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TROPICAL FUNCTIONS ON A SKELETON

by Antoine Ducros, Ehud Hrushovski, François Loeser
& Jinhe Ye

Abstract. — We prove a general finiteness statement for the ordered abelian group of tropical
functions on skeleta in Berkovich analytifications of algebraic varieties. Our approach consists in
working in the framework of stable completions of algebraic varieties, a model-theoretic version
of Berkovich analytifications, for which we prove a similar result, of which the former one is a
consequence.

Résumé (Fonctions tropicales sur un squelette). — Nous démontrons un résultat général de
finitude pour le groupe abélien ordonné des fonctions tropicales sur un squelette dans l’analytifié
de Berkovich d’une variété algébrique. Notre approche consiste à travailler dans le cadre des
complétés stables de variétés algébriques, une version modèle théorique de l’analytification
de Berkovich, pour lesquels nous démontrons un énoncé similaire dont notre résultat est une
conséquence.
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1. Introduction

1.1. The general context: skeleta in Berkovich geometry. — Let F be a complete
non-archimedean field. Among the several frameworks available for doing analytic
geometry over F (Tate, Raynaud, Berkovich, Huber...), Berkovich’s is the one that
encapsulates in the most natural way the deep links between non-archimedean and
tropical (or polyhedral) geometry.

Indeed, every Berkovich space X over F contains plenty of natural “tropical” sub-
spaces, which are called skeleta. Roughly speaking, a skeleton of X is a subset S of X
on which the sheaf of functions of the form log|f | with f a section of O×

X induces a
piecewise linear structure; i.e., using such functions one can equip S with a piecewise
linear atlas, whose charts are modeled on (rational) polyhedra and whose transition
maps are piecewise affine (with rational linear part).

This definition is rather abstract, but there are plenty of concrete examples of
skeleta. The prototype of such objects is the “standard skeleton” Sn of (Gn

m)
an, that

consists of all Gauss norms with arbitrary real parameters; the family

(log|T1|, . . . , log|Tn|)

induces a piecewise-linear isomorphism Sn ≃ Rn.
Now if X is an arbitrary analytic space and if φ1, . . . , φm are quasi-finite maps

from X to (Gn
m)

an, then
⋃

j φ
−1
j (Sn) is a skeleton by [Duc12, Th. 5.1], (it consists

only of points whose Zariski-closure is n-dimensional, so it is empty if dimX < n),
and φ−1

j (Sn) → Sn is a piecewise immersion for all j; of course, every piecewise-linear
subspace of

⋃
j φ

−1
j (Sn) is still a skeleton.

Skeleta were introduced by Berkovich in his seminal work [Ber99] on the homotopy
type of analytic spaces, where he proved that any compact analytic space with a
polystable formal model admits a deformation retraction to a skeleton (isomorphic to
the dual complex of the special fiber), and used it to show that quasi-smooth analytic
spaces are locally contractible; they play a key role in the theory of real integration
on Berkovich spaces [CLD17]. Let us mention that all skeleta encountered in these
works are at least locally of the form described above; i.e., piecewise-linear subspaces
of finite unions

⋃
φ−1
j (Sn) for quasi-finite maps φj : X → (Gn

m)
an.

1.2. Our main result. — If S is a skeleton of an analytic space X and if f is a
regular invertible function defined on a neighborhood of S, then log|f | is a piecewise-
linear function on S, and our purpose is to understand what are the piecewise linear
functions on S that can arise this way in the algebraic situation.

Let us make precise what we mean. Let X be an algebraic variety over F , say
irreducible of dimension n; let us call log-rational any real-valued function of the form
log|f | for f a non-zero rational function on X, viewed as defined over Uan for U the
maximal open subset of X on which f is well-defined and invertible. Let φ1, . . . , φm

be (algebraic) quasi-finite maps from X to Gn
m (the corresponding analytic maps will

also be denoted φ1, . . . , φm). Let S be a subset of the skeleton
⋃
φ−1
j (Sn) defined
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Tropical functions on a skeleton 615

by a Boolean combination of inequalities between log-rational functions. Our main
theorem is the following finiteness result.

Main Theorem (Berkovich setting). — Let X be an irreducible algebraic variety
over F of dimension n and assume F is algebraically closed. Let S be as above. Then
there exists finitely many non-zero rational functions f1, . . . , fℓ on X such that the
following holds.

(1) The functions log|f1|, . . . , log|fℓ| identify S with a piecewise-linear subset of Rℓ

(i.e., a subset defined by a Boolean combination of inequalities between Q-affine func-
tions).

(2) The group of restrictions of log-rational functions to S is stable under min and
max and is generated under addition, subtraction, min and max by the (restrictions
of the) functions log|fi| and the constants log|a| for a ∈ F×.

Let us mention that statement (1) is implicitly established in [Duc12] (see op. cit.,
proof of Theorem 5.1); what is really new here is statement (2). And let us insist on
the assumption that F is algebraically closed: for a general F the theorem does not
hold, as shown by a counter-example due to Michael Temkin (Remark 7.6).

1.3. About our proof. — In fact, we do not work directly with Berkovich spaces
but with the model-theoretic avatar of this geometry, namely the theory of stable
completions of algebraic varieties which was introduced by two of the authors in
[HL16]. Thus, what we actually prove is Theorem 7.2 which is a version of the result
above in this model-theoretic framework – the final transfer to Berkovich spaces being
straightforward.

Let us give some explanations. Let X be an algebraic variety over a valued field F .
We denote by X̂ the stable completion of X. The standard skeleton Sn of (Gn

m)
an has a

natural counterpart Σn in Ĝn
m, and

⋃
φ−1
j (Σn) makes sense as a subset of X̂; moreover,

the inequalities between log-regular functions that cut out S inside
⋃
φ−1
j (Sn) also

make sense here, and cut out a subset Σ of
⋃
φ−1
j (Σn). By Theorem 4.2, this subset

is F -definably homeomorphic to an F -definable subset of ΓN for some N . It follows
moreover from its construction that Σ is contained in the subset X# of X̂ consisting
of strongly stably dominated types (or, in other words, of Abhyankar valuations), and
even in its subset X#

gen of Zariski-generic points. We can now state Theorem 7.2. Let
us just precise that what we call a val-rational function is a Γ-valued function of the
form val(f) with f a non-zero rational function on X (here val(f) is seen as defined
on the stable completion of the invertibility locus of f .)

Main Theorem (Model-theoretic setting). — Let F be an algebraically closed field
endowed with a valuation val : F → Γ ∪ {∞}. Let X be an irreducible algebraic
variety over F . Let Υ be an iso-definable subset of X#

gen which is Γ-internal, that is,
F -definably isomorphic to an F -definable subset of ΓN for some N .

There exists finitely many non-zero rational functions f1, . . . , fℓ on X such that
the following holds.

J.É.P. — M., 2024, tome 11



616 A. Ducros, E. Hrushovski, F. Loeser & J. Ye

(1) The functions val(f1), . . . , val(fℓ) identify topologically Υ with an F -definable
subset of Γℓ.

(2) The group of restrictions of val-rational functions to Υ is stable under min and
max and generated under addition, subtraction, min and max by the (restrictions of
the) functions val(fi) and the constants val(a) for a ∈ F×.

Let us start with a remark. The Γ-internal subsets we are really interested in for
application to Berkovich theory seem to be of a very specific form (they are definable
subsets of

⋃
φ−1
j (Σn) for some family (φj) of quasi-finite maps from X to Gn

m) and
our main theorem deals at first sight with far more general Γ-internal subsets. But
this is somehow delusive; indeed, we show (Theorem 4.4) that every Γ-internal subset
of X#

gen is contained in some finite union
⋃
φ−1
j (Σn) as above.

We are now going to describe roughly the main steps of the proof of our main
theorem.

Step 1. — This first step has nothing to do with valued fields and concerns general
divisible abelian ordered groups. Basically, one proves the following. Let D be an
M -definable closed subset of Γn for some divisible ordered group M contained in a
model Γ of DOAG, let g1, . . . , gm be Q-affine M -definable functions on Γn, and let f
be any continuous and Lipschitz M -definable map from D to Γ, such that for every x
in D there is some index i with f(x) = gi(x). Then under these assumptions, f lies in
the set of functions from D to Γ generated under addition, subtraction, min and max
by the gi, the coordinate functions and M : this is Theorem 3.13. Here the Lipschitz
condition refers to a Lipschitz constant in Z⩾0, so that it is a void condition when M
has no non-trivial convex subgroup and D is definably compact, but meaningful in
general.

Step 2. — We start with proving a finiteness result in the spirit of our theorem under
a weaker notion of generation. More precisely, we show (Theorem 5.6) the existence
of f1, . . . , fℓ as in our statement such that (1) holds and such that the following
weak version of (2) holds, with H denoting the group of Γ-valued functions on Υ

generated by the val(fi) and the constants val(a) for a ∈ F×: for every non-zero
rational function g on X there exist finitely many elements h1, . . . , hr of H such
that Υ is covered by its definable subsets {val(g) = val(hi)} for i = 1, . . . , r.

The key point for this step is the purely valuation-theoretic fact that an Abhyankar
extension of a defectless valued field is still defectless. It has been given several proofs
in the literature, some of which are purely algebraic, some of which are more geometric.
For the sake of completeness and for consistency with the general viewpoint of this
paper, we give a new one in the appendix, (Theorem A.1) which is model-theoretic
and based upon [HL16]. It follows already from Theorem 5.6 that skeleta are endowed
with a canonical piecewise Z-affine structure. In particular this implies the existence
of canonical volumes for skeleta as we spell out in Section 8.
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Step 3. — One strengthens the statement of Step 2 by showing (Proposition 6.13)
that the fi can even be chosen so that all functions (val(g))|Υ as above are Lipschitz,
when seen as functions on val(f)(Υ) ⊆ Γm. This is done as follows. First, by possibly
replacing the ground field with a smaller one over which everything is defined, we can
assume that val(F×) has only finitely many convex subgroups. Under this assumption
we can achieve by enlarging f that val(f) induces an embedding Υ(F ′) ↪→ Γm(F ′)

for every coarsening F ′ of F (by a coarsening, we mean that F ′ has the same under-
lying field as F and a coarser valuation); then for every valued algebraically closed
extension L of F and every coarsening L′ of L the map Υ(L′) → Γ(L′)n induced by
val(f) will be injective, which implies the sought after Lipschitz property by an easy
compactness argument.

Step 4. — One proves that the set of functions on Υ of the form val(g) is stable under
min and max. This follows from orthogonality between the residue field and the value
group sorts in ACVF, see Lemma 7.1.

Step 5. — By the very choice of the fi, every function val(g)|Υ gives rise via the
embedding val(f)|Υ to a definable function on val(f)(Υ) that belongs piecewise to
the group generated by val(F×) and the coordinate functions x1, . . . , xℓ (Step 2) and
is moreover Lipschitz (Step 3); it is thus (Step 1) equal to t(x1, . . . , xℓ, a) where t is
a term in {+,−,min,max} and a a tuple of elements of val(F×). Then val(g)|Υ =

t(val(f1)|Υ, . . . , val(fℓ)|Υ, a) and we are done.

Acknowledgements. — We are very grateful to Michael Temkin for communicating us
the example in Remark 7.6. We are also very grateful to the referees for their careful
reading and for their many comments that helped us to improve considerably the
readability of the paper.

2. Preliminaries

2.1. Stably dominated types. — The aim of this section is to review some of the
material from [HL16] that we will use in this paper. The reader is referred to [HL16]
or to the surveys [Duc13] or [Duc16] for more detailed information. In this paper,
we shall work in the framework of [HL16], namely the theory ACVF of algebraically
closed valued fields K with nontrivial valuation in the geometric language LG of
[HHM06]. We recall that this language is an extension of the classical three-sorted
language with sorts VF, Γ and RES for the valued field, value group and residue field
sorts, and additional symbols val and res for the valuation and residue maps, obtained
by adding new sorts Sm and Tm, m ⩾ 1, corresponding respectively to lattices in Km

and to the elements of the reduction of such lattices modulo the maximal ideal of the
valuation ring. By the main result of [HHM06] ACVF has elimination of imaginaries
in LG.

Recall that in a theory T admitting elimination of imaginaries in a given lan-
guage L, for M |= T and A ⊆ M , a type p(x) in Sx(M) is said to be A-definable if
for every L-formula φ(x, y) there exists an LA-formula dpφ(y) such that for every b
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618 A. Ducros, E. Hrushovski, F. Loeser & J. Ye

in M , φ(x, b) ∈ p if and only if M |= dpφ(b). If p ∈ Sx(M) is definable via dpφ, then
the same scheme gives rise to a unique type p|N for any elementary extension N of M .
There is a general notion of stable domination for A-definable types: stably dominated
types are in some sense “controlled by their stable part”. In the case of ACVF, there
is concrete characterization of A-definable stably dominated types as those which are
orthogonal to Γ, meaning that for every elementary extension N of M , if a |= p|N ,
one has Γ(N) = Γ(Na).

Let X be an A-definable set in ACVF, with A an LG-structure. A basic result
in [HL16] states that there exists a strict A-pro-definable set X̂ such that for any
C ⊇ A, X̂(C) is equal to the set of C-definable stably dominated types on X ([HL16,
Th. 3.1]). Here by pro-definable we mean a pro-object in the category of definable
sets and strict refers to the fact that the transition morphisms can be chosen to
be surjective. Morphisms in the category of pro-definable sets are called definable
morphisms.

In fact X̂ can be endowed with a topology that makes it a pro-definable space
in the sense of [HL16, §3.3]. In this setting there is a model theoretic version of
compactness, namely definable compactness: a pro-definable space X is said to be
definably compact if every definable type on X has a limit in X. In an o-minimal
structure M , this notion is equivalent to the usual one, namely a definable subset
X ⊆Mn is definably compact if and only if it is closed and bounded.

2.2. Γ-internal sets. — Let us fix a valued field k and a quasi-projective variety X
over k. We denote by Γ the value group of k. The structure induced is that of an
ordered abelian group in the language of ordered groups, in particular it is o-minimal.
We extend Γ to Γ∞ = Γ∪{∞} with ∞ larger than any element of Γ. A pro-definable
set is called iso-definable if it is pro-definably isomorphic to a definable set. A Γ-inter-
nal subset Z of X̂, or more generally of X̂ × Γm

∞, is an iso-definable subset such that
there exists a surjective definable morphism D → Z (which can be assumed to be
bijective by elimination of imaginaries) with D a definable subset of some Γr

∞.
By [HL16, Th. 6.2.8], if Z is a k-iso-definable and Γ-internal subset of X̂, there

exists some finite k-definable set w and a continuous injective definable morphism
f : Z ↪→ Γw

∞. In particular if Z is definably compact such an f is a homeomorphism
onto its image.

