a valued field. If X is definably compact, then X is closed in \widehat{V}. Moreover X is contained in a bounded subset of \widehat{V}. If X is a definably compact pro-definable subset of $\widehat{V} \times \Gamma^n_\infty$, then again X is closed.

Proof. We may embed V in a complete variety \widehat{V}. The fact that X is closed in \widehat{V} is immediate from Proposition 4.2.13 and the definition of definable compactness. Let Z be the complement of V in \widehat{V}. Then X is disjoint from \widehat{Z}. Let $\gamma : \widehat{V} \to \Gamma^n_\infty$ be any continuous pro-definable function, taking values in Γ for arguments outside Z, and ∞ on Z. To construct such a γ, one may proceed as follows. By completeness of V, we have $\widehat{V}(K) = \widehat{V}(\mathcal{O}_K)$, so we have natural maps $\pi_\alpha : \widehat{V}(K) = \widehat{V}(\mathcal{O}_K) \to \widehat{V}(\mathcal{O}_K/t)$, for $t \in \mathcal{O}_K$, $\text{val}(t) = \alpha$; let $\gamma(x)$ be the largest α such that $\pi_\alpha(x) \in \pi_\alpha(Z)$ (or 0 if there is not such $\alpha \geq 0$). Then $\gamma(X)$ is a definably compact subset of Γ, hence bounded above by some α. So X is contained in $\{x : \gamma(x) \leq \alpha\}$ which is bounded.

Even for Th(Γ), definability of a type $\text{tp}(ab/M)$ does not imply that $\text{tp}(a/M(b))$ is definable. For instance b can approach ∞, while $a \sim \alpha b$ for some irrational real α, i.e. $qb < a < q'b$ if $q, q' \in \mathbb{Q}, q < \alpha < q'$. However we do have:

Lemma 4.2.15. Let p be a definable type of Γ^n, over M. Then up to a definable change of coordinates, p decomposes as the join of two orthogonal definable types p_f, p_i, such that p_f has a limit in Γ^n, and p_i has limit point ∞^ρ.

Proof. If $\alpha \in \mathbb{Q}^n$ and $x \in \Gamma^n$, we write $\alpha \cdot x$ for the scalar product $\sum_i \alpha_i x_i \in \Gamma$. Let $\alpha_1, \ldots, \alpha_k$ be a maximal set of linearly independent vectors in \mathbb{Q}^n such that the image of p under $x \mapsto \alpha_i \cdot x$ has a limit point in Γ. Let $\beta_1, \ldots, \beta_\ell$ be a maximal set of vectors in \mathbb{Q}^n such that for $x \models p|M$, $\alpha_1 \cdot x, \ldots, \alpha_k \cdot x, \beta_1 \cdot x, \ldots, \beta_\ell \cdot x$ are linearly independent over M. If $a \models p|M$, let $a' = (\alpha_1 \cdot a, \ldots, \alpha_k \cdot a), a'' = (\beta_1 \cdot a, \ldots, \beta_\ell \cdot a)$. For $\alpha \in \mathbb{Q}(\alpha_1, \ldots, \alpha_k)$ we have that $\alpha \cdot a$ is bounded between elements of M. On the other hand each $\beta \cdot a$, with $\beta \in \mathbb{Q}(\beta_1, \ldots, \beta_\ell)$, satisfies $\beta \cdot a > M$ or
For if \(m \leq \beta \cdot a \leq m' \) for some \(m \in M \), since \(\text{tp}(\beta \cdot a/M) \) is definable it must have a finite limit, contradicting the maximality of \(k \). It follows that \(\text{tp}(\alpha \cdot a/M) \cup \text{tp}(\beta \cdot a/M) \) extends uniquely to a complete 2-type, namely \(\text{tp}((\alpha \cdot a, \beta \cdot a)/M) \); in particular \(\text{tp}((\alpha \cdot a) + (\beta \cdot a)/M) \) is determined; from this, by quantifier elimination, \(\text{tp}(a'/M) \cup \text{tp}(a''/M) \) extends to a unique type in \(k + \ell \) variables. So \(\text{tp}(a'/M) \) and \(\text{tp}(a''/M) \) are orthogonal. After some sign changes in \(a'' \), so that each coordinate is \(> M \), the lemma follows.

Remark 4.2.16. It follows from Lemma 4.2.15 that to check for definable compactness of \(X \), it suffices to check definable maps from definable types on \(\Gamma_k \) that either have limit \(0 \), or limit \(\infty \). From this an alternative proof of the g- and v-criteria of §9 for closure in \(\hat{V} \) can be deduced.

Lemma 4.2.17. Let \(S \) be a definably compact definable subset of an o-minimal structure. If \(\mathcal{D} \) is a uniformly definable family of nonempty closed definable subsets of \(S \), and \(\mathcal{D} \) is directed (the intersection of any two elements of \(\mathcal{D} \) contains a third one), then \(\cap \mathcal{D} \neq \emptyset \).

Proof. By Lemma 2.19 of [18] there exists a cofinal definable type \(q(y) \) on \(\mathcal{D} \); concentrating, for each \(U \in \mathcal{D} \), on \(\{ V \in \mathcal{D} : V \subset U \} \).

Using the lemma on extension of definable types Lemma 4.2.6, let \(r(w, y) \) be a definable type extending \(q \) and implying \(w \in U_y \cap S \). Let \(p(w) \) be the projection of \(r \) to the \(w \)-variable. By definable compactness \(\lim p = a \) exists. Since \(a \) is a limit of points in \(D \), we have \(a \in D \) for any \(D \in \mathcal{D} \). So \(a \in \cap \mathcal{D} \).

Lemma 4.2.17 gives another proof that a definably compact set is closed: let \(\mathcal{D} = \{ S \setminus U \} \), where \(U \) ranges over basic open neighborhoods of a given point \(a \) of the closure of \(S \).

Proposition 4.2.18. Let \(V \) be an algebraic variety over a valued field, and let \(W \) be a pro-definable subset of \(\hat{V} \times \Gamma_m^\infty \). Then \(W \) is definably compact if and only if it is closed and bounded.

Proof. If \(W \) is definably compact it is closed and bounded by Lemma 4.2.14 and 4.2.10. If \(W \) is closed and bounded, its preimage \(W' \) in \(\hat{V} \times \mathbb{A}^m \) under \(\text{id} \times \text{val} \) is also closed and bounded, hence definably compact by Lemma 4.2.4. It follows from Proposition 4.2.9 that \(W \) is definably compact.

Proposition 4.2.19. Let \(V \) be a variety over a valued field \(F \), and let \(W \) be an \(F \)-definable subset of \(V \times \Gamma_m^\infty \). Then \(W \) is v+g-closed (resp. v+g-open) if and only if \(\hat{W} \) is closed (resp. open) in \(\hat{V} \).

Proof. A Zariski-locally v-open set is v-open, and similarly for g-open; hence for v+g-open. So we may assume \(V = \mathbb{A}^n \) and by pulling back to \(V \times \mathbb{A}^m \) that \(m = 0 \). It is enough to prove the statement about closed subsets. Let \(V_\alpha = (c0)^n \) be the closed polydisk of valuative radius \(\alpha = \text{val}(c) \). Let \(W_\alpha = W \cap V_\alpha \), so
\(\overline{W}_\alpha = \overline{W} \cap \overline{V}_\alpha \). Then \(W \) is \(v \)-closed if and only if \(W_\alpha \) is \(v \)-closed for each \(\alpha \); by Lemma 8.1.3, the same holds for \(g \)-closed; also \(\overline{W} \) is closed if and only if \(\overline{W}_\alpha \) is closed for each \(\alpha \). This reduces the question to the case of bounded \(\overline{W} \).

By Lemma 3.7.4, if \(\overline{W} \) is \(v + g \)-closed then \(\overline{W} \) is closed. In the reverse direction, if \(\overline{W} \) is closed it is definably compact. It follows that \(\overline{W} \) is \(v \)-closed. For otherwise there exists an accumulation point \(w \) of \(\overline{W} \), with \(w = (w_1, \ldots, w_m) \in \overline{W} \). Let \(\delta(v) = \min_{i=1}^m \text{val}(v_i - w_i) \). Then \(\delta(v) \in \Gamma \) for \(v \in \overline{W} \), i.e. \(\delta(v) < \infty \). Hence the induced function \(\delta: \overline{W} \to \Gamma_\infty \) also has image contained in \(\Gamma \); and \(\delta(\overline{W}) \) is definably compact. It follows that \(\delta(\overline{W}) \) has a maximal point \(\gamma_0 < \infty \). But then the \(\gamma_0 \)-neighborhood around \(w \) contains no point of \(\overline{W} \), a contradiction.

It remains to show that when \(\overline{W} \) is definably compact, \(W \) must be \(g \)-closed. This follows from Lemma 8.1.4. □

Corollary 4.2.20. Let \(V \) be an algebraic variety over a valued field, and let \(W \) be a definable subset of \(V \times \Gamma_\infty^m \). Then \(W \) is bounded and \(v + g \)-closed if and only if \(\overline{W} \) is definably compact.

Proof. Since \(W \) is \(v + g \)-closed if and only if \(\overline{W} \) is closed by Lemma 4.2.19, this is a special case of Proposition 4.2.18. □

Lemma 4.2.21. Let \(V \) be an algebraic variety over a valued field and let \(Y \) be a \(v + g \)-closed, bounded subset of \(V \times \Gamma_\infty^m \). Let \(W \) be a definable subset of \(V' \times \Gamma_\infty^m \), with \(V' \) another variety, and \(f : \overline{Y} \to \overline{W} \) be continuous. Then \(f \) is a closed map.

Proof. By Proposition 4.2.19 and Proposition 4.2.18, \(\overline{Y} \) is definably compact and any closed subset of \(\overline{Y} \) is definably compact, so the result follows from Proposition 4.2.9 and Corollary 4.2.14. □

Lemma 4.2.22. Let \(X \) and \(Y \) be \(v + g \)-closed, bounded definable subsets of a product of an algebraic variety over a valued field with some \(\Gamma_\infty^m \). Then, the projection \(\overline{X} \times \overline{Y} \to \overline{Y} \) is a closed map.

Proof. By Lemma 4.2.21 the mapping \(\overline{X} \times \overline{Y} \to \overline{Y} \) is closed. Since this map factorizes as \(\overline{X} \times \overline{Y} \to \overline{X} \times \overline{Y} \to \overline{Y} \), the mapping on the right, \(\overline{X} \times \overline{Y} \to \overline{Y} \), is also closed. □

Corollary 4.2.23. Let \(U \) and \(V \) be \(v + g \)-closed, bounded definable subsets of a product of an algebraic variety over a valued field with some \(\Gamma_\infty^m \). If \(f : \overline{U} \to \overline{V} \) is a pro-definable morphism with closed graph, then \(f \) is continuous.

Proof. By Lemma 4.2.22, the projection \(\pi_1 \) from the graph of \(f \) to \(\overline{U} \) is a homeomorphism onto the image. The projection \(\pi_2 \) is continuous. Hence \(f = \pi_2 \pi_1^{-1} \) is continuous. □
Lemma 4.2.24. Let $f : V \rightarrow W$ be a proper morphism of algebraic varieties. Then \hat{f} is a closed map. So is $\hat{f} \times \text{Id} : \hat{V} \times \Gamma^n_\infty \rightarrow \hat{W} \times \Gamma^n_\infty$.

Proof. $\hat{V} \times \Gamma^n_\infty$ can be identified with a subset S of $\hat{V} \times A^n$ (projecting on generics of balls around zero in the second coordinate); with this identification, $\hat{f} \times \text{Id}$ identifies with the restriction of $\hat{f} \times \text{Id}_{\hat{A}^n}$ to S. Thus the second statement, for $V \times \Gamma^n_\infty$, reduces to first for the case of the map $f \times \text{Id} : V \times A^n \rightarrow W \times A^n$.

To prove the statement on $f : V \rightarrow W$, let V', W' be complete varieties containing V, W, and let \bar{V} be the closure of the graph of f in $V' \times W'$. In the Zariski topology, the map $\text{Id} \times f : V' \times V \rightarrow V' \times W$ is closed by properness (universal closedness). The image of the diagonal on V, under this map, is the graph of f, a subset of $V \times W$; so it is Zariski closed as a subset of $V' \times W$. Let $g : V \rightarrow V \times W$ given by $g(v) = (v, f(v))$; so g is the composition of the isomorphism $v \mapsto (v, f(v))$ of V onto the graph of f, with the inclusion of the graph of f in $V \times W$. Both of these induce closed morphisms on $\hat{\text{ spaces}}$, so \hat{g} is closed.

Let $\pi : \bar{V} \rightarrow W'$ be the projection. Now $\hat{\pi}$ is a closed map by Lemma 4.2.21. So $\hat{\pi} \circ \hat{g} = \hat{\pi} \circ \hat{g} = \hat{f}$ is closed. (We could also obtain the result directly from Lemma 4.2.13.)

Remark 4.2.25. The previous lemmas apply also to ∞-definable sets.

Corollary 4.2.26. Let $f : V \rightarrow W$ be a radicial surjective morphism of algebraic varieties. Then $\hat{f} : \hat{V} \rightarrow \hat{W}$ is an homeomorphism.

Proof. Note that f is an isomorphism in the category of definable sets. Thus, $\hat{f} : \hat{X} \rightarrow \hat{Y}$ is a bijection, say by Lemma 4.2.6. On the other hand, f being an homeomorphism for the Zariski topology, it is proper, thus \hat{f} is closed by Lemma 4.2.24, hence an homeomorphism.

Lemma 4.2.27. Let X be a $v+g$-closed bounded definable subset of an algebraic variety V over a valued field. Let $f : X \rightarrow \Gamma_\infty$ be $v+g$-continuous. Then the maximum of f is attained on X. Similarly if X is a closed bounded pro-definable subset of \hat{V}.

Proof. By Lemma 3.8.2, f extends continuously to $F : \hat{X} \rightarrow \Gamma_\infty$. By Lemma 4.2.19 and Proposition 4.2.18 \hat{X} is definably compact. It follows from Lemma 4.2.9 that $F(\hat{X})$ is a definably compact subset of Γ_∞ and hence has a maximal point γ. Take p such that $F(p) = \gamma$, let $c \models p$, then $f(c) = \gamma$.

For Γ^n, Proposition 4.2.18 is a special case of [25], Theorem 2.1.

5. A CLOSER LOOK AT THE STABLE COMPLETION

Summary. In 5.1 we give a description of \hat{A}^n in terms of spaces of semi-lattices which will be used in 6.2. This is provided by constructing a topological embedding of \hat{A}^n into the inverse
limit of a system of spaces of semi-lattices $L(H_d)$ endowed with the linear topology, where H_d are finite dimensional vector spaces. The description is extended in 5.2 to the projective setting. In 5.3 the finite level morphism $\hat{A}^n \to L(H_d)$ is shown to be closed.

5.1. \hat{A}^n and spaces of semi-lattices. Let K be a model of ACVF and let V be a K-vector space of dimension N. By a lattice in V we mean a free 0-submodule of rank N. By a semi-lattice in V we mean an 0-submodule u of V, such that for some K-subspace U_0 of V we have $U_0 \subseteq u$ and u/U_0 is a lattice in V/U_0. Note that every semi-lattice is uniformly definable with parameters and that the set $L(V)$ of semi-lattices in V is definable. Also, a definable 0-submodule u of V is a semi-lattice if and only if there is no $0 \neq v \in V$ such that $Kv \cap u = \{0\}$ or $Kv \cap u = \mathcal{M}v$ where \mathcal{M} is the maximal ideal.

We define a topology on $L(V)$ as follows. The pre-basic open sets are those of the form: $\{u : h \not\in u\}$ and those of the form $\{u : h \in \mathcal{M}a\}$, where h is any element of V. The finite intersections of these sets clearly form an ind-definable family. We call this family the linear topology on $L(V)$.

Any finitely generated 0-submodule of K^N is generated by $\leq N$ elements; hence the intersection of any finite number of open sets of the second type is the intersection of N such open sets. However this is not the case for the first kind.

Another description can be given in terms of linear semi-norms. By a linear semi-norm on a finite-dimensional K-vector space V we mean a definable map $w : V \to \Gamma_\infty$ with $w(x_1 + x_2) \geq \min(w(x_1) + w(x_2))$ and $w(cx) = \text{val}(c) + w(x)$. Any linear semi-norm w determines a semi-lattice Λ_w, namely $\Lambda_w = \{x : w(x) \geq 0\}$. Conversely, any semi-lattice $\Lambda \in L(V)$ has the form $\Lambda = \Lambda_w$ for a unique w. We may thus identify $L(V)$ with the set of linear semi-norms on V. On the set of semi-norms there is a natural topology, with basic open sets of the form $\{w : \{w(f_1), \ldots, w(f_k)\} \in O\}$, with $f_1, \ldots, f_k \in V$ and O an open subset of Γ_∞^k. The linear topology on $L(V)$ coincides with the linear semi-norm topology.

Finally, a description as a quotient by a definable group action. Fix a basis for V, and let Λ_0 be the 0-module generated by this basis. Given $M \in \text{End}(V)$, let $\lambda(M) = M^{-1}(\Lambda_0)$. We identify $\text{Aut}(\Lambda_0)$ with the group of automorphisms T of V with $T(\Lambda_0) = \Lambda_0$. So $T \cong \text{Aut}(\Lambda_0) \cong GL_n(0)$. We give $\text{End}(V) = M_n(V)$ the valuation topology, viewing $M_n(V)$ as a copy of K^{n^2}.

Lemma 5.1.1. The mapping $\lambda : M \mapsto \lambda(M) = M^{-1}(\Lambda_0)$ is surjective and continuous. It induces a bijection between $\text{Aut}(\Lambda_0) \setminus \text{End}(V)$ and $L(V)$.

Proof. It is clear that $M \mapsto \lambda(M)$ is a surjective map from $\text{End}(V)$ to $L(V)$, and also that $\lambda(N) = \lambda(TN)$ if $T \in \text{Aut}(\Lambda_0)$. Conversely suppose $\lambda(M) = \lambda(N)$. Then M and N have the same kernel $E = \{a : Ka \subseteq M^{-1}(\Lambda_0)\}$. So NM^{-1} is a well-defined homomorphism $MV \to NV$. Moreover, $MV \cap \Lambda_0$ is a free 0-submodule of V, and $(NM^{-1})(MV \cap \Lambda_0) = (NV \cap \Lambda_0)$. Let C (resp. $C'\)$ be a free 0-submodule of Λ_0 complementary to $MV \cap \Lambda_0$ (resp. $NV \cap \Lambda_0$), and let $T_2 : C \to
C' be an isomorphism. Let $T = (NM^{-1})(MV \cap \Lambda_0) \oplus T_2$. Then $T \in \text{Aut}(\Lambda_0)$, and $NM^{-1}\Lambda_0 = T^{-1}\Lambda_0$, so (using $\ker M = \ker N$) we have $M^{-1}\Lambda_0 = N^{-1}\Lambda_0$. This shows the bijectivity of the induced map $\text{Aut}(\Lambda_0) \backslash \text{End}(V) \to L(V)$.

Continuity is clear: the inverse image of \{ $u : h \not\in u$ \} is \{ $M : Mh \not\in \mathcal{O}^n$ \}, while the inverse image of \{ $u : h \in Mu$ \} is \{ $M : Mh \in M^n$ \}. These are in fact $v+g$-closed. \hfill \Box

The mapping λ is far from being closed or open, with respect to the v-topology on $\text{End}(V)$. In that topology, $\text{Aut}(\Lambda_0)$ is open, so \mathcal{O}^n is an isolated point in the push-forward topology.

We say a subset of $L(V)$ is $\textit{bounded}$ if its pullback with respect to the map above to $\text{End}(V)$ is bounded. Note that if $X \subset M_n(K)$ is bounded then so is $\text{GL}_n(\mathcal{O})X$ (even $M_n(\mathcal{O})X$); so the image of a bounded set is bounded. Thus a bounded subset of $L(V)$ is a set of semi-lattices admitting bases in a common bounded ball in V. In terms of semi-norms, if Λ_w ranges over a bounded set, then for any $h \in V$, $w(h)$ lies in a bounded subset of Γ_{∞}, i.e. bounded on the left.

\textbf{Lemma 5.1.2.} \textit{The space $L(V)$ with the linear topology is Hausdorff. Moreover, any definable type on a bounded subset of $L(V)$ has a (unique) limit point in $L(V)$.}

\textit{Proof.} Let $u' \neq u'' \in L(V)$. One, say u', is not a subset of the other. Let $a \in u', a \not\in u''$. Let $I = \{ c \in K : ca \in u'' \}$. Then $I = \mathcal{O}c_0$ for some c_0 with $\text{val}(c_0) > 0$. Let c_1 be such that $0 < \text{val}(c_1) < \text{val}(c_0)$ and let $a' = c_1a$. Then $a' \in Mu'$ but $a' \not\in u''$. This shows that u' and u'' are separated by the disjoint open sets $\{ u : a' \not\in u \}$ and $\{ u : a' \in Mu \}$.

For the second statement, let Z be a bounded set of semi-norms. Let p be a definable type on Z. Let $w(h) = \lim_p w_x(h)$, where w_x is the norm corresponding to $x \models p$. This limit is not $-\infty$ since Z is bounded. It is easy to see that w is a semi-norm. Moreover any pre-basic open set containing Λ_w must also contain a generic point of p. \hfill \Box

Let $H_{m,d}$ be the space of polynomials of degree $\leq d$ in m variables. For the rest of this subsection m will be fixed; we will hence suppress the index and write H_d.

\textbf{Lemma 5.1.3.} \textit{For p in $\widehat{\mathcal{A}}^m$, the set $J_d(p) = \{ h \in H_d : p_*(\text{val}(h)) \geq 0 \}$ belongs to $L(H_d)$.}

\textit{Proof.} Note that $J_d(p)$ is a definable \mathcal{O}-submodule of H_d. For fixed nonzero $h_0 \in H_d$, it is clear that $J_d(p) \cap Kh_0 = \{ \alpha \in K : \text{val}(\alpha) + p_*(\text{val}(h_0)) \geq 0 \}$ is either a closed ball in Kh_0, or all of Kh_0, hence $J_d(p)$ is a semi-lattice. \hfill \Box
Hence we have a mapping \(J_d = J_{d,m} : \mathbb{A}^m \rightarrow L(H_d) \) given by \(p \mapsto J_d(p) \). It is clearly a continuous map, when \(L(H_d) \) is given the linear topology: \(f \notin J_d(p) \) if and only if \(p_*(\text{val}(f)) < 0 \), and \(f \in M J_d(p) \) if and only if \(p_*(\text{val}(f)) > 0 \).

Lemma 5.1.4. The system \((J_d)d=1,2,...\) induces a continuous morphism of pro-definable sets

\[
J : \mathbb{A}^m \rightarrow \varprojlim L(H_d),
\]

the transition maps \(L(H_{d+1}) \rightarrow L(H_d) \) being the natural maps induced by the inclusions \(H_d \subseteq H_{d+1} \). The morphism \(J \) is injective and induces a homeomorphism between \(\mathbb{A}^m \) and its image.

Proof. Let \(f : \mathbb{A}^m \times H_d \rightarrow \Gamma_\infty \) given by \((x,h) \mapsto \text{val}(h(x))\). Since \(J_d \) factors through \(Y_{H_d,f} \), \(J \) is a morphism of pro-definable sets (here \(Y_{H_d,f} \) is defined as in the proof of Theorem 3.1.1).

For injectivity, recall that types on \(\mathbb{A}^n \) correspond to equivalence classes of \(\mathcal{K} \)-algebra morphisms \(\varphi : K[x_1,\ldots,x_n] \rightarrow F \) with \(F \) a valued field, with \(\varphi \) and \(\varphi' \) equivalent if they are restrictions of a same \(\varphi'' \). In particular, if \(\varphi_1 \) and \(\varphi_2 \) correspond to different types, one should have

\[
\{ f \in K[x_1,\ldots,x_m] : \text{val}(\varphi_1(f)) \geq 0 \} \neq \{ f \in K[x_1,\ldots,x_m] : \text{val}(\varphi_2(f)) \geq 0 \},
\]

whence the result.

We noted already continuity. Let us prove that \(J \) is an open map onto its image. The topology on \(\mathbb{A}^n \) is generated by sets \(S \) of the form \(\{ p : p_*(\text{val}(f)) > \gamma \} \) or \(\{ p : p_*(\text{val}(f)) < \gamma \} \), where \(f \in H_d \) for some \(d \). For such an \(S \), \(J(S) = \pi_d^{-1}(J_d(S)) \), with \(\pi_d : \varprojlim L(H_d) \rightarrow L(H_d) \) the natural map. Thus, it is enough to check that \(J_d(S) \) is open. Replacing \(f \) by \(cf \) for appropriate \(c \), it suffices to consider \(S \) of the form \(\{ p : p_*(\text{val}(f)) > 0 \} \) or \(\{ p : p_*(\text{val}(f)) < 0 \} \). Now the image of these sets is precisely the intersection with the image of \(J \) of the open sets \(p_*(\text{val}(f)) \notin \Lambda \) or \(p_*(\text{val}(f)) \in \pi \\Lambda \).

The above lemma describes the \(\hat{V} \)-topology in terms of the linear topology when one takes all “jets” into account, but does not describe the image of \(J \), and gives little information about the individual \(J_d \).

5.2. A representation of \(\mathbb{P}^n \)

Let us define the tropical projective space \(\text{Trop}\mathbb{P}^n \) for \(n \geq 0 \), as the quotient \(\Gamma_n^{n+1} \setminus \{\infty\}^{n+1}/\Gamma \) where \(\Gamma \) acts diagonally by translation. This space may be topologically embedded in \(\Gamma_n^{n+1} \) since it can be identified with

\[
\{(a_0,\ldots,a_n) \in \Gamma_n^{n+1} : \min a_i = 0 \}.
\]

Over a valued field \(L \), we have a canonical definable map \(\tau : \mathbb{P}^n \rightarrow \text{Trop}\mathbb{P}^n \), sending \([x_0 : \ldots : x_n]\) to \([v(x_0) : \ldots : v(x_n)] = ((v(x_0) - \min_i v(x_i),\ldots,v(x_n) - \min_i v(x_i)))\).
Let us denote by $H_{n+1,d,0}$ the set of homogeneous polynomials in $n+1$ variables of degree d with coefficients in the valued field sort. Again we view n as fixed and omit it from the notation, letting $H_{d,0} = H_{n+1,d,0}$. Denote by by $H_{d,m}$ the definable subset of $H_{d,0}^{m+1}$ consisting of $m+1$-tuples of homogeneous polynomials with no common zeroes other than the trivial zero. Hence, one can consider the image $PH_{d,m}$ of $H_{d,m}$ in the projectivization $P(H_{d,0}^{m+1})$. We have a morphism $c : \mathbb{P}^n \times H_{d,m} \to \mathbb{P}^m$, given by $c([x_0 : \ldots : x_n], (h_0, \ldots, h_m)) = [h_0(x) : \ldots : h_m(x)]$. Since $c(x, h)$ depends only on the image of h in $PH_{d,m}$, we obtain a morphism $c : \mathbb{P}^n \times PH_{d,m} \to \mathbb{P}^m$. Composing c with the map $\tau : \mathbb{P}^m \to \text{Trop} \mathbb{P}^m$, we obtain $\tau : \mathbb{P}^n \times PH_{d,m} \to \text{Trop} \mathbb{P}^m$. For h in $PH_{d,m}$ (or in $H_{d,m}$), we denote by τ_h the map $x \mapsto \tau(x, h)$. Thus τ_h extends to a map $\hat{\tau}_h : \mathbb{P}^n \to \text{Trop} \mathbb{P}^m$.

Let $T_{d,m}$ denote the set of functions $PH_{d,m} \to \text{Trop} \mathbb{P}^m$ of the form $h \mapsto \hat{\tau}_h(x)$ for some $x \in \mathbb{P}^n$. Note that $T_{d,m}$ is definable.

Proposition 5.2.1. The space \mathbb{P}^n may be identified via the canonical mappings $\mathbb{P}^n \to T_{d,m}$ with the projective limit of the spaces $T_{d,m}$. If one endows $T_{d,m}$ with the topology induced from the Tychonoff topology, this identification is a homeomorphism.

The proof of the proposition is a straightforward reduction to the affine case, by using standard affine chart, that we omit.

Remark 5.2.2. By composing with the embedding $\text{Trop} \mathbb{P}^n \to \Gamma_{\infty}^{m+1}$, one gets a definable map $\mathbb{P}^n \to \Gamma_{\infty}^{m+1}$. The topology on \mathbb{P}^n can be defined directly using the above maps into Γ_{∞}, without an affine chart.

5.3. Relative compactness

Let H be a finite dimensional K-vector space. In this section we take $L(H)$ to have the linear topology.

We say that a definable subset X of $L(H)$ is relatively compact for the linear topology if for any definable type q on X, if q has a limit point a in $L(H)$, then $a \in X$. The closed sets of the linear topology are clearly relatively compact.

Lemma 5.3.1. The image of a closed set by the morphism $J_d : \widehat{\mathbb{A}}^m \to L(H_d)$ is relatively compact.

Proof. Let Y be a closed subset of $\widehat{\mathbb{A}}^m$. Let q be a definable type on $J(Y)$, and let b be a limit point of q for the linear topology. We have to show that $b \in J(Y)$. The case $d = 0$ is easy as J_0 is a constant map, so assume $d \geq 1$. We have in H_d the monomials x_i. For some nonzero $c'_i \in K$ we have $c'_i x_i \in b$, since b generates H_d as a vector space. Choose a nonzero c_i such that $c_i x_i \in M b$. Let $U = \{b' : c_i x_i \in M b', i = 1, \ldots, m\}$. Then U is a pre-basic open neighborhood of b; as b is a limit point of q, it follows that q concentrates on U. Note that $J^{-1}(U)$ is contained in \hat{B} where B is the polydisc $\text{val}(x_i) \geq -\text{val}(c_i), i = 1, \ldots, m$. Thus $J^{-1}(U)$ is bounded. Lift q to a definable type p on $Y \cap \hat{B}$ (Lemma 4.2.6). Then
as \(Y \cap \hat{B} \) is closed and bounded, \(p \) has a limit point \(a \) on \(Y \cap \hat{B} \). By continuity we have \(J(a) = b \), hence \(b \in J(Y) \). \(\square\)

It follows, writing \(X = J_d(J_d^{-1}(X)), \) that if a definable set in \(L(H_d) \) is an intersection of relatively compact sets, then it is itself relatively compact. Thus the relatively compact sets are the closed sets of a certain topology. We will now see that this is the linear topology itself.

For \(b \in L(H) \), we denote by \(v_b \) the semi-norm associated with \(b \).

The examples below illustrate some of the phenomena around the linear topology. We consider definable metrics in a different sense than in §3.10. Namely a \textit{definable g-metric} on a definable set \(X \) is a map \(d : X \to \Gamma_{\geq 0} \), satisfying symmetry, the triangle law \(d(x,z) \leq d(x,y) + d(y,z) \), and \(d(x,y) = 0 \) iff \(x = y \). It induces a topology in the obvious way (from the g-topology on \(\Gamma \)).

Example 5.3.2.

1. Let \(L^*(H) \) be the set of lattices on \(H \). This is easily seen to be a dense subset of \(L(H) \).

2. On \(L^*(H) \), we have a definable g-metric defines as follows. Each lattice corresponds to an actual linear norm on \(H \), i.e. a linear semi-norm such that \(w(h) = \infty \) iff \(h = 0 \). We define a definable g-metric between norms by \(g(w,w') = \sup \{|w(h) - w'(h)| : h \in H \smallsetminus \{0\}\} \).

3. This g-metric induces a definable topology on \(L^*(H) \) (in the sense of Ziegler), finer than the linear topology.

4. The space \(L(H) \) fibers over the (Grassmanian) space of linear subspaces of \(H \), and each fiber admits a similar metric.

5. \(L^*(H) \) is not open in \(L(H) \) when \(H \) is of dimension \(> 1 \). Given a finite number of vectors \(h_1, \ldots, h_k \) and \(h'_1, \ldots, h'_l \) with \(h_i \notin O^n, h'_j \in M^n \), let \(f : H \to K \) be a linear map so that \(\ker(f) \) does not pass through any of the vectors \(h_i \) or \(h'_j \); renormalize it so such that \(f(H) = \emptyset \). Then \(\val f(h_i) < 0 \) and \(\val f(h'_j) > 0 \). So \(h_i \notin f^{-1}(0), h'_j \in f^{-1}(M) = Mf^{-1}(0) \). Hence \(f^{-1}(0) \) belongs to a prescribed neighborhood of \(O^n \) in \(L(H) \), but it is not a lattice as soon as \(H \) is of dimension \(> 1 \).

6. Let \(-1 \in \Gamma \) be negative, let \(m \geq 1 \), and let \(Y \) be the set of lattices in \(L(K^m) \) of volume \(-1 \), i.e. \(Y = \{ M \emptyset^n : \val \det(M) = -1 \} \). Then \(Y \) is relatively definably compact, \(\emptyset^n \in cl(Y) \) in the linear topology, but \(\emptyset^n \notin Y \). To see this last point consider the lattice generated by \(M \emptyset^n \), where \(M \) is a lower-triangular matrices \((a,0), (c,d) \), where \(\val(a) = \val(c) < 0 \), \(\val(d) < 0 \) and \(\val(a) + \val(d) = -1 \).

6. \(\Gamma \)-internal spaces

Summary. This section is devoted to the topological structure of \(\Gamma \)-internal spaces. The main results about the topological structure of \(\Gamma \)-internal spaces are proved in 6.2. In 6.1 several related issues are discussed. The rather technical results in 6.3 are used in 6.4 which deals...
with the study of the topology of relatively \(\Gamma \)-internal spaces. 6.5 is devoted to the study of Abhyankar points which correspond to Abhyankar valuations. We prove a Bertini type result and also that the set of Abhyankar points is a strict ind-definable subset of \(\hat{V} \). Finally, in 6.6 we prove a rigidity statement for \(\Gamma \)-internal subsets of maximal \(o \)-minimal dimension of \(\hat{V} \), namely that they cannot be deformed by any homotopy. This result will be used in 10.6.

6.1. **Preliminary remarks.** Our aim in this section is to show that a subspace of \(\hat{V} \), definably isomorphic to a subset of \(\Gamma^n \) (after base change), is *homeomorphic* to a subset of \(\Gamma^n_\infty \) (after base change).

A number of delicate issues arise here. We say \(X \) is \(\Gamma \)-parameterized if there exists a (pro)-definable surjective map \(g : Y \to X \), with \(Y \subseteq \Gamma^n \). We do not know if a \(\Gamma \)-parameterized set is \(\Gamma \)-internal. This is a sharper form of Question 7.2.1.

We note here in passing that when discussing the (pro)-definable category, there is no point mentioning \(\Gamma_\infty \), since \(\infty \) has the same role as any other element. But from the point of view of the definable topology, the point \(\infty \) does not have the same type as any point of \(\Gamma \), nor of the point 0 of \([0, \infty] \); \(\Gamma_\infty \) does not (even locally) embed into \(\Gamma^n \), and the point \(\infty \) must be taken into account.

Note that \(X \) is \(\Gamma \)-internal if and only if it is \(\Gamma \)-parameterized, and in addition one of the projections \(\pi : \hat{V} \to H \) to a definable set \(H \), is injective on \(X \). Even in this case however, if we give \(H \) the induced topology so that \(\pi \) is closed and continuous, the restriction of \(\pi \) to \(X \) need not be a homeomorphism. If it can be taken to be one, we say that \(X \) is definably separated. (We have in mind that some definable map separates points topologically and not only definably.) The \(\Gamma \)-internal sets we will obtain in our theorems are \(\Gamma \)-separated, and the results of this section are applicable to such sets. Note that definably compact sets \(X \) are automatically definably separated, since the image of a closed subset of \(X \) is a definably compact and hence closed subset of \(\Gamma^n_\infty \).

We first discuss briefly the role of parameters. We fix a valued field \(F \). The term “definable” refers to \(\text{ACVF}_F \). Varieties are assumed defined over \(F \). At the level of definable sets and maps, \(\Gamma \) has elimination of imaginaries. In the expansion of \(\Gamma \) to a model of RCF, or any further \(0 \)-minimal expansion, elimination of imaginaries holds in a topological sense too. If \(X \subseteq \Gamma^n_\infty \) and \(E \) is a closed, definable equivalence relation on \(X \) then there exists a definable map \(f : X \to \Gamma^n_\infty \) inducing a homeomorphism between the topological quotient \(X/E \), and \(f(X) \) with the topology induced from \(\Gamma^n_\infty \).

In another direction, the pair \((k, \Gamma)\) also eliminates imaginaries (where \(k \) is the residue field, with induced structure), and so does \((\text{RES}, \Gamma)\), where \(\text{RES} \) denotes the generalized residue structure of [19].

However, \((k, \Gamma)\) or \((\text{RES}, \Gamma)\) do not eliminate imaginaries topologically. One reason for this, due to Eleftheriou (cf. Remark 13.3.2 (2), [12]) and valid already
for Γ, is that the theory DOAG of divisible ordered abelian groups is not sufficiently flexible to identify simplices of different sizes. A more essential reason for us is the existence of quotient spaces with nontrivial Galois action on cohomology. For instance take $\pm \sqrt{-1} \times [0,1]$ with $\pm \sqrt{-1} \times \{0\}$ and $\pm \sqrt{-1} \times \{1\}$ each collapsed to a point. However for connected spaces embedded in $\text{Res}^n \times \Gamma^n$, the Galois action on cohomology is trivial. Hence there is no embedding of the above circle in Γ^n_∞ compatible with the Galois action. The best we can hope for is that it be embedded in a twisted form Γ^n_w, for some finite set w; after base change to w, this becomes isomorphic to Γ^n_∞. In Theorem 6.2.6 we will show that such an embedding in fact exists for separated Γ-internal sets.

It would be interesting to study more generally the definable spaces occurring as closed iso-definable subsets of \hat{V} parameterized by a subset of $\text{VF}^n \times \Gamma^m$. In the case of VF^n alone, a key example should be the set of generic points of subvarieties of V lying in some constructible subset of the Hilbert scheme. This includes the variety V embedded with the valuation topology via the simple points functor (Lemma 3.6.1); possibly other components of the Hilbert scheme obtain the valuation topology too, but the different components (of distinct dimensions) are not topologically disjoint.

6.2. Topological structure of Γ-internal subsets of \hat{V}.

Lemma 6.2.1. Let V be a quasi-projective variety over an infinite valued field F, and let $f : \Gamma^n \to \hat{V}$ be F-definable. There exists an affine open $V' \subseteq V$ with $f(\Gamma^n) \subseteq \hat{V}'$. If $V = \mathbb{P}^n$, there exists a linear hyperplane H such that $f(\Gamma^n) \cap \hat{H} = \emptyset$.

Proof. Since V embeds into \mathbb{P}^n, we can view f as a map into $\overline{\mathbb{P}^n}$, so we may assume $V = \mathbb{P}^n$. For $\gamma \in \Gamma^n$, let $V(\gamma)$ be the linear Zariski closure of $f(\gamma)$; i.e. the intersection of all hyperplanes H such that $f(\gamma)$ concentrates on H. The intersection of $V(\gamma)$ with any \mathbb{A}^n is the zero set of all linear polynomials g on \mathbb{A}^n such that $f(\gamma)_*(h \circ g) = 0$. So $V(\gamma)$ is definable uniformly in γ. Now $V(\gamma)$ is an ACF_F-definable set, with canonical parameter $e(\gamma)$; by elimination of imaginaries in ACF_F, we can take $e(\gamma)$ to be a tuple of field elements. But functions $\Gamma^n \to \text{VF}$ have finitely many values (every infinite definable subset of VF contains an open subset, and admits a definable map onto k). So there are finitely many sets $V(\gamma)$. Let H be any hyperplane containing none of these. Then no $f(\gamma)$ can concentrate on H. \qed

We shall now make use of the spaces $L(H)$ of semi-lattices of §5.1. Given a basis v_1, \ldots, v_n of H, we say that a semi-lattice is diagonal if it is a direct sum $\sum_{i=1}^n I_i v_i$, with I_i an ideal of K or $I_i = K$.
Lemma 6.2.2. Let Y be a Γ-internal subset of $L(H)$. Then there exists a finite number of bases b^1, \ldots, b^i of H such that each $y \in Y$ is diagonal for some b^j. If Y is defined over a valued field F, these bases can be found over F^{alg}.

Proof. For $y \in Y$, let $U_y = \{ h \in H : Kh \subseteq y \}$. Then U_y is a subspace of H, definable from Y. The Grassmanian of subspaces of H is an algebraic variety, and has no infinite Γ-internal definable subsets. Hence there are only finitely many values of U_y. Partitioning Y into finitely many sets we may assume $U_y = U$ for all $y \in Y$. Replacing H by H/U, and Y by $\{ y/U : y \in Y \}$, we may assume $U = (0)$. Thus Y is a set of lattices.

Now the lemma follows from Theorem 2.4.13 (iii) of [15], except that in this theorem one considers f defined on Γ (or a finite cover of Γ) whereas Y is the image of Γ^n under some definable function f. In fact the proof of 2.4.13 works for functions from Γ^n; however we will indicate how to deduce the n-dimensional case from the statement there, beginning with 2.4.11. We first formulate a relative version of 2.4.11. Let $U = G_i$ be one of the unipotent groups considered in 2.4.11 (we only need the case of $U = U_n$, the full strictly upper triangular group). Let X be a definable set, and let g be a definable map on $X \times \Gamma$, with $g(x, \gamma)$ a subgroup of U, for any (x, γ) in the domain of g. Let f be another definable map on $X \times \Gamma$, with $f(x, \gamma) \in U/g(x, \gamma)$. Then there exist finitely many definable functions $p_j : X \to \Gamma$, with $p_j \leq p_{j+1}$, definable functions b_j on X, such that letting $g^*_j(x) = \cap_{p_j(x) < \gamma < p_{j+1}(x)} g(x, \gamma)$ we have $b_j(x) \in U/g^*_j(x)$, and

\begin{equation}
(*) \quad f(x, \gamma) = b_j(x)g(x, \gamma)
\end{equation}

whenever $p_j(x) < \gamma < p_{j+1}(x)$. This relative version follows immediately from 2.4.11 using compactness, and noting that $(*)$ determines $b_j(x)$ uniquely as an element of $U/g^*_j(x)$.

Now by induction, we obtain the multidimensional version of 2.4.11:

Let g be a definable map on a definable subset I of Γ^n, with $g(\gamma)$ a subgroup of U for each $\gamma \in I$. Suppose f is also a definable map on I, with $f(\gamma) \in U/g(\gamma)$. Then there is a partition of I into finitely many definable subsets I' such that for each I' there is $b \in U$ with $f(\gamma) = bg(\gamma)$ for all $\gamma \in I'$.

To prove this for $\Gamma^{n+1} = \Gamma^n \times \Gamma$, apply the case Γ^n to the functions b_j, g_j as well as $f, g(x, p_j(x))$ (at the endpoints of the open intervals).

Now the lemma follows as in 2.4.13 for the multidimensional case follows as in [15] 2.4.13. Namely, each lattice Λ has a triangular O-basis; viewed as a matrix, it is an element of the triangular group B_n. So there exists an element $A \in U_n$ such that Λ is diagonal for A, i.e. Λ has a basis DA with $D \in T_n$ a diagonal matrix. If $D'A'$ is another basis for Λ of the same form, we have $DA = ED'A'$ for some $E \in B_n(O)$. Factoring out the unipotent part, we find that $D^{-1}D' \in T_n(O)$. So $D/T_n(O)$ is well-defined, the group $D^{-1}B_n(O)D$ is
well-defined, we have $D^{-1}ED' \in D^{-1}B_n(0)D \cap U_n$, and the matrix A is well-defined up to translation by an element of $g(\Lambda) = D^{-1}B_n(0)D \cap U_n$. By the multidimensional 2.4.11, since Y is Γ-internal, it admits a finite partition into definable subsets Y_i, such that for each i, there exists a basis A diagonalizing each $y \in Y_i$.

Moreover, A is uniquely defined up to $\cap_{y \in Y_i} g(y)$. The rationality statement now follows from Lemma 6.2.3. \hfill \square

Lemma 6.2.3. Let F be a valued field, let h be an F-definable subgroup of the unipotent group U_n, and let c be an F-definable coset of h. Then c has a point in F^{alg}. If F has residue characteristic 0, or if F is trivially valued and perfect, c has a point in F.

Proof. As in [15], 2.4.11, the lemma can be proved for all unipotent algebraic groups by induction on dimension, so we are reduced to the case of the one-dimensional unipotent group G_a. In the non-trivially valued case the statement is clear for F^{alg}, since F^{alg} is a model. If F is nontrivially valued and has equal characteristic 0, any definable ball has a definable point, obtained by averaging a definable finite set of points.

There remains the case of trivially valued, perfect F. In this case the subgroup must be $G_a, (0), \emptyset$ or M. The group \emptyset has no other F-definable cosets. As for M the definable cosets correspond to definable elements of the residue field; as the residue field (isomorphic to F) is perfect, the definable closure is just the residue field itself; but each element of the residue field of F is the residue of a (unique) point of F. \hfill \square

Remark 6.2.4. Is the rationality statement in Lemma 6.2.3 valid in positive characteristic, for the groups encountered in Lemma 6.2.2, i.e. intersections of conjugates of $B_n(0)$ with U_n? This is not important for our purposes since the partition of Y may require going to the algebraic closure at all events.

Corollary 6.2.5. Let $X \subseteq \hat{A}^N$ be iso-definable and Γ-internal over an algebraically closed valued field F. Then for some d, and finitely many polynomials h_i of degree $\leq d$, the map $p \mapsto (p_*(\text{val}(h_i)))_i$ is injective on X.

Proof. By Lemma 5.1.4, the maps

$$p \mapsto J_d(p) = \{ h \in H_d : p_*(\text{val}(h)) \geq 0 \}$$

separate points on \hat{A}^N and hence on X. So for each $x \neq x' \in X$, for some d, $J_d(x) \neq J_d(x')$. Since X is iso-definable, for some fixed d, J_d is injective on X. Let F be a finite set of bases as in Lemma 6.2.2, and let $\{h_i\}$ be the set of elements of these basis. Pick x and x' in X; if $x_*(\text{val}(h_i)) = x'_*(\text{val}(h_i))$ for all i, we have to show that $x = x'$, or equivalently that $J_d(x) = J_d(x')$; by symmetry it suffices to show that $J_d(x) \subseteq J_d(x')$. Choose a basis, say $b = (b_1, \ldots, b^n)$, such that $J_d(x)$
is diagonal with respect to \(b \); the \(b^i \) are among the \(h_i \), so \(x_*(b^i) = x'_*(b^i) \) for each \(i \). It follows that \(J_d(x) \cap K b^i = J_d(x') \cap K b^i \). But since \(J_d(x) \) is diagonal for \(b \), it is generated by \(\cup_i (J_d(x) \cap K b^i) \); so \(J_d(x) \subseteq J_d(x') \) as required. \(\square \)

Proposition 6.2.6. Let \(V \subseteq \mathbb{P}^N \) be a quasi-projective variety over a valued field \(F \). Let \(X \subseteq \hat{V} \) be \(F \)-definable and \(\Gamma \)-internal as an iso-definable set. Then there exist finitely many polynomials \(h \) over \(F \) such that, with the notations of \(\S 5.2 \), the restriction \(\widehat{\tau}_h : \mathbb{P}^n \to \text{Trop} \mathbb{P}^m \) to \(X \) is injective. If \(V \) is projective and \(X \) is closed, \(\widehat{\tau}_h \) restricts to an homeomorphism between \(X \) and its image.

Proof. We may take \(V = \mathbb{P}^N \). Note that if \(\widehat{\tau}_h \) is injective, and \(g \in \text{Aut}(\mathbb{P}^n) = \text{PGL}(N + 1) \), it is clear that \(\widehat{\tau}_h \circ g \) is injective too. By Lemma 6.2.1, there exists a linear hyperplane \(H \) with \(\hat{H} \) disjoint from \(X \). We may assume \(H \) is the hyperplane \(x_0 = 0 \). Let \(X_1 = \{(x_1, \ldots, x_N) : [1 : x_1 : \ldots : x_N] \in X \} \). By Corollary 6.2.5, there exist finitely many polynomials \(h_1, \ldots, h_r \) such that \(p \mapsto (p_*(h_i)) \) is injective on \(X_1 \). Say \(h_i \) has degree \(\leq d \). Let \(H_i(x_0, \ldots, x_d) = x_0^d h_i(x_1/x_0, \ldots, x_d/x_0) \), and let \(h = (x_0^d, \ldots, x_N^d, H_1, \ldots, H_r) \), \(m = N + r \). Then \(h \in H_{d,m} \), and it is clear that \(\widehat{\tau}_h \) is injective on \(X \). \(\square \)

Corollary 6.2.7. Let \(V \) be a quasi-projective variety over a valued field \(F \). Let \(X \subseteq \hat{V} \) be \(F \)-definable and \(\Gamma \)-internal as an iso-definable set. Then there exists an \(F \)-definable continuous map \(\beta : \hat{V} \to [0, \infty]^w \), for some finite set \(w \) definable over \(F \), which restricts to an injective \(F \)-definable continuous map \(\alpha : X \to [0, \infty]^w \). \(\square \)

Proof. By Proposition 6.2.6, such map \(\beta_a \) exists over a finite Galois extension \(F(a) \) over \(F \) with values in \([0, \infty]^n \). Let \(w_0 \) be the set of Galois conjugates of \(a \) over \(F \) and set \(w = w_0 \times \{1, \ldots, n\} \). Define \(\beta : \hat{V} \to [0, \infty]^w \) by taking all the conjugates of the functions \(\beta \). Then the statement is clear. \(\square \)

Corollary 6.2.7 applies only when the base structure is a valued field; it may not have elements of \(\Gamma \) other than \(\mathbb{Q} \)-multiples of valuations of field element. We now extend the result to the case when the base structure may have independent elements of \(\Gamma \).

Proposition 6.2.8. Let \(A \) be a base structure consisting of a field \(F \), and a set \(S \) of elements of \(\Gamma \). Let \(V \) be a projective variety over \(F \), \(X \) a \(\Gamma \)-internal, \(A \)-definable subset of \(\hat{V} \). Then there exists a \(A \)-definable continuous injective map \(\phi : X \to [0, \infty]^w \) for some finite \(A \)-definable set \(w \). If \(X \) is closed, then \(\phi \) is a topological embedding.

Proof. We have \(\text{acl}(A) = \text{dcl}(A \cup F_{\text{alg}}) = F_{\text{alg}}(S) \) (Lemma 2.7.2). It suffices to show that a continuous, injective \(\phi : X \to [0, \infty]^n \) is definable over \(\text{acl}(A) \), for then the descent to \(A \) can be done as in Corollary 6.2.7. So we may assume \(F = F_{\text{alg}} \), hence \(A = \text{acl}(A) \). We may also assume \(S \) is finite, since the data is defined over a finite subset. Say \(S = \{\gamma_1, \ldots, \gamma_n\} \). Let \(q \) be the generic type of field elements
(x_1, \ldots, x_n) with \text{val}(x_i) = \gamma_i. Then q is stably dominated. If c \models q, then by Lemma 6.2.6 there exists an A(b)-definable topological embedding f_b : X \to \Gamma^n for some n and some b \in F(c)^{alg}. Since q is stably dominated, and A = acl(A), \text{tp}(b/A) extends to a stably dominated A-definable type p. If (a, b) \models p^2|A then f_a f_b^{-1} : X \to X; but \text{tp}(ab/A) is orthogonal to \Gamma while X is \Gamma-internal, so the canonical parameter of f_a f_b^{-1} is defined over A \cup \Gamma and also over A(a, b), hence over A. Thus f_a f_b^{-1} = g. If (a, b, c) \models p^3 we have f_b f_c^{-1} = f_a f_c^{-1} = g so g^2 = g and hence g = \text{Id}_X. So f_a = f_b, and f_a is A-definable, as required. The last statement is clear since maps from definably compact spaces to \Gamma_n^\infty are closed. \qed

6.3. Guessing definable maps by regular algebraic maps.

Lemma 6.3.1. Let V be a normal, irreducible, complete variety, Y an irreducible variety, X a closed subvariety of Y, g : Y \to X \subseteq V a dominant constructible morphism with finite fibers, all defined over a field F. Then there exists a pseudo-Galois covering \tilde{f} : \tilde{V} \to V such that each component U of \tilde{f}^{-1}(X) dominates Y rationally, i.e. there exists a dominant rational map g : U \to Y over X.

Proof. First an algebraic version. Let K be a field, R an integrally closed subring, G : R \to k a ring homomorphism onto a field k. Let k' be a finite field extension. Then there exists a finite pseudo-Galois field extension K' and a homomorphism G' : R' \to k'' onto a field, where R' is the integral closure of R in K', such that k'' contains k'.

