On extensions of Presburger arithmetic,
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Abstract

Semenov proved the decidabifity of Th<M, +,f >, where f 1s
effectively compatible with addition. He showed that this
theory admits quantifier elimination in a language containing
the Presburger predicates and a logarithmic function. In
particular, Th<:D4,+,2K3>is decidable. We give a detailed

proof of this result.
We examine the relationships between Th <IN, +,F2?*,

Th<W, +,V,) and Th< N ,+,2% >, where P,(x): iff x is arpower
of 2 and vzfx} =y iff ¥ is the largest power of 2 dividing =x.
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§ 1. Introduction

We are going to present extensions of Presburger's
result of the decidability of the theory of Z-groups. Let
us recall his result to fix notations. He proved that the
theory of totally ordered abelian groups with a least stric-
~tly positive element admits quantifier elimination (g.e.)
in {+,-,€,U,I,Dn;n €w}, the predicate D is defined by Dn(x)
iff 3 ¥.°ML.¥ = X.

As a corollary, we have that Th<IN, + > is decidable.

The main result we want to present is the decidabili-
ty of <IN, +,2¥ >. We give an axiomatization T for Thﬁfm,+,2x}
and we prove that T admits g.e. in an extended language con-
taining the congruence predicates and a logarithmic function.
Those results are for the most part due to Semenovw.
He introduced the concept of a function f on I effectively
compatible with addition and he proved the decidability of
<IN,+, > using a quantifier elimination result. (See theo-

rem 2, p. 617 {5]2}.

Definitions : (See [S]E’ p. 616).

(1) An f-sum is a sum of the form Z a; f(x + bi}, with
1

b il
i

if

(2 £ is effectively compatible with addition if for every

m the values of f are periodiec modulom and if every f-sum A
is either bounded or there exists & s.t. A(x+A) > f(x) or

3 sCA(x+8) > £(x))

If f is effectively compatible with addition, then either
f(x)-x is bounded or Ve JaVx Lf(x+a) > ¢ £(x) + ex.
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A firat result which extends Preburger's result is
the result of Buchi that Thw*{IN,S>, the weak monadic
second-order theory of I with the successor function S is
decidable. (See [B ]).

Biichi proved his result by showing that

(i) the 2-recognizable sets are definable in Thm*ilﬂ,S?,
{ii) the theories Thw<ﬁm,s}' and Thﬂim,+,v2} are bi-
interpretable, where Vzix} is the greatest power
of 2 dividing x.

(iii) the definable subsets of <IN,+,V,~> are 2-recognizable.

Then he concluded by using Kleene's result that the empty

problem for finite automata is decidable.

Comments

A subset of W is 2-recognizable iff it is accepted by a fini-
te automaton with alphabet {0,1!1}.

To bi-interpret Thm{TH,S > and Th<fm,+,?2}, one interprets
the finite set n by the number [n] = E x(i}zl, where ¥ 1is
the characteristie funectiom of n, the éﬁgition by the rela-
tion A(nr,nz,n3) iff [n!] + [nz] = [n3] (see [R], p. 617
3.4) and ?z(n) by the least power of 2 belonging to n.

A power of 2 is interpreted by a singleton.

Conversely, we can ‘define the relation € as follows : R(x,¥y)
iff x is a power of 2 and x belongs to the binary expansion
of ¥ & (Vo(x) = x &9z 3ty =z + x + t) & (2 < x) &

(£ = 0 v V,(t) & x))). | .




From the fact that Th.{]N,+,v2} is decidable follows
that Th <IN,+,P, >, where P,(n) iff n is a power of 2, and

Th <IN, +, 12}, where lzfn} is the greatest power of 2 less than
or equal to n, are decidable,

Van den Dries gave a model theoretic proof of this latter
result. More precisely, he gave a wuniversal axiomatization
T for Th'iIN,+,P2} in the language {+,;,ﬁ,ﬂ,I,EE,PZ,.In,niEw}
where ./o(x) = y iff v ¥ = ny + k. He proved that T is
model-complete with pgfignmadel‘fm,+,P2}. T can be axioma-

tized as follows

(1) Axioms for {IN,+,0,1,<,~}, together with : for each
natural number n > 0, QX.Hy (z/n = ¥ +¢ﬂﬁﬁin ny +k =x).