2.3. The Zariski-generic case. — Assume that k is algebraically closed. We can then
assume w = {1, . . . , n}. Then the definable injection Z ↪→ Γn

∞ alluded to above can
be obtained by using (locally) valuations of regular functions. Thus if X is irreducible
and Z only consists of Zariski-dense points, we can find a dense open subset U of X
and invertible functions g1, . . . , gn on U such that the functions val(gi) induce a
definable bijection between Z and a k-definable subset of Γn (without ∞). Moreover,
by shrinking U and adding some extra invertible functions to the gi, we can assume
that g induces a closed immersion U ↪→ Gn

m; then the functions val(gi) induce a
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(definably) proper map Û → Γn and thus a definable homeomorphism between Z and
its image.

2.4. Retractions to skeleta. — Since multiplication does not belong to the struc-
ture on the value group sort Γ, we have to consider generalized intervals, which are
obtained by concatenating a finite number of (oriented) closed intervals in Γ∞. Such
a generalized interval I has an origin oI and an end point eI .

We may now define strong deformation retractions. Fix a valued field k and a
quasi-projective variety X over k. A strong deformation retraction of X̂ onto Υ ⊆ X̂

is a continuous k-definable morphism

H : I × X̂ −→ X̂

such that

• the restriction of H to {oI} × X̂ is the identity on X̂;
• the restriction of H to I ×Υ is the identity on I ×Υ;
• the image of the restriction HeI of H to {eI} × X̂ is contained in Υ;
• for every (t, a) ∈ I × X̂, HeI (H(t, a)) = HeI (a).

A special case of the main result of [HL16] states the following:

2.5. Theorem. — Let X be a quasi-projective variety over a valued field k. Then there
is a (k-definable) strong deformation retraction

H : I × X̂ −→ X̂

onto a Γ-internal subset Υ ⊆ X̂ and a k-definable injection Υ → Γw
∞ for some finite

definable set w, which is a homeomorphism onto its image and such that for each
irreducible component W of X, Υ ∩ Ŵ is of o-minimal dimension dim(W ) at each
point.

We shall call such a Γ-internal set Υ a retraction skeleton of X̂. Note that this is
what is called a skeleton in [HL16], but we have decided to change the terminology
to avoid conflict with the literature.

2.6. Remark. — When X is smooth and irreducible, there exists a deformation retrac-
tion as above with Υ consisting only of Zariski-generic points: this follows from the
proof of [HL16, Th. 11.1.1], see also [HL16, Ch. 12]; so if k is a model of ACVF,
then Υ can be topologically and k-definably identified with a subset of some Γm by
using valuations of non-zero rational functions (2.3).

Note that the smoothness assumption cannot be dropped for the above: if X is a
cubic nodal curve, any retraction skeleton Υ of X̂ contains the nodal point (and any
definable topological embedding from Υ into some Γw

∞ will send the nodal point to a
w-uple with at least one infinite coordinate).

J.É.P. — M., 2024, tome 11
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2.7. Strongly stably dominated types. — In fact all retraction skeleta of X̂ are
contained in the subspace X# ⊆ X̂ of strongly stably dominated types on X. The
study of the space X# is the subject of [HL16, Ch. 8]. Loosely speaking the notion of
strongly stably dominated corresponds to a strong form of the Abhyankar property
for valuations namely that the transcendence degrees of the extension and of the
residue field extension coincide. An important property of X# is that it has a natural
structure of (strict) ind-definable subset of X̂. Furthermore, by [HL16, Th. 8.4.2], X#

is exactly the union of all the retraction skeleta of X̂.
It seems plausible that arbitrary Γ-internal subsets of X̂ can be rather pathological,

but those contained in X# should be reasonable. We shall see below that this is indeed
the case at least for Γ-internal subsets of X# that consist of Zariski-generic points
(when X is irreducible). When X is irreducible, we will denote by X#

gen the subset
of X# consisting of Zariski-generic points.

2.8. Connection with Berkovich spaces. — Let k be a valued field with val(k)⊆R∞,
which we assume to be complete. Let X be a separated and reduced algebraic variety
of finite type over k. Denote by Xan its analytification in the sense of Berkovich.
Chapter 14 of [HL16] is devoted to a detailed study of how one can deduce statements
about Xan from similar statements about X̂. This comes from the fact that, if one
denotes by kmax a maximally complete algebraically closed extension of k with value
group R and residue field the algebraic closure of the residue field of k, there is a
canonical and functorial map π : X̂(kmax) → Xan which is continuous, surjective, and
closed. When k = kmax, π is actually a homeomorphism. Furthermore, any k-definable
morphism g : X̂ → Γ∞ induces a unique map g̃ : Xan → R∞ which is continuous
if g is, and any (k-definable) strong deformation retraction H : I × X̂ → X̂ induced
canonically a strong deformation retraction H̃ : I(R∞) × Xan → Xan compatible
with π for any t ∈ I(R∞). Thus, if one defines a retraction skeleton Σ in Xan as
the image under π of the kmax-points of a retraction skeleton in X̂, we obtain that
when X is quasi-projective there exists a strong deformation retraction of Xan onto a
retraction skeleton Σ. Furthermore, the fact that retraction skeleta in X̂ are contained
in X# implies that any point of Σ, as a type over (k,R), extends to a unique stably
dominated type; this type is strongly stably dominated and, restricted to (k,R), it
determines an Abhyankar extension of the valued field k, cf. [HL16, Th. 14.2.1].

3. Finite generation and Lipschitz functions in DOAG

In this section, we work in the theory of divisible ordered abelian groups which is
denoted by DOAG, and by definable we mean definable with parameters. We shall
usually denote by Γ a model of DOAG. We start with the definition of w-combination
and w-generation.

3.1. Definition. — Let X and Y be definable topological spaces and g, f1, . . . , fn be
definable continuous functions from X to Y . We say g is a w-combination of f1, . . . , fn
if for every x ∈ X, there is some i ∈ {1, . . . , n} such that fi(x) = g(x). Notationally,

J.É.P. — M., 2024, tome 11



Tropical functions on a skeleton 621

we use [g = fi] to denote the set {x ∈ X : g(x) = fi(x)}. Hence, g is a w-combination
by f1, . . . , fn iff X =

⋃n
i=1[g = fi].

In contrast, there is a stronger notion of combination that is very specific to DOAG.

3.2. Definition. — Let X be a definable topological space and let g and fi, i ∈ I,
be definable continuous functions X → Γ. We say that g is an ℓ-combination of
the fi if g lies in the (min,max)-lattice generated by (fi)i∈I . More explicitly, there
are f1, . . . , fn in (fi)i∈I such that g is a function obtained by f1, . . . , fn and finitely
many operations of min,max.

We shall also use the following variants of w and ℓ-combination.

3.3. Definition. — Let X be a definable topological space and let g and fi be defi-
nable continuous functions X → Γ for i ∈ I. We say that g is a (w,+)-combination
of the fi if there exist h1, . . . , hn in the abelian group generated by the functions fi,
i ∈ I such that g is a w-combination of the hi. We say that g is an (ℓ,+)-combination
of the fi if g can be described by a formula involving only +,−,min and max and
finitely many fi.

We say that a given set of functions containing the fi and stable under w-combi-
nation is w-generated by the fi if it consists precisely of the set of all w-combinations
of the fi. We define (w,+), ℓ and (ℓ,+)-generation in an analogous way.

3.4. Example. — Let X = Γn and mk : X → Γ be the definable function which
to (x1, . . . , xn) assigns the k-th smallest xi. Clearly, mk is a w-combination of the
coordinate functions x1, . . . , xn. On the other hand, it is not hard to see that

mk(x) = min
U⊆{1,...,n}

|U |=k

max
i∈U

xi

Hence the mk(x) are even ℓ-combinations of x1, . . . , xn.

However, the two notions of combinations do not agree in general.

3.5. Example. — Let I be the interval [0,∞) ⊆ Q. Let D = I × {1, 2} ⊆ Q2 and
f1 = 0, f2 = x1. Consider g that is equal to fi on I × {i} for i = 1, 2. Clearly g is a
w-combination of f1 and f2. However, we claim that g is not an (ℓ,+)-combination
of coordinate functions. Indeed, if it were, then it would extend to a continuous
Q-definable function g′ on Q2. Let Γ be a model of DOAG containing Q and in which
there is some c > n for all n ∈ N. Since tp (1, c) = tp (α, c) for any 1 > α > 0

and g(1, c) = c, so g′(α, c) = c. However g′(0, c) = g(0, c) = 0, in contradiction
with the continuity of g′. For a connected version of this example, replace D by
D′ = D ∪ ({0} × [1, 2]) and set g = 0 on {0} × [1, 2].

This example suggests that interaction of the ambient space and the topology of D
plays a role in distinguishing the two notions of combinations. To proceed towards a
topological characterization for such properties, we need the following.
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3.6. Definition. — Let T be an o-minimal expansion of DOAG and Γ |= T with
D ⊆ Γn definable. We say that D is convex if for any u and v in D, (u+ v)/2 ∈ D.

3.7. Remark. — When T is an o-minimal expansion of the theory of real closed fields
RCF, this is equivalent to the usual definition of convexity for definable sets. For
u, v ∈ D, let L ⊆ [0, 1] be {α : αu + (1 − α)v ∈ D}. By our notion of convexity,
L contains Z[1/2]∩ [0, 1]. By o-minimality, L must be [0, 1] with at most finitely many
points in (0, 1) removed. But removing any point from (0, 1) would lead to a violation
of convexity.

Note further that for D convex, working inside the smallest affine subspace con-
taining D, we may assume that cl(int(D)) = cl(D).

Lastly, recall that for any definable subset D of some Γn, a function f : D → Γ is
called Q-affine if f =

∑n
i=1mixi + c where mi ∈ Q and c ∈ Γ. Such functions are the

most basic definable continuous functions on D. We say f is Z-affine if the mi are all
in Z.

3.8. Proposition. — Let Γ be a divisible ordered abelian group and let f1, . . . , fm be
Q-affine functions on Γn. Let D ⊆ Γn be definable and g : D → Γ be a continuous
definable function. Assume that g is a w-combination of f1, . . . , fm. Then the following
are equivalent:

(1) g is an ℓ-combination of f1, . . . , fm.
(2) g extends to a continuous definable function g′ : Γn → Γ that is a w-combina-

tion of f1, . . . , fm.
(3) g extends to a continuous definable function g′ : D′ → Γ on some convex

definable set D′ containing D that is a w-combination by f1, . . . , fm.
(4) For any x, y∈D, there is i∈{1, . . . ,m} such that fi(x)⩽g(x) and g(y)⩽fi(y).
(5) For some collection S of subsets of {1, . . . ,m}, g = minX∈S maxi∈X fi.

Proof. — The implications (5) ⇒ (1) ⇒ (2) ⇒ (3) are clear.
For (3) ⇒ (4), by working in an elementary extension, we may assume that Γ is a

model of the theory of real closed fields RCF. By Remark 3.7 and after replacing D by
the convex set D′ in (3), we may assume the line segment [x, y] connecting x, y is in D.
Replace g by g′ given by (3) as well. Let Ij ⊆ [x, y] be {z : g(z) = fj(z)}. By continuity
of g and o-minimality, we know that the sets Ij are finite unions of closed intervals
and

⋃m
j=1 Ij = [x, y]. Consider the canonical parameterization h : [0, 1] → [x, y],

α 7→ αy + (1 − α)x, and let f ′i = fi ◦ h, g′ = g ◦ h and I ′j = h−1(Ij). Since the
functions fi are Q-affine, the functions f ′i are of the form aix+ bi for some ai, bi ∈ Γ.
Let k be the j such that aj is the greatest amongst all the j such that I ′j ̸= ∅.
If there are multiple such j, pick any. By induction, for a to the right of I ′k, we have
g′(a) ⩽ f ′k(a). Similarly, for a to the left of I ′k, we have f ′k(a) ⩽ g′(a). In particular
we have f ′k(0) = fk(x) ⩽ g′(0) = g(x) and g′(1) = g(y) ⩽ fk(y) = f ′k(1).

For (4) ⇒ (5), consider S to be the collection of subsets X ⊆ {1, . . . ,m} such
that g ⩽ maxi∈X fi on the entire D. Set f := minX∈S maxi∈X fi. We claim that
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g = f . Clearly g ⩽ f , so it suffices to show that g ⩾ f . For each W /∈ S, there
is some yW such that g(yW ) > fi(yW ) for every i ∈ W . By (4), for each x ∈ D,
there is ixW such that fixW (x) ⩽ g(x) and fixW (yW ) ⩾ g(yW ). Note that ixW /∈ W .
Let X = {ixW : W /∈ S}. We have that X ∈ S because otherwise, ixX ∈ X. For
this x, we have that maxi∈X fi(x) ⩾ g(x) and fi(x) ⩽ g(x) for any i ∈ X, hence
f(x) ⩽ maxi∈X fi(x) = g(x). □

3.9. Corollary. — Let D ⊆ Γn be a definable convex set. The set of definable con-
tinuous functions from D to Γ is (ℓ,+)-generated by the constants and all rational
multiples of coordinate functions.

Proof. — By quantifier elimination, we can find Q-affine functions f1, . . . , fn such
that g is a w-combination of f1, . . . , fn. By Proposition 3.8, we have that g is in fact
an ℓ-combination of f1, . . . , fn. □

Proposition 3.8 suggests that the agreement of w-combination and ℓ-combination
is related to the existence of continuous extensions to an ambient convex space. This
motivates the following definition.

3.10. Definition. — For a tuple x ∈ Γn, define |x| = maxni=1 |xi|. Let D ⊆ Γn and
f : D → Γ a definable function. We say f is Lipschitz if there is some M ∈ N such
that |f(x)− f(y)| ⩽M |x− y|.

Note that Lipschitz functions are automatically continuous and clearly the class
of Lipschitz functions depends on the embedding of D in Γn. Our purpose is now
to investigate Lipschitz definable functions on closed definable sets; a first step will
consist in reducing to the definably compact case, by using the two following lemmas.

3.11. Lemma. — Let Γ be a model of DOAG, let D be a subset of Γn definable over
some set A of parameters, and let f : D → Γ be a Lipschitz A-definable map. Let (fi)
be a finite family of Q-affine A-definable functions such that f is a w-combination
of the fi|D. Then f admits a unique continuous extension f to cl(D), the set cl(D)

and the function f are A-definable, and f is Lipschitz and if a w-combination of the
fi|cl(D).

Proof. — The uniqueness of f is clear, as well as the A-definability of cl(D) and f

if the latter exists, as one sees by using the definition of the closure and of the limit
(with ε and δ. . . ). The same reasoning also shows that the set of points of cl(D)∖D

at which f admits a limit is A-definable. Moreover if f exists it inherits obviously
the Lipschitz property of f , and it is also w-generated by the (restrictions of) the fi:
indeed, the subset of cl(D) consisting of points x such that there is some i with
f(x) = fi(x) is closed and contains D, thus is the whole of cl(D).