Indeed we may reach k' as a finite tower of 1-generated field extensions, so we may assume k' = k(a) is generated by a single element. Lift the monic minimal polynomial of a over k to a monic polynomial P over R. Then since R is integrally closed, P is irreducible. Let K' be the splitting field of P. The kernel of G extends to a maximal ideal M' of the integral closure R' of R in K', and R'/M' is clearly a field containing k'.

To apply the algebraic version let K = F(V) be the function field of V. Let R be the local ring of X, i.e. the ring of regular functions on some Zariski open set not disjoint from X, and let G : R \to k be the evaluation homomorphism to the function field k = F(X) of X. Let k' = F(Y) the function field of Y, and K', R', G', M' and k'' be as above. Let f : \tilde{V} \to V be the normalization of V in K'. Then k'' is the function field of a component X' of f^{-1}(X), mapping dominantly to X. Since k' is contained in k'' as extensions of k there exists a dominant rational map g : X' \to Y over X. But Aut(K'/K) acts transitively on the components of f^{-1}(X), proving the lemma. \qed

Lemma 6.3.2. Let V be an algebraic variety over a field F, X_i a finite number of closed subvarieties, g_i : Y_i \to X_i a surjective constructible map with finite fibers. Then there exists a surjective finite morphism of varieties f : \tilde{V} \to V and a finite number of Zariski open subsets U_{ij} of \tilde{V} and morphisms g_{ij} : U_{ij} \to Y_i such that,
for any field extension \(F' \), any \(i, a \in X_i(F') \), \(b \in Y_j((F')^{alg}) \), \(c \in \tilde{V}((F')^{alg}) \) with \(g_i(b) = a \) and \(f(c) = a \), we have \(c \in U_{ij} \) and \(b = g_{ij}(c) \) for some \(j \). Furthermore, if \(V \) is normal, we may take \(f : \tilde{V} \to V \) to be a pseudo-Galois covering.

Proof. If the lemma holds for each irreducible component \(V_j \) of \(V \), with \(X_{j,i} = V_j \cap X_i \) and \(Y_{j,i} = g_i^{-1}(X_{j,i}) \), then it holds for \(V \) with \(X_i, Y_i \): assuming \(f_j : \tilde{V}_j \to V_j \) is as in the conclusion of the lemma, let \(f \) be the disjoint union of the \(f_j \). In this way we may assume that \(V \) is irreducible. Clearly we may assume \(V \) is complete. Finally, we may assume \(V \) is normal, by lifting the \(X_i \) to the normalization \(V_n \) of \(V \), and replacing \(Y_i \) by \(Y_i \times_{g_i} V_n \). We thus assume \(V \) is irreducible, normal and complete. We may also assume the varieties \(Y_i \) and \(X_i \) to be irreducible.

Let \(X_1, \ldots, X_n \) be the varieties of maximal dimension \(d \) among the subvarieties \(X_1, \ldots, X_n \). We use induction on \(d \). By Lemma 6.3.1 there exist finite pseudo-Galois coverings \(f_i : \tilde{V}_i \to V \) such that each component of \(f_i^{-1}(X_i) \) of dimension \(d \) dominates \(Y_i \) rationaaly. Let \(V^* \) be an irreducible subvariety of the fiber product \(\Pi V \tilde{V}_i \) with dominant (hence surjective) projection to each \(\tilde{V}_i \). (The function field of \(V^* \) is an amalgam of the function fields of the \(\tilde{V}_i \), finite extensions of the function field of \(V \).) Let \(f = (f_1, \ldots, f_n) \) restricted to \(V^* \). If \(a, b \), \(F' \) and \(X_i \) are as above, with \(a \) sufficiently generic in \(X_i \), then there exists \(c \in V^*((F')^{alg}) \) with \(f_i(c) = a \). Since \(f_i \) is a pseudo-Galois covering, for any \(c' \in V^*((F')^{alg}) \) with \(f_i(c') = a \) we have \(c' \in F'(c) \), so \(b \in F'(c) \). So there exists a dense open subset \(W_i \subseteq X_i \) such that for any \(a, b, F' \) and \(X_i \) as above, with \(a \in W_i \), \(f_i(c) = a \), \(g_i(b) = a \), we have \(b \in F'(c) \).

It follows, by applying the above with \(a \) a generic point of \(W_i \), that there exists a finite number of rational functions \(g_{ij} \) defined on Zariski open subsets of \(f_i^{-1}(W_i) \), such that for any such \(a, b \) and \(F' \) for some \(j \) we have \(b = g_{ij}(c) \). By shrinking \(W_i \), we may assume that \(W_i \) is contained in some affine open subset of \(V \), and that \(g_{ij} \) is regular above \(W_i \). Now we may extend \(g_{ij} \) to a regular function on a Zariski open subset \(U_{ij} \) of \(V^* \).

Let \(C_i \) be the complement of \(W_i \) in \(X_i \); so \(\dim(C_i) < d \). We now consider the family \(\{X_{i}^{'}\} \) of subvarieties of \(V^* \) consisting of components of the preimages of the \(X_i \) for \(i > \ell \) and of the \(C_i \) for \(i \leq \ell \), and the \(\{Y_{i}^{'}\} \) consisting of the pullback of \(Y_i \) to \(X_i \) for \(i > \ell \) and to \(C_i \) for \(i \leq \ell \). By induction, there exists a finite morphism \(f' : \tilde{V}' \to V^* \) dominating the \(Y_{i}^{'} \) in the sense of the lemma. Let \(\tilde{V} \) be the normalization of \(\tilde{V}' \) in the normal hull over \(F(V) \) of the function field \(F(V^*) \). To insure that \(\tilde{V} \) is pseudo-Galois, one may proceed as follows. One replaces \(V^* \) by its normalization, and one chooses \(\tilde{V}' \) to be pseudo-Galois over \(V^* \), which is possible by induction. Then \(\tilde{V} \to V \) is pseudo-Galois, and clearly satisfies the conditions of the lemma.

Note that since finite morphisms are projective (cf. [14] 6.1.11), if \(V \) is projective then so is \(\tilde{V} \).
Lemma 6.3.3. Let V be a normal projective variety and L an ample line bundle on V. Let H be a finite dimensional vector space, and let $h : V \to H$ be a rational map. Then for any sufficiently large integer m there exists sections s_1, \ldots, s_k of $\mathcal{L} = L^{\otimes m}$ such that there is no common zero of the s_i inside the domain of definition of h, and such that for each i, $s_i \otimes h$ extends to a morphism $V \to \mathcal{L} \otimes H$.

Proof. Say $H = \mathbb{A}^n$. We have $h = (h_1, \ldots, h_n)$. Let D_i be the polar divisor of h_i and $D = \sum_{i=1}^n D_i$. Let L_D be the associated line bundle. Then $h \otimes 1$ extends to a section of $H \otimes L_D$. Since L is ample, for some m, $L^{\otimes m} \otimes L_D^{-1}$ is generated by global sections $\sigma_1, \ldots, \sigma_k$. Since 1 is a global section of L_D, $s_i = 1 \otimes \sigma_i$ is a section of $L_D \otimes (L^{\otimes m} \otimes L_D^{-1}) \cong L^{\otimes m}$. Since away from the support of the divisor D, the common zeroes of the s_i are also common zeroes of the σ_i, they have no common zeroes there. Now $h \otimes s_i = (h \otimes 1) \otimes (1 \otimes s_i)$ extends to a section of $(H \otimes L_D) \otimes (L_D^{-1} \otimes L^{\otimes m}) \cong H \otimes L^{\otimes m}$. \hfill \Box

A theory of fields is called an algebraically bounded theory, cf. [34] or [31], if for any subfield F of a model M, $F^{alg} \cap M$ is model-theoretically algebraically closed in M. By Proposition 2.6.1 (4), ACVF is algebraically bounded. The following lemma is valid for any algebraically bounded theory. We work over a base field $F = \text{dcl}(F)$.

Lemma 6.3.4. Let F be a valued field. Let V and H be F-varieties, with V irreducible and normal. Let ϕ be an ACVF-definable subset of $V \times H$ whose projection to V has finite fibers, all defined over F. Then there exists a finite pseudo-Galois covering $\pi : \tilde{V} \to V$, a finite family of Zariski open subsets $U_i \subseteq V$, $\tilde{U}_i = \pi^{-1}(U_i)$, and morphisms $\psi_i : \tilde{U}_i \to H$ such that for any $\tilde{v} \in \tilde{V}$, if $(\pi(\tilde{v}), h) \in \phi$ then $\tilde{v} \in \tilde{U}_i$ and $h = \psi_i(\tilde{v})$ for some i.

Proof. For a in V write $\phi(a) = \{ b : (a, b) \in \phi \}$; this is a finite subset of H. Let p be an ACVF-type over F (located on V) and $a \models p$. By the algebraic boundedness of ACVF, $\phi(a)$ is contained in a finite normal field extension $F(a')$ of $F(a)$. Let $q = \text{tp}_{ACF}(a'/F)$, and let $h_p : q \to V$ be a rational map with $h_p(a') = a$.

We can also write each element c of $\phi(a)$ as $c = \psi(a')$ for some rational function ψ over F. This gives a finite family $\Psi = \Psi(p)$ of rational functions ψ; enlarging it, we may take it to be Galois invariant. For any $c' \models q$ with $h_p(c') = a$, we have $\phi(a) \subseteq \Psi(c') := \{ \psi(c') : \psi \in \Psi \}$.

The type q can be viewed as a type of elements of an algebraic variety W, and after shrinking W we can take h_p to be a quasi-finite morphism on W, and assume each $\psi \in \Psi : W \to H$ is defined on W; moreover we can find W such that:

(*) for any $c' \in W$ with $h(c') = a \models p$, we have $\phi(a) \subseteq \Psi(c')$.

By compactness, there exist finitely many triples \((W_j, \Psi_j, h_j)\) such that for any \(p\), some triple has \((*)\) for \(p\). By Lemma 6.3.2, we may replace the \(W_j\) by a single pseudo-Galois \(\hat{V}\).

If \(H\) is a vector space, or a vector bundle over \(V\), let \(H^n\) be the \(n\)-th direct power of \(H\), and let \(P(H^n)\) denote the projectivization of \(H^n\). Let \(h \mapsto h : H \setminus \{0\} \to \Phi H\). Let \(r_k : P(H^n) \to \Phi H\) be the natural rational map, \(r_k(h_1 : \ldots : h_n) = (: h_k :).\) For any vector bundle \(L\) over \(V\), there is a canonical isomorphism \(L \otimes H^n \cong (L \otimes H)^n\). When \(L\) is a line bundle, we have \(P(L \otimes E) \cong P(E)\) canonically for any vector bundle \(E\). Composing, we obtain an identification of \(P((L \otimes H^n))\) with \(P(H^n)\).

Lemma 6.3.5. Let \(F\) be a valued field. Let \(V\) be a normal irreducible quasi-projective \(F\)-variety, \(H\) a vector space with a basis of \(F\)-definable points, and \(\phi\) an \(\text{ACVF}_F\)-definable subset of \(V \times (H \setminus (0))\) whose projection to \(V\) has finite fibers. Then there exists a finite pseudo-Galois covering \(\pi : \hat{V} \to V\), a regular morphism \(\theta : \hat{V} \to P(H^m)\) for some \(m\), such that for any \(\hat{v} \in \hat{V}\), if \((\pi(\hat{v}), h) \in \phi\) then for some \(k\), \(r_k(\theta(\hat{v}))\) is defined and equals \(h:.\)

Proof. Replacing \(V\) by the normalization of the closure of \(V\) in some projective embedding, we may assume \(V\) is projective and normal. Let \(\psi_i\) be as in Lemma 6.3.4. Let \(L, s_{ij}\) be as in Lemma 6.3.3, applied to \(\hat{V}\), \(\psi_i\); choose \(m\) that works for all \(\psi_i\). Let \(\theta_{ij}\) be the extension to \(\hat{V}\) of \(s_{ij} \otimes \psi_i\). Define \(\theta = (\ldots : \theta_{ij} : \ldots)\), using the identification above the lemma. \(\square\)

6.4. Relatively \(\Gamma\)-internal subsets. We proceed towards a relative version of Proposition 6.2.6.

Let \(\pi : V \to U\) be a morphism of algebraic varieties over a valued field \(F\). We denote by \(\hat{V}/\tilde{U}\) the subset of \(\hat{V}\) consisting of types \(p \in \hat{V}\) such that \(\hat{\pi}(p)\) is a simple point of \(\hat{U}\). We say \(X \subset \hat{V}/\tilde{U}\) is relatively \(\Gamma\)-internal over \(U\), if \(X\) is a relatively definable subset of \(\hat{V}\), the projection of \(X\) to \(\hat{U}\) consists of simple points, and the fibers \(X_u\) of \(X \to U\) are \(\Gamma\)-internal, uniformly in \(u \in U\).

To clarify the situation, consider the case \(V = U\). We have two natural embeddings \(\hat{U} \to \hat{\tilde{U}}\). Let \(s_V : V \to \hat{V}\) denote the embedding of \(V\) in \(\hat{V}\) as simple points. Then \(s_V \neq s_{\hat{U}}.\) Namely if \(a \in \hat{U}\), \(b \models a|A(a),\) and \(c \models b|A(a, b)\), then \(a\) lies in the image of \(s_V\) iff \(c \models A(a, b)\), while it is in the image of \(s_{\hat{U}}\) iff \(b \models A(a)\). It is a generalization of the first map that concerns us below.

Lemma 6.4.1. Let \(\pi : V \to U\) be a morphism of algebraic varieties over a valued field \(F\), and let \(X \subset \hat{V}/\tilde{U}\) be relatively \(\Gamma\)-internal over \(U\). Then there exists a natural embedding \(\theta : \hat{X} \to \hat{V}\), over \(\tilde{U}\); over a simple point \(u \in \hat{U}\), \(\theta\) restricts to the identification of \(\hat{X}_u\) with \(X_u\).
Proof. Let \(\pi_X : X \to U \) be the natural map. Let \(p \in \widehat{X} \); let \(A = \text{acl}(A) \) be such that \(p \) is \(A \)-definable; and let \(c \models p|A, u = \pi_X(c) \). Since \(\text{tp}(c/A(u)) \) is \(\Gamma \)-internal, by Lemma \(2.7.1 \) \((5) \) there exists an \(\text{acl}(A(u)) \)-definable injective map \(j \) with \(j(c) \in \Gamma^m \). But \(\text{acl}(A(c)) \cap \Gamma = \Gamma(A) \). So \(j(c) = \alpha \in \Gamma(A) \), and \(c = j^{-1}(\alpha) \in \text{acl}(A(u)) \).

Let \(v \models c|\text{acl}(A(u)) \), and let \(\theta(p) \) be the unique stably dominated, \(A \)-definable type extending \(\text{tp}(v/A) \). So \(\theta(p) \in \widehat{V} \), and \(\pi_X(p) = \pi_*\theta(p) \).

Assume now that \(X \subseteq \widehat{V}/U \) is iso-definable and relatively \(\Gamma \)-internal. By Lemma \(6.4.1 \) we may identify \(\widehat{X} \) with a pro-definable subset of \(\widehat{V} \); namely the set \(\{ p \in \widehat{V} \mid p \text{ is } A \text{-definable and } c \models p|A, \text{then } \text{tp}(c/A(\pi(c))) = q|A(\pi(c)) \text{ for some } q \in X \} \). It is really this set that we have in mind when speaking of \(\widehat{X} \) below. In particular, it inherits a topology from \(\widehat{V} \).

Proposition 6.4.2. Let \(V \to U \) be a projective morphism of algebraic varieties, with \(U \) normal, over a valued field \(F \). Let \(X \subseteq \widehat{V}/U \) be iso-definable, and relatively \(\Gamma \)-internal, i.e. such that each fiber \(X_u \) of \(X \) over \(u \in U \) is \(\Gamma \)-internal. Then there exists a finite pseudo-Galois covering \(U' \to U \), such that letting \(X' = U' \times_U X \) and \(V' = U' \times_U V \), there exists a definable morphism \(g : V' \to U' \times \Gamma^\infty \) over \(U' \), such that the induced map \(g : \widehat{V}' \to \widehat{U}' \times \Gamma^\infty \) is continuous, and such that the restriction of \(g \) to \(\widehat{X}' \) is injective. In fact Zariski locally each coordinate of \(g \) is obtained as a composition of regular maps and the valuation map.

Proof. By Proposition \(6.2.6 \), for each \(u \in U \), there exists \(h \in H_{d,m}(F(u)^{\text{alg}}) \) such that \(\tau_h \) is injective on the fiber \(X_u \) above \(u \). By compactness, a finite number of pairs \((m, d) \) will work for all \(u \); by taking a large enough \((m, d) \), we may take it to be fixed. Again by compactness, there exists a definable \(\phi \subseteq U \times H_{d,m} \) whose projection to \(U \) has finite fibers, such that if \((u, h) \in \phi \) then \(\tau_h \) is injective on \(X_u \). By Lemma \(6.3.5 \), there is a finite pseudo-Galois covering \(\pi : U' \to U \), and a regular morphism \(\theta : U' \to P(H_{d,m}^M) \) for some \(M \), with \(H_{d,m}^M \) the vector space generated by \(H_{d,m} \), such that for any \(u' \in U' \), if \((\pi(u'), h) \in \phi \) then, for some \(k \), \(r_k(\theta(u')) \) is defined and equals \(: h : \). Note that since \(h \in H_{d,m} \), it follows that \(\theta(u') \in PH_{d,m,d}^M \). Let \(g(u', v) = (u', \tau_{\theta(u')})(v) \). Then it is clear that \(g \) is continuous and that its restriction to \(X' \) is injective. It follows that its restriction to \(\widehat{X}' \) is injective.

Remark 6.4.3. The normality hypothesis in Proposition \(6.4.2 \) and Lemma \(6.3.2 \) is unnecessary. If \(V \) is any quasi-projective variety, it suffices to replace \(V \) in Lemma \(6.3.2 \) with the larger, normal variety \(\mathbb{P}^n \) and pull back the data, and similarly for \(U \) in \(6.4.2 \).

Note that the proposition has content even when the fibers of \(X/U \) are finite. Under certain conditions, the continuous injection of Proposition \(6.4.2 \) can be seen to be a homeomorphism. This is clear when \(X \) is definably compact, but we will need it in somewhat greater generality.
Let X be a pro-definable subset of $\hat{V} \times \Gamma_{\infty}$, for V an algebraic variety. If $\rho : X \to \Gamma_{\infty}$ is a definable continuous function, we shall say X is compact at $\rho = \infty$ if any definable type q on X with $\rho \cdot q$ unbounded has a limit point in X. Compactness at $\rho = \infty$ implies that $\rho^{-1}(\infty)$ is definably compact. If X is a subspace of a definably compact space Y, ρ extends to a continuous definable function ρ_Y on Y, and $\rho_Y^{-1}(\infty) \subset X$, then X is compact at $\rho = \infty$. In the applications, this will be the case. We say X is σ-compact with respect to a continuous definable function $\xi : X \to \Gamma$, if for any $\gamma \in \Gamma$, $\{x \in X : \xi(x) \leq \gamma\}$ is definably compact.

More generally, let $\rho, \xi : X \to \Gamma_{\infty}$ be definable continuous functions. We say that X is σ-compact via (ρ, ξ) if $\xi^{-1}(\infty) \subseteq \rho^{-1}(\infty)$, X is compact at $\rho = \infty$, and $X \setminus \xi^{-1}(\infty)$ is σ-compact via ξ.

Assume $f : V \to U$ is a morphism of algebraic varieties, $\rho : V \to \Gamma_{\infty}$ and $\xi : U \to \Gamma_{\infty}$ are definable $v+g$-continuous functions. We say that a pro-definable subset X of \hat{V} is σ-compact over U via (ρ, ξ) if X is σ-compact via $(\rho, \xi \circ f)$, where we omit the \sim on morphisms.

Lemma 6.4.4. In Proposition 6.4.2, assume \hat{X} is σ-compact over U via (ρ, ξ), where $\rho : V \to \Gamma_{\infty}$ and $\xi : U \to \Gamma_{\infty}$ are definable and $v+g$-continuous. Then one can find g as in the Proposition inducing a homeomorphism of \hat{X} with its image in $\hat{U} \times \Gamma_{\infty}^N$.

Proof. Let $f : V' \to V$ denote the projection and $\hat{f} : \hat{V}' \to \hat{V}$ its extension. After replacing $g : V' \to U' \times \Gamma_{\infty}^N$ in the construction of Proposition 6.4.2 by $V' \to U' \times \Gamma_{\infty}^{N+1}$ sending x to $(g(x), \rho \circ f)$, one may assume that $\rho \circ f = \rho' \circ g$ with ρ' the projection on the last factor; and $\xi \circ \pi \circ f = \xi' \circ g$, with ξ' the penultimate projection, and $\pi : V \to U$. As in Proposition 6.4.2 we still denote by g its extension $\hat{V}' \to \hat{U} \times \Gamma_{\infty}^N$. The restriction $g_{\vert \hat{X}'}$ of g to \hat{X}' is injective and continuous. We have to show that its inverse $g_{\vert \hat{X}'}^{-1}$ is continuous too, or equivalently that $g_{\vert \hat{X}'}^{-1} \circ \phi$ is continuous for any continuous definable $\phi : \hat{X}' \to \Gamma_{\infty}$.

It suffices thus to show that if W is a closed relatively definable subset of \hat{X}', then $g(W)$ is closed. By Lemma 4.2.13, it suffices to show this: if p is a definable type on W, and $g(w)$ is a limit of g_p in $\hat{U}_1 \times \Gamma_{\infty}^N$ for $w \in W$, then w is the limit of p in \hat{X}'. As g is injective and continuous on \hat{X}', it suffices to show that p has a limit in \hat{X}'.

Let us first show that if $f_*(p)$ has a limit point in \hat{X}, then p has a limit point in \hat{X}'. Since $V' \to V$ is a finite morphism, it is proper, so $\hat{V}' \to \hat{V}$ is closed by Lemma 4.2.24. It follows that the morphism $f' : \hat{X}' \to \hat{X}$ induced by f is closed. Furthermore it is surjective since $X' \to X$ is surjective, by Lemma 4.2.6. Let α be the limit of $f_*(p)$. Its fiber $f'^{-1}(\alpha)$ is finite and non empty, say equal to $\{\beta_1, \ldots, \beta_n\}$. If p has a limit in \hat{X}', by continuity of f', it should be one
of the β_i. Hence, if p does not have a limit in \hat{X}', there exists open relatively definable subsets O_i of \hat{X}' containing β_i, such that $O_i \cap O_j = \emptyset$ if $i \neq j$, and such that p is on $Z = \hat{X}' \setminus \cup_{1 \leq i \leq n} O_i$. Since Z is closed, its image $f'(Z)$ is closed, hence $\Omega = \hat{X} \setminus f'(Z)$ is open and contains α. Thus $f_*(p)$ is on Ω. But $f'^{-1}(\Omega) \subseteq \cup_{1 \leq i \leq n} O_i$, which contradicts the fact that p is on Z. Hence it suffices to show that $f_*(p)$ has a limit point in \hat{X}.

Assume first $\rho_*(f_*(p))$ is not bounded. Then $f_*(p)$ has a limit point in \hat{X} by compactness at $\rho = \infty$.

Otherwise, ρ' is bounded on g_*p, hence as ρ' is continuous, $\rho'(g(w)) < \infty$. So $\rho(f(w)) \in \Gamma$. It follows that $\xi'(g(w)) = \xi(\pi(f(w))) \in \Gamma$ also. Since $g(w)$ is a limit of g_*p, the type $(\xi' \circ g)_* p$ concentrates on a bounded subset of Γ. Hence the type $f_*(p)$ includes a formula $\xi \circ \pi \leq \alpha$ for some $\alpha \in \Gamma$. Thus, by σ-compactness, f_*p concentrates on a definably compact relatively definable subset of \hat{X}', containing $f(w)$; so f_*p has a limit in this set, hence in \hat{X}.

The following lemma shows that o-minimal covers may be replaced by finite covers carrying the same information, at least as far as homotopy lifting goes.

Given a morphism $g : U' \to U$ and homotopies $h : I \times U \to \hat{U}$ and $h' : I \times U' \to \hat{U}'$, we say h and h' are compatible or that h' lifts h if $\hat{g}(h'(t, u')) = h(t, g(u'))$ for all $t \in I$ and $u' \in U'$. Here, h refers to any closed generalized interval, with final point e_I. Let H be the canonical homotopy $I \times \hat{U} \to \hat{U}$ lifting h, cf. Lemma 3.8.3. Note that if $h(e_I, U)$ is iso-definable and Γ-internal, then $h(e_I, U) = H(e_I, \hat{U})$.

Lemma 6.4.5. Let $\phi : V \to U$ be a projective morphism of algebraic varieties with U normal and quasi-projective, over a valued field F. Let $X \subseteq \overline{V/U}$ be iso-definable over F and relatively Γ-internal over U (uniformly in $u \in U$). Assume \hat{X} is σ-compact over U via (ρ, ξ), where $\rho : V \to \Gamma_{\infty}$ and $\xi : U \to \Gamma_{\infty}$ are definable and $v+g$-continuous. Then there exists a pseudo-Galois covering U' of U, and a definable function $j : X \times_U U' \to U' \times \Gamma_{\infty}^m$ over U', inducing a homeomorphism of $X \times_U U'$ with the image in $\hat{U}' \times \Gamma_{\infty}^m$. Moreover:

1. There exist a finite number of F-definable functions $\xi_i'' : U \to \Gamma_{\infty}$, such that, for any compatible pair of definable homotopies $h : I \times U \to \hat{U}$ and $h' : I \times U' \to \hat{U}'$, if h respects the functions ξ_i'', then h lifts to a definable homotopy $H_X : I \times \hat{X} \to \hat{X}$. Furthermore, if h' is a deformation retraction with Γ-internal image Σ', and h is a deformation retraction with Γ-internal image Σ, then one may impose that H_X is also a deformation retraction with Γ-internal image $\Gamma = \hat{\rho}^{-1}(\Sigma) \cap \hat{X}$.

2. Given a finite number of F-definable functions $\xi : X \to \Gamma_{\infty}$ on X, and a finite group action on X over U, one can choose the functions $\xi_i'' : U \to \Gamma_{\infty}$...
\[\Gamma_\infty \text{ such that the lift } I \times \hat{X} \to \hat{X} \text{ respects the given functions } \xi \text{ and the group action.} \]

(3) If \(h' \) satisfies condition (*) of §3.9, one may also impose that \(H_X \) satisfies (*)

\textbf{Proof.} We take \(U' \) and \(j \) as given by Proposition 6.4.2 and Lemma 6.4.4 (that is, \(j \) is the restriction of \(g \)). First consider the case when \(X \subseteq U \times \Gamma_\infty^N \). There exists a finite number of \(\Gamma_\infty \)-valued \(F \)-definable functions \(\xi'_i \) on \(U \) such that the set of values \(\xi'_i(u) \) determine the fiber \(X_u = \{ x : (u, x) \in X \} \), as well as the functions \(\xi|X_u \) (with \(\xi \) as in (2)), and the group action on \(X_u \). In other words if \(\xi'_i(u) = \xi'_i(u') \) for simple points \(u, u' \) then \(X_u = X_{u'} \), \(\xi(u, x) = \xi(u', x) \) for \(x \in X_u \) and \(\xi \) from (2), and \(g(u, x) = (u, x') \) iff \(g(u', x) = (u', x') \) for \(g \) a group element from the group acting in (2). Clearly any homotopy \(h : I \times U \to \hat{U} \) respecting the functions \(\xi'_i \) lifts to a homotopy \(H_X : I \times \hat{X} \to \hat{X} \subseteq \hat{U} \times \Gamma_\infty^N \) given by \((t, (u, \gamma)) \mapsto (H(t, u), \gamma) \), where \(H \) is the canonical homotopy \(I \times \hat{U} \to \hat{U} \) lifting \(h \) provided by Lemma 3.8.3. Moreover \(H_X \) respects the functions of (2) and the group action.

This applies to \(X'_i = X \times_{\hat{U}} U' \), via the homeomorphism induced by \(j \); so for any pair \((h, h') \) as in (1), if \(h' \) respects the functions \(\xi'_i \), then \(h' \) lifts to a definable homotopy \(H' : I \times X'_i \to \hat{X}'_i \), respecting the data of (2), in particular the Galois action on \(X'_i \). As already noted in the proof of 6.4.4, \(\hat{X}'_i = \int_U X' \to \int_U X = \hat{X} \) is closed and surjective. Moreover \(H' \) respects the fibers of \(\hat{X}'_i \to \hat{X} \) in the sense of Lemma 3.9.3. Hence by this lemma, \(H' \) descends to a homotopy \(H_X : I \times \hat{X} \to \hat{X} \).

By Corollary 8.7.5, the condition that \(h' \) respects the \(\xi' \) can be replaced with the condition that \(h \) respects certain other definable functions \(\xi'' \) into \(\Gamma \).

Since \(X \) is iso-definable uniformly over \(U \), Lemma 2.7.4 applies to the image of \(H' \); so this image is iso-definable and \(\Gamma \)-internal. The image of \(H \) is obtained by factoring out the action of the Galois group of \(U'/U \); by Lemma 2.2.5, the image of \(H \) is also iso-definable, and hence \(\Gamma \)-internal.

The statement regarding condition (*) is verified by construction, using density of simple points and continuity. \(\square \)

\textbf{Example 6.4.6.} In dimension \(> 1 \) there exist definable topologies on definable subsets of \(\Gamma^n \), induced from function space topologies, for which Proposition 6.2.6 fails. For instance let \(X = \{(s, t) : 0 \leq s \leq t\} \). For \((s, t) \in X \) consider the continuous function \(f_{s,t} \) on \([0, 1]\) supported on \([s, t]\), with slope 1 on \((s, s + \frac{s+t}{2})\), and slope -1 on \((s + \frac{s+t}{2}, t)\). The topology induced on \(X \) from the Tychonoff topology on the space of functions \([0, 1] \to \Gamma \) is a definable topology, and definably compact. Any neighborhood of the function 0 (even if defined with nonstandard parameters) is a finite union of bounded subsets of \(\Gamma^2 \), but contains a “line” of functions \(f_{s,s+\varepsilon} \) whose length is at least \(1/n \) for some standard \(n \), so this topology
is not induced from any definable embedding of X in Γ^n. By Proposition 6.2.6, such topologies do not occur within \tilde{V} for an algebraic variety V.

6.5. **Abhyankar points.** Let q be a definable type on a variety V over a valued field. Write $\dim(q)$ for the dimension of the Zariski closure of q, i.e. of the smallest subvariety of V on which q concentrates. We call q Abhyankar if whenever $M \models ACVF$ is a base for q, and $c \models q|M$, $M(c)$ is an Abhyankar valued field extension of M; in other words it is a valued field extension, of transcendence degree equal to the sum of the transcendence degree of the residue field of $M(c)$ over the residue field of M, and the \mathbb{Q}-rank of $\Gamma(M(c))/\Gamma(M)$. When q is also stably dominated, we have $\Gamma(M(c)) = \Gamma(M)$, so $\dim(q)$ equals the transcendence degree of the residue field.

If q is defined over A, one can also state the Abhyankar properties without recourse to a model M containing A. We spell this out for stably dominated q. Note first that the choice of model M is immaterial; this follows from Proposition 6.10 (iv) and Proposition 9.7 of [16]. By the same propositions, $q \in \tilde{V}$ is strongly Abhyankar iff $\dim(q)$ is equal to the transcendence degree $\text{trdeg}_A(f(c))$ for some A-definable f from V into an A-definable stable sort S. For instance, if some closed ball b is A-definable and q is the generic type of b, then q is Abhyankar; extending A by a realization of q may not add any residue field points, but it does add a point of a torsor of the residue field, corresponding to b.

Recall the notion of being strongly stably dominated from Definition 2.5.9. This definition makes sense for types of imaginaries, however for types on a variety V, we will show that a definable type q is strongly stably dominated iff it is stably dominated and Abhyankar.

Lemma 6.5.1. Let q be a definable type on a variety V over a valued field. The following conditions are equivalent:

1. q is strongly stably dominated.
2. q is stably dominated and Abhyankar.
3. $\dim(q) = \dim(q_k)$, where q_k is the image of q under the maximal pro-definable map into a pro-variety over the residue field.
4. q is sequentially stably dominated, i.e. for all $A = \text{acl}(A)$ with q based on A, and $q = \text{tp}(c/A)$, there exist $c_1, \ldots, c_n \in A(c)$ with $\text{tp}(c_i/A(c_1, \ldots, c_{i-1}))$ stably dominated, and $c \in \text{acl}(A(c_1, \ldots, c_n))$.
5. Same as (4) for some such A.
6. Assume the base A is (the definable closure of) a valued field. There exists a locally closed subvariety W of V with $q \in \text{cl}_{\tilde{W}}$ and q Zariski dense in W, and a finite morphism $f : W \to \mathbb{A}^n$ of varieties, such that $f_*q = p_0^\mathbb{A}^n$ where p_0 is the generic type of \mathbb{O}.

If $A = \operatorname{acl}(A)$ is generated by $A \cap VF$, the set of types with one of these properties is dense in the set of types over A on a variety V; and also among the Zariski dense types on V.

Proof. (1) implies (2): Let us start by proving that over any set of imaginaries, Abhyankar types are dense in the set of types on a variety V. It suffices to see that they are dense among the Zariski dense types on V, since density among all types follows immediately from this statement for all A-subvarieties of V. Let $D \subseteq V$ be A-definable and Zariski dense. By choosing a map $g : V \to \mathbb{A}^1$, finding first $c \in g(V)$ with $\operatorname{tp}(c/A)$ Abhyankar and then another Abhyankar type in $g^{-1}(c)$, and using transitivity for Abhyankar extensions one can reduce by induction on dimension to the case where V is a curve; and indeed since types of algebraic elements are always isolated, to the case of $V = \mathbb{A}^1$, and of $A = \operatorname{acl}(A)$. In this case any A-definable, Zariski-dense subset of \mathbb{A}^1 contains a closed or open ball defined over A; the generic type of this ball is always Abhyankar.

Let $\operatorname{tp}(c/A)$ be strongly stably dominated. Then $\operatorname{tp}(c/A(e))$ is isolated for some $e \in \operatorname{Stc}(a)$. Since Abhyankar types are dense over $A(e)$, $\operatorname{tp}(c/A(e))$ must be Abhyankar.

(2) implies (3): Clear.

(3) implies (4), (5) implies (3): Clear by additivity of the residue field transcendence degree. Hence (3), (4) and (5) are equivalent.

(3) implies (1): Let M be a model, q based on M, $c \models q|M$. Say $\dim(q) = n$, and let $g : V \to \mathbb{A}^n$ be an M-definable function, $g(x) = (g_1(x), \ldots, g_n(x))$, such that $g_i(x) \in \mathcal{O}$ and the elements $d_i = \text{res}g_i(c)$ are algebraically independent elements of the residue field, over $k(M)$. The formula $\bigwedge_{i=1}^n \text{res}g_i(x) = d_i$ isolates $\operatorname{tp}(g(c)/M(d_1, \ldots, d_n))$, say by induction on n. Since g is finite-to-one, the formula $\bigwedge_{i=1}^n \text{res}g_i(x) = d_i$ extends to at most finitely many types over $M(d_1, \ldots, d_n)$, hence all are isolated.

For the density statement, assume A is generated by $A \cap VF$, and let us show that the set of types satisfying (4) is dense, among the Zariski dense types on V. Density among all types follows immediately from this statement along with the same statement for all A-subvarieties of V. We have to show that if $c \in V$ and c lies in no smaller A-definable variety, then $\operatorname{tp}(c/A)$ can be approximated by types satisfying (4). Find field elements $c_1, \ldots, c_n \in A(c)$ with $c \in \operatorname{acl}(A(c_1, \ldots, c_n))$; then it suffices to approximate $\operatorname{tp}(c_i/A(c_1, \ldots, c_{i-1}))$ for each i; so we may assume $c \in \mathbb{A}^1$. In this case any A-definable, Zariski-dense subset of \mathbb{A}^1 contains a ball. Since A is generated by $A \cap VF$, it contains an A-definable closed ball. So as in the example above we can find a stably dominated Abhyankar type over A, within the closed ball and hence within D.

(6) implies (5) is clear, taking $A = M$.

(3) implies (6): we may assume q is Zariski dense in W, $\dim(W) = n$. Let $c \models p|A$. Then $k(A(c))$ contains elements $\alpha_1, \ldots, \alpha_n$, algebraically independent
over $k(A)$. We have $\alpha_i = \text{res} f_i(c)$ for some rational f_i. Replace W by a Zariski open such that the f_i are morphisms.

\textbf{Remark 6.5.2.} Over a base consisting of a valued field and additional value group elements, condition (3) continues to characterize strongly stably dominated types, provided one replaces the residue field by the sort RES_A.

If U is some definable set, we denote the set of strongly stably dominated types on U by $U^\#$.

\textbf{Remark 6.5.4.} By Example 13.1 in [16], already mentioned in Remark 3.2.3, $(\mathbb{A}^2)^\# \neq \hat{\mathbb{A}}^2$. Thus, for any $n \geq 2$, $(\mathbb{A}^n)^\# \neq \hat{\mathbb{A}}^n$. By rescaling, it follows that for any non trivial closed ball b, $(b^n)^\# \neq \hat{b}^n$. Thus, the same holds for any definable
Furthermore, there exists a unique stably dominated type \(\Delta \). Let \(X = \lim X_i \) be an ind-definable set, and let \(Y = \lim Y_j \) be a pro-definable set. Define \(\text{Hom}(X, Y) = \lim_{ij} \text{Hom}(X_i, Y_j) \), where \(\text{Hom}(X_i, Y_j) \) is the set of definable maps \(X_i \to Y_j \). Clearly, if \(f \in \text{Hom}(X, Y) \) then \(f \) induces a map \(f_M : X(M) \to Y(M) \), for any model \(M \). In case \(X \) is strict ind-definable, we call \(f \) injective if in any model, \(f_M \) is injective. If \(X \) is strict ind-definable and \(f \) is represented by \((f_{ij}) \), then \(f \) is injective iff for each \(i \), for some \(j \), \(f_{ij} \) is injective; since if for arbitrarily large \(j \) there exist distinct \(x, x' \in X_i \) with \(f_{ij}(x) = f_{ij}(x') \), then by compactness we can find a pair \(x \neq x' \in X_i \) such that for all \(j \), \(f_{ij}(x) = f_{ij}(x') \).

Let \(Y \) be pro-definable. A subset of \(Y(U) \) will be called strict ind-definable if it has the form \(f_U(X(U)) \), with \(X \) strict ind-definable and \(f \) an injective morphism. It suffices to demand that \(X \) is ind-definable and that the equivalence relation \(E_i \) on \(X_i \) defined by \(f(x) = f(x') \) be definable; for then \(f_U(X(U)) = g_U(X(U)) \), where \(X = \lim X_i/E_i \), \(\pi : X \to X \) is the natural quotient, and \(g \) is the map such that \(f = g \circ \pi \); note that \(X \) is strict ind-definable.

From this (and the fact that strict ind-definable sets are closed under disjoint unions) it follows that a countable union \(\bigcup k S_k \) of strict ind-definable subsets of \(Y(U) \) is again strict ind-definable, provided that the pullback to \(S_k \times S_{k'} \) of the diagonal \(\Delta_Y \leq Y \times Y \) is a strict ind-definable subset of \(S_k \times S_{k'} \).

We have the following Bertini-style result for \(\text{ACVF} \).

Proposition 6.5.6. Let \(A_0 \) be a valued field with infinite residue field and set \(A = \text{acl}(A_0) \). Let \(V \) be an algebraic variety over \(A_0 \). Let \(c \in V \) such that \(\text{tp}(c/A_0) \) is strongly stably dominated and \(\text{trdeg}_{A_0} \text{A}(c) = m \). Then, for each locally closed subvariety \(W \) of \(V \) defined over \(A_0 \) and containing \(c \), and some \(A_0 \)-morphism \(g : W \to A^{m-1} \), with \(c = g(c), c = p^{(m-1)}_0 \) where \(p_0 \) is the generic type of \(\mathcal{O} \), and

\[
\text{acl}(A(c)) \cap \text{dcl}(A(c)) = \text{dcl}(A(c)).
\]

Furthermore, there exists a unique stably dominated type \(q_c \in g^{-1}(c) \) with \(c = q_c|A(c) \).

Proof. Let \(f : W \to A^m \) be as in Lemma 6.5.1 (6). We will take \(g \) of the form \(L \circ f \), with \(L : \mathcal{O}^m \to \mathcal{O}^k \) some \(\mathcal{O} \)-linear function. In fact we will prove, by induction on \(k < m \), that:

Claim. Let \(k < m \). For almost all \(\mathcal{O} \)-linear \(L : \mathcal{O}^m \to \mathcal{O}^k \), with \(c = L(fc), A = \text{acl}(A(L)), c = p^{(k)}_0|A \) and \(\text{acl}(A(c)) \cap \text{dcl}(A(c)) = \text{dcl}(A(c)) \). Equivalently, let \(W_c = (Lf)^{-1}(c) \), let \(Z \) be the finite set of \(r \in W_c \) with \(f_s r = p_0 \times \{c\} \); then a unique element of \(Z \) restricts to \(\text{tp}(c/A(c)) \).
Proof of the claim. Actually we will show that the claim is true for a generic \(L \), with respect to the generic type of \(M_{m,k}(0) = p_0^{mk} \). But the definability of \(W_e \) allows to specialize this; and since \(A_0 \) is a field with infinite residue field, \(p_0 \) and hence also the generic type of \(M_{m,k}(0) \) are finitely satisfiable in \(A_0 \). For \(k = 0 \) there is nothing to prove. Assume the claim holds for \(k - 1 \); and suppose it fails for \(k \). Let \(L \) and \(L' \) be mutually generic realizations of the generic type of \(M_{m,k}(0) \). Work over the base field \(B = \text{acl}(A(L, L')) \). Let \(c = L(fc) \) and \(c' = L'(fc) \). If \(k \leq m/2 \) then \(B(c) \) and \(B(c') \) are linearly disjoint over \(B \). If \(m > k > m/2 \), they are linearly independent over their intersection \(B' \), which is generated over \(B \) by a realization of \(p_0^{2k-m} \). At any rate, if \(\tilde{J} \) is a finite extension of \(B(fc) \) (subextension of \(B(c) \)) that descends to \(B(c) \), i.e. \(\tilde{J} = B(fc)J \) for a finite extension \(J \) of \(B(c) \), then by conjugacy of \(L \) and \(L' \) we have \(\tilde{J} = B(fc)J' \) for a finite extension \(J' \) of \(B(c') \), and it follows that \(B(c', c)J = B(c', c)J' \). By the linear disjointness, both \(J \) and \(J' \) descend further to an extension \(\tilde{J} \) of \(B' \). This contradicts the inductive hypothesis. \(\square \)

For \(k = m - 1 \), this proves the displayed formula in the lemma. It is clear that \(\text{tp}(c/\text{acl}(A(c))) \) is stably dominated, since if \(f(c) = (c_1, \ldots, c_m) \), then \(\text{tp}(c_m/A(c)) = p_0[A(c)], \) while \(c \in \text{acl}(A(c, c_m)) \). Let \(e \) denote the element of \(W_e \) corresponding to this stably dominated type, \(q_e \). Then \(e \in \text{acl}(A(c)) \). On the other hand as \(e \) is the unique stably dominated type based on \(\text{acl}(A(c)) \) and restricting to \(\text{tp}(c/\text{acl}(A(c))) \), any automorphism fixing \(A(c) \) and \(c \) must fix \(e \); so \(e \in \text{dcl}(A(c), c) = \text{dcl}(A(c)) \). By the displayed formula, \(e \in \text{dcl}(A(c)) \), and the last statement follows. \(\square \)

Remark 6.5.7. Note that the same argument within ACF shows (say when \(A_0 = A \)) that for almost all \(L \) (outside of a proper Zariski closed subset of \(M_{m,k} \)), we have \(\text{acl}(A(c)) \cap \text{dcl}(A(c)) = \text{dcl}(A(c)) \) in the sense of ACF. Hence this can be required at the same time; i.e. \(W_e \) is an irreducible curve.

We briefly digress to mention a geometric picture for Proposition 6.5.6, that should be developed elsewhere. Let \(F \) be a valued field, algebraically closed for simplicity. Consider a subset of affine space of the form \(A = \{ x : \text{val}f_i(x) \geq 0, i \in I \} \), where \((f_i)_{i \in I} \) is a set of polynomials over a valued field \(F \). These are \(\infty \)-definable sets in \(\text{ACVF}_F \) that we will call polynomially convex. If \(W \) is the Zariski closure of \(A \), we prefer to write \(A = \{ x \in W : \text{val}f_i(x) \geq 0, i \in I \} \). Any \(p \in \widehat{A}^n \) has an associated polynomially convex set \(A(p) \), where \(f_i \) is the set of polynomials over \(F \) such that \(p_i f_i \geq 0 \); call polynomially convex sets arising in this way irreducible. The generically stable type can be recovered from \(A(p) \), via : \(p_i(f) = \inf_{a \in A(p)} \{ \text{val}(a) \} \). If \(p \) is strongly stably dominated, call \(A(p) \) a strictly algebraic irreducible affinoid. Note that \((f_i)_{i \in I} \) may be taken to have finitely many polynomials of any given degree (generators of the appropriate lattice).
It seems likely that A is a strictly algebraic irreducible affinoid if I can take I to be finite; equivalently, if A is definable.

In this language, the proof of Proposition 6.5.6 can be adapted to show:

Proposition 6.5.8. A strictly algebraic irreducible affinoid of dimension > 2 admits irreducible hyperplane sections.

The proof shows that all hyperplanes in appropriate regions, avoiding a certain definable, non-generic set, intersect the affinoid in an irreducible one. It may be possible to approximate any affinoid (including analytic affinoids in the Berkovich setting) by a strictly algebraic one, leading to a more general Bertini theorem.

Proposition 6.5.6 will allow us to think of a strongly stably dominated type of dimension n as the integral over p^{m-1}_0 of a definable function into \mathbb{A}^n, where $\dim(V) = n$. This is slightly more pleasing than the iterative picture of Lemma 6.5.3 (6), though for Proposition 6.5.10 that would suffice.

Proposition 6.5.9. Let V be an algebraic variety over a valued field and let $q \in V^\#$ such that $\dim(q) = m$. Then there exists a Zariski open subvariety W of the Zariski closure of q, a morphism $W \to \mathbb{A}^{m-1}$ making W a relative curve over an open subset of \mathbb{A}^{m-1}, and a definable map $j : \mathbb{O}^{m-1} \to W/\mathbb{A}^{m-1}$, such that $q = \int_{p^{m-1}_0} j$. Conversely for any such W and j, $\int_{p^{m-1}_0} j \in V^\#$.

Proof. Let A a base for q, $c \models q|A$, and let notation (W, m, g, c, q_e) be as in Proposition 6.5.6. By Remark 6.5.7 the generic fiber of g can be taken to be an irreducible curve. Restricting to a Zariski open subset of W, we can arrange that $g : W \to U \subset \mathbb{A}^{m-1}$ is a relative curve, with smooth irreducible fibers. We view q_e as an element of the iso-definable set \overline{W}_e. As $q_e \in \text{dcl}(A, c)$, and $c \models p^{m-1}_0$, there exists an A-definable $j : \mathbb{O}^{m-1} \to W/\mathbb{A}^{m-1}$ such that $j(c) = q_e$. Now $c \models q_e|A(c)$; by definition, $\int_{p^{m-1}_0} j$ is the unique stably dominated type based on A and extending $\text{tp}(c/A)$; but q has these properties, so $\int_{p^{m-1}_0} j = q$.

The converse statement is a special case of Lemma 6.5.3 (5). \hfill \Box

Proposition 6.5.10. Let V be an algebraic variety over a valued field. Then $V^\#$ is a strict ind-definable subset of \hat{V}.

Proof. The set S_1 of subvarieties of V is a strict ind-definable set, already in the theory ACF. The same is true of the set S_2 of pairs (W, f) where W is a locally closed subvariety of V of dimension m, and $f : W \to U \subset \mathbb{A}^{m-1}$ is a morphism to an open subset of \mathbb{A}^{m-1}, with irreducible fibers. Let S_3 be the set of triples (W, f, g), where $(W, f) \in S_2$, $U = f(W)$, and $g : U \to \overline{W/U}$ is a definable map (in ACVF now). It is clear that S_3 is an ind-definable set (recall that $\overline{W/U}$ is iso-definable; this is uniform in $(W, f) \in S_2$). Define a map $h : S_3 \to \hat{V}$ by $h(W, f, g) = \int_{p^{m}_0} g$. By Proposition 6.5.9, the image of h is $V^\#$. Note that
\(h(W, f, g) = h(W', f', g') \) iff \(W = W' \), and for generic \(t \in O^m \), \(g(t) = g'(t) \). This is clearly piecewise definable. \(\square \)

6.6. \(\Gamma \)-internal subsets of maximal pure dimension. Let \(W \subset \widehat{V} \) be \(\Gamma \)-internal. We say that \(\dim_p(W) = n \) if for some neighborhood \(U \) of \(p \), \(W \cap U \) has o-minimal dimension \(n \), and \(n \) is smallest such. Say \(W \) is of pure dimension \(n \) if it has dimension \(n \) at every point.

One expects \(n \)-dimensional varieties to have \(n \)-dimensional skeleta. This is indeed assured by Theorem 10.1.1 (5). By Theorem 10.1.1 (6), the skeleton points will be strongly stably dominated. Another point of view on this is afforded by the first part of the following lemma. The lemma will also permit us to find homotopies fixing a given skeleton; the idea is roughly that when the skeleton already has dimension \(n \), and no \(n + 1 \)-dimensional \(\Gamma \)-internal subsets exist in \(\widehat{V} \), there is no room for the homotopy to move things around.

Proposition 6.6.1. Let \(V \) be a quasi-projective variety over a valued field and let \(W \subset \widehat{V} \) be \(\Gamma \)-internal, of pure dimension \(n = \dim(V) \). Then almost all (i.e. all but a countable union of definable subsets of dimension \(< n \)) points of \(W \) are strongly stably dominated. Furthermore, let \(\phi_i : V \to \Gamma_\infty \), \(1 \leq i \leq r \), be definable functions such that the restriction of \((\phi_1, \ldots, \phi_r) : V \to \Gamma_\infty \) to \(W \) is injective (or finite-to-one), and let \(h : I \times \widehat{V} \to \widehat{V} \) be an homotopy respecting the \(\phi_i \). Then \(h \) fixes each point \(p \in W \).

Proof. For \(\alpha \in W \), let \(p_\alpha \) denote the associated stably dominated definable type. Let \(A \) be a countable base set such that \(V \) and \(W \) are defined over \(A \). Furthermore, after possibly increasing \(A \) and keeping it countable, one may assume there exist \(A \)-definable functions \(\phi_i : V \to \Gamma_\infty \), \(1 \leq i \leq r \), such that the restriction of \((\phi_1, \ldots, \phi_r) : V \to \Gamma_\infty \) to \(W \) is injective (or finite-to-one).

Let \(M \) be a maximally complete model containing \(A \) and \(p_0 \) be an element of \(W(M) \). Since \(\dim_{p_0}(W) = n \), there exists a complete type \(q \) over \(A \), whose solution set is \(W' \subset W \), such that \(p_0 \) is a limit point of \(W' \), and \(W' \) has o-minimal dimension \(n \). To see this, we may use an \(M \)-definable topological embedding of \(W \) in \(\Gamma^m_\infty \) provided by Corollary 6.2.7, and work with the order topology on \(\Gamma^m_\infty(U) \). If the point \(p_0 \) is not in the closure of \(q \), then it is not in the closure of some \(M \)-definable \(D \) containing \(q \). Thus if no complete type exists as required, then the space of complete types is covered by definable sets of dimension \(< n \), and definable sets avoiding a neighborhood of \(p_0 \). There must be a finite subcovering; this means that some definable neighborhood of \(p_0 \) has dimension \(< n \), contradicting the assumption.