(2)  P(1) & ¥x (B(x) > x > 0)

{3) qx (gx}H‘g2ﬂ}

() VxVy (B(x) & x <y < 2x + 1g(y))

(5) ¥x (x>0 > Ox < x < 2xx & B(Ax))) & A(0) = O

(6) For each natural number n and n-tuple of odd prime

POWETS d ,...,q 1
k 1l

Yy (B(y) - v ifl a; (v =Gy =9 ay) =y - (kg =9

where {ki,r)lﬁrﬂn is the n-tuple of natural numbers

between 0 and q; to which is congruent a power of 2, and
and k is the ppcm of the orders of the subgroups of
powers of 2 in (Efqi Z - {0},.)

The proof that Th'iIN,+,?2§'is decidable is not model-
theoretiec. Can we give a "reasonable" language in which this

theory admits q.e. ?

The theory of {1m,+,v2} has more expressive power
than Th {IN,+,1232 Semenov exhibited a family of 2-recogni-
zable subsets of IN which are not definable in'iIH,+,P2}
(see [S]I Corollary &4, p. 418).

On the other hand, Cherlin noted that the theory of
{IN,+,v2,2x}'is undecidable. So the graph of 2% is not
definable in<:m,+,v2>. Conversely vzix} is not definable

B o O




To prove the undecidability of Th-{m,+,vz,2X} , one inter-
prets either the relation € on W as follows : let %,y belong
toc MW, then x € y iff R(Zx,y} {with R defined as above), or
the theory of binary relations on finite subsets of IN.

The binary rela;iun A on a subset of n elements is coded by
+2
z g

(x,¥)s.t.A(x,y)
X% x,y < 20

X

From the undecidability of Th< I,+,V >, one can deduce

532
that Thﬁiﬂi,+,v2 > , where Vo is the 2-adiec valuation, is

undecidable. One defines 2% = v by {vzfy} = x and y is the

least z such that VE{Z)

¥) and one defines ?z(x} = v by
Vo (x

Y:

A last remark about the complexity of theose theories is that
the theories Th< m;+,v2 > and Th {IN,+,2x} are non elementary
recursive. This is due respectively to Myers and Semenov

{There will be a survey article on these gquestions by

Compton and Henson).

§ 2. Decidability of Th<m, +,2%>

l. First we present an axiom system T for the theory of

{MW,+,2%> in the language L -{ " SRLI ) I Y ,Ex,Dn;n e 1IN,

E{x},ltx)}.

Let T be the following set of axioms

() ¥x ¥y ¥z ((x+y)+z = x+(y+2z))
\(x (2= + 0 =0+ x = x)
Vx vy Hz (x + 2=y + 2z * x =vy)
¥x ¥y (x+y =73+ x
Ux qy (x < ye—3du x + u = ¥)
¥ Yy (x<y vy<x)
Nx (x> 0&x#0~>x>1) &0 # 1
Vx Jy v x = ny + k)
o=k<n
H:-: {31; ny = x *—"Dn{x}}

W = Yy Yu (x = y=u++{x >y & x = y+ulvi(x = vy & u = 0))




(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

ux (Ax = x < 2 2x)
‘éx‘b"}f (x =y~ €x < Ly)
£¢1) = 0
Vx (@& | = £02%) = L{x) + 1)

Vx (x=1 - 2tx A x)
Vx (£@2%) = x)
W (27! = 2% & 2%

¥x (x> 1~ 251> 5

(10) Let m be an odd natural number and ¢ the Euler

function,

Vx (0, oy (0 = D (2% + (m-1)))

REemark :

We

may replace axiom (8) by %x (A (2%) = 2 ix).