It thus remains to show the existence of f , and this can be done after enlarging
the model Γ. We can thus suppose that it is equal to the additive group of some
real closed field. Let x be a point of cl(D)∖D. There exists a half-line L emanating
from x such that (x, y) ⊆ D for some y; taking y close enough to x we can assume
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that f = fj on (x, y) for some j. Then the limit of f at x along the direction of L
exists and is equal to fj(x). The Lipschitz property then ensures that this limit does
not depend on L, let us denote it by f(x). Since D is defined by affine inequalities,
there is a positive γ ∈ Γ such that for every y in Γn with ∥x − y∥ < γ (say for the
Euclidean norm) then either (x, y) ⊆ D or (x, y) ∩D = ∅. Thus if y is a point of D
with ∥x− y∥ < γ then |f(y)− f(x)| ⩽ N∥x− y∥ where N is an upper bound for the
slopes of the fi. So f(y) tends to f(x) when the point y of D tends to x. □

3.12. Lemma. — Let M be either {0} or a model of DOAG, let Γ be a model of DOAG

containing M , and let ρ be an element of Γ with ρ > M . Let Z ⊆ Γn be an M -definable
subset. Let x1, . . . , xn : Z → Γ denote the coordinate functions of Z and let h : Z → Γ

be an M -definable function.
Assume that there exists a term t in {+,−,max,min} and γ = (γ1, . . . , γl) in Γℓ

such that h|Zρ
= t(x1, . . . , xn, γ)|Zρ

, where Zρ = Z ∩ [−ρ, ρ]n.
Then there is a term t′ in {+,−,max,min} and a finite tuple β of elements of M

such that h = t′(x1, . . . , xn, β).

Proof. — Assume first that M is a model of DOAG. By our assumption, there exists
a term t in {+,−,max,min} and a tuple γ = (γ1, . . . , γl) ∈ Γℓ such that h|Zρ =

t(x1, . . . , xn, γ)|Zρ
. By model-completeness of DOAG, the γi can be chosen in M⊕Q·ρ.

Thus there is m > 0 such that for each i, there exist integers ki and βi ∈ M with
γi = (ki/m)ρ+ βi. Let ν denote ρ/m. We have

h|Zmν
= t(x1, . . . , xn, (kiν + βi))|Zmν

.

Viewing the above as a first-order formula with constants in the model M and a
variable for ν, using o-minimality and model-completeness of M , we have some ν0 ∈
M>0 such that for any ν′ > ν0, the following holds in M :

h|Zmν′ = t(x1, . . . , xn, (kiν
′ + βi))|Zmν′ .

Take ν(x) = max{|x1|, . . . , |xn|, 2ν0} and

t′(x1, . . . , xn, β) = t(x1, . . . , xn, (kiν(x) + βi)).

We then have
h = t′(x1, . . . , xn, β)

by construction, which ends the proof when M ̸= {0}.
If M = {0}, set Γ′ = Γ ⊕ Q · δ where δ is positive and infinitesimal with respect

to Γ, set M ′ = Q · δ and let us denote by Z ′ and h′ the objects deduced from Z and h
by base-change to Γ′. Applying the above yields a term θ in {+,−,max,min} and a
tuple β of elements of Q · δ such that h′ = θ(x1, . . . , xn, β). By reducing modulo the
convex subgroup Q · δ of Γ′ we see that h = θ(x1, . . . , xn, 0). □

We can now state the main result of this section.

3.13. Theorem. — Let M |= DOAG or M = {0} and let Γ be a model of DOAG

containing M . Let D ⊆ Γm be an M -definable set. Let g : D → Γ be a Lipschitz
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definable function over M . Let f1, . . . , fn be Q-affine functions over M such that g is
a w-combination of f1, . . . , fn. Then g is an (ℓ,+)-combination of the fi, the constant
M -valued functions and the coordinate functions.

Before proving this result we will need some preliminaries on cell decomposition in
DOAG.

3.14. Cell decomposition. — Fix a model Γ of DOAG. We shall use the notion of
special linear decompositions from [Ele18]. In [Ele18], Eleftheriou defines the notion
of linear decomposition, which is a cell decomposition using only graphs of Q-affine
functions instead of general piecewise Q-affine functions. In fact we will need only to
consider bounded linear cells in Γn. They are defined by induction on n. In Γ0 the
origin is a bounded linear cell. If C is a bounded linear cell in Γn−1, f and g are
Q-affine functions on Γn−1, with f < g on C, the relative interval

(f < g)C = {(x′, y) ∈ C × Γ; f(x′) < y < g(x′)}

and the graph Γ(f)C = {(x′, y) ∈ C × Γ; f(x′) = y} are bounded linear cells in Γn.
If Y is a bounded definable set in Γn, a linear decomposition of Y is a partition of Y
into (finitely many) bounded linear cells.

We denote by π : Γn → Γn−1 the projection to the n− 1 first coordinates. A spe-
cial linear decomposition of a bounded definable set Y ⊆ Γn is defined recursively
in [Ele18] as follows. When n = 1 any cell decomposition of Y is special. If n > 1,
a linear decomposition C of Y is special if the following conditions are satisfied:

(1) π(C) is a special linear decomposition of π(Y ).
(2) For every pair of cells Γ(f)S and Γ(g)T in C with S in the closure of T ,

f |S < g|S or f |S > g|S or f |S = g|S .
(3) For every pair of cells (f < g)T and X in C, where X = Γ(h)S , (h, k)S or

(k, h)S , there is no c ∈ cl(S) ∩ cl(T ) such that f(c) < h(c) < g(c).
An important property of special linear decompositions is that if D and E are two

cells in such a decomposition such that D∩cl(E) is non-empty then D ⊆ cl(E) [Ele18,
Fact 2.3]. By [Ele18, Fact 2.2] special linear decompositions of Y always exist.

Note that closures of cells have a simple description: the closure of (f < g)C is
equal to (f ⩽ g)cl(C) = {(x′, y) ∈ cl(C) × Γ; f(x′) ⩽ y ⩽ g(x′)} and the closure of
Γ(f)C , is Γ(f)cl(C). In particular, if C is a cell, π(cl(C)) = cl(π(C)).

3.15. Lemma. — Fix a special linear cell decomposition of a closed bounded definable
subset of Γn and let C1 and C2 be two cells. Set D1 = cl(C1) and D2 = cl(C2). Assume
that D1 ∩D2 is non-empty. Then there exists a cell C such that D1 ∩D2 = cl(C).

Proof. — We proceed by induction on n. The case n = 0 is clear. If n > 0, we have that
π(D1)∩π(D2) = cl(C ′) for some cell C ′ of the projection of the decomposition. Since
for i = 1, 2, Di ∩ π−1(C ′) is either of the form (fi ⩽ gi)C′ or Γ(fi)C′ , it follows from
condition (3) of being a special linear decomposition that either D1∩D2∩π−1(C ′) =

(f1 ⩽ g1)C′ = (f2 ⩽ g2)C′ or D1 ∩ D2 ∩ π−1(C ′) = Γ(f1)C′ = Γ(f2)C′ , from which
the statement follows. □
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We shall also need the following statement.

3.16. Lemma. — Let D be a closed bounded definable subset of Γn. Assume D is
convex. Let h be a Q-affine function on Γn such h ⩾ 0 on D. Let D0 be the zero
locus of h in D. We assume that D0 is non-empty and D0 ̸= D. Let f be a Q-affine
function on Γn which vanishes on D0. Then there exists a positive integer M such
that, for every x ∈ D, |f(x)| ⩽Mh(x).

Proof. — Let D be a linear decomposition of D. We consider the set F of all sets F of
the form F = cl(C), with C a 1-dimensional cell in D, that intersect the hyperplane
h = 0 and are not contained in h = 0. For such an F we denote by pF its intersection
point with h = 0. There exists a positive integer MF such that |f(x)| ⩽MFh(x) on F .
Indeed, the restrictions of both h and g to the line segment F are linear functions
on F vanishing at the endpoint pF of F and the restriction of h is not identically zero,
which yields the existence of some MF . In fact the inequality |f(x)| ⩽MFh(x) holds
on the whole half-line LF containing F with origin pF . Take M = maxF(MF ). Now
consider R a RCF-expansion of Γ. Let Y be the convex hull of the half-lines LF in
that expansion. We have |f(x)| ⩽Mh(x) on Y . But Y contains D(R), since if P is a
convex definably compact polyhedron of Rn, and if F is a face of P of any dimension,
then the convex hull of all half-lines directed by 1-faces intersecting F contains P ,
hence the result, taking P = D and F = D0. □

The following statement about separation by hyperplanes will play a key role in
our proof of Theorem 3.13.

3.17. Proposition. — Fix a special linear cell decomposition of a closed bounded defi-
nable subset of Γn and let C1 and C2 be two cells. Assume C1 ̸= C2. Set D1 = cl(C1)

and D2 = cl(C2). Then there exists a Z-affine function h such that h ⩾ 0 on D1,
h ⩽ 0 on D2, and the hyperplane H = h−1(0) satisfies D1 ∩D2 = D1 ∩H = D2 ∩H.

Proof. — We shall proceed by induction on n, the case n = 1 being clear. If π(C1) =

π(C2), then the statement is clear. Indeed, for each i = 1, 2, we have Ci = (fi < gi)S
or Ci = Γ(fi)S . In the second case we set gi = fi. We may assume that C1 is above C2.
The graph of the average of f1 and g2 provides the required hyperplane.

Thus we will assume from now on that π(C1) ̸= π(C2). We set C ′
i = π(Ci) for

i = 1, 2. By Lemma 3.15, if D1 ∩ D2 is non-empty, there exists a cell C such that
D1 ∩D2 = cl(C).

Case 1:D1∩D2 is non-empty andC is of the form (f < g)S . — In this case, for i = 1, 2,
Ci is necessarily of the form (fi < gi)C′

i
where fi and gi are Q-affine functions coincid-

ing with f and g on S, since we are working with a special linear cell decomposition.
Furthermore Di = (fi ⩽ gi)cl(C′

i)
and we have f1 = f2 and g1 = g2 on cl(C ′

1)∩ cl(C ′
2).

It follows that D1 ∩D2 = (fi ⩽ gi)cl(C′
1)∩cl(C′

2)
, for i = 1, 2. By the induction hypoth-

esis, there exists an hyperplane h′ in Γn−1 given by a Z-affine equation satisfying the
conditions of Proposition 3.17 relatively to cl(C ′

1) and cl(C ′
2). Consider the vertical
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hyperplane H above h′ (the hyperplane defined by the same equation in Γn). It follows
from our description of D1 ∩D2 that H satisfies the required conditions.

Case 2: D1 ∩D2 is non-empty and C is of the form Γ(f)S . — By the induction hypoth-
esis, there exists an hyperplane h′ given by an equation h′(x′) = 0 in Γn−1, with h′

a Z-affine function, x′ = (x1, . . . , xn−1) fulfilling the conditions of Proposition 3.17
relatively to cl(C ′

1) and cl(C ′
2). In particular h′ ⩾ 0 on π(D1) and h′ ⩽ 0 on π(D2).

We denote by H the hyperplane with equation h′(x′) = 0 in Γn.
The set C1 is of the form (f1 < g1)C′

1
or Γ(f1)C′

1
. In the second case we set

g1 = f1. Similarly C2 is of the form (f2 < g2)C′
2

or Γ(f2)C′
2

and in the second case
we set g2 = f2. Set C ′ = π(C). Since our linear decomposition is special, we have
that f |C′ is equal to f1|C′ or g1|C′ . Without loss of generality we may assume that
f |C′ = g1|C′ . It follows that f |C′ = f2|C′ by the case assumption and the fact our
decomposition is special. Let X be the graph of g1 over cl(C ′

1). The function xn−f(x′)
is identically zero on H ∩X, hence by Lemma 3.16, there exists a positive integer M
such that |xn − f(x′)| ⩽ Mh′(x′) on X. After increasing M we may assume the
inequality is strict when h′(x′) ̸= 0. It follows that the the hyperplane HM with
equation Mh′(x′)− (xn − f(x′)) = 0 lies above the set D1 and strictly above D1∖H.
Using the same argument for D2, we get that after possibly increasing M the hyper-
plane HM lies under the set D2 and strictly under D2 ∖ H. Let us check that HM

satisfies the required conditions. Indeed, a point x = (x′, xn) lies in D1 ∩HM if and
only if x′ ∈ π(D1), x ∈ HM , and f1(x

′) ⩽ xn ⩽ g1(x
′). But if x ∈ D1 ∩HM we must

have h′(x′) = 0. Thus x lies in D1∩HN if and only if x′ ∈ π(D1), x ∈ HM , h′(x′) = 0

and xn = f(x′), from which the equality D1 ∩HN = D1 ∩D2 follows, and one gets
similarly that D2 ∩HN = D1 ∩D2.

Case 3: D1 ∩D2 is empty. — If π(D1) ∩ π(D2) = ∅ then by the induction hypothesis
there exists an hyperplane h′ in Γn−1 satisfying the required conditions for π(D1) and
π(D2) and π−1(h′) will do the job. Thus we may assume that π(D1) ̸= π(D2) and
π(D1) ∩ π(D2) ̸= ∅. We choose an hyperplane h′ in Γn−1 with equation h′(x′) = 0

satisfying the required conditions for π(D1) and π(D2). We may assume h′ ⩾ 0 on D1

and h′ ⩽ 0 on D2. As in Case 2, C1 is of the form (f1 < g1)C′
1

or Γ(f1)C′
1
. In the

second case we set g1 = f1. Similarly for C2.
Set D′

1 = D1 ∩ H and D′
2 = D2 ∩ H. We have D′

1 ∩ D′
2 = ∅. We may assume

that f2 > g1 over π(D1) ∩ π(D2). Note that if we intersect the cells of a special
linear cell decomposition of some bounded set W with H we get a special linear cell
decomposition of W ∩H. Thus we can apply the induction hypothesis to D′

1 and D′
2,

and there exists a Z-affine function f on Γn such that f > 0 on D′
1 and f < 0

on D′
2. We claim that for M a large enough integer the hyperplane Mh′ + f = 0 will

separate D1 and D2.
To prove this we proceed similarly as in the proof of Lemma 3.16. We consider

the set F of all sets F of the form F = cl(C), with C a 1-dimensional cell contained
in D1, that intersect H and are not contained in H. For such an F denote by pF the
intersection point of F with H. The restriction of f to F can be written as f(pF )+ℓF
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with ℓF a Q-linear function on F . Since h′ is strictly positive on F outside pF , there
exists a positive integer MF such that MFh

′ + ℓF ⩾ 0 on F . This still holds on the
whole half-line LF containing F with origin pF . Since f(pF ) > 0 by assumption,
we get that MFh

′ + f > 0 on LF . Take M1 = maxF(MF ). Proceeding as in the proof
of Lemma 3.16 we deduce that M1h

′+f > 0 on D1. One proves similarly the existence
of M2 such that M2h

′ + f < 0 on D2. Thus we can take M = max(M1,M2). □

Proof of Theorem 3.13. — By Lemma 3.11 we can assume that D is closed. We may
then enlarge the model Γ and assume that it contains some ρ with ρ > M . Let Dρ

denote the intersection of D with [−ρ, ρ]m. This is a definably compact subset of Γm

which is definable over Mρ :=M⊕Q ·ρ. If we prove that g|Dρ is an (ℓ,+)-combination
of the fi, the coordinate functions and some constant functions with values in Mρ,
Lemma 3.12 above will allow us to conclude that g is an (ℓ,+)-combination of the fi,
the coordinate functions and some constant functions with values in M . We thus may
and do assume that D is definably compact. By considering a submodel of M over
which everything is defined, we reduce to the case where M has exactly r non-trivial
convex subgroups, and we proceed by induction on r. The case r = 0 is obvious since
the definably compact set D is then either empty or equal to {0}. Assume now that
r > 0 and that the result holds true for smaller values of r.