Pick \(\alpha \in W' \). Let \(c \models p_\alpha|M(\alpha) \). Let \(\beta \) be a basis for \(\Gamma(M(c)) \) over \(\Gamma(M) \). So \(\beta \in M(\alpha) \). Also, \(\text{tp}(c/M(\beta)) \) extends to a stably dominated type \(r \); so \(r|M(\beta) \) generates a complete type over \(M(\beta) \cup \Gamma \), and in particular over \(M(\alpha) \). It follows that \(r|M(\alpha) = p_\alpha|M(\alpha) \), so \(r = p_\alpha \). Thus \(\alpha \in M(\beta) \subset M(c) \). Thus
(possibly after multiplying each α_i by some positive integer) we can write $\phi_i(\alpha) = \text{val} f_i(c)$, where f_i is a rational function over M. Re-ordering if necessary, we may assume $\phi_1(\alpha), \ldots, \phi_n(\alpha)$ are Q-linearly independent. Let $\phi = (\phi_1, \ldots, \phi_n)$, $\gamma_i := \phi_i(\alpha), \gamma = \phi(\alpha)$. As $(\gamma_1, \ldots, \gamma_n)$ are linearly independent modulo $\Gamma(M)$, it follows that $\text{rv} f_1(\alpha), \ldots, \text{rv} f_n(\alpha)$ are algebraically independent over $M(\gamma)$. This shows in particular that p_{α} is Abhyankar, hence strongly stably dominated. For this last conclusion, we used only that $\dim(W^n) = n$. Thus all points of W are strongly stably dominated, apart from ones lying in an M-definable $n - 1$-dimensional set. It follows that the same is true over any base of definition for W, so almost all elements of W are strongly stably dominated.

Let $\psi_i(x) = \text{rv} f_i(x)$, $\psi = (\psi_1, \ldots, \psi_n)$. Then $\psi* p_{\alpha}$ is a stable type of Morley rank n. It follows that p_{α} is dominated by $\psi* p_{\alpha}$, over $A(\gamma)$. Now let $h : I \times \hat{V} \to \hat{V}$ be an homotopy respecting the ϕ_i. It suffices to prove the elements of $W(M)$ are fixed by h, hence that it is enough to prove each point of W' is fixed by h. Let $t \in I$ be non-algebraic over $M(\gamma_1, \ldots, \gamma_n)$. Since h respects the levels of the ϕ_i, we have $\phi(h_t(\alpha)) = \gamma$ for each i. Again by the linear independence of $(\gamma_1, \ldots, \gamma_n)$ over $\Gamma(M)$, $\text{rv} f_1(\alpha')', \ldots, \text{rv} f_n(\alpha')'$ are algebraically independent over $M(\gamma)$. So $\psi* p_{\alpha'} = \psi* p_{\alpha}$ is the generic type of $\text{rv}(\gamma) = \Pi_i \text{rv}(\gamma_i)$ (it is the unique type over $M(\gamma)$ in $\text{rv}(\gamma)$). As above it follows that $p_{h_t(\alpha)}$ is defined over $M(\gamma)$, and so does not depend on t. Thus for non-algebraic t, $h_t(\alpha)$ takes a constant value; since non-algebraic values of t are dense, and h_t is continuous, this constant value must be α, and we must have $h_t(\alpha) = \alpha$ for all $t \in I$. \hfill \Box

7. Curves

Summary. In 7.1 we prove the iso-definability of \hat{C} when C is a curve. This is done using Riemann-Roch. We discuss in 7.2 the general issue of stability of iso-definability under pull-backs by finite morphisms. In 7.3 we explain how definable types on C correspond to germs of paths on \hat{C}. The remaining of the section 7.4-7.6 is devoted to the construction of the retraction on skeleta for curves. A key result is the finiteness of forward-branching points proved in Proposition 7.5.5.

7.1. Definability of \hat{C} for a curve C. Recall that a pro-definable set is called iso-definable if it is isomorphic, as a pro-definable set, to a definable set.

Proposition 7.1.1. Let C be an algebraic curve defined over a valued field F. Then \hat{C} is an iso-definable set. The topology on \hat{C} is definably generated, that is, generated by a definable family of (iso)-definable subsets.

Proof. One may assume C is a projective curve. There exists a finite purely inseparable extension F' of F such that the normalisation of $C \otimes F'$ is smooth over F'. Since this does not change the notion of definability over F, we may assume $F' = F$. Hence we may assume C is projective and smooth over F, and that it is irreducible. Let g be its genus. Let L be the function field of C
and let Y be the set of elements $f \in L$ with at most $g + 1$ poles (counted with multiplicities).

Claim. Any element of L^\times is a product of finitely many elements of Y.

Proof of the claim. We use induction on the number of poles of $f \in L^\times$. If this number is $\leq g + 1$, then $f \in Y$. Otherwise, let a_1, \ldots, a_H be poles of f, not necessarily distinct, and let b be a zero of f. By Riemann-Roch, any divisor of degree $\geq g$ has a non-trivial global section, which provides one a function f_1 with poles at most at a_1, \ldots, a_{g+1}, and a zero at b. Then $f_1 \in Y$, and f/f_1 has fewer poles than f (say f_1 has m poles; they are all among the poles of f; and f_1 has at most $m - 1$ zeroes other than b). The statement follows by induction.

Choose an embedding of $i : C \to \mathbb{P}^m$ in some projective space. Thus, for every positive integer N, the line bundle $i^*\mathcal{O}(N)$ has degree Nd with d the degree of the embedding. By Riemann-Roch, if N is large enough, for every line bundle \mathcal{L} on C of degree $\leq g + 1$, $i^*\mathcal{O}(N) \otimes \mathcal{L}^{-1}$ is generated by its global sections. Also, for N large enough, the restriction mapping $H^0(\mathbb{P}^m, \mathcal{O}(N)) \to H^0(C, i^*\mathcal{O}(N))$ is surjective. It follows that, for N large enough, any function on C with at most $g + 1$ poles is the quotient of two homogeneous polynomials of degree N.

Fix such an N. Let W be the set of pairs of homogeneous polynomials of degree N. We consider the morphism $f : C \times W \to \Gamma^\infty$ mapping (x, φ, ψ) to $v(\varphi(x)) - v(\psi(x))$ or to 0 if x is a zero of both φ and ψ.

With notations from the proof of Theorem 3.1.1, f induces a mapping $\tilde{C} \to Y_{W,f}$ with $Y_{W,f}$ definable. Now, let us remark that any type p on C induces a valuation on L in the following way: let $c \models p$ send g in L to $v(g(c))$ (or say to the symbol $-\infty$ if c is a pole of g), and that different types give rise to different valuations. It follows that the map $\tilde{C} \to Y_{W,f}$ is injective, since if two valuations agree on Y they agree on L^\times. This shows that \tilde{C} is an iso-∞-definable set. Since \tilde{C} is strict pro-definable by Theorem 3.1.1 it follows it is iso-definable. The statement on the topology is clear.

Let $h : C \to V$ be a relative curve over an algebraic variety V, that is, h is flat with fibers of dimension 1. Let \bar{C}/\bar{V} be the set of $p \in \bar{C}$ such that $\bar{h}(p)$ is a simple point of \bar{V}. Then we have the following relative version of Proposition 7.1.1:

Lemma 7.1.2. Let $h : C \to V$ be a relative curve over an algebraic variety V. Then \bar{C}/\bar{V} is iso-definable.

Proof. The proof is the obvious relativization of the proof of Proposition 7.1.1. Indeed, after replacing V by a dense open subset we may assume that h is projective, and that there exists a finite purely inseparable morphism $V' \to V$ such that
the normalisation \(h' : C' \to V' \) of the pullback of the \(C \) to \(V' \) is a smooth morphism. Thus, one may assume \(h : C \to V \) is projective and smooth. Furthermore, by Stein factorization, \(h \) factors as the composition of a morphism \(g : C \to U \) with connected fibers and a finite morphism \(U \to V \). Since \(C/U \) may be canonically identified with \(V' \), one may assume each fiber \(C_a \) of \(h \) to be irreducible. We embed \(C \) in \(\mathbb{P}^n_V \) and note that for \(N \) large enough, for any \(a \in V \), any function on \(C_a \) with \(\leq g + 2 \) poles is the quotient of two homogeneous polynomials of degree \(N \). Let \(W_1 \) be the set of pairs of homogeneous polynomials of degree \(N \), \(W_2 \) be the set of characteristic functions of points of \(V \), and set \(W = W_1 \cup W_2 \). Let \(f : C \times W \to \Gamma_\infty \) mapping \((x, \varphi, \psi) \) to \(v(\varphi(x)) - v(\psi(x)) \) or to 0 if \(x \) is a zero of both \(\varphi, \psi \), for \((\varphi, \psi) \) in \(W_1 \) and mapping \((x, \varphi) \) to \(v(\varphi(h(x))) \) for \(\varphi \) in \(W_2 \). The map \(C \to Y_{W,f} \) is injective, and we may proceed as in Proposition 7.1.1. \(\square \)

Remark 7.1.3. The statement of Proposition 7.1.1 is specific to dimension 1. Indeed, assume we work over a base valued field of equicharacteristic zero. By Example 3.2.2, \(\mathcal{O}(\mathbb{Q}(t)) \) is uncountable, thus \(\mathcal{O}^2 \) cannot be iso-definable. By rescaling, it follows that for any non trivial closed ball \(b \), \(\widehat{b}^2 \) is not iso-definable and thus also \(\widehat{D} \) for \(D \) a definable subset of \(\mathbb{A}_2 \) of dimension 2. By projecting to \(\mathbb{A}_2 \) and using Lemma 4.2.6, it follows that for any definable set \(X \) in the VF-sort of dimension 2, \(\widehat{X} \) is not iso-definable. Clearly the same holds in any dimension \(\geq 2 \), over any nontrivially valued field of any residue characteristic (by a similar argument involving e.g. the construction in Example 13.1 in [16] instead of the one in Example 3.2.2).

7.2. A question on finite covers.

Question 7.2.1. If \(f : U \to V \) is a finite morphism of algebraic varieties, is the inverse image of an iso-definable subset of \(\widehat{V} \) iso-definable?

When the answer is positive, the definability of \(\widehat{C} \) follows from that of \(C = \mathbb{P}^1 \) which is clear by Example 3.2.1.

7.3. Definable types on curves.

Let \(V \) be an algebraic variety. Two pro-definable functions \(f, g : [a, b) \to \widehat{V} \) are said to have the same germ if \(f|[a', b) = g|[a', b) \) for some \(a' \).

Remark 7.3.1. The germ of a pro-definable function into \(\widehat{V} \) is always the germ of a path. Indeed if \(f : [a, b) \to \widehat{V} \) is pro-definable, there exists a unique smallest \(a' > a \) such that \(f|[a', b) \) is continuous. This is a consequence of the fact that we will see later, that the image of \(f \), being a \(\Gamma \)-internal subset of \(\widehat{V} \), is homeomorphic to a subset of \(\Gamma_\infty^n \). It follows from o-minimal automatic continuity that \(f \) is piecewise continuous. Moreover, the topology of \(\widehat{V} \) restricted to \(f([a, b)) \) is a definable topology in the sense of Ziegler; so the set of \(a' \) with \(f|[a', b) \) continuous is definable, and so a least element exists.
Proposition 7.3.2. Let C be a curve, defined over A. There is a canonical bijection between:

1. A-definable types on C.
2. A-definable germs at b of (continuous) paths $[a, b) \to \hat{C}$, up to reparametrization.

Under this bijection, the stably dominated types on C correspond to the germs of constant paths on \hat{C}.

Proof. A constant path, up to reparametrization, is just a point of \hat{C}. In this way the stably dominated types correspond to germs of constant paths into \hat{C}.

Let p be a definable type on C, which is not stably dominated. Then, by Lemma 2.10.2, for some definable $\delta : C \to \Gamma$, $\delta_*(p)$ is a non-constant definable type on Γ. Changing sign if necessary, either $\delta_*(p)$ is the type of very large elements of Γ, or else for some b, $\delta_*(p)$ concentrates on elements in some interval $[a, b]$; in the latter case there is a smallest b such that p concentrates on $[a, b)$, so that it is the type of elements just $< b$, or else dually. Thus we may assume $\delta_*(p)$ is the generic at b of an interval $[a, b)$ (where possibly $b = \infty$).

By Proposition 2.10.5 there exists a $\delta_*(p)$-germ f of definable function to \hat{C} whose integral is p. It is the germ of a definable function $f = f_{p, \delta} : [a_0, b) \to \hat{C}$; since \hat{C} is definable and the topology is definably generated by Proposition 7.1.1, for some (not necessarily definable) a, the restriction $f = f_{p, \delta} : [a, b) \to \hat{C}$ is continuous. The germ of this function f is well-defined.

Conversely, given $f : [a, b) \to \hat{C}$, we obtain a definable type p_f on C; namely $p_f|E = \text{tp}(e/E)$ if t is generic over E in $[a, b)$, and $e \models f(t)|E(t)$. It is clear that p_f depends only on the germ of f, that $p = p_{f_{p, \delta}}$ and $\delta \circ f = \text{Id}$. Hence if the germ of f is A-definable, then each ϕ-definition $d_{p_f, \phi}$ is A-definable, and so p_f is A-definable. A change in the choice of δ corresponds to reparametrization. □

Remarks 7.3.3. (1) Over a general base set A, the germ may not have an M-definable representative. For instance assume A is the canonical code for an open ball of size γ (e.g. $A = \text{dcl}(\beta)$ with β a transcendental element of the residue field, and $b = \text{res}^{-1}(\beta)$; in this case $\gamma = 0$). The path in question takes $t \in (\gamma, \infty)$ to the generic type of a closed sub-ball of M, of size t, containing a given point p_0. The germ at b does not depend on p_0, but there is no definable representative over A.

(2) Assume C is M-definable, and p an M-definable type on C. If $M = \text{dcl}(F)$ for a field F, the germ in (2) is represented by an M-definable path.

(3) The same proof gives a correspondence between invariant types on C, and germs at b of paths to \hat{C}, up to reparametrization, where now b is a Dedekind cut in Γ. The analogue of remark (2) remains true if M is a maximally complete model.
7.4. Lifting paths. Let us start by an easy consequence of Hensel’s lemma, valid in all dimensions, but applicable only near simple points.

Lemma 7.4.1. Let \(f : X \to Y \) be a finite morphism between smooth varieties, and let \(x \in X \) be a closed point. Assume \(f \) is étale at \(x \in X \). Then there exists neighborhoods \(N_x \) of \(x \) in \(\hat{X} \) and \(N_y \) of \(y \) in \(\hat{Y} \) such that \(\hat{f} : \hat{X} \to \hat{Y} \) induces a homeomorphism \(N_x \to N_y \).

Proof. By Hensel’s lemma, there exist valuative neighborhoods \(N_x \) of \(x \) and \(N_y \) of \(y \) such that \(f \) restricts to a bijection \(V_x \to V_y \). We take \(V_x \) and \(V_y \) to be defined by weak inequalities; let \(U_x \) and \(U_y \) be defined by the corresponding strict inequalities. Then \(f \) induces a continuous bijection \(\hat{V}_x \to \hat{V}_y \) which is a homeomorphism by definable compactness. In particular, \(f \) induces a homeomorphism \(N_x \to N_y \), where \(N_x = \hat{U}_x \) and \(N_y = \hat{U}_y \). \(\square \)

In fact this gives a notion of a small closed ball on a curve, in the following sense:

Lemma 7.4.2. Let \(F \) be a valued field, \(C \) be a smooth curve over \(F \), and let \(a \in C(F) \) be a point. Then there exists an ACVF \(F \)-definable decreasing family \(b(\gamma) \) of \(g \)-closed, \(v \)-clopen definable subsets of \(C \), with intersection \(\{ a \} \). Any two such families agree eventually up to reparametrization, in the sense that if \(b' \) is another such family then for some \(\gamma_0, \gamma_1 \in \Gamma \) and \(\alpha \in \mathbb{Q}_{>0} \), for all \(\gamma \geq \gamma_1 \) we have \(b(\gamma) = b'(\alpha \gamma + \gamma_0) \).

Proof. Choose \(f : C \to \mathbb{P}^1 \), étale at \(a \). Then \(f \) is injective on some \(v \)-neighborhood \(U \) of \(a \). We may assume \(f(a) = 0 \). Let \(b_{\gamma} \) be the closed ball of radius \(\gamma \) on \(\mathbb{A}^1 \) centered at \(0 \). For some \(\gamma_1 \), for \(\gamma \geq \gamma_1 \) we have \(b_{\gamma} \subseteq f(U) \) since \(f(U) \) is \(v \)-open. Let \(b(\gamma) = f^{-1}(b_{\gamma}) \cap U \). Note that \(A = \{(x, y) \in C \times b_{\gamma} : f(x) = y \} \) is a \(v+g \)-closed and bounded subset of \(C \times \mathbb{P}^1 \). It follows from Proposition 4.2.19, Proposition 4.2.18 and Lemma 4.2.21 that \(b(\gamma) \) is \(g \)-closed. Since \(f \) is a local \(v \)-homeomorphism it is \(v \)-clopen.

Now suppose \(b'(\gamma) \) is another such family. Let \(b'_{\gamma} = f(b'(\gamma)) \). Then by the same reasoning \(b'_{\gamma} \) is a \(v \)-clopen, \(g \)-closed definable subset of \(\mathbb{A}^1 \), with \(\cap_{\gamma \geq \gamma_1} b'_{\gamma} = \{0\} \). Each \(b'_{\gamma} \) (for large \(\gamma \)) is a finite union \(\bigcup_{i=1}^{m} c_i(\gamma) \setminus d_i(\gamma) \), where \(c_i(\gamma) \) is a closed ball and \(d_i(\gamma) \) is a finite union of open sub-balls of \(c_i(\gamma) \), whose number is uniformly bounded, cf. Holly Theorem, Theorem 2.1.2 of [15]. From [15] it is known that there exists an \(F \)-definable finite set \(S \), meeting each \(c_i(\gamma) \) (for large \(\gamma \)) in one point \(a_i \). The valuative radius of \(c_i(\gamma) \) must approach \(\infty \), otherwise it has some fixed radius \(\gamma_i \) for large \(\gamma \), forcing the balls in \(d_i(\gamma) \) to have eventually fixed radius and contradicting \(\cap_{\gamma} b'_{\gamma} = \{0\} \). So, for every \(i \) and large \(\gamma \), \(c_i(\gamma) \) are disjoint closed balls centered at \(a_i \). It follows that \(c_i(\gamma') \setminus d_i(\gamma') \subseteq c_i(\gamma) \setminus d_i(\gamma) \) for \(\gamma \ll \gamma' \). We have \(a_i \notin d_i(\gamma) \), or else for large \(\gamma' \) we would have \(c_i(\gamma') \subseteq d_i(\gamma) \). Thus \(a_i \in \cap_{\gamma} c_i(\gamma) \setminus d_i(\gamma) \) and \(a_i = 0 \), hence \(m = 1 \).
Now the balls of \(d_1(\gamma) \) must also be centered in a point of \(S' \) for some finite set \(S' \), and for large \(\gamma \) we have \(c_1(\gamma) \) disjoint from these balls; so \(b(\gamma) = c_1(\gamma) \) is a closed ball around 0. For large \(\gamma \) it must have valuative radius \(\alpha \gamma + \gamma_0 \), for some \(\alpha \in \mathbb{Q}_{>0}, \gamma_0 \in \Gamma \). \(\square \)

Definition 7.4.3. A continuous map \(f : X \to Y \) between topological spaces with finite fibers is *topologically étale* if the diagonal \(\Delta_X \) is open in \(X \times_Y X \).

Remark 7.4.4. Let \(f : U \to V \) be a continuous definable map with finite fibers. Let \(p \) be an unramified point, i.e. suppose \(p \) has a neighborhood above which \(f \) is topologically étale. Then, viewing \(p \) as a simple point of \(\hat{V} \), it has a neighborhood \(W \) such that \(f^{-1}(W) = \bigcup_{i=1}^n W_i \), with \(f|_{W_i} \) injective. For general \(\hat{V} \)-points this may not be true, for instance for the generic point of ball.

Lemma 7.4.5. Let \(f : X \to Y \) be a finite morphism between varieties over a valued field. Let \(c : I \to \hat{Y} \) be a path, and \(x_0 \in \hat{X} \). If \(\hat{f} : \hat{X} \to \hat{Y} \) is topologically étale above \(c(I) \), then \(c \) has at most one lift to a path \(c' : I \to \hat{X} \), with \(c'(i_1) = x_0 \).

Proof. Let \(c' \) and \(c'' \) be two such lifts. The set \(\{ t : c'(t) = c''(t) \} \) is definable, it contains the initial point, and is closed by continuity. So it suffices to show that if \(c'(a) = c''(a) \) then \(c'(a+t) = c''(a+t) \), for sufficiently small \(t < 0 \), which is clear by openness of the diagonal. \(\square \)

Example 7.4.6. In characteristic \(p > 0 \), let \(f : \mathbb{A}^1 \to \mathbb{A}^1, f(x) = x^p - x \). Let \(a \in \mathbb{A}^1 \) be a closed point, and consider the standard path \(c_a : (-\infty, \infty] \to \mathbb{A}^1 \), with \(c_a(t) \) the generic of the closed ball of valuative radius \(t \) around \(a \). Then \(\hat{f}^{-1}(c_a(t)) \) consists of \(p \) distinct points for \(t > 0 \), but of a single point for \(t \leq 0 \). In this sense \(c_a(t) \) is backwards-branching. The set of backwards-branching points is the set of balls of valuative radius \(0 \) which is not a \(\Gamma \)-internal set. The complement of the diagonal within \(\mathbb{A}^1 \times f \mathbb{A}^1 \) is the union over \(0 \neq \alpha \in \mathbb{F}_p \) of the sets \(U_\alpha = \{ (c_a(t), c_b(t)) : a - b = \alpha, t > 0 \} \). The closure (at \(t = 0 \)) intersects the diagonal in the backwards-branching points.

Because of Example 7.4.6, we will rely on the classical notion of étale only near initial simple points.

Lemma 7.4.7. Let \(C \) be an algebraic curve defined over a valued field \(F \) and let \(a \) be a closed point of \(C \).

1. There exists a path \(c : [0, \infty] \to \hat{C} \) with \(c(\infty) = a \), but \(c(t) \neq a \) for \(t < \infty \).
2. If \(a \) is a smooth point, and \(c \) and \(c' \) are two such paths then they eventually agree, up to definable reparametrization.
3. If \(a \) is in the valuative closure of an \(F \)-definable subset \(W \) and \(a \notin W \), then for large \(t \neq \infty \) one has \(c(t) \in \hat{W} \).

Proof. One first reduces to the case where \(C \) is smooth. As in the proof of Proposition 7.1.1, there exists a finite purely inseparable extension \(F' \) of \(F \) such
that the normalisation of $C \otimes F'$ is smooth over F'. Since this does not change the notion of definability over F, we may assume $F' = F$. Let $n : \bar{C} \to C$ be the normalization, and let $\bar{a} \in \bar{C}$ be a point such that, if a W is given as above, then \bar{a} is a limit point of $n^{-1}(W)$. Then the lemma for \bar{C} and \bar{a} implies the same for C and a. So, we may assume C is normal. For \mathbb{P}^1 the lemma is clear by inspection. In general, find a morphism $p : C \to \mathbb{P}^1$, with $p(c) = 0$ which is unramified above 0. By Lemma 7.4.1 and its proof, there exists a definable homeomorphism for the valuation topology between a definable neighborhood Y of c and a definable neighborhood W' of 0 in \mathbb{P}^1 which extends to a homeomorphism between \bar{Y} and \bar{W}'. If c and c' are two paths to a then eventually they fall into \bar{W}'. This reduces to the case of \mathbb{P}^1. For (3) it is enough to notice that one can assume $p(W) \cup \{0\} = W'$. (2) comes from Lemma 7.4.2.

\textbf{Remark 7.4.8.} More generally let $p \in \bar{C}$, where C is a curve. If $c \models p$, let $\text{res}(F)(\bar{c})$ be the set of points of St_F definable over $F(c)$. This is the function field of a curve \bar{C} in St_F. One has a definable family of paths in \bar{C} with initial point p, parameterized by \bar{C}. And any such path eventually agrees with some member of the family, up to definable reparametrization.

\section{Branching points.}

Let C be a (non complete) curve over F together with a finite morphism of algebraic varieties $f : C \to \mathbb{A}^1$ defined over F. Given a closed ball $b \subseteq \mathbb{A}^1$, let $p_b \in \mathbb{A}^1$ be the generic type of b.

By an \textit{outward path} on \mathbb{A}^1 we mean a path $c : I \to \mathbb{A}^1$ with I an interval in Γ_∞ such that $c(t) = p_{b(t)}$, with $b(t)$ a ball around some point c_0 of valuative radius t. Let X be a definable subset of C. By an \textit{outward path} on (X, f) we mean a germ of path $c : [a, b) \to \bar{X}$ with $f_* \circ c$ an outward path on \mathbb{A}^1. We first consider the case $X = C$.

In the next lemma, we do not worry about the field of definition of the path; this will be considered later.

\textbf{Lemma 7.5.1.} Let $p \in \bar{C}$. Then p is the initial point of at least one outward path on (C, f).

\textbf{Proof.} The case of simple p was covered in Lemma 7.4.7, so assume p is not simple. The point $\hat{f}(p)$ is a non-simple element of \mathbb{A}^1, i.e. the generic of a closed ball b_p, of size $\alpha \neq \infty$. Fix a model F of ACVF over which C, p and f are defined, $b_p(F) \neq \emptyset$, and $\alpha = \text{val}(a_0)$ for some $a_0 \in F$. We will show the existence of an F-definable outward path with initial point p. For this purpose we may renormalize, and assume b is the unit ball 0.

Let $c \models p|F$. Then $f(c)$ is generic in 0. Since C is a curve, $k(F(c))$ is a function field over $k(F)$ of transcendence degree 1. Let $z : k(F(c)) \to k(F)$ be a place, mapping the image of $f(c)$ in $k(F(c))$ to ∞. We also have a place $Z : F(c) \to k(F(c))$ corresponding to the structural valuation on $F(c)$. The
composition \(z \circ Z \) gives a place \(F(c) \to k(F) \), yielding a valuation \(v' \) on \(F(c) \). Since \(z \circ Z \) agrees with \(Z \) on \(F \), we can take \(v' \) to agree with \(\text{val} \) on \(F \). We have an exact sequence:
\[
0 \to \mathbb{Z}v'(f(c)) \to v'(F(c)^x) \to \text{val}(F^x) \to 0
\]
with \(0 < -v'(f(c)) < \text{val}(y) \) for any \(y \in F \) with \(\text{val}(y) > 0 \).

Let \(q = \text{tp}(c/F; (F(c), v')) \) be the quantifier-free type of \(c \) over \(F \) in the valued field \((F(c), v') \). In other words, find an embedding of valued fields \(\iota : (F(c), v') \to \mathbb{U} \) over \(F \), and let \(q = \text{tp}(\iota(c)/F) \). Similarly, set \(r = \text{tp}(f(c)/F; (F(c), v')) := \text{tp}(\iota(f(c))/F) \). Clearly \(r \) is definable, thus, by Lemma 2.3.4 it follows that \(q \) is a definable type over \(F \), so we can extend it to a global \(F \)-definable type. Note that \(q \) comes equipped with a definable map \(\delta \to \Gamma \) with \(\delta_\ast(q) \) non-constant, namely \(\text{val}(f(c)) \). According to Proposition 7.3.2, \(q \) corresponds to a germ at \(0 \) of a path \(c : (-\infty, 0) \to C \). Since for any rational function \(g \in F(C) \) regular on \(p \), we have \(v'(g(c)) = \text{val}(g(c)) \mod \mathbb{Z}v'(f(c)) \), one may extend \(c \) by continuity to \((-\infty, 0] \) by \(c(0) = p \). It is easy to check that \(c \) is an outward path, since \(f_\ast \circ c \) is a standard outward path on \(\mathbb{A}^1 \).

We note immediately that the number of germs at \(a \) of paths as given in the lemma is finite. Fix an outward path \(c_0 : [-\infty, a] \to \mathbb{A}^1 \), with \(c_0(a) = f_\ast(p) \). Let \(OP(p) \) be the set of paths \(c : [-\infty, a] \to \mathbb{C} \) with \(c(a) = p \) and \(f_\ast \circ c = c_0 \) (on \(b, a \) for some \(b < a \)). If \(c_1, \ldots, c_N \in OP(p) \) have distinct germs at \(a \), then for \(a' < a \) and sufficiently close to \(a \) the points \(c_i(a') \) are distinct; in particular \(N \leq \deg(f) \).

Definition 7.5.2. A point \(p \in \mathbb{C} \) is called forward-branching for \(f \) if there exists more than one germ of outward paths \(c : (b, a] \to \mathbb{C} \) with \(c(a) = p \), above a given outward path on \(\mathbb{A}^1 \). We will also say in this case that \(f_\ast(p) \) is forward-branching for \(f \), and even that \(b \) is forward-branching for \(f \) where \(f_\ast(p) \) is the generic type of \(b \).

Let \(b \) be a closed ball in \(\mathbb{A}^1 \), \(p_b \) the generic type of \(b \). Let \(M \models \text{ACVF} \), \(F \leq M \) and \(b \) defined over \(M \), and let \(a \models p_b|M \). Define \(n(f, b) \) to be the number of types \(\{\text{tp}(c/M(a)) : f(c) = a\} \). This is also the number of types \(\{\text{tp}(c/\text{acl}(F(b))(a)) : f(c) = a\} \) (where \(M \) is not mentioned), using the stationarity lemma Proposition 3.4.13 of [15]. Equivalently it is the number of types \(q(y, x) \) over \(M \) extending \(p_b(x)|M \); or again:
\[
n(f, b) = |\{\text{tp}(c/M) : c \in C, f(c) = a\}|
\]
In other words \(n(f, b) \) is the cardinal of the fiber of \(\hat{f}^{-1}(p_b) \), with \(\hat{f} : \mathbb{C} \to \mathbb{A}^1 \). In particular, the function \(b \mapsto n(f, b) \) is definable.

If \(b \) is a closed ball of valuative radius \(\alpha \), and \(\lambda > \alpha \), both defined over \(F \), we define a generic closed sub-ball of \(b \) of size \(\lambda \) (over \(F \)) to be a ball of size \(\lambda \) around \(c \), where \(c \) is generic in \(b \) over \(F \). Equivalently, \(c \) is contained in no proper \(\text{acl}(F) \)-definable sub-ball of \(b \).
Lemma 7.5.3. Assume b and λ are in $\operatorname{dcl}(F)$, and let b' be a generic closed sub-ball of b of size λ, over F. Then $n(f, b') \geq n(f, b)$.

Proof. Let $F(b) \leq M \models \text{ACVF}$, and $M(b') \leq M' \models \text{ACVF}$. Take a generic in b' over M'. Then a is also a generic point of b over F. Now $n(f, b)$ is the number of types $\{\operatorname{tp}(c/M) : f(c) = a\}$, while $n(f, b')$ is the number of types $\{\operatorname{tp}(c/M') : f(c) = a\}$. As the restriction map sending of types over M' to types over M is well-defined and surjective, we get $n(f, b) \leq n(f, b')$. □

Lemma 7.5.4. The set FB' of closed balls b such that, for some closed $b' \supsetneq b$, for all closed b'' with $b \subsetneq b'' \subsetneq b'$, we have $n(f, b) < n(f, b'')$, is a finite definable set, uniformly with respect to the parameters.

Proof. The statements about definability of FB' are clear since $b \mapsto n(f, b)$ is definable. Let us prove that for $\alpha \in \Gamma$, the set FB'_α of balls in FB' of size α is finite. Otherwise, by the Swiss cheese description of 1-torsors in Lemma 2.3.3 of [15], FB' would contain a closed ball b^* of size $\alpha' < \alpha$ such that every sub-ball of b^* of size α is in FB'. For each such sub-ball b', for some λ with $\alpha' \leq \lambda < \alpha$, we have $n(f, b') < n(f, b'')$ for any ball b'' of size γ with $\lambda < \gamma < \alpha$ containing b'. Let $\lambda(b')$ be the infimum of such λ's. Now λ is a definable function into Γ, so it is constant generically on b^*. Replacing b^* with a slightly smaller ball, we may assume λ is actually constant; so we find b of size λ such that for any sub-ball b' of b of size α, we have $n(f, b') < n(f, b)$. But this contradicts Lemma 7.5.3.

Hence FB' has only finitely many balls of each size, so it can be viewed as a function from a finite cover of Γ into the set of closed balls. Suppose FB' is infinite. Then it must contain all closed balls of size γ containing a certain point $c_0 \in C$, for γ in some proper interval $\alpha < \gamma < \alpha'$ (again by Lemma 2.3.3 of [15]). But then by definition of FB' we find $b_1 \subset b_2 \subset \ldots$ with $n(f, b_1) < n(f, b_2) < \ldots$, a contradiction.

Proposition 7.5.5. The set of forward-branching points for f is finite.

Proof. By Lemma 7.5.4 it is enough to prove that if p_0 is forward-branching, then $b \in FB'$. Let $n = n(f, b) = |\hat{f}^{-1}(p_0)|$. Let c be an outward path on \hat{A}^1 beginning at p_0. For each $q \in \hat{f}^{-1}(p_0)$ there exists at least one path starting at q and lifting c by Lemma 7.5.1, and for some such q, there exist more than one germ of such path. So in all there are $> n$ distinct germs of paths c_i lifting c. For b'' along c sufficiently close to b, the $c_i(b'')$ are distinct; so $n(f, b'') > n$. □

Proposition 7.5.6. Let $f : C \to \hat{A}^1$ be a finite morphism of curves over a valued field F. Let $x_0 \in C$ be a closed point where f is unramified, $y_0 = f(x_0)$, and let c be an outward path on \hat{A}^1, with $c(\infty) = y_0$. Let t_0 be maximal such that $c(t_0)$ is a forward-ramification point of f, or $t_0 = -\infty$ if there is no such point. Then there exists a unique F-definable path $c' : [t_0, \infty] \to \hat{C}$ with $\hat{f} \circ c' = c$, and $c'(\infty) = x_0$.
Lemma 7.4.1 and Lemma 7.4.5, let us first prove uniqueness. Suppose \(\{ t : c'(t) = c''(t) \} \) is closed. Let \(t_1 \) be the smallest \(t \) such that \(c'(t) = c''(t) \). Then we have two germs of paths lifting \(c \) beginning with \(c'(t) \), namely the continuations of \(c', c'' \). So \(c'(t) \) is a forward-branching point, and hence \(t \leq t_0 \). This proves uniqueness on \([t_0, \infty)\).

Now let us prove existence. Since we are aiming to show existence of a unique and definable object, we may increase the base field; so we may assume the base field \(F = \text{ACVF} \).

Claim 1. Let \(P \subseteq (t_0, \infty] \) be a complete type over \(F \), with \(n(f,a) = n \) for \(a \in c(P) \). Then there exist continuous definable \(c_1, \ldots, c_n : P \to \hat{C} \) with \(f \circ c_i = c \), such that \(c_i(\alpha) \neq c_j(\alpha) \) for \(\alpha \in P \) and \(i \neq j \leq n \).

Proof of the claim. The proof is like that of Proposition 7.3.2, but we repeat it. Let \(\alpha \in P \), and let \(b_1, \ldots, b_n \) be the distinct points of \(C \) with \(f(b_i) = c(\alpha) \). Then \(\dim(C) = 1 \), \(\text{rk}_2 \Gamma(F(b_i))/\Gamma(F) \leq 1 \), so \(\alpha \) generates \(\Gamma(F(b_i))/\Gamma(F) \). Hence by Theorem 2.8.2, \(\text{tp}(b_i/\text{acl}(F(\alpha))) \) is stably dominated. By [15], Corollary 3.4.3 and Theorem 3.4.4, \(\text{acl}(F(\alpha)) = \text{dcl}(F(\alpha)) \). Thus \(\text{tp}(b_i/F(\alpha)) \in \hat{C} \) is \(\alpha \)-definable over \(F \), and we can write \(\text{tp}(b_i/F(\alpha)) = c_i(\alpha) \).

Claim 2. For each complete type \(P \subseteq (t_0, \infty] \), over \(F \), there exists a neighborhood \((\alpha_P, \beta_P) \) (or \((\alpha_P, \infty) \)) of \(P \), and for each \(y \in \hat{f}^{-1}(c(\beta_P)) \), a (unique) \(F(y) \)-definable (continuous) path \(c' : (\alpha_P, \beta_P) \to \hat{C} \) with \(\hat{f} \circ c' = c \) and \(c'(\beta_P) = y \).

Proof of the claim. For \(P = \{ \infty \} \) this again follows from Lemma 7.4.1 and Lemma 7.4.4. For \(P \) a point, but not \(\infty \), it follows from Lemma 7.5.1. There remains the case that \(P \) does not reduce to a point. Then \(P \) is an intersection of open intervals \(I_j \). Say \(n(f,a) = n \) for \(a \in c(P) \). By Claim 1 there exist disjoint \(c_1, \ldots, c_n \) on \(P \) with \(\hat{f} \circ c_i = c \). By definability of the space \(\hat{C} \), and compactness, they may be extended to an open interval \(I = I_j \) around \(P \), such that moreover \(n(f,c(a)) = n \) for \(a \in I \), and the \(c_i(a) \) are distinct. So \(\{c_i(a) : i = 1, \ldots, n\} = \hat{f}^{-1}(c(a)) \); and the claim follows.

Now by compactness of the space of types, \((t_0, \infty] \) is covered by a finite union of open intervals where the conclusion of Claim 2 holds. It is now easy to produce \(c' \), beginning at \(\infty \) and gluing along these intervals.

Remark 7.5.7. Here we continue the path till the first time \(t \) such that some point of \(C \) above \(c(t) \) is forward ramified. It is possible to continue the path \(c' \) a little further, to the first point such that \(c'(t) \) itself is forward-ramified. However in practice, with the continuity with respect to nearby starting points in mind, we will stop short even of \(t_0 \), reaching only the first \(t \) such that \(c(t) \) contains a forward-ramified ball.
7.6. Construction of a deformation retraction. Let \(\mathbb{P}^1 \) have the standard metric of Lemma 3.10.1, dependent on a choice of open embedding \(\mathbb{A}^1 \to \mathbb{P}^1 \).

Define \(\psi : [0, \infty] \times \mathbb{P}^1 \to \mathbb{P}^1 \) by letting \(\psi(t,a) \) be the generic of the closed ball around \(a \) of valuative radius \(t \), for this metric. By definition of the metric, the homotopy preserves \(\tilde{\Theta} \) (in either of the standard copies of \(\mathbb{A}^1 \)). We will refer to \(\psi \) as the standard homotopy of \(\mathbb{P}^1 \).

Given a Zariski closed subset \(D \subset \mathbb{P}^1 \), let \(\rho(a,D) = \max\{\rho(a,d) : d \in D\} \).

Define \(\psi_D : [0, \infty] \times \mathbb{P}^1 \to \tilde{\mathbb{P}}^1 \) by \(\psi_D(t,a) = \psi(\max(t,\rho(a,D)),a) \). In case \(D = \mathbb{P}^1 \) this is the identity homotopy, \(\psi_D(t,a) = a \); but we will be interested in the case of finite \(D \). In this case \(\psi_D \) has \(\Gamma \)-internal image. (Note: it is important to use the metric minimum distance, and not schematic distance. For instance if one uses the latter for the subscheme on \(\mathbb{A}^1 \) having a double point at 0, the image would not be \(\Gamma \)-internal.)

Let \(C \) be a projective curve over \(F \) together with a finite morphism \(f : C \to \mathbb{P}^1 \) defined over \(F \). Working in the two standard affine charts \(A_1 \) and \(A_2 \) of \(\mathbb{P}^1 \), one may extend the definition of forward-branching points of \(f \) to the present setting. The set of forward-branching points of \(f \) is contained in a finite definable set, uniformly with respect to the parameters. Factor \(f \) as \(C \xrightarrow{h} C' \xrightarrow{f'} \mathbb{P}^1 \) with \(h \) radical and \(f' \) generically étale. By Corollary 4.2.26, \(\hat{h} : \hat{C} \to \hat{C}' \) is an homeomorphism. Note that \(h \) induces a bijection between the set of forward-branching points of \(f \) and of \(f' \).

Proposition 7.6.1. Fix a finite \(F \)-definable subset \(G_0 \) of \(\hat{C}' \), including all forward-branching points of \(f' \), all singular points of \(C' \) and all ramifications points of \(f' \). Set \(G = \hat{f}'(G_0) \) and fix a divisor \(D \) in \(\mathbb{P}^1 \) having a non empty intersection with all balls in \(G \) (i.e. all balls of either affine line in \(\mathbb{P}^1 \), whose generic point lies in \(G \)). Then \(\psi_D : [0, \infty] \times \mathbb{P}^1 \to \tilde{\mathbb{P}}^1 \) lifts uniquely to a \(v+g \)-continuous \(F \)-definable function \([0, \infty] \times C \to \hat{C} \) extending to a deformation retraction \(H : [0, \infty] \times \hat{C} \to \hat{C} \) onto a \(\Gamma \)-internal subset of \(\hat{C} \).

Proof. Since \(\hat{h} : \hat{C} \to \hat{C}' \) is an homeomorphism we may assume \(C = C' \) and \(f = f' \). Fix \(y \in \mathbb{P}^1 \). The function \(c'_{y} : [0, \infty] \to \hat{C} \) sending \(t \) to \(\psi_D(t,y) \) is \(v+g \)-continuous. By Proposition 7.5.6, for every \(x \) in \(C \) there exists a unique (continuous) path \(c_{x} : [0, \infty] \to \hat{C} \) lifting \(c'_{f(x)} \). This path remains within the preimage of either copy of \(\mathbb{A}^1 \). By Lemma 9.1.1 with \(X = \mathbb{P}^1 \), it follows that the function \(h : [0, \infty] \times C \to \hat{C} \) defined by \((t,x) \mapsto c_{x}(t) \) is \(v+g \)-continuous. By Lemma 3.8.3, \(h \) extends to a deformation retraction \(H : [0, \infty] \times \hat{C} \to \hat{C} \). To show that \(H(0,\hat{C}) \) is \(\Gamma \)-internal, it is enough to check that \(\hat{f}(H(0,\hat{C})) \) is \(\Gamma \)-internal, which is clear. Uniqueness is clear by Proposition 7.5.6.

Example 7.6.2. Assume the residual characteristic of the valued field \(F \) is not 2. Fix \(\lambda \in F \), \(\lambda \neq 0 \), with \(\text{val}(\lambda) > 0 \). Let \(C_{\lambda} \) be the projective model of the...
Legendre curve \(y^2 = x(x-1)(x-\lambda) \) and let \(f : C_\lambda \to \mathbb{P}^1 \) be the projection to the \(x \) coordinate. With the notation of Proposition 7.6.1, we may take \(D \) to be the divisor consisting of the four points 0, 1, \(\lambda \) and \(\infty \). For \(x \in F \) with \(\text{val}(x) \geq 0 \), denote by \(\eta_x \) the generic point of the smallest closed ball containing 0 and \(x \). Thus, the final image of \(\mathbb{P}^1 \) under \(\psi_D \) is the finite graph \(K \) which consists of the union of five segments connecting respectively 0 to \(\eta_\lambda \), \(\lambda \) to \(\eta_\lambda \), 1 to \(\eta_1 \), \(\eta_\lambda \) to \(\eta_1 \) and \(\infty \) to \(\eta_1 \). The final image of \(H \) is the preimage \(K' \) of \(K \) under \(\hat{f} \) which may be described has follows: over each point of the interior of the segment connecting \(\eta_\lambda \) to \(\eta_1 \) there are exactly two points in \(K' \) and over all other points of \(K \) there is exactly one (note that \(\hat{f}^{-1}(\eta_\lambda) \) is a forward-branching point). Thus \(K' \) retracts on the preimage of the segment connecting \(\eta_\lambda \) to \(\eta_1 \) which is combinatorially a circle (see Example 13.2.2 for the translation of this example in the Berkovich setting).

Example 7.6.3. Let \(C \) be the union of the three lines \(x = 0 \), \(y = 0 \) and \(x + y = 1 \) in \(\mathbb{A}^2_F \) or its closure in \(\mathbb{P}^2_F \). On each line \(L \) consider \(\psi_D \) with \(D \) the divisor consisting of the intersection points with the two other lines. They paste together to produce a retraction of \(\hat{C} \) to a \(\Gamma \)-internal subset definably homeomorphic to the subset \(\Sigma \) of \(\Gamma^3_\infty \) defined as follows. Let \(Y = \{ (\infty, t, 0); 0 \leq t \leq \infty \} \) be the segment connecting \((\infty, \infty, 0) \) to \((\infty, 0, 0) \) and let the symmetric group \(S_3 \) act on \(\Gamma^3_\infty \) by permuting the coordinates. Then \(\Sigma \) is the hexagon \(\cup_{\sigma \in S_3} \sigma(Y) \). One may check, similarly as in the example of Remark 12.1.6, that \(\Sigma \) is not homotopically equivalent to a definable subset of some \(\Gamma^n \) (or \(\Gamma^w \) with finite definable \(w \)). In particular, there is no way to retract definably \(\hat{C} \) onto a \(\Gamma \)-internal subset definably homeomorphic to a subset of some \(\Gamma^n \) or \(\Gamma^w \).

8. Specializations and \(\text{ACV}^2_F \)

Summary. We introduce the theory \(\text{ACV}^2_F \) of iterated places in 8.3. It provides us with algebraic criteria for \(v \)- and \(g \)-continuity. Some applications of the continuity criteria are given in 8.7 and 8.8. The result on definability of \(v \)- and \(g \)-criteria in 8.9 will be used in 10.7 to handle uniformity with respects to parameters. Compare to [21].

8.1. **\(g \)-topology and specialization.** Let \(F \) be a valued field, and consider pairs \((K, \Delta) \), with \((K, v_K) \) a valued field extension of \(F \), and \(\Delta \) a proper convex subgroup of \(\Gamma(K) \), with \(\Delta \cap \Gamma(F) = (0) \). Let \(\pi : \Gamma(K) \to \Gamma(K)/\Delta \) be the quotient homomorphism. We extend \(\pi \) to \(\Gamma^\infty(K) \) by \(\pi(\infty) = \infty \). Let \(K \) be the field \(K \) with valuation \(\pi \circ v_K \). We will refer to this situation as a \(g \)-pair over \(F \).

Lemma 8.1.1. Let \(F \) be a valued field, \(V \) an \(F \)-variety, and let \(U \subseteq V \) be \(\text{ACVF}_F \)-definable. Then \(U \) is \(g \)-open if and only if for any \(g \)-pair \(K, K \) over \(F \), we have \(\overline{U(K)} \subseteq U(K) \). As a field, \(K \) may be taken to have the form \(F(a) \), with \(a \in U \).
Proof. One verifies immediately that each of the conditions is true if and only if it holds on every F-definable open affine. So we may assume V is affine.

Assume U is g-open, and let K, K be a g-pair over F. If $a \in V(K)$ and $a \in U(K)$, we have to show that $a \in U(K)$. If F is trivially valued, let t be such that $\text{val}(t) > \text{val}(K)$; then $K(t), K(t)$ form a g-pair over $F(t)$; so we may assume F is not trivially valued. Further, $K^{\text{alg}}, K^n^{\text{alg}}$ form a g-pair over F^{alg}, so we may assume $F \models \text{ACVF}$. As U is g-open, it is defined by a positive Boolean combination of strict inequalities $\text{val}(f) < \text{val}(g)$, and algebraic equalities and inequalities over F. Since π is order-preserving on Γ_{∞}, if $\pi \circ v_{K}(f) < \pi \circ v_{K}(g) \text{then } v_{K}(f) < v_{K}(g)$. The algebraic equalities and inequalities are preserved since the fields are the same. Hence $U(K) \subseteq U(K)$.

In the reverse direction, let $W = V \setminus U$. Assume $W \subseteq \text{VF}^a$ is ACVF$_K$-definable, and for any g-pair K, K over F, $W(K) \subseteq W(K)$. We must show that W is g-closed, that is, defined by a finite disjunction of finite conjunctions of weak valuation inequalities $v(f) \leq v(g)$, equalities $f = g$ and inequalities $f \neq g$.

It suffices to show that any complete type q over F extending W implies a finite conjunction of this form, which in turn implies W. Let q' be the set of all equalities, inequalities and weak valuation inequalities in q; by compactness, it suffices to show that q' implies W. Let $a \models q'$, and let K be the valued field $F(a)$. (We are done if $a \in W$, so we may take $a \in U$.) Let $b \models q$, and let $K = F(b)$. Since q' is complete as far as ACF formulas go, $F(a), F(b)$ are F-isomorphic, and we may assume $a = b$ and K, K coincide as fields. Any element c of K can be written as $f(a)/g(a)$ for some polynomials f, g. Let $c, c' \in K$; say $c = f(a)/g(a), c' = f'(a)/g'(a)$. If $v_K(c) \geq v_K(c')$ then $v_K(f(a)g'(a)) \geq v_K(f'(a)g(a))$; the weak valuation inequality $v_K(f(x)g'(x)) \geq v_K(f'(x)g(x))$ is thus in q, hence in q', so $v_K(f(a)g'(a)) \geq v_K(f'(a)g(a))$, and hence $v_K(c) \geq v_K(c')$. It follows that the map $v_K(c) \mapsto v_K(c)$ is well-defined, and weak order-preserving; it is clearly a group homomorphism $\Gamma(K) \to \Gamma(K)$, and is the identity on $\Gamma(F)$. By the hypothesis, $W(K) \subseteq W(K)$. Since $b \in W(K)$, we have $a \in W(K)$. But a was an arbitrary realization of q', so q' implies W.

Remark 8.1.2. It follows from Lemma 8.1.1 that the family of g-open sets is definable in definable families. In other words, if $\{U_a : a \in P\}$ is a definable family of definable subsets of V, and C is the set of elements $a \in P$ with U_a g-open, then C is a definable subset of P. Indeed it is clear from the definition that C is a union of definable sets; so it suffices to show that if $a \notin C$, then for some formula $\phi \in \text{tp}(a/F)$, any realization of ϕ is not in C. Recall the theory ACV2F (cf. §§3). Here we take the sorts to be the valued field sort, and the value group; the latter is enriched with a predicate for a convex subgroup $\Delta \leq \Gamma$. If (K, Δ) is the data for a g-pair, with $\text{val} : K \to \Gamma$ surjective and K algebraically open, then $(K, \Delta) \models \text{ACV}^2F$. Let $T = \text{Th}(K, \Delta, c_{c \in F(a)})$; i.e. enrich the language with constants for the elements of $F(a)$, and add axioms describing the isomorphism.
type of the valued field F, and implying: $\text{val}(F(a)) \cap \Delta = (0)$. This is now a complete theory. Now if $a \notin C$, then by the criterion, $T \vdash U_\alpha(K) \not\subseteq U_\alpha(K)$. So for some ACVF-formula in the diagram of a over F, $\psi(a, b)$ with $b \in F$, already $T + \psi(a, b) + \text{val}(F) \cap \Delta = (0) \vdash U_\alpha(K) \not\subseteq U_\alpha(K)$. Hence again by the criterion, as soon as $\psi(a', b)$ holds, $a' \notin C$.

Lemma 8.1.3. Let F_0 be a valued field, V an F_0-variety, and let $W \subseteq V$ be ACVF$_{F_0}$-definable. Then W is g-closed if and only if for any $F \supseteq F_0$ with F maximally complete and algebraically closed, and any g-pair K, \mathbf{K} over F such that $\Gamma(K) = \Gamma(F) + \Delta$ with Δ convex and $\Delta \cap \Gamma(F) = (0)$, we have $W(K) \subseteq W(K)$.

When V is an affine variety, W is g-closed iff $W \cap E$ is g-closed for every bounded, g-closed, definable subset E of V.

Proof. The “only if” direction follows from Lemma 8.1.1. In the “if” direction, suppose W is not g-closed. By Lemma 8.1.1 there exists a g-pair K, \mathbf{K} over F_0 with $W(K) \not\subseteq W(\mathbf{K})$; further, K is finitely generated over F_0, so $\Gamma(K) \otimes \mathbb{Q}$ is finitely generated over $\Gamma(F_0) \otimes \mathbb{Q}$ as a \mathbb{Q}-space. Let $c_1, \ldots, c_k \in K$ be such that $\text{val}(c_1), \ldots, \text{val}(c_k)$ form a \mathbb{Q}-basis for $\Gamma(K) \otimes \mathbb{Q}/(\Delta + \Gamma(F_0)) \otimes \mathbb{Q}$. Let $F = F_0(c_1, \ldots, c_k)$. Then K, \mathbf{K} is a g-pair over F, $\Gamma(K) = \Gamma(F) + \Delta$, and $W(K) \not\subseteq W(\mathbf{K})$. We continue to modify F, K, \mathbf{K}. As above we may replace F by F^{alg}. Next, let K' be a maximally complete immediate extension of K, F' a maximally complete immediate extension of F, and embed F' in K' over F. Let \mathbf{K}' be the same field as K', with valuation obtained by composing $\text{val}: K' \to \text{val}K' = \text{val}K$ with the quotient map $\text{val}K \to \text{val}K/\Delta$. Then \mathbf{K} embeds in \mathbf{K}' as a valued field. We have now the same situation but with F maximally complete. This proves the criterion.