Properties of models of T

We

are going to list a series of properties we can deduce

from the axioms.

1.
2
3.

2(0) = 0 gince Ax < x [ axiom 2 ]

A(1) = 1 smee 3 (1) = 1 and 1 = 22(1) [ axiom 2 ]

29 = SMCQQE{]} A1)y =1 [ axioms 6, 4 and
property 2 ]

A(2%) = 2% if x > 1 and A(2%) = A(1) = 1 = 2°

A(2x) = 2 A(x) [A(2x) = 8(2x) _ x4l _ G8x , _ 5 40
if x ® 1 and A(0) = 2x(0) =0 ].

{QEK < § o QEX+I] » oy 4 gﬁy [£x = £v = £x+1. BSo either

£x = £y, a0 EEY = EEK and EEY # v, or £x + 1 = Ly, so
EEY = 2Ex+I which implies that EEy > v ﬁf |

A(Ax) = Ax [Ax = ZEK and A(Ax) = l{EEK} = EEX {property 4))
Llx) = BLxx) [ 2z = A0=x)1.e. EEx = EE(EK). So £x = £(rx)]
Let n,m belong to N and N = £n - £m +1, then x = 2N im-
plies that nx = m ok [ EH.lm = 2.3n,and nx = 2in x

so nx < 2An x < ENlm x
< am 2% < m 2% (see (*)).
(*) By axiom 9, x = | =+ 2¥l 2 4, 856 x 3 N+1 implies that
E{X-N}-I # x-N. So if 2(x-N) = x i.e. % = 2N, then
25 B




Let us prove now the remark. It suffices to show that
axiom 8 follows from the other axioms and property 5.
We will use property 4 which has been proved without using

axiom 5.

i e

- £(2%) + 1 = x + 1]
: X
22(2.2 ) i 2£(2 +1) l{2X+1} Zn X

=
22(2.2} 1{2'2x]
O 1 o R

In the following we are going to prove that Th(N) admits

First we prove that £(2x+]}

[E ™y oy | and Er2ie)
x+
Then, EE{Q )

1

gquantifier elimination in L, where N =<Zm,+,;,ﬂ,l,ﬁ,2x,n :
n € W, £{x),x{(x) >and N satisfies T.

By inspection of the proof, we see that we only used the
axioms of T.

S0 we get the following results.

Proposition 1 : Th(N) admits q.e..
Corollary 1 : Th(ﬁﬂi,+,2x3>} is decidable.

Proposition 2 : T admits q.e.

Corollary 2 : T is complete and decidable.

Proof : N is the prime model of T. O

Proof of Proposition |

We show that any l-existential L-formula Jx 8(x,y) is equi-

valent to an open formula.

er

1 step
By adding possibly more {(quantified) variables, we transform
dx 8(x,¥) into an existential formula dx Jx Bo{x,E,F},
where B is a conjunct of congruence conditions on the
L-terms in the y-variables and inequations between terms
which are of the follewing forms :

(i) 2 a,2°%i + T b.x, + d, with a,,b,,d €Z and ¢ € .

i 1 i 1l 1] i1
(we will eall such terms S—-terms).
(ii) t(y), where t(.) is an L-term and y are the non guan-

tified variables.




We replace in 8 - any term of thexform fix,y), where

t(x,y) is not the variable x by 2 J

with x; a mnew (quanti-
fier) wvariable and by the atomic formula xj = t({x,y).

- any term of the form £(t) by a new
(g?antifiad} variable X and by the atomiec formula
)t e < N1

- any atomie formula of the form
Dn(tis} by (t = s8) v (t > 8 & 2z t =g + nz) where t or
s are L-terms where x appears.

~ any inequation of the form sl(x,§}+t]{§)
= sz(x,§}+t2(§} by {31 = s, & t, = t, & g, =

5
1 | 2
(5! = 8 & E = tz} v (8, = s, & t, 2 t, &t L t. =38 °

1 2 1 2 | i D 2 — 5p).