Let M0 be the smallest non-trivial convex subgroup of M , and M =M/M0 be the
quotient. We are first going to explain why we can assume that g(D(M)) ⊆M0; this
is tautological if M0 =M , so we assume (just for this reduction step) that M0 ̸=M .
In this case M is a model of DOAG with r − 1 non-trivial convex subgroups, and
the natural map carrying M to M induces a map that carries D(M) to a definably
compact definable subsetD ofMm (see [CHY21, Th. 4.1.1] for example). Furthermore,
since g is Lipschitz, it descends to a definable function g : D(M) → M , which is
Lipshitz as well and is a (w,+)-combinations of the fi. By the induction hypothesis,
we then know that g is of the form τ(f1, . . . , fn), where τ is a term involving constants,
projections and +,−,min,max only. Replacing g by g−τ(f1, . . . , fn), we may assume
that g(D) ⊆M0, as announced.

By [Ele18, Fact 2.2] there exists a special linear decomposition D of D such that g
is Q-affine on each cell. Clearly D is covered by the closed sets Di = cl(Ci), for Ci

in D. In fact if one considers the set D′ of all C ∈ D such that, for any C ′ ̸= C, C is
not contained in the closure of C ′, it follows from [Ele18, Fact 2.3] that the closed
sets Di = cl(Ci) for Ci in D′ already cover D, but we will not use this. Sets of the
form cl(C) with C ∈ D will be referred to as closed cells.

We will now use the separating hyperplanes provided by Proposition 3.17 to build
affine functions that will appear in the (ℓ,+)-combination we are seeking for describ-
ing g. For this purpose, the inclusion g(D(M)) ⊆M0 will be crucial.

3.18. Claim. — Let C ′ and C ′′ be any two distinct cells in D. Set D′ = cl(C ′) and
D′′ = cl(C ′′). There exists a function fD′,D′′ in the group generated by f1, . . . , fn, the
constant functions and the coordinate functions such that
(∗) g|D′ ⩽ fD′,D′′ |D′ and fD′,D′′ |D′′ ⩽ g|D′′ .

J.É.P. — M., 2024, tome 11



Tropical functions on a skeleton 629

Proof of the claim. — By Proposition 3.17 there exists a Z-affine function h such that
the hyperplane H = h−1(0) satisfies D′ ∩D′′ = D′ ∩H = D′′ ∩H, h ⩾ 0 on D′ and
h ⩽ 0 on D′′.

If D′ ∩ D′′ = ∅, using definable compactness of D′ and D′′, we get that there
exists a ∈ M0 such that h|D′′ < −a < 0 < a < h|D′ . Moreover, by our assumption
that g(D(M))) ⊆M0, there is b ∈M0 such that g(D(M)) ⊆ (−b, b). For any positive
integer m we have mh− g > ma− b on D′ and mh− g < −ma+ b on D′′. Since M0

is archimedean, for m large enough, we have ma > b, hence condition (∗) is satisfied
for fD′,D′′ = mh.

If D′ ∩ D′′ ̸= ∅, take c ∈ D′ ∩ D′′ and let G be the Q-affine function such that
g = G on D′. Replacing g by g−G, we may assume that g = 0 on D′. Translating our
entire set by c, we may assume that c is the origin. Thus g(0) = 0 and g is actually the
restriction of a Q-linear function on D′′. On D′, for any positive integer m, we have
mh ⩾ 0 = g. For any b ∈ D′′, if h(b) = 0, then b ∈ D′′ ∩H = D′ ∩H, hence g(b) = 0.
Thus, by Lemma 3.16, there exists a positive integer m such that −g ⩽ −mh on D′′.
For such an integer m, we have g ⩽ mh on D′ and g ⩾ mh on D′′. □

We can now conclude the proof of Theorem 3.13. Note that g is a w-combination of
the functions fi; it is thus a fortiori a w-combination of the set of functions obtained
by adding all the functions fD′,D′′ from Claim 3.18 to the functions fi. Take x and y
in D. If they belong to the same closed cell D′ = cl(C ′), then g(x) = fi(x) and
g(y) = fi(y) for some i and condition (4) in Proposition 3.8 is satisfied. If they belong
to two distinct closed cells D′ and D′′, then g(x) ⩽ fD′,D′′(x) and fD′,D′′(y) ⩽ g(y)

by Claim 3.18. Thus, by the implication (4) ⇒ (1) in Proposition 3.8, we obtain that g
is an ℓ-combination of the functions fi and fD′,D′′ , which concludes the proof. □

The proof of Claim 3.18 actually yields the following convenient way to check if a
given function is Lipschitz on a definably compact set.

3.19. Corollary. — Let D′ and D′′ be two definably compact convex sets such that
D′ ∩ D′′ = D′ ∩ Ha = D′′ ∩ Ha ̸= ∅ with Ha an hyperplane defined by a Z-affine
function. Assume further that g a continuous function that is affine on D′ and D′′

respectively, then g is Lipschitz on D′ ∪D′′.

3.20. Remark. — Note that one can have definably compact versions of Example 3.5
by replacing [0,∞) with [0, c] for some c > n ·1 for all n ∈ N. However, the function g
there is not Lipschitz because |(0, c)− (1, c)| = 1 and |g(0, c)− g(1, c)| = c.

3.21. Remark. — In the case of homogeneous linear equations, with no parame-
ters, equivalence of ℓ-combination and w-combination goes back to work of Beynon
[Bey75], see also [Gla99, §5.2] and [Ovc02] for related results. In 2011, as a student,
Daniel Lowengrub rediscovered and partially generalized Beynon’s results. He also
gave Example 3.5 showing that they do not hold over non-archimedean parameters.
Here we fully generalized them, after replacing continuity by a Lipschitz condition.
Our proofs in this section make use of his ideas.
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4. Complements about Γ-internal sets

4.1. Preimages of the standard Γ-internal subset of Ĝn
m. — Let k be an alge-

braically closed valued field and let X be an irreducible n-dimensional k-scheme of
finite type.

Let Σn be the image of the definable topological embedding from Γn into Ĝn
m that

sends a n-tuple γ to the generic point rγ of the closed n-ball with valuative radius γ
and centered at the origin. This set Σn is the archetypal example of a Γ-internal
subset, and it is contained in (Gn

m)
#
gen.

Let φ be any morphism from X to Gn
m. Set Υ = φ−1(Σn). If dimφ(X) < n then

φ(X̂) does not meet Σn (since the latter lies over the generic point of Gn
m), so Υ = ∅.

Assume that dimφ(X) = n, which means that φ is generically finite. Then each point
of Υ lies in X#

gen by [HL16, Prop. 8.1.2] and φ−1(s) is finite for every s ∈ Σn.
The purpose of what follows is to show that Υ is Γ-internal and purely n-dimen-

sional, and that this also holds more generally for a finite union of pre-images for Σn

under various maps from X → Gn
m. This is a model-theoretic version of a result that

is known in the Berkovich setting, see [Duc12, Th. 5.1].

4.2. Theorem. — Let X be an n-dimensional k-scheme of finite type and let
φ1, . . . , φm be morphisms from X to Gn

m. The finite union Υ :=
⋃
φ−1
j (Σn) is a

purely n-dimensional Γ-internal subset of X̂ contained in X#
gen.

Proof of Theorem 4.2. — It is sufficient to prove that φ−1
j (Σn) is Γ-internal and purely

n-dimensional for every j. Indeed, assume that this is the case. Then if j and ℓ are two
indices the intersection φ−1

j (Σn)∩φ−1
ℓ (Σn) is definable in both φ−1

j (Σn) and φ−1
ℓ (Σn)

by [HL16, Lem. 8.2.9] so Υ is Γ-internal, and obviously purely n-dimensional as a finite
union of purely n-dimensional Γ-internal subsets.

We can thus assume that m = 1, and we write φ instead of φ1. By its very
definition, Υ is pro-definable, and we have seen above that it is contained in the strict
ind-definable set X#. It lies therefore inside a definable subset of X#, and by using
once again [HL16, Lem. 8.2.9] we see that Υ is iso-definable. Moreover we also have
seen above that Υ → Σn has finite fibers, thus using [HL16, Cor. 2.8.4] or the fact
that for any tuple a of elements of Γ the algebraic and definable closures of a over k
coincide ([HHM06, Lem. 3.4.12]), one deduces that the definable set Υ is Γ-internal
since Σn is.

It remains to show that it is purely n-dimensional. Since Υ is contained in X#, and
lies over the quasi-finite locus V of φ, it is contained in Û for any Zariski-open subset U
of V meeting all n-dimensional components of V ; this holds in particular for U the
flat locus of φ|V . The flatness of the map U → Gn

m implies that Û → Ĝn
m is open by

[HL16, Cor. 9.7.2], so the finite-to-one map Υ → Σn is open. As a consequence, Υ is
purely n-dimensional. □

Our purpose is now to prove that conversely, every Γ-internal subset of X#
gen is

contained in some finite union
⋃

j φ
−1
j (Σn) as above (Theorem 4.4); this is an instance
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of the general principle according to which Γ-internal subsets of X# are expected to
be reasonable (while general Γ-internal subsets of X̂ can likely be rather pathological).
Originally we used this result through Corollary 4.5 for proving Theorem 7.2, but we
finally do not need it anymore. Nonetheless, we have chosen to keep it in this paper,
because it seems to us of independent interest, and shows that the main objects
considered in this work are more tractable than one could think at first sight.

We start with a result which will be used for proving our theorem but is of inde-
pendent interest; this is the analogue of [Duc12, Th. 3.4(1)]. If x is a point of X̂ and
if f = (f1, . . . , fn) : X → Gn

m is a morphism, the tropical dimension of f at x is the
infimum of dimval(f)(V̂ ) = dimval(f)(V ) for V an arbitrary definable subset of X
such that V̂ is a neighborhood of x in X̂.

4.3. Proposition. — Let f = (f1, . . . , fn) : X → Gn
m be a morphism, and set Υ =

f−1(Σn). Then Υ is exactly the set of points of X̂ at which the tropical dimension
of f is equal to n.

Proof. — Let x ∈ X̂. A point x of X̂ belongs to Υ if and only if f1, . . . , fn is an
Abhyankar basis at x, i.e.,

val
(∑

aIf
I(x)

)
= min

I
val(aI) + val(f I(x))

for any non-zero polynomial
∑
aIT

I with coefficients in K.
Now let x ∈ X̂ ∖ Υ. Then f1, . . . , fn is not an Abhyankar basis at x. Therefore

there exists a polynomial
∑
aIT

I with coefficients in K such that

val
(∑

aIf
I(x)

)
> min

I
val(aI) + val(f I(x)).

Let V be the subset of X defined by the inequality

val
(∑

aIf
I
)
> min

I
val(aI) + val(f I).

It is a definable subset of X, and its stable completion is an open neighborhood of x
in X̂. Moreover by the very definition of V , for every y ∈ V there exists two distinct
multi-indices I and J with val(aI) + val(f I(y)) = val(aJ) + val(fJ(y)), which shows
that val(f)(V ) is contained in a finite union of (n− 1)-dimensional subspaces of Γn.
As a consequence, the tropical dimension of f at x is at most n− 1.

Conversely, let x ∈ Υ and let V be a definable open subset of X such that V̂ is
a neighborhood of x in X̂. Since x ∈ Υ, it is contained in X#

gen. There is a dense
open subset U of X such that f induces a finite flat map from U to a dense open
subscheme of Gn

m; then the induced map Û → Ĝn
m is open by [HL16, Cor. 9.7.2], and

since x ∈ X#
gen, it belongs to Û ; as a consequence, f is open around x. In particular,

f(V̂ ) contains a neighborhood Ω of f(x). Since x ∈ Υ, the image f(x) is equal to rγ for
some γ ∈ Γn. The intersection Ω∩Σn then contains {rδ}δ∈B for B some product of n
open intervals containing γ, so val(f)(V̂ ) contains B, and is in particular n-dimen-
sional. The tropical dimension of f at x is thus equal to n. □
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We are now ready to establish the announced description of a Γ-internal subset Υ

of X#
gen. The case where Υ is purely n-dimensional will rely of the description of the

maximal tropical dimension locus given by the above proposition. The general case
will then be handled by embedding Υ into a purely n-dimensional Γ-internal subset
of X#

gen – the basic idea for doing this is to increase the dimension of Υ (until n is
achieved) by “following” it along a deformation retraction as built in [HL16].

4.4. Theorem. — Let X be an n-dimensional integral scheme of finite type over k,
and let Υ ⊆ X#

gen be a Γ-internal subset defined over k. There exists a dense open
subset U of X and finitely many morphisms φ1, . . . , φm from U to Gn

m such that
Υ ⊆

⋃
j φ

−1
j (Σn).

Proof. — Let us first assume that Υ is purely n-dimensional. Since k is algebraically
closed, after shrinking X we might assume that there exist finitely many invertible
functions f1, . . . , fr on X such that val(f) induces a k-definable homeomorphism
between Υ and a definable subset of Γr (2.3). For every subset I of {1, . . . , r} of
cardinality n, let fI be the map from X to GI

m given by the fi with i ∈ I. Since Υ

is of pure dimension n, for every x ∈ Υ there is at least one subset I of {1, . . . , r} of
cardinality n such that the tropical dimension of fI at x is n. By Proposition 4.3, this
means that

Υ ⊆
⋃

I⊆{1,...,r}
|I|=n

f−1
I (Σn),

which ends the proof in this particular case. As a by-product, we get in view of
Theorem 4.2 that a finite union of purely n-dimensional Γ-internal subset of X#

gen is
still Γ-internal (and of course purely n-dimensional).

Let us now go back to an arbitrary Υ. In order to prove the theorem, it suffices
by the above to show that Υ is contained in some purely n-dimensional Γ-internal
subset of X#

gen. By shrinking X we can assume that it is quasi-projective. We have
already noticed that a finite union of purely n-dimensional Γ-internal subset of X#

gen

is still Γ-internal and purely n-dimensional, which allows ourselves to cut Υ into
finitely many k-definable pieces and to argue piecewise. We thus can assume that Υ

is purely d-dimensional for some d, and we argue by descending induction on d, so we
assume that our statement holds if the Γ-internal subset involved is equidimensional
of dimension > d.