For the statement regarding bounded sets, suppose again that W is not g-closed; let K, \mathbf{K} be a g-pair as above, $a \in W(K)$, $a \notin W(\mathbf{K})$. Then $a \in V \subset \mathbb{A}^n$; say $a = (a_1, \ldots, a_n)$ and let $\gamma = \max_1^n -\text{val}(a_i)$. Then $\gamma \in \Delta + \Gamma(F)$ so $\gamma \leq \gamma'$ for some $\gamma' \in \Gamma(F)$. Let $E = \{(x_1, \ldots, x_n) \in V : \text{val}(x_i) \geq -\gamma\}$. Then E is F-definable, bounded, g-closed, and $W \cap E$ is not g-closed, by the criterion. □

As pointed out by an anonymous referee, if W is not g-closed, there may still be no bounded subset E defined over F_0 with $W \cap E$ non-g-closed; for instance this happens when F_0 is trivially valued and $W = \{x : \text{val}(x) < 0\}$. On the other hand since the family of g-closed sets is definable in definable families, if F_0 is nontrivially valued, then such a set W will be definable over F_0^a (a model of ACVF); and it follows that one will also be definable over F_0.

Corollary 8.1.4. Let W be a definable subset of a variety V. Assume whenever a definable type p on W, viewed as a set of (simple) points on \bar{W}, has a limit point $p' \in \bar{V}$, then $p' \in \bar{W}$. Then W is g-closed.
Proof. We will verify the criterion of Lemma 8.1.3. Let \((K, \Delta), \mathbf{K}\) be a g-pair over \(F\) with \(K\) finitely generated over \(F\), and \(\Gamma(K) = \Delta + \Gamma(F)\), \(F\) maximally complete. Let \(a \in W(K)\). Let \(a'\) be the same point \(a\), but viewed as a point of \(V(K)\). We have to show that \(a' \in W(K)\). Let \(d = (d_1, \ldots, d_n)\) be a basis for \(\Delta\). Note \(tp(d/F)\) has \(0 = (0, \ldots, 0)\) as a limit point, in the sense of Lemma 4.2.12. Hence \(tp(d/F)\) extends to an \(F\)-definable type \(q\). Now \(tp(a/F(d))\) is stably dominated by Theorem 2.8.2(2), so in particular definable; hence \(p = tp(a/F)\) is definable. Since \(F\) is maximally complete and \(\Gamma(K) = \Gamma(F)\), \(p' = tp(a'/F)\) is stably dominated by Theorem 2.8.2. Furthermore, \(p'\) is a limit of \(p\). To check this, since \(F\) is an elementary submodel and \(p, p'\) are \(F\)-definable, it suffices to consider \(F\)-definable open subsets of \(\tilde{V}\), of the form \(\text{val}(g) < \infty, \text{val}(g) < 0\) or \(\text{val}(g) > 0\) with \(g\) a regular function on a Zariski open subset of \(V\). If \(p'\) belongs to such an open set, the strict inequality holds of \(g(a')\), and hence clearly of \(g(a)\); so \(p\) belongs to it too. By assumption, \(p' \in \tilde{W}\), so \(a' \in W\). \(\square\)

Lemma 8.1.5. Let \(F\) be a valued field, \(V\) an \(F\)-variety, and let \(Z \subseteq V \times \Gamma^\ell\) be ACVF\(_F\)-definable. Then \(Z\) is g-closed if and only if for any g-pair \(K, \mathbf{K}\) over \(F\), \(\pi(Z(K)) \subseteq Z(\mathbf{K})\).

Proof. If \(Z\) is g-closed then the condition on g-pairs is also clear, since \(\pi\) is order-preserving. In the other direction, let \(\tilde{Z}\) be the pullback of \(Z\) to \(V \times VF^\ell\). Then \(Z\) is g-closed if and only if \(\tilde{Z}\) is g-closed. The condition \(\pi(Z(K)) \subseteq Z(\mathbf{K})\) implies \(\tilde{Z}(K) \subseteq \tilde{Z}(\mathbf{K})\). By Lemma 8.1.1, since this holds for any g-pair \((\tilde{K}, \mathbf{K})\), \(\tilde{Z}\) is indeed g-closed. \(\square\)

8.2. \textit{v}-topology and specialization. Let \(F\) be a valued field, and consider pairs \((K, \Delta)\), with \((K, v_K)\) a valued field extension of \(F\), and \(\Delta\) a proper convex subgroup of \(\Gamma(K)\), with \(\Gamma(F) \subseteq \Delta\). Let \(R = \{a \in K : v_K(a) > 0\} \) or \(v_K(a) \in \Delta\). Then \(M = \{a \in R : v_K(a) \notin \Delta\}\) is a maximal ideal of \(R\) and we may consider the field \(\widetilde{K} = R/M\), with valuation \(v_{\widetilde{K}}(r) = v_K(a)\) for nonzero \(r = a + M \in \widetilde{K}\).

We will refer to \((\widetilde{K}, \mathbf{K})\) and the related data as a v-pair over \(F\). For an affine \(F\)-variety \(V \subseteq \mathbb{A}^n\), let \(V(R) = V(K) \cap R^n\). If \(h : V \to V'\) is an isomorphism between \(F\)-varieties, defined over \(F\), then since \(F \subseteq R\) we have \(h(V(R)) = V'(R)\). Hence \(V(R)\) can be defined independently of the embedding in \(\mathbb{A}^n\), and the notion can be extended to an arbitrary \(F\)-variety. We have a residue map \(\pi : V(R) \to V(\widetilde{K})\).

We will write \(\pi(x') = x\) to mean: \(x' \in V(R)\) and \(\pi(x') = x\), and say: \(x'\) specializes to \(x\). Note that \(\Gamma(\widetilde{K}) = \Delta\). If \(\gamma = v_K(x)\) with \(x \in R\), we also write \(\pi(\gamma) = \gamma\) if \(v_K(x) \in \Delta\), and \(\pi(\gamma) = \infty\) if \(\gamma > \Delta\).

Lemma 8.2.1. Let \(V\) be an \(F\)-variety, \(W\) an ACVF\(_F\)-definable subset of \(V\). Then \(W\) is v-closed if for any (or even one nontrivial) v-pair \((K, \mathbf{K})\) over \(F\) with \(\widetilde{K} = F\), \(\pi(W(R)) \subseteq W(\widetilde{K})\). The converse is also true, at least if \(F\) is nontrivially valued.
Proof. Since ACVF\(F\) is complete and eliminates quantifiers, we may assume \(W\) is defined without quantifiers. By the discussion above, we may take \(V\) to be affine; hence we may assume \(V = \mathbb{A}^n\).

Assume the criterion holds. Let \(b \in V(\overline{K}) \setminus W(\overline{K})\). If \(a \in V(R)\), then \(a \notin W\). Thus there exists a \(K^{alg}\)-definable open ball containing \(a\) and disjoint from \(W\). Since \(F = \overline{K}\), we may view \(\overline{K}\) as embedded in \(R\), hence take \(a = b\). It follows that the complement of \(W\) is open, so \(W\) is closed.

Conversely, assume \(W\) is \(v\)-closed, and let \(a \in W(R)\), then \(b \in V(\overline{K})\). If \(b \notin W\), there exists \(\gamma \in \Gamma(F)\) such that, in ACVF\(F\), the \(\gamma\)-polydisk \(D_{\gamma}(b)\) is disjoint from \(W\). However we have \(a \in D_{\gamma}(b)\), and \(a \in W\), a contradiction. \(\square\)

Lemma 8.2.2. Let \(U\) be a variety over a valued field \(F\), let \(f : U \to \Gamma_{\infty}\) be an \(F\)-definable function, and let \(e \in U(F)\). Then \(f\) is \(v\)-continuous at \(e\) if and only if for any \(v\)-pair \(K, \overline{K}\) over \(F\) and any \(e' \in U(R)\), with \(\pi(e') = e\), we have \(f(e) = \pi(f(e'))\).

If \(F\) is nontrivially valued, one can take \(\overline{K} = F\).

If \(f(e) \in \Gamma\) then in fact \(f\) is \(v\)-continuous at \(e\) if and only if it is constant on some \(v\)-neighborhood of \(e\).

Proof. Embed \(U\) in affine space; then we have a basis of \(v\)-neighborhoods \(N(e, \delta)\) of \(e\) in \(U\) parameterized by elements of \(\Gamma\), with \(\delta \to \infty\).

First suppose \(\gamma = f(e) \in \Gamma\). Assume for some nontrivial \(v\)-pair \(K, F\) and for every \(e' \in U(R)\) with \(\pi(e') = e\), we have \(f(e) = \pi(f(e'))\). To show that \(f^{-1}(\gamma)\) contains an open neighborhood of \(e\), it suffices, since \(f^{-1}(\gamma)\) is a definable set, to show that it contains an open neighborhood defined over some set of parameters. Now if we take \(\delta > \Gamma(F), \delta \in \Gamma(K)\), then any element \(e'\) of \(N(e, \delta)\) specializes to \(e\), i.e. \(\pi(e') = e\), hence \(f(e) = f(e')\) and \(f^{-1}(\gamma)\) contains an open neighborhood.

Conversely if \(f^{-1}(\gamma)\) contains an open neighborhood of \(e\), this neighborhood can be taken to be \(N(e, \delta)\) for some \(\delta \in \mathbb{Q}\bigotimes\Gamma(F)\). It follows that the criterion holds, i.e. \(\pi(e') = e\) implies \(e' \in N(e, \delta)\) so \(f(e') = f(e)\), for any \(v\)-pair \(K, \overline{K}\).

Now suppose \(\gamma = \infty\). Assume for some nontrivial \(v\)-pair \(K, F\) and for every \(e' \in U(R)\) with \(\pi(e') = e\), we have \(f(e) = \pi(f(e'))\). We have to show that for any \(\gamma'\), \(f^{-1}((\gamma', \infty])\) contains an open neighborhood of \(e\). In case \(F\) is nontrivially valued, it suffices to take \(\gamma' \in \Gamma(F)\). Indeed as above, any element \(e'\) of \(N(e, \delta)\) must satisfy \(f(e') > \gamma'\), since \(\pi f(e') = \infty\). Conversely, if continuity holds, then for some definable function \(h : \Gamma_{>0} \to \Gamma_{>0}\), if \(e' \in N(e, h(\gamma'))\) then \(f(e') > \gamma'\); so if \(\pi(e') = e\), i.e. \(e' \in N(e, \delta)\) for all \(\delta > \Gamma(F)\), then \(f(e') > \Gamma(F)\) so \(\pi(f(e')) = \infty\). \(\square\)

Remark 8.2.3. Let \(f : U \to \Gamma\) be as in Lemma 8.2.2, but suppose it is merely (\(v\)-to-)\(g\)-continuous at \(e\), i.e. the inverse image of any interval around \(\gamma = f(e) \in \Gamma\) contains a \(v\)-open neighborhood of \(e\). Then \(f\) is \(v\)-continuous at \(e\).
Proof. It is easy to verify that, under the conditions of the remark, the criterion holds: \(\pi(f(e')) \) will be arbitrarily close to \(f(e) \), hence they must be equal. (Let us also sketch a more geometric proof. We have to show that \(f^{-1}(\gamma) \) contains an open neighborhood of \(e \). If not then there are points \(u_i \) approaching \(e \) with \(f(u_i) \neq \gamma \). By curve selection we may take the \(u_i \) along a curve; so we may replace \(U \) by a curve. By pulling back to the resolution, it is easy to see that we may take \(U \) to be smooth. By taking an étale map to \(\mathbb{A}^1 \) we find an isomorphism of a \(v \)-neighborhood of \(e \) with a neighborhood of 0 in \(\mathbb{A}^1 \); so we may assume \(e = 0 \in U \subseteq \mathbb{A}^1 \). For some neighborhood \(U_0 \) of 0 in \(U \), and some rational function \(F \), we have \(f(0) = \text{val}(F) \) for \(u \in U_0 \setminus 0 \). By \((v \text{-to-} g\text{-}) \)-continuity we have \(f(0) = \infty \) or \(f(0) = \text{val}(F) \neq \infty \) also. But by assumption \(\gamma \neq \infty \). Now \(f = \text{val}(F) \) is \(v \)-continuous, a contradiction.)

Lemma 8.2.4. Let \(V \) be an \(F \)-variety with \(F \) algebraically closed, \(W' \subseteq W \) two \(\text{ACVF}_F \)-definable subsets of \(V \). Then \(W' \) is \(v \)-dense in \(W \) if and only if for any \(a \in W(F) \), for some \(v \)-pair \((K,F)\) and \(a' \in W'(K), \pi(a') = a \).

Proof. Straightforward, but this and Lemma 8.2.5 will not be used and are left as remarks.

Lemma 8.2.5. Let \(U \) be an algebraic variety over a valued field \(F \), and let \(Z \) be an \(F \)-definable family of definable functions \(U \rightarrow \Gamma \). Then the following are equivalent:

1. There exists an \(\text{ACVF}_F \)-definable, \(v \)-dense subset \(U' \) of \(U \) such that each \(f \in Z \) is \(v \)-continuous at each point.
2. For any \(K, \overline{K} \) such that \((\overline{K}, F)\) and \((K, \overline{K})\) are both \(v \)-pairs over \(F \), for any \(e \in U(F) \), for some \(e' \in U(\overline{K}) \) specializing to \(e \), for any \(f \in Z(\overline{K}) \) and any \(e'' \in U(\overline{K}) \) specializing to \(e' \), we have \(f(e'') = f(e') \).

Proof. Let \(U' \) be the set of points where each \(f \in Z \) is \(v \)-continuous. Then \(U' \) is \(\text{ACVF}_F \)-definable, and by Lemma 8.2.2, for \(\overline{K} \models \text{ACVF}_F \) we have:

\[e' \in U'(\overline{K}) \text{ if and only if for any } f \in Z(\overline{K}), \text{ any } v \text{-pair } (K, \overline{K}) \text{ and any } e'' \in U(\overline{K}) \text{ specializing to } e', f(e'') = f(e') \].

Thus (2) says that for any \(v \)-pair \((\overline{K}, F)\), and any \(e \in U(F) \), some \(e' \in U'(\overline{K}) \) specializes to \(e \). By Lemma 8.2.4 this is equivalent to \(U' \) being dense.

Let \(U \) be an \(F \)-definable \(v \)-open subset of a smooth quasi-projective variety \(V \) over a valued field \(F \), let \(W \) be an \(F \)-definable open subset of \(\Gamma^m \), let \(Z \) be an algebraic variety over \(F \), and let \(f : U \times W \rightarrow \overline{Z} \) or \(f : U \times W \rightarrow \Gamma^k_\infty \) be an \(F \)-definable function. We consider \(\Gamma^m \) and \(\Gamma^k_\infty \) with the order topology. We say \(f \) is \((v,o)\)-continuous at \((a,b)\) if the preimage of every open set containing \(f(a,b) \) contains the product of a \(v \)-open containing \(a \) and an open containing \(b \).
Lemma 8.2.6. Let U be an F-definable v-open subset of a smooth quasi-projective variety V over a valued field F, let W be an F-definable open subset of Γ^m, let Z be an algebraic variety over F, and let $f : U \times W \to Z$ or $f : U \times W \to \Gamma^k$ be an F-definable function. Then f is (v,o)-continuous if and only if it is continuous separately in each variable. More precisely f is (v,o)-continuous at $(a,b) \in U \times W$ provided that $f(x,b)$ is v-continuous at a, and $f(a',y)$ is continuous at b for any $a' \in U$, or dually that $f(a,y)$ is continuous at b, and $f(x,b')$ is v-continuous at a for any $b' \in W$.

Proof. Since a base change will not affect continuity, we may assume $F \models ACVF$. The case of maps into \bar{Z} reduces to the case of maps into Γ_∞, by composing with continuous definable maps into Γ_∞, which determine the topology on \bar{Z}. For maps into Γ^k_∞, since the topology on Γ^k_∞ is the product topology, it suffices also to check for maps into Γ_∞. So assume $f : U \times W \to \Gamma_\infty$ and $f(a,b) = \gamma_0$. Suppose f is not continuous at (a,b). So for some neighborhood N_0 of γ_0 (defined over F) there exist (a',b') arbitrarily close to (a,b) with $f(a',b') \notin N_0$. Fix a metric on V near a, and write $\nu(u)$ for the valuative distance of u from a. Also write $\nu'(v)$ for $\min |v_i - b_i|$, where $v = (v_1, \ldots, v_m), b = (b_1, \ldots, b_m)$. For any $F' \supseteq F$, let $r^+_0[F']$ be the type of elements u with $\nu(u) < \nu(u)$ for every nonzero a in F', and let $r^-_1[F']$ be the type of elements v with $0 < \nu(v) < \nu(v)$ for every b in F' with $\nu(b) > 0$. Then r^+_0, r^-_1 are definable types, and they are orthogonal to each other, that is, $r^+_0(x) \cup r^-_1(y)$ is a complete definable type. Consider $u, v \in \mathbb{A}^1$ with $u \models r^+_0[F], v \models r^-_1[F]$. Since $F(u,v)^{alg} \models ACVF$, there exist $a' \in U(F(u,v)^{alg})$ and $b' \in W(F(u,v)^{alg})$ such that $\nu(u') \geq \nu(u), \nu'(b') \leq \nu(v)$, and $f(a',b') \notin N_0$. Note that any nonzero coordinate of $a'-a$ realizes r^+_0; since r^+_0 is orthogonal to r^-_1 and $v \models r^-_1[F(u)]$, we have $a'-a \in F(u)^{alg}$, so $a' \in F(u)^{alg}$. Similarly $b' \in \Gamma(F(u)^{alg})$. Say two points of Γ_∞ are very close over F if the interval between them contains no point of $\Gamma(F)$. By the continuity assumption (say the first version), $f(a',b')$ is very close to $f(a',b)$ (even over $F(u)$) and $f(a',b)$ is very close to $f(a,b)$ over F. So $f(a',b')$ is very close to $f(a,b)$ over F. But then $f(a',b') \in N_0$, a contradiction. □

Corollary 8.2.7. More generally, let $f : U \times \Gamma^l_\infty \times W \to \bar{Z}$ be F-definable, and let $a \in U \times \Gamma^l_\infty, b \in W$. Then f is (v,o)-continuous at (a,b) if $f(a,y)$ is continuous at b, and $f(x,b')$ is (v,o)-continuous at a for any $b' \in W$.

Proof. Pre-compose with $\text{Id}_U \times \nu \times \text{Id}_W$. □

Remark 8.2.8. It can be shown that a definable function $f : \Gamma^m \to \Gamma$, continuous in each variable, is continuous. But this is not the case for Γ_∞. For instance, $|x-y|$ is continuous in each variable, if it is given the value ∞ whenever $x = \infty$ or $y = \infty$. But it is not continuous at (∞, ∞), since on the line $y = x + \beta$ it takes the value β. By pre-composing with $\nu \times \text{Id}$ we see that Lemma 8.2.6 cannot be extended to $W \subseteq \Gamma^m$.
8.3. ACV²F. We consider the theory ACV²F of triples (K_2, K_1, K_0) of fields with surjective, non-injective places $r_{ij} : K_i \rightarrow K_j$ for $i > j$, $r_{20} = r_{10} \circ r_{21}$, such that K_2 is algebraically closed. We will work in ACV²F₂, i.e. over constants for some subfield of K_2, but will suppress F_2 from the notation. The lemmas below should be valid over imaginary constants too, at least from Γ.

We let Γ_{ij} denote the value group corresponding to r_{ij}. Then we have a natural exact sequence

$$0 \rightarrow \Gamma_{10} \rightarrow \Gamma_{20} \rightarrow \Gamma_{21} \rightarrow 0.$$

The inclusion $\Gamma_{10} \rightarrow \Gamma_{20}$ is given as follows: for $a \in \mathcal{O}_{21}$, $\text{val}_{10}(r_{21}(a)) \mapsto \text{val}_{20}(a)$. Note that if $\text{val}_{10}(r_{21}(a)) = 0$ then $a \in \mathcal{O}_{20}'$ so $\text{val}_{20}(a) = 0$. The surjection on the right is $\text{val}_{20}(a) \mapsto \text{val}_{21}(a)$.

Note that (K_2, K_1, K_0) is obtained from (K_2, K_0) by expanding the value group Γ_{20} by a predicate for Γ_{10}. On the other hand it is obtained from (K_2, K_1) by expanding the residue field K_1.

Lemma 8.3.1. The induced structure on (K_1, K_0) is just the valued field structure; moreover (K_1, K_0) is stably embedded. Hence the set of stably dominated types \hat{V} is unambiguous for V over K_1, whether interpreted in (K_1, K_0) or in (K_2, K_1, K_0).

Proof. Follows from quantifier elimination, cf. [15] Proposition 2.1.3. \(\square\)

Lemma 8.3.2. Let W be a definable set in (K_2, K_1) (possibly in an imaginary sort).

1. Let $f : W \rightarrow \Gamma_{21}$ be a definable function in (K_2, K_1, K_0). Then there exist (K_2, K_1)-definable functions f_1, \ldots, f_k such that on any $a \in \text{dom}(f)$ we have $f_i(a) = f(a)$ for some i.

2. Let $f : \Gamma_{21} \rightarrow W$ be a (K_2, K_1, K_0)-definable function. Then f is (K_2, K_1)-definable (with parameters; see remark below on parameters).

In fact this is true for any expansion of (K_2, K_1) by relations $R \subseteq K_1^m$.

Proof. We may assume (K_2, K_1, K_0) is saturated. We shall use some basic properties of stably embedded sets for which we refer to the appendix of [7].

1. It suffices to show that for any $a \in W$ we have $f(a) \in \text{dcl}_{21}(a)$, where dcl_{21} refers to the structure $M_{21} = (K_2, K_1)$. We have at all events that $f(a)$ is fixed by $\text{Aut}(M_{21}/K_1, a)$. By stable embeddedness of K_1 in M_{21}, we have $f(a) \in \text{dcl}_{21}(e, a)$ for some $e \in K_1$. But by orthogonality of Γ_{21} and K_1 in M_{21} we have $f(a) \in \text{dcl}_{21}(a)$.

2. Let A be a base structure, and consider a type p over A of elements of Γ_{21}. Note that the induced structure on Γ_{21} is the same in (K_2, K_1, K_0) as in (K_2, K_1), and that Γ_{21} is orthogonal to K_1 in both senses. For $b \models p$, $b = f(a)$, let $g(b)$ be an enumeration of the (K_2, K_1)-definable closure of b within K_1 (over A). By orthogonality, $g \circ f$ must be constant on p; say it takes value e on p. Now
By considering automorphisms it follows that \(tp_{21}(ab/A, e) \models tp_{21}(ab/A, K_1) \) by stable embeddedness of \(K_1 \) within \((K_2, K_1) \).

Remark 8.3.3. Let \(D \) be definable in \((K_2, K_1, K_0) \) over an algebraically closed substructure \((F_2, F_1, F_0)\) of constants. \(^4\) If \(D \) is \((K_2, K_1)\)-definable with additional parameters, then \(D \) is \((K_2, K_1)\)-definable over \((F_2, F_1)\).

Proof. We may take \((K_2, K_1, K_0)\) saturated. Let \(e \) be a canonical parameter for \(D \) as a \((K_2, K_1)\)-definable set. Clearly \(e \) is fixed by \(\text{Aut}(K_2, K_1/F_2, K_1) \).

Hence by stable embeddedness of \((K_1, K_0)\), we have \(e \in \text{dcl}_{K_2, K_1}(F_2, F_1) \) for some (small) \(F_1' \subset K_1 \). As \(K_1 \) is embedded and stably embedded in \((K_1, K_0)\) and has elimination of imaginaries, \(\text{dcl}_{K_2, K_1}(F_2, e) = \text{dcl}_{K_2, K_1}(F_2, c) \) for some tuple \(c = (c_1, \ldots, c_m) \) of elements of \(K_1 \).

Now each \(c_i \) is fixed by \(\text{Aut}(K_2, K_1, K_0/F_2, F_1, F_0) \), hence by \(\text{Aut}(K_1, K_0/F_1, F_0) \); it follows easily that \(c_i \in F_1 \) (since non-algebraic elements of a valued field cannot be definable over residue field elements.) \(\square \)

Lemma 8.3.4. Let \(W \) be a \((K_2, K_1)\)-definable set and let \(I \) be a definable subset of \(\Gamma_{21} \) and let \(f : I \times W \to \Gamma_{21, \infty} \) be a \((K_2, K_1, K_0)\)-definable function such that for fixed \(t \in I \), \(f_t(w) = f(t, w) \) is \((K_2, K_1)\)-definable. Then \(f \) is \((K_2, K_1)\)-definable.

Proof. Applying compactness to the hypothesis, we see that there exist finitely many functions \(g_k, h_k \) such that \(g_k \) is \((K_2, K_1)\)-definable, \(h_k \) is definable, and that for any \(t \in I \) for some \(k \) we have \(f(t, w) = g_k(h_k(t, w)) \). Now by Lemma 8.3.2 (2), \(h_k \) is actually \((K_2, K_1)\)-definable too. So we may simplify to \(f(t, w) = G_k(t, w) \) with \(G_k \) a \((K_2, K_1)\)-definable function. But every definable subset of \(I \) is \((K_2, K_1)\)-definable, in particular \(\{ t : (\forall w)(f(t, w) = G_k(t, w)) \} \). From this it follows that \(f(t, w) \) is \((K_2, K_1)\)-definable. \(\square \)

Lemma 8.3.5. Let \(T \) be any theory, \(T_0 \) the restriction to a sublanguage \(L_0 \), and let \(\mathcal{U} \models T \) be a saturated model, \(\mathcal{U}_0 = \mathcal{U} \upharpoonright L_0 \). Let \(V \) be a definable set of \(T_0 \). Let \(\overline{V} \), \(\overline{V}_0 \) denote the spaces of generically stable types in \(V \) of \(T, T_0 \) respectively. Then there exists a map \(r_0 : \overline{V} \to \overline{V}_0 \) such that \(r_0(p) \upharpoonright \mathcal{U}_0 = (p \upharpoonright \mathcal{U}) \upharpoonright L_0 \). If \(A = \text{dcl}(A) \) (in the sense of \(T \) and \(p \) is \(A \)-definable, then \(r_0(p) \) is \(A \)-definable.

Proof. In general, a definable type \(p \) of \(T \) over \(\mathcal{U} \) need not restrict to a definable type of \(T_0 \). However, when \(p \) is generically stable, for any formula \(\phi(x, y) \) of \(L_0 \) the \(p \)-definition \((d_p x)\phi(x, y) \) is equivalent to a Boolean combination of formulas \(\phi(x, b) \). Hence \((d_p x)\phi(x, y) \) is \(\mathcal{U}_0 \)-definable. The statement on the base of definition is clear by Galois theory. \(\square \)

Remark 8.3.6. The same holds of course when \(T_0 \) is interpreted in \(T \) (not necessarily as a reduct).

\(^4\)In particular \(\text{res}_{21}(F_2) \subseteq F_1 \) and \(\text{res}_{10}(F_1) \subseteq F_0 \), but we do not assume equality.
Returning to ACV\(^2\)\(F\), we have:

Lemma 8.3.7. Let \(V\) be an algebraic variety over \(K_1\). Then the restriction map of Lemma 8.3.5 from the stably dominated types of \(V\) in the sense of \((K_2, K_1, K_0)\) to those in the sense of \((K_1, K_0)\) is a bijection.

Proof. This is clear since \((K_1, K_0)\) is embedded and stably embedded in \((K_2, K_1, K_0)\). (“Embedded” means that the induced structure on \((K_1, K_0)\) is just the ACV\(^2\)\(F\)-structure.) \(\Box\)

We can thus write unambiguously \(\hat{V}_{10}\) for \(V\) an algebraic variety over \(K_1\).

Now let \(V\) be an algebraic variety over \(K_2\). Note that \(K_1\) may be interpreted in \((K_2, K_0, \Gamma_{20}, \Gamma_{10})\) (the enrichment of \((K_2, K_0, \Gamma_{20})\) by a predicate for \(\Gamma_{10}\)).

Lemma 8.3.8. Any stably dominated type of \((K_2, K_0)\) in \(V\) over \(U\) generates a complete type of \((K_2, K_1, K_0)\). More generally, assume \(T\) is obtained from \(T_0\) by expanding a linearly ordered sort \(\Gamma\) of \(L_0\), and that \(p_0\) is a stably dominated type of \(T_0\). Then \(p_0\) generates a complete definable type of \(T\); over any base set \(A = \text{dcl}(A) \leq M \models T\), \(p_0|A\) generates a complete \(T\)-type over \(A\).

Proof. We may assume \(T\) has quantifier elimination. Then \(\text{tp}(c/A)\) is determined by the isomorphism type of \(A(c)\) over \(A\). Now since \(\Gamma(A(c)) = \Gamma(A)\), any \(L_0\)-isomorphism \(A(c) \to A(c')\) is automatically an \(L\)-isomorphism. \(\Box\)

Lemma 8.3.9. Assume \(T\) is obtained from \(T_0\) by expanding a linearly ordered sort \(\Gamma\) of \(L_0\), and that in \(T_0\), a type is stably dominated if and only if it is orthogonal to \(\Gamma\). Then the following properties of a type on \(V\) over \(U\) are equivalent:

(i) \(p\) is stably dominated.
(ii) \(p\) is generically stable.
(iii) \(p\) is orthogonal to \(\Gamma\).
(iv) The restriction \(p_0\) of \(p\) to \(L_0\) is stably dominated.

Proof. The implication (1) to (2) is true in any theory, and so is (2) to (3) given that \(\Gamma\) is linearly ordered. Also in any theory (3) implies that \(p_0\) is orthogonal to \(\Gamma\), so by the assumption on \(T_0\), \(p\) is stably dominated, hence (4). Finally, let \(p_0\) be stably dominated and generating a type \(p\) of \(L\) (Lemma 8.3.8), let us prove this type is also stably dominated. Using the terminology from [16] p. 37, say \(p\) is dominated via some \(*\)-definable functions \(f : V \to D\), with \(D\) a stable ind-definable set of \(T_0\).

Since \(T\) is obtained by expanding \(\Gamma\), which is orthogonal to \(D\), the set \(D\) remains stable in \(T\). Now for any base \(A\) of \(T\) we have that \(p|A\) is implied by \(p_0|A\), hence by \((f_x|_{\text{dcl}(A)})(f(x))\), hence by \((f_x|_{\text{dcl}(A)})(f(x))\). So (4) implies (1). \(\Box\)

It follows from the last two lemmas (8.3.8, 8.3.9) that for any definable set \(V\) in \(M_{21}^q\), the restriction map \(\hat{V}_{210} \to \hat{V}_{20}\) is a bijection.
Lemma 8.3.10. For $\text{ACV}^2\mathbb{F}$, the following properties of a type on V over \mathbb{U} are equivalent:

(1) p is stably dominated.
(2) p is generically stable.
(3) p is orthogonal to Γ_{20}.
(4) The restriction p_{20} of p to the language of (K_2, K_0) is stably dominated.

Proof. Follows from Lemma 8.3.9 upon letting T_0 be the theory of (K_2, K_0). □

8.4. The map $R_{21}^{20} : \hat{V}_{20} \to \hat{V}_{21}$. Let V be an algebraic variety over K_2. We write $V_{210}, V_{20}, V_{21}, V_2$, etc., when we wish to view V as a definable set for $(K_2, K_1, K_0), (K_2, K_0), (K_2, K_1)$, or just the field K_2, respectively.

We have on the face of it three spaces: \hat{V}_{2j} the space of stably dominated types for (K_2, K_j) for $j = 0$ and 1, and \hat{V}_{210} the space of stably dominated types with respect to the theory (K_2, K_1, K_0). But in fact \hat{V}_{20} can be identified with \hat{V}_{210}, as Lemma 8.3.8 and Lemma 8.3.9 show. We thus identify \hat{V}_{210} with \hat{V}_{20}. In particular we use this identification to define a topology on \hat{V}_{210}.

By Lemma 8.3.5, we have a restriction map $R_{21}^{20} : \hat{V}_{20} = \hat{V}_{210} \to \hat{V}_{21}$. If a stably dominated type over a model M is viewed as a sequence of functions into Γ (sending an M-definable function into Γ to its generic value), then R_{21}^{20} is just composition with the natural homomorphism $\Gamma_{20} \to \Gamma_{21}$. Note that R_{21}^{20} is the identity on simple points and that R_{21}^{20} is continuous.

The following Lemma 8.4.1 will not be used in the rest of the paper. Note that in (2) and (3) of Lemma 8.4.1, it is important that V be allowed to be made of imaginaries of (K_2, K_1). (In (1) this is irrelevant, since ACF eliminates imaginaries.) This allows applying them to stable completions in (4).

Lemma 8.4.1. (1) Let U be a variety (or constructible set) over K_1. Let \hat{U}_1 be the space of stably dominated types of U within ACF. Then the restriction map $\hat{U}_{10} \to \hat{U}_1$ is surjective.

(2) Let V be a pro-definable set over (K_2, K_1). Then the restriction $\hat{V}_{210} \to \hat{V}_{21}$ is surjective. (The same is true rationally over any algebraically closed substructure of (K_2, K_1, K_0).)

(3) Let V be a pro-definable set over (K_2, K_1). Then any definable type q on V_{21} extends to a definable type q' of V_{210} (moreover, with q' orthogonal to Γ_{10}).

(4) Let V be a quasi-projective variety over K_2. Then R_{21}^{20} is surjective and closed.

(5) The topology on \hat{V}_{21} is the quotient topology from \hat{V}_{210}.

Proof. (1) \hat{U}_1 is also the space of definable types of U_1, or again the space of generics of irreducible subvarieties of U. Let W be an absolutely irreducible
variety over K_1. We have to show that the generic type of W expands to a stably dominated type of (K_1, K_0). Let W be a scheme over O_1 with generic fiber W, and with special fiber of dimension equal to $\dim(W)$. Then there are finitely many types q over K_1 of elements of $W(0)$ whose residues have transcendence degree equal to $\dim(W)$, and all of them are stably dominated and have Zariski closure equal to W.

(2) Let p be a stably dominated type of (K_2, K_1); it is dominated via some definable map f to a finite dimensional vector space over K_1. So f_*p is a definable type of K_1. By the previous paragraph, f_*p expands to a stably dominated type q of (K_1, K_0). It is now easy to see (as in Remark 8.3.3) that q dominates a unique definable type r of (K_2, K_1, K_0) via f; and clearly $\bar{R}^{21}_{20}(r) = q$.

(3) For types on Γ_{21} this is easy and left to the reader; in this case, note that the type of n \mathbb{Q}-linearly independent elements elements over Γ_{21} actually generates a complete type over Γ_{210}. Now any definable type r on V_{21} is the integral over some definable q on Γ_{21} of a definable map into \bar{V}_{21}; i.e. for any M (over which r is defined), $r = \text{tp}(c/M)$ where $a \models q|M$ and $s = \text{tp}(c/M(a))_{21}$ is stably dominated. Let q' be an expansion of q to Γ_{210}; we may assume $a \models q'|M$. By (2), there exists a (K_2, K_1, K_0)-expansion s' of s to a stably dominated type s' over $M(a) = \text{acl}(M(a))$. Integrating s' over q' we obtain a definable type of V_{210} restricting to r.

(4) Since V itself is open in some projective variety, we may assume V is projective. Let X be a closed pro-definable subset of \bar{V}_{210} and let q be a definable type on $X = R^{20}_{21}(X) \subset \bar{V}_{21}$. Using (3), expand q to a definable type on X_{210} (the same pro-definable set X, now viewed within the structure (K_2, K_1, K_0)). Using Remark 4.2.8, lift to a definable type q' on X. Let $c' \in X$ be a limit point of q'; it exists by definable compactness of $\bar{V}_{210} = \bar{V}_{20}$. Let $c = R^{20}_{21}(c')$; by continuity it is a limit point of X.

(5) Follows from (2) and (4).

We move towards the (K_2, K_1)-definability of the image of (K_2, K_1, K_0)-definable paths in \bar{V}.

Lemma 8.4.2. Let $f : \Gamma_{20,\infty} \to \bar{V}_{20}$ be (K_2, K_1, K_0)-(pro)-definable. Assume $R^{20}_{21} \circ f = \bar{f} \circ \pi$ for some $\bar{f} : \Gamma_{21,\infty} \to \bar{V}_{21}$ with $\pi : \Gamma_{20,\infty} \to \Gamma_{21,\infty}$ be the natural projection. Then \bar{f} is (K_2, K_1)-(pro)-definable.

Proof. Let U be a (K_2, K_1)-definable set, and let $g : V \times U \to \Gamma_{21,\infty}$ be definable. We have to prove the (K_2, K_1)-definability of the map: $(\gamma, u) \mapsto g(\bar{f}(\alpha), u)$, where $g(q, u)$ denotes here the q-generic value of $g(v, u)$. For fixed γ, this is just $u \mapsto g(q, u)$ for a specific $q = R^{20}_{21}(p)$, which is certainly (K_2, K_1)-definable. By Lemma 8.3.4, the map : $(\gamma, u) \mapsto g(\bar{f}(\alpha), u)$ is (K_2, K_1)-definable. □
Lemma 8.4.3. Let \(f : \Gamma_{20,\infty} \to \hat{V}_{20} \) be a \((K_2, K_1, K_0)\)-(pro)-definable path. Then there exists a path \(\tilde{f} : \Gamma_{21,\infty} \to \hat{V}_{21} \) such that \(R_{21}^{20} \circ f = \tilde{f} \circ \pi \).

Proof. Let us first prove the existence of \(\tilde{f} \) as in Lemma 8.4.2. Fixing a point of \(\Gamma_{21,\infty} \), with a preimage \(a \) in \(\Gamma_{20,\infty} \), it suffices to show that \(R_{21}^{20} \circ f \) is constant on \(\{ \gamma + a : \gamma \in \Gamma_{10,\infty} \} \). Hence, for any definable family of test function \(\phi(x, y) : V \to \Gamma_{20,\infty} \) we need to show that \(\gamma \mapsto \pi(f(\gamma + a), \phi) \) is constant in \(\gamma \); or again that for any \(b \), the map \(\gamma \mapsto \pi(f(\gamma + a), \phi(b)) \) is constant in \(\gamma \). This is clear since any definable map \(\Gamma_{10} \to \Gamma_{21} \) has finite image (due to orthogonality of \(\Gamma_{21} \) and \(K_1 \) inside \(M_{210} \), and since \(\Gamma_{10} \subseteq K_1^{eq} \)), and by continuity. By Lemma 8.4.2 \(\tilde{f} \) is definable, it remains to show it is continuous. This amounts, as the topology on \(\hat{V} \) is determined by continuous functions into \(\Gamma_{20,\infty} \), to checking that if \(g : \Gamma_{20,\infty} \to \Gamma_{20,\infty} \) is continuous and \((K_2, K_1, K_0)\)-definable, then the induced map \(\Gamma_{21,\infty} \to \Gamma_{21,\infty} \) is continuous, which is easy. \(\square \)

Example 8.4.4. Let \(a \in \mathbb{A}^1 \) and let \(f_a : [0, \infty] \to \mathbb{A}^1 \) be the map with \(f_a(t) = \) the generic of the closed ball around \(a \) of valuative radius \(t \). Then \(R_{21}^{20} \circ f_a(t) = f_a(\pi(t)) \), where on the right \(f_a \) is interpreted in \((K_2, K_1)\) and on the left in \((K_2, K_0)\). Also, if \(f_a^\circ(t) \) is defined by \(f_a^\circ(t) = f_a(\max(t, \gamma)) \) for then \(R_{21}^{20} \circ f_a^\circ(t) = f_a^\circ(\gamma(t)) \).

Let \(\mathbb{P}^1 \) have the standard metric of Lemma 3.10.1. Given a Zariski closed set \(D \subset \mathbb{P}^1 \) of points, recall the standard homotopy \(\psi_D : [0, \infty] \times \mathbb{P}^1 \to \mathbb{P}^1 \) defined in 7.6.

Lemma 8.4.5. For every \((t, a)\) we have \(R_{21}^{20} \circ \psi_D(t, a) = \psi_D(\pi(t), a) \), where on the right \(\psi \) is interpreted in \((K_2, K_1)\) and on the left in \((K_2, K_0)\).

Proof. Clear, since \(\pi(\rho(a, D)) = \rho_{21}(a, D) \). \(\square \)

Lemma 8.4.6. Let \(f : V \to V' \) be an ACF-definable map of varieties over \(K_2 \). Then \(f \) induces \(f_{20} : \hat{V}_{20} \to \hat{V}'_{20} \) and also \(f_{21} : \hat{V}_{21} \to \hat{V}'_{21} \). We have \(R_{21}^{20} \circ f_{20} = f_{21} \circ R_{21}^{20} \).

Proof. Clear from the definition of \(R_{21}^{20} \). \(\square \)

8.5. Relative versions. Let \(V \) be an algebraic variety over \(U \), with \(U \) an algebraic variety over \(K_2 \), that is, a morphism of algebraic varieties \(f : V \to U \) over \(K_2 \). We have already defined the relative space \(V/U \). It is the subset of \(\hat{V} \) consisting of types \(p \in \hat{V} \) such that \(\hat{f}(p) \) is a simple point of \(\hat{U} \). A map \(h : W \to \hat{V}/U \) will be called pro-definable (or definable) if the composite \(W \to \hat{V} \) is. We endow \(\hat{V}/U \) with the topology induced by the topology of \(\hat{V} \). In particular one can speak of continuous, \(v \), \(g \), or \(v+g \)-continuous maps with values in \(\hat{V}/U \). Exactly as above we obtain \(R_{21}^{20} : \hat{V}/U_{20} \to \hat{V}/U_{21} \). Thus, for any \(u_0 \in U \), the map \(R_{21}^{20} \)
restricts to the previous map $R_{21}^{20} : \hat{V}_{u_{20}} \to \hat{V}_{u_{21}}$ between the respective fibers over u_0.

The relative version of all the above lemmas holds without difficulty:

Lemma 8.5.1. Let $f : \Gamma_{20,\infty} \to \hat{V}/U_{20}$ be (K_2, K_1, K_0)-(pro)-definable. Assume $R_{21}^{20} \circ f = \bar{f} \circ \pi$ for some $\bar{f} : \Gamma_{21,\infty} \to \hat{V}/U_{21}$. Then \bar{f} is (K_2, K_1)-(pro)-definable.

Proof. Same proof as Lemma 8.4.2, or by restriction. \(\square \)

Lemma 8.5.2. For (K_2, K_1, K_0)-(pro)-definable paths $f : \Gamma_{20,\infty} \to \hat{V}/U_{20}$ the assumption that $R_{21}^{20} \circ f$ factors through $\Gamma_{21,\infty}$ is automatically verified.

Proof. This follows from Lemma 8.4.3 since a function on $U \times \Gamma_{20,\infty}$ factors through $U \times \Gamma_{21,\infty}$ if and only if this is true for the section at a fixed u, for each u. \(\square \)

Example 8.4.4 goes through for the relative version $\hat{A}^1 \times U/U$, where now a may be taken to be a section $a : U \to \hat{A}^1$.

The standard homotopy on \mathbb{P}^1 defined in 7.6 may be extended fiberwise to a homotopy $\psi : [0, \infty) \times \mathbb{P}^1 \times U \to \mathbb{P}^1 \times U/U$, which we still call standard. Consider now an ACF-definable (constructible) set $D \subset \mathbb{P}^1 \times U$ whose projection to U has finite fibers. One may consider as above the standard homotopy with stopping time defined by D at each fiber $\psi_D : [0, \infty) \times \mathbb{P}^1 \times U \to \mathbb{P}^1 \times U/U$.

In this framework Lemma 8.4.5 still holds, namely:

Lemma 8.5.3. For every (t, a) we have $R_{21}^{20} \circ \psi_D(t, a) = \psi_D(\pi(t), a)$, where on the right ψ is interpreted in (K_2, K_1) and on the left in (K_2, K_0).

Finally Lemma 8.4.6 also goes through in the relative setting:

Lemma 8.5.4. Let $f : V \to V'$ be an ACF-definable map of varieties over U (and over K_2). Then f induces $f_{20} : \hat{V}/U_{20} \to \hat{V'}/U_{20}$ and also $f_{21} : \hat{V}/U_{21} \to \hat{V'}/U_{21}$. We have $R_{21}^{20} \circ f_{20} = f_{21} \circ R_{21}^{20}$. \(\square \)

8.6. **g-continuity criterion.** Let $F \leq K_2$. Assume $v_{20}(F) \cap \Gamma_{10} = (0)$; so $(F, v_{20}|F) \cong (F, v_{21}|F)$ and (K_2, K_1) is a g-pair over F. In this case any ACVF$_F$-definable object ϕ can be interpreted with respect to $(K_2, K_1)_F$ or to $(K_2, K_0)_F$. We refer to ϕ_{20}, ϕ_{21}. In particular if V is an algebraic variety over F, then $V_{20} = V_{21} = V$; \hat{V} is ACVF$_F$-pro-definable, and $\hat{V}_{20}, \hat{V}_{21}$ have the meaning considered above. If $f : W \to \hat{V}$ is a definable function with W a g-open ACVF$_F$-definable subset of V, we obtain $f_{2j} : W \to \hat{V}_{2j}$, $j = 0, 1$. Let W_{21}, W_{20} be the interpretations of W in (K_2, K_1), (K_2, K_0). By Lemma 8.1.1 we have $W_{21} \subseteq W_{20}$.

Lemma 8.6.1. Let V be an algebraic variety over F and W be a g-open ACVF$_F$-definable subset of V. Assume $v_{20}(F) \cap \Gamma_{10} = (0)$.
(1) An ACVF\(_F\)-definable map \(g : W \to \Gamma_\infty\) is g-continuous if and only if \(g_{21} = \pi \circ g_{20}\) on \(W_{21}\).

(2) An ACVF\(_F\)-definable map \(g : W \times \Gamma_\infty \to \Gamma_\infty\) is g-continuous if and only if \(g_{21} \circ \pi_2 = \pi \circ g_{20}\) on \(W_{21} \times \Gamma_{20,\infty}\), where \(\pi_2(u, t) = (u, \pi(t))\), \(\pi\) being the projection \(\Gamma_{20} \to \Gamma_{21}\).

(3) An ACVF\(_F\)-definable map \(f : W \to \hat{V}\) is g-continuous if and only if \(f_{21} = R_{21}^0 \circ f_{20}\) on \(W_{21}\).

(4) An ACVF\(_F\)-definable map \(f : W \times \Gamma_\infty \to \hat{V}\) is g-continuous if and only if \(f_{21} \circ \pi_2 = R_{21}^0 \circ f_{20}\) on \(W_{21} \times \Gamma_{20,\infty}\).

Proof. (1) Recall that g-continuity of maps to \(\Gamma_\infty\) was defined with respect to the g-topology on \(\Gamma_\infty\) (as well as on \(W\)). The function \(g\) is g-continuous with respect to ACVF\(_F\) if and only if \(g^{-1}(\infty)\) is g-open and for any open interval \(I\) of \(\Gamma_{21}\), \(g^{-1}(I)\) is g-open.

Let us start with an interval of the form \(I_a = \{x : x > \text{val}_{21}(a)\}\), with \(a \in K_2\).

By increasing \(F\) we may assume \(a \in F\). (We may assume \(F = F^{alg}\). There is no problem replacing \(F\) by \(F(a)\) unless \(v_{20}(F(a)) \cap \Gamma_{10} \neq \emptyset\). In this case it is easy to see that \(v_{21}(a) = v_{21}(a')\) for some \(a' \in F\), so we may replace \(a\) by \(a'\).)

We view \(U_a = g^{-1}(I_a)\) as defined by \(\infty > g(u) > \text{val}(a)\) in ACVF\(_F\). By Lemma 8.1.1, \(U_a\) is g-open if and only if \((U_a)_{21} \subseteq (U_a)_{20}\), that is, \(\infty > g_{21}(u) > \text{val}_{21}(a)\) implies \(\infty > g_{20}(u) > \text{val}_{20}(a)\). Thus, \(g^{-1}(I_a)\) is g-open for every \(a\) if and only if \(g_{21}(u) \leq \pi(g_{20}(u))\) and \(g_{20}(u) < \infty\) whenever \(g_{21}(u) < \infty\). Let \(I'_a = \{x : x < \text{val}_{21}(a)\}\). One gets similarly that \(g^{-1}(I'_a)\) is g-open for every \(a\) if and only if \(g_{21}(u) \geq \pi(g_{20}(u))\) whenever \(g_{21}(u) < \infty\). Again by Lemma 8.1.1, \(g^{-1}(\infty)\) is g-open if and only if \(g_{20}(u) = \infty\) whenever \(g_{21}(u) = \infty\). The statement follows.

(2) Let \(G(u, a) = g(u, \text{val}(a))\). Then \(g\) is g-continuous if and only if \(G\) is g-continuous. The statement follows from (1) applied to \(G\).

For (3) and (4), we pass to affine \(V\), and consider a regular function \(H\) on \(V\). Let \(g(u) = f(u)_*\text{val}(H)\). Then \(f_{21} = R_{21}^0 \circ f_{20}\) if and only if for each such \(H\) we have \(g_{21} = \pi \circ g_{20}\); and \(f\) is g-continuous if and only if, for each such \(H\), \(g\) is g-continuous. Thus (3) follows from (1), and similarly (4) from (2). \(\square\)

Remark 8.6.2. A similar criterion is available when \(W\) is g-closed rather than g-open; in this case we have \(W_{20} \subseteq W_{21}\), and the equalities must be valid on \(W_{20}\). In practice we will apply the criterion only with g-clopen \(W\).

8.7. Some applications of the continuity criteria. As an example of using the continuity criteria, assume \(h : V \to W\) is a finite surjective morphism of separable degree \(n\) between algebraic varieties of pure dimension \(d\), with \(W\) normal. For \(w \in W\), one may endow \(h^{-1}(w)\) with the structure of a multi-set (i.e., a finite set with multiplicities assigned to points) of constant cardinality \(n\) as follows. One consider a pseudo-Galois covering \(h' : V' \to W\) of separable
degree \(n' \) with Galois group \(G \) factoring as \(h' = h \circ p \) with \(p : V' \to V \) finite of separable degree \(m \). If \(y' \in V' \), one sets \(m(y') = \frac{|G|}{|\text{Stab}(y')|} \) and for \(y \in V \), one sets \(m(y) = \frac{1}{m} \sum_{y'=y} m(y') \). The function \(m \) on \(V \) is independent from the choice of the pseudo-Galois covering \(h' \) (if \(h'' \) is another pseudo-Galois covering, consider a pseudo-Galois covering dominating both \(h' \) and \(h'' \)). Also, the function \(m \) on \(V \) is ACF-definable. Let \(R \) be a regular function on \(V \) and set \(r = \text{val} \circ R \). More generally, \(R \) may be a tuple of regular functions \((R^1, \ldots, R^m) \), and \(r = (\text{val} \circ R^1, \ldots, \text{val} \circ R^m) \). The push-forward \(r(h^{-1}(w)) \) is also a multi-set of size \(n \), and a subset of \(\Gamma_{\infty}^n \). Given a multi-set \(Y \) of size \(n \) in a linear ordering, we can uniquely write \(Y = \{y_1, \ldots, y_n\} \) with \(y_1 \leq \ldots \leq y_n \) and with repetitions equal to the multiplicities in \(Y \). Thus, using the lexicographic ordering on \(\Gamma_{\infty}^n \), we can write \(r(h^{-1}(w)) = \{r_1(w), \ldots, r_n(w)\} \); in this way we obtain definable functions \(r_i : W \to \Gamma_{\infty}, i = 1, \ldots, n \). In this setting we have:

Lemma 8.7.1. The functions \(r_i \) are \(v+g \)-continuous.

Proof. Note that if \(g : A \to B \) is a weakly order preserving map of linearly ordered set, \(X \) is a multi-subset of \(A \) of size \(n \) and \(Y = g(X) \), then \(g(x_i) = y_i \) for \(i \leq n \). It follows that both the \(v \)-criterion Lemma 8.2.2 and the \(g \)-criterion Lemma 8.6.1 (a) hold in this situation.

Corollary 8.7.2. Let \(h : V \to W \) be a finite surjective morphism between algebraic varieties of pure dimension \(d \) over a valued field, with \(W \) normal. Then \(\hat{h} : \hat{V} \to \hat{W} \) is an open map.

Proof. We may assume that \(W \) and hence \(V \) are affine. A basic open subset of \(\hat{V} \) may be written as \(G = \{p : (r(p)) \in U\} \) for some \(r = (\text{val} \circ R^1, \ldots, \text{val} \circ R^m) \), \(R^i \) regular functions on \(V \), and some \(v+g \)-open definable subset \(U \) of \(\Gamma_{\infty}^n \). Consider the functions \(r_i \) as in Lemma 8.7.1. By Lemma 8.7.1 they are \(v+g \)-continuous. By Lemma 3.8.1, they extend to continuous functions \(\hat{r}_i : \hat{W} \to \Gamma_{\infty} \). Since \(w \in \hat{h}(G) \) if and only if for some \(i \) we have \(\hat{r}_i(w) \in U \), it follows that \(\hat{h}(G) \) is open.