= Zig
t2 t]}v

5® step :
We will eliminate the largest (for the order) quantified

variable.

Let xi(x,E} be Xy B e B where x = x, x = {xj,..

(0) i(n)

..,xn} where i is a permutatiom of {0,!,...,n}. Let Sn+1

be the set of permutations on {0,1,...,n}.

We have 8 (x,x,y) v (x:(x,x) A8 _(x,%,¥)

o ; i o

iE8
n+ 1

— — — 3 Jre—

and 3x3 X EIO(x,x,}r} 3 ’1" X (0) ...gxi{n}(xi{x,x].ﬁ_
— - 1€5

Bo(x,x,y}}. n+l
From now on we will deal with the l-existential formula

3 X: (n) xi(x,g}:iﬂofx,;,§} and we show how to eliminate this

quantifier.

3® step :
We denote xi{n) by x . We distinguish between two different

ways x_ can occur in the system.

I) x_, occurs linearly in every inequation of the conjunct
in R (In the process we will possibly replace Xy i=1
by dx, but we can choose the same d for every Xy in each ine-

quation),




We may assume that the system of inequations looks like :
A {fj{x} + gj{y) = dy % = fi{E} + gi{F)}, where
, fi{E} are S-terms and gj(F} and gi(F} arei.-terms,

=
EZ. (%)

{Inieed fj{E} + dpx f gj(E) :4 [{dRXE = gj(E} : fj(E} &
fjfx} = gj(?)} v [fj(x) = gj{F) & fj(X} - gjfy} < (-dp-x 1)

Let d be the least common positive multiple of the dk'

Let dD be an odd natural number s.t.:an E MW d = dD . o
For each Xs s 1 = 1i= n, the following disjunct holds :
'; = 1 =
v {x.-n ki +d¢{do}xi & Xg =n) v V X, 4

0=k ;<dv (d ) = 0<l<n

We replace each inequation by a disjunct of inequations

which are obtained by either replacing x: by k. +n +w(dﬂ}.dx£
or by £ with 0 < £ < n.

We again obtain S-terms since the coefficient of the xi' is
d.ﬂ{du]. S0 we obtain a disjunct of systems each looking as
(*) with % replaced by x'. Then we multiply out each inequa-
tion of (*) in order to have d as a coefficient for X
Before pursuing, we consider a special case. Namely we
eliminate x_ in one inequation, say fi{;*} + gj{§} < dx <
G + g (). (D)

(1) is equivalent to :

((fi"‘gi)—{fj-}gj} =d)v( v [(fl*‘gl}'(f-"gj} - c &

D=c<d ]
v E. +g. = c., & v . =0 and the
R P 3 g VA
ﬁﬂcjﬁd Oﬁck{c
congruence condition fj + gj = cj iz equivalent to a con=-
gruence condition on 83 of thg form gj = zj , Where zs is
d

determined by the following : «

: . £ ;
Either %, is a constant £ < n, so_ 2 1 = 3 or x. 13 eqgual
i % : ?(dyydx! 1
1_

to k, + n + de(d d)=x! , so 2 w: 9 3o =
1 (o etiing K
-2t 2“{1 + d z) for some =z
Fusi k. ©
i1+tn o
= 2 L.z
yen

1

B




floe=

So in both cases, 2
and u, = £ if x., < n.
i i

=1 = e Ky
So fj(x ) E ap 2 + f bt x + e

B g, 25 ME wox B u + a
t

e

]
g
rt
T

L]

So let =z. = ¢, = (£ a ol i I e).
l g g g ©° 5
Let i € {1,...,p} and 7 € {1,...,q} index fi(E'} and
fj{E*}. Let Ep (Sq} be the set of permutations on p
(respectively q) elements.
The system (*) of inequations is equivalent to

x" y) = = x'