Let α be a k-definable embedding from Υ into some Γm given by finitely many non-
zero rational functions. By [HL16, Th. 11.1.1], there exists a pro-definable deformation
retraction h : I × X̂ → X̂ preserving α with a Γ-internal purely n-dimensional image
Υtarg contained inX#. Let Υs = {p ∈ Υ : h(t, p) = p for any t}. By its very definition,
Υs is contained in the set Υ′ of Zariski-dense points of Υtarg, which is a purely
n-dimensional Γ-internal subset of X#

gen. It therefore suffices to prove the proposition
for the open complement of Υs in Υ, which is still purely d-dimensional. In other
words, we can assume that Υs = ∅.
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Let Υ′′ = h(I,Υ). We claim that it is iso-definable, and thus Γ-internal. By [HL16,
Lem. 2.2.8], Υ′′ is strict pro-definable. Since Υ ⊆ X#, the set Υ′′ is contained in X#

as well by [HL16, Th. 11.1.1] and the latter is strict ind-definable. Hence by com-
pactness, we see that h(I,Υ) is a strict pro-definable subset of a definable set, thus
is iso-definable. Note also that the homotopy built in [HL16] is Zariski-generalizing,
so Υ′′ ⊆ X#

gen.
Since Υs = ∅, for every p ∈ Υ there are some ap, bp in I with ap < bp such

that h|[ap,bp] : [ap, bp] → X̂ is injective. Since Υ′′ is Γ-internal, the induced function
h : I × Υ → Υ′′ is a definable function in the o-minimal sense. Let x = h(p, t) be a
point of Υ′′, with t and p defined over k. We claim that dimp Υ

′′ = d + 1. Indeed,
since dimp Υ = d, there exists a point q in U that specializes to p (when viewed
as a type over k) and such that α(q) is d-dimensional over k (i.e., its coordinates
generate a group of rational rank d over Γ(k)). Now up to replacing t if necessary by
an endpoint of an interval containing t on which h(p, ·) is constant, we may assume
that there exists a non-singleton segment J ⊆ I having t as one of its endpoints such
that h(p, ·)|J is injective. If K is some subinterval of J containing t defined over k(q)
and on which h(q, ·) is constant then since h is continuous and thus is compatible
with specialization, both endpoints of K have to specialize to t. Thus there exists a
non-singleton segment K contained in J and defined over k(q), having one endpoint τ
that specializes to t, on which h(q, ·) is injective. Now let us choose an element τ ′ of K
that specializes to t and such that k(τ ′) is of dimension 1 over k(q). By construction
h(q, τ ′) is a point of Υ′′ that specializes to h(p, t) and that is (d + 1)-dimensional
over k, whence our claim.

It follows that Υ′′ is of pure dimension d + 1, and it contains Υ. By induction,
Υ′′ is contained in some purely n-dimensional Γ-internal subset of X#

gen, and we are
done. □

This theorem has an interesting consequence concerning the closure Υ of Υ, or at
least its subset Υgen consisting of Zariski-generic points (let us mention that the
general structure of the closure of an arbitrary Γ-internal subset is poorly understood).

4.5. Corollary. — Let X be an n-dimensional integral scheme of finite type over k,
and let Υ ⊆ X#

gen be a Γ-internal subset. The set Υgen is contained in X# and is
Γ-internal.

5. A first finiteness result

The aim in this section is to prove a finiteness result, Theorem 5.6, which is weaker
than our main theorem but will be needed in its proof.

5.1. Notation. — Throughout this section we fix a valued field k, an n-dimensional
integral k-scheme of finite type X, and a Γ-internal subset Υ of X#

gen. Every non-zero
k-rational function f ∈ k(X) gives rise to a k-definable map val(f) : Υ → Γ. The
set of all such maps is denoted by Sk(Υ), or simply by S(Υ) if the ground field k is
clearly understood from the context. Elements of S(Υ) will be called regular functions
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from Υ to Γ. By a constant function on Υ we shall always mean a k-definable constant
function; i.e., an element of val(k)⊗Q.

Assume that val(k) is divisible, in which case S(Υ) contains the constant functions.
We shall then say for short that S(Υ) is finitely (w,+)-generated up to constant
functions if there exist a finite subset E of S(Υ) such that S(Υ) is (w,+) -generated
by E and the constant functions.

5.2. Remark. — For a subset E of S(Υ) to w-generate S(Υ), it suffices by compactness
that for every p ∈ Γ and every f ∈ S(Υ) there exists g ∈ E such that f(p) = g(p).

Our purpose is now to show that if val(k) is divisible and k is defectless, S(Υ) is
finitely (w,+)-generated up to constant functions. (Recall that a valued field F is
called defectless or stable if every finite extension of F is defectless; to avoid any risk
of confusion with the model-theoretic notion of stability use the terminology defectless
instead of stable.) The core of the proof is the following proposition about valued field
extensions.

5.3. Proposition. — Let F ↪→ K ↪→ L be finitely generated extensions of valued fields,
with K = F (a) and L = K(b). We make the following assumptions:

(1) F is defectless;
(2) K is Abhyankar over F ;
(3) res(K) = res(F );
(4) val(L) = val(K);
(5) L is finite over K.
Then there exists a quantifier-free formula φ(x, y) in the language of valued fields

with parameters in F such that L |= φ(a, b), and such that whenever L′ = F (a′, b′) is
a valued field extension with L′ |= φ(a′, b′) and the residue field of K ′ := F (a′) is a
regular extension of res(F ), then val(L′) = val(K ′).

Proof. — Since F is defectless, K is defectless as well (this was proved by Kuhlmann
in [Kuh10], but for the reader’s convenience we give a new proof of this fact in the
appendix with model-theoretic tools based upon [HL16], see Theorem A.1). Therefore,
Lh is a defectless finite extension of Kh; let d denote its degree. By assumption one
has val(Lh) = val(Kh), so that res(Lh) is of degree d over res(F h). In other words,
res(L) is of degree d over res(K).

Now let c1, . . . , cr be elements of res(L) that generate it over res(F ); for
every i, let Pi be a polynomial in i variables with coefficients in res(F ) such
that Pi[c1, . . . , ci−1, T ] is the minimal polynomial of ci over res(F )[c1, . . . , ci−1].
Choose a lift Qi of Pi monic in T with coefficients in the ring of integers of F , and
an element Ri of F (X)[Y ] such that Ri(a, b) is a lift of ci. Let Φ(x, y) be the formula

val(Ri(x, y)) = 0 and val[Qi(R1(x, y), . . . , Ri(x, y))] > 0 for all i.

Now Lh is a compositum of L and Kh, so it is generated by b over Kh. Hence
there exists a sub-tuple β of b of size d such that b is contained in the Kh-vector
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space generated by β. As Kh is the definable closure of K, the latter property can
be rephrased as Ψ(a, b) for some quantifier-free formula Ψ in the language of valued
fields, with parameters in F .

Now let L′ := F (a′, b′) be a valued extension of F , and set K ′ = F (a′). Assume
that res(K ′) is a regular extension of res(F ), and that

L′ |= Φ(a′, b′) and Ψ(a′, b′).

Then Ψ(a′, b′) ensures that (L′)h is at most d-dimensional over (K ′)h, while Φ(a′, b′)

ensures that res(L′) contains a field isomorphic to res(F )(c1, . . . , cr) = res(L). Since
res(K ′) is regular over res(K) = res(F ), the residue field res(L′) contains a field iso-
morphic to res(L)⊗res(F ) res(K

′), which is of degree d over res(K ′). As a consequence,

[L′ : K ′] = [res(L′) : res(K ′)] = d

and thus
val(L′) = val(K ′). □

5.4. Generic types of closed balls. — In practice, the above proposition will be
applied for a realizing the generic type of a ball over F . Let us collect here some basic
facts about such types. If γ is an element of Γ, we denote by rγ the type of the closed
ball of (valuative) radius γ, which belongs to Â1 and even to A1#. More generally if
γ = (γ1, . . . , γn) we shall denote by rγ the type rγ1

⊗ · · · ⊗ rγn
, which is the generic

type of the n-dimensional ball of polyradius (γ1, . . . , γn) and belongs to An#.
Now let F be a valued field, let K be a valued extension of F and let

a1, . . . , ar, ar+1, . . . , an be elements of K×. Assume the following:
(1) the group elements val(a1), . . . , val(ar) are Z-linearly independent over val(F );
(2) one has val(ai) = 0 for i = r + 1, . . . , n and the residue classes of the ai for

i = r + 1, . . . , n are algebraically independent over res(F ).
Set γi = val(ai) for i = 1, . . . , n. Then under these assumptions one has a |= rγ |F (γ).

Conversely, assume that a |= rγ |F (γ). Then val(ai) = 0 for i = r + 1, . . . , n, the
residue classes of the ai for i = r+1, . . . , n are algebraically independent over res(F )

and res(F (ar+1, . . . , an) is generated by the residue classes of the ai, so is purely
transcendental of degree n − r over res(F ). In particular, this is a regular extension
of res(F ). Now the val(ai) for i = 1, . . . , r are Z-linearly independent, the group
val(F (a1, . . . , an)) is generated over the group val(F (ar+1, . . . an)) = val(F ) by the
val(ai) for i = 1, . . . , r, so it is free of rank r modulo val(F ); and the residue field
of F (a1, . . . , an) is equal to that of F (ar+1, . . . , an), so it is purely transcendental of
degree n− r over res(F ); in particular, this is a regular extension of the latter.

5.5. Lemma. — Let F be a valued field and let p be a strongly stably dominated (global)
type with canonical parameter of definition γ ∈ Γn over F . Let b |= p|F (γ) and set
K = F (b). Then:

(1) γ is definable over F (b);
(2) F (b) is an Abhyankar extension of F .
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Proof. — Let us start with (1). Let Φ be an automorphism of the monster model
fixing F (b) pointwise. One has to show that Φ fixes γ, or p – this amounts to the
same. Set δ = Φ(γ) and q = Φ(p). Let A be a Φ-invariant subset of Γ containing γ.
Since p is orthogonal to Γ, the restriction p|F (γ) implies a complete type r over F (A),
which coincides necessarily with the type of b over F (A). Thus p contains the type of b
over F (A), and so does Φ(p) since both b and A are Φ-invariant. So p and Φ(p) are
two global generically stable F (A)-definable types that coincide over F (A); it follows
that they are equal, cf. [Sim15, Prop. 2.35].

Now we prove (2). By replacing γ by a suitable subtuple if necessary, we may and do
assume that γ = (γ1, . . . , γn) where the γi are Z-linearly independent over val(F ). Now
choose c = (c1, . . . , cn) realizing rγ over F (b). Then by stable domination, b realizes p
over F (γ, c) and in particular over F (c). The type p is strongly stably dominated,
and it is definable over F (c) by construction. So res(F (b)) is of transcendence degree
dimX over res(F (c)), and F (b, c) is thus Abhyankar over F (c), hence over F since
F (c) is Abhyankar over F . Then F (b) is Abhyankar over F . □

5.6. Theorem. — Let F be a defectless valued field with divisible value group. Let X
be an n-dimensional integral F -scheme of finite type, and let Υ be a Γ-internal subset
of X#

gen ⊆ X̂. Then S(Υ) is finitely (w,+)-generated up to constant functions.

Proof. — We shall prove the following: for every p ∈ Υ, there exists a F -definable
subset W of Υ containing p and finitely many functions a1, . . . , an in F (X)× such
that for every x ∈ W and every f ∈ S(Υ), the element val(f(x)) of Γ belongs to the
group generated by val(F ) and the val(ai(x)). This will allow us to conclude. Indeed,
assume that this statement has been proved. Then by compactness there is a finite
cover W of Υ with finitely many sets W as above. Hence S(Υ) is (w,+)-generated by
the ai up to constant functions.

Let p ∈ Υ. This is a strongly stably dominated global type. Let γ ∈ Γr be a
canonical parameter of definition of p and let b be a realization of p over F (γ).
By Lemma 5.5, γ is definable over F (b) and F (b) is Abhyankar over F . As γ is defi-
nable over F (b) and as it is defined only up to inter-definability, we can assume that
γ = (γ1, . . . , γr) where the γi are Z-linearly independent over val(F ), and where each
γi is equal to val(ai) for some ai ∈ F (b). Since p is stably dominated every element of
val(F (b)) belongs to the Q-vector space generated by val(F ) and the γi. Moreover the
group val(F (b)) is finitely generated over val(F ) because F (b) is Abhyankar over F
and as val(F ) is divisible, val(F (b)) is torsion-free modulo val(F ); as a consequence,
val(F (b))/val(F ) is free of finite rank. We can thus even assume that (γ1, . . . , γr) is a
Z-basis of val(F (b))/val(F ). The valued field F (b) being Abhyankar over F , the fam-
ily (a1, . . . , ar) can be completed into an Abhyankar basis (a1, . . . , ar, ar+1, . . . , an)

of F (b) over F such that val(ai) = 0 for every i ⩾ r + 1 and the residue classes of
ar+1, . . . , an are algebraically independent over the residue field of F . The field F (b)

is then algebraic over F (a1, . . . , an). We set a = (a1, . . . , an) and we now denote by γ
the n-uple (γ1, . . . , γn) with γi = 0 if i ⩾ r + 1, so that γi = val(ai) for all i.
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Since p is Zariski-generic, a = (a1, . . . , an) can be interpreted as an n-uple of
rational functions on X, giving rise to a map π from a dense open subset of X to An

F .
In particular, π induces a map (which we still denote by π) from Υ to Ân

F , and the
fact that a1, . . . , an is an Abhyankar basis of F (b) means that π(p)|F (γ) = rγ |F (γ);
as both π(p) and rγ are generically stable types defined over F (γ), it follows that
π(p) = rγ .

Moreover, the tower F (ar+1, . . . , an) ⊆ F (a) ⊆ F (a, b) fulfills the conditions of
Proposition 5.3; hence the latter provides a formula φ(y, x1, . . . , xr) with coefficients
in F (ar+1, . . . , an), which we can see as the evaluation at (ar+1, . . . , an) of a formula
ψ(y, x1, . . . , xn).

Now let W be the subset of Υ defined as the set of types q satisfying the following
conditions, with δi := val(ai(q)):

(a) π(q) = rδ;
(b) δi = 0 for r + 1 ⩽ i ⩽ n;
(c) ψ(b(q), a1(q), . . . , an(q)) holds.
Then W is an F -definable subset of Υ – as far as condition (a) is concerned this

is by [HL16, Lem. 8.2.9], and it contains p. Now let q be a point of W . Set b′ = b(q)

and a′ = a(q), and γ′i = val(a′i) for all i. Conditions (a) and (b) ensure that F (a′) has
a residue field which is regular over res(F (a′r+1, . . . , a

′
n)). Indeed, up to applying an

invertible monomial transformation to (a′1, . . . , a
′
r) and renormalizing, we can assume

that there is some s such that val(a′1), . . . , val(a
′
s) are free modulo val(F ) and that

val(a′t) = 0 for s+1 ⩽ t ⩽ r, in which case the result is obvious since the residue field
we consider is then purely transcendental of degree r−s over that of F (a′r+1, . . . , a

′
n).

Using the fact that F (a′r+1, . . . , a
′
n) ≃ F (ar+1, . . . , an) as valued extensions of F

(with a′i corresponding to ai) and the definition of ψ, we see that val(F (b′, a′)) =

val(F (a′)). In other words, the value group of q is generated by the ai(q) and val(F ),
which ends the proof. □

Our purpose is now to show how the results of section 5 extend quite straightfor-
wardly, at least on affine charts, when Υ is not assumed to consist only of Zariski-
generic points.