Note the necessity of the assumption of normality. If \(h \) is a a pinching of \(\mathbb{P}^1 \), identifying two points \(a \neq b \), the image of a small valuative neighborhood of \(a \) is not open.

We also have:

Lemma 8.7.3. Let \(p : U \times V \to U \) be the projection, where \(U \) and \(V \) are algebraic varieties. Then \(\hat{p} \) is open.

Proof. By taking open coverings, we may assume \(U \), and then \(V \), are affine. Embedding \(V \) in \(\mathbb{A}^n \), so that an open subset of \(\mathbb{U} \times \mathbb{V} \) is the restriction of an open subset of \(\mathbb{U} \times \mathbb{A}^n \), we may assume \(V = \mathbb{A}^n \). By induction on \(n \), we reduce to the case \(V = \mathbb{A}^1 \). It suffices to consider open subsets \(\hat{H} \) of \(\mathbb{U} \times \mathbb{V} \) cut out by inequalities \(\text{val}F_i > 0, \text{val}G_j < 0 \) where \(F_i, G_j \) are regular functions on \(U \times V \). By
Lemma 4.2.6, $p(\hat{H}) = \hat{p(H)}$. Since F_i, G_j are continuous in the valuation topology, it is clear that $p(H)$ is v-open. To see that it is g-open, it suffices by Lemma 8.1.1 to show that for any g-pair K, \hat{K} over the base field, $p(H)(K) \subseteq p(H)(\hat{K})$. This is clear since $H(K) \subset H(\hat{K})$ (strict inequalities being stronger for K), and since K, \hat{K} have the same underlying set.

Corollary 8.7.4. Let $h : V \to W$ be a morphism between algebraic varieties over a valued field, with W normal. Assume $h = f \circ g$ where $f : V \to W \times \mathbb{P}^n$ is a finite surjective morphism, and g is the projection map $W \times \mathbb{P}^n \to W$. Then $\hat{h} : \hat{V} \to \hat{W}$ is an open map.

Proof. Clear from 8.7.2 and 8.7.3.

Corollary 8.7.5. Let $h : V \to W$ be a finite morphism of algebraic varieties of pure dimension d over a valued field, with W normal and V quasi-projective. Let $\xi : V \to \Gamma_\infty^n$ be a definable function. Then there exists a definable function $\xi' : W \to \Gamma_\infty^n$ such that for any path $p : I \to \hat{W}$, still denoting by ξ and ξ' their canonical extensions to \hat{V} and \hat{W}, if $\xi' \circ h \circ p$ is constant on I, then so is $\xi \circ p$.

Proof. By Lemma 8.7.6 we may assume ξ is continuous. Also, we can treat the coordinate functions separately, so we may as well take $\xi : V \to \Gamma_\infty$. Let $d = \deg(h)$, and define ξ_1, \ldots, ξ_d on W as above, so that the canonical extension of ξ_i (still denoted by ξ_i) is continuous on \hat{W} and $\xi(v) \in \{\xi_1(h(v)), \ldots, \xi_d(h(v))\}$. Let $\xi' = (\xi_1, \ldots, \xi_d)$. Now if $\xi' \circ h \circ p$ is constant on I, then $\xi \circ p$ takes only finitely many values, so by definable connectedness of I, cf. 9.4, it must be constant too.

Lemma 8.7.6. Let V be a quasi-projective variety over a valued field and let $\xi : V \to \Gamma_\infty^n$ be a definable function. Then there exists a v+g-continuous definable function $\xi^* : V \to \Gamma_\infty^N$ and a definable function $d : \Gamma_\infty^N \to \Gamma_\infty^n$ such that $\xi = d \circ \xi^*$.

Proof. We may assume $V = \mathbb{P}^m$. If f/g is a rational function on \mathbb{P}^m with f and g homogeneous of the same degree, the map $x \mapsto \val(f/g(x))$ factors through the maps $x \mapsto \max(0, \val(f(x)) - \val(g(x)))$ and $x \mapsto \max(0, \val(g(x)) - \val(f(x)))$.

8.8. **The v-criterion on \hat{V}.** Let V be an algebraic variety defined over a field $F_2 \subseteq \mathcal{O}_{21}$. This means that $v_{21}(a) \geq 0$ for $a \in F_2$, so $v_{21}(a) = 0$ for $a \in F_2$, equivalently $v_{20}(F_2^\times) \subseteq \Gamma_{10}$. This is the condition of the v-criterion, cf. Lemma 8.2.1 and the definitions above it, and Lemma 8.2.2. The place r_{21} induces a field isomorphism $\res_{21} : F_2 \to F_1$. Let V_1 be the conjugate of V under this field isomorphism, so $(F_2, V) \cong (F_1, V_1)$. We can also view V_1 as the special fiber of the \mathcal{O}_{21}-scheme $V_2 \otimes_{F_2} \mathcal{O}_{21}$. As noted earlier, \hat{V}_1 is unambiguous for varieties over F_1.

induces a map concentrating on maps of the form in §8.2 and the "only if" direction of that lemma implies that X by letting specializing to of f

Lemma 8.8.1. Let W be an ACVF$_{F_2}$-definable subset of $\mathbb{P}^m \times \Gamma^m_{\infty}$. Let V be an algebraic variety over F_2, let X be an ACVF$_{F_2}$-definable subset of V and consider an ACVF$_{F_2}$-definable map $f : V \rightarrow \hat{W}$. Assume $\text{res}_{21*} \circ f_{20} = f_{10} \circ \text{res}_{21}$ at x whenever $x \in V(\mathcal{O}_{21})$ and $\text{res}_{21}(x) \in X$. Then f is v-continuous at each point of X. Hence if f is also g-continuous, then the canonical extension $F : \hat{V} \rightarrow \hat{W}$ is continuous at each point of \hat{X}.

Proof. As in the proof of Lemma 3.8.1, to show that f is v-continuous at each point of X it is enough to prove that for any continuous definable function $c : \hat{W} \rightarrow \Gamma^r_{\infty}$, $c \circ f$ is v-continuous at each point of X. Since, by the functoriality noted above, the equation holds for $c \circ f$, we may assume $f : V \rightarrow \Gamma_{\infty}$. In this case the statement follows from Lemma 8.2.2. The last statement follows directly from Lemma 3.8.1.

Remark 8.8.2. Let $F(X) \in \mathcal{O}_{21}[X]$ be a polynomial in one variable, and let $f(X)$ be the specialization to $K_1[X]$. Assume $f \neq 0$. Then the map r_{21} takes the roots of F onto the roots of f. Indeed, consider a root of f; we may take it to be 0. Then the Newton polygon of f has a vertical edge. So the Newton polygon of F has a very steep edge compared to Γ_{10}. Hence it has a root of that slope, specializing to 0.

The following lemma states that a continuous map on X remains continuous relative to a set U that it does not depend on; i.e. viewed as a map on $X \times U$ with dummy variable U, it is still continuous. This sounds trivial, and the proof is indeed straightforward if one uses the continuity criteria; it seems curiously nontrivial to prove directly.

For U a variety and $b \in U$, let s_b denote the corresponding simple point of \hat{U}, i.e. the definable type $x = b$. For V a variety and $q \in \hat{V}$, let $q \otimes s_b$ denote the unique definable type $q(v, u)$ extending $q(v)$ and $s_b(u)$.

Lemma 8.8.3. Let U, V and V' be varieties, and X be a $v+g$-open definable subset of V', or of $V' \times \Gamma^N_{\infty}$. Let $f : X \rightarrow \hat{V}$ be $v+g$-continuous, and let $\hat{f}(x, u) = f(x) \otimes s_u$. Then $\hat{f} : X \times U \rightarrow \hat{V} \times U$ is $v+g$-continuous.
Proof. For g-continuity, we use Lemma 8.6.1 (3) and (4). We have $f_{21} = R_{21}^0 \circ f_{20}$ on X_{21}. Also for $x \in X_{21}$, $u \in U_{21}$, we have $f_{21}(x, u) = f_{21}(x) \otimes s_u$, and $f_{20}(x, u) = f_{20}(x) \otimes s_u$. Moreover we noted that R_{21}^0 is the identity on simple points, so $R_{21}^0(p \otimes s_b) = R_{21}^0(p) \otimes s_b$ in the natural sense. The criterion follows.

For v-continuity, Lemma 8.8.1 applies. Assume $\text{res}_{21}(x) \in X$, so $x \in X$. Let $u \in U(\emptyset_{21})$. We have $\text{res}_{21} \circ f_{20}(x) = f_{10} \circ \text{res}_{21}(x)$. Now $\text{res}_{21}(q \otimes s_u) = \text{res}_{21}(q) \otimes s_u$, where $\bar{u} = \text{res}_{21}(u)$, and $\text{res}_{21}(x, u) = (\text{res}_{21}(x), \bar{u})$, so the criterion follows.

Recall that the map $\otimes : U \times \hat{V} \to \overline{U \times V}$ is well-defined but not continuous. If $f : I \times \hat{V} \to \hat{V}$ is a homotopy, let $\phi : I \times V \to \hat{V}$ be the restriction to simple points, and let $(\phi \otimes \text{Id})(t, v, u) = \phi(t, v) \otimes u$. By Lemma 8.8.3, $(\phi \otimes \text{Id})$ is $v + g$-continuous. By Lemma 3.8.2, it extends to a homotopy $I \times V \times U \to \hat{V} \times \hat{U}$, which we denote $\overline{f \times \text{Id}}$. We easily compute: $\overline{f \times \text{Id}}(t, p \otimes q) = f(t, p) \otimes q$.

Corollary 8.8.4. Let U and V be varieties over a valued field and let X and Y be definable subsets of U and V. Let $f : I \times \hat{X} \to \hat{X}$ and $g : I' \times \hat{Y} \to \hat{Y}$ two definable deformation retractions onto Γ-internal subsets S and T respectively. Assume f and g are restrictions of homotopies $F : I \times \hat{U} \to \hat{U}$ and $G : I' \times \hat{V} \to \hat{V}$, respectively. Then there exists a definable deformation retraction $h : (I + I') \times \overline{X \times Y} \to \overline{X \times Y}$ whose image is equal to $S \otimes T$.

Proof. Recall $I + I'$ is obtained from the disjoint union of I and I' by identifying the endpoint e_I of I with the initial point of I'. The homotopy $\overline{f \times \text{Id}}$ restricts to a homotopy $\overline{f \times \text{Id}} : I \times \overline{X \times Y} \to \overline{X \times Y}$ and similarly $\overline{\text{Id} \times g}$ restricts to a homotopy $\overline{\text{Id} \times g} : I' \times \overline{X \times Y} \to \overline{X \times Y}$. Let h be the concatenation of $\overline{f \times \text{Id}}$ with $\overline{\text{Id} \times g}$, that is, defined by

$$h(t, z) = \overline{f \times \text{Id}}(t) \in I, \quad h(t, z) = \overline{\text{Id} \times g}(t, \overline{f \times \text{Id}}(e_I, z)) \quad \text{for} \quad t \in I'.$$

So $h(t, p \otimes q) = f(t, p) \otimes q$ for $t \in I$, and $h(e_I, p) \otimes g(t, q)$ for $t \in I'$. In particular, $h(e_I, p) \otimes q = f(e_I, p) \otimes g(e_I, q)$.

Since any simple point of $\overline{X \times Y}$ has the form $a \otimes b$, we see that $h(e_I, X \times Y) \subseteq S \otimes T$. Hence for any $r \in \overline{X \times Y}$, $h(e_I, r)$ is an integral over r of a function into $S \otimes T$. But as $S \otimes T$ is Γ-internal, and r is stably dominated, this function is generically constant on r, and the integral is an element of $S \otimes T$. Thus the final image of h is contained in $S \otimes T$.

Using again the expression for $h(t, p \otimes q)$ we see that if $f(t, s) = s$ for $s \in S$ and $g(t, y) = y$ for $y \in T$, then $h(t, z) = z$ for all t and all $z \in S \otimes T$. So the final image is exactly equal to $S \otimes T$.

The following statement is a consequence of Corollary 8.8.4 and Theorem 10.1.1.
Corollary 8.8.5. Let U and V be quasi-projective varieties over a valued field and let X and Y be definable subsets of U and V. The canonical map $\pi : \widetilde{X \times Y} \to \widetilde{X} \times \widetilde{Y}$ is a homotopy equivalence.

Proof. We may assume U and V are projective. By Theorem 10.1.1, there exists definable deformation retractions $F : I \times \widetilde{U} \to \widetilde{U}$ and $G : I' \times \widetilde{V} \to \widetilde{V}$, leaving X and Y invariant, whose images Σ and Θ are Γ-internal. Since Σ and Θ are continuous definable images of \widetilde{U} and \widetilde{V}, they are definably compact. The map $\pi_{\Sigma} \times \pi_{\Theta} : \Sigma \times \Theta \to \Sigma \times \Theta$ is continuous and injective, hence a homeomorphism. Thus the inverse map $\otimes : \Sigma \times \Theta \to \Sigma \otimes \Theta$ is continuous.

Let $f : I \times \widetilde{X} \to \widetilde{X}$, $g : I' \times \widetilde{Y} \to \widetilde{Y}$ be the restrictions of F and G, respectively, with images Γ-internal subsets S and T. Being the restriction of a continuous map, $\otimes : S \times T \to S \otimes T$ is continuous, thus $\pi_S \times \pi_T : S \otimes T \to S \times T$ is a homeomorphism. Denote by e and e' the endpoints of I and I'.

By Corollary 8.8.4, we have a homotopy equivalence $h_{e'} : \widetilde{X \times Y} \to S \otimes T$ such that the following diagram is commutative:

\[
\begin{array}{ccc}
\widetilde{X \times Y} & \xrightarrow{h_{e'}} & S \otimes T \\
\pi_{X} \times \pi_{Y} & \downarrow & \pi_{S} \times \pi_{T} \\
\widetilde{X} \times \widetilde{Y} & \xrightarrow{f_{e} \times g_{e'}} & S \times T.
\end{array}
\]

Since $f_{e} \times g_{e'}$ is a homotopy equivalence and $\pi_S \times \pi_T$ is a homeomorphism, $\pi_X \times \pi_Y$ is a homotopy equivalence.

8.9. Definability of v- and g-criteria.

Proposition 8.9.1. Let V and W be varieties over a valued field and let C be the set of definable functions $V \to W^\#$ that extend to continuous functions $\widetilde{V} \to \widetilde{W}$. Then C is (strict) ind-definable. If V and W depend on a parameter t, then this is uniform in the parameter.

Proof. We will use the v- and g-criteria; it suffices to show that the set of v-continuous functions is definable, as is the set of g-continuous functions.

We begin with v-continuity. Let V and W be defined over a field $F_2 \subseteq \mathcal{O}_{21}$. Let $f = f_b : V \to W^\# \subseteq \widetilde{W}$ be a definable map, with parameter $b \in F_2$. By Lemma 8.8.1, f is v-continuous iff the equation:

\[\text{res}_{21} \circ f_{20} = f_{10} \circ \text{res}_{21}\]

holds on $V(\mathcal{O}_{21})$.

There is no harm in assuming that W is projective, so as to simplify notation: $W(\mathcal{O}_{21}) = W(K_2)$. Now the map $\text{res}_{21} : W(K_2) = W(\mathcal{O}_{21}) \to W$ is ACV^2F-definable. It induces

\[\text{res}_{21}^* : \widetilde{W}_{20} \to \widetilde{W}_{10}\]
It is easy to see that \(\text{res}_{21}\ast(W^\#) \subset W_1^\# \). For instance, the argument for \(\widehat{W}_{20} = \widehat{W}_{210} \) shows also that the strongly stably dominated types of these structures coincide; and the image of a strongly stably dominated type under a definable map is strongly stably dominated in \(K_{210} \), and hence in \(K_{10} \) which is stably embedded (see Lemma 2.5.10 (2)).

The restriction \(r \) of \(\text{res}_{21} \) to \(W^\# \) is ACV\(^2\)F-piecewise definable (since \(\text{res}_{21} \) itself is pro-definable). Hence the displayed equation is an ACV\(^2\)F-definable property of \(b \). But take \(F_2 \) to be isomorphic to \(K_{10} \), under the residue map. Then ACV\(^2\)F-induced structure on \(F_2 \) is just the ACVF structure (with respect to \(v_{20} \)); specifically, the intersection with \(F_n^\# \) of any quantifier-free ACV\(^2\)F-definable set is already \((F_2, v_{20})\)-definable. Thus the set of \(b \) from \(F_2 \) with \(f_b \) \(v \)-continuous is ACVF-definable.

Similarly, we use the g-criterion Lemma 8.6.1 (3) for definability of g-continuity. Here the defining equation is:

\[
f_{21} = R_{21}^{20} \circ f_{20} \text{ on } V
\]

\(R_{21}^{20} \) is the composition of the equality \(W_{210}^\# = W_{20}^\# \) with the restriction map \(W_{210}^\# \to W_{21}^\# \), and is clearly piecewise definable in ACV\(^2\)F. Once again the quantifier-free induced structure on \(F_2 \) is the same as the \(v_{20} \)-ACVF-structure, and definability is proved. \(\square \)

9. CONTINUITY OF HOMOTopies

Summary. This section consists mostly of preliminary material useful for the proof of the main theorem in §10. In 9.1 and 9.2 we use the continuity criteria of §8 to prove the continuity of functions and homotopies used in §10. In 9.3, we construct inflation homotopies, which are a key tool in our approach. Finally, in 9.4 we prove GAGA type results for connectedness and prove additional results regarding the Zariski topology.

9.1. Preliminaries. The following lemma will be used both for the relative curve homotopy, and for the inflation homotopy. In the former case, \(X \) will be \(V \setminus D_{\text{ver}} \cup D_0 \), where \(D_{\text{ver}} \) is the pullback to \(V \) of a certain divisor \(D_{\text{ver}} \) on \(U \). Points of \(D_{\text{ver}} \cap D_0 \) are fixed by the homotopy; over these points unique lifting is clear, since \(V \to U \) has finite fibers and a path with finite image must be constant.

Lemma 9.1.1. Let \(f : W \to U \) be a morphism of varieties over some valued field \(F \). Let \(h : [0, \infty] \times U \to \widehat{U} \) be \(F \)-definable. Let \(H : [0, \infty] \times W \to \widehat{W} \) be an \(F \)-definable lifting of \(h \). Let \(H_w(t) = H(t, w) \) and \(h_w(t) = h(t, u) \). Assume for all \(w \in W \), \(H_w \) and \(h_{f(w)} \) are (continuous) paths and that \(H_w \) is the unique path lifting \(h_{f(w)} \) with \(H_w(\infty) = w \). Let \(X \) be a \(g \)-open definable subset of \(U \). Assume \(h \) is \(g \)-continuous, and \(v \)-continuous on (respectively, at each point of) \([0, \infty] \times X \). Then \(H \) is \(g \)-continuous, and is \(v \)-continuous on (respectively at each point of)
[0, \infty] \times f^{-1}(X) \, (we \, say \, a \, function \, is \, \upsilon\text{-continuous} \, on \, a \, subset, \, if \, its \, restriction \, to \, that \, subset \, is \, \upsilon\text{-continuous}).

Proof. We first use the criterion of Lemma 8.6.1 (4) to prove \(g \)-continuity. We may assume the data are defined over a subfield \(F \) of \(K_2 \), such that \(v_{20}(F) \cap \Gamma_{10} = (0) \); so \((F, v_{20}) \cong (F, v_{21})\).

To show that \(H_{21} \circ \pi_2 = R_{21}^{20} \circ H_{20} \), we fix \(w \in W \). By Lemma 8.4.3, \(R_{21}^{20} \circ H_{20}(w, t) = H'_w \circ \pi \) for some path \(H'_w \). To show that \(H_{21}(w, t) = H'_w(t) \), it is enough to show that \(f \circ H'_w = h_{f(w)} \). It is clear that \(H'_w(\infty) = H_{20}(\infty) = w \) since \(R_{21}^{20} \) preserves simple points. To see that \(f \circ H'_w = h_{f(w)} \) it suffices to check that \(f \circ H'_w \circ \pi = h_{f(w)} \circ \pi \), i.e., \(f \circ R_{21}^{20} \circ H_{20}(w, t) = h_{f(w)}(\pi(t)) \). Now \(f \circ R_{21}^{20} \circ H_{20} = R_{21}^{20} \circ h_{20} = h_{21} \). It follows that the \(g \)-continuity criterion for \(H \) is satisfied.

Let now use the \(\upsilon \)-continuity criterion in Lemma 8.8.1 above \(X \), \((\text{res}_{21*} \circ H_{20}(t, v) = (H_{10} \circ \text{res}_{21})(t, v)\) whenever \((f \circ \text{res}_{21})(v) \in X \). Fixing \(w = \text{res}_{21}(v) \), \(H_{10}(t, w) \), for \(t \in \Gamma_{10} \), is the unique path lifting \(h_{f(w)} \) and starting at \(w \), hence to conclude it is enough to prove that \(\text{res}_{21*} \circ H_{20}(t, v) \) also has these properties. But continuity follows from Lemma 9.1.2 and the lifting property from Lemma 9.1.3.

In the next two lemmas we shall use the notations and assumptions in \S 8.8. In particular we will assume that \(v_{20}(F_2^\times) \subseteq \Gamma_{10, \infty} \).

Lemma 9.1.2. Let \(V \) be a quasi-projective variety over \(F_2 \). Let \(f : [0, \infty] \subset \Gamma_{20, \infty} \rightarrow \widehat{V}_{20} \) be a \((K_2, K_0)\)-definable path defined over \(F_2 \), with \(f(\infty) \) a simple point \(p_0 \) of \(\widehat{V}_0 \). Then:

1. For all \(t \), \(f(t) \in \widehat{V}_0 \).

2. We have \(\text{res}_{21*}(f(t)) = \text{res}_{21*}(p_0) \) for positive \(t \in \Gamma_{20} \setminus \Gamma_{10} \).

3. The restriction of \(\text{res}_{21*} \circ f \) to \([0, \infty] \subset \Gamma_{10, \infty} \) is a continuous \((K_1, K_0)\)-definable path \([0, \infty] \subset \Gamma_{10, \infty} \rightarrow \widehat{V}_1 \).

Proof. Using base change if necessary and Lemma 6.2.1 we may assume \(V \subseteq \mathbb{A}^n \) is affine. So \(f : [0, \infty] \subset \Gamma_{20, \infty} \rightarrow \mathbb{A}^n_{20} \) and we may assume \(V = \mathbb{A}^n \).

To prove (1) and (2), by using the projections to the coordinates, one reduces to the case \(V = \mathbb{A}^1 \). Let \(\rho(t) = v(f(t) - p_0) \). Then \(\rho \) is a continuous function \([0, \infty] \rightarrow \Gamma_{\infty} \), which is \(F \)-definable (in \((K_2, K_0)) \), and sends \(\infty \) to \(\infty \). If \(\rho \) is constant, there is nothing to prove, since \(f \) is constant, so suppose not. As \(\Gamma \) is stably embedded, it follows that there is \(\alpha \in \Gamma_{20}(F) \subset \Gamma_{10} \) such that for all \(t \in [0, +\infty) \), \(\alpha \leq \rho(t) \). Hence, if \(t \in [0, +\infty)_{20} \), then \(v_{20}(f(t) - p_0) \geq \alpha \), which implies that \(f(t) \in O_{21} \) as desired, and gives (1). Again, by \(F \)-definability and since \(f \) is not constant, for some \(\mu > 0 \) and \(\beta \in \Gamma_{20}(F) \), if \(t > \beta \), then \(\rho(t) - \mu t \). Thus, when \(t > \Gamma_{10} \), then \(\pi(\rho(t)) = 0 \), i.e., \(\text{res}_{21*}(f(t)) = \text{res}_{21*}(p_0) \).
It follows that for $m \leq 21$, f is a polynomial over K_1 and if H is a polynomial over O_{21} lifting h, then $v_{20}(H(a)) = v_{10}(h(\text{res}(a)))$. It follows that for $t \neq \infty$ in $[0, \infty] \subset \Gamma_{10\infty}$ continuity of f at t implies continuity of $\text{res}_{21} \circ f$.

In fact $(\text{res}_{21} \circ f(t))_t h$ factors through $\pi_{10}(t)$ as we have shown in (2), the argument in (3) shows continuity at ∞ too. To see this directly, one may again consider a polynomial h on $V = \mathbb{A}^n$ over K_1 and a lift H over O_{21}, and also lift an open set containing $\text{res}_{21}(p_0)$ to one defined over a subfield F'_2 contained in O_{21}. The inverse image contains an interval (γ, ∞), and since γ is definable over F'_2 we necessarily have $\gamma \in \Gamma_{10}$. The pushforward by π_{10} of (γ, ∞) contains an open neighborhood of ∞.

\begin{lemma}
Let $f : V \to V'$ be a morphism of varieties defined over F_2. Then f induces $f_{20} : \widehat{V}_{20} \to \widehat{V}'_{20}$ and also $f_{10} : \widehat{V}_{10} \to \widehat{V}'_{10}$. We have $\text{res}_{21} \circ f_{20} = f_{10} \circ \text{res}_{21}$, on \widehat{V}_{10}.
\end{lemma}

\begin{proof}
In fact f_{20}, f_{10} are just induced from restriction of the morphism $f \otimes_{F_2} O_{21} : V \times_{F_2} \text{Spec} O_{21} \to V' \times_{F_2} \text{Spec} O_{21}$, to the general and special fiber respectively, and the statement is clear.
\end{proof}

\begin{lemma}
Let U be a projective variety over a valued field, D a divisor. Let m be a metric on U, cf. Lemma 3.10.1. Then the function $u \mapsto \rho(u, D) = \sup\{m(u, d) : d \in D\}$ is v-continuous on U.
\end{lemma}

\begin{proof}
By Lemma 4.2.27, the supremum is attained. Let $\rho(u) = \rho(u, D)$. It is clearly v-continuous. Indeed, if $\rho(u, D) = \alpha \in \Gamma$, then $\rho(u', D) = \alpha$ for any u' with $m(u, u') > \alpha$. If $\rho(u, D) = \infty$ then $\rho(u', D) > \alpha$ for any u' with $m(u, u') > \alpha$. Let us show g-continuity by using the criterion in Lemma 8.6.1. Let (K_2, K_1, K_0), F be as in that criterion. Let $u \in U(K_2)$. We have to show that $\rho_{21}(u) = (\pi \circ \rho_{20})(u)$. Say $\rho_{20}(u) = m(u, d)$ with $d \in D(K_2)$. Then $m_{21}(u, d) = \pi(m(u, d))$ by g-continuity of m. Let $\alpha = \pi(m(u, d))$ and suppose for contradiction that $\rho_{21}(u) \neq \alpha$. Then $m_{21}(u, d') > \alpha$ for some d'. We have again $m_{21}(u, d') = \pi(m_{20}(u, d'))$ so $m_{20}(u, d') > m_{20}(u, d)$, a contradiction.
\end{proof}

\begin{remark}
In the proof of Lemma 9.1.4, semi-continuity can be seen directly as follows. Indeed, $\rho^{-1}(\infty) = D$ which is g-clopen. It remains to show $\{u : \rho(u, D) \geq \alpha\} \in \mathfrak{g}$ and $\{u : \rho(u, D) \leq \alpha\}$ are g-closed. Now $\rho(u, D) \geq \alpha$ if and only if $(\exists y \in D)(\rho(u, y) \geq \alpha)$; this is the projection of a v-g-closed subset of U, hence v-g-closed. The remaining inequality seems less obvious without the criterion, which serves in effect as a topological refinement of quantifier elimination.
\end{remark}

\begin{lemma}
Let $h : \widehat{U} \times I \to \widehat{U}$ be a homotopy. Let $\gamma : \widehat{U} \to I$ be a definable continuous function. Let $h[\gamma]$ be the cut-off, defined by $h[\gamma](u, t) =$
direction. Then $h[\gamma]$ is a homotopy. Also, if h satisfies $(*$) of §3.9, then so does $h[\gamma]$.

Proof. Clear. \hfill \Box

Lemma 9.1.7. Let $U \subset \mathbb{A}^n$ be an affine variety over some valued field F, $f : U \rightarrow \Gamma$ be an F-definable function. Assume f is locally bounded on U, i.e. any $u \in U$ has a neighborhood in the valuation topology where f is bounded. Then there exists a $v+g$-continuous F-definable function $F : \mathbb{A}^n \rightarrow \Gamma_\infty$ such that $f(x) \leq F(x) \in \Gamma$ for $x \in U$.

Proof. Replacing $f(u)$ by the infimum over all neighborhoods w of u of the supremum of f on w, we may assume f is semi-continuous, i.e. $\{u : f(u) < \alpha\}$ is open. Denote by $x_i(u)$ the affine coordinates of a point u. Let $g(u) = -\min\{0, \text{val}(x_1(u)), \ldots, \text{val}(x_n(u))\}$. Note that $g(u) \in \Gamma$ for $u \in U$. Now

$$U_\alpha = \{x : g(x) \leq \alpha\}$$

is $v+g$-closed and bounded, hence \overline{U}_α is definably compact by Lemma 4.2.4. By Lemma 4.2.17, since U_α is covered by the union over all $\gamma \in \Gamma$ of the open sets $\{x : f(x) < \gamma\}$, f is bounded on U_α; let $f_1(\alpha)$ be the least upper bound. Piecewise in Γ, f_1 is an affine function. It is easy to find $m \in \mathbb{N}$ and $c_0 \in \Gamma$ such that $f_1(\alpha) \leq ma + c_0$ for all $\alpha \geq 0$. Let $F(x) = mg(x) + c_0$. \hfill \Box

9.2. Continuity on relative \mathbb{P}^1. We fix three points 0, 1, ∞ in \mathbb{P}^1. In particular, the notion of a ball and the standard homotopy are well-defined, cf. Lemma 3.10.1, Lemma 7.6.1. Let U_0 be a normal variety and set $E_0 = U_0 \times \mathbb{P}^1$. In practice, U_0 will be a dense open subset of $U = \mathbb{P}^{n-1}$. Let D be a divisor on E_0 containing the divisor at ∞ at each fiber.

Write $D = D' \cup D''$, with D' finite over U_0 and D'' the preimage of a closed divisor Z in U_0. Set $U'_0 = U_0 \setminus Z$ and $E'_0 = E_0 \setminus D''$. Let $\psi_D : [0, \infty] \times E_0 \rightarrow \overline{E'_0/U'_0}$ be the standard homotopy with stopping time defined by D'_0 at each fiber, as defined above Lemma 8.5.3. We extend ψ_D' to a map $\psi_D : [0, \infty] \times E_0 \rightarrow \overline{E_0/U_0} \subset \hat{E}_0$ by $\psi_D(t, x) = x$ for $x \in D''$.

Lemma 9.2.1. Assume D is finite over U_0. Then the pro-definable map $\psi_D : [0, \infty] \times E_0 \rightarrow \overline{E_0/U_0}$ is $v+g$-continuous.

Proof. Applying the g-criterion Lemma 8.6.1, it follows from Lemma 8.5.3 and Lemma 8.5.4, that ψ_D is g-continuous.

We clearly have v-continuity for the basic homotopy on \mathbb{P}^1, applied fiberwise on $\mathbb{P}^1 \times U_0$. The function giving fiberwise distance to D is also v-continuous: upper semi-continuity follows from the fact that D is a closed subvariety of E_0, while lower semi-continuity follows from the facts that D has pure codimension 1 in E_0, and that by Lemma 8.7.2, the morphism $\hat{D} \rightarrow \hat{U}_0$ is an open map. Thus, by Lemma 9.1.6, ψ_D is v-continuous on $[0, \infty] \times E_0$. \hfill \Box
Lemma 9.2.2. (1) Let \(f : W \rightarrow U \) be a generically finite morphism of varieties over a valued field \(F \), with \(U \) a normal variety, and \(\xi : W \rightarrow \Gamma_\infty \) an \(F \)-definable map. Then there exists a divisor \(D_\xi \) on \(U \) and \(F \)-definable maps \(\xi_1, \ldots, \xi_n : U \rightarrow \Gamma_\infty \) such that any homotopy \(W \times I \rightarrow \hat{W} \) lifting a homotopy of \(U \times I \rightarrow \hat{U} \) fixing pointwise \(D_\xi \) and the levels of the functions \(\xi_i \) also preserves \(\xi \).

(2) Let \(\xi : \mathbb{P}^1 \times U \rightarrow \Gamma_\infty \) be a definable map, with \(U \) an algebraic variety over a valued field. Then there exists a divisor \(D_\xi \) on \(U \) such that if \(D_\xi \subseteq \mathbb{P}^1 \times D \) then the standard homotopy with stopping time defined by \(D \) preserves \(\xi \).

Proof. (1) There exists a divisor \(D_0 \) of \(U \) such that \(f \) is finite above the complement of \(D_0 \), and such that \(U \setminus D_0 \) is affine. By making \(D_0 \) a component of \(D_\xi \), we reduce to the case that \(U \) is affine, and \(f \) is finite. So \(W \) is also affine, and \(\xi \) factorizes through functions of the form \(\text{val}(g) \), with \(g \) regular; hence \(\xi \) can be assumed \(v+g \)-continuous, so that it induces a continuous function on \(\hat{W} \). Let \(\xi_i(u) \), \(i = 1, \ldots, n \), list the values of \(\xi \) on \(f^{-1}(u) \) and let also \(\xi_{n+1} \) be the characteristic function of \(D_\xi \). Let \(h \) be a homotopy of \(W \) lifting a homotopy of \(U \) fixing \(D_\xi \) and the levels of the \(\xi_i \). Then for fixed \(w \in W \), \(\xi(h(t, w)) \) can only take finitely many values as \(t \) varies. On the other hand \(t \mapsto \xi(h(t, w)) \) is continuous, so it must be constant.

(2) As in (1) we may assume \(U \) is affine, and that \(\xi|A^1 \times U \) has the form \(\xi(u) = \text{val}(g) \), \(g \) regular on \(A^1 \times U \). Here we take \(\mathbb{P}^1 = A^1 \cup \{ \infty \} \); by adding \(\{ \infty \} \times U \) to \(D_\xi \) we can ensure that \(\xi \) is preserved there, and so it suffices to preserve \(\xi|A^1 \times U \). Write \(g = g(x, u) \), so for fixed \(u \in U \) we have a polynomial \(g(x, u) \); let \(D_\xi \) include the divisor of zeroes of \(g \). Now it suffices to see for each fiber \(\mathbb{P}^1 \times \{ u \} \) separately, that the standard homotopy fixing a divisor containing the roots of \(g \) must preserve \(\text{val}(g) \). This is clear since this standard homotopy fixes any ball containing a root of \(g \); while on a ball containing no root of \(g \), \(\text{val}(g) \) is constant. \(\square \)

9.3. The inflation homotopy.

Lemma 9.3.1. Let \(V \) be a quasi-projective variety over a valued field \(F \), \(W \) be closed and bounded \(F \)-pro-definable subset of \(\hat{V} \). Let \(D \) and \(D' \) be closed \(F \)-subvarieties of \(V \), and suppose \(W \cap \hat{D'} \subseteq \hat{D} \). Then there exists a \(v+g \)-closed, bounded \(F \)-definable subset \(Z \) of \(V \) with \(Z \cap D' \subseteq D \), and \(W \subseteq \hat{Z} \).

Proof. We may assume \(V \) is affine. Indeed, we may assume \(V = \mathbb{P}^n \); then find finitely many affine open \(V_i \subset V \) and closed bounded definable subsets \(B_i \subset V_i \) such that \(V = \cup_i B_i \); given \(Z_i \) solving the problem for \(V_i \), set \(Z = \cup_i (B_i \cap Z_i) \).

Choose a finite generating family \((f_i) \) of the ideal of regular functions vanishing on \(D \) and set \(d(x, D) = \inf \text{val}(f_i(x)) \) for \(x \) in \(V \). Similarly, fixing a finite generating family of the ideal of regular functions vanishing on \(D' \), one defines
a distance function \(d(x, D') \) to \(D' \). Note that the functions \(d(x, D) \) and \(d(x, D') \) may be extended to \(x \in \hat{V} \).

For \(\alpha \in \Gamma \), let \(V'_\alpha \) be the set of points \(x \) of \(V \) with \(d(x, D) \leq \alpha \). Let \(W'_\alpha = W \cap \hat{V}'_\alpha \). Then \(W'_\alpha \cap \hat{D}' = \emptyset \). So \(d(x, D') \in \Gamma \) for \(x \in W'_\alpha \). By Lemma 4.2.27 there exists \(\delta(\alpha) \in \Gamma \) such that \(d(x, D') \leq \delta(\alpha) \) for \(x \in W'_\alpha \). We may take \(\delta : \Gamma \to \Gamma \) to be a continuous non-decreasing definable function. Since any such function \(\Gamma \to \Gamma \) extends to a continuous function \(\Gamma_\infty \to \Gamma_\infty \), we may extend \(\delta \) to a continuous function \(\delta : \Gamma_\infty \to \Gamma_\infty \). Also, since any such function is bounded by a continuous function with value \(\infty \) at \(\infty \) we may assume \(\delta(\infty) = \infty \). Let

\[
Z_1 = \{ x \in V : d(x, D') \leq \delta(d(x, D)) \}.
\]

This is a \(\nu + \gamma \)-closed set. Let \(c \) be a realization of \(p \in W \). We have \(c \in Z_1 \) and \(Z_1 \cap D' \subseteq D \). Since, by Lemma 4.2.10, \(W \) is contained in \(\hat{Z}_2 \) with \(\hat{Z}_2 \) a bounded \(\nu + \gamma \)-closed definable subset of \(V \), we may set \(Z = Z_1 \cap Z_2 \). \(\square \)

Lemma 9.3.2. Let \(D \) be a closed subvariety of a projective variety \(V \) over a valued field \(F \), and assume there exists an étale map \(e : V \setminus D \to U \), \(U \) an open subset of \(\hat{A}^n \). Then there exists a \(F \)-definable homotopy \(H : [0, \infty] \times \hat{V} \to \hat{V} \) fixing \(\hat{D} \) (that is, such that \(H(t, d) = d \) for \(t \in [0, \infty] \) and \(d \in \hat{D} \)), with image \(Z = H(0, \hat{V}) \), such that for any subvariety \(D' \) of \(V \) of dimension \(< \dim(V) \) we have \(Z \cap \hat{D}' \subseteq \hat{D} \). Moreover given a finite family of \(F \)-definable \(\nu \)-continuous functions \(\xi_i : V \setminus D \to \Gamma \), \(i \in I \), one can choose the homotopy such that the levels of the \(\xi_i \) are preserved. The same statement remains true if instead of being \(F \)-definable, the functions \(\xi_i \) are only assumed to be \(F' \)-definable, with \(F' \) a finite Galois extension of \(F \), and the functions \(\xi_i \) are permuted by the action of \(\text{Gal}(F'/F) \). If a finite group \(G \) acts on \(V \) over \(U \), inducing a continuous action on \(\hat{V} \) and leaving \(D \) and the fibers of \(e \) invariant, then \(H \) may be chosen to be \(G \)-equivariant.

Proof. Let \(I = [0, \infty] \) and let \(h_0 : I \times \hat{A}^n \to \hat{A}^n \) be the standard homotopy sending \((t, x) \) to the generic type of the closed polydisc of polyradius \((t, \ldots, t) \) around \(x \). Denote by \(H_0 : I \times \hat{A}^n \to \hat{A}^n \) its canonical extension (cf. Lemma 3.8.2). Note the following fundamental inflation property of \(H_0 \): if \(W \) is closed subvariety of \(\hat{A}^n \) of dimension \(< n \), then, for any \((t, x) \) in \(I \times \hat{A}^n \), if \(t \neq \infty \), then \(H_0(t, x) \notin W \).

By Lemma 7.4.1, Lemma 7.4.5 or Lemma 7.4.4, for each \(u \in U \) there exists \(\gamma_0(u) \in \Gamma \) such that \(h_0(t, u) \) lifts uniquely to \(V \setminus D \) beginning with any \(v \in e^{-1}(u) \), up to \(\gamma_0(u) \). By Lemma 9.1.7 we can take \(\gamma_0 \) to be \(\nu + \gamma \)-continuous. For \(t \geq \gamma_0(u) \), let \(h_1(t, v) \) be the unique continuous lift.

Since \(\xi_i \) is \(\nu \)-continuous outside \(D \), \(\xi_i^{-1}(x_v) \) contains a \(\nu \)-neighborhood of \(v \). So for some \(\gamma_1(u) \geq \gamma_0(u) \), for all \(t \geq \gamma_1(u) \) we have \(\xi_i(h_1(t, v)) = \xi_i(v) \). We may take \(\gamma_1(u) = \min \{ \alpha \in \Gamma_{\geq 0} : \xi_i(h_1(t, v)) = \xi_i(v), \forall t \in [\alpha, \infty), \forall v \in e^{-1}(u), \forall i \} \), which is locally bounded and \(F \)-definable, not only when the functions \(\xi_i \) are assumed
to F-definable, but also when they are only assumed to be F'-definable, with F' a finite Galois extension of F, and permuted by the action of $\text{Gal}(F'/F)$. Thus, we may use Lemma 9.1.7 again to replace γ_1 by a $v+g$-continuous F-definable function.

At this point we can cut-off to $h_0[\gamma_1]$; this is continuous by Lemma 9.1.6, and by Lemma 9.1.1, $h_1[\gamma_1 \circ e]$ is continuous on $V \setminus D$. However we would like to fix D and have continuity on D.

Let m be a metric on V, as provided by Lemma 3.10.1. Given $v \in V$ let $\rho(v) = \sup\{m(d,v) : d \in D\}$. By Lemma 4.2.27 we have $\rho : V \setminus D \to \Gamma$. Let $\gamma_2 : A^n \to \Gamma$, $\gamma_2 > \gamma_1$, such that for $t \geq \gamma_2(u)$ we have $d(h_1(t,v),\nu) > \rho(v)$ for each v with $e(v) = u$. (So $\rho(h_1(t,v)) = \rho(v)$.) By Lemma 9.1.7 we can take γ_2 to be $v+g$-continuous.

Let H be the canonical extension of $h_1[\gamma_2 \circ e]$ to $\overline{V \setminus D} \times I$ provided by Lemma 3.8.2. We extend H to $\hat{V} \times I$ by setting $H(t,x) = x$ for $x \in \hat{D}$. We want to show that H is continuous on \hat{V}. Since we already know it is continuous at each point of the open set $(\overline{V \setminus D}) \times I$, it is enough to prove H is continuous at each point of $\hat{D} \times I$.

Let $d \in \hat{D}$, $t \in I$. Then $H(t,d) = d$. Let G be an open neighborhood of d. G may be taken to have the form: \{ $x \in G_0 : \text{val}(x) \in J$ \}, with J open in Γ_∞, and r a regular function on a Zariski open neighborhood G_0 of d (which is just a Zariski open subset of V supporting d). So $G = \hat{G}$ where G is a $v+g$-open subset of V.

We have to find an open neighborhood W of (t,d) such that $H(W) \subseteq G$. We may take $W \subseteq G \times \Gamma_\infty$, so we have $H(W \cap \hat{D}) \subseteq G$. Since the simple points of $W \setminus \hat{D}$ are dense in $W \setminus \hat{D}$ and by construction of the canonical extensions in §3.8, it suffices to show that for some neighborhood W, the simple points are mapped to \hat{G}.

View d as a type (defined over M_0); if $z \models d|M_0$, then for some $\varepsilon \in \Gamma$, $H(B(z;m,\varepsilon)) \subseteq G$. Fix ε, independently of z. Let $W_0 = \{ v \in V : B(v;m,\varepsilon) \subseteq G \}$. Then W_0 is $v+g$-open. Indeed the complement is $\{ v \in V : (\exists y)m(x,y) \leq \varepsilon \land y \in (V \setminus G) \}$. Now the projection of a (bounded) $v+g$-closed set is also $v+g$-closed.

If there is no neighborhood W as desired, there exist simple points $v_i \in V \setminus D$, $v_i \to d$, $t_i \to t$ with $H(t_i,v_i) \notin G$. Now $\rho(v_i) \to \rho(d) = m(d,D) = \infty$, so $H(t_i,v_i) = h_1(\gamma_2(e(v_i))))$, for i large enough, and by the above $m(H(t_i,v_i),v_i) \to \infty$. So for large i we have $H(t_i,v_i) \in B(v_i;m,\varepsilon)$, and also $v_i \in W_0$. So $B(v_i;m,\varepsilon) \subseteq G$, hence $H(t_i,v_i) \in \hat{G} = G$, a contradiction. This shows that H is continuous.
It remains to prove that if $Z = H(0, \hat{V})$, then, for any subvariety D' of V of dimension $< \dim(V)$, we have $Z \cap \hat{D}' \subseteq \hat{D}$. This follows from the inflation property of H_0 stated at the beginning, applied to $e(D' \cap (V \setminus D'))$.

The statement on the group action follows from the uniqueness of the continuous lift. \hfill \Box

Remark 9.3.3. Lemma 9.3.2 remains true if one supposes only that D contains the singular points of V. Indeed, one can find divisors D_i with $D = \cap_i D_i$, and étale morphisms $h_i : V \setminus D_i \rightarrow \mathbb{A}^n$, and iterate the lemma to obtain successively $Z \cap \hat{D}' \subseteq \hat{D}_1 \cap \ldots \cap \hat{D}_i$. In particular, when V is smooth, Lemma 9.3.2 is valid for $D = \emptyset$.

9.4. Connectedness, and the Zariski topology

Let V be an algebraic variety over some valued field. We say a strict pro-definable subset Z of \hat{V} is **definably connected** if it contains no clopen strict pro-definable subsets other than \emptyset and Z. We say that Z is **definably path connected** if for any two points a and b of Z there exists a definable path in Z connecting a and b. Clearly definable path connectedness implies definable connectedness. When V is quasi-projective and $Z = \hat{X}$ with X a definable subset of V, the reverse implication will eventually follow from Theorem 10.1.1.

If X is a definable subset of V, \hat{X} is definably connected if and only if X contains no $v+g$-clopen definable subsets, other than X and \emptyset. Indeed, if U is a clopen strict pro-definable subset of \hat{X}, the set $U \cap X$ of simple points of U is a $v+g$-clopen definable subset of X, and U is the closure of $U \cap X$. When X is a definable subset of V, we shall say \hat{X} has a finite number of connected components if X may be written as a finite disjoint union of $v+g$-clopen definable subsets \hat{U}_i with each \hat{U}_i definably connected. The \hat{U}_i are called connected components of \hat{X}.

Lemma 9.4.1. Let V be a smooth quasi-projective variety over a valued field and let Z be a nowhere dense Zariski closed subset of V. Then \hat{V} has a finite number of connected components if and only if $\hat{V} \setminus \hat{Z}$ has a finite number of connected components. Furthermore, if \hat{V} is a finite disjoint union of connected components \hat{U}_i then the $\hat{U}_i \setminus \hat{Z}$ are the connected components of $\hat{V} \setminus \hat{Z}$.

Proof. By Remark 9.3.3, there exists a homotopy $H : I \times \hat{V} \rightarrow \hat{V}$ such that its final image Σ is contained in $\hat{V} \setminus \hat{Z}$. Also, by construction of H, the simple points of $V \setminus Z$ move within $\hat{V} \setminus \hat{Z}$, and so H leaves $\hat{V} \setminus \hat{Z}$ invariant. Thus, we have a continuous morphism of strict pro-definable spaces $\varrho : \hat{V} \rightarrow \Sigma$. If V is a finite disjoint union of $v+g$-clopen definable subsets U_i with each \hat{U}_i definably connected, note that each \hat{U}_i is invariant by the homotopy H. Thus, $\varrho(\hat{U}_i) = \Sigma \cap \hat{U}_i$ is definably connected. Since $\Sigma \cap \hat{U}_i = \Sigma \cap (\hat{U}_i \setminus \hat{Z})$ and any simple point of $U_i \setminus Z$ is connected via H within $U_i \setminus Z$ to $\Sigma \cap \hat{U}_i$ it follows that $\hat{U}_i \setminus \hat{Z}$ is
definably connected. For the reverse implication, assume $V \setminus Z$ is a finite disjoint union of \(v+g \)-clopen definable subsets V_i with each \hat{V}_i definably connected. Then $g(\hat{V}_i) = \Sigma \cap \hat{V}_i$ is definably connected. Let U_i denote the set of simple points in $g^{-1}(\Sigma \cap \hat{V}_i)$. Then \hat{U}_i is definably connected. □

Proposition 9.4.2. Let V be a quasi-projective variety over a valued field F. Assume V is geometrically connected for the Zariski topology. Then \hat{V} is definably connected.

Proof. We may assume F is algebraically closed and V is irreducible. It follows from Bertini's Theorem, cf. [24] p. 56, that any two points of V are contained in a irreducible curve C on X. So, since simple points are dense, the lemma reduces to the case of irreducible curves, and by normalization, to the case of normal irreducible curves C. As in the beginning of Proposition 7.1.1, one may thus assume C is smooth and irreducible. By Lemma 9.4.1 one may assume that C is also projective. The case of genus 0 is clear using the standard homotopies of \mathbb{P}^1. So assume C has genus $g > 0$. By Proposition 7.6.1 there is a retraction $g: \hat{C} \to \Upsilon$ with Υ a Γ-internal subset. It follows from Proposition 6.2.8 that Υ is a finite disjoint union of connected Γ-internal subsets Υ_i. Denote by C_i the set of simple points in C mapping to Υ_i. Each C_i is a $v+g$-clopen definable subset of C and \hat{C}_i is definably connected, thus \hat{C} has a finite number of connected components. Assume this number is ≥ 1. Then $\hat{C}^g/\text{Sym}(g)$ has also a finite number ≥ 1 of connected components, since \hat{C}^g may be written has a disjoint union of the definably connected sets $C_{i_1} \times \cdots \times C_{i_g}$.

Let J be the Jacobian variety of C. There exist proper subvarieties W of C^g and V of J, with W invariant under $\text{Sym}(g)$, and a biregular isomorphism of varieties $(C^g \setminus W)/\text{Sym}(g) \to J \setminus V$. By Lemma 9.4.1 $(C^g \setminus W)/\text{Sym}(g)$ has a finite number ≥ 1 of connected components, hence also $J \setminus V$. By Lemma 9.4.1 again, \hat{J} would have a finite number ≥ 1 of connected components. The group of simple points of J acts by translation on \hat{J}, homeomorphically, and so acts also on the set of connected components. Since it is a divisible group, the action must be trivial. On the other hand, it is transitive on simple points, which are dense, hence on connected components. This leads to a contradiction, hence \hat{C} is connected, which finishes the proof. □

Lemma 9.4.3. Let V be an algebraic variety over a valued field F and let $f: V \to \Gamma_\infty$ be a $v+g$-continuous F-definable function. Then $f^{-1}(\infty)$ is a subvariety of V.

Proof. Since $f^{-1}(\infty)$ is v-closed, it suffices to show that it is constructible. We may assume F is algebraically closed. By Noetherian induction we may assume $f^{-1}(\infty) \cap W$ is a subvariety of W, for any proper subvariety W of V. So it suffices to show that $f^{-1}(\infty) \cap V'$ is an algebraic variety, for some Zariski open $V' \subseteq V$. In
particular we may assume V is affine, smooth and irreducible. Since any definable set is v-open away from some proper subvariety, we may also assume that $f^{-1}(\infty)$ is v-open. On the other hand $f^{-1}(\infty)$ is v-closed. The point ∞ is an isolated point in the g-topology, so $f^{-1}(\infty)$ is g-closed and g-open. By Lemma 3.7.4 it follows that $\overline{f^{-1}(\infty)}$ is a clopen subset of V. Since V is definably connected by Proposition 9.4.2, one deduces that $f^{-1}(\infty) = V$ or $f^{-1}(\infty) = \emptyset$, proving the lemma.

Let w be a finite definable set. It will be convenient to use the following terminology. By a z-closed subset of Γ^w_∞ we mean one of the form $[x_i = \infty]$, an intersection of such sets, or a finite union of such intersections. Note that such sets are not automatically defined over the given base (but some of them are). Let $Y \subseteq \Gamma^w_\infty$ be a definable set. A z-closed subset of Y is the intersection with Y of a z-closed subset. (If Y is A-definable, an A-definable z-closed subset of Y can be written as $Y \cap Z$, where Z is z-closed and A-definable; this can be done by taking unions of Galois conjugates.) By a z-irreducible subset we mean a z-closed subset which cannot be written as the union of two proper z-closed subsets. Any z-closed set can be written as a finite union of z-closed z-irreducible sets; these will be called z-components. A z-open set is the complement of a z-closed set Z. A z-open set is dense if its complement does not contain any z-component of Y.

Let Y be a definable subset of Γ^w_∞. Define a Zariski closed subset of Y to be a clopen definable subset of a z-closed subset of Y. By o-minimality, there are finitely many such clopen subsets, the unions of the definably connected components. A definable set X thus has only finitely many Zariski closed subsets; if X is connected and z-irreducible, there is a maximal proper one.