W fffi}(x ) + ST(I}(Y} - {x') +
ag&8 , TES
p —

(y) &

oo

&

81 (q) fr(!} * g1 (1) i fc{l} % Br(1)

fgii}(E*} + gg{]}(y) PR = fgfp}(ﬁfj +gﬂ{p)(§} &

[(fU(I) * 30(1}} ~ {ftfl} + ngi}} = d

v (ﬂﬁz{d [{fg(1} + gﬂ{!}} = {fr{1} + gr{t)) Sl OB
z EC ET(|)(Y} j ZT] )

T T

where ET is determined as follows
1
1 %] = E EEE 4 B
et fT{I){x} : a 2 + ht X, + B
t
let C; be the set of matural numbers such that if

+ C; then there exist e', 0 = ¢' = ¢

e il

Erciy * Brqn)
E.t. c; + ¢' =
d
Now let up = n + kE with 0 = kE < d;?fda} if Xp = n, and
up = s, 0= s < n, if Xy < n.

= e' -2 a, 2° "W . 2 b u + e and ¢ is the set
g T ? £ . | S = T

of those z. depending on C;.




I1) X occurs in an inequation in an exponential term.

Let 2%%e . 3 zdxi + 3 b + o % ely
et a 5 . i
o i=] i 350 ] *3 G t{y) be suchan

inequation, where t(y) is an L-term, d € ™, a;.b.,c € Z,
an, . — ]

Denote suchYineguation by T{KD,K,H}.

We are going to replace suchaeformula by a boolean combina-

tion of inequations between S-terms in x_, Xpo weey X

]
where X, occurs linearly and L-terms in y. We will assume

that 4 = 1.

Case a_ > 0

o
In this case, we will distinguish four cases

(1) Neay o 998 SARGD

x

(2) xra, . 2 ® = At (¥)) x =2(t(y)) - £(ay)
x

(3) ray . 2% =20t x=L(t(F))+1 - L(a )
X

(4) rag . 2 7> 2.(t(y))

In subcasges (2) and (3), we substitute X by an L-term

in ;. In subcases (1% and (4) we estimate
X, n X4
a 2 + £ 2 Ta, + I b.x. + ¢
o i 1 i j
i=1 j=o

Let J, = {§ € {U,...,n]fbj = 0}, 1If I, # @, let

b+ = 2(£(Z ©b.) + 3) and otherwise let b. = 0,
T "
1
If J-J, # @B, let b_ = 2(&(~ E b.) + 4), otherwise let
b_ = 0. 3-3,

Let & = £(Z ]ai|) + 3. Let ¢, = £(c) +# 3 if ¢ > 0 and
g om0 othérwise.

Let ¢ = £(-¢c) + 4 if ¢ < 0 and c_ = 0, otherwise.

1) IF X, = max {b+,c+} and if Xy < x - A for all
0= 1i = n, then r(xo,x,y} holds.

We can express that as follows

EKO = £{t(y)) - E{ao) - ]% & [[xo = b+)v{xo = c+} v
[{xu = b, & X = c+} & (A X + A= X, v

i i=1

(v Voo(xp + ko= x & t(x; + k,x,y)))1).
i=1 0=k<a




We obtain this result by the following estimations

(a) T b,x. &2 0
2 y 473
x =2
T h.E e bux, o T
: hij : beJ = (? b]) X = 2 if

1 1
X, = 2(L( Z bj} + 3)

(see Property 9).

Jl
n 55 X .
Now (1) £ 2 g g b per $0F Wog, BB D l|a.] +
i=1 ¥R b s
X
aDQ “E e B ik
1, 1
Suppose x = b, and X4 = Wy wlig M = i = n
e s * -
1) < (z jas] 277 + a )2 "+ e+ 2%, 2
i
¥ e , X b
o U a )2 B g 20 o
21(E|ai])
}:0 1 1
= 2 (ac + 1 + E) +
(a.1) Z b.x. 2 0 and e¢ = 0.
y 13
7 2
So 2 Tididie w 2778 ke
So if - = max {b+,c+} and Xg = x, T4, 1 = 1i=n, then
n X, X X . . |
.EEal+a02 +C+Ebjxj’-§2 (ELD"'E""{T"'E}
i=1] J
4
*o
j 2 "(a, + 1)
X
% 2 Y.2 s
#
< atly) < t(y)

{a.2)y I bjxj = 0 and ¢ = 0.