5.7. A more general setting. — We still denote by k a defectless valued field with
divisible value group. LetX be an affine k-scheme of finite type, and let Υ be a Γ-inter-
nal subset of X# ⊆ X̂. Let X1, . . . , Xm be the irreducible Zariski-closed subsets of X
whose generic point supports an element of Υ (it follows from [HL16, Cor. 10.4.6] and
finiteness of the Zariski topology of Γw

∞ that there is only a finite number of such
irreducible subsets); for each i, set

X ′
i = Xi ∖

⋃
j,Xj⊊Xi

Xj

and Υi = Υ∩X̂ ′
i. By construction, Υ =

∐
Υi and for all i, Υi consists only in Zariski-

generic points in in X̂ ′
i. We denote by S(Υ) the set of k-definable functions of the form

val(f) with f a regular function on X (and not merely a rational function as above).
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5.8. Proposition. — There exists a finite set E of regular functions on X such that
for every f ∈ S(Υ), there exists a finite covering (Da)a of Υ by closed definable subsets
and, for each a, an element λ of k, a finite family (e1, . . . , eℓ) of elements of E, and
a finite family (ε1, . . . , εℓ) of elements of {−1, 1} such that:

• εj = 1 if ej vanishes on Da;
• f = val(λeε11 . . . eεℓℓ ) identically on Da.

Proof. — For all i, we can apply Theorem 5.6 to the integral scheme X ′
i and the

Γ-internal set Υi; let Ei be the finite set of rational functions on X ′
i provided by this

theorem. Write Ei = {gij/hij}j where gij and hij are non-zero regular functions on
the integral affine scheme Xi. For all (i, j), let g′ij and h′ij denote lifts of gij and hij
to the ring OX(X). We then might take for E the set of all g′ij and h′ij . □

6. Specializations and Lipschitz embeddings

As before, Υ is a Γ-internal subset ofX#
gen forX a separated integral scheme of finite

type over a valued field K. The goal of this section is to show the existence of regular
embeddings of Υ in some Γn such that S(Υ) becomes exactly the set of Lipschitz
definable functions under certain assumptions. We begin with some definitions.

6.1. Definition. — Let α : Υ → Γn be a definable and continuous map and set
W = α(Υ).

(1) We say α is regular if α is given by a tuple of regular functions Υ → Γ, i.e.,
functions of the form val(f) with f a non-zero rational function.

(2) If α is an embedding, then we say α−1 :W → Υ is an integral parameterization
if for any rational function f defined on Υ, val(f) ◦α−1 is piecewise Z-affine. We will
also call α integral in this case.

(3) If α is an embedding, then we say α−1 : W → Υ is Lipschitz if for any non
zero rational function f on X, val(f) ◦α−1 is a Lipschitz function. We will also say α
is Lipschitz.

(4) We say α is a good embedding if it is integral and Lipschitz.

It is immediate from the definition that if α : Υ → Γn is a regular embedding
(resp. regular integral embedding, resp. regular Lipschitz embedding) and f is another
regular function Υ → Γ, then (α, val(f)) : Υ → Γn+1 is also a regular embedding
(resp. regular integral embedding, resp. regular Lipschitz embedding).

6.2. Lemma. — Assume that K is algebraically closed and let Υ be a Γ-internal subset
of X#

gen. Then there exists a regular integral embedding α : Υ ↪→ Γn.

Proof. — By Theorem 5.6 there exists a finite family α = (α1, . . . , αn) which (w,+)-
generates S(Υ) modulo the constant functions. Since K is algebraically closed, it fol-
lows from [HL16, Prop. 6.2.7] that there exists a regular embedding of Υ. We may
thus enlarge α so that it becomes a regular embedding; it is integral by (w,+)-
generation. □
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We will now recall some basic facts about ACV2F and specializations, that will
provide an important criterion for the existence of good embeddings.

6.3. ACV2F-specializations. — We consider a triple (K2,K1,K0) of fields with sur-
jective places rij : Ki → Kj for i > j, with r20 = r10 ◦ r21, such structures are also
called V2F. The places r21 and r20 give rise to two valuations on K2, which we denote
by val21 and val20 respectively. We denote by Γij and RESij the corresponding value
groups and residue fields. We consider (K2,K1,K0) as a substructure of a model of
the theory ACV2F introduced in [HL16, Ch. 9.3]. We will use K210 to denote the
structure (K2,K1,K0). It is clearly an expansion of (K2, val21) via an expansion of
the residue field and an expansion of (K2, val20) by a convex subgroup in the value
group. We will focus on the latter expansion.

Let X be an affine integral scheme of finite type over K2, we will use X20 when we
view X as a definable set in an ambient model of ACVF extending (K2, val20) and X21

is defined analogously. There is a natural map s : X#
20 → X#

21 which can be described
as follows. Let p ∈ X#

20. By [HL16, Lem. 9.3.8], we have that p generates a complete
type p210 in ACV2F. Furthermore, by [HL16, Lem. 9.3.10], p210 as an ACV2F-type is
stably dominated. Let dim(p) denote the dimension of the Zariski closure of p. Let
L |= ACV2F extending K210 and c |= p|L. Since p corresponds to an Abhyankar point
in the space of valuations, we see that the residual transcendence degree of tp 21(c/L)

is still dim(p), so tp 21(c/L) extends to a type s(p) in X#
21. (Note that here we work

in the restricted language where the only valuation is val21.)

6.4. Lemma. — Let Y ⊆ X#
20 be an ACV2FK210

-definable set, then s|Y is a definable
function.

Proof. — By the way s is defined, it is a pro-definable function by considering the φ-
definitions. Note that a pro-definable function between two definable sets is definable
by compactness. □

We need one last lemma before stating our criterion with respect to specializations.

6.5. Lemma. — Let (K2,K1,K0) |= ACV2F and Y be a definable set of imaginaries in
ACVFK21 . If Y is Γ20-internal as a definable set in ACV2FK210 , then Y is Γ-internal
in K21.

Proof. — By the classification of imaginaries in ACVF [HHM06, Th. 1.01], if Y is
not Γ-internal in K21, there is an ACVFK21 -definable map (possibly after expanding
the language by some constants) that is generically surjective onto the residue field.
By assumption, Y is Γ20-internal as an ACV2FK210

set. This yields a generically sur-
jective map Γ20 → RES21. Composing with the dominant place RES21 → RES20,
we obtain an ACV2F-definable map Γ20 → RES20 that is generically surjective.
By [HL16, Lem. 9.3.1(4)], one checks immediately that the two sorts Γ20 and RES20
are orthogonal in ACV2F, hence a contradiction. □
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6.6. Specializable maps and Lipschitz condition. — Now we introduce the notion
of specializations of maps. Let (K, v) be a valued field, we denote by ρ(K) the set
of convex subgroups of Γ(K). Clearly, if K is of transcendence degree m over the
prime field, then |ρ(K)| ⩽ m + 1. For each ∆ ∈ ρ(K), we have a valuation val21 :

K → Γ(K)/∆ given by quotienting out by ∆, which gives rise to a V2F structure
we shall denote by K[∆]. Each choice of ∆ specifies an expansion of ACVFK to
ACV2FK by interpreting the convex subgroup to be the convex hull of ∆. Moreover,
by varying ∆ one exhausts all the possible expansions of ACVFK to ACV2FK . Let X
be an integral separated scheme of finite type over K as before. We write X∆ to
denote X as a definable set in ACVFK[∆]. We use s∆ to denote the map s defined in
Section 6.3 when we expand ACVFK to ACV2FK[∆]. We use Υ∆ to denote s∆(Υ).
Similarly, if α : Υ → Γn is some regular embedding, we use α∆ : Υ∆ → Γn

21 to denote
the corresponding map.

6.7. Definition. — Let α : Υ ↪→ Γn be a regular embedding and let K be a field over
which α is defined. We say α is specializable if for every convex subgroup ∆ of Γ(K)

the map α∆ is still an embedding.

6.8. Remark. — Note that the specializability of α does not depend on the choice
of K. Namely, let L ⊇ K be an extension of valued fields, it suffices to show that if α is
specializable with respect toK, it is so with respect to L. Let ∆L be a convex subgroup
of Γ(L). Note that this gives a convex subgroup ∆K of Γ(K) by taking intersection.
Note that whether α∆L

is an embedding only depends on ACVFL[∆L], which is an
expansion of ACVFK[∆K ]. Hence the specializability of α over K guarantees that α∆L

is an embedding.

6.9. Remark. — If α : Υ ↪→ Γn is a specializable regular embedding and β : Υ → Γm

is any regular map, the regular embedding (α, β) : Υ → Γn+m is specializable as well.

6.10. Remark. — Assume α : Υ → Γn is specializable and defined over K, and Υ′ ⊆ Υ

is definable but not necessarily over K. If α is specializable, so is α|Υ′ . This follows
from a similar argument as in Remark 6.8. More precisely, let L ⊇ K be such that Υ′

is defined over L, any expansion of ACVFL to ACV2FL by some ∆′ gives an expansion
of ACVFK to ACV2FK by some ∆. As α is specializable, α∆ is an embedding for
any ∆, thus α|Υ′ is specializable.

6.11. Theorem. — Let X be an affine integral scheme of finite type over a valued
field K and let Υ ⊆ X# be a Γ-internal subset. Let F be a finitely generated field
over which all the above is defined. Then there exists a F alg-definable integral regular
embedding of Υ into Γn that is specializable.

Proof. — For each ∆ ∈ ρ(F ), by Lemma 6.5, we have that Υ∆ ⊆ X#
∆ is Γ-internal in

ACVFF [∆].
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Consider X as embedded in some affine space. By [HL16, Cor. 6.2.5], for each ∆,
there are finitely many polynomial functions h∆i such that

h∆ = (val(h∆1 ), . . . , val(h
∆
s ))

is injective on Υ.
Moreover the h∆i ’s can be found to be defined over F alg by the proof of [HL16,

Cor. 6.2.5] (or more precisely, [HL16, Lem. 6.2.2]). Since there are only finitely many
such ∆’s to consider, putting them as the coordinates, we get some specializable
embedding as desired, which can be made integral by concatenation with an arbitrary
integral regular embedding, whose existence follows from Lemma 6.2. □

6.12. Remark. — In the situation of interest for classical non-archimedean geometry,
the ground field K will be algebraically closed and equipped with a valuation whose
group embeds into R and has therefore no non-trivial proper convex subgroup. The
reasoning above then shows that any K-definable regular embedding from Υ into Γs

is specializable.

6.13. Proposition. — Let X be an affine integral scheme of finite type over a valued
field K and let Υ ⊆ X# be a Γ-internal subset. If α : Υ ↪→ Γn is a specializable
embedding, then the image of S(Υ) is contained in the group of Lipschitz functions.
In other words, all the log-rational functions are Lipschitz and α is Lipschitz.

Proof. — We let W = α(Υ) and use pw to denote α−1(w) for w ∈ W . Assume there
is some f ∈ K(X) such that w 7→ pw(f) is not Lipschitz. Going to an elementary
extension, we may assume there is w1, w2 ∈W such that |pw2

(f)−pw1
(f)| > n|w1−w2|

for all n ∈ N. Take C to be the convex subgroup generated by |w1−w2|. Consider L to
be the same field with the valuation given by quotienting out by C. By our assumption
on specializability, we have that αL is an embedding. However, we have w1 = w2, while
pw1(f) = pw1(f) + C ̸= pw2(f) + C = pw2(f), a contradiction. □

6.14. Corollary. — Let X be an affine integral scheme of finite type over an alge-
braically closed valued field K and let Υ ⊆ X# be a Γ-internal set. Then there exists
a good embedding Υ ↪→ Γn.

Proof. — The embedding provided by Theorem 6.11 is K-definable, and it is good in
view of Proposition 6.13. □

7. The main theorem

In this section, we prove the theorem stated in Section 1.3 and we transfer it into
the Berkovich setting.

7.1. Lemma. — Let k be a valued field with infinite residue field, let X be a geomet-
rically integral k-scheme and let Υ ⊆ X#

gen be a k-definable Γ-internal subset defined
over k. The group S(Υ) is stable under min and max.

J.É.P. — M., 2024, tome 11



642 A. Ducros, E. Hrushovski, F. Loeser & J. Ye

Proof. — It is enough to prove stability under min. Let p be a point of Υ. If there ex-
ists a scalar a of valuation zero such that val(f(p)+ag(p)) > min(val(f)(p), val(g(p)))

then res(a) is a well-defined element of the residue field which we call θ(p); oth-
erwise we set (say) θ(p) = 0. Then θ is a k-definable map from the Γ-internal
set Υ to the residue field. By orthogonality between the value group and the residue
sorts, θ has finite image. Since k has infinite residue field, there exists an element
a ∈ O×

k whose residue class does not belong to the image of θ. Then f + ag ̸= 0 and
val(f(p) + ag(p)) = min(val(f(p)), val(g(p))) for all p ∈ Υ. □

In the situation of the lemma above, it thus makes sense to speak about an (ℓ,+)-
generating system of elements of S(Υ). As for (w,+)-generation, we shall say for
short that S(Υ) is finitely (ℓ,+)-generated up to the constant functions if there exists
a finite subset E of S(Υ) such that E and the k-definable constant functions (i.e., the
constant functions taking values in Q⊗ val(k×)) (ℓ,+)-generate S(Υ).

7.2. Theorem. — Let k be an algebraically closed valued field. Let X be an integral
scheme of finite type over k and let Υ ⊆ X#

gen be a Γ-internal subset defined over k.
The group S(Υ) is stable under min and max and is finitely (ℓ,+)-generated up to
constant functions.

Proof. — By Theorem 6.11, there is a k-definable good embedding α : Υ → Γn for
some n. By Theorem 5.6, S(Υ) is (w,+)-finitely generated up to constant functions.
Let f1, . . . , fm be finitely many k-rational functions whose valuations (w,+)-generate
S(Υ) up to constant functions, adjoining the val(fi) as new coordinates of α, we may
furthermore assume that S(Υ) is (w,+)-generated by the components of α and the
constant functions. By possibly enlarging once again α and replacing X with a suit-
able dense Zariski-open subset we can also assume that α = val(f) for some closed
immersion f : X → Gn

m; in particular, α is definably proper and induces a definable
homeomorphism Υ ≃ α(Υ).

Let f in S(Υ). Since α is a specializable embedding whose coordinates (w,+)-
generate S(Υ) up to the constant functions, the composition f ◦ α−1 viewed as a
Γ-valued function on α(Υ) is piecewise Z-affine and Lipschitz. In view of Theorem 3.13,
this implies that f ◦ α−1 is an ℓ-combination of finitely many Z-affine functions,
so that f itself is an (ℓ,+)-combination of the components of α and of constant
functions. □

7.3. Remark. — Assume that k is algebraically closed and let (f1, . . . , fn) be a family
of rational functions on X such that S(Υ) is (w,+)-generated (resp. (ℓ,+)-generated)
by the val(fi) and the constant (k-definable) functions. Then for every algebraically
closed extension L of k, the val(fi) and the L-definable constant functions (w,+)-
generate (resp. (ℓ,+)-generate) SL(Υ) (work with a bounded family of rational func-
tions and use compactness).
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Our purpose is now to state and prove the Berkovich avatar of our main theorem.
We fix a non-archimedean complete field F . For all n, we denote by SF,n the closed
subset {ηr}r∈(R×

+)n of Gn,an
m,F , where ηr is the semi-norm

∑
aIT 7→ max|aI |rI .