This has nothing to do with the topology on Γ^n generated by translates of subspaces defined by \mathbb{Q}-linear equations, for which the name Zariski would also be natural. We will use this latter topology little, and will refer to it as the linear Zariski topology on Γ^n, when required.

Lemma 9.4.3 can be strengthened as follows:

Lemma 9.4.4. Let V be an algebraic variety over a valued field F, let w be a finite F-definable set and let $f : V \rightarrow Y \subseteq \Gamma^w_\infty$ be a $v+g$-continuous F-definable function. Then $f^{-1}(U)$ is Zariski open (resp. closed) in V, whenever U is Zariski open (resp. closed) in Y.

Proof. It suffices to prove this with “closed”. We may assume F is algebraically closed. So U is a clopen subset of U', with U' z-closed. By Lemma 9.4.3, $f^{-1}(U')$ is Zariski closed; write $f^{-1}(U') = V_1 \cup \ldots \cup V_m$ with V_i Zariski irreducible. It suffices to prove the lemma for $f|_{V_i}$, for each i; so we may assume $V_i = V$ is Zariski irreducible. By Lemma 9.4.2, $f^{-1}(U) = V$. □

Here is a converse:
Lemma 9.4.5. Let $X \subseteq \Gamma^w_\infty$ and let $\beta : X \to \hat{V}$ be a continuous, pro-definable map. Let W be a Zariski closed subset of \hat{V}. Then $\beta^{-1}(W)$ is Zariski closed in X.

Proof. Let F_1, \ldots, F_ℓ be the nonempty, proper Zariski closed subsets of X. Removing from X any F_i with $F_i \subseteq \beta^{-1}(W)$, we may assume no such F_i exist. By working separately in each component, we may assume X is connected, and in fact z-irreducible. Moreover by induction on z-dimension, we can assume the lemma holds for proper z-closed subsets of X.

Claim. $\beta^{-1}(W) \cap F_i = \emptyset$ for each i.

Proof of the claim. Otherwise, let P be a minimal F_i with nonempty intersection with $\beta^{-1}(W)$. Let Q be the z-closure of P; then $Q \neq X$. As Zariski-closed in Q implies Zariski-closed in X, $Q \cap \beta^{-1}(W) = \emptyset$. (Thanks to Z. Chatzidakis for this argument.)

Say $\beta^{-1}(W) \subseteq \Gamma^w_\infty \times \{\infty\}^{w_2}$ with (w_1, w_2) a partition of w and $|w_1|$ minimal. Then $\beta^{-1}(W) \cap (x_i = \infty) = \emptyset$ for $i \in w_1$, i.e. $\beta^{-1}(W) \subseteq \Gamma^w_1 \times \{\infty\}^{w_2}$. Projecting homeomorphically to Γ^w_1, we may assume $w_1 = w$ and $X \subseteq \Gamma^w$. However, W is of the form \tilde{F} with F g-clopen, so $\beta^{-1}(W)$ is g-clopen. Since any g-clopen subset of Γ^w_∞ which is also closed and contained in Γ^w is clopen, it follows that $\beta^{-1}(W)$ is clopen, which implies that it is after all Zariski closed in X. □

Corollary 9.4.6. Let Υ be an iso-definable subset of \hat{V}, X a definable subset of Γ^w_∞, and let $\alpha : \Upsilon \to X$ be a pro-definable homeomorphism. Then α takes the Zariski topology on Υ to the Zariski topology on X.

Proof. Follows from Lemma 9.4.4 and Lemma 9.4.5. □

10. The main theorem

Summary. The main theorem is stated in 10.1 and several preliminary reductions are performed in 10.2 that allow to essentially reduce to a curve fibration. We construct a relative curve homotopy in 10.3 and a liftable base homotopy in 10.4. In 10.5 a purely combinatorial homotopy is constructed in the Γ-world. Finally in 10.6 we end the proof of the main theorem; the homotopy retraction is constructed by concatenating the previous 3 homotopies together with an inflation homotopy. The section ends with 10.7 which is devoted to the relative version of the main theorem.

Theorem 10.1.1. Let V be a quasi-projective variety, X a definable subset of $V \times \Gamma^\ell_\infty$ over some base set $A \subseteq VF \cup \Gamma$. Then there exists an A-definable deformation retraction $h : I \times \hat{X} \to \hat{X}$ to a pro-definable subset Υ definably homeomorphic to a definable subset of Γ^w_∞, for some finite A-definable set w.
One can furthermore require the following additional properties for h:

1. Given finitely many A-definable functions $\xi_i : V \to \Gamma_\infty$, one can choose h to respect the ξ_i, i.e. $\xi_i(h(t,x)) = \xi_i(x)$ for all t. In particular, finitely many subvarieties or more generally definable subsets U of X can be preserved, in the sense that the homotopy restricts to one of U.
2. Assume given, in addition, a finite algebraic group action on V. Then the retraction h can be chosen to be equivariant.
3. Assume $\ell = 0$. The homotopy h is Zariski-generalizing, i.e. for any Zariski open subset U of V, $\hat{U} \cap X$ is invariant under h.
4. The homotopy h satisfies condition (\ast) of §3.9, i.e.: $h(e_t, h(t,x)) = h(e_t, x)$ for every t and x.
5. The homotopy h restricts to $h^\# : I \times X^\# \to X^\#$, cf. Definition 2.5.9 and §6.5.
6. One has $h(e_t, X) = \Upsilon$, i.e. Υ is the image of the simple points; hence by (5) it consists of strongly stably dominated points.
7. Assume $\ell = 0$ and $X = V$. Given a finite number of closed irreducible subvarieties W_i of V, one can assume $\Upsilon \cap \hat{W}_i$ has pure dimension $\dim(W_i)$.

Let V be a quasi-projective variety, and let Υ be a pro-definable subset of \hat{X}. We call Υ a skeleton of \hat{X}. If there exists an A-definable deformation retraction $h : I \times \hat{X} \to \hat{X}$, Υ is definably homeomorphic to a definable subset of Γ_∞^n, for some finite A-definable set w, and in addition (7) holds for each irreducible component W of the Zariski closure of X.

The last condition may be inelegant, but will allow us to prove that any two skeleta are contained in a third, and more generally the homotopy in Theorem 10.1.1 can be required to fix any given skeleton.

Remarks 10.1.2. (1) Without parameters, one cannot expect Υ to be definably homeomorphic to a subset of Γ_∞^n, since the Galois group may have a nontrivial action on the cohomology of V, even on the Berkovich part. (See the earlier observation regarding quotients.)

2. Let $\pi : V' \to V$ be a finite morphism, and $\xi' : V' \to \Gamma_\infty^n$. Then, when $X = V$ one can find h as in the theorem lifting to $h' : I \times \hat{V}' \to \hat{V}'$ respecting ξ'. To see this, by Lemma 6.3.1 we may assume π is dominant (which is at any rate the main case). Let $V'' \to V'$ be such that $V'' \to V$ admits a finite group action H, and V' is the quotient variety of some subgroup. Find an equivariant homotopy of \hat{V}_m, then induce homotopies on \hat{V}' and on \hat{V}. See Lemma 3.9.3 for the continuity of the induced homotopies, and Lemma 2.2.5 for the iso-definability of their image.

3. By Lemma 6.4.5 (and Remark 6.4.3), in Remark (2) above we can also take a proper Γ-internal covering in place of a finite one.
(4) Let \(U_1, \ldots, U_k \) be subvarieties of \(V \). Then one may demand that the homotopy preserve each \(U_i \). It is also possible to preserve a given \(A \)-definable map \(\xi : V \to \Gamma^w_\infty \).

By adding the valuation of the characteristic function of the \(U_j \) to the functions \(\xi_i \), we can assume that any homotopy respecting the functions \(\xi_i \) must leave each \(U_j \) invariant. For the second point, given \(\xi : V \to \Gamma^w_\infty \), let \(\xi' : V \to \Gamma^{m\infty}_\infty \) (where \(m = |w| \)) be a map such that for \(v \in U_i \), \(\xi'(v) \) is an \(m \)-tuple in non-decreasing order, enumerating the underlying set of the \(w \)-tuple \(\xi(v) \). There exist definable sets \(U_i \) such that \(\xi|U_i \) is continuous. We can ask that \(H \) preserve the \(U_i \) and \(\xi' \). Then along each path of \(H \), \(\xi \) is preserved up to a permutation of \(w \), hence by continuity it is preserved.

(5) Item (3) implies that, for any irreducible component \(W \) of \(V \), \(\Upsilon \cap \hat{W} \) is Zariski dense in \(X \cap \hat{W} \) in the sense of 3.11 and that \(X \cap \hat{W} \) is invariant under \(h \). For the first assertion note that one cannot have \(\Upsilon \cap \hat{W} \subseteq \hat{Z} \), for some proper Zariski closed subset \(Z \) of \(W \), since then a point in \(W \setminus Z \) would have its final image in \(\hat{W} \). For the second one, let \(W_0 \) be the complement in \(W \) of the other components. By (3) \(\hat{W}_0 \cap X \) is invariant under \(h \) and the invariance of \(\hat{W}_0 \cap X \) follows by continuity.

(6) Item (5) means the following: let \(M \) be a valued field containing \(A \cap \text{VF} \), with \(A \cap \Gamma \subset \text{val}(M) \). Let \(p \in \Upsilon(M) \) and view \(p \) as a stably dominated type. Let \(c \models p|M \) and let \(M' = M(c) \). Let \(m \) be the residue field of \(M \), and \(m' \) of \(M' \). Then \(\text{trdeg}_m(m') = \text{trdeg}_M(M') \leq \dim(V) \). We cannot ensure that the transcendence degrees equal \(\dim(V) \) because of possible singularities of \(V \); see Theorem 11.1.1 (4).

(7) Assume \(\ell = 0 \). The retraction \(\hat{X} \to \Upsilon \) can be taken to be definably proper, i.e., so that the pullback of a definably compact set is definably compact. Indeed \(V \) embeds in some projective variety \(V' \), in an \(H \)-equivariant way (see below). We can use the theorem to find a homotopy \(\hat{V}' \to \Upsilon' \), preserving the data, and also preserving \(V' \setminus X \) and \(X \). The retraction \(\hat{X} \to \Upsilon \) is just the restriction of \(\hat{V}' \to \Upsilon' \), and hence also definably proper.

It is worth pointing out that the fibers of \(\hat{X} \to \hat{Y} \), over an element \(y \in \hat{Y} \), for a definable map \(X \to Y \), are not in general spaces of the form \(\hat{U} \). The fiber \(\hat{X}_y \) over an element \(y \in \hat{Y} \) does contain a subset \(\text{IX}_y \) accessible in our language, namely \(\{f_y g\} \) for \(g : Y \to \hat{X}/\hat{Y} \) a definable function. But this does not exhaust the fiber. Nonetheless, the proof of Theorem 10.1.1 is inductive, using appropriate fibrations. What permits this is that our homotopy is determined by its restriction to the simple points, cf. Lemma 3.8.2. Given relative homotopies of the fibers, on the simple points of \(X \) one obtains a map into \(\hat{X} \) whose image, over a fiber \(y \), does fall into the “inductive” subset \(\text{IX}_y \) mentioned above. In addition, under appropriate circumstances, a homotopy of \(\hat{Y} \) can be extended to a homotopy of
Though the methods can be applied more generally, it is worth pointing out - this is remark (5) - that the homotopy restricts to a homotopy of $X^\#$; and that the fibers of $Y^\# \to X^\#$ can all be obtained as integrals, as above.

10.2. Proof of Theorem 10.1.1: Preparation. The theorem reduces easily to the case $\ell = 0$ (for instance, take the projection of X to V, and add ξ_i describing the fibers, as in the first paragraph of Lemma 6.4.5). We assume $\ell = 0$ from now on.

We may assume V is a projective variety. This uses in particular the existence of an equivariant projective completion for a finite group action on an algebraic variety. As in Remark 10.1.2 (4), we can assume that any homotopy respecting the functions ξ_i must leave X invariant. After replacing V by an equidimensional projective variety of the same dimension containing V and adding the valuation of the characteristic function of the lower dimensional components of V, one may also assume V is equidimensional.

Hence, we may assume $X = V$ is projective and equidimensional. (For item (3) note that any Zariski open subset U of X is of the form $O \cap X$ with O Zariski open subset of V.)

At this point we note that we can take the base A to be a field. Let $F = V F(A)$ be the field part. Then V and H are defined over F. Write $\xi = \xi_\gamma$ with γ from Γ. Let $\xi'(x)$ be the function: $\gamma \mapsto \xi_\gamma(x)$. Clearly if the fibers of ξ' are preserved then so is each ξ_γ (cf. Remark 10.1.2 (4)). By stable embeddedness of Γ, ξ' can be coded by a function into Γ^k for some k. And this function is F-definable. Thus all the data can be taken to be defined over F, and the theorem over F will imply the general case.

We may assume F is perfect (and Henselian), since this does not change the notion of definability over F.

We use induction on $n = \dim(V)$. For $n = 0$, take the identity deformation $h(t, x) = x$, $w = V$, and map $a \in w$ to $(0, \ldots, 0, 0, 0, \ldots, 0)$ with ∞ in the a'th place.

We start with an hypersurface (that is, a closed subset everywhere of dimension $n - 1$) D_0 of V containing the singular locus V_{sing}. We assume there exists an étale morphism $V \smallsetminus D_0 \to \mathbb{A}^n$, factoring through V/H. Such a D_0 exists using generic smoothness, after choosing a separating transcendence basis at the generic point of V/H. We also assume D_0 is non empty of dimension $n - 1$ in each irreducible component of V. Note that the functions ξ_i factor through...
v+g-continuous functions into Γ^m_∞. If f and g are homogeneous polynomials of the same degree, then away from the common zero set of f and g, $\text{val}(f/g)$ is a function of $\max(0, \text{val}(f) - \text{val}(g))$ and $\max(0, \text{val}(g) - \text{val}(f))$. The characteristic function of a set defined by $\text{val}f_i \geq \text{val}f_j$ is the composition of the characteristic function of $x_i \geq x_j$ on Γ^m_∞, with the function $(\text{val}f_1, \ldots, \text{val}f_m)$. Hence taking a large enough degree, and collecting together all the polynomials mentioned, and adding more so that f_1, \ldots, f_m never vanish simultaneously, all ξ_i factor through the function $[\text{val}f_1 : \ldots : \text{val}f_m]$ of Remark 5.2.2. Thus we may take the ξ_i to be $v+g$-continuous. We denote by v_h a schematic distance function to D_0, cf. 3.12 and we shall assume v_h is one of the ξ_i’s.

By enlarging D_0, we may assume D_0 contains $\xi_i^{-1}(\infty) \cap U$ for any irreducible component U such that ξ_i is not identically ∞ on U cf. Lemma 9.4.3. Moreover, we can demand that D_0 is H-invariant, and that the set $\{\xi_i : i \in I\}$ is H-invariant, by increasing both if necessary. Note that there exists a continuous function $m = (m_1, \ldots, m_n) : \Gamma^I_\infty \to \Gamma^n_\infty$ whose fibers are the orbits of the symmetric group acting on I, namely $m((x_i)_{i \in I}) = (y_1, \ldots, y_n)$ if (y_1, \ldots, y_n) is a non-decreasing enumeration of $\{x_i\}_{i \in I}$, with appropriate multiplicities. Then $\{m \circ \xi_i\}_{i \in I}$ is H-invariant. It is clear that a homotopy preserving $m \circ \xi_i$ also preserves each ξ_i. Thus we may assume that each ξ_i is H-invariant.

Let E be the blowing-up of \mathbb{P}^n at one point. Then E admits a morphism $\pi : E \to \mathbb{P}^{n-1}$, whose fibers are \mathbb{P}^1. We now show one may assume V admits a finite morphism to E, with composed morphism to \mathbb{P}^{n-1} finite on D_0, at least when F is infinite.

Lemma 10.2.1. Let V be a projective variety of dimension n over a field F. Then V admits a finite morphism $\pi : V \to \mathbb{P}^n$ and, when F is infinite, there is a finite closed subset Z of V such that if $v : V_1 \to V$ denote the blowup at Z, there exists a finite morphism $m : V_1 \to E$ making the diagram

$$
\begin{array}{ccc}
V_1 & \xrightarrow{v} & V \\
\downarrow m & & \downarrow \pi \\
E & \xrightarrow{} & \mathbb{P}^n
\end{array}
$$

commutative. Moreover, if a divisor D_0 on V is given in advance, we may arrange that Z is disjoint from D_0, and that the composition of m with the projection $E \to \mathbb{P}^{n-1}$ is finite on $v^{-1}(D_0)$. If a finite group H acts on V, we may take all these to be H-invariant.

Proof. Let m be minimal such that V admits a finite morphism to \mathbb{P}^m. If $m > n$, choose a \mathbb{P}^{m-1} inside \mathbb{P}^m, and a point neither on the \mathbb{P}^{m-1} nor on the image of V; and project the image of V to the \mathbb{P}^{m-1} through this point. Hence $m = n$, i.e. there exists a finite morphism $V \to \mathbb{P}^n$.

Given a divisor D_0 on V, choose a F-rational point z of \mathbb{P}^n not on the image of this divisor (this is possible since F is assumed to be infinite). The projection through this point to a \mathbb{P}^{n-1} contained in \mathbb{P}^n, and not containing z determines a morphism $E \to \mathbb{P}^{n-1}$. If V_1 is the blowup of V at the pre-image Z of z, we find a morphism $V_1 \to E$; composing with $E \to \mathbb{P}^{n-1}$ we obtain the required morphism.

To arrange for H-invariance, we shall apply the lemma to $V' := V/H$. Let $\phi : V \to V' = V/H$ be the natural projection. Let $R \subset V'$ be the ramification divisor of $V \to V'$; in other words, assuming as we may that H acts faithfully, R is the union over $h \in H$ of the set of fixed points of h; so away from R, $V \to V'$ is Galois and étale. Let $D' = \phi_* D \cup R$. Apply the lemma to (V', D'), obtaining $\nu' : V'_1 \to V'$, $m : V'_1 \to E$; $\pi : V \to \mathbb{P}^n$, and Z' (so ν' is an isomorphism away from Z', and $Z' \cap D' = \emptyset$). Let $V_1 = V'_1 \times_{V'} V$. Then $V_1 \to V$ is a blowup of the pullback Z of Z' under the étale map $V \to V'$, and all statements are clear. \qed

The next lemmas provide a variant of Lemma 10.2.1 that works over finite fields too. They provide a less detailed description of V_1, but still sufficient for our purposes; the reader who wants to assume an infinite base field may skip them. Thanks to Antoine Ducros for pointing out the need for a special argument in the case of a finite base field.

Lemma 10.2.2. Let V be a subvariety of dimension n of \mathbb{P}^m over a finite field F. Then there exist homogeneous polynomials f_1, \ldots, f_n in $F[x_0, \ldots, x_m]$, of equal degree, such that $Z = V \cap (f_1 = \ldots = f_n = 0)$ is finite. Given a subvariety D of V of dimension $< n$, we may choose f_1, \ldots, f_n so that Z is disjoint from D and such that $[f_1 : \ldots : f_n] : D \to \mathbb{P}^{n-1}$ is a finite morphism.

Proof. Given any finite number k of F-irreducible projective subvarieties U_i of \mathbb{P}^m of positive dimension, one can always find a homogeneous polynomial f in $F[x_0, \ldots, x_m]$ that does not vanish on any of them. Indeed, by Hilbert polynomial considerations, the codimension of the space of homogeneous polynomials of degree d vanishing on U_i grows at least linearly with d. Thus, for large enough d, this codimension is $> \log_q(k)$; in particular if the field F has cardinality q, a fraction strictly less than $1/k$ of all homogeneous polynomials of degree d in $F[x_0, \ldots, x_m]$ will vanish on U_i, implying that some will vanish on no U_i.

On the other hand, let w_0 be a finite, Galois invariant, set of points of $V(F')$, with F' a finite Galois extension of F. We lift $w_0 \subset \mathbb{P}^m$ to a finite, Galois invariant, subset w of \mathbb{A}^{m+1} in such a way that each element of w has some coordinate equal to 1. Let H_d denote the space of homogeneous polynomials $h(x_0, \ldots, x_m)$ of degree d (with zero added), let $H_d(w)$, resp. $H_d(w, 1)$, denote the subspace of H_d consisting of polynomials vanishing at each element of w, resp. taking value 1 on each element of w. Thus $H_d(w, 1)$ is (empty or) a coset of $H_d(w)$. We now claim that $H_d(w, 1)$ has a point over $F(w)$. If this is true for w and w' such that w and w' are disjoint, then it holds also for $w \cup w'$, since
Lemma 10.2.3. Let Y be an irreducible quasiprojective variety of dimension > 0 over a field k. Let $f : U \to Y$ be a dominant k-morphism with U a Zariski open subvariety of \mathbb{P}^n. Let X be a closed subvariety of \mathbb{P}^n which is contained in U. Then $f|X$ is finite.

Proof. We may assume k is algebraically closed and it is enough to prove $f|X$ is quasi-finite. Thus we may assume $f(X)$ is a point. Let D be a divisor in Y such that $f(X) \not\subseteq D$. Let E be the Zariski closure of $f^{-1}(D)$. We have $E \subseteq f^{-1}(D)\cup F$, with $F = \mathbb{P}^n \setminus U$, thus $E \cap X = \emptyset$. By Bézout’s Theorem, if follows that X is of dimension 0.

Lemma 10.2.4. Let V be a projective variety of of dimension n over a finite field F, and let D be a closed subvariety, of dimension $< n$, containing any component of V of dimension $< n$. Then, there exists a projective variety V_1, a finite closed subset Z of V, disjoint from D, a morphism $v : V_1 \to V$ which is the blowing up of an ideal supported on Z (in particular it is an isomorphism above $V \setminus Z$), and a morphism $u : V_1 \to \mathbb{P}^{n-1}$ which is finite on $v^{-1}(D) \cup v^{-1}(Z)$ such that $v^{-1}(D)$ is a Cartier divisor and there exists a Zariski dense open subset U_0 of $U = \mathbb{P}^{n-1}$ such that with $V_0 = u^{-1}(U_0)$, $u|V_0$ factors as $V_0 \to E_0 = U_0 \times \mathbb{P}^1 \to U_0$, with $V_0 \to E_0$ a finite morphism, and $E_0 \to U_0$ the projection. If a finite group H acts on V, we may take all these to be H-equivariant.
Proof. By Lemma 10.2.2 there exist homogenous polynomials f_1, \ldots, f_n in $F[x_0, \ldots, x_m]$, of equal degree, such that $Z = V \cap (f_1 = \ldots = f_n = 0)$ is finite and disjoint from D and such that $[f_1 : \ldots : f_n] : D \to \mathbb{P}^{n-1}$ is a finite morphism. Let $V_1 \subset V \times \mathbb{P}^{n-1}$ be the Zariski closure of the graph $\{(v, (f_1(v) : \ldots : f_n(v)) : v \in V \setminus Z\}$. Let v be the first projection and u the second projection. Thus $v : V_1 \to V$ is the blowing up of V along the ideal (f_1, \ldots, f_n). Clearly, the restriction of u to $v^{-1}(Z)$ is finite. The generic fiber of the morphism $V_1 \to U = \mathbb{P}^{n-1}$ is a curve (possibly reducible, and possibly containing some isolated points, in D). Thus it admits a finite morphism to \mathbb{P}^1 over $F(U)$. This morphism is the generic fiber of a morphism $u : V_0 \to U_0 \times \mathbb{P}^1$, over U_0, for some Zariski dense open U_0 of U. Equivariance is arranged by applying this construction to V/H in the first place.

Let us return to the main discussion and recall our setting. We have a projective equidimensional variety V together with a hypersurface $D_0 \subset V$ containing the singular locus of V and such that there exists an étale morphism $V \setminus D_0 \to \mathbb{A}^n$, factoring through V/H. Consider $v : V_1 \to V$ as provided by Lemma 10.2.1 and Lemma 10.2.4, respectively in the infinite and finite field case. It is an H-equivariant birational morphism whose exceptional locus lies above a finite subset Z of V. By Lemma 3.9.3, any deformation retraction $h_1 : I \times \check{V}_1 \to \check{V}_1$ leaving the exceptional locus invariant descends to a deformation retraction $h : I \times \check{V} \to \check{V}$. Furthermore, if h_1 satisfies the theorem for $X = V_1$, so does h for $X = V$. Thus, pulling back the data of Theorem 10.1.1 to V_1, and adding the above invariance requirement, we see that it suffices to prove the theorem for V_1 (which is equidimensional of dimension n). Furthermore, setting $D'_0 = v^{-1}(D_0) \cup v^{-1}(Z)$, we have $V_1 \setminus D'_0 = V \setminus D_0$. In particular, $V_1 \setminus D'_0$ is smooth and admits an étale equivariant morphism to \mathbb{A}^n. Hence, we may assume $V = V_1$ and $D_0 = D'_0$. By construction, there is a morphism $u : V \to U = \mathbb{P}^{n-1}$, whose restriction to D_0 is finite, and a Zariski dense open subset U_0 of U such that with $V_0 = u^{-1}(U_0)$, $u|V_0$ factors as $f : V_0 \to E_0 = U_0 \times \mathbb{P}^1 \to U_0$, with f a finite morphism, and $E_0 \to U_0$ the projection. If a finite group H acts on V, we may take everything to be H-equivariant. Note that the hypotheses imply that f is surjective.

Furthermore, we may assume, after possibly shrinking U_0, that the morphism $f : V_0 \to E_0$ factors through $V_0 \xrightarrow{h} V'_0 \xrightarrow{f'} E_0$ with h radical and f' satisfying the following condition: for every u in U_0, the restriction $f'_u : V'_0 \to \mathbb{P}^1_u$ of $V_0 \to E_0$ over u is a generically étale morphism of curves. Indeed, such a factorization exists over the generic point ξ of U_0 and can be spread out on some dense Zariski open set U_0.

10.3. Construction of a relative homotopy H_{curves}. We fix three points $0, 1, \infty$ in \mathbb{P}^1. We are now in the setting of §9.2 with $U_0 \subset U = \mathbb{P}^{n-1}$. For any divisor D on E_0 we consider $\psi_D : [0, \infty] \times E_0 \to \check{E}_0/U_0$ as in §9.2.
Lemma 10.3.1. Let W be an A-iso-definable subset of E_0/U_0 such that $W \to U_0$ has finite fibers. There exists a divisor D' on E_0, generically finite over U_0, such that for every u in U_0, for every x in W over u, the intersection of D' with the ball in \mathbb{P}^1_u corresponding to x is non empty.

Proof. Recall we are working over a field-base A. By splitting W into two parts (then taking the union of the divisors D' corresponding to each part), we may assume $W \subseteq \hat{\mathcal{O}} \times U_0$ where \mathcal{O} is the unit ball. Let a be a point in U_0; so $W_a \subseteq \hat{\mathcal{O}}$.

We claim that there exists a divisor $A(a)$-definable subset D'_a of \mathcal{O} such that for every x in W_a, the intersection of D'_a with the ball in \mathcal{O} corresponding to x is non empty. Let W^1 be the set of simple points in W. Thus, W splits into two disjoint iso-definable sets W^1 and $W^2 = W \setminus W^1$. Let D'_a be the union of the simple points in W^1_a. If $A(a)$ is trivially valued, any A-definable closed sub-ball of \mathcal{O} must have valutative radius 0, i.e. must equal \mathcal{O}. In this case we set $D'_a = \{0\}$. Otherwise, $A(a)$ is a nontrivially valued field, and so $\text{acl}(A(a))$ is a model of ACVF. Hence, if we denote by \hat{W}_a the finite set of closed balls corresponding to the points in W_a, for every b in \hat{W}_a, $b \cap \text{acl}(A(a)) \neq \emptyset$, thus there exists a finite $A(a)$-definable set such that $D'_b \cap b \neq \emptyset$ for every b in \hat{W}_a. Set $D'_a = D''_a \cup D'^2_a$.

By compactness we get a constructible set D'' finite over U_0 with the required property. Taking the Zariski closure of D'' we get a Zariski closed set D' generically finite over U_0 with the required property. \hfill \Box

Lemma 10.3.2. There exists a divisor D' on E_0 such that, for any divisor D containing D', ψ_D lifts uniquely to an A-definable map $h : [0, \infty] \times V_0 \to \overline{V_0/U_0}$, which is fiberwise a homotopy.

Proof. We proceed as in the proof of Proposition 7.6.1. By assumption the morphism $f : V_0 \to E_0$ factors through $V_0 \xrightarrow{h} V'_0 \xrightarrow{f'} E_0$ with h radical and for every u in U_0, the restriction $f'_u : V'_u \to \mathbb{P}^1_u$ of $V_0 \to E_0$ over u is a generically étale morphism of curves. Thus, for every u in U_0, the restriction $f'_u : V'_u \to \mathbb{P}^1_u$ of $V_0 \to E_0$ over u factors as $V'_u \xrightarrow{h_u} V'_u \xrightarrow{f'_u} \mathbb{P}^1_{u'}$, with h_u the restriction of h.

Note that $V'_0 \to U_0$ is a relative curve so that V'_0/U_0 is iso-definable over A by Lemma 7.1.2. There is a subset W_0 of $\overline{V'_0/U_0}$, iso-definable over A, containing, for every point u in U_0, all singular points of C'_u, all ramification points of f'_u and all forward-branching points of f'_u, and such that the fibers $W_0 \to U_0$ are all finite. Such an W_0 exists by Lemma 7.5.4 (uniform finiteness of the set of forward-branching points). Let W be the image of W_0 in E_0. Then D' provided by Lemma 10.3.1 does the job. \hfill \Box

Let D be a divisor on E_0 as in Lemma 10.3.2, and such that D contains the image of D_0 in E_0. Assume also D contains the infinity divisor in E_0. Then ψ_D lifts to an A-definable map $h^0_{\text{curves}} : [0, \infty] \times V_0 \to \overline{V_0/U_0}$. By Lemma 9.2.2, after
enlarging D, one can arrange that h^0_{curves} preserves the functions ξ_i. Note that H-invariance follows from uniqueness of the lift. For D a divisor on E_0, we denote by D_{ver} its vertical part, that is the union of the components of D that are not finite on U_0. Denote by D^V_{ver} the preimage of D_{ver} in V_0. By Lemma 9.1.1 and Lemma 9.2.1, h^0_{curves} is $v \oplus g$-continuous at each point of $[0, \infty] \times (V_0 \setminus D^V_{\text{ver}})$. We extend h^0_{curves} to $h_{\text{curves}} : [0, \infty] \times V \to \hat{V} / \hat{U}$ by setting $h_{\text{curves}}(t, x) = x$ for every t in $[0, \infty]$ and every x in $V \setminus V_0$.

Lemma 10.3.3. The mapping h_{curves} is g-continuous on $[0, \infty] \times V$ and v-continuous at each point of $[0, \infty] \times X$ for $X = (V_0 \setminus D^V_{\text{ver}}) \cup D_0$.

Proof. Since $V \setminus (V_0 \setminus D^V_{\text{ver}})$ is g-clopen, g-continuity may be shown separately on $V \setminus (V_0 \setminus D^V_{\text{ver}})$ and away from $V \setminus (V_0 \setminus D^V_{\text{ver}})$. On $V \setminus (V_0 \setminus D^V_{\text{ver}})$ it is trivial since h_{curves} is constant there. Away from $V \setminus (V_0 \setminus D^V_{\text{ver}})$ it was already proved.

It remains to show v-continuity at points on D_0. Let F_2, res be as in §8.8 and in the v-continuity criterion Lemma 8.8.1. Let $p \in V(F_2)$ with $\text{res}(p) \in D_0$. If $p \notin V_0 \setminus D^V_{\text{ver}}$ then h_{curves} fixes p, so assume $p \in (V_0 \setminus D^V_{\text{ver}})(F_2)$. Set $q = \text{res}(p)$. Fix t in $[0, \infty]$ and let $q_t = \text{res}_{21s}(h_{\text{curves}}(t, p))$. Since $h_{\text{curves}}(t, q)) = q$, it is enough to prove that $q_t = q$. Recall we assume one of the ξ_i's is a schematic distance function x_h to D_0, cf. 3.12. Since $x_h(h_{\text{curves}}(t, p)) = x_h(p)$, it follows that $\text{res}_{21s}(x_h(h_{\text{curves}}(t, p))) = \text{res}_{21s}(x_h(p)) = \infty$. Thus q_t lies in \hat{D}_0. Since it lies on the fiber of u at q, and the intersection of this fiber with D_0 is a finite set D_{0q}, it follows that q_t is a simple point lying on D_{0q}. Let $q' \neq q$ be another point of D_{0q} and let ϑ be a regular function on some Zariski open set containing q and q' which vanishes at q' and not at q. Thus $\text{val}(\vartheta(q))$ is equal to some finite $\gamma \in \Gamma(F_1)$ and $\text{val}(\vartheta(p)) = \gamma$ also. On the other hand the set of $\text{val}(\vartheta(q_t))$ is finite. By continuity of h_{curves} in the t-variable one gets that $\text{val}(\vartheta(h_{\text{curves}}(t, p)))$ cannot jump and is equal to γ for all t. Hence, for every t, $q_t \neq q'$, and $q_t = q$ follows.

By Lemma 3.8.3 the restriction of h_{curves} to $[0, \infty) \times (V \setminus D^V_{\text{ver}}) \cup D_0$ extends to a deformation retraction $H_{\text{curves}} : [0, \infty) \times (V \setminus D^V_{\text{ver}}) \cup D_0 \to (V \setminus D^V_{\text{ver}}) \cup D_0$. Since D_0 is finite over U, the image $\Upsilon_{\text{curves}} = h_{\text{curves}}(0, (V \setminus D^V_{\text{ver}}) \cup D_0)$ is iso-definable over A in \hat{V} / \hat{U} and relatively Γ-internal. Thus, as above Lemma 6.4.2, we can identify Υ_{curves} with its image in \hat{V}. It follows that the image $H_{\text{curves}}(0, (V \setminus D^V_{\text{ver}}) \cup D_0)$ is equal to Υ_{curves}. By construction $H_{\text{curves}}(\infty, x) = x$ for every x and H_{curves} satisfies $(*).$

Let $x_v : U \to [0, \infty]$ be a schematic distance to the image \hat{D} of D_{ver} in U, cf. 3.12. We still denote by x_v its pullback to V (which is a schematic distance to D^V_{ver}) and the corresponding extension to \hat{V}. Let us check that Υ_{curves} is σ-compact with respect to (x_h, x_v). Indeed, on Υ_{curves} the infinite locus of x_v is
contained in that of \(x_h\), and \(\overline{Y_{\text{curves}}}\) is compact at \(x_h^{-1}(\infty)\) since \(\{x \in \hat{V} : x_h(x) = \infty\}\) is contained in \(\overline{Y_{\text{curves}}}\). Furthermore, \(\{x \in \overline{Y_{\text{curves}}} : x_v(x) \leq \gamma\}\) for \(\gamma \in \Gamma\) is definably compact. Indeed, for any definable subset \(U'\) of \(U\) such that \(\hat{U}'\) is definably compact and on which \(x_v\) is finite, denoting by \(V'\) the preimage of \(U'\) in \(V\), \(\overline{Y_{\text{curves}}} \cap \hat{V}\) is definably compact, being the image by a continuous definable map of a definably compact set.

10.4. The base homotopy.

By Lemma 6.4.5 there exists a finite pseudo-Galois covering \(U'\) of \(U\) and a finite number of \(A\)-definable functions \(\xi'_i : U' \to \Gamma\) such that, for \(I\) a generalized interval, any \(A\)-definable deformation retraction \(h : I \times U \to \hat{U}\) lifting to a deformation retraction \(h' : I \times U' \to \hat{U}'\) respecting the functions \(\xi'_i\), also lifts to an \(A\)-definable deformation retraction \(I \times \overline{Y_{\text{curves}}} \to \overline{Y_{\text{curves}}}\) respecting the restrictions of the functions \(\xi_i\) on \(Y_{\text{curves}}\) and the \(H\)-action.

Now by the induction hypothesis applied to \(U'\) and \(\text{Gal}(U'/U)\), such a pair \((h, h')\) does exist; we can also take it to preserve \(x_v\), the schematic distance to \(D_{\text{ver}}\). Set \(h_{\text{base}} = h\). Hence, \(h_{\text{base}}\) lifts to a deformation retraction

\[
H_{\text{base}} : I \times \overline{Y_{\text{curves}}} \to \overline{Y_{\text{curves}}},
\]

respecting the restrictions of the functions \(\xi_i\) and \(H\), using the “moreover” in Lemma 6.4.5.

Recall the notion of Zariski density in \(\hat{U}\), 3.11. By induction \(h_{\text{base}}\) has a \(\Gamma\)-internal \(A\)-iso-definable final image \(Y_{\text{base}}\) and we may assume \(Y_{\text{base}}\) is Zariski dense in \(\hat{U}\). By Lemma 6.4.5 we may assume \(H_{\text{base}}\) has a \(\Gamma\)-internal \(A\)-iso-definable final image equal to \(\overline{Y_{\text{curves}}} \cap \pi^{-1}(Y_{\text{base}})\) and by induction we may assume \(H_{\text{base}}\) satisfies (*).

By composing the homotopies \(H_{\text{curves}}\) and \(H_{\text{base}}\) one gets an \(A\)-definable deformation retraction

\[
H_{bc} = H_{\text{base}} \circ H_{\text{curves}} : I' \times (V \setminus D_{\text{ver}}) \cup D_0 \to \hat{V},
\]

where \(I'\) denotes the generalized interval obtained by gluing \(I\) and \([0, \infty]\). The image is contained in the image of \(H_{\text{base}}\), but contains \(H_{\text{base}}(e_I \times \overline{Y_{\text{curves}}}/U)\), the image over the simple points of \(U\). As these sets are equal, the image is equal to both, and is iso-definable and \(\Gamma\)-internal; we denote it by \(Y_{bc}\). Thus, \(Y_{bc} = \overline{Y_{\text{curves}}} \cap \pi^{-1}(Y_{\text{base}})\). In general \(Y_{bc}\) is not definably compact, but it is \(\sigma\)-compact via \((x_h, x_v)\), since \(H_{\text{base}}\) fixes \(x_v\) and \(\overline{Y_{\text{curves}}}\) is \(\sigma\)-compact with respect to the same functions. (Note that \(Y_{bc} \cap x_h^{-1}(\infty) = \overline{D_0} \cap \pi^{-1}(Y_{\text{base}})\).

Lemma 10.4.1.

1. The subset \(Y_{bc}\) is a Zariski dense subset of \(\hat{V}\).
2. One may choose \(h_{\text{base}}\) so that, for every irreducible component \(V_i\) of \(V\), \(Y_{bc} \cap \hat{V}_i\) is of pure dimension \(n = \text{dim}(V)\).
Proof. Let V_i denote the irreducible components of V, $\pi : \overline{V/U} \to U$ and $\tilde{\pi} : \tilde{V} \to \tilde{U}$ denote the projections. By construction H_{curves} respects the $\tilde{V_i}$ and there exists an open dense subset $U_1 \subseteq U$ such that, for every $x \in U_1$, $\pi^{-1}(x) \cap Y_{\text{curves}} \cap \tilde{V_i}$ is Zariski dense for every i. It follows that, for every $x \in \tilde{U_1}$, $\tilde{\pi}^{-1}(x) \cap Y_{\text{curves}} \cap \tilde{V_i}$ is Zariski dense for every i (recall Y_{curves} is identified with $f_U Y_{\text{curves}}$). Pick $x \in Y_{\text{base}}$ which is Zariski dense in \tilde{U}, then $\tilde{\pi}^{-1}(x) \cap Y_{bc}$ is Zariski dense in \tilde{V}.

Next, we deal with local dimension. Consider a component V_i of V. Let C be an irreducible component of a fiber of V_i above $U \setminus D_{\text{ver}}$. Since D_0 was chosen so that $D_0 \cap C \neq \emptyset$, it follows directly from the definition that the homotopy on C has image containing more than one point. It follows that the image of each irreducible component C_ℓ of C over the algebraic closure of F by the homotopy also contains more than one point. By Proposition 9.4.2, the image of each C_ℓ under that homotopy is necessarily connected. Since it is of dimension ≤ 1, it follows that this image has no isolated points, so is purely 1-dimensional. Thus the image of C under the homotopy is also purely 1-dimensional.

Now $Y_{bc} = Y_{\text{curves}} \cap \tilde{\pi}^{-1}(Y_{\text{base}})$; and by the inductive assumption (6) of Theorem 10.1.1, one may assume that Y_{base} has pure dimension $n - 1$. Now away from D_{ver}, the morphism $V \to U$ factors through $V \to U \times \mathbb{P}^1 \to U$, where $V \to U \times \mathbb{P}^1$ is finite surjective; by Lemma 8.7.4, the map $\tilde{V} \to \tilde{U}$ is open away from D_{ver}. In particular the map $\tilde{V_i} \to \tilde{U}$ is also open away from D_{ver}. It follows easily that $Y_{bc} \cap \tilde{V_i}$ is of pure dimension n.

10.5. The homotopy in Γ_∞^w. In this rather technical subsection we construct a homotopy in Γ_∞^w that we shall use in §10.6 in order to insure that the homotopy we build fixes pointwise its final image at every time.

By Corollary 6.2.7, there exists an A-definable, continuous, injective map $\alpha : Y_{bc} \to \Gamma_\infty^w$, with image $W \subseteq [0, \infty]^w$, where w is a finite A-definable set. We may assume for some coordinate x_i (resp. x_j), $x_i \circ \alpha$ (resp. $x_j \circ \alpha$) is the restriction of x_h (resp. x_y). Indeed, we may add two points h, v to w which we view as A-definable, i.e. fixed by the action of the Galois group and replace α by $x \mapsto (\alpha(x), x_h(x), x_v(x))$. We shall denote by \underline{v} and \underline{h} the projections $\Gamma_\infty^w \to \Gamma_\infty$ on the v and h coordinate, respectively.

We write $[x_i = x_j]$ for $\{a \in [0, \infty]^w : x_i(a) = x_j(a)\}$, and similarly $[x_i = 0]$, etc.

Since Y_{bc} is σ-compact via (x_h, x_v), W is σ-compact with respect to $(\underline{h}, \underline{v})$. In particular, $W \setminus [\underline{v} = \infty]$ is σ-compact via \underline{v}, and hence closed in $\Gamma_\infty^w \setminus [\underline{v} = \infty]$; so $W \cap \Gamma_\infty^w$ is closed in Γ_∞^w.

We let H act on W, so that $\alpha : Y_{bc} \to \Gamma_\infty^w$ is equivariant. By re-embedding W in $\Gamma_\infty^w H$, via $w \mapsto (\alpha(w))_{\sigma \in H}$, we may assume H acts on the coordinate set w, and the induced action of H on Γ_∞^w extends the action of H on W.

Entirely within Γ_w, we show the existence of deformations from a σ-compact such as $(W \setminus \{w = \infty\}) \cup [h = \infty]$ to a definably compact set. We begin with $W \cap \Gamma^w$.

We still denote by ξ_i the functions on W that are the composition of the restriction of ξ_i to Υ_{bc} with α^{-1}.

Lemma 10.5.1. Let

$$W' = (W \cap \Gamma^w) \cup \{h = \infty\}.$$

There exists an \mathcal{A}-definable deformation retraction $H_\Gamma : [0, \infty] \times W' \to W'$ whose image is a definably compact subset W_0 of W' and such that H_Γ leaves the ξ_i invariant, fixes $[h = \infty]$, and is H-equivariant. Moreover, one may require the following to hold:

1. There exists an \mathcal{A}-definable open subset W_o of W containing $W_0 \setminus \{h = \infty\}$ and $m \in \mathbb{N}$, $c \in \Gamma(\mathcal{A})$, such that $x_i \leq (m + 1)x_h + c$ on W_o, for every $i \in w$.

2. If W has pure dimension n, then $W_0 \cap W$ has also pure dimension n.

In this lemma, we take 0 to be the initial point, ∞ the final point. On Γ_∞, we view ∞ as the unique simple point. In this sense the flow is still “away from the simple points”, as for the other homotopies. Moreover, starting at any given point, the flow will terminate at a finite time. The homotopy we obtain will in fact be a semigroup action, i.e. $H_\Gamma(s, H_\Gamma(t, x)) = H_\Gamma(s + t, x)$, in particular it will satisfy $(*)$ (in the form: $H_\Gamma(\infty, H_\Gamma(t, x)) = H_\Gamma(\infty, x))$.

Proof. Find an \mathcal{A}-definable cellular decomposition \mathcal{D} of Γ^w, compatible with $W \cap \Gamma^w$ and with $[x_a = 0]$ and $[x_a = x_b]$ where $a, b \in w$, and such that each ξ_i is linear on each cell of \mathcal{D}. We also assume \mathcal{D} is invariant under both the Galois action and the H-action on w. This can be achieved as follows. Begin with a finite set of pairs $(\alpha_j, c_j) \in \mathbb{Q}^w \times \Gamma^w$, such that each of the subsets of Γ^w referred to above is defined by inequalities of the form $\alpha_j v - c_j \in \mathbb{Z}_j 0$, where $\in \mathbb{Z}_j$ is $< $ or $>$ or $=$. Take the closure of this set under the Galois action and the H-action. A cell of \mathcal{D} is any nonempty set defined by conditions $\alpha_j v - c_j \in \mathbb{Z}_j 0$, where $\in \mathbb{Z}_j$ is any function from the set of indices to $\{<, >, =\}$. Such a cell is an open convex subset of its affine span.

Any bijection $b : w \to \{1, \ldots, |w|\}$ yields a bijection $b_* : \Gamma^w \to \Gamma^{[w]}$, the image of c_j under these various bijections depends on the choice of b only up to reordering. Thus $b_*(c_j)$ gives a well-defined subset of Γ, which belongs to $\Gamma(\mathcal{A})$. Let A be the convex subgroup of $\Gamma = \Gamma(\mathbb{U})$ generated by $\Gamma(\mathcal{A})$, and let $B = \Gamma(\mathbb{U})/A$. For each cell C of \mathcal{D}, let βC be the image of C in B^w. Note that βC may have smaller dimension than C; notably, $\beta C = (0)$ iff C is bounded. At all events βC is a cell defined by homogeneous linear equalities and inequalities. When $\Gamma(\mathcal{A}) \neq (0)$, βC is always a closed cell, i.e. defined by weak inequalities.
For any $C \in \mathcal{D}$, let C_∞ be the closure of C in Γ^w_∞. Let \mathcal{D}_0 be the set of cells $C \in \mathcal{D}$ such that $C_\infty \setminus \Gamma^w \subseteq [h = \infty]$. Equivalently, $C \in \mathcal{D}_0$ if and only if for each $i \in w$, an inequality of the form $x_i \leq mh + c$ holds on C, for some $m \in \mathbb{N}$ and $c \in \Gamma$. Other equivalent conditions are that $x_i \leq mh$ on βC for some i, or that there exists no $e \in \beta C$ with $h(e) = 0$ but $x_i(e) \neq 0$. Let

$$W_0 = (W' \cap (\cup_{C \in \mathcal{D}_0} C)) \cup [h = \infty].$$

It is clear that W_0 is a definably compact subset of Γ^w_∞, contained in $W' = (W \cap \Gamma^w) \cup [h = \infty]$.

More generally, define a quasi-ordering \leq_C on w by: $i \leq_C j$ if for some $m \in \mathbb{N}$, $x_i(c) \leq mx_j(c)$ for all $c \in \beta C$. Since the decomposition respects the hyperplanes $x_i = x_j$, we have $i \leq_C j$ or $j \leq_C i$ or both. Thus \leq_C is a linear quasi-order. Let $\beta' C = \beta C \cap [h = 0]$. We have $\beta' C = 0$ iff h is \leq_C-maximal if $C \in \mathcal{D}_0$. If $C \in \mathcal{D}_0$, let $e_C = 0$. Otherwise, $\beta' C$ is a nonzero rational linear cone, in the positive quadrant. Let e_C be the barycenter of $\beta' C \cap [\sum x_i = 1]$ (here we view $\beta' C$ as a cone in $\mathbb{Q}^w_+\ell$). Thus e_C belongs to \mathbb{Q}^w_+ and is a non-zero element of $\beta' C$ which is H and Galois invariant.

For $t \in \Gamma$, we have $te_C := e_C t \in \Gamma^w$. If $e_C \neq 0$ then Γe_C is unbounded in Γ^w, so for any $x \in C$ there exists $t \in \Gamma$ such that $x - te_C \notin C$. Let $\tau(x)$ be the unique smallest such t. Note that $\tau(x) > 0$.

We will now define $H_\Gamma : [0, \infty] \times C \to \Gamma^w$ separately on each cell $C \in \mathcal{D}$ by induction on the dimension of C, as follows. If $C \in \mathcal{D}_0$, $H_\Gamma(t, x) = x$. Assume $C \in \mathcal{D} \setminus \mathcal{D}_0$. If $x \in C$ and $t \leq \tau(x)$, let $H_\Gamma(t, x) = x - te_C$. So $H_\Gamma(\tau(x), x)$ lies in a lower-dimensional cell C'. For $t \geq \tau(x)$ let $H_\Gamma(t, x) = H_\Gamma(t - \tau(x), \tau(x))$. For fixed a, $H_\Gamma(t, a)$ thus traverses finitely many cells as $t \to \infty$, with strictly decreasing dimensions, thus ultimately reaching W_0.

We claim that H_Γ is continuous on $[0, \infty] \times \Gamma^w$. To see this fix $a \in C \in \mathcal{D}$ and let $(t', a') \to (t, a)$. We need to show that $H_\Gamma(t', a') \to H_\Gamma(t, a)$. By curve selection it suffices to consider (t', a') varying along some line λ approaching (t, a). For some cell C' we have $a' \in C''$ eventually along this line.

If $a' \in W_0$ then $a \in W_0$ since W_0 is closed. In this case we have $H_\Gamma(a', t') = a', H_\Gamma(a, t) = a$, and $a' \to a$ tautologically. Assume therefore that $a' \notin W_0$, so $C' \notin \mathcal{D}_0$ and $e' \neq 0$, where $e' = e_{C'}$.

Consider first the case: $t' \leq \tau(a')$ (cofinally along λ). Then by definition we have $H_\Gamma(t', a') = a' - t'e'$. Now C must be a boundary face of C', cut out from the closure of C' by certain hyperplanes $\alpha_j v - c_j = 0$ ($j \in J(C, C')$). We have $\alpha_j v = c_j$ for $v \in C$, and (we may assume) $\alpha_j v \geq c_j$ for $v \in C'$.

If $\gamma_j = \alpha_j e' > 0$ for some j, fix such a j. As $t' \leq \tau(a')$, we have $\alpha_j (a' - t'e') = \alpha_j a' - \gamma_j t' \geq c_j$, so $t' \leq \gamma_j^{-1}(\alpha_j a' - c_j)$. Now $a' \to a$ so $\alpha_j a' - c_j \to 0$. Thus $t' \to 0$, i.e. $t = 0$. So $H_\Gamma(t, a) = a$, and $H_\Gamma(t, a) - H_\Gamma(t', a') = a - (a' - t'e') = (a - a') + t'e' \to 0$ (as $(t', a') \to (t, a)$ along λ).
The remaining possibility is that $\alpha_j e' = 0$ for each $j \in J(C, C')$. So $\alpha_j v = 0$ for each $v \in \beta' C'$. Hence $\beta' C' \subseteq \beta C$. Since $\beta' C \subseteq \beta C'$, it follows that $\beta' C = \beta' C'$ and so $e_C = e_{C'}$. Now $(t, x) \mapsto x - te'$ is continuous on all of $\Gamma \times \Gamma^w$ so on $C \cup C'$, and hence again $H_T(t', a') \to H_T(t, a)$.

This finishes the case $t' \leq \tau(a')$. In particular, $\tau(a') \to t^*$ for some t^*, and letting $a'' = H_T(a', \tau(a'))$, $a'' \to a$. Now by induction on the dimension of the cell C', we have $H_T(t' - \tau(a'), a'') \to H_T(t - t^*, a)$; it follows that $H_T(t', a') \to H_T(t, a)$.

This shows continuity on $[0, \infty] \times \Gamma^w$.

Note that if $C \in \mathcal{D} \setminus \mathcal{D}_0$, then ξ_i depends only on coordinates x_i with $x_i \leq_C h$. This follows from the fact that ξ_i is bounded on any part of C where h is bounded (by assumption $\xi_i^{-1}(\infty) \subseteq \mathcal{D}_0$); so $\xi_i \leq mh$ for some m_i, up to an additive constant. Since $x_i(e_C) = 0$ for $i \leq_C h$, it follows that ξ_i is left unchanged by the homotopy on C. So along a path in the homotopy, ξ_i takes only finitely many values (one on each cell); being continuous, it must be constant. In other words the ξ_i are preserved. The closures of the cells are also preserved, hence, as $W \cap \Gamma^w$ is closed, $W \cap \Gamma^w$ is preserved by the homotopy.