J
Suppose x_  # b, and X, - A= X s Vi

0= 1 = n.




n
b 1 o 0 _1- + l
So R 2 a; * aDE + ¢ + ? b xj = 2 “(a + 7 ﬁ)
xo 1
= 2 {am + f}
< t(y)
(b £ b.x. < 0.
) R J ]
Suppose that x, # c,_ and x; = A< x, Vi 0< i<n
Then,
n %, X fn %, ®
R S W, + ¢ + £ bh.x, = X 2 Tay a4 g2 Peg
j=1 oo T AL fmi ' °
- A ®
< (2 |a,] 27° «+ 8. )2 “ae
i
E|ﬂi| - xﬂ
= {W 2 +aa]2 +
" 1 x5 A
= 2 (ao + E] + 2 T

< t(y)

(4) If x, # max {b_,c_} and if x; < x_- &
r{xu,;,§) doesn't hold.

, 1 = 1 = n, then

We can express that as follows
(x, 2 £(t(¥)) - £(a)) + 2) & ((x<Db_)v(x, < e )v

(x_2b_&x 2c_&( V (x,+k=x)2a&rT1(x, +k,x,7)0 .
0 — [a] - Dﬁk{ﬂ 1 0 1

We obtain this result by the following estimations.

{a) £ bjx, = 0

J J x =3
Eb.x, T b.x,»-2° ., if x> 2(L(= T b.)+4).
J J 1 J_Jl o1 Y | Fey J

1
(S5ee Property 9).




Suppose x; + A= X s Yi 1<4i<n and x, = b_ , then
n %, b4 n o x. x
oA 2 twad e b Y 0% e g 59§ e+ & b.x.
i=1 * " g 31 i L I¥,. 43
5 x
;.g zﬁ:ﬂ|aﬂ +302°+¢+E' b.x,
: iy R,
1=1 1
% z |a,| x =3
320(30-__,.1___,2'2}+¢_z°
2 (Z|a.])
i
If ¢ = 0
X x =3 ®
o i 3 o o 1
}2 {El E} 2 a 2 (aﬂ-i}
KD lao
= 2 e
) 2
=2 a(t(m)
4
= t(y)
£
x
o 4
If ¢ = 0, then suppose X #c_ . 8o 2 = A(-c).2 i.,e.
%
- 9B & & 23
+
n xl xﬂ X 1 1 x 1 x
B ooag 3 T oay 2 Tk opew Bohums % Ylasssjawsiyis Beca
o i o 373 o 4" 8 B
i=1 J
xa 1
=2 (aD-E}
= laD _
= Yo _2_} 2x(ely))
> t(y)
(Y £ h.x. = 0.
3 4.
Suppose x, ¢ g X Hi 1l = i £ n and X, & o

Then,




n x % n x ¥
% cie? T ear® T wag 02 hams T ocaed - R 2 9 Gep
1 a o
1=1] J 1=1
= X
o 1 1 o
= - - - e
2 (aﬂ f_,“) z 2
x
Q 1 1
=7 -— -
{aﬂ 4, 8
X, 130 _
=2 = = 2A¢ (7))
&
>t(y)
Let N = max {h*,c+,b_,c_}.

If a, >0,
(x,,%,¥) < (x, = £(e(y))-L(a,) & Tt (¥))-L(a ), x,¥))v

(x, = E(t(?}}—ﬂ(ao}ﬂ & T(ﬂft(F)){(aﬁ]+l,§,§}v

v (KD = k & T{k9;9;]) v
0<K<N
N n
(x, 2 N & (x,< E(t(y))-L(a )-1 & [{ii] X;+A<x )V

n
v v (x; + k = x_ & 1(x; + k,X,¥y) 1) v

i=1 0=k<p 7

(x, 2 £(e(y))+2- L£(a) &

n
v v . + k = XO & T(xi + karg}}}‘

i=1 0=k<a

Case ao*{ 0.