In [Duc12, 4.6], a general notion of a skeleton is defined for an F -analytic space;
the subset Sn,F of Gn,an

m,F is the archetypal example of such an object.
But this notion is however slightly too analytic for our purposes here: indeed, if X

is an algebraic variety over F then Xan might have plenty of skeleta in the sense of
[Duc12] that cannot be handled by our methods, since they would not correspond
to any Γ-internal subset of X̂, by lack of algebraic definability. For instance, assume
that F is algebraically closed and non-trivially valued, and let f be any non-zero
analytic function of A1,an

F with countably many zeroes. Let U be the non-vanishing
locus of f , and let Σ be the preimage of S1,F under f : U → Gm. Then Σ is a skeleton
in the sense of [Duc12], but topologically this is only a locally finite graph, with
countably many branch points. We thus shall need to focus on “algebraic” skeleta.

7.4. Theorem. — Let us assume that F is algebraically closed. Let X be an integral
F -scheme of finite type, and let n be its dimension. Let φ1, . . . , φr be maps Ui →
Gn

m,F where the Ui are dense open subsets of X, and let S ⊆ Xan be a subset of⋃
i φ

−1
i (Sn) defined by a Boolean combination of norm inequalities between non-zero

rational functions.
There exist finitely many non-zero rational functions f1, . . . , fm on X such that

the following hold.
(1) The functions log|f1|, . . . , log|fm| identify S with a piecewise-linear subset

of Rm (i.e., a subset defined by a Boolean combination of inequalities between
Q-affine functions).

(2) The group of real-valued functions on S of the form log|g| for g a non-zero
rational function on X is stable under min and max and is (ℓ,+)-generated by the
log|fi| and the constant functions of the form log|λ| with λ ∈ F×.

Proof. — The subset Σ of X̂ given by the same definition as S mutatis mutandis
is a Γ-internal set contained in X#

gen to which we can thus apply Theorem 7.2. The
theorem above then follows by noticing that if L denotes a non-archimedean maxi-
mally complete extension of F with value group the whole of R×

+, then S is naturally
homeomorphic to Σ(L). □

7.5. Remark. — Note that by Theorem 4.4 the condition that S is a subset of some⋃
i φ

−1
i (Sn) holds as soon as S is the image of Υ(L) under the projection X̂(L) → Xan

with Υ some F -definable Γ-internal subset of X#
gen and L as in the above proof.

7.6. Remark. — We insist that we require that the ground field be algebraically closed.
Indeed, our theorems (for stable completions as well as for Berkovich spaces) definitely
do not hold over an arbitrary non-Archimedean field, even in a weaker version with
(w,+)-generation instead of (ℓ,+)-generation, as witnessed by a counter-example that
was communicated to the authors by Michael Temkin (this counterexample involves
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a field with defect, we do not know if our theorem holds for defectless fields with
divisible value group as in Theorem 5.6).

For the reader’s convenience we will first detail the original counter-example which
is written in the Berkovich’s language, and then a model-theoretic variant thereof in
the Hrushovski-Loeser’s language.

7.6.1. The Berkovich version. — Let F be a non-archimedean field and let F be the
completion of an algebraic closure of F ; assume that the residue field of F is of
positive characteristic p and that F admits an immediate extension L of degree p, say
L := F (α) with α ∈ F. By general valuation theory, the distance r between α and F

is not achieved.
For every s ⩾ r let ξs be the image on P1,an

F of the Shilov point of the closed F-disc
with center α and radius s. If s > r there exists βs in F with |α − βs| ⩽ s, and ξs
is the Shilov point of the closed F -disc with center βs and radius s; but as far as ξr
is concerned, it is the Shilov point of an affinoid domain V of P1,an

F without rational
point.

Let v be a rigid point of V . It corresponds to an element ω of F algebraic over F and
whose distance to F is equal to r and not achieved. Therefore the extension F (ω) has
defect over F , which forces its degree to be divisible by p. In other words, [H (v) : F ]

is divisible by p.
In particular if f is any non-zero element of F (T ), the divisor of f |V has degree

divisible by p, so that there exists some s > r such that the slope of log|f | on (ξr, ξs)

is divisible by p.
Now assume that there exists a finite set E of non-zero rational functions such that

on the skeleton [ξr,∞), every function of the form log|g| with g in F (T )× belongs
piecewise to the group generated by the log|h| for h ∈ E∪F×. Then there would exist
some s > r such that for every g as above, all slopes of (log|g|)|[ξr,ξs] are divisible
by p. Taking g = T − βs leads to a contradiction.

7.6.2. The model-theoretic version. — Let F be a perfect valued field of positive
residue characteristic p such that there exists an irreducible separable polynomial
P ∈ F [T ] with the following property: the smallest closed ball containing all roots
of P has no F -rational points, but any bigger F -definable closed ball has one F -point
(it is not difficult to exhibit such pairs (F, P ); the easiest case is that of pure
characteristic p, where one can take any perfect field F with an height 1 valuation
having an element s with val(s) < 0 such that T p − T − s has no root in F , and
take P =: T p − T − s; for instance, the perfect closure of Fp(s) equipped with the
(1/s)-adic valuation will do the job).

Let b be the smallest closed ball containing the roots of P , and let B be a bigger
F -definable closed ball. Let I be the interval between their generic points; this is a
Γ-internal subset of P̂1 contained in P1,#

gen . This interval is naturally parameterized
by the interval [V, v] where V is the valuative radius of B and v is that of b, and
we will identify them. In particular a linear function from I to Γ has a well-defined
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slope. We will be interested in the germ of functions on I towards the endpoint v.
The number of roots in b of every irreducible polynomial of F [T ] is divisible by p,
for otherwise averaging the roots would produce an F -rational point in b. Hence
the valuation of every polynomial, and indeed every rational function in F (T ), has
slope divisible by p on some interval (i, v) inside I. If the group of functions val(f)|I
were finitely (w,+)-generated up to constants, there would be a fixed i < v (defined
over F ) such that all val-rational functions have slope divisible by p on [i, v]. Now
pick an F -rational point a in the closed ball containing b of valuative radius (i+v)/2;
then T − a has slope one on (i, (i+ v)/2), contradiction.

8. Applications to (motivic) volumes of skeleta

It follows from Theorem 5.6 on finite (w,+)-generation that skeleta are endowed
with a canonical piecewise Z-affine structure. In this section we explain how this
implies the existence of canonical volumes for skeleta.

8.1. Some Grothendieck semirings of Γ. — We shall consider various Grothendieck
semirings of Γ analogous to those introduced in [HK06, §9] (see also [HK08] for a
detailed study of the rich structure of such semirings). Let Γ be a non-trivial divisible
ordered abelian group and let A be a fixed subgroup of Γ. We work in the theory
DOAGA of (non-trivial) divisible ordered Abelian groups with distinguished constants
for elements of the subgroup A. Fix a non negative integer N . One defines a category
Γ(N) as follows (since there is no risk of confusion we omit the A from the notation).
An object of Γ(N) is a finite disjoint union of subsets of ΓN defined by linear equalities
and inequalities with Z-coefficients and constants in A. A morphism f between two
objects X and Y of Γ(N) is a bijection such that there exists a finite partition X =⋃

1⩽i⩽rXi with Xi in Γ(N), matrices Mi ∈ GLN (Z) and constants ai ∈ AN , such that
for x ∈ Xi, f(x) = Mix + ai. We denote by K+(Γ(N)) the Grothendieck semigroup
of this category, that is the free abelian semigroup generated by isomorphism classes
of objects of Γ(N) modulo the cut and paste relation [X] = [X ∖ Y ] + [Y ] if Y ⊆ X.
The inclusion map ΓN → ΓN+1 given by x 7→ (x, 0) induces an inclusion functor
Γ(N) → Γ(N + 1) and we denote by Γ(∞) the colimit of the categories Γ(N). We
may identify the Grothendieck semigroup K+(Γ(∞)) of Γ(∞) with the colimit of the
semigroups K+(Γ(N)). It is endowed with a natural structure of a semiring. We may
also consider the full subcategory Γbdd(N) of Γ(N) consisting of bounded sets, that
is definable subsets of [−γ, γ]N for some non negative γ ∈ Γ (which can be chosen
in A), and the corresponding full subcategory Γbdd(∞) of Γ(∞) and its Grothendieck
semiring. The above categories admit natural filtrations F · by dimension, with Fn

the subcategory generated by objects of o-minimal dimension ⩽ n and we will also
consider the induced filtration on Grothendieck rings.

8.2. Volumes. — Let R be a real closed field. Fix integers 0 ⩽ n ⩽ N . Let W
be a bounded piecewise Z-linear definable subset of RN of o-minimal dimension n.
We denote by voln(W ) its n-dimensional volume which can be defined in the following
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way. After decomposing into simplices, it is enough to define the volume of a simplex
spanned by n+ 1-points, which one can do via the classical formula over R, choosing
the normalization such that, for any family (e1, . . . , en) of n vectors in RN with
integer coordinates which can be completed to a basis of the abelian group ZN ,
the volume of the simplex with vertices the origin and the endpoints of e1, . . . , en
is 1/n!. When R = R, voln is well-defined thanks to the existence of the Lebesgue
measure. In general, the well-definedness of voln follows from the case of R since after
increasing R one can assume it is an an elementary extension of R.

Thus, for any embedding β : A → R with R a real closed field and any integer n,
voln induces a morphism voln,β : FnKbdd

+ (Γ(N))/Fn−1Kbdd
+ (Γ(N)) → R which sta-

bilizes to a morphism voln,β : FnKbdd
+ (Γ(∞))/Fn−1Kbdd

+ (Γ(∞)) → R.

8.3. Motivic volumes of skeleta. — Let us assume that we are in the setting of
Theorem 5.6, that is, k is a defectless valued field with divisible value group, X is
an n-dimensional integral k-scheme of finite type and Υ is a Γ-internal subset of
X#

gen ⊆ X̂. Then, by Theorem 5.6, S(Υ) is finitely (w,+)-generated up to constant
functions. Let α : Υ → ΓN be a definable embedding of the form (val(f1), · · · , val(fN ))

where the functions val(fi) are (w,+)-generating S(Υ) up to constant functions.
We take for A the group val(k×).

8.4. Proposition. — The class of α(Υ) in K+(Γ(∞)) does not depend on α.

Proof. — Consider α′ : Υ → ΓN ′ another definable embedding of the form
(val(f ′1), · · · , val(f ′N ′)) with the functions val(f ′i) (w,+)-generating S(Υ) up to
constant functions. After adding zeroes we may assume N = N ′. Since the func-
tions val(fi) are (w,+)-generating S(Υ) up to constant functions, there exists a
finite partition of Υ into definable pieces Υj such that on each Υj we may write
(val(f ′i)) = Mj((val(fi))) + aj with Mj a matrix with coefficients in Z and aj ∈ ΓN .
Exchanging α and α′ we get that the matrix Mj lies in GLN (Z). □

Thus, to any Γ-internal subset Υ of X#
gen ⊆ X̂, we may assign a well defined motivic

volume MV(Υ) in the ring K+(Γ(∞)), namely the class of α(Υ) for any embedding α
as above.

If Υ is contained in a definably compact set, α(Υ) is bounded, thus MV(Υ) lies in
FnKbdd

+ (Γ(∞)) and we can consider its n-dimensional volume voln,β(MV(Υ)) in R

for any embedding β : Γ → R with R a real closed field. Similarly, any definable
subset of Υ of o-minimal dimension m ⩽ n contained in a definably compact set has
an m-dimensional volume in R.

8.5. Berkovich variants. — These constructions admit direct variants in the Berko-
vich setting which are transferred from the previous section 8.3 similarly as in the
proof of Theorem 7.4.

Fix an algebraically closed non-archimedean complete field F with value group A.
Let X be an integral F -scheme of finite type and of dimension n. Let S ⊆ Xan be an
algebraic skeleton as in the statement of Theorem 7.4. Then one can assign similarly as
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above a well defined class MV(S) to S in in K+(R(∞)). Furthermore, if S is relatively
compact, since A ⊆ R, one can consider its n-dimensional volume voln(MV(S)) in R,
or more generally its m-dimensional volume if S of dimension ⩽ m.

8.6. Remark. — Note that all the invariants defined above (motivic and actual vol-
umes) are invariant under birational automorphisms and Galois actions.

Appendix. Abhyankar valuations are defectless: a model-theoretic proof

Let K be a field equipped with a Krull valuation v and let L be a finite extension
of K. Let v1, . . . , vn be the valuations on L extending v, and for every i, let ei and fi
be the ramification and inertia indexes of the valued field extension (K, v) ↪→ (L, vi).
One always has

∑
eifi ⩽ [L : K], and the extension L of the valued field (K, v) is said

to be defectless if equality holds. We shall say that (K, v) is defectless if every finite
extension of it is defectless (such a field is also often called stable in the literature, but
we think that defectless is a better terminology, if only because stable has a totally
different meaning in model theory).

We shall use here the notion of the graded residue field of a valued field in the sense
of Temkin, see [Tem04] (we will freely apply the basic facts about graded commutative
algebra which are proved therein). A more model-theoretic approach of the latter
was introduced independently by the second author and Kazhdan in [HK06] with
the notation RV(·) which we have decided to adopt here. The key point making this
notion relevant for the study of defect is the following obvious remark: the product eifi
can also be interpreted as the degree of the graded residue extension RV(K, v) ↪→
RV(L, vi).

Examples. — Any algebraically closed valued field is defectless; any complete dis-
cretely valued field is defectless; the function field of an irreducible normal alge-
braic variety, endowed with the discrete valuation associated to an irreducible divisor,
is defectless; any valued field whose residue characteristic is zero is defectless.

The purpose of this appendix is to give a new proof of the following well-known
theorem.

A.1. Theorem. — Let (K, v) be a defectless valued field, and let G be an abelian or-
dered group containing v(K×). Let g = (g1, . . . , gn) be a finite family of elements of G.
Endow K(T ) = K(T1, . . . , Tn) with the “Gauss extension vg of v with parameter g”,
i.e.,

vg(
∑

aIT
I) = min

I
v(aI) + Ig.

The valued field (K(T ), vg) is still defectless.

This result has been given several proofs by Gruson, Temkin, Ohm, Kuhlmann,
Teissier (see [Gru68], [Tem10], [Ohm89], [Kuh10], [Tei14]). To our knowledge, the
first proof working in full generality was that of Kuhlmann, the preceding proofs
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requiring some additional assumptions on K and/or on the gi. Our proof follows a
more model theoretic route, relying on the definability of the defectless locus.