Extend H_T to W' by letting $H_T(t, x) = x$ for $x \in W' \setminus \Gamma^w$. Thus, W_0 will be the image of the homotopy and by construction H_T fixes $[h = \infty]$. We still have to prove that H_T is continuous at (t, a) for $a \in W' \setminus \Gamma^w$, i.e. $h(a) = \infty$. We have to show that a' close to a, for all t, $H_T(t, a')$ is also close to a. If $a' \notin \Gamma^w$ we have $H_T(t, a') = a'$. Assume $a' \in \Gamma^w$; so $a' \in C$ for some $C \in \mathcal{D}$. If $C \in \mathcal{D}_0$, again we have $H_T(t, a') = a'$. Otherwise, there will be a time t' such that $H_T(t', a') = a'' \notin C$. So a'' will fall into another cell, with lower v. We will show that $H_T(t, a')$ remains close to a for $t \leq \tau(a')$. In particular, a'' is close to a; so (inductively) $H_T(t, a'') = H_T(t' + t, a)$ is close to a. Thus it suffices to show for each coordinate $i \in w$ that $x_i(a')$ remains close to $x_i(a)$.

If $i \leq_C h$ then the homotopy does not change $x_i(a')$ so (as a is fixed) we have $x_i(H_T(t, a')) = x_i(a') \to x_i(a) = x_i(H_T(t, a))$. So assume $h < C i$. Since $h(a) = \infty$ we have $h(a') \to \infty$ and hence $x_i(a') \to \infty$. So $x_i(a) = \infty = x_i(H_T(t, a))$. For any $c = H_T(t, a')$, $t \leq \tau(a')$, we have $x_i(c) \geq h(c)/m = h(a')/m$ up to an additive constant. Since $a' \to a$, $h(a')$ is large, so $x_i(c)$ is large, i.e. close to $x_i(a)$. This proves the continuity of H_T on W'. This ends the proof of Lemma 10.5.1 except for the additional items. For (1), since W_0 is definably compact and contained in $\Gamma^w \cup [h = \infty]$, for each $i \in w$ there exists some $m_i \in \mathbb{N}$ and $c_i \in \Gamma(A)$ such that $x_i \leq m_i x_h + c_i$ on $W_0 \cap \Gamma^w$. Set $m = \max_i m_i$ and $c = \max_i c_i$. Now the open subset of $W \cap \Gamma^w$ defined by $W_o = \{x \in W \cap \Gamma^w; x_i < (m + 1)x_h + c, \forall i \in w\}$ does the job. Now let us prove that one can require (2). One may assume all the function x_i are ≥ 0 on W_0. Set $M = |I|(m + 1)$, $K = |I|c$ and let L be the hyperplane $\sum_i x_i = M x_h + K$. Note that L is both H and Galois invariant. We now add L to the cellular decomposition \mathcal{D}. Denote by \mathcal{D}' the new cellular decomposition and by \mathcal{D}' the corresponding set of “bounded” cells. We claim that replacing \mathcal{D} by \mathcal{D}' does the job. Let C be a cell in \mathcal{D} contained in W'. Since
$C \subseteq W_o$, C is in the closure of a cell in D' contained in W'. Now let C be a cell in D' contained in W' which is not in D. Thus C is the intersection of a cell C'' in D contained in W' either with the hyperplane L or with the half space U defined by $\sum x_i < Mx_h + K$. But C' lies in the closure of a cell C'' in D contained in W' of dimension n, thus C lies in the closure of $C'' \cap U$ which is an n-dimensional cell. This shows that after replacing D by D', $W_0 \setminus [h = \infty]$ is of dimension n at every point. We still have to take care of $W \cap [h = \infty]$. Let x be a point in $W \cap [h = \infty]$. If some neighborhood of X in W is contained in $[h = \infty]$, there is nothing to prove. Otherwise, x is in the closure of W', hence also in the closure of image of W' under the retraction attached to D'. Since that image has dimension n at all points, we are done. Finally note that it is possible to achieve (1) and (2) simultaneously. \hfill \Box

While the construction of the Γ-homotopy is essentially carried out in Lemma 10.5.1, we need to extend it to a more general situation in which, e.g. $W \cap \Gamma^w = \emptyset$, i.e. W lies entirely within the ∞-boundary of Γ^w.

Lemma 10.5.2. There exists a z-dense, z-open subset W^o in W such that with

$$W' = (W^o \setminus [\nu = \infty]) \cup [h = \infty],$$

there exists an A-definable deformation retraction $H_\Gamma : [0, \infty] \times W' \to W'$ whose image is a definably compact set W_0 of W' and such that H_Γ leaves the ξ_i invariant, fixes $[h = \infty]$, and is H-equivariant. Moreover, one may require the following to hold:

1. There exists an A-definable open subset W_0 of W containing $W_0 \setminus [h = \infty]$, and $m \in \mathbb{N}$, $c \in \Gamma(A)$, for $i \in w$, such that $x_i \leq (m + 1)x_h + c$ on W_0, for every $i \in w$.

2. Let $W = \cup W_\nu$ be the decomposition of W into z-components. For each ν such that W_ν has pure dimension n_ν, $W_0 \cap W_\nu$ has also pure dimension n_ν.

Proof. First assume W is z-irreducible. Let w^o be the set of all $i \in w$ such that the ith projection $\pi_i : W \to \Gamma_\infty$ does not take the constant value ∞ on W; the set w^o is Galois invariant. Clearly $\pi^o = \Pi_{i \in w^o} \pi_i$ is a homeomorphism between W and its image. Note that $\pi^o(W) \cap \Gamma^w$ is z-open and z-dense in $\pi^o(W)$, and disjoint from $[\nu = \infty]$. Set $W^o = \pi^{o-1}(\pi^o(W) \cap \Gamma^w)$. Thus, either $W^o \cap [\nu = \infty] = \emptyset$ or W is contained in $[\nu = \infty]$. Set $W' = (W^o \setminus [\nu = \infty]) \cup [h = \infty]$. In the first case, applying Lemma 10.5.1 to $\pi^o(W) \cap \Gamma^w$ and pulling back by π^o we obtain the required homotopy $H_\Gamma = H_{\Gamma, W} : [0, \infty] \times W' \to W'$.

Furthermore one may require there exists an A-definable open subset W_0 of W containing $W_0 \setminus [h = \infty]$, and $m \in \mathbb{N}$, $c \in \Gamma(A)$, for $i \in w_0$, such that $x_i \leq (m + 1)x_h + c$ on W_0, for every $i \in w_0$. When $i \notin w_o$, $x_i \leq (m + 1)x_h + c$ on W_0. Also one can require (2) holds. The second case is obvious.
In general let $W = \cup_{\nu} W_{\nu}$ be the decomposition of W into z-components. Define W_{ν} as above and note that $W_{\nu} \cap W_{\nu'} = \emptyset$ if $\nu \neq \nu'$. Set $W^o = \cup_{\nu} W_{\nu}$. It is a z-dense, z-open subset of W. For each ν, let $H_{\Gamma,W_{\nu}} : [0,\infty] \times W_{\nu} \to W_{\nu}$ as above, with $W_{\nu} = (W_{\nu}^o \setminus [y = \infty]) \cup \left[h = \infty \right]$. The subsets W_{ν} form a finite covering of W by closed subsets. Hence the mappings $H_{\Gamma,W_{\nu}}$ glue to a continuous mapping $H_{\Gamma,W} : [0,\infty] \times W' \to W'$. The process in Lemma 10.5.1 and in the first paragraph of the present lemma being entirely canonical, the retraction $H_{\Gamma,W}$ obtained this way is A-definable and H-invariant. By construction the final image W_0 is definably compact. For the additional items, for each ν one has open subsets $W_{0,\nu}$ with corresponding m_{ν} and c_{ν}. One sets $W_0 = \cup_{\nu} W_{0,\nu}$, $m = \max m_{\nu}$, and $c = \max c_{\nu}$, which gives (1). By the construction in Lemma 10.5.1 it is clear one can require (2) at the same time.

Lemma 10.5.3. Let \mathcal{V} be a Γ-internal iso-definable subset of \widehat{V}. Let $\beta_0 : \widehat{V} \to [0,\infty]^w$ be a continuous A-pro-definable map, injective on \mathcal{V} as provided by Corollary 6.2.7. Assume \mathcal{V} is Zariski dense in \widehat{V} in the sense of 3.11. Then we may enlarge w_0 to a finite A-definable set w such that β_0 factors through a continuous A-pro-definable map $\beta : \widehat{V} \to [0,\infty]^w$ (injective on \mathcal{V}) such that:

1. If O is a z-open z-dense subset of $\beta(\mathcal{V})$, then $\beta^{-1}(O) \cap \mathcal{V}$ is a Zariski open dense subset of \mathcal{V}.

2. For any irreducible component V_i of \mathcal{V}, $\beta(\mathcal{V} \cap \widehat{V}_i)$ is a z-component of $\beta(\mathcal{V})$.

Proof. Let V_1, \ldots, V_r, be the irreducible components of \mathcal{V}. For each V_j, let $x_j : V \to [0,\infty]$ be a schematic distance function to V_j. Set $\beta(x) = (\beta_0(x), x_1, \ldots, x_r)$. It follows from Lemma 9.4.3, that if W is a z-closed subset of $[0,\infty]^w$, then $\beta^{-1}(W)$ is Zariski closed. Thus, if $Z \subseteq Y$ is z-closed (resp. z-open) in $Y = \beta(\mathcal{V})$, $\beta^{-1}(Z) \cap \mathcal{V}$ is Zariski closed (resp. open) in \mathcal{V}. Let us prove (1). If $Z \subseteq Y$ is z-closed in Y and contains no z-component of \mathcal{V}, suppose $\beta^{-1}(Z)$ contains some $\widehat{V}_{j_0} \cap \mathcal{V}$. Then $\beta^{-1}(Z) \cup \cup_{j \neq j_0} \widehat{V}_j$ contains \mathcal{V}, so $Z \cup \cup_{j \neq j_0} [x_j = \infty]$ contains Y. It follows that $\cup_{j \neq j_0} [x_j = \infty]$ contains Y already. But then as $\widehat{V}_j = \beta^{-1}([x_j = \infty])$ we have $\mathcal{V} \subseteq \cup_{j \neq j_0} \widehat{V}_j$, contradicting the hypothesis on \mathcal{V}. For (2), note that each $\beta(\mathcal{V} \cap \widehat{V}_i)$ is z-closed in Y and that the sets $\beta(\mathcal{V} \cap \widehat{V}_i)$ are mutually not included one in another. Thus, each $\beta(\mathcal{V} \cap \widehat{V}_i)$ may be written as $\cup_{j \in I_i} C_j$, with C_j some z-components of Y. In particular, $\mathcal{V} \cap \widehat{V}_i \subset \cup_{j \in I_i} (\mathcal{V} \cap \beta^{-1}(C_j))$. Since $\mathcal{V} \cap \widehat{V}_i$ is Zariski dense in \widehat{V}_i and V_i is irreducible, it follows that, for some j_0, $\mathcal{V} \cap \widehat{V}_i$ is contained in the Zariski closed set $\mathcal{V} \cap \beta^{-1}(C_{j_0})$. Hence, $\beta(\mathcal{V} \cap \widehat{V}_i)$ is contained in C_{j_0} and $\beta(\mathcal{V} \cap \widehat{V}_i) = C_{j_0}$.

10.6. End of the proof. In §10.4, we have constructed a continuous A-pro-definable retraction β_{bc} from $(V \setminus \overline{D^V_{ver}}) \cup D_0 \to \mathcal{V}_{bc}$, sending v to the final value.
of $t \mapsto H_{bc}(t, v)$. Furthermore, by Lemma 10.4.1, Υ_{bc} is Zariski dense in \hat{V}, and we may assume that, for every irreducible component V_i of V, $\Upsilon_{bc} \cap \hat{V_i}$ is of pure dimension $n = \dim(V)$. By Corollary 6.2.7, there exists a continuous A-pro-definable map $\beta : \hat{V} \to [0, \infty]^w$ for some finite A-definable set w, injective on Υ_{bc}. One denotes by α its restriction to Υ_{bc}. After enlarging w, we may assume we are in the setting of $\S 10.5$, in particular that with the notation therein, $v = x_v, h = x_h$ for some $h, v \in w$. Also, after adding schematic distance functions to the irreducible components of V, we may assume that the conclusions of Lemma 10.5.3 hold for β and Υ_{bc}. We set $W = \alpha(\Upsilon_{bc})$ and we define $W^o, W', H_{\Gamma}, W_0, W_o, m$ and c as in Lemma 10.5.2.

Note that $V \setminus V_0$ contains no irreducible component of V. Indeed, if V_i is an irreducible component of V, $D_0 \cap V_i$ is non empty of dimension $n - 1$ and u restricts to a finite morphism $D_0 \cap V_i \to U$, thus $u(D_0 \cap V_i)$ contains U_0. By Lemma 9.3.2 there exists an A-definable homotopy $H_{inf} : [0, \infty] \times \hat{V} \to \hat{V}$ respecting the functions ξ_i and the group action H and fixing pointwise D_0 with image contained in $(V_0 \setminus D^-_\text{ver}) \cup D_0$. (In fact, by Lemma 9.3.1 the image is contained in \hat{Z} with Z a $v + g$-closed bounded definable subset of V with $\hat{Z} \cap D^-_\text{ver} \subseteq D_0$.) For each $i \in w$, set $\phi_i = \min(x_i, (m + 1)x_h + c)$. Note that, outside D_0, the functions $\phi_i \circ \beta$ are $v + g$-continuous with values in Γ. Furthermore, the functions ϕ_i are definable over a finite Galois extension of A and permuted by the Galois group. Thus, by Lemma 9.3.2, we may also require that the functions $\phi_i \circ \beta$ are preserved by H_{inf}. Recall W_o is an open subset of W containing $W_0 \setminus [h = \infty]$, so $\alpha^{-1}(W_o)$ is open in Υ_{bc}. Thus, $\alpha^{-1}(W_o)$ has pure dimension $n = \dim(V)$. Since the restriction of ϕ_i to W_o is just the i’th coordinate function, it follows from Proposition 6.6.1 that $\alpha^{-1}(W_o)$ is fixed pointwise by H_{inf}. Hence so is $\alpha^{-1}(W_0 \setminus [h = \infty])$, and thus also $\alpha^{-1}(W_0)$. By construction H_{inf} satisfies $(*)$.

We will define H as the composition (or concatenation) of homotopies

$$H = H_{\Gamma}^o \circ ((H_{base} \circ H_{\text{curves}}) \circ H_{inf}) : I'' \times \hat{V} \to \hat{V}$$

where H_{Γ}^o is to be constructed, and I'' denotes the generalized interval obtained by gluing $[\infty, 0], I'$ and $[0, \infty)$. Being the composition of homotopies satisfying $(*)$, H satisfies $(*)$.

Since the image of H_{inf} is contained in the domain of H_{bc}, the first composition makes sense.

The set W^o is a z-dense, z-open subset of W. Hence, by Lemma 10.5.3 (1), $\alpha^{-1}(W^o)$ is a Zariski open dense subset of Υ_{bc}. Let O be a Zariski dense open subset of V such that $\hat{O} \cap \Upsilon_{bc} = \alpha^{-1}(W^o)$. By construction of H_{inf}, the image I_{inf} of H_{inf} is contained in $\hat{O} \cup D_0$. Thus $\beta_{bc}(I_{inf})$ is a definably compact subset of $\beta^{-1}(W') \cap \Upsilon_{bc}$. Note that β restricts to a homeomorphism α_1 between this set and a definably compact subset W_1 of W. One sets $H_{\Gamma}(t, x) = \alpha_1^{-1}H_{\Gamma}(t, \alpha_1(x))$: in
short, H^2_α is H_Γ conjugated by α, restricted to an appropriate definably compact set. So H is well-defined by the above quadruple composition.

Since H_{inf} fixes $\alpha^{-1}(W_0)$, and W_0 is the image of H_Γ, H_{inf} fixes the image of H. One the other hand H_{bc} fixes Υ_{bc} and hence the subset $\alpha^{-1}(W_0) \subseteq \Upsilon_{bc}$. Thus H fixes its own image $\Upsilon = \alpha^{-1}(W_0)$.

Let q be a limit point of Υ. If q lies in $\overline{D_\text{ver}^\Gamma}$, then necessarily it lies in $\overline{\mathcal{D}_0}$, as one sees by applying β. Thus q lies in $(V \setminus D_\text{ver}^\Gamma) \cup D_0$. Applying H_{bc} one sees it belongs to Υ_{bc}, and applying α that it lies in Υ. Hence Υ is definably compact and α is a homeomorphism from Υ to the definably compact subset W_0 of Γ_∞^w.

We have thus constructed a homotopy $H : I'' \times \widehat{V} \to \widehat{V}$ satisfying the statement of the theorem together with conditions (1), (2) and (4). Let us check (3), (4) and (7) also hold.

Let us check (3), that is that H is Zariski-generalizing, i.e. for any Zariski open subset U of X, \widehat{U} is invariant under H. This property clearly holds for the first three homotopies in the concatenation, let us check it for H^2_α. By Corollary 9.4.6 it is enough to prove H_Γ is Zariski-generalizing. Consider a definable continuous function $\eta : W' \to \Gamma_\infty$ such that $W' \setminus \eta^{-1}(\infty) \neq \emptyset$. Pick a point x in W' with $\eta(x)$ finite. By construction of H_Γ, for some finite t_0, $H_\Gamma(t_0, x)$ lies in W_0. Thus, the function $t \mapsto \eta(H_\Gamma(t, x))$ can only take finite values for finite t, since a definable continuous function $[0, t_0] \to \Gamma_\infty$ which is non constant can take only finite values.

Let us check (6), that is, Υ is the image of the simple points. Set $e = e_{I''}$. Indeed for any point p, $h(e, p) = f_x|_{p} h(e, x)$. (The two functions agree on simple points p, and are continuous, hence are equal.) But $h(e, x)$ takes a constant value generically on p, since $h(e, X)$ is Γ-internal, and p is orthogonal to Γ. Thus for any $x \models p$ we have $h(e, x) = h(e, p)$. This includes the case $p \in \Upsilon$, whence $p = h(e, p) = h(e, x)$. In particular we see that pre-composing with the inflation homotopy, or any other homotopy satisfying (4), does not change the skeleton.

We will now prove (5). By Lemma 6.5.3 (5), integrating a function into $V^\#$ on an element of $V^\#$ gives an element of $V^\#$. We will use this repeatedly below. In particular by (6), it suffices for (5) to show that the image of the simple points lies in $V^\#$. Now (5) is clear for the inflation homotopy, as this homotopy is a finite cover of the standard affine homotopy $I \times \mathbb{A}^n \to \mathbb{A}^n$ (the image of a simple point being a tensor power of the image of a point on \mathbb{A}^1). By the remark on integration, precomposing with the inflation homotopy will not spoil (5). Composing with a homotopy taking place purely on the skeleton obviously does not add to the image of $h(e, V)$, as it adds no new points to this image. It remains to consider the inductive step. Inductively, we may assume (5) holds for the skeleton of the base homotopy. In relative dimension one, any element
of \tilde{V}/U is in fact in $V^\#$. Hence again by transitivity every element of V moves through $V^\#$ throughout the homotopy.

It remains to prove (7), i.e. that given a finite family of closed irreducible subvarieties W_i of V, one can assume $\Upsilon \cap \tilde{W}_i$ has pure dimension $\dim(W_i)$. We already proved one can achieve each $\Upsilon_{bc} \cap \tilde{V}_i$ is of pure dimension n. It follows that each $N(\Upsilon_{bc} \cap \tilde{V}_i)$ is of pure dimension n. By the conclusion of Lemma 10.5.3 (2) which holds for $\tilde{\beta}$ and Υ_{bc}, the sets $N(\Upsilon_{bc} \cap \tilde{V}_i)$ are the z-components of W_i. It follows from Lemma 10.5.2 (2) that one can achieve that $Q(\Upsilon_{bc} \cap \tilde{V}_i)$ is of pure dimension n. It remains to prove (7), i.e. that given a finite family of closed irreducible subvarieties W_i of V, one can assume $\Upsilon \cap \tilde{W}_i$ has pure dimension $\dim(W_i)$. We already proved one can achieve each $\Upsilon_{bc} \cap \tilde{V}_i$ is of pure dimension n. It follows that each $N(\Upsilon_{bc} \cap \tilde{V}_i)$ is of pure dimension n. By the conclusion of Lemma 10.5.3 (2) which holds for $\tilde{\beta}$ and Υ_{bc}, the sets $N(\Upsilon_{bc} \cap \tilde{V}_i)$ are the z-components of W_i. It follows from Lemma 10.5.2 (2) that one can achieve that $Q(\Upsilon_{bc} \cap \tilde{V}_i)$ is of pure dimension n. Since $\tilde{\alpha}$ restricts to a homeomorphism between W_i and $\Upsilon \cap \tilde{W}_i$ is of pure dimension n. With these choices, for any W_i of dimension n, $\Upsilon \cap \tilde{W}_i$ is of pure dimension n. Let us now deal with the case where some W_i are of dimension $m_i < n$. By construction such a W_i is contained in the hypersurface D_0 considered in §10.2. All reductions go through and when at the end of §10.2 we replace V by V_1, it is enough to replace W_i by its strict transform. The restriction $\tilde{\alpha}$ of $\tilde{\beta}$ to W_i is a finite morphism. Set $W_i' = \tilde{\alpha}(W_i)$. By construction, the homotopies H^α, H_{curves} and H_{inf} fix pointwise the intersection of \tilde{W}_i with their domains. Now note that the pseudo-Galois morphism $U' \to U$ considered in Lemma 6.4.5 may be chosen so to factor through any given finite surjective morphism $U'' \to U$. Thus, we may assume $D_0 \times_U U'' \to U''$ is a trivial cover. Let W_i' be an irreducible component of $W_i \times_U U''$ and denote by C_i its image under the projection U'. By the induction hypothesis, we may require the base homotopy h' at the beginning of §10.4 satisfies (7) for all C_i's associated to some W_i of dimension $< n$. Let Υ_i' be the final image of C_i under the retraction h'. By hypothesis it has pure dimension m_i. Since $W_i' \to C_i$ is an isomorphism, the same holds for the preimage Υ_i'' of Υ_i' in \tilde{W}_i'. The morphism $\tilde{W}_i' \to \tilde{W}_i$ being continuous with finite fibers, it follows that the image Υ_i of Υ_i'' in \tilde{W}_i also has pure dimension m_i. By construction the final image of \tilde{W}_i under H_{base} is equal to Υ_i, which proves (7).

This ends the proof of Theorem 10.1.1. □

10.7. Variation in families. Consider a commutative diagram

\[\begin{array}{ccc}
X & \xrightarrow{h} & Y \\
& \downarrow \gamma & \downarrow \delta \\
T & &
\end{array} \]

of pro-definable maps, with T a definable set. We shall refer the family of maps $h_\tau : X_\tau \to Y_\tau$ obtained by restriction to fibers above $\tau \in T$ as uniformly pro-definable.

Consider a situation where $(V,X) = (V_\tau,X_\tau)$ are given uniformly in a parameter τ, varying in a definable set T. For each τ, Theorem 10.1.1 guarantees the
existence of a strong homotopy retraction \(h_\tau : I \times \hat{X}_\tau \to \hat{X}_\tau \), and a definable homeomorphism \(j_\tau : W_\tau \to h_\tau(e_1, \hat{X}_\tau) \), with \(W_\tau \) a definable subset of \(\Gamma_{w(\tau)}^w \). Such statements are often automatically uniform in the parameter \(\tau \). For instance if \(X_\tau, Y_\tau \) are uniformly definable families of definable sets, and for each \(a \) there exists an \(a \)-definable bijection \(X_\tau \to Y_\tau \), then automatically there must exist a uniformly definable bijection \(h_\tau : X_\tau \to Y_\tau \). Indeed if \(H \) is the collection of all \(0 \)-definable subsets of \(X \times \tau Y \), then for any \(a \in T \), for some \(h \in H \), \(h_a : X_a \to Y_a \) is a bijection. So the family of all formulas asserting that \(h_\tau \) is not a bijection \(X_\tau \to Y_\tau \) is inconsistent. Hence a finite subset is inconsistent; i.e. there exists a finite set \(h^1, \ldots, h^r \in H \) such that for any \(a \in T \), for some \(i \leq r \), \(h^i_a \) is a bijection \(X_a \to Y_a \). Let \(h(t,x,y) \) holds iff \(i \leq r \) is least such that \(h^i_\tau \) is a bijection, and \(h^i(t,x,y) \). Then for any \(\tau \), \(h_\tau : X_\tau \to Y_\tau \) is a bijection. More generally, if each \(h_a \) has some property \(P \) which is ind-definable (i.e. the family of all definable maps for which it holds is an ind-definable family), then one can find \(h \) such that each \(h_\tau \) has this property. (See a fuller explanation in [19], introductory section on compactness and glueing.)

Here the pro-definable \(h_\tau \) is given by an infinite collection of definable maps, so compactness does not directly apply. Nevertheless the theorem is uniform in the parameter \(\tau \). The reason is that \(h_\tau \) is determined by its restriction to the simple points, and on these, the homotopy moves along the ind-definable \(V^\# \). We state this as a separate proposition.

Proposition 10.7.1. Let \(V_\tau \) be a quasi-projective variety, \(X_\tau \) a definable subset of \(V_\tau \times \Gamma_\tau^c \), definable uniformly in \(\tau \in T \) over some base set \(A \). Then there exists a uniformly pro-definable family \(h_\tau : I \times \hat{X}_\tau \to \hat{X}_\tau \), a finite set \(w(t) \), a definable set \(W_\tau \subseteq \Gamma_{w(t)}^w \), and \(j_\tau : W_\tau \to h_\tau(0, \hat{X}_\tau) \), pro-definable uniformly in \(\tau \), such that for each \(t \in T \), \(h_\tau \) is a deformation retraction, and \(j_\tau : W_\tau \to h_\tau(0, \hat{X}_\tau) \) is a pro-definable homeomorphism. Moreover, (1), (2) of Theorem 10.1.1 can be gotten to hold if the \(\xi_i \) and the group action are given uniformly, as can (4), (5), (6) and (7).

Proof. For any \(a \in T \), we have \(h_a, j_a \) with the stated properties, by Theorem 10.1.1. Let \(h^\#_a \) be the restriction of \(h_a \) to the simple points. Then by Theorem 10.1.1 (5), \(h^\#_a : V_a \times I \to V_a^\# \). Note that in principle \(I = I_a \) depends on \(a \). However \(\dim(V_a) \) is bounded by some \(m \), \(I_a \) is a union of at most \(3m + 1 \) copies of \([0, \infty] \); extending the homotopy trivially to be constant to the left, we may assume it is a glueing of exactly \(3m + 1 \) copies of this interval, so it does not depend on \(a \). We have:

(1) Given finitely many \(A \)-definable functions \(\xi_i : \prod_{\tau \in T} V_\tau \to \Gamma_\infty \), one can choose \(h_a \) to respect the \(\xi_i \), i.e. \(\xi_i(h^\#_a(t,x)) = \xi_i(x) \) for all \(\tau \).
(2) Assume given, in addition, a finite algebraic group action on \(V_a \) given uniformly in \(a \). Then the homotopy retraction can be chosen to be equivariant.

(4) Let \(x \in X \) and let \(c = h_a^\#(e_I, x) \) be the final image of \(x \). Also let \(t \in I \), and \(p = h(t, x) \). Then for generic \(y \models p \), \(h_a^\#(e_I, y) = c \); i.e. \(\models (dp_y)h_a^\#(e_I, y) = c \).

(7) Each irreducible component \(V' \) is left invariant by \(h_a^\# \); and if \(X \cap V' \) contains an open subset of \(V' \), then \(h_a^\#(0, V') \) has pure dimension equal to \(\dim(V') \).

(5') \(h_a^\# \) extends to a homotopy \(H_a: \hat{X}_a \to \hat{X}_a \).

Now the validity of (5') for \(h_a^\# \) is an ind-definable property of \(a \), by Lemma 8.9.1. (1), (2) and (7) are obviously ind-definable (using the classical fact that the irreducible components of \(V_a \) are ACF-definable uniformly in \(a \)). Property (4) is also stated in an ind-definable way.

Hence by the compactness/glueing argument mentioned above, one can find a uniformly definable family \(h_\tau \) with the same properties. Now let \(H_\tau(p) = \int_{x\models p} h_\tau(x) \). By (5'), this is a homotopy \(H_\tau: \hat{X}_\tau \to \hat{X}_\tau \). Property (5) of Theorem 10.1.1 holds by definition. Property (6) is proved in the same way as in Theorem 10.1.1.

Remark 10.7.2. We proved above that irreducible components are preserved, but not the full Zariski generalization property Theorem 10.1.1 (3), as it is not an ind-definable property on the face of it. It can still be achieved uniformly; this can be seen in one of two ways:
- either by following the proof of (3), carrying the parameter \(\tau \) along;
- or else by proving that a stronger ind-definable property holds; namely that there is a uniformly definable family of varieties, such that the Zariski closure of \(h(x, t) \) is an element of this family, and is increasing with \(t \) along \(I \). In the case of a definably compact set \(X \) contained in the smooth locus of \(V \), the proof of Proposition 11.1.1 gives this in a very simple form: the Zariski closure of \(h(x, t) \) is \(\{x\} \) if \(t = \infty \), and equals \(V \) otherwise.

11. The smooth case

Summary. In this section we examine the simplifications occuring in the proof of the main theorem in the smooth case. We also note the birational character of the definable homotopy type in Remark 11.1.6.

11.1. The smooth case. For definable sets avoiding the singular locus it is possible to prove the following variant of Theorem 10.1.1. The proof uses the same ingredients but is considerably simpler in that only birational versions of most parts of the construction are required. For clauses (1,2,4), the homotopy
internal to Γ is not required; and a global inflation homotopy is applied only once, rather than iterated at each dimension. For clause (3), a single final use of the Γ-homotopy is added.

Given an algebraic variety V over a field, one denotes by V_{sing} its singular locus, i.e. its non smooth locus.

Proposition 11.1.1. Let V be a quasi-projective variety over a valued field F and let X be a v-open F-definable subset of V, with empty intersection with V_{sing}. Then there exists an F-definable homotopy $h : I \times \tilde{X} \to \tilde{X}$ between the identity and a continuous map to a pro-F-definable subset definably homeomorphic to a definable subset of $w' \times \Gamma^w$, for some finite F-definable sets w and w'.

Moreover,

1. Given finitely many v-continuous F-definable functions $\xi_i : X \to \Gamma$, one can choose h to respect the ξ_i, i.e. $\xi_i(h(t, x)) = \xi_i(x)$ for all τ.
2. Assume given, in addition, a finite algebraic group action on V. Then the homotopy can be chosen to be equivariant.
3. If \tilde{X} is definably compact, h can be taken to be a deformation retraction.
4. Clauses (3) to (6) of Theorem 10.1.1 hold. Also, if V has dimension d at each point $x \in X$, then each point of the image of h is strongly stably dominated of transcendence degree d.

In particular this holds for $X = V$ when V is smooth.

When \tilde{X} is definably compact, the conclusion is stronger than Theorem 10.1.1 in that the interval is the standard interval $[0, \infty]$, and that the image - a skeleton of X - lies in a Cartesian power of Γ, rather than Γ_{∞}.

If \tilde{X} is not definably compact, the conclusion is also weaker in that we do not assert that the final image is fixed by the homotopy.

The finite set w' can be dispensed with if $\Gamma(F) \neq (0)$, or if \tilde{X} is connected, but not otherwise, as can be seen by considering the case when X is finite. Indeed, when $\Gamma(F) = (0)$ the only non-empty finite F-definable subset of Γ^n is $\{0\}$, but one can have arbitrarily large finite F-definable subsets in Γ_{∞}^n for n large enough.

The proof depends on two lemmas. The first recaps the proof of Theorem 10.1.1, but on a Zariski dense open set \tilde{V} only. The second uses smoothness to enable a stronger form of inflation, serving to move into \tilde{V}.

While the theorem requires the functions ξ_i to be v-continuous, this need not be assumed in Lemma 11.1.2 since any definable function is v-continuous on some Zariski dense open set. But then X need not be explicitly mentioned, since one can add the characteristic function of X to the list of ξ_i. The proof of this lemma uses only an iteration of the curves homotopy, without inflation or the Γ-internal homotopy.
Lemma 11.1.2. Let V be a quasi-projective variety defined over F. Then there exists a Zariski open dense subset V_0 of V, and an F-definable deformation retraction $h : I \times \tilde{V}_0 \to \tilde{V}_0$ whose image is a pro-definable subset, definably homeomorphic to an F-definable subset of $w' \times \Gamma^w$, for some finite F-definable sets w' and w.

Moreover:

(1) Given finitely many F-definable functions $\xi_i : V \to \Gamma$, one can choose h to respect the ξ_i, i.e. $\xi_i(h(t, x)) = \xi_i(x)$ for all τ.

(2) Assume given, in addition, a finite algebraic group action on V. Then V_0 and the homotopy retraction can be chosen to be equivariant.

Proof. Find a Zariski open V_1 with $\dim(V \setminus V_1) < \dim(V)$, and a morphism $\pi : V_1 \to U$, whose fibers are curves. Let H_{curves} be the homotopy described in §10.3. It is continuous outside some subvariety U' of U with $\dim(U') < \dim(U)$; replace V_1 by $V_1 = \pi^{-1}(U')$. So H_{curves} is continuous on V_1; the image S_1 is relatively Γ-internal over U. By (a greatly simplified version of) the results of §6, over some étale neighborhood U' of U, S_1 becomes isomorphic to a subset of $U' \times \Gamma^n$.

Claim. On a Zariski dense open subset of V_1, S_1 is isomorphic to a subset of $U' \times \{1, \ldots, N\} \times \Gamma^n$.

Proof of the claim. By removing a proper subvariety, we may assume V_1 is a disjoint union of irreducible components, and work within each component W separately. The part of S_1 mapping to $U' \times \Gamma^n$ is Zariski open in S_1; if it is not empty, by irreducibility of V_1 it must be dense, and so we can move to this dense open set and obtain the lemma with $N = 1$. Otherwise S_1 is isomorphic to a subset of $U' \times \partial \Gamma^n$, where $\partial \Gamma^n = \Gamma^n \setminus \Gamma^n$. In this case we can remove a proper subvariety and decompose the rest into finitely many algebraic pieces, each mapping into one hyperplane at ∞ of Γ^n. □

We may thus assume S_1 is isomorphic to a subset of $U' \times \{1, \ldots, N\} \times \Gamma^n$. Inductively, the lemma holds for U', so there exists a homotopy H_{base} defined outside some proper subvariety U''. Let $V_0 = V_1 \setminus \pi^{-1}(U'')$. As in Theorem 10.1.1, lift to a homotopy H_{base}^{-} defined on $S_1 \cap \tilde{V}_0$. The homotopies can be taken to meet conditions (1) and (2). Composing, we obtain a deformation retraction of V_0 to a subset S, and a homeomorphism $\alpha : S \to Z \subseteq \{1, \ldots, M\} \times \Gamma^m$, defined over $\text{acl}(A)$. We may assume $M > 1$. As in Lemma 6.2.7 we can obtain an A-definable homeomorphism into $(\{1, \ldots, M\} \times \Gamma^n)^w$. □

Lemma 11.1.3. Let V be a subvariety of \mathbb{P}^n, and let $a \in V$ be a smooth point. Then the standard metric on \mathbb{P}^n restricts to a good metric on V on some v-open neighborhood of a.
Proof. For sufficiently large α, the set of points of distance $\geq \alpha$ from a may be represented as the \mathcal{O}-points of a scheme over \mathcal{O} with good reduction, whose special fiber is irreducible, in fact a linear variety.

This can be done as follows. We may assume $V \leq \mathbb{A}^n$, and $a = (0)$. As a is smooth, V is a complete intersection near 0, and we may localize further and assume it is cut out by polynomials f, \ldots, h, whose number l is the codimension of V.

We can write $f = f_1 + f_2$, where f_1 is linear and f_2 consists of higher degree terms; and similarly for g, \ldots, h. The vectors f_1, \ldots, h_1 generate an l-dimensional subspace of the space with basis x_1, \ldots, x_n.

By performing row operations, we may assume f_1, \ldots, h_1 have coefficients in \mathcal{O}, and further that their coefficient vectors generate a lattice of rank l in \mathcal{O}^n. (In fact, permuting the variables if necessary, we can arrange that modulo $x_1 + 1, \ldots, x_n$ we have $f_1 = x_1, \ldots, h_1 = x_l$.)

Of course, the nonlinear coefficients of f, \ldots, h have coefficients in the field K, some having valuation as negative as $-\text{val}(c)$ say, where $c \in \mathcal{O}$. Let $F(x) = c^{-1}f(cx), \ldots, H(x) = c^{-1}h(cx)$. The intersection of V with $c\mathcal{O}^n$ is isomorphic to the intersection of (F, \ldots, H) with \mathcal{O}^n. But it is clear that F, \ldots, H have coefficients in \mathcal{O}, and that they cut out a smooth scheme S_c over \mathcal{O}.

For this c or for any c' with $\text{val}(c') \geq \text{val}(c)$, $S_c(K)$ clearly admits a unique generic type, dominated by the generic type of the linear variety $S_c(k)$, via the residue map. □

Proof of Proposition 11.1.1. Let H_c be a homotopy as in Lemma 11.1.2, defined on V_0. In particular we obtain a continuous map $f(0) : V_0 \to S_0$, where S_0 is the skeleton. Now S_0 admits an continuous, 1-1 map g into Γ^w for some w.

As in the first few lines of the proof of Theorem 10.1.1, we may choose a projective embedding equivariant with respect to the finite group action of (2). For large t, let $H_{inf}(v, t)$ be the generic type of the ball of valuative radius t around v, with respect to the good metric of Lemma 11.1.3. Then this is equivariant for (2). Since X is v-open, $H_{inf}(v, t)$ stays within X, and $\xi_i(v, t)$ do not change for large t. As in the proof of Theorem 10.1.1, find a continuous cut-off, such that at prior times the homotopy remains within X and the ξ_i remain constant along the homotopy; take the maximum of the conjugates of the cut-off time under under the action (2), to make it shorter but invariant. Note that the image of H_{inf} is contained in V_0. Let H be the composition of H_c and H_{inf}.

For clause (3), to ensure that the composition is also a deformation retraction, we compose with an additional homotopy internal to Γ as in Theorem 10.1.1.

6We do not really use the fact that V is a complete intersection, except to simplify notation slightly.
The verification that the image of closed points is strongly stably dominated is as in Theorem 10.1.1; moreover the homotopies of Lemma 11.1.3 are Zariski-generalizing, while the inflation homotopy Lemma 11.1.2 has final image consisting of points of maximal dimension; this proves (4).

□

Remark 11.1.4 (On the number of intervals). The proof of Theorem 10.1.1 uses the induction hypothesis for the base U, lifted to a certain o-minimal cover (using the same generalized interval). The homotopy on U is (in a certain order) lifted and composed with three additional homotopies: inflation, the relative curve homotopy, and the homotopy internal to Γ. Each of these use the standard interval from ∞ to 0 (in reverse order, in the case of the homotopy internal to Γ.) The number $h(n)$ of basic intervals needed for an n-dimensional variety thus satisfies $h(1) = 1$, $h(n + 1) \leq h(n) + 3$, so $h(n) \leq 3n - 2$.

For a homotopy whose interval cannot be contracted to a standard one consider $\bb P^1 \times \bb P^1$. With the natural choice of fibering in curves, the proof of Theorem 10.1.1 will work even without the inflation homotopy. It will lead to an iterated homotopy to a point: first collapse to a point: first collapse to $\{\text{point}\}$, then to $\{\text{point}\} \times \{\text{point}\}$.

Remark 11.1.5. When \widetilde{X} is definably compact, the interval I can in fact be taken to be $[0, \infty]$. We sketch the argument. The proof above yields a composition of homotopies $H_\Gamma \circ H_m \circ \cdots \circ H_1 \circ H_{inf}$, where the H_i for $i = 1, \ldots, m$ are relative curve homotopies using intervals $[0, \infty]$ oriented from ∞ to 0, H_{inf} uses a similar interval $[0, \infty]$, and H_Γ, the homotopy internal to Γ, uses the same interval oriented in the opposite direction, or equivalently $(-\infty, 0]$ oriented from 0 to $-\infty$.

For $k = 0, \ldots, m$, set $H^k = H_k \circ \cdots \circ H_{inf}$, with $H^0 = H_{inf}$, and denote by S_k be the final image of H^k. We wish to show by induction on k that the interval of H^k can be contracted to a standard interval $[0, \infty]$. It suffices to replace H_k by a homotopy whose time interval is a closed interval in Γ, by showing that for some α_k, for all $t > \alpha_k$ and all $x \in S_k$, $H_k(t, x) = x$.

If we write X as a finite union of definably compact subsets X_ν of affine open subsets of V, and show that the statement holds for each X_ν, then it holds for X. In this way we can reduce to an affine situation.

Each $a \in S_k$ is a strongly stably dominated point. It is possible to find morphisms on an étale neighborhood V' of X in V: $f : V' \to W$, $g : W \to U$ such that $f|_{S_k}$ is Γ-internal, $W \subseteq U \times \bb A^1$ and g is the projection, $(g \circ f)_* a = a'$ is a generically stable type on U, $a = \int_{a'} h$ where h is a definable map $U \to \bb A^1$, and H_k is compatible with the standard homotopy on $\bb A^1$, relative to U. The decomposition $f : V' \to W$ and $g : W \to U$ is part of the construction, while the integral decomposition of a over a' follows from the strong stable domination of a (cf. Lemma 6.5.3 (6); one may need to pass to a further finite extension in order to get h to be a definable map rather than just a definable correspondence). Moreover, as a lies in the final image of the inflation homotopy, the Zariski closure has dimension $\dim(V)$, and it follows that one can take $h(u)$ to be the generic
type of a closed ball which is not reduced to a point. Moreover the radius of this ball is a continuous definable function on U. By definable compactness, it is bounded above on S_k, say $\leq \alpha_k$. It follows that $H_k(t, x) = x$ for $t > \alpha_k, x \in S_k$. This allows us to collapse the interval of H^m to a standard interval $[0, \infty]$.

Recall now the homotopy within Γ. The composed curve homotopies $H_m \circ \cdots \circ H_1$ act on a certain affine \bar{V}, with final image $\bar{S} \cong \Omega$; Ω is a definable subset of Γ^∞. The homotopy H_Γ takes Ω to a definably compact set S_Γ. At this point, H_{\inf} is chosen so as to fix S_Γ. The final image of the composition $H_m \circ \cdots \circ H_1 \circ H_{\inf}$ is the definably compact set S_m. Now H_Γ is applied, with time interval $[0, \infty]$. But H_Γ' moves each point of S_m into S_Γ in finite time. Since S_m is definably compact, there is some time t_Γ such that by time t_Γ, each point of S_m is moved by H_Γ into S_Γ (and then frozen). Thus if H_Γ' is the restriction of H_Γ to time interval $[0, t_\Gamma]$, then the composition $H_\Gamma \circ H_m \circ \cdots \circ H_1 \circ H_{\inf}$ also has final image fixed by H_{\inf} and by each H_i and H_Γ. This gives a homotopy whose time interval is the concatenation of $[0, \infty]$ with $[0, t_\Gamma]$; this is again isomorphic to $[0, \infty]$.

We note (for use in the remark below) that the inflation homotopy constructed above satisfies: $H(t, z) = z$ for $z \in Z$ and t earlier than t_0, where $Z = I_{\inf}$ is the image of the homotopy, and t_0 is the stopping time. This amounts to saying that if M is a base, $z = H(t_0, z_0)$, $x \models z | M$, and y realizes the generic type over $M(x)$, of the ball of valuative radius t around x, then $y \models z | M$. Indeed y still falls in the ball of valuative radius $t_0 = \text{val}(c_0)$ around z_0, and has the same image as x under the dominating function $\text{res}(c_0^{-1}y)$.

Remark 11.1.6 (A birational invariant). It follows from the proof of Proposition 11.1.1 that the definable homotopy type of $\overline{V \setminus V_{\text{sing}}}$ (or more generally of $\overline{X \setminus V_{\text{sing}}}$ when X is a v-open definable subset of V) is a birational invariant of V (of the pair (V, X)). This rather curiously complements a theorem of Thuillier [30].

As a referee pointed out, this remark requires only the inflation homotopy. We will spell this out without X, to simplify notation. It suffices to show that if U is a smooth variety and W a Zariski dense open subset, then \widehat{U} and \widehat{W} are pro-definably homotopy equivalent. Indeed let $H = H_{\inf}$ be the inflation homotopy and let $Z = I_{\inf} = H(t_0, \widehat{V})$ be the image of H. Then $h(v) = H(e_f, v)$ is a deformation retraction; we have $H(t, z) = z$ for $z \in Z$ and $t \geq t_0$, as noted above. Hence \widehat{U} and Z are homotopy-equivalent. For the same reason, $h|\widehat{W}$ is a homotopy equivalence $\widehat{W} \to h(\widehat{W})$. But $h(\widehat{W}) = Z$, since $Z \subseteq \widehat{W}$ and $h|Z = \text{Id}_Z$.
12. An equivalence of categories

Summary. In this section we deduce from Theorem 10.1.1 an equivalence of categories between the homotopy category HC_{VF} of definable subsets of quasi-projective varieties over a given valued field and the homotopy category HC_{Γ} of definable subsets of some Γ^w_{∞}.

12.1. An equivalence of categories. Let F be a valued field and let V be an algebraic variety over F. By a semi-algebraic subset of V we mean a subset of the form \hat{X}, where X is a definable subset of V.

Let C_{VF} be the category of semi-algebraic subsets of \hat{V}, V a quasi-projective variety over F; the morphisms are pro-definable continuous maps. We could also say that the objects are definable subsets of V, but the morphisms $U \to U'$ are still pro-definable continuous maps $\hat{U} \to \hat{U}'$.

Let C_{Γ} be the category of definable subsets X of Γ^w_{∞} (for various definable finite sets w), with definable continuous maps. Any such map is piecewise given by an element of $GL_w(\mathbb{Q})$ composed with a translation, and with coordinate projections and inclusions $x \mapsto (x, \infty)$ and $x \mapsto (x, 0)$. Let C^i_{Γ} be the category of separated Γ-internal iso-definable subsets X of V (for various varieties V) with definable continuous maps.

These categories can be viewed as ind-pro definable: more precisely Ob_{C} is an ind-definable set, and for $X, Y \in \text{Ob}_{C}$, $\text{Mor}(X, Y)$ is a pro-ind definable set. But usually we will be interested only in the subcategory consisting of A-definable objects and morphisms. It can be defined in the same way in the first place, only replacing “definable” by “A-definable”.

The three categories admit natural functors to the category TOP of topological spaces with continuous maps.

There is a natural functor $\iota: C_{\Gamma} \to C^i_{\Gamma}$, commuting with the natural functors to TOP; namely, given $X \subseteq \Gamma^w_{\infty}$, let $\iota(X) = \{p_{\gamma} : \gamma \in X\}$, where p_{γ} is as defined above Lemma 3.5.2. By this lemma and Lemma 3.5.3, the map $\gamma \mapsto p_{\gamma}$ induces a homeomorphism $X \to \iota(X)$.

Lemma 12.1.1. The functor ι is an equivalence of categories.

Proof. It is clear that the functor is fully faithful. The essential surjectivity follows from Proposition 6.2.8. □

We now consider the corresponding homotopy categories HC_{VF}, HC_{Γ} and HC^i_{Γ}. These categories have the same objects as the original ones, but the morphisms are factored out by (strong) homotopy equivalence. Namely two morphisms f and g from X to Y are identified if there exists a generalized interval $I = [0, 1]$ and a continuous pro-definable map $h : X \times I \to Y$ with $h_0 = f$ and $h_1 = g$. One may verify that composition preserves equivalence; the image of Id_{X} is the identity morphism in the category.
The equivalence \(\iota \) above induces an equivalence \(HC_G \to HC^i_G \). As a reader pointed out, the same retraction was described by Berkovich in the setting of Berkovich spaces.

Lemma 12.1.2. For a definable \(X \subseteq \Gamma^w \), let \(C(X) = \{ x \in \mathbb{A}^w : \text{val}(x) \in X \} \). Then the inclusion \(\iota(X) \subseteq C(X) \) is a homotopy equivalence.

Proof. For \(t \in [0, \infty) \) one sets \(H_0 = G_m(0), H_\infty = \{ 1 \} \), and for \(t > 0 \), with \(t = \text{val}(a) \), \(H_t \) denotes the subgroup \(1 + a \mathcal{O} \) of \(G_m(0) \). For \(x \) in \(C(X) \) one denotes by \(p(H_t x) \) the unique \(H_t \)-translation invariant stably dominated type on \(H_t x \).

In this way one defines a homotopy \(C(X) \times [0, \infty) \to \overline{C(X)} \) by sending \((x, t)\) to \(p(H_t x) \), whose canonical extension \(\overline{C(X)} \times [0, \infty) \to \overline{C(X)} \) is a deformation retraction with image \(\iota(X) \). \(\square \)

Theorem 12.1.3. The categories \(HC_G \) and \(HC_{VF} \) are equivalent by an equivalence respecting the subcategories of definably compact objects.

To prove Theorem 12.1.3, we introduce a third category \(C_2 \) defined as follows. Objects of \(C_2 \) are pairs \((X, \pi)\), with \(X \) an object of \(C_{VF} \) and \(\pi : X \to X \) a continuous definable retraction with \(\Gamma \)-internal image, which is homotopic to the identity \(\text{Id} : X \to X \) via a homotopy \(h : X \times I \to X \) with \(h_0 = \text{Id}, h_1 = \pi \), and \(\pi \circ h_t = h_t \circ \pi = \pi \) for every \(t \) in \(I \). A morphism \(f : (X, \pi) \to (X', \pi') \) in \(C_2 \) is a continuous definable map \(f : X \to X' \) such that \(f \circ \pi = \pi' \circ f \). We define a homotopy equivalence relation \(\sim \) on \(\text{Mor}_{C_2}((X, \pi), (X', \pi')) \): \(f \sim g \) if there exists a continuous pro-definable \(h : X \times I \to X' \), \(h_0 = f, h_1 = g \), such that \(h_t \circ \pi = \pi' \circ h_t \) for all \(t \). Note that \(f \sim g \circ \pi \) and \(f \sim \pi' \circ f \). In particular, \(f \sim \pi' \circ f \circ \pi \). Again one checks that this is a congruence and that one can define a quotient category, \(HC_2 \).

There is an obvious functor \(C_2 \to C_{VF} \) forgetting \(\pi \), and also a functor \(C_2 \to C^i_2 \), mapping \((X, \pi)\) to \(\pi(X) \). One checks that the natural maps on morphisms are well-defined and that they induce functors \(HC_2 \to HC_{VF} \) and \(HC_2 \to HC^i_2 \). To prove the theorem, it suffices therefore to prove, keeping in mind Lemma 12.1.1, that each of these two functors is essentially surjective and fully faithful, and to observe that they restrict to functors on the definably compact objects, essentially surjective on definably compact objects.

(If the categories are viewed as ind-pro-definable, these functors are morphisms of ind-pro-definable objects, but we do not claim that a direct definable equivalence exists.)

Lemma 12.1.4. The functor \(HC_2 \to HC_{VF} \) is surjective on objects, and fully faithful.

Proof. Surjectivity on objects is given by Theorem 10.1.1. Let \((X, \pi), (X', \pi') \in \text{Ob}HC_2 = \text{Ob}C_2 \). Let \(f : X \to X' \) be a morphism of \(C_{VF} \). Then the composition \(\pi' \circ f \circ \pi \) is homotopy equivalent to \(f \), since \(\pi \sim \text{Id}_X \) and \(\pi' \sim \text{Id}_{X'} \),
and is a morphism of C_2. This proves surjectivity of $\text{Mor}_{HC_2}((X, \pi), (X', \pi')) \to \text{Mor}_{HC_{VF}}(X, X')$. For injectivity, let $f, g : (X\pi) \to (X', \pi')$ with $f \sim g$ in C_{VF}. Thus, $\pi' \circ f \circ \pi$ and $\pi' \circ g \circ \pi$ are homotopic in C_2. Since $f \sim_2 \pi' \circ f \circ \pi$ and $g \sim_2 \pi' \circ g \circ \pi$, it follows that $f \sim_2 g$. □

Lemma 12.1.5. The functor $HC_2 \to HC^i_\Gamma$ is essentially surjective and fully faithful.

Proof. To prove essential surjectivity it suffices to consider objects of the form $\iota(X)$, with $X \in \text{Ob}C_\Gamma$. For these, Lemma 12.1.2 does the job.