As in case a_ > 0, let b, = 2{£(Z b.)Y + 3) if J, # @ and
s] + T h| ]

b, = 0, otherwise. !
Let ¢, = £(cy + 3, if ¢ > 0 and gy = O if = 0.
Let N' = max {b+,c+] v Lat: A = g(3|3.|} + 2 = L(-a.)

Then if X 2 N' and if X4 = A', 1 € i € n, then
T(xﬂ,E,E} holds.

We obtain this result making the following estimations




Caol) o E bjxj 2 0 and ¢ = 0.

Suppose morecver that x = N'

and K.Ji x - A", 1= 1< q,
i o
xG—E x =2
S5¢ Z b.x. = 2 and ¢ < 2 °©
q J ]

x X,
Therefore, 302 2 3B ai2 L4 b.x, + e

< a2 °
o
< 2 "(a
x
i R
e
< 2 “(a
< t(y)
(2a.2) Z b.x, = 0
Il s
Hi l = 1 = n.
S0 Z b,x, = X b
J J
|
x
Thus a 2 + £ a,
0 i‘l

1

(4.3 & b.x. < 0,
11

1 = i & .

Therefore,

X X,

8.2 Yd Bad T 4
o . 1

1
So, if < 0

ao §

1 J
xn—ﬁ* x =2
+ I |a | 2 + 2 ° +
i
=A"' 1 1
= g e
+ ; |al| 2 L &}
A(-ag) ¥ eyl 1
g T 2 = 5]
2% (2|a,])
1 A(=ag)
e L kT W
o * 2 & 2 s 2
E ¢ = 0. Suppose X, # b, and }-’.i+.|1-1'r = X,
x =2
i
K ® o xa-l
2 '+ Zb.x, +c<a 2+ Z|a,]2t+2
q 13 o e
i
2 A(-ag) , 1
< 7 Ya +'_EER" + ) <0
< t(y)

Suppose x_, = c, and xi+&‘ < x_ for all {

B foow: #i g @ g b 0 s dlpagliat e, 1 inle
X
% (4 # ii%ial + %}2 5
<0< t(¥)




16 MRS {x, = k & o(k,Z,7)) ¥ (x, ® N' &

0=k=<n"' %
A x, + A= x) v {x =N & (V v .tk = x
S q @ i=1 0<k<p' b °

et T{xi+k,-§,'§}}}1 i

§ 3. Decidability of Th<WMN ,+,f > , where f is effectively

compatible with addition.

Let Tf be the following theory

(1) axioems for i]N,+,;,Q,D,I,Dn;n E w > (see axioms (1)
for T).

(2) ¥x Wy (x <y~ £(x) < £(y))
(D Yx ¥y =8> (£ x) =y = £ly) € 5 < £(y+1)},
where A E IH

(4) Y= (x> 1 = £(x) ® c.f(x-1) > x), ¢ > 1, ¢ € IR.
or

(63" e Ja Vx (F(x+d) > cf(x) + ex)

(5) the walues of f are periodie modulo m, for every m.

Let us make two remarks

1. Axiom (4) implies that f(x) = c¢" f(x-n) and that
n
(x = En % 5 f(x) > mx), where n is sufficiently
¢ = m

large in order that MmO

2. If f is effectively compatible with addition and if

fF(x) - x is unbounded, then f satisfies axiom(4)'.

= Along the lines of Proposition 2, one can prove

oy 3 ¥ . =]
Proposition 3 : T, admits q.e. in {+,2,0,1,%,f,f " ,D

. £ n’
| n € w}. O

An example of such functiom f is £ : n ¥ n.2
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