Proof. — It is rather long. Before writing it down, let us describe roughly its main
steps. One first reduces to the case where n = 1 by arguing inductively (and one sets
T = T1 and g = g1) and then to the case where K is algebraically closed (A.1.2),
which requires to understand what happens when one performs a finite ground field
extension of K, and this is the point where defectlessness of K is needed.

Then one shows that if (L,w) is an algebraically closed valued extension of K whose
value group contains val(K×) + Zg, then F is defectless over (K(T ), vg) if and only
if FL is defectless over (L(T ), wg) (A.1.3). This ultimately relies on the description
of definable maps from Γ to the space of lattices (or semi-norms) on a vector space
[HL16, Lem. 6.2.2], which itself rests on the work [HHM06] on imaginaries in ACVF.
This enables us to assume that the valuation of K is non-trivial and g ∈ v(K×). Now
one proceeds as follows:

(A) One shows (A.1.5) that there exists a K-definable subset D of Γ so that for
every h ∈ v(K×) the extension F of (K(T ), vh) is defectless if and only if h ∈ D(K)

(and this holds universally, i.e., this equivalence remains true after base change from K

to an arbitrary model of ACVF);
(B) One shows that D is both definably open and definably closed (A.1.6.1) and

non-empty (A.1.6.2), so that D is the whole of Γ; in particular g ∈ D, which ends the
proof.

Statement (A) rests on the fact that on a smooth projective curve there exists a line
bundle whose quotients of non-zero global sections generate (universally) the group of
invertible rational functions (this follows from the Riemann-Roch theorem); the proof
uses this fact both directly and indirectly, through one of its important consequences in
Hrushovski-Loeser’s theory: definability (and not merely pro-definability, as in higher
dimensions) of the stable completion of a curve. And statement (B) ultimately relies
on defectlessness of the function field of a curve equipped with the discrete valuation
associated to a closed point.

A.1.1. First easy reduction. — By a straightforward induction argument, we reduce
to the case where n = 1, and we write now T instead of T1 and g instead of g1.

A.1.2. Reduction to the case whereK is algebraically closed. — We choose an arbitrary
extension w of v to an algebraic closure K of K, and we endow the field K(T ) with
the Gauss valuation wg. We assume that (K(T ), wg) is defectless, and we want to
prove that (K(T ), vg) is defectless too; this is the step in which our defectlessness
assumption on K will be used. So, let F be a finite extension of K(T ), and let us
prove that it is defectless.

We begin with a general remark which we will use several times. Let K ′ be a finite
extension of K. For every extension v′ of v on K ′ there is a unique extension of vg
on K ′(T ) whose restriction to K ′ coincides with v′, namely the Gauss valuation v′g
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(indeed, for such an extension RV(T ) will be transcendental over RV(K ′), so this
extension is necessarily a Gauss extension of v′). Then it follows by a direct explicit
computation that

RV(K ′(T )) = RV(K(T ))⊗RV(K) RV(K ′),

(where K ′ is endowed with v′ and K ′(T ) with v′g) which implies that K ′(T ) is a
defectless extension of K(T ).

Let us first handle the case where F is separable over K(T ). Let K ′ be the separable
closure of K in F . By the remark above, K ′(T ) is a defectless extension of K(T ), and
it is therefore sufficient to prove that F is a defectless extension of K ′(T ), thus we
can assume that K ′ = K. The tensor product L := K⊗K F is then a field, and L is a
defectless extension of K(T ) since K(T ) is defectless by assumption. Let w1, . . . , wd

be the extensions of wg to L; for every i, let Li be the valued field (L,wi). We have
by assumption

[F : K(T )] = [L : K(T )] =
∑
i

[RV(Li) : RV(K(T ))].

Now each RV(Li) is a finite extension of RV(K(T )), so it is defined over RV(E(T ))

for E a suitable finite extension of K contained in K, which can be chosen to work
for all i. Let us set

Ei = RV(F ⊗K E,wi|F⊗KE).

By construction, Ei contains a graded subfield of degree [RV(Li) : RV(K(T ))] over
RV(E(T )), so that we have

[F ⊗K E : E(T )] = [F : K(T )] =
∑
i

[RV(Li) : RV(K(T ))] ⩽
∑
i

[Ei : RV(E(T ))].

Then
[F ⊗K E : E(T )] =

∑
i

[Ei : RV(E(T ))]

and F⊗KE is a defectless extension of E(T ). Moreover, E(T ) is a defectless extension
of K(T ) by the remark at the beginning of the proof. Therefore F ⊗KE is a defectless
extension of K(T ) as well, which in turn forces F to be defectless over K(T ). We thus
are done when F is separable over K(T ).

Now let us handle the general case. In order to prove that F is defectless over K(T )

we may enlarge F , and so we can assume that it is normal over K(T ). Let F0 be the
subfield of F consisting of Galois-invariant elements. This is a purely inseparable
extension of K(T ), and F is separable (and even Galois) over F0. Since F0 is a finite
extension of K(T ), it is contained in K0(T

1/pm

) for some integer m and some purely
inseparable finite extension K0 of K (indeed, if f ∈ K(T ) then for every ℓ the pℓ-th
root f1/pℓ is contained in the radicial extension generated by T 1/pℓ and the pℓ-th
roots of the coefficients of f).

It is now sufficient to prove that F ⊗F0
K0(T

1/pm

) (which is a field since F and
K0(T

1/pm

) are respectively separable and purely inseparable over F0) is defectless
over K(T ). But F ⊗F0

K0(T
1/pm

) is separable over K0(T
1/pm

), so it is defectless over
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K0(T
1/pm

) by the above; and K0(T
1/pm

) is defectless over K(T ) by direct computa-
tion, resting on the fact that K0 is defectless over K, which ends this first step.

We thus may and do assume from now on that K is algebraically closed.

A.1.3. Reduction to the case of a rational radius. — Let F be a finite extension ofK(T ),
and let C be the normal projective K-curve with function field F , equipped with the
finite map C → P1

K inducing K(T ) ↪→ F . We want to prove that F is defectless over
the valued field (K(T ), vg) and our purpose now is to reduce to the case where g

belongs to v(K×).
Let us fix a non-trivially valued, algebraically closed extension L of K whose value

group contains v(K×) + Zg; let vL denote the valuation of L. We are going to prove
that FL := F ⊗K(T ) L(T ) is defectless over (L(T ), vL,g) if and only if F is defectless
over K(T ), which will allow to replace (K, v) with (L, vL) and thus assume that K is
non-trivially valued (in other words, K is a model of ACVF) and g ∈ v(K×).

Let w be any extension of vL,g to FL; in what follows, FL and its subfields are
understood as endowed with (the restriction of) w. The valuation w on FL defines a
type on CL over L, whose image on P1

L is by design the generic type on the closed
ball of valuative radius g (centered at the origin). This type is thus strongly stably
dominated and definable over K ∪ {g}, see [HL16, Prop. 8.1.2].

Let E be a finite dimensional K-vector subspace of F . It follows from the above
that the restriction of w to L ⊗K E is a norm which is definable with parameters
in K ∪ {g}, once a K-basis of E is chosen. Otherwise said, identifying a norm on E

with its unit ball, there exists a K-definable function Φ from Γ to the set of lattices
of E such that w|L⊗KE = Φ(g). In view of the general description of such a Φ provided
by [HL16, Lem. 6.2.2], this implies the existence of a basis e1, . . . , ed of E over K and
elements h1, . . . , hd of v(K×)⊕Qg such that

(1) w
(∑

aiei

)
= min v(ai) + hi

for every d-uple (ai) ∈ Ld. Note that one thus has

(2) w(x) = max
x=

∑
ai⊗yi

min
i
(v(ai) + w(yi))

for all x ∈ L⊗K E.
It immediately follows from (1) that the graded reduction RV(L ⊗K E) is equal

to RV(L) ⊗RV(K) RV(E). A limit argument then shows that RV(FL) is nothing but
the graded fraction field of RV(L) ⊗RV(K) RV(F ). As RV(L(T )) is itself equal by a
direct computation to the graded fraction field of the graded domain RV(L)⊗RV(K)

RV(K(T )), we eventually get

RV(FL) = RV(L(T ))⊗RV(K(T )) RV(F ).

In particular we have the equality

(3) [RV(FL) : RV(L(T ))] = [RV(F ) : RV(K(T )].
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This holds for all extensions w of vL,g to FL (we remind that w is implicitly involved
in the above equality). Let P, resp. PL, be the set of extensions of vg to F , resp. of
vL,g, to FL. There is a natural restriction map from PL to P, which is injective since
formula (2) above ensures that any w ∈ PL is uniquely determined by its restriction
to F . We claim that this map is surjective as well. Indeed, to see this, we may enlarge F
and assume it is Galois over K(T ). Now let ω ∈ P and let w be an arbitrary element
of PL. The restriction w|F belongs to P, so is equal to ω◦φ for some φ ∈ Gal(F/K(T )).
Then w ◦ φ−1 is a preimage of ω in PL.

Therefore PL → P is bijective. In view of (3) above, this implies that F is a defect-
less extension of (K(T ), vg) if and only if FL is a defectless extension of (L(T ), vL,g),
as announced.

Hence we may and do assume from now on that g ∈ v(K×) and that K is a model
of ACVF.

A.1.4. Some specializations. — Let h∈v(K×). Let us choose λ∈K such that v(λ) = h

and let τ be the image of T/λ in the residue field k of (K(T ), vh); note that k =

res(K)(τ), and that τ is transcendental over res(K). Let h− and h+ be elements of an
abelian ordered group containing v(K×) which are infinitely close to h (with respect
to v(K×)), with h− < h < h+. The valuation vh− , resp. vh+ is the composition
of vh and of the discrete valuation u∞, resp. u0, of k that corresponds to τ = ∞,
resp. τ = 0, and the extensions of vh− , resp. vh+ , to F are compositions of extensions
of vh and of extensions of u∞, resp. u0. Since (k, u0) and (k, u∞) are defectless, we see
that the following are equivalent:

(i) F is a defectless extension of (K(T ), vh−);
(ii) F is a defectless extension of (K(T ), vh);
(iii) F is a defectless extension of (K(T ), vh+).
In the same spirit, let θ be an element of an abelian ordered group containing v(K×)

and larger than any element of v(K×). The valuation vθ is the composition of the
discrete valuation ω of K(T ) corresponding to the closed point T = 0 and of the
valuation of K. Since both (K, v) and (K(T ), ω) are defectless, (K(T ), vθ) is defectless;
in particular, F is a defectless extension of (K(T ), vθ).

A.1.5. Definability of the defectless locus. — Our purpose is now to prove the existence
of a K-definable subset D ⊆ Γ such that for every model (L,w) of ACVF containing K
and every h ∈ w(L×), the extension FL of (L(T ), wh) is defectless if and only if
h ∈ D(L). We first note that in view of A.1.4, FL is a defectless extension of (L(T ), wh)

if and only if it is a defectless extension of (L(T ), w+
h ), and it is the latter property

we shall focus on.
Let X be an irreducible, smooth, projective curve over K whose function field is

isomorphic to F , and such that K(T ) ↪→ F is induced by a finite map f : X → P1
K ;

the latter induces a map f̂ : X̂ → P̂1
K . It follows from Riemann-Roch that there exists

a line bundle L on X such that the quotients s/t for s and t running through the set
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of non-zero global sections of L generates K(X)× universally (see [HL16, 7.1]; this is
the key input for the proof therein that X̂ is definable, and not merely pro-definable).

We identify Γ with the standard skeleton Σ1 ⊆ P̂1
K ; let ∆ be its pre-image in X̂.

The set ∆ is K-definable and Γ-internal (this follows directly from the definability of
X̂ and P̂1

K and the fact that X̂ → P̂1
K has finite fibers, with no need to invoke Theorem

4.2). There exists a finite K-definable set S ⊆ ∆ such that ∆∖ S is a disjoint union∐
I∈I I of definably open intervals, each of which maps homeomorphically onto a

definable open interval in Γ (and is equipped with the orientation and the metric
inherited from Γ).

For every ω ∈ ∆, we denote by I (ω) the subset of I consisting of those inter-
vals I such that ω ∈ I or ω is the left endpoint of I. For every I ∈ I (ω), we denote
by s(I, ω) the set of all possible slopes of val(s/t) for s and t non-zero global sec-
tions of L along the germ of branch emanating rightward from ω and induced by I.
By finite-dimensionality of H0(X,L ) all sets s(I, ω) are finite and the assignment
ω 7→ (I (ω), (s(I, ω))I∈I (ω)) is K-definable.

Let (L,w) be a model of ACVF containing K, let ω ∈ ∆(L) and let I ∈ I (ω). The
germ of branch emanating rightward from ω and induced by I defines a valuation
v(I, ω) refining ω. The image of ω in P̂1(L) is equal to wh for some h ∈ w(L×);
thus v(I, ω) lies above wh+ . The ramification index e(I, ω) of v(I, ω) over wh+ is the
greatest N > 0 such that there exists a non-zero L-rational function on X whose
valuation has slope 1/N along the germ of branch emanating rightward from ω and
induced by I. But since the group of non-zero rational functions on X is universally
generated by quotients of non-zero global sections of L , this integer e(I, ω) can be read
off from the finite set of slopes s(I, ω) (it is nothing but the lcm of their denominators).

Now FL is a defectless extension of (L(T ), wh+) if and only if the sum of all the
ramification indexes of v(I, ω) for ω above wh and I ∈ I (ω) is equal to [F : K(T )].
Thus whether FL is a defectless extension of (L(T ), wh+) or not can be read off from
the sets of slopes s(I, ω) for ω above wh and I ∈ I (ω); the existence of the required
K-definable set D follows immediately.

A.1.6. Conclusion. — Our purpose is to prove that F is a defectless extension of
(K(T ), vg) or, in other words, that g ∈ D(K), and we are in fact going to prove
that D is the whole of Γ. For this, it suffices to show that D is both definably open
and definably closed and non-empty.

A.1.6.1. The set D is both definably open and definably closed. — Let h ∈ v(K×), and
let (L,w) be a model of ACVF containing K and such that w(L×) contains two
elements h+ and h− infinitely close to h with respect to v(K×) and with h− < h < h+.
In view of A.1.4, F is a defectless extension of (K(T ), vh) if and only if it is a defectless
extension of (K(T ), vh+), if and only if it is a defectless extension of (K(T ), vh−). Using
A.1.3, this implies that F is a defectless extension of (K(T ), vh) if and only if FL is
a defectless extension of (L(T ), wh+), if and only if FL is a defectless extension of
(L(T ), wh−). Hence if h ∈ D(K) then h+ and h− belong to D(L), and if h belongs to
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(Γ∖D)(K), then h− and h+ belong to (Γ∖D)(L). This shows that both D and its
complement in Γ are definably open, hence D is both definably open and definably
closed.

A.1.6.2. The setD is non-empty. — Now let (L,w) be a model of ACVF containing K
such that w(L×) contains an element θ larger that any element of v(K×). We have
seen in A.1.4 that F is a defectless extension of (K(T ), vθ). Thus by A.1.3 FL is a
defectless extension of (L(T ), wθ). Hence θ ∈ D(L) and D is non-empty. □
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