Let $(X, \pi), (X', \pi') \in \text{Ob}HC_2 = \text{Ob}C_2$. Let $g : \pi(X) \to \pi'(X')$ be a morphism of C_Γ. Then $g \circ \pi : X \to X'$ is a morphism of C_2. So even $\text{Mor}_{C_2}((X, \pi), (X', \pi')) \to \text{Mor}_{C_{\Gamma}}(X, X')$ is surjective.

To prove injectivity, suppose g_1 and $g_2 : X \to X'$ are C_2-morphisms, and $h : \pi(X) \times I \to \pi'(X')$ is a homotopy between $g_1|\pi(X)$ and $g_2|\pi(X)$. We wish to show that g_1 and g_2 are C_2-homotopic. Now for $i = 1, 2$, g_i and $\pi'g_i\pi$ have the same image in $\text{Mor}(\pi X, \pi'X')$, and there is a homotopy between g_i and $\pi'g_i\pi$, $i = 1, 2$ as remarked before. So we may assume $g_i = \pi'g_i\pi$ for $i = 1, 2$. Define $H : X \times I \to X'$ by $H(x, t) = \pi' h(\pi(x), t)$. This is a C_2-homotopy between g_1 and g_2 showing that g_1 and g_2 have the same class as morphisms in HC_2. □

Remark 12.1.6. Note that in the definition of the category HC^i_Γ one cannot replace Γ_∞ by Γ. Indeed, consider the triangle T in Γ^2_∞ consisting in those (x, y) with $0 \leq x, y \leq \infty$ belonging to one of the lines $y = 0$, $x = y$, and $x = \infty$. There does not exists an homotopy equivalence $g : T \to T'$ with T' a definable subset of some Γ^n (or some Γ^w with finite definable w). Indeed, assume such a g exists and consider a homotopy inverse $f : T' \to T$. Note that $f \circ g$ should be surjective, since any homotopy equivalence $T \to T$ is. In particular, f should be surjective. On the other hand, T' should be definably path connected, hence definably connected. But a continuous surjective definable $f : T' \to T$ with T' a definably connected subset of some Γ^n cannot exist, since $(y \circ f)^{-1}(\infty)$ would be a non trivial clopen.

12.2. Questions on homotopies over imaginary base sets. Is Theorem 10.1.1 true over an arbitrary base? Here is an indication that the answer may be positive, at least over a finite extension.

Assume (V, X) are given as in Theorem 10.1.1, but over a base A including imaginary elements. A homotopy h_c is definable over additional field parameters c, satisfying the conclusion of Theorem 10.1.1 over $A(c)$. By the uniformity results of §10.7, there exists a A-definable set Q such that any parameter $c \in Q$ will do. One can find a definable type q on Q, over a finite extension A' of A (i.e. $A' = A(a'), a' \in \text{acl}(A)$). We know that $q = f_r f$, with r an A-definable type on Γ^a, and f an A-definable r-germ of a function into \tilde{Q}. Define $h(t, v) = \lim_{u \in r} \int_{c = f(u)} h_c(t, v)$. Then $h(t, v)$ is an A'-definable homotopy. It seems that
the final image of h is Γ-parameterized, and has property (5) of Theorem 10.1.1; isotriviality is likely to follow, and separatedness follows since one can take V to be complete.

13. Applications to the topology of Berkovich spaces

Summary. In this final section we deduce from our main results general tameness statements about the topology of Berkovich spaces. In Theorem 13.2.1 we prove the existence of strong retractions to skeleta for analytifications of definable subsets of quasi-projective varieties. Theorem 13.2.3 is about functoriality and birationality statements for these retractions. In Theorem 13.2.4, we show that, in the compact case, these analytifications are homeomorphic to the projective limit of embedded finite simplicial complexes, under a compactness assumption. In Theorem 13.3.1 we prove finiteness of homotopy types in families in a strong sense. Finally, we prove local contractibility in Theorem 13.4.1 and a result on homotopy equivalence of upper level sets of definable functions in Theorem 13.4.3.

13.1. Berkovich spaces. Set $\mathbb{R}_\infty = \mathbb{R} \cup \{\infty\}$. Let F be a valued field with $\text{val}(F) \subseteq \mathbb{R}_\infty$, and let $\mathcal{F} = (F, \mathbb{R})$ be viewed as a substructure of a model of ACVF (in the VF and Γ-sorts). Here $\mathbb{R} = (\mathbb{R}, +)$ is viewed as an ordered abelian group.

Let V be an algebraic variety over F, and let X be an F-definable subset of the variety V; or more generally, of $V \times \Gamma^n_\infty$. We define the Berkovich space $B_\mathcal{F}(X)$ to be the space of types over F, in X, that are almost orthogonal to Γ. Thus for any F-definable function $f : X \to \Gamma_\infty$ and any $a \models p$, we have $f(a) \in \Gamma_\infty(F) = \mathbb{R}_\infty$. So $f(a)$ does not depend on a, and we denote it by $f(p)$.

We endow $B_\mathcal{F}(X)$ with a topology by defining a pre-basic open set to have the form $\{p \in X \cap U : \text{val}(f)(p) \in W\}$, where U is an affine open subset of V, f is regular on U, and W is an open subset of \mathbb{R}_∞. A basic open set is a finite intersection of pre-basic ones. This construction is functorial, thus, if $f : X \to X'$ is an F-definable morphism between F-definable subsets of algebraic varieties over F, one denotes by $B_\mathcal{F}(f) : B_\mathcal{F}(X) \to B_\mathcal{F}(X')$ the induced morphism. When we wish to consider $q \in B_\mathcal{F}(X)$ as a type, rather than a point, we will write it as $q|F$.

When V is an algebraic variety over F, $B_\mathcal{F}(V)$ can be identified with the underlying topological space of the Berkovich analytification V^{an} of V. Recall that the underlying set of V^{an} may be described as the set of pairs (x, u_x) with x a point (in the schematic sense) of V and $u_x : F(x) \to \mathbb{R}_\infty$ a valuation extending val on the residual field $F(x)$, cf. [10]. Such a pair (x, u_x) determines a rational point $c_x \in X(F(x))$ whose type p_x belongs to $B_\mathcal{F}(V)$. This correspondence is clearly bijective and a homeomorphism. When X is an F-definable subset of V, $B_\mathcal{F}(X)$ is a semi-algebraic subset of $B_\mathcal{F}(V)$ in the sense of [9]; conversely any semi-algebraic subset has this form.
An element of $B_F(X)$ has the form $\text{tp}(a/F)$, where $F(a)$ is an extension whose value group remains \mathbb{R}. To see the relation to stably dominated types, note that if there exists an F-definable stably dominated type p with $p|F = \text{tp}(a/F)$, then p is unique; in this case the Berkovich point can be directly identified with this element of \tilde{X}. If there exists a stably dominated type p defined over a finite Galois extension F' of F, $F' = (F', \mathbb{R})$, with $p|F = \text{tp}(a/F)$, then the Galois orbit of p is unique; in this case the relation between Berkovich points and points of \tilde{X} is similar to the relation between closed points of Spec(V) and points of $V(F_{\text{alg}})$. In general the Berkovich point of view relates to ours in rather the same way that Grothendieck’s schematic points relates to Weil’s points of the universal domain. We proceed to make this more explicit.

Let K be a maximally complete algebraically closed field, containing F, with value group \mathbb{R}, and residue field equal to the algebraic closure of the residue field of F. Such a K is unique up to isomorphism over F by Kaplansky’s theorem, and it will be convenient to pick a copy of this field K and denote it F^{max}.

We have a restriction map from types over F^{max} to types over F. On the other hand we have an injective restriction map from stably dominated types defined over F^{max}, to types defined over F^{max}. Composing these maps, we obtain a map from the set of stably dominated types in X defined over F^{max} to the set of types over F on X whose image is contained in $B_F(X)$. Indeed, if q lies in the image of this map, then $q = \text{tp}(c/F)$ for some c with $\text{tp}(c/F^{\text{max}})$ orthogonal to Γ, and it follows that $\Gamma(F(c)) \subseteq \Gamma(F^{\text{max}}(c)) = \Gamma(F^{\text{max}}) = \Gamma(F)$. This defines a continuous map

$$\pi_X : \tilde{X}(F^{\text{max}}) \to B_F(X).$$

We shall sometimes omit the subscript when there is no ambiguity.

Lemma 13.1.1. Let X be an F-definable subset of an algebraic variety over F. The mapping $\pi : \tilde{X}(F^{\text{max}}) \to B_F(X)$ is surjective. In case $F = F^{\text{max}}$, π is a homeomorphism.

Proof. Suppose $q = \text{tp}(c/F)$ is almost orthogonal to Γ. Let $L = F(c)^{\text{max}}$. Then $\Gamma(F) = \Gamma(F(c)) = \Gamma(L)$. The field F^{max} embeds into L over F; taking it so embedded, let $p = \text{tp}(c/F^{\text{max}})$. Then p is almost orthogonal to Γ, and $q = p|F$. Since F^{max} is maximally complete, p is orthogonal to Γ, cf. Theorem 2.8.2.

In case $F = F^{\text{max}}$, π is also injective since $p|F$ determines p, for a stably dominated type based on F. Thus π is a continuous bijection; since in this case the definitions of the topologies coincide on both sides, it is a homeomorphism. □

Recall § 3.3, and the remarks on definable topologies there.

Proposition 13.1.2. Let X be an F-definable subset of an algebraic variety V over F. Let $\pi : \tilde{V}(F^{\text{max}}) \to B_F(V)$ be the natural map. Then $\pi^{-1}(B_F(X)) = \tilde{X}(F^{\text{max}})$, and $\pi : \tilde{X}(F^{\text{max}}) \to B_F(X)$ is a closed map. Moreover, the following conditions are equivalent:
The natural map $B_F(X) \to B_F(X)$ is also closed, if $F \leq F'$ and $\Gamma(F') \leq \mathbb{R}$. In particular, $B_F(X)$ is closed in $B_{F'}(V')$ if $B_F(X)$ is closed in $B_{F'}(V)$.

Proof. The equality $\pi^{-1}(B_F(X)) = \widehat{X}(F^{max})$ is clear from the definitions. Let us consider the five conditions.

The equivalence of (1) and (2) is already known by Proposition 4.2.18.

Assume (2). We wish to prove (3) over F^{max}. As X is bounded, there exists a finite affine cover $V = \bigcup V_i$, closed immersions $g_i : V_i \to \mathbb{A}^n$, and balls $B_i = \{x \in \mathbb{A}^n : v(x_j) \geq b_i\}$, such that $X \subseteq \bigcup_i g_i^{-1}(B_i)$. It suffices to prove (3) for $X \cap g_i^{-1}(B_i)$. Thus we may assume $X \subseteq B = \{x \in \mathbb{A}^n : v(x_i) \geq b\}$.

By Lemma 13.1.1, the natural map $\widehat{B}(F^{max}) \to B_{F^{max}}(B)$ is a homeomorphism. Let us first prove that this space is compact. Consider the polynomial ring $A = F^{max}[X_1, \ldots, X_n]$. Each element $p \in B_{F^{max}}(B)$ determines a map $v_p : A \to \mathbb{R}_\infty$. This provides an embedding $\Phi : B_{F^{max}}(B) \to \text{Fn}(A, \mathbb{R}_\infty)$, with $\text{Fn}(A, \mathbb{R}_\infty)$ the space of functions from A to \mathbb{R}_∞. If one endows $\text{Fn}(A, \mathbb{R}_\infty)$ with the Tychonoff topology, Φ induces a homeomorphism between $B_{F^{max}}(B)$ and its image $\Phi(B_{F^{max}}(B))$. For f in A, denote by d_f the degree of f, by a_f the smallest valuation of a coefficient of f, and set $b_f = bd_f + a_f$. Since $v_p(f) \geq b_f$ for any $p \in B_{F^{max}}(B)$, $\Phi(B_{F^{max}}(B))$ is contained in $\prod_{f \in A}[b_f, \infty]$, which is compact by Tychonoff’s theorem. On the other hand, $\Phi(B_{F^{max}}(B))$ is clearly closed, being the set of functions $u : A \to \mathbb{R}_\infty$ such that $u(fg) = u(f) + u(g)$, $u(f + g) \geq \min(u(f), u(g))$, u restricts to val on F^{max}, and $u(X_i) \geq b$ for every i. It follows that $B_{F^{max}}(B)$ is compact. The definable set X, being $v+g$-closed in B, is defined by a conjunction of algebraic equalities $f_i = 0$ and weak inequalities $\text{val}(g_i) \leq \text{val}(h_i)$. Thus $\Phi(B_{F^{max}}(X))$ is the subset of $\Phi(B_{F^{max}}(B))$ defined by the conditions $u(f_i) = \infty$ and $u(g_i) \leq u(h_i)$, hence is closed. It follows that $\widehat{X}(F^{max}) = B_{F^{max}}(X)$ is compact. This gives (3).

Assume (3). Then π is a closed map, and it is surjective, so $B_F(X)$ is compact, which proves (4). If V' is any complete F-variety containing V, the inclusion $B_F(X) \to B_F(V')$ is continuous, and $B_F(V')$ is Hausdorff, so (4) implies (5).

On the other hand if (1) fails, let V' be some complete variety containing V. There exists a F^{max}-definable type on \widehat{X} with limit point q in $\widehat{V'} \setminus \widehat{X}$. So $\pi(q)$ is in $B_F(V')$ and in the closure of $B_F(X)$, but not in $B_F(X)$. This proves the equivalence of (1-5).
Now the restriction of a closed map π to a set of the form $\pi^{-1}(W)$ is always closed, as a map onto W. So to prove the closedness property of π, we may take $X = V$, and moreover by embedding V in a complete variety we may assume V is complete. In this case $X = V$ is $v+g$-closed and bounded, so $\hat{X}(F^{\text{max}})$ is compact by condition (3). As $B_F(X)$ is Hausdorff, π is closed. The proof that $B_F(X) \to B_F(X)$ is also closed is identical, and taking $X = V$ we obtain the statement on the base invariance of the closedness of X. We could alternatively use the proof of Lemma 3.5.4.

Proposition 13.1.3. Assume X and W are F-definable subsets of some algebraic variety over F.

1. Let $h_0 : X \to \hat{W}$ be an F-definable function. Then h_0 induces functorially a function $\bar{h} : B_F(X) \to B_F(W)$ such that $\pi_W \circ h_0 = \bar{h} \circ \pi_X \circ i$, with $i : X \to \hat{X}$ the canonical inclusion.

2. Any continuous F-definable function $h : \hat{X} \to \hat{W}$ induces a continuous function $\bar{h} : B_F(X) \to B_F(W)$ such that $\pi_W \circ h = \bar{h} \circ \pi_X$.

3. The same applies if either X or W is a definable subset of Γ^n_{∞} and we read $B_F(X) = X(F)$, respectively $B_F(W) = W(F)$.

Proof. Define $\bar{h} : B_F(X) \to B_F(W)$ as in Lemma 3.8.1 (or in the canonical extension just above it). Namely, let $p \in B_F(X)$. We view p as a type over F, almost orthogonal to Γ. Say $p|F = \text{tp}(c/F)$. Let $d \models h_0(c)|F(c)$. Since $h_0(c)$ is stably dominated, $\text{tp}(d/F(c))$ is almost orthogonal to Γ, hence so is $\text{tp}(cd/F)$, and thus also $\text{tp}(d/F)$. Let $\bar{h}(c) = \text{tp}(d/F) \in B_F(W)$. Then $\bar{h}(c)$ depends only on $\text{tp}(c/M)$, so we can let $\bar{h}(p) = \bar{h}(c)$.

For the second part, let $h_0 = h|X$ be the restriction of h to the simple points. By Lemma 3.8.2, h is the unique continuous extension of h_0. Define \bar{h} as in (1). Let $\pi_X : \hat{X}(F^{\text{max}}) \to B_F(X)$ and $\pi_W : \hat{W}(F^{\text{max}}) \to B_W(X)$ be the restriction maps as above. It is clear from the definition that $\bar{h}(\pi_X(p)) = \pi_W(h(p))$. (In case F^{max} is nontrivially valued, this is also clear from the density of simple points, since $\bar{h} \circ \pi_X$ and $\pi_W \circ \bar{h}$ agree on the simple points of $\hat{X}(F^{\text{max}})$.)

It remains to prove continuity. By the discussion above, π_X is a surjective and closed map. Let Z be a closed subset of $B_F(X)$. By continuity of $\pi_W \circ h$, $\pi_X^{-1}(\bar{h}^{-1}(Z)) = h^{-1}(\pi_W^{-1}(Z))$ is closed, hence $\pi_X(\pi_X^{-1}(\bar{h}^{-1}(Z))) = \bar{h}^{-1}(Z)$ is closed.

(3) The proof goes through in both cases.

If $f : X \to Y$ is an F-definable map and b is a point in Y, we denote by X_b the fiber $f^{-1}(b)$ over b. Similarly, if q is a point of $B_F(Y)$, $B_F(X)_q$ denotes the fiber over q of the induced mapping $B_F(X) \to B_F(Y)$.

Lemma 13.1.4. Let X be an F-definable subset of $V \times \Gamma^n_{\infty}$ with V a variety over F.

(1) Let \(f : X \to Y \) be an \(\mathbf{F} \)-definable map, with \(Y \) an \(\mathbf{F} \)-definable subset of some variety over \(\mathbb{F} \). Let \(q \in B_\mathbf{F}(Y) \), and assume \(U \) is an \(\mathbf{F} \)-definable subset of \(X \), and \(\tilde{U}_b \) is closed in \(\tilde{X}_b \) for any \(b \models q \vert \mathbf{F} \). Then \(B_\mathbf{F}(U)_q \) is closed in \(B_\mathbf{F}(X)_q \).

(2) Similarly if \(g : X \to \mathbb{R}_\infty \) is an \(\mathbf{F} \)-definable function, and \(\tilde{g} \vert \tilde{X}_b \) is continuous for any \(b \models q \vert \mathbf{F} \), then \(B_\mathbf{F}(g) \) induces a continuous map on \(B_\mathbf{F}(X)_q \to \mathbb{R}_\infty \).

(3) More generally, if \(g : X \to V' \) is an \(\mathbf{F} \)-definable map into some variety \(V' \), and \(\tilde{g} \vert \tilde{X}_b \) is \(v+g \)-continuous for any \(b \models q \vert \mathbf{F} \), then \(B_\mathbf{F}(g) \) induces a continuous map \(B_\mathbf{F}(X)_q : B_\mathbf{F}(X)_q \to B_\mathbf{F}(Z) \).

Proof. Indeed if \(r \in B_\mathbf{F}(X)_q \setminus B_\mathbf{F}(U)_q \), let \(c \models r \vert \mathbf{F} \), \(b = f(c) \). We have \(c \in X_b \setminus U_b \), so there exists a definable function \(\alpha_b : X_b \to \Gamma_\infty \) and an open neighborhood \(E_c \) of \(\alpha_b(c) \) such that \(\alpha_b^{-1}(E_b) \subset X_b \setminus U_b \). By Lemma 3.5.4, \(\alpha_b \) can be taken to be \(\mathbf{F} \)-definable, and in fact to be a continuous function of the valuations of some \(F \)-definable regular functions, and elements of \(\Gamma(\mathbf{F}) \). There exists a \(\mathbf{F} \)-definable function \(\alpha \) on \(X \) with \(\alpha_b = \alpha \vert X_b \). Now \(\alpha \) separates \(r \) from \(B_\mathbf{F}(U)_q \) on \(B_\mathbf{F}(X)_q \), showing that \(U \) is closed in \(B_\mathbf{F}(X)_q \).

The statement on continuity (2) follows immediately: if \(Z \) is a closed subset of \(\Gamma_\infty \), then \(g^{-1}(Z) \cap \tilde{X}_b \) is closed in each \(\tilde{X}_b \), hence \(g^{-1}(Z) \cap B_\mathbf{F}(U)_q \) is closed.

The more general statement (3) follows since to show that a map into \(B_\mathbf{F}(Z) \) is continuous, it suffices to show that the composition with \(B_\mathbf{F}(s) \) is continuous for any definable, continuous \(s : Z' \to \Gamma_\infty \), \(Z' \) Zariski open in \(Z \).

The following lemma will be applied when \(W \) is also over \(Y \) and \(h : X \to \overline{W/Y} \); but a referee pointed out that the more general statement is also valid, and simpler.

Lemma 13.1.5. Let \(X \), \(Y \) and \(W \) be \(\mathbf{F} \)-definable subsets of some algebraic variety over \(\mathbb{F} \). Let \(f : X \to Y \) be a \(v+g \)-continuous, \(\mathbf{F} \)-definable map, and \(h : X \to \hat{W} \) an \(\mathbf{F} \)-definable map inducing \(H : \tilde{X}/Y \to \hat{W} \). Assume \(H \vert \tilde{X}_b \) is continuous for every \(b \in Y \). Then for any \(q \in B_\mathbf{F}(Y) \), \(h \) induces a continuous function \(\tilde{h}_q : B_\mathbf{F}(X)_q \to B_\mathbf{F}(W) \).

Proof. The topology on \(B_\mathbf{F}(W) \) is the coarsest one such that \(B_\mathbf{F}(g) \) is continuous for any \(v+g \)-continuous definable \(g : W \to \Gamma_\infty \). Composing with \(B_\mathbf{F}(g) \), we see that we may assume \(W = \Gamma_\infty \). We have \(h : X \to \Gamma_\infty \), inducing \(H : \tilde{X}/Y \to \Gamma_\infty \), and we assume \(H \vert \tilde{X}_b \) is continuous for \(b \in Y \). We have to show that a continuous \(\tilde{h}_q : B_\mathbf{F}(X)_q \to \Gamma_\infty \) is induced.

In case the map \(\tilde{X} \to \Gamma_\infty \) induced from \(h \) is continuous, by Lemma 13.1.3 \(\tilde{h} \) is continuous, and hence the restriction to each fiber \(B_\mathbf{F}(X)_q \) is continuous.

In general, let \(X' \) be the graph of \(h \), viewed as an iso-definable subspace of \(X \times \Gamma_\infty \). The projection \(X' \to \Gamma_\infty \) is continuous, so a natural, continuous function
\[B_F(X')_q \rightarrow \mathbb{R}_\infty \] is induced, by the above special case. It remains to prove that the projection map \(B_F(X')_q \rightarrow B_F(X)_q \) is a homeomorphism (with inverse induced by \(x \mapsto (x, f(x)) \)). When \(q = b \in Y \) is a simple point, this follows from the continuity of \(H|X_b \). Hence by Lemma 13.1.4, it is true in general.

In the Berkovich category, as in §3.9 and throughout the paper, by deformation retraction we mean a strong deformation retraction. We continue to write \(\hat{\nu}(F^{\text{max}}) \rightarrow B_F(V) \) for the natural map, defined above Lemma 13.1.1.

Corollary 13.1.6. (1) Let \(X \) be an \(F \)-definable subset of some algebraic variety over \(F \). Let \(h : I \times \hat{X} \rightarrow \hat{X} \) be an \(F \)-definable deformation retraction, with image \(h(e_1, \hat{X}) = Z \). Let \(I = I(\mathbb{R}_\infty) \) and \(Z = \pi(Z(F^{\text{max}})) \). Then \(h \) induces a deformation retraction \(\tilde{h} : I \times B_F(X) \rightarrow B_F(X) \) with image \(Z \).

(2) Let \(X \rightarrow Y \) be an \(F \)-definable morphism between \(F \)-definable subsets of some algebraic variety over \(F \). Let \(h : I \times \hat{X}/Y \rightarrow \hat{X}/Y \) be an \(F \)-definable deformation retraction satisfying (\(*\)), with fibers \(h_y \) having image \(Z_y \). Let \(q \in B_F(Y) \). Then \(h \) induces a deformation retraction \(\tilde{h}_q : I \times B_F(X)_q \rightarrow B_F(X)_q \) with image \(Z_q \).

(3) Assume in addition there exists a definable \(Y \subseteq \Gamma^w_\infty \) and definable homeomorphisms \(\alpha_y : Z_q \rightarrow Y \), given uniformly in \(y \). Then \(Z_q \cong Y \). More generally if \(Y \subseteq \Gamma^w_\infty \) with \(w \) a finite, Galois invariant subset of a finite field extension \(F' \) of \(F \), \(\alpha_y : Z_y \rightarrow Y \), then \(Z_q \cong Y/G \), where \(G = \text{Gal}(F'/F) \) acting naturally on \(w \).

Proof. (1) follows from Lemma 13.1.3; the statement on the image is easy to verify. (2) follows similarly from Lemma 13.1.5. For (3), define \(\beta : X \rightarrow Y \) by \(\beta(x) = \alpha_y(h(e_1, x)) \) for \(x \in X_y, e_1 \) being the final point of \(I \). Then \(\alpha^-1_y \circ \beta(x) = h(e_1, x), \beta(h(t, x)) = \beta(x), \beta(\alpha^-1_y(x)) = x \). Applying \(B_F \) and restricting to the fiber over \(q \) we obtain continuous maps \(\beta, \alpha^-1_y \) by Lemma 13.1.4; the identities survive, and give the result.

13.2. **Retractions to skeleta.** Let \(V \) be an algebraic variety over a valued field \(F \) with \(\text{val}(F) \subseteq \mathbb{R}_\infty \) and let \(S \) be an \(F \)-definable \(\Gamma \)-internal subset of \(\hat{V} \). According to Proposition 6.2.8, there exists an \(F \)-definable embedding \(S \rightarrow \Gamma^w_\infty \), where \(w \) is a finite set. Let \(F' \) be a finite Galois extension of \(F \), such that \(\text{Aut}(F'/F') \) fixes each point of \(w \). We shall say \(S \) splits over \(F' \). Then there exists an \(F' \)-definable embedding \(S \rightarrow \Gamma^w_\infty, n = |w| \). It follows that \(S(F''') = S(F') \) whenever \(F'' \geq F' \) is a valued field extension with \(\Gamma(F''') \subseteq \mathbb{R} \). The image \(S_F \) of \(S \) in \(B_F(X) \) is thus homeomorphic to \(S(F')/\text{Gal}(F'/F) \). The image \(S_{F''} \) of \(S \) in \(B_{F''}(X) \) is homeomorphic to \(S(F') \). Note that the canonical map \(\hat{\nu}(F^{\text{max}}) \rightarrow B_F(V) \) restricts to an injective map on \(S \), since \(S(F^{\text{max}}) \subseteq S(F') \).
For our purposes, a \(\mathbb{Q}\)-tropical structure on a topological space \(X\) is a homeomorphism of \(X\) with a subspace \(S\) of \([0, \infty]^n\) defined as a finite Boolean combination of equalities or inequalities between terms \(\sum \alpha_i x_i + c\) with \(\alpha_i \in \mathbb{Q}, \alpha_i \geq 0, c \in \mathbb{R}\). Since \(S\) is definable in \((\mathbb{R}, +, \cdot)\), \(X\) is homeomorphic to a finite simplicial complex.

From Theorem 10.1.1 and Corollary 13.1.6 we obtain:

Theorem 13.2.1. Let \(X\) be an \(F\)-definable subset of a quasi-projective algebraic variety \(V\) over a valued field \(F\) with \(\text{val}(F) \subseteq \mathbb{R}_\infty\). There exists a (strong) deformation retraction \(H : I \times B_F(X) \to B_F(X)\), whose image \(Z\) is of the form \(S_F\) with \(S\) an \(F\)-definable \(\Gamma\)-internal subset of \(\tilde{V}\). Thus, \(Z\) has a \(\mathbb{Q}\)-tropical structure, in particular it is homeomorphic to a finite simplicial complex. Furthermore one may assume each point of \(Z\) is strongly stably dominated over \(F\) and in case \(X\) is defined over \(F\), it determines an Abhyankar extension of the valued field \(F\).

Proof. Only the last sentence requires explanation and proof. The claim is that each \(q \in \mathbb{Z}\), as a type over \(F\), extends to a unique stably dominated type \(p\) and that this type is strongly stably dominated. The restriction of \(q\) to \(F\) is Abhyankar.

Indeed let \(S\) be the final image provided by Theorem 10.1.1 assuming (5) holds. Thus \(S\) consists of strongly stably dominated types and we have a definable bijection \(h : W \to S\), where \(W\) is a subset of \(\Gamma^\infty_{\mathbb{R}}\). So for \(a \in W(F) = W(\mathbb{R})\), \(p = h(a)\) is strongly stably dominated over \(F\), and extends the restriction to \(F\), which is the image in \(Z\) of \(h(a)\). For the last point, \(p\) is defined over \(F \cup A\) where \(A\) is a finitely generated \(\mathbb{Q}\)-subspace of \(\mathbb{R}\). Let \(F'\) be an Abhyankar extension of \(F\), with value group equal to \(\text{val}(F) + A\). Then \(F'(p)\) is Abhyankar over \(F'\), and hence over \(F\). \(\square\)

Example 13.2.2. Let us revisit the elliptic curve example of Example 7.6.2 in the Berkovich setting. Assume for instance \(F = \mathbb{Q}_3\) and set \(\lambda = 3\). So \(C_3\) is the projective model of the curve \(y^2 = x(x - 1)(x - 3)\). We have seen in Example 7.6.2 that its skeleton \(K'\) in \(\widehat{C_3}\) is a combinatorial circle. This circle admits a \(\mathbb{Q}_3\)-definable embedding in \(\Gamma^{\{i, \overline{i}\}}\), it splits over \(\mathbb{Q}_3(i)\) and conjugation acts on it by exchanging the points in the fibers of \(K' \to K\). Thus \(B_{\mathbb{Q}_3(i)}(C_3)\) has the homotopy type of a circle, while \(B_{\mathbb{Q}_3(i)}(C_3)\) retracts to a segment, thus is contractible.

We now state some functorial properties of the deformation retraction above. Like Theorem 13.2.1, these were proved by Berkovich assuming the base field \(F\) is nontrivially valued, and that \(U\) and \(V\) can be embedded in proper varieties which admit a pluri-stable model over the ring of integers of \(F\). We thank Vladimir Berkovich for suggesting these statements to us.

Whenever we write \(B_F(V)\), we assume the valuation on \(F\) is real valued, allowing the case that the valuation is trivial. If \(F'\) is an extension of \(F\), we write \(B_{F'}(U)\) for \(B_{F'}(U \otimes F')\).
Theorem 13.2.3. Let U and V be quasi-projective algebraic varieties over a valued field F with value group contained in \mathbb{R}. Let X and Y be F-definable subsets of U and V, respectively.

1. There exists a finite separable extension F' of F such that, for any non-Archimedean field F'' over F', the canonical map $B_{F''}(X) \to B_{F'}(X)$ is a homotopy equivalence. In fact, there exists a deformation retraction of $B_{F'}(X)$ to Z' as in Theorem 13.2.1 that lifts to a deformation retraction of $B_{F''}(X)$ to Z'', for which the canonical map $Z'' \to Z'$ is a homeomorphism.

2. There exists a finite separable extension F' of F such that, for any non-Archimedean field extension F'' of F', the canonical map $B_{F''}(X \times Y) \to B_{F'}(X) \times B_{F'}(Y)$ is a homotopy equivalence.

3. Let U be smooth and U' be a dense open subset of U. Then the canonical embedding $B_{F'}(U') \to B_{F'}(U)$ is a homotopy equivalence.

Proof. Let us prove (1). The homotopy of Theorem 10.1.1 is F-definable, and so functorial on F''-points for any $F'' \geq F$. Denote by S its final image. Choose a finite Galois extension F' of F that splits S. For any $F \leq F' \leq F''$, the homotopy of $B_{F''}(X)$ is compatible with the homotopy of $B_{F'}(X)$ via the natural map $B_{F''}(X) \to B_{F'}(X)$ (restriction of types). The final image of the homotopies is respectively $S_{F''}$ and $S_{F'}$; we noted that these are homeomorphic images of S as soon as F' splits S and hence homeomorphic via the natural map.

(2) follows similarly from Corollary 8.8.5 (which was devised precisely with the present motivation) and its proof. Indeed, as in the proof of Corollary 8.8.5, let us consider definable deformations retractions for X and Y with final images S and T. Recall the homotopy equivalence $\hat{X} \times \hat{Y} \to \hat{X} \times \hat{Y}$ in Corollary 8.8.5 was part of a commutative diagram

$$
\begin{array}{ccc}
\hat{X} \times \hat{Y} & \longrightarrow & S \otimes T \\
\downarrow \pi_X \times \pi_Y & & \downarrow \pi_S \times \pi_T \\
\hat{X} \times \hat{Y} & \longrightarrow & S \times T
\end{array}
$$

whose horizontal morphisms are definable retractions and that $\pi_S \times \pi_T$ was proven to be a homeomorphism. Choose a finite Galois extension F' which splits both S and T (in fact it would be enough to require F' to splits one of S and T). It is then clear that for any $F'' \geq F'$, the homotopy equivalence $\hat{X} \times \hat{Y} \to \hat{X} \times \hat{Y}$ induces a homotopy equivalence $B_{F''}(X \times Y) \to B_{F'}(X) \times B_{F'}(Y)$.

(3) follows directly from Remark 11.1.6. \qed

The following result was previously known when X is a smooth projective curve [2].

Theorem 13.2.4. Let X be an F-definable subset of a quasi-projective algebraic variety V over a valued field F with $\text{val}(F) \subset \mathbb{R}_\infty$ and assume $B_{F'}(X)$ is compact.
Then there exists a family \((X_i)_{i \in I}\) of finite simplicial complexes of dimension \(\leq \dim V\), embedded in \(B_F(X)\), where \(I\) is a directed partially ordered set, such that \(X_i\) is a subcomplex of \(X_j\) for \(i < j\), with deformation retractions \(\pi_{i,j} : X_j \to X_i\) for \(i < j\), and deformation retractions \(\pi_i : B_F(X) \to X_i\) for \(i \in I\), satisfying \(\pi_{i,j} \circ \pi_j = \pi_i\) for \(i < j\), such that the canonical map from \(B_F(X)\) to the projective limit of the spaces \(X_i\) is a homeomorphism.

Proof. Let the index set \(I\) consist of all \(F\)-definable continuous maps \(j : \hat{X} \to \hat{X}\), such that there exists a \(F\)-definable deformation retraction \(H_j : I \times \hat{V} \to \hat{V}\) as in Theorem 10.1.1, restricting to a deformation retraction \(H_j^X : I \times \hat{X} \to \hat{X}\) such that \(j(x) = H_j^X(e_1, x)\). Here we insist that \(H_j\) satisfies item (7) of Theorem 10.1.1.

Let us denote by \(T_j\) the final image of \(H_j\) and by \(S_j\) that of \(H_j^X\). Thus \(S_j = j(\hat{X}) = \hat{X} \cap T_j\). Let \(X_j\) denote the image of \(S_j(F^{\text{max}})\) in \(B_F(X)\). Thus \(X_j\) is homeomorphic to \(S_j(\text{acl}(F))/\Gamma\text{Gal}(F^{\text{alg}}/F)\). Say that \(j_1 \leq j_2\) if \(S_{j_1} \subseteq S_{j_2}\). In this case, \(j_1|S_{j_2} : S_{j_2} \to S_{j_1}\) is a deformation retraction through the homotopy \(j_2 \circ H_{j_1}(t, \cdot)\).

Let \(\pi_{i,j_3}\) be the induced map \(X_{j_3} \to X_j\). It is a deformation retraction. Let us prove the system is directed, i.e. given \(j_1\) and \(j_2\) there exists \(j_3\) with \(j_1, j_2 \leq j_3\).

To see this, for \(j = j_1, j_2\), let \(\alpha_j : T_j \to \Gamma_{j_1}^{j_2}\) be a definable injective map, and let \(j_3\) belong to a homotopy \(H_{j_3}\) respecting the functions \(x \mapsto \alpha_j(H_{j_1}(e_1, x)), x \mapsto \alpha_j(H_{j_2}(e_1, x))\) and preserving the irreducible components of \(V\). Then by Proposition 6.6.1, since \(H_{j_3}\) satisfies (7) of Theorem 10.1.1, \(H_{j_3}\) fixes \(T_j\) and \(T_{j_2}\) pointwise, thus \(H_{j_3}^X\) fixes \(S_{j_1}\) and \(S_{j_2}\) pointwise and the image of \(j_3\) includes them both.

We have a natural surjective map \(\pi_j : B_F(X) \to X_j\) for each \(j\), induced by the mapping \(j\); it satisfies \(\pi_{i,j} \circ \pi_j = \pi_i\) for \(i < j\) and it is a deformation retraction.

This yields a continuous map from \(\theta : B_F(X) \to \varprojlim X_j\). The image is dense since each \(\pi_j\) is surjective; as \(B_F(X)\) is compact the image is closed, so \(\theta\) is surjective. We now show that \(\theta\) is injective. Let \(p \neq q \in B_F(X)\); view them as types almost orthogonal to \(\Gamma\). For any open affine \(U\) and regular \(f\) on \(U\), for some \(\alpha,\) either \(x \notin U\) is in \(p\) or \(\text{val}(f) = \alpha\) is in \(p\); this is because \(p\) is almost orthogonal to \(\Gamma\). Thus as \(p \neq q\), for some open affine \(U\) and some regular \(f\) on \(U\), either \(p \in U\) and \(q \notin U\), or vice versa, or \(p, q \in U\) and for some regular \(f\) on \(U\), \(f(x) = \alpha \in p, f(x) = \beta \in q\), with \(\alpha \neq \beta\). Let \(H\) be as in Theorem 10.1.1 respecting \(U\) and \(\text{val}(f)\), and let \(j\) be a corresponding retract. Then clearly \(\pi_j(p) \neq \pi_j(q)\). Thus, \(\theta\) is a continuous bijection and by compactness it is a homeomorphism.

Remark 13.2.5. Let \(\Sigma\) be (image of) the direct limit of the \(X_i\)'s in \(B_F(X)\). Note that \(\Sigma\) contains all rigid points of \(B_F(X)\) (that is, images of simple points under the mapping \(\pi\) in Lemma 13.1.1): this follows from Theorem 10.1.1, by finding a homotopy to a skeleton \(S_x\) fixing a given simple point \(x\) of \(\hat{X}\). We are not certain whether \(\Sigma\) can be taken to be the whole of \(B_F(X)\). But given a stably dominated
type p on X, letting $S_p = S_x$ for $x \models p$ and averaging the homotopies with image S_x over $x \models p$, we obtain a definable homotopy whose final image is a continuous, definable image of S_p. In this way we can express $B_F(X)$ as a direct limit of a system of finite simplicial complexes, with continuous transition maps.

13.3. Finitely many homotopy types. We will now prove that a uniform family of Berkovich spaces runs through only finitely many homotopy types.

In the definable setting, for \(\breve{\Gamma} \)-spaces, the situation is different. Consider a family of triangles in \(\Gamma^2 \); they may be the skeleta of elliptic curves, and so homotopy equivalent to them. Two triangles are definably homotopy equivalent iff they are definable homeomorphic. But there are many definable homeomorphism types of triangles, or even of segments; indeed \([0, \alpha]\) and \([0, \beta]\) are homeomorphic iff \(\beta\) is a rational multiple of \(\alpha\).

On the other hand, if we expand \(\Gamma\) to be a model of the theory RCF of real closed fields, then it is known that only finitely many homeomorphism types appear in a given definable family. Using the uniform version of Theorem 10.1.1, this extends to uniformly definable families of \(\breve{\Gamma}\)-spaces.

We will consider Berkovich spaces instead; the above considerations explain the appearance towards the end of the proof of an expansion to RCF.

Part (1) of the following theorem is a special case of part (2); we single it out as we will prove it first.

Theorem 13.3.1. Let X and Y be F-definable subsets of algebraic varieties defined over a valued field F. Let $f : X \to Y$ be an F-definable morphism that may be factored through a definable injection of X in $Y \times \mathbb{P}^m$ for some m followed by projection to Y.

1. For $b \in Y$, let $X_b = f^{-1}(b)$. Then there are finitely many possibilities for the homotopy type of $B_F(X_b)$, as b runs through Y. More generally, let $U \subset X$ be F-definable. Then as b runs through Y there are finitely many possibilities for the homotopy type of the pair $(B_F(X_b), B_F(X_b \cap U))$. Similarly for other data, such as definable functions into $\breve{\Gamma}$.

2. For any valued field extension $F \leq F'$ with $\Gamma(F') \leq \mathbb{R}$ and $q \in B_{F'}(Y)$, let $B_{F'}(X)_q$ denote the fiber over q of the canonical map $B_{F'}(X) \to B_{F'}(Y)$. Then there are only finitely many possibilities for the homotopy type of $B_{F'}(X)_q$ as q runs over $B_{F'}(Y)$ and F' over extensions of F. More generally, let $U \subset X$ be F-definable. Then as q runs over $B_{F'}(Y)$ and F' over extensions of F there are finitely many possibilities for the homotopy type of the pair $(B_{F'}(X)_q, B_{F'}(X)_q \cap B_{F'}(U))$. Similarly for other data, such as definable functions into Γ.

Proof. In the more general statement, we may take X to be a complete variety. We thus assume X is complete.
According to the uniform version of Theorem 10.1.1, Proposition 10.7.1, there exists an \(\mathbf{F} \)-definable map \(W \to Y \) with finite fibers \(W(b) \) over \(b \in Y \), and uniformly in \(b \in Y \) an \(\mathbf{F}(b) \)-definable homotopy retraction \(h_b \) on \(X_b \) preserving the given data, with final image \(Z_b \), and an \(\mathbf{F}(b) \)-definable homeomorphism \(\phi_b : Z_b \to S_b \subseteq \Gamma^W(b) \).

Claim. We may find, definably uniformly in \(b \), an \(\mathbf{F}(b) \)-definable subset \(T_b \subseteq \Gamma^n \), an \(\mathbf{F}(b) \)-definable set \(W_i(b) \), and for \(w \in W_i(b) \), a definable homeomorphism \(\psi_w : Z_b \to T_b \), such that \(H_b = \{ \psi_w^{-1} \circ \psi_w : w, w' \in W_i(b) \} \) is a group of homeomorphisms of \(Z_b \), and \(H'_b = \{ \psi_w \circ \psi_w^{-1} : w, w' \in W_i(b) \} \) is a group of homeomorphisms of \(T_b \).

Proof of the claim. In fact for a fixed \(b \), one can pick some \(W(b) \)-definable homeomorphism \(\psi_b \) of \(Z_b \) onto a definable subspace of \(\Gamma^n \); let \(\Xi_b = \{ \psi_w : w \in W_i(b) \} \) be the set of automorphic conjugates of \(\psi_b \) over \(\mathbf{F}(b) \); and verify that \(H_b \) is a finite group, \(\Xi_b \) is a principal torsor for \(H_b \), and so \(H'_b \) is also a finite group (isomorphic to \(H_b \)). Thus, for a fixed \(b \), one can do the construction as stated, obtaining the stated properties. Now the fact that the \(\psi_w \) are conjugates of \(\psi_b \) is not an ind-definable property of \(b \). But the consequences mentioned in the claim - that \(\psi_w \) is a definable homeomorphism, and the compositional properties - are clearly ind-definable, and in fact definable properties of \(b \). Hence by the compactness/glueing argument we may find \(W_i(b) \) and \(\Xi_b \) uniformly in \(b \), with the required properties. In particular, there exists an \(\mathbf{F} \)-definable map \(W_i \to Y \) with fibers \(W_i(b) \) over \(b \in Y \). \[\square \]

By stable embeddedness of \(\Gamma \), and elimination of imaginaries in \(\Gamma \), we may write \(T_b = T_{\rho(b)} \) where \(\rho : Y \to \Gamma^m \) is a definable function. Let \(\Gamma^* \) be an expansion of \(\Gamma \) to \(\mathbf{RCF} \). Then by Remark 13.3.2 (1), \(T_b \) runs through finitely many \(\Gamma^* \)-definable homeomorphism types as \(b \) runs through \(Y \). Similarly, the pair \((T_b, H'_b) \) runs through finitely many \(\Gamma^* \)-definable equivariant homeomorphism types (e.g. we may find an \(H'_b \)-invariant cellular decomposition of \(T_b \) and describe the action combinatorially). In particular, for \(b \in Y \), \((T_b(\mathbb{R}), H'_b) \) runs through finitely many homeomorphism types (i.e. isomorphism types of pairs \((U, H) \) with \(U \) a topological space, \(H \) a finite group acting on \(U \) by auto-homeomorphisms).

By Corollary 13.1.6 we have, for \(b \in Y \), a deformation retraction of \(B_{\mathbf{F}(b)}(X_b) \) to \(B_{\mathbf{F}(0)}(Z_b) \). Pick \(w \in W_i(b) \), and let \(W^*(b) \) be the set of realizations of \(\text{tp}(w/\mathbf{F}(b)) \). If \(w, w' \in W^*(b) \) then \(w' = \sigma(w) \) for some automorphism \(\sigma \) fixing \(\mathbf{F}(b) \); we may take it to fix \(\Gamma \) too. It follows that \(\psi_w^{-1} \circ \psi_{w'} = \sigma|Z_b \). Conversely, if \(\sigma \) is any automorphism of \(W_i(b) \), it may be extended by the identity on \(\Gamma \), and it follows that \(\psi_{\sigma(w)} = \psi_w \circ \sigma \); so \(W^*(b) \) is a torsor of \(H^*(b) = \{ \psi_w^{-1} \circ \psi_{w'} : w, w' \in W^*(b) \} \), which is a group. Let \(H_*(b) = \{ \psi_w \circ \psi_w^{-1} : w, w' \in W^*(b) \} \). It follows that \(H_*(b) \) is a group, and for any \(w \in W^*(b) \), \(\psi_w \) induces a bijection \(Z_b/H^*(b) \to T_b/H_*(b) \); moreover it is the same bijection, i.e. it does not depend on the choice of \(w \in W^*(b) \).
We are interested in the case $\Gamma(F(b)) = \Gamma(F) = \mathbb{R}$. In this case, since $H^{*}(b)$ acts by automorphisms over $F(b)$, two $H^{*}(b)$-conjugate elements of Z_{b} have the same image in $B_{F(b)}(X_{b})$. On the other hand two non-conjugate elements have distinct images in $T_{b}/H_{*}(b)$, and so cannot have the same image in $B_{F(b)}(X_{b})$. It follows that $B_{F(b)}(Z_{b}), Z_{b}(F(b))/H^{*}(b)$ and $T_{b}(\mathbb{R})/H_{*}(b)$ are canonically isomorphic. By compactness and definable compactness considerations one deduces that these isomorphisms between $B_{F(b)}(Z_{b}), Z_{b}(F(b))/H^{*}(b)$ and $T_{b}(\mathbb{R})/H_{*}(b)$ are in fact homeomorphisms. It is only for this reason that we made X to be complete in the beginning of the proof.

The number of possibilities for $H_{*}(b)$ is finite and bounded, since $H'(b)$ is a group of finite size, bounded independently of Γ extension, and the first statement in (2) follows.

With the help of Corollary 13.1.6, this proof goes through for non-simple Berkovich points too. Let $q \in B_{F}(Y)$, and view it as a type over F. By Corollary 13.1.6 (2), $B_{F}(X)_{q}$ has the homotopy type of Z_{q}. Let $b \models q$, pick $w \in W_{i}(b)$ and let notation be as above. Let $b' = (b, w)$ and let $q' = \text{tp}(b, w/F)$. Let $X' = X \times_{Y} W_{i}$. By Corollary 13.1.6 (2) applied to the pullback of the retraction $I \times X/Y \to X/Y$ to $X'/W_{i}, B_{F}(X')_{q'}$ retracts to a space $Z_{q'}$ which is homeomorphic to $T_{b}(\mathbb{R})$. By the same reasoning as above, it follows that Z_{q} is homeomorphic to $Z_{q'}$ modulo a certain subgroup $H^{*}(b)$ of $H(b)$, and also homeomorphic to T_{b} modulo $H_{*}(b)$ for a certain subgroup of $H'(b)$, so again the number of possibilities is bounded. This holds uniformly when F is replaced by any valued field extension, and the first statement in (2) follows.

The proof goes through directly to provide the generalization to pairs and Γ-valued functions of (1) and (2).

Remarks 13.3.2.
(1) In the expansion of Γ to a real closed field, definable subsets of Γ_{∞}^{n} are locally contractible and definably compact subsets of Γ_{∞}^{n} admit a definable triangulation, compatible with any given definable partition into finitely many subsets. By taking the closure in case the sets are not compact, it follows that given a definable family of semi-algebraic subsets of \mathbb{R}_{∞}^{n}, there exist a finite number of rational polytopes (with some faces missing), such that each member of the family is homeomorphic to at least one such polytope. In particular the number of definable homotopy types is finite. In fact it is known that the number of definable homeomorphism types is finite. See [8], [32].

(2) Eleftheriou has shown [12] that there exist abelian groups interpretable in $\text{Th}(\mathbb{Q}, +, <)$ that cannot be definably and homeomorphically embedded in affine space within DOAG. By Proposition 6.2.6, the skeleta of abelian varieties can be so embedded. It would be good to bring out the additional structure they have that ensures this embedding.
13.4. More tame topological properties for $B_F(X)$.

Theorem 13.4.1 (Local contractibility). Let X be an F-definable subset of an algebraic variety V over a valued field F with $\text{val}(F) \subseteq \mathbb{R}_{\infty}$. The space $B_F(X)$ is locally contractible.

Proof. We may assume V is affine. Since the topology of $B_F(X)$ is generated by open subsets of the form $B_F(X')$ with X' definable in X, it is enough to prove that every point x of $B_F(X)$ admits a contractible neighborhood. By Theorem 10.1.1 and Corollary 13.1.6, there exists a strong homotopy retraction $H : I \times B_F(X) \to B_F(X)$ with image a subset Υ which is homeomorphic to a semi-algebraic subset of some \mathbb{R}^n. Denote by ϱ the retraction $B_F(X) \to \Upsilon$. By (4) in Theorem 10.1.1 one may assume that $\varrho(H(t,x)) = \varrho(x)$ for every t and x. Recall that any semi-algebraic subset Z of \mathbb{R}^n is locally contractible: one may assume Z is bounded, then its closure \overline{Z} is compact and semi-algebraic and the statement follows from the existence of triangulations of \overline{Z} compatible with the inclusion $\overline{Z} \hookrightarrow Z$ and having any given point of Z as vertex. Is is thus possible to pick a contractible neighborhood U of $\varrho(x)$ in Υ. Since the set $\varrho^{-1}(U)$ is invariant by the homotopy H, it retracts to U, hence is contractible. □

Let us give another application of our results, in the spirit of a result of Abbes and Saito [1] 5.1 and Poineau, [28] Théorème 2.

Theorem 13.4.3. Let X be an F-definable subset of a quasi-projective algebraic variety over a valued field F with $\text{val}(F) \subseteq \mathbb{R}_{\infty}$ and let $G : X \to \Gamma_{\infty}$ be an F-definable map. Consider the corresponding map $G : B_F(X) \to \mathbb{R}_{\infty}$. Then there is a finite partition of \mathbb{R}_{∞} into intervals such that the fibers of G over each interval have the same homotopy type. Also, if one sets $B_F(X)_{\geq \varepsilon}$ to be the preimage of $[\varepsilon, \infty)$, there exists a finite partition of \mathbb{R}_{∞} into intervals such that for each interval I the inclusion $B_F(X)_{\geq \varepsilon} \to B_F(X)_{\geq \varepsilon'}$, for $\varepsilon > \varepsilon'$ both in I, is a homotopy equivalence.

Proof. Consider a strong homotopy retraction of \hat{X} leaving the fibers of G invariant, as provided by Theorem 10.1.1. By Corollary 13.1.6 it induces a retraction g of $B_F(X)$ onto a subset Υ such that there exists a homeomorphism $h : \Upsilon \to S$ with S a semi-algebraic subset of some \mathbb{R}^n. By construction G factors as $G = g \circ g$ with g a function $S \to \mathbb{R}_{\infty}$. Furthermore, we may assume that $g' := h^{-1} \circ g$ is a semi-algebraic function S. Thus, it is enough to prove that there is a finite partition of \mathbb{R}_{∞} into intervals such that the fibers of g' over each interval have the same homotopy type and that if $S_{\geq \varepsilon}$ is the locus of $g' \geq \varepsilon$, there exists a finite partition of \mathbb{R}_{∞} into intervals such that for each interval I the inclusion $S_{\geq \varepsilon} \to S_{\geq \varepsilon'}$, for $\varepsilon > \varepsilon'$ both in I, is a homotopy equivalence. But such statements are well-known in o-minimal geometry, cf., e.g., [8] Theorem 5.22. □
References

Department of Mathematics, The Hebrew University, Jerusalem, Israel
E-mail address: ehud@math.huji.ac.il

Institut de Mathématiques de Jussieu, UMR 7586 du CNRS, Université Pierre et Marie Curie, Paris, France
E-mail address: Francois.Loeser@upmc.